
Institute of Parallel and Distributed Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Master Thesis

Routing Algorithms for Time
Sensitive Networks

Subarna Singh

Course of Study: Information Technology/InfoTECH

Examiner: Prof. Dr. Kurt Rothermel

Supervisor: M.Sc. Naresh Nayak

Commenced: 25. April 2017

Completed: 26. October 2017

CR-Classification: C.2.2

Abstract

IEEE 802.1Qbv standard is an enhancement introduced by Time Sensitive Network Task
Group to provide real time communication in a converged Ethernet network capable
of transmitting both time critical traffic and best effort traffic. The standard includes a
gating mechanism which controls the access to the transmission medium at the egress
port of a switch, allowing transmission of frames from the specified queue. The gating
events are time triggered and are programmed using a transmission schedule.

A transmission schedule is a cyclic schedule that can be generated using various inde-
pendent scheduling methods. However, the first step to each method involves routing
the traffic across the network, followed by computation of gate schedules along the
route. Due to lack of a standard, assessment of the quality of a schedule is difficult.
Therefore independent metrics are used to measure the quality of schedule generated
by different scheduling methods. However, the aim of each scheduling method is to
transmit maximum amount of data traffic in a single cycle of a schedule.

This thesis proposes that routing impact the quality of a transmission schedule irrespec-
tive of the scheduling method used. To begin evaluations showing the impact of routing
algorithms on the data load distribution across the network are present. Followed by
evaluations of the impact of data load distribution on the quality of a transmission sched-
ule. Consequently establishing a direct relation between routing of the data traffic and
the quality of a schedule. In response a generic routing algorithm aimed at optimizing
the data load distribution is presented. The algorithm is based on heuristic algorithm
Tabu Search to make it scalable in nature, allowing its use across different scenarios. We
evaluate the algorithms with respect to data load distribution, impact on the quality of a
schedule and scalability.

3

Acknowledgement

It gives me great pleasure in acknowledging the contributions of all those without whom
this thesis would not be possible. First and foremost, I wish to thank Prof. Dr. Kurt
Rothermel for giving me an opportunity to do my thesis in the Department of Distributed
Systems.

This work would not have been possible without the guidance of my supervisor Naresh
Nayak, he has taught me more than I could ever give him credit for here. He has shown
me, by his example what a good researcher should be like. He has patiently corrected
my writing and supported my research.

I would like to thank my parents and my brother, for the constant support and love,
which gives me the strength to pursue my goals. Finally I would like to thank my fiancé,
Lt Cdr Anurag Sharma for motivating and supporting me.

5

Contents

1 Introduction 15

2 Background 21
2.1 IEEE 802.1Qbv . 21
2.2 Scheduling . 24
2.3 Software Defined Network (SDN) . 28
2.4 IEEE 802.1Qca . 30
2.5 Heuristic Algorithms . 34

3 Time Sensitive Network 37
3.1 System Model . 37
3.2 Problem Statement . 40

4 Impact of Routing on Scheduling Methods 45
4.1 No-Wait Packet Scheduling for IEEE Time Sensitive Networks (TSN) . . . 45
4.2 Scheduling Real Time Communication in IEEE 802.1Qbv Time Sensitive

Networks . 46

5 Routing Algorithms 49
5.1 Terminology . 49
5.2 Weighted Shortest Path First Algorithm 50
5.3 Weighted Equal Cost Multi Path Algorithm 53
5.4 Tabu Search Algorithm . 55
5.5 Dynamic Routing Using Tabu Search . 65

6 Results and Evaluations 69
6.1 Impact of Routing Algorithms on MSTL 69
6.2 Impact of Reduced MSTL on Quality of Schedule 76
6.3 Scalability of Routing Algorithms . 83

7 Conclusion 85

Bibliography 87

7

List of Figures

2.1 Guardband between Time Critical Traffic Frames and Non Time Critical
Traffic Frames in Time Senstive Network (TSN) [14] 22

2.2 IEEE 802.1Qbv compliant Switch Architecture on Single Port 23
2.3 Graphs for evaluation of SMT method 28
2.4 Software Defined Network (SDN) Reference Model [20] 29

3.1 Time Sensitive Network (TSN) Architecture 37
3.2 IEEE 802.1Qbv compliant Switch Architecture on Single Port 38
3.3 Using Shortest Path First (SPF) to route the given flows 42
3.4 Using ECMP to route the given flows . 42

4.1 Routing using Shortest Path Routing (SPF) for the given set of flows (SMT
method) . 47

4.2 Routing using alternate routing approach for the given set of flows (SMT
method) . 47

5.1 Routing flows using Weighted Shortest Path First (wtSPF) Algorithm . . 51
5.2 Increased MSTL due to routing of Flow4 using Weighted Shortest Path

First (wtSPF) Algorithm . 52
5.3 Alternate routing of Flow4 to optimize the MSTL 52
5.4 Increased MSTL due to routing of flows using Weighted ECMP Algorithm

(wtECMP) . 54
5.5 Initial Solution: routing Flow1 using Tabu Search Algorithm 56
5.6 Initial Solution: routing Flow2 using Tabu Search Algorithm 57
5.7 Initial Solution: routing Flow3 using Tabu Search Algorithm 57
5.8 Neighborhood Search: re-routing flows on MaxLoadLink to reduce MSTL

(Tabu Search Algorithm) . 59
5.9 Routing of flows in set F1 . 65
5.10 Initial Solution using Tabu Search Algorithm 66
5.11 Neighboring solution using Tabu Search Algorithm 67

6.1 MSTL vs Number of Flow . 70
6.2 MSTL vs Number of Flows (Tabu Search) 71
6.3 MSTL vs Graph Connectivity . 72

9

6.4 MSTL vs Graph Connectivity (Tabu Search) 73
6.5 MSTL vs Tabu List Size . 74
6.6 MSTL vs Number of Iterations . 75
6.7 Flowspan vs Number of Flows . 77
6.8 Flowspan vs Number of Flows (Tabu) . 78
6.9 Flowspan vs Graph Connectivity . 79
6.10 Flowspan vs Graph Connectivity (Tabu) 80
6.11 Routing Time vs Number of Flow . 82
6.12 Routing Time vs Number of Flows (Tabu Search) 82
6.13 Routing Time vs Graph Connectivity . 84
6.14 Routing Time vs Graph Connectivity (Tabu Search) 84

10

List of Tables

6.1 Impact of MSTL on Flowspan . 76
6.2 MSTL for routing algorithms routing 50 flows 81
6.3 Breaking Point of routing algorithms . 81

11

List of Algorithms

5.1 Weighted Shortest Path First Algorithm 50
5.2 Weighted Equal Cost Multi Path Algorithm 53
5.3 Tabu Search: Initial Solution . 55
5.4 Tabu Search: Update Load . 55
5.5 Tabu Search: Selecting Flows . 58
5.6 Tabu Search: Re-Route Flow . 58
5.7 Tabu Search: Tabu Flow . 61
5.8 Tabu Search: Best Solution Update . 61
5.9 Tabu Search: Tabu Link . 62
5.10 Tabu Search: Tabu Link Flow . 63
5.11 Tabu Search: Termination Criteria . 64

13

1 Introduction

There is a growing requirement for a network capable of providing real time commu-
nication in areas such as Industrial Internet of Things (IIoT), automotive networking,
power/utility grid networks, telecommunication networks etc. The applications in these
fields require strict adherence to deadlines, this includes transmission and delivery
of data. A real time communication ensures the transmitted data is delivered at its
destination before the specified deadline. Using Industrial IoT (IIoT) as an example let
us try to understand the significance of such a network. Industrial IoT (IIoT) provides
automation of physical processes in a manufacturing industry with the added advantages
of saving cost, operational efficiency and improved safety standards. An essential com-
ponent of this is Internet of Things (IoT), which is a concept enabling physical devices
to communicate with each other, thus allowing collection and exchange of data. The
physical devices in IoT are a general class of Cyber Physical Systems (CPS), embedded
with software, electronics, sensors, actuators and network connectivity. The sensor in a
CPS monitors and captures the state of the physical device, and sends the collected data
to a controller. The controller is used as an interface to send commands to the actuator,
which affects the state of the physical device. The Cyber Physical Systems (CPS) may be
distributed across the plant and since they are controlled by the controller, they need to
be connected via a network, hence distributed real time control system form an integral
part of Industrial IoT (IIoT) [12]. A distributed real time control system requires

• a converged network, capable of classifying the data traffic into classes and provid-
ing services based on the requirement of each class

and the following two essential services:

• a strict real time communication, to enable applications with hard deadlines such
as motion control.

• a high bandwidth, to support a large number of sensors, and a large amount of data
which is required to drive Industrial IoT applications like predictive maintenance
and data analysis.

We shall discuss the available network technologies and their viability to offer these
services.

15

1 Introduction

Ethernet (IEEE 802.3) is one of the most popular and widely adapted network protocol.
Its reputation for providing high performance in Local Area Networks (LAN) has made
it a ubiquitous standard. It provides operational simplicity, interoperability with other
technologies, and cost effectiveness due to its widespread adoption. It is also capable
of providing flexible topology, thus allowing future expansions. Ethernet would be the
preferable choice of network media while designing a network. However, Ethernet
is non-deterministic in nature, it is unable to predict when a node will be allowed to
access the network medium for transmission of data. It also does not provide in-built
mechanisms to guarantee bounded latency while transmitting data through the network.
These drawbacks limit its viability to provide a strict real time communication in an
environment such as Industrial IoT (IIoT) [4].

Industrial networks were originally developed using point to point links between devices
in a manufacturing plant and their controller. Fieldbus technology was developed
with the intent to replace these networks. It allowed connection of multiple devices
and their controller over a single digital link by transmitting information in serial
order and multiplexed in time. Ethernet based Fieldbus technologies like Profibus[18],
EtherCAT[15], and SERCOS III[11] are widely adopted in the industry. They offer real
time, deterministic and low latency communication, but a network built using either
technology is incompatible with other propriety technologies. This has led to a high
cost of investment. Using proprietary technology such as these requires investment in
devices compatible with the technology and also faces the risk of loss of investment if a
better technology were to be adopted in future.

The shortcomings of these technologies were addressed with the advent of Time Sensitive
Network (TSN). Time Sensitive Network(TSN) is part of IEEE 802.1 group, a set of
specification aimed at providing deterministic services through IEEE 802 networks,
which includes guaranteed packet transport with bounded low latency, low packet
delay variation, and low packet loss. It is a layer 2 technology that can be used in any
environment to carry the payload of any industrial application. Since it can be used over
standard Ethernet it offers the advantage of utilizing high bandwidth in automation
networks. Thus, successfully fulfilling both the service requirements of a distributed real
time control system.

To understand how a Time Sensitive Network (TSN) achieves the above-mentioned goals
we need to understand the underlying architecture and the protocols used. The network
components of a Time Sensitive Network (TSN) architecture and their functionality are
as follows[17]:

• TSN Flow: real time communication between end devices, which can be uniquely
identified by network devices.

16

• End Device: end nodes (source and destination node) for a TSN Flow. They run
applications demanding deterministic real time communication.

• Bridges: Ethernet switches capable of transmitting and receiving Ethernet frames
of a TSN flow. It controls the transmission of a TSN frame depending on the
specification used. For example, a IEEE 802.1Qbv compliant Ethernet switch
controls transmission via gate opening event. Each port in the switch has mul-
tiple queues, these have a gating mechanism which determines if the queue is
allowed to transmit into the port. The gate opening events are programmed in
a programmable gate driver present on the switch. The events are programmed
based on a schedule.

• Central Network Controller (CNC): is a proxy for the Network (the TSN Bridges
and their interconnections) and the control applications that require deterministic
communication. It defines the schedule on which all TSN frames are transmitted.

• Centralized User Configuration (CUC): is an application that communicates with
the CNC and the end devices. It represents the control applications and the end
devices and makes requests to the CNC for deterministic communication with
specific requirements.

These network components require a common set of protocols to deliver real time
communication. These protocols include time synchronization, selection of communi-
cation paths, path reservation, and fault tolerance, and scheduling and traffic shaping.
Following are a few standards published under the umbrella of Time Sensitive Network
(TSN) task group that can be categorized into the set of protocols mentioned above :

• IEEE Std 802.1AS Timing and Synchronization for Time-Sensitive Applications in
Bridged Local Area Networks

• IEEE Std 802.1Qca Path Control and Reservation.

• IEEE Std 802.1Qbv Enhancements for Scheduled Traffic

IEEE Std 802.1AS Timing and Synchronization is a set of protocols and procedures for
transportation of synchronized time, selection of the timing source (best master) and
indication of timing impairment [1].

IEEE Std 802.1Qca Path Control and Reservation is a set of protocols for explicit path
control, bandwidth and stream reservation, redundancy (protection or restoration) for
data flows (set of frames to be transmitted from node to another). It also includes a new
control protocol which will provide explicit forwarding path control, enabling the use of
non-shortest paths [3].

IEEE Std 802.1Qbv Enhancements for Scheduled Traffic specifies time-aware queue-
draining procedures, and provide extensions to existing protocols that enable bridges

17

1 Introduction

and end stations to schedule the transmission of frames based on timing derived from
IEEE Std 802.1AS. It also supports Virtual Local Area Network (VLAN) tag encoded
priority values, allowing support of scheduled traffic, credit-based shaper traffic and
other bridged traffic over Local Area Networks (LANs) [2].

The discussed specifications along with others in Time Sensitive Network (TSN) have
been successful in achieving deterministic real time communication on 802 networks.
However, there exists no standard for generating schedules for transmission of TSN
frames. Before dwelling into the methods for generating these schedules we need
to understand its definition. A transmission schedule is a set of gate opening and
closing events on individual switches. These events allow control over the access of
the transmission medium. Only if the gate of a queue is open can the data packets
buffered in the queue transmit. However, an IEEE 802.1Qbv compliant switch does not
allow preemption of transmitting frame. If a low priority frame is being transmitted,
in spite of an open gate the high priority frame will be unable to access the medium.
This introduces delay in transmission. To tackle this issue IEEE specification 802.1Qbv
introduced guard bands. They are of the size of an Ethernet frame and are placed before
and after gate events (open and close) of a scheduled traffic. A guard can be computed
explicitly or implicitly. An explicit computation means the guard bands are computed by
the Central Network Controller during schedule generation and implicit computation
means they are introduced by the switches.

On going research has resulted in several independent methods to generate transmission
schedules, however in this thesis, we will be focusing on:

• No-wait Packet Scheduling for IEEE Time-sensitive Networks (TSN) developed by
Duerr et al. at University of Stuttgart [10]. It solves the problem of transmission
schedule generation using No-wait Job Shop Scheduling Problem.

• Scheduling Real-Time Communication in IEEE 802.1Qbv Time Sensitive Networks
developed by Craciunas et al. at TTTech Computertechnik AG [6]. It uses Satisfia-
bility Modulo Theories (SMT) to generate transmission schedules.

Both methods successfully generate transmission schedules, given a network and set
of TSN flows to be transmitted, but there is no standard metric to assess the quality
of a transmission schedule. The decision to use a scheduling method lies purely on
preferential basis.

In the paper No-wait Packet Scheduling for IEEE Time-sensitive Networks (TSN) [10],
researchers argue that guard bands are a wastage of bandwidth for best effort traffic.
Minimizing the number of gate events will reduce the number of guard bands, increasing
the amount of best effort traffic transmission and also increasing the number of scheduled
traffic frames transmitted in a single gate opening event. Therefore a transmission
schedule is of good quality if it has minimal duration. A minimal duration implies

18

fewer gate opening events. They have introduced a metric called Flowspan, which
indicates the finishing time of the last flow transmitted through the network. Flowspan
indicates the minimum duration for a schedule. This metric, however, is applicable only
to the NW-PSP method of schedule generation. The method introduced in Scheduling
Real-Time Communication in IEEE 802.1Qbv Time Sensitive Networks offers no such
metric or parameter to evaluate the quality of a transmission schedule generated by it.

In the paper Routing Algorithms for IEEE 802.1Qbv Networks [9] researchers at the
University of Stuttgart established a direct relation between the routing of time triggered
traffic and quality of schedule (flowspan). The routes of time triggered traffic are an
input to the scheduling method. Based on these routes the switches on which gate
opening events are to be scheduled are determined. The standard routing algorithm
used is Shortest Path First (SPF), which routes the data traffic over the shortest available
paths, concentrating the data load over selective few links in the network. This leads
to contention between traffic on switch ports. Higher contention implies longer time
is required to transmit the time triggered traffic. The researchers have introduced a
metric called Maximum Scheduled Traffic Load (MSTL) [9] to measure this contention.
It is defined as the maximum amount of scheduled (deterministic real time) traffic
transmitted through a network. They have established a direct relationship between the
MSTL and Flowspan, presenting proofs that decrease in the value of MSTL results in
decrease in Flowspan of the transmission schedule. In this thesis, we will establish the
validity of the metric MSTL on the other transmission schedule generating method.

They have also established that the value of MSTL is influenced by the routing algorithm
used. For instance routing all scheduled flows over a single link causes a bottleneck
and increases the MSTL value, in comparison to routing algorithm where the scheduled
flows are distributed over the entire network. Hence they introduced two Integer Linear
Programming (ILP) based algorithms for routing TSN flows [9], aimed explicitly at
minimizing the MSTL of the network. The first algorithm is MSTL based routing, it
optimizes the routes for time triggered traffic based only on the MSTL of the network.
The second algorithm is MSTL + Hops based routing, it generates the routes of TSN
flows while optimizing the number of hops in each route and the resulting MSTL of the
network. The result produced reduced Flowspan for MSTL based routing, and MSTL
+ Hops based routing by up to 30% and 60 % respectively in comparison to shortest
path routing. Thus establishing the direct relation between MSTL and routing of the
TSN flows.

However, the runtime of ILP based algorithms is very high. The scalability of the
algorithms was tested with respect to the number of flows and the size of the topology.
In each case the increase in the runtime of MSTL based routing was gradual, but the
runtime of MSTL + Hops based routing increased steeply. This is due to the complexity of
combinatorial optimization problem which is exponential in nature. One of the methods

19

1 Introduction

that can be employed to tackle this issue is heuristics. Heuristics are approximate
techniques to solve complex problems like optimization problems. They are developed
to have low time complexity. Some examples of heuristic and meta heuristic algorithms
are tabu search, simulated annealing, ant colony optimization etc. The aim of this thesis
is to develop routing algorithms using heuristic and meta heuristic algorithms.

Based on our understanding of the problems in Time Sensitive Network (TSN), we have
outlined the goals of this thesis as follows:

• To benchmark Maximum Scheduled Traffic Load (MSTL) as a metric that be used
by any scheduling method to quantify the maximum traffic that is scheduled on a
link in the network. Consequently allowing assessment of the data load distribution
across the network.

• To identify individual metrics that can be used to evaluate the quality of a schedule
generated by scheduling methods mentioned earlier. To establish a direct relation
between MSTL and the quality of a schedule independent of the scheduling method
used.

• To develop a generic routing algorithm based on heuristic algorithm Tabu search
aimed at optimizing the MSTL value, while being scalable in nature.

Thesis Organization

The remaining part of the thesis is organized into the following six chapters :

Chapter 2 presents the main concepts which form the basis of the thesis. It begins
with the principles of IEEE 802.1Qbv standard, followed by a brief discussion on the
scheduling methods used in this thesis. An overview of Software Defined Network
(SDN), IEEE 802.1Qca standard and heuristic algorithm Tabu Search is presented.

Chapter 3 provides the formal specification of the system model used and the problem
statements of the thesis.

Chapter 4 discusses the impact of routing algorithms on the scheduling methods with
respect to the quality of the schedule generated by them.

Chapter 5 presents the routing algorithms that have been realized in this thesis. It
includes the details on the implementation of the algorithms and its impact on MSTL.

Chapter 6 presents the result of all the evaluations performed. Chapter 7 concludes the
thesis with summary and proposes the possible future work .

20

2 Background

The objective of this chapter is to introduce the core concepts which form the basis of this
thesis. We shall discuss the basic principles of IEEE 802.1Qbv, transmission scheduling
methods, Software Defined Network (SDN), IEEE 802.1Qca and Heuristic algorithms.

2.1 IEEE 802.1Qbv

Some applications have hard deadlines for data delivery for example industrial control
applications, where data is used to operate critical operations of the plant or machinery
involved. Delay in delivery of this type of data may result in instability, inaccuracy
or failure of the operation. Such applications require a network capable of providing
predictable data delivery in terms of time, and determine the overall latency and jitter
experienced during the propagation of the data through the network. Earlier, trans-
mission of time critical traffic was achieved by dedicated networks, but the bandwidth
utilization by time critical traffic was low and the cost of installing and maintaining
the network was significantly high. Hence there was a need for a converged network
capable of supporting different classes of traffic on the same physical network, while
providing different quality of services (QoS) and meeting the strict requirements of a
time critical traffic.

The IEEE 802.1 Time-Sensitive Networking Task Group (TSN-TG) is a major standard
body in networking, working on a set of specification to provide deterministic services
through IEEE 802 networks. These specifications will allow transmission of data of
different traffic classes (time-sensitive and non-time-sensitive) over IEEE 802 compliant
network, thus allowing maximum utilization of the bandwidth. Originally, they were
known as Audio Video Bridging (AVB) task group and were tasked to provide time
synchronized low latency streaming. This ongoing development drew the attention of
industrial and automotive communities and soon the Audio Video Bridging (AVB) task
group’s focus shifted towards industrial and automotive applications. The goal of Time-
Sensitive Networking (TSN) is to provide time synchronized, low-latency transmission of

21

2 Background

Figure 2.1: Guardband between Time Critical Traffic Frames and Non Time Critical
Traffic Frames in Time Senstive Network (TSN) [14]

data over Ethernet networks. This goal is achieved via protocols developed under Time-
Sensitive Networking (TSN) umbrella which can be categorized as time synchronization
protocol, stream reservation protocol, scheduler and shaper protocols etc.

Time Sensitive Networking (TSN) employs the technique of prioritization to attain
deterministic delivery of time critical traffic. Prioritization is achieved using traffic
shaping in combination with differentiated services. Traffic shaping is the practice of
delaying transmission of frames of lower priority traffic to allow high priority traffic to
be transmitted first. For example, applications like email which use best effort service
are not affected by delay in delivery of frames, but time critical applications have hard
deadlines, delay in frame delivery can result in system failure, damages or even loss of
life. Therefore, in such systems time critical traffic frames are given priority over best
effort traffic frames and are transmitted first. Differentiated services provides mechanism
to classify traffic into aggregate traffic classes. It provides relative quality of service
(QoS) guarantees, which are based on hop by hop prioritization of traffic classes and
does not provide absolute performance guarantees. The performance of differentiated
services depends on the overall traffic in the network.

However prioritization has its limits in providing deterministic delivery of time critical
traffic. To guarantee deterministic delivery in terms of time, access to transmission
medium at specific instant in time is critical. This access can be hindered by a transmit-
ting frame belonging to a lower priority traffic, a higher priority frame cannot access the
medium until the completion of transmission of the current frame. This can result in
delay of up to a maximum-sized frame. Accumulation of such a delay at every hop will
lead to an unacceptably large latency. This behavior is not limited to contention between
a low priority and high priority traffic stream, but also amongst multiple streams of
time critical traffic. These traffic streams can interfere with each others timely delivery

22

2.1 IEEE 802.1Qbv

Figure 2.2: IEEE 802.1Qbv compliant Switch Architecture on Single Port

of frames. A mechanism is required to ensure coordination between interfering traffic
streams.

To ensure a high priority traffic has guaranteed access to a medium at a specific instant
in time, a protection window can be created allowing transmission of a specific traffic
class over the medium for the duration of the time window. The implication of this
mechanism is that the transmission of other traffic classes has to be stopped in advance
to avoid interference. This means the transmission of lower priority traffic should be
completed prior to the time (T1) when time critical traffic is granted access to the
medium. The difference between T1 (time at which time critical traffic gains access to
the medium) and T0 (time of completion of transmission of last frame of non time critical
traffic) should be equal to maximum-frame size in the worst case. This difference can be
guaranteed by introduction of guard bands. Guard bands ensure non time critical traffic
is not transmitted between the start of guard band (T0) and beginning of transmission
of time critical traffic (T1) as can be seen in Fig 2.1. The size of the guard band can
be fixed to the size of one maximum-sized frame or be flexible if the implementation
can determine the size of the queued frame, and the queued frame can be transmitted
completely before the start of transmission of time critical traffic. [14]

Switches in a network should be compliant with the specification developed by Time-
Sensitive Networking Task Group (TSN-TG) to be able to provide the above mentioned

23

2 Background

protocols. The architectural model of a 802.1Qbv compliant switch is shown in figure
2.2. Each port in the switch has eight queues, a transmission gate for each queue
and a programmable gate driver. An incoming frame is processed by the switch and
categorized in to one of the following traffic classes, scheduled traffic, credit-based
shaper traffic and other traffic. These traffic classes are uniquely identified by 3 bit
(VLAN) tag encoded priority values and are placed in separate queues. A traffic class
is able to access the transmission medium only if the transmission gate of the queue
it is placed in is open. The gate opening event allows the transmission of a queued
frame and the gate closing event terminates the access to the medium. These events are
controlled by the gate driver program. The gate driver program is a set of SetGateStates
operations. Each operation consists of a time delay parameter and GateState parameter.
The time delay parameter indicates the time delay after the gate operation is executed
until the next operation occurs. The GateState is a eight bit vector, each bit reflecting
the state (Open or close) of each gate. These GateState operations are set according to
the transmission schedule. [14]

The Time Sensitive Network Task Group (TSN-TG) does not define a standard method
to generate transmission schedules. Ongoing research has resulted in development of
several methods to generate transmission schedules. In this thesis we have considered
two independent methods which are discussed in the next section.

2.2 Scheduling

The Time Sensitive Network switches are designed to handle frames of Time Critical
Traffic. However, in a 802.1Qbv compliant switch the time critical traffic is referred to
as time triggered traffic, since the transmission of each of these frames is dictated by
the time stamp at which they gain access to the transmission medium. Computation of
transmission schedule for time triggered traffic in time sensitive network requires as
input the set of time triggered flows and their routes. The schedule generated should
guarantee delivery of time triggered traffic data before its deadline and optionally try
to achieve minimal network delay for each flow. Of the several method formulated to
solve the problem of generation of transmission schedule, we shall discuss the following
two.

24

2.2 Scheduling

2.2.1 No-wait Packet Scheduling for IEEE Time-sensitive Networks (TSN)

It was developed at University of Stuttgart by Dürr et al. Their approach of solving
the problem of generating a transmission schedule for time critical traffic flows in time
sensitive network is to map it to the classic Job Shop Scheduling problem.

Job Shop Scheduling problem is an operational research problem. It comprises of a set
of machines and jobs, each job consisting of a sequence of operations that have to be
executed in an order. The constraint is that only one operation can be processed on a
particular machine at any given time, additionally the no-wait property implies that once
a job has started it cannot be interrupted. The aim is to generate a schedule specifying
the starting time of each operation of each job. Job shop scheduling additionally tries
to minimize the makespan. Makespan is the maximum of finishing time of the last
operation of the given set of jobs. This means it tries to finish the given set of jobs as
fast as possible.

To map packet scheduling problem to job shop scheduling problem the ports of the
switches and NIC of end nodes map to the machines. The time triggered flows cor-
responds to the jobs. Each flow is a sequence of transmission operations thus, each
transmission operation maps to an operation in Job Shop Scheduling (JSP). Both sets of
operations are required be executed in a sequential order. The network delay can be
broken down into four components, transmission delay, processing delay, propagation
delay and queuing delay. The operation time of a machine is mapped to the transmission
delay of a packet on a link. Propagation delay and processing delay are also taken into
consideration, but for each switch and each link in the network the values taken are the
same. This approach adopts the no wait property by eliminating queuing delay. The
frames of time critical flow are to be transmitted immediately after processing of the
frame without waiting in the queue of outing going port.

The objective of the method "No wait packet scheduling problem (NW-PSP)" is to
minimize the flowspan. Flowspan is a term equivalent to makespan in Job Shop
Scheduling (JSP), it is defined as the finishing time of the flow finishing last. It is
subjected to the constraint that no two flows can be transmitted over the same link at the
same time. The objective and the constraint are formulated using Integer Linear Program
(ILP) and solved using an ILP solver. Thus, successfully generating a transmission
schedule for time triggered traffic for a single hyper-cycle. A hyper-cycle is a time period
of length equal to the Least Common Multiple (LCM) of period of all the time triggered
flows to be scheduled.

The researchers have successfully proven that minimizing the flowspan will result in
a compact schedule. A compact schedule means that the time triggered flows will be
pressed towards the start of the scheduling cycle instead of being spread across the

25

2 Background

whole cycle. A compressed schedule also means frames of different time triggered flows
will be scheduled back to back thus, reducing the number of gate events. This helps
reduce the number of guard bands required before the gating events. Thus, saving
bandwidth which can be better utilized for transmission of best effort traffic.

However this method has a high time complexity. Their evaluations show that calculating
an exact solution efficiently for large scenarios with large number of flows cannot be
expected. Therefore, in oreder to improve the scalability of the algorithm they have
developed heuristic, a Tabu search based algorithm for NW-JSP. [10]

2.2.2 Scheduling Real Time Communication in IEEE 802.1Qbv Time
Sensitive Networks

It was developed at TTTech Computertechnik AG by Craciunas et al. The researchers
aimed at solving the problem of generating transmission schedule for time triggered
traffic in time sensitve network using Satisfiability Modulo Theories (SMT). Satisfiability
Modulo Theories (SMT) are designed to determine the satisfiability of first order logical
formulas against certain background theories like linear arithmetic etc.

The objective of this method is to find the values of frame offsets and queue assignment
at each egress port over which flows are routed. The frame offset and queue assignment
map to a gate opening event. While the queue assignment determines which gate at
the egress port the event refers to, the frame offset is the time at which the event takes
place. The gate closing event is marked by the duration of the frame itself.

In this method they have taken into account two set of constraints which is used to
model the network over which the time triggered flows are to be transmitted. The first
set of constraints are based on basic deterministic Ethernet constraints and second the
802.1Qbv constraints. The basic deterministic Ethernet constraints include:

• Frame constraint: The frame offset of all frames has to be greater than or equal to
zero. The transmission period of the frame should be less the period of the flow.

• Link constraint: No two frames can be routed over the same physical link during
the same time period.

• Flow transmission constraint: The propagation of frames of a flow must follow a
sequential order along the routed path. Additionally a frame can be scheduled
on the next link in its route only after it has been received completely from the
previous link.

26

2.2 Scheduling

• End to end constraint: The difference between the arrival time at the destination
and sending time at the source should be less or equal to the specified maximum
time.

The 802.1Qbv constraints address the issue of egress interleaving. The transmission
schedule controls the gate opening events, independent of the order of frames in the
queue. The arrival of two flows from different links into a scheduled queue is non-
deterministic in nature. This is due to the unavoidable synchronization error between
devices in a network. The disturbance in order will introduce jitter during transmission
of a frame. While this is benign in a single instance, accumulation of jitter over the
entire path will impact the overall end to end latency of the flow. This problem can be
solved either introducing deterministic order in a scheduled queue or to place the flows
in separate queues. The researchers introduced the following set of constraints to tackle
the issue of egress interleaving:

• Ideal scenario: Assuming the given network is perfect and guarantees no loss of
frames, and frames are of constant size. A deterministic ordering can be guaranteed
by ensuring the frames of the two flows are scheduled to arrive at different time.

Networks in reality are incapable of providing such guarantees. Loss of frame, frames
of varying sizes and dropping of frame is common. In these cases one of the following
constraints are used:

• Flow isolation constraint: if a frame of a flow has entered the queue, frame from
another flow is not allowed to enter the queue until all the frames of the previous
flow have been fully dispatched. The drawback of this constraint is that its very
restrictive and reduces the search space for valid solutions.

• Frame isolation constraint: this constraint allows interleaving of frames of different
flows. It ensures deterministic ordering by ensuring that frames of only one flow
are present in a queue at a given time. The frame from another flow is allowed to
enter the queue only if the queued frames has already been serviced.

These constraints are defined in term of frame offset and queue assignment. The
constraints are the input to an SMT solver. The solver determines the satisfiability of the
given set of constraints and if satisfiable generates a model. The model is a possible set
of solution values for frame offset and queue assignment.[6]

We performed evaluations on the SMT method for different scenarios, with respect to
varying number of flows, varying number of destinations for a multicast flow, varying
number of links in the topology and varying the period of a flow. The period of a flow is
the cycle of time with in which the flow must be delivered to its destination. The results
of the evaluation are shown in graphs in Fig 2.3. Graph a) shows the time required by
the SMT solver to generate a schedule with respect to number of unicast flows. The

27

2 Background

Figure 2.3: Graphs for evaluation of SMT method

number of flows range between (50-300). Graph b) shows the calculation time required
by the solver with respect to the number of destinations. The solver was given a set
of 50 flows as input and each flow had number of destinations ranging from (2-30).
Graph c) shows the time required by solver to generate a schedule of flows with varying
period. In each scenario the time complexity of the SMT is exponential in nature which
means it cannot be used in large scenarios with large number of flows. Thus restricting
its use. We also found that there was no direct relation between the number of links in a
topology and the time required to generate a schedule, as observed in Graph d).

2.3 Software Defined Network (SDN)

The OSI model is used as the basic network architecture. Over the years as per the
demand of the growing requirements, several protocols and standards have been de-
veloped based on this model. This has significantly increased the complexity of the
networking infrastructure. As a result the following problems have been introduced:

28

2.3 Software Defined Network (SDN)

Figure 2.4: Software Defined Network (SDN) Reference Model [20]

• Limited flexibility: Protocols are hard coded into switches and routers. Introduc-
tion of new protocols require support of the manufacturers and are not easy to
implement.

• Increased complexity: Switches and routers are provided with a large set of
protocols. Most of which the user does not require.

• Separation of network and application: Application views the network as a medium
for transmitting bytes of data. Network views the application as a generator of
load. An integrated view could result in higher performance of application and
higher utilization of the underlying network.

To address these issues the Open Networking Foundation (ONF) has been focused
towards development and standardization of Software Defined Network (SDN). It
defines Software Defined Network (SDN) as a network architecture with the primary
goal of decoupling control plane from data plane and allow efficient management and
operation of the network using software programs. [20]

The reference model of Software Defined Network (SDN) consists of three layers,
infrastructure layer, control layer, and application layer as shown in Fig 2.4. The
infrastructure layer is also known as the data plane, it comprises of network devices like

29

2 Background

switches and routers. The function of data plane devices is processing and forwarding
of packets based on the rules defined by the controller, and collecting network status
(network topology, traffic statistics, and network usages) and sending it to the controller.
The controller is present in the control plane, it act as a bridge between application layer
and infrastructure layer. The control layer communicates with infrastructure layer via
south bound interface.

Interaction with application layer is done via north bound interface. The application
layer contains Software Defined Network (SDN) applications designed to fulfill user
requirements. Through the programmable platform provided by the control layer,
Software Defined Network (SDN) applications are able to access and control switching
devices at the infrastructure layer.

The benefits of using a Software Defined Network (SDN) can be viewed using the
example of routing protocols. Traditionally routing in a network is distributed in nature,
which means each node in the network is responsible for maintaining a map of the
network and continuously updating it based on the control information exchanged.
Such protocols are complex and result in lower resource utilization. Centralized routing
algorithm offered by Software Defined Network (SDN) allows a central node to have
a global view of the network. This results in optimized routing of data flows, it allows
higher utilization of network resources and is simpler than the existing approaches of
routing. IEEE 802.1Qca developed by Time Sensitive Network Task Group (TSN-TG)
uses Path Computation Element (PCE) Architecture to discover non-shortest paths. Path
Computation Element (PCE) Architecture adopts Software Defined Network (SDN)
architecture which enables a global view of the network, and efficient management and
operation of network elements.

2.4 IEEE 802.1Qca

IEEE 802.1Qca is a standard developed by the Time Sensitive Network Task Group (TSN
TG). It is a set of protocols and procedures aimed at providing explicit path control,
bandwidth and stream reservation, and redundancy for data flows and distribution of
control parameters for time synchronization and scheduling. It uses Intermediate System
to Intermediate System (IS-IS) to control bridged networks and provides capability
beyond Shortest Path Bridging (IEEE 802.1aq). It also enables the use of non-shortest
path via explicit forwarding path control. IEEE 802.1Qca uses Path Computation Element
(PCE) for route computation. [13]

30

2.4 IEEE 802.1Qca

In the following section we will be discussing IS-IS, Shortest Path Bridging and Path
Computation Element to have an overview of the components that are a part of IEEE
802.1Qca standard.

2.4.1 Intermediate System to Intermediate System (IS-IS)

IS-IS is a link-state interior gateway protocol. An interior gateway protocol is used
to exchange information for routing within an administrative domain or network. A
link-state routing protocol operates by flooding link state information throughout the
network. This information is used by each network node to build a database of the
network topology, which is used as a map by the node to calculate the shortest path
using Dijkstra’s algorithm.

IS-IS is similar to Open Shortest Path First (OSPF) except it is a data link layer (layer 2)
protocol and uses different terminologies. Since it is a Layer 2 protocol it does not use
IP addressing. IS-IS addresses are called NETs, or network entity titles and consists of
three parts: Area identifier, System identifier and NET selector. ISs exchange routing
information via protocol data units (PDUs). They generate Link-State PDUs (LSPs) to
exchange information about its neighbors and destination directly connected to it.

On receiving a LSP each IS independently runs the shortest path algorithm. The
algorithm is based on the well-known Dijkstra algorithm for finding the shortest paths
along a directed graph where the ISs are the vertices of the graph and the links between
the ISs are edges with a non-negative weight. A two-way connectivity check is performed
before considering a link between two ISs as part of the graph. This prevents the use of
stale information in the LSPDB for example, when one IS is no longer operating in the
network. The output of the shortest path first (SPF) is a set of tuples (destination, next
hop). Multiple equal-cost paths are supported, in which case multiple next hops would
be associated with the same destination [5].

2.4.2 Shortest Path Bridging (SPB)

IEEE 802.1aq or Shortest Path Bridging (SPB) is a network protocol developed with the
aim of replacing spanning tree protocols: IEEE 802.1D, IEEE 802.1w, IEEE 802.1s. The
Spanning Tree Protocol (STP) aims at building a logical loop-free topology for Ethernet
networks. Thus, it creates a spanning tree within a network, and disables those links
that are not part of the spanning tree, leaving a single active path between any two
network nodes. This is viewed as a major disadvantage because its slow convergence
time and wastage of bandwidth. Shortest Path Bridging (SPB) has been developed to

31

2 Background

enable the use of multiple paths. This provides a larger layer 2 topology, which can
be used by allowing traffic to load share across all paths of a network, thus making
bandwidth available for applications like real-time communication [19].

2.4.3 Path Computation Element (PCE)

Path Computation Element (PCE) is an external server application or a network compo-
nent responsible for computing routes between a pair of nodes, subjected to constraints
such as Quality of Service (QoS), policy, or price. To be able to calculate routes efficiently
it requires the knowledge of available network resources for example nodes and links,
constraints, connectivity, available bandwidth and link costs. Thus, it needs a global
view of the network topology.[8]

The architecture of Path Computation Element (PCE) comprises of the following compo-
nents:

• Path Computation Element (PCE): component that performs complex path compu-
tations based on traffic demand and network constraints.

• Path Computation Client (PCC): A client application or component requesting a
path computation to be performed by the PCE.

• Traffic Engineering Database (TED): a collection of information about the topology
of the network, its nodes, links and relationships, and the details of resources and
their attributes.

• Path Computation Element Communication Protocol (PCEP): a TCP-based commu-
nication protocol the PCC uses to communicate its path and resource requirements
to the PCE. It is also used by the PCE to reply to the PCC and between PCEs when
they need to communicate with each other.

The advantage of using Path Computation Element (PCE) over traditional traffic en-
gineering methods is that it allows for faster updating of path computation policies,
reduces costs, and provides the ability to move away from path computation algorithms
that are hard coded into the router by the vendor. It reduces the complexity of path
computation in large, multi-domain networks. Each PCE has a global view of its domain,
and communication between PCEs has increased efficiency of inter domain routing.

32

2.4 IEEE 802.1Qca

2.4.4 Routing Algorithms for IEEE 802.1Qbv Networks

Most applications demand the use of standard routing algorithms like Shortest Path
First (SPF) and Equal Cost Multipathing (ECMP) to calculate routes in a network. These
protocols aim at optimizing the number of hops in a path but, they may not be the
best approach to route time triggered traffic in a time sensitive network. In the paper
Routing Algorithms for IEEE 802.1Qbv Networks by Nayak et al. [9], researchers draw
a direct relation between the routing of time triggered traffic and their schedulability.
The scheduling method used in this paper is the one introduced in No-wait Packet
Scheduling for IEEE Time sensitive Networks (TSN). As mentioned in section 2.2.1
the metric Flowspan determines the quality of the transmission schedule generated.
The researchers argue that the flowspan of a transmission schedule is dependent on
the number of flows whose forwarding operations are conflicting at an egress port of
a switch. Therefore, reducing the number of conflicting flows would have a positive
impact on the flowspan of the transmission schedule. This can be achieved by routing
the time triggered flows in a manner that reduces the number of flows with overlapping
paths. This will also impact the total time triggered traffic forwarded by a port.

The paper introduces the metric Maximum Scheduled Traffic Load (MSTL) and defines
it as the maximum amount of time triggered traffic that is transmitted by a switch port
in a network per cycle of a transmission schedule. MSTL is dependent on the routing
algorithm used route the time triggered flows. Use of algorithms like Shortest Path
First (SPF) for instance will create a bottleneck link in the network. A bottleneck link is
the link over which maximum data units of time triggered flows are routed, increasing
the number of conflicting flows and the value of MSTL. To achieve a lower value of
MSTL the flows must be spread across the network. This paper establishes a direct
relation between the MSTL and flowspan. To generate a transmission schedule with
lower flowspan, the routing of flows must take into account the MSTL of the network.

The researchers have developed two Integer Linear Programming (ILP) based routing
algorithms aimed explicitly at minimizing the MSTL of the network. The first algorithm,
MSTL based routing optimizes the routes of the time triggered flows based on only
the MSTL value. The second algorithm, MSTL+Hops based routing also considers the
number of hops in each path. The results of evaluations show that the MSTL based
routing algorithms yield better result than Shortest Path First (SPF) and ECMP but,
occasionally MSTL based routing may route over longer paths in comparison to ECMP,
impacting the flowspan of the schedule. However, MSTL+Hops based routing yields
better schedule than other routing algorithms every time, but with a significant increase
in cost.

The scalability of the MSTL based algorithms was tested with respect to the number of
flows routed and the size of the topology. The algorithms’ time complexity is exponential

33

2 Background

in nature. This impacts its usability in scenarios consisting of a large topology and large
number of flows. Its scalability can be improved using heuristic algorithms.

2.5 Heuristic Algorithms

An optimization problem is the search for optimal solution from set of all possible
feasible solutions. When the variables of an optimization problem are discrete in nature
it is referred to as a combinatorial optimization problem. The routing of flows through a
given network can be defined as a combinatorial optimization problem of exponential
complexity. Since the time complexity of such problems is unacceptably high, sometimes
it is sufficient to find an approximate solution in acceptable amount of time instead of
an exact solution. This goal is achieved using heuristic algorithms.

Dictionary defines heuristics as an approach to find solution by exploration of possibilities
rather than by following set rules. Heuristic algorithms are designed to find approximate
solution to a complex problem in acceptable amount time by compromising on optimality,
accuracy and precision. In this thesis we have used the Tabu Search algorithm to find
optimal routes for time triggered flows.

A combinatorial optimization problem has a finite set of feasible solutions and each
solution is characterized by a cost. The objective is to find a solution of minimum
(or maximum) cost. We consider a problem which has a set of feasible solution. The
neighbor structure is a set of feasible solutions obtained by partial modification of the
current solution . The cost function maps the feasible solution to a real value [7].

Tabu search is a meta-heuristic based on local search optimization. To simplify the
understanding of Tabu search we shall break down the algorithm into parts. We shall
begin by discussing Local search algorithm [16].

Local search begins from an initial solution generated independently and it works in
iteration where it replaces the current solution by a neighboring feasible solution until
the stopping criterion is met. On meeting the stopping criteria it returns the best solution
found. The drawback of this algorithm is it usually gets stuck in local optima.

Tabu search prevents the problem of getting stuck at the local optima by the following
two steps:

• To avoid getting stuck in suboptimal region it occasionally allows a worsening
move, resulting in a candidate solution whose objective function value is worse
than the current solution. However, this ensures that the search moves beyond
local optima.

34

2.5 Heuristic Algorithms

• To prevent cycling to previously visited solutions and guiding the search towards
unexplored regions it introduces Tabu list. It is a short term memory for storing
already visited solutions. If the search reaches a candidate solution already present
in the tabu list it is forced to discard it and move to another solution. The recording
of complete solution and checking the current candidate solution against the tabu
list can be expensive both in terms of memory and time. Therefore the tabu
list records the last few transformations performed on the current solution and
prohibiting reverse transformations. However they can also be based on key
characteristics of the solutions or of the moves.

The elements of Tabu search discussed so far are known to be effective in delivery
good results, but sometimes they may be responsible for stagnating the search process.
This happens when the search prohibits a move present in the tabu list in spite of
the move delivering a solution with an objective value better than that of the current
best-known solution. To overcome this an algorithmic device called aspiration criteria
was introduced. The simplest implementation of which involves allowing a move even if
it is present in the Tabu list.

Since Tabu search is an iterative search, determination of a termination criteria is
essential. The most common criteria is to halt after a fixed number of iterations, but this
may not guarantee the discovery of the optimal solution to the problem. The second is
to stop if the value of the objective function does not improve after a few iterations. The
third is to stop when the objective reaches a specified threshold value.

35

3 Time Sensitive Network

3.1 System Model

Time Sensitive Network (TSN) is a deterministic network capable of providing real time
communication. The architectural model of a Time Sensitive Network (TSN) comprises
of the following elements: Centralized User Configuration (CUC), Centralized Network
Configurator (CNC), Network Elements (e.g. Switches) and End Nodes as shown in Fig
3.1. It requires protocols developed by Time Sensitive Networking Task Group (TSN-TG)
and other network protocols to deliver the required functionality. In this section we
shall discuss the roles and functions of each element in a Time Sensitive Network (TSN)
system.

Figure 3.1: Time Sensitive Network (TSN) Architecture

37

3 Time Sensitive Network

Figure 3.2: IEEE 802.1Qbv compliant Switch Architecture on Single Port

Flow: A flow is specified by a source host, destination host, the amount of data to be
transmitted and period. Period is a duration of time, within which the data packet must
be delivered to its destination.

Time triggered traffic are guaranteed timely delivery of frames. Real time applications
with hard deadlines employ services of time triggered traffic for timely delivery of data.
Best effort traffic on the contrary offer no such guarantees, therefore applications such
as email which can tolerate delay in frame delivery employ the services of best effort
traffic.

End Node: The End Nodes in a network are the source and/or destination of a flow.
The end nodes in Time Sensitive Network (TSN) are of two types; TSN enabled and
non-TSN enabled. Non-TSN enabled end nodes cannot handle time triggered traffic,
it is the responsibility of the gateway switch the end node is connected to, to buffer
the data packets sent from the node and transmit them into the network according to
the transmission schedule. However, in this thesis we assume that all end nodes are
TSN enabled which means the end node receives the transmission schedule from the
Centralized User Configuration (CUC). The source node of a time-sensitive flow adheres
to the assigned schedule and transmits the frames into the transmission medium at the
assigned time. Additionally, it tags the packets of a scheduled traffic flow with IEEE
802.1Q header. The header includes a 3 bit Priority code point (PCP) field which refers to
a traffic class and maps the frame to a priority level. The End Nodes should be compliant

38

3.1 System Model

with IEEE 802.1AS or IEEE 1588 protocol which provides time synchronization with
sub-microsecond precision.

Network elements (Switch/Router): It is responsible for the processing and transmis-
sion of data frames. A switch in Time Sensitive Network should be compliant with the
following set of standards developed by Time Sensitive Network Task Group (TSN-TG):

• IEEE 802.1ASrev and/or IEEE 1588 for Time Synchronization.

• IEEE 802.1Qbv for Traffic Shaping.

• IEEE 802.1Qcc for Configuration from a Centralized Network Configurator (CNC)

• IEEE 802.1Qci for Potentially Time Based Ingress Policing

A switch compliant with IEEE 802.1Qbv specification is designed to offer differentiated
services. Differentiated services classifies the traffic into classes, and allocates resources
on per-class basis. This allows the TSN network to offer varying Quality of Service
(QoS) guarantees to individual classes. In this thesis we restrict the network traffic
classification to scheduled traffic and best effort traffic. The architecture of the switch
comprises of eight queues per port, queue(s) on each port is reserved for scheduled
traffic and the unreserved queues are used for best effort traffic. As an example in Fig
3.2 Class 0 is reserved for scheduled traffic and the remaining seven queues are for best
effort traffic.

Corresponding to each queue is a gate which is regulated by a gate driver program.
The gating events (open/close) determine if the frames in the queue have access to the
transmission medium. For example, if the gate of Class 7 was open, the frames enqueued
in Class 7 queue would be transmitted over the medium. The transmission would cease
with the gate closing event. The gating events (open/close) are regulated by the gate
driver program.

The gate-driver program is a set of SetGateStates operations which represent the gate
events. The operations are a tuple entry comprising of two parts: time delay parameter
and GateState parameter. The time delay parameter is relative to the start of the program.
The GateState parameter is a bitmask that determines the gates which are opened at
the mentioned time. For example, in Fig 3.2 at time T2 all the gates are closed and at
time T3 only the gate for scheduled traffic is open. The gate driver program is a cyclic
schedule of length Tcycle, hence after completion of a cycle it restarts. Typically, all the
gate drivers in a given network are programmed with the same value of Tcycle.

Centralized User Configuration (CUC): It is an application that can communicate with
the Centralized Network Configurator (CNC) and the end nodes. It is used to configure
the end nodes by deploying the relevant configuration and programs on devices and is
also responsible for distributing the transmission schedule to the end nodes.

39

3 Time Sensitive Network

The Centralized User Configuration (CUC) represents the control applications and the
end devices in the Time Sensitive Network system. Therefore it makes flow requests
to Centralized Network Configurator (CNC). A flow request comprises of the addresses
of sender and receiver nodes, communication frequency, availability requirements,
latency/jitter requirements and other information required to establish a time triggered
flow.

Centralized Network Configurator (CNC): It is a node or an application that is the
center of a Time Sensitive Network system. It has the global view of the underlying
topology accumulated using Link Layer Discovery Protocol (LLDP). It is also aware of
the capabilities of each network element and the overall network which includes link
speed, delay in the network, PTP precision etc. The Centralized Network Configurator
(CNC) is responsible for the computation of the transmission schedule for time triggered
traffic based on the flow requests made by the Centralized User Configuration (CUC). It
also programs the gate drives in the switches according to the generated transmission
schedule. It is optional for the end nodes to receive the transmission schedule via
Centralized Network Configurator (CNC). The Centralized Network Configurator (CNC)
programs the network elements using management protocols like Simple Network
Management Protocol (SNMP).

3.2 Problem Statement

Time Sensitive Network’s ability to provide deterministic data delivery is due to the
transmission schedules, which are generated and deployed by the Centralized Network
Configurator (CNC). However, Time Sensitive Network Task Group (TSN-TG) provides
no standard for generation of these schedules. Ongoing research has led to development
of independent methods for generation of transmission schedule, of which we consider
only two in this thesis refer Section 2.2. This thesis is focused on solving the following
two problems.

Benchmark MSTL as a metric

The scheduling methods discussed in Section 2.2 successfully generate a transmission
schedule. However, there exists no definition for what constitutes a quality schedule. In
[10] by Duerr et al. researchers have introduced the parameter flowspan to access the
quality of the transmission schedule generated by their method refer Section 2.2.1. They
argue that a transmission schedule is of good quality if it is able to schedule transmission
of time triggered traffic such that the flowspan is as low as possible. However, this

40

3.2 Problem Statement

parameter is unique to the scheduling method developed by them and cannot be mapped
to other scheduling methods. In [9] by Nayak et al. researchers have established a
direct relation between the quality of schedule (flowspan) and the routing algorithm
used refer Section 2.4. They argue that in order to have schedules with lower flowspan
the routing of the time triggered flow should account for the corresponding Maximum
Scheduled Traffic Load (MSTL). The MSTL is the maximum amount of cumulative load
transmitted over any link in the network. The parameter to evaluate the quality of a
transmission schedule varies between the scheduling methods. The aim of this thesis
is to prove the impact of load distribution on the quality of a schedule generated by
different scheduling methods, and to benchmark MSTL as a metric that can be used
to assess the load distribution by different routing algorithms across all scheduling
methods.

Generic Routing Algorithm to Optimize MSTL

Input required to generate a transmission schedule is the set of time triggered flows that
need to be transmitted through the network and the route of individual flow in the given
set. Route is defined as a sequence of transmission operations over the links connecting
the source of the flow and the destination(s) of the flow. These transmission operations
are mapped to the gate opening events of a switch in a schedule. The influence of a
routing algorithm on the MSTL value is demonstrated using the following example.

We have a network topology as shown in Fig 3.3 and three unicast time triggered flows
that need to be scheduled:

• Flow1: src: H1, dst: H4, Data Length: 1000 bytes

• Flow2: src: H2, dst: H5, Data Length: 500 bytes

• Flow3: src: H3, dst: H6, Data Length: 500 bytes

The standard routing algorithms used is Shortest Path First (SPF). It is design to optimiz-
ing the number of hops in a route. The given flows will be routed over the Link(S1,S2),
since it is the shortest path in the network for each flow. This results in an MSTL value
of 2000 bytes on Link(S1,S2).

We now use the routing algorithm ECMP to route the flows. ECMP returns multiple
equal cost routes. In this case it returns two routes for each flow. The first route is over
Link(S1,S3), Link(S3,S2) and second route over Link(S1,S4), Link(S4,S2). The flows can be
routed over either of the two routes and thus several combination to route all three
flows are possible. If we take the scenario where Flow1 is routed over the first route,
and Flow2 and Flow3 were routed over second route, the load distribution across the

41

3 Time Sensitive Network

Figure 3.3: Using Shortest Path First (SPF) to route the given flows

Figure 3.4: Using ECMP to route the given flows

42

3.2 Problem Statement

network would be optimal. The corresponding MSTL value for this scenario would be
1000 bytes on each link of the core network.

In the paper [9] by Nayak et al, researchers have defined the routing of flows in
terms of a combinatorial optimization problem, and have solved it using integer linear
programming (ILP). The objective of the ILP program is to route the flows over the
network such that the value of MSTL is minimal. However, the scalability of this
approach is exponential in nature and cannot be used for large scenarios. Therefore, the
aim of this thesis is to develop a generic routing algorithm that optimizes the value of
MSTL and is scalable in nature.

43

4 Impact of Routing on Scheduling
Methods

Due to the lack of a definition for what constitutes as a quality schedule, this section
is aimed at introducing the definition of a quality schedule and a metric to measure
this parameter for each scheduling method discussed in this thesis. In this section we
establish the relation between MSTL value and the quality of a schedule.

4.1 No-Wait Packet Scheduling for IEEE Time Sensitive
Networks (TSN)

In [10] by Duerr et al., researchers measure the quality of a schedule by the metric
flowspan. They have established that a lower value of flowspan implies a better quality
schedule refer section 2.2.1. However, this metric is unique to the scheduling method
developed by them and cannot be mapped to other methods.

Routing time triggered flows using standard algorithms like shortest path first (SPF),
which aim at optimizing the number of hops leads to high contention between the
flows on the egress port of a switch. This means a number of time triggered flows are
competing to gain access to the transmission medium. This delays teh transmission of
flows increasing the flowspan of the schedule. To generate schedules of better quality
the aim is to decrease the flowspan of the schedule, this can be achieved only if the
contention at the egress port of each switch in the network is decreased. To decrease the
contention the time triggered traffic load has to be distributed over the network such
that the number of flows with overlapping routes is minimum.

In [9] by Nayak et al., researchers introduce the metric MSTL to measure this distribution
of data load. Using algorithms like shortest path first (SPF) increases the MSTL value,
consequently increasing the flowspan of the schedule. Using alternate routing algorithms
which transmit flows over alternate paths and not just the shortest available path
decreases the MSTL and consequently the flowspan of the schedule. Hence, we observe
a direct relation between the flowspan of the schedule and the MSTL value.

45

4 Impact of Routing on Scheduling Methods

In chapter 6 we present the evaluations assessing the impact of the routing algorithms
discussed later in chapter 5 on the MSTL value and consequently on the flowspan of the
schedule generated by No-wait Packet Scheduling Problem approach.

4.2 Scheduling Real Time Communication in IEEE
802.1Qbv Time Sensitive Networks

In [6] by Craciunas et al., the length of a transmission schedule is equal to a hyper-cycle.
A hyper-cycle is a time period of length equal to the Least Common Multiple (LCM)
of period of all the time triggered flows to be scheduled. The scheduling method tries
to accommodate transmission of maximum number of time triggered flows in a single
hyper-cycle. It must be noted in this method the end to end latency of a flow is also
taken into consideration while scheduling. End to end latency is the temporal duration
between the instance of time a frame is transmitted from source and the instance it is
delivered at the destination. The number of flows that can be scheduled is however
limited by the routing algorithm used. The SMT method utilizes shortest path first
(SPF) routing algorithm as per the paper. As demonstrated by the given example the
shortest path first (SPF) algorithm limits the number of time triggered flows that can be
scheduled in a single hyper-cycle.

Given a topology as shown in Fig 4.1 and the following set of time triggered flows:

Flow1: (src:H1, dst:H4, size:5, period:30, end2end-Latency: 25)
Flow2: (src:H2, dst:H5, size:5, period:30, end2end-Latency: 25)
Flow3: (src:H3, dst:H6, size:5, period:30, end2end-Latency: 25)
Flow4: (src:H1, dst:H6, size:5, period:30, end2end-Latency: 25)

Assuming the processing delay, queuing delay and propagation delay are not considered,
and the transmission delay is equal to the length of the data packet. Therefore, in the
given example it would take 5 units of time to transmit Flow1 over a single link.

The hyper-cycle for the given example is equal to 30 units of time. The transmission for
Flow1 over the shortest path Link(S1,S2) and Link(S2,S3) begins at time 0 units and ends at
time 20 units. Flow2 and Flow3 are routed over the same path as Flow1. Flow2 begins
at time 5 units and ends at 25 units. Flow3 begins at 10 units and ends at 30 units. If
Flow4 is to be scheduled over the same path, it would begin at 15 units and end at 35
units. This is not a feasible solution since it exceeds the length of the hyper-cycle.

If an alternate routing method is used which allows routing over different routes
as shown in Fig 4.2, all the flows can be accommodated in the schedule. Flow1 is

46

4.2 Scheduling Real Time Communication in IEEE 802.1Qbv Time Sensitive Networks

Figure 4.1: Routing using Shortest Path Routing (SPF) for the given set of flows (SMT
method)

Figure 4.2: Routing using alternate routing approach for the given set of flows (SMT
method)

47

4 Impact of Routing on Scheduling Methods

transmitted between 0 - 20 units of time, Flow2 between 0 - 20 units of time, Flow3
between 0 - 25 units of time and Flow4 between 5 - 25 units of time.

However, the solution presented above would not be feasible if the end to end latency of
Flow4 was equal to 20 units of time. Routing it over the same route as shown in Fig
4.2 would violate the end to end latency constraint refer 2.2.2. Hence, scheduling of
the flow would not be possible in spite of utilizing an alternate routing algorithm. It is
imperative to consider the number of hops in a route such that it does not violate the
end to end latency constraint.

Hence, in this thesis we assess the quality of a transmission schedule generated by
SMT approach via the number of time triggered flows it is able to schedule in a single
hyper-cycle. We refer to this value by the metric "Breaking Point". Breaking point is the
number of flows beyond which no more flows can be scheduled for the given hyper-cycle.
Using the above example we have successfully demonstrated a direct relation between
the routing algorithm used and breaking point. The routing of flows impact the MSTL
value, it is feasible to establish a similar relation between MSTL and breaking point. In
chapter 6 we provide evaluations proving a direct relation between MSTL and breaking
point. Hence, establishing that MSTL can be used as a standard metric by any scheduling
algorithm to assess the impact of load distribution by a routing algorithm on the quality
schedules generated by them.

In chapter 6 we present the evaluations assessing the impact of the routing algorithms
discussed in chapter 5 on the breaking point of the schedule generated by SMT ap-
proach.

48

5 Routing Algorithms

In this chapter we introduce the routing algorithms aimed at optimizing the MSTL value
in a given network. The algorithms discussed are weighted Shortest Path First (wt
SPF), weighted Equal Cost Multi Path (wt ECMP) and the heuristic algorithms based on
Tabu search. In order to facilitate a clear understanding of the algorithms we begin by
introducing terminologies used through out the chapter, followed by the algorithms.

5.1 Terminology

• Graph: A graph is syntactically defined as G = (V, E), where V is the set of
vertices and E is the set of edges. The vertices in the graph represent the nodes
(host or switch) in the network. The edges are links that connect a pair of nodes
and is defined as E ⊆ V × V. If the edges in a graph are directional it is termed a
directional graph else a graph consists of bidirectional edges.

• Weighted Graph: A weighted graph is a graph in which each edge is given a
numerical weight. This numerical value is considered an attribute of the edge
and is stored in a data structure called weight. A weighted graph is referred to as
topology in the discussed algorithms.
In the following algorithms the attribute weight of an edge is equal to the cumu-
lative data bytes transmitted over the edge. A data structure load independently
stores this value for each edge.

• Flow: A flow in a network is denoted as a tuple represented by f ≡ (src, dst, period,
size). src is the source node, dst is the destination node(s), period is duration of
time within which the data must be delivered to its destination and size is the total
number of bytes transmitted by the flow in each period.

• Set of Flows: It is a collection of time triggered flows that are to be scheduled in
a time sensitive network (TSN). It is represented as F ≡ { f1, f2, .. fn }

• Route/Path of a Flow: It is defined as a sequence of transmission operations over
the links of the network that connect the source of the flow to the destination(s)
of the flow.

49

5 Routing Algorithms

Algorithmus 5.1 Weighted Shortest Path First Algorithm

1: procedure WEIGHTEDSPF
2: route← {}

3: load← {}

4: for all flow in F do
5: (src, dst, period, size)← flow

6: route[flow]← DIJKSTRAPATH(topology, src, dst, weight)
7: for all edge in route[flow] do
8: load[edge]← load[edge] + length

9: end for
10: SETEDGEATTRIBUTE(topology, weight, load)
11: end for
12: return route

13: end procedure

• MSTL: Maximum Scheduled Traffic Load is the maximum amount of time triggered
traffic that is transmitted by a switch port in a network per cycle of transmission
schedule.

5.2 Weighted Shortest Path First Algorithm

Dijkstra’s algorithm computes the shortest distances between vertices in a graph. The
edges of the graph can be assigned numerical values which represents the cost of
transmitting over the edge. The cost of a route is a sum of cost of each edge in the route.
In Shortest Path First (SPF) routing algorithm the value assigned to each edge is one.
Hence in SPF algorithm the cost of a route represents the number of edges a flow has to
traverse to reach its destination. SPF is designed to optimize the number of hops in a
route and return as solution a single route. It does not take into account the load on the
edges of the network.

Weighted Shortest Path First (wt SPF) uses the same principles as SPF. However, instead
of assigning a fixed value as the cost of an edge, it uses the load (cumulative data bytes
transmitted) on each edge as its cost. The consequence of this is the cost of a route is
a sum of load on each edge in the route, and the route with least cumulative load is
selected. This enables distribution of load over the network and avoids the development
of a bottleneck edge for as long as possible. A bottleneck edge is an edge over which
maximum load is transmitted, the occurrence of which in time sensitive network (TSN)
impedes the timely delivery of time critical data.

50

5.2 Weighted Shortest Path First Algorithm

Figure 5.1: Routing flows using Weighted Shortest Path First (wtSPF) Algorithm

We use the following example to demonstrate the working of weighted SPF algorithm.
We have a network topology and three time triggered flows as shown in Fig 5.1. If
Shortest Path First (SPF) algorithm was used to route the flows, they would be routed
over the Link(S1,S2) and the MSTL value would equal to 500 bytes. However, weighted
Shortest Path First (wt SPF) algorithm distributes the flows over different routes in the
network as shown in Fig 5.1 and results in MSTL value of 200 bytes.

A new time triggered flow (Flow4:= (H1, H5, 100)) needs to be routed over the network.
There are three possible routes between nodes H1 and H5:

• route1 over Link(S1,S2)

• route2 over Link(S1,S3) and Link(S3,S2)

• route3 over Link(S1,S4), Link(S4,S5) and Link(S5,S2)

As can be seen in Fig 5.1 the cost of route1 equals 200, route2 equals 400 and route3
equals 300. The wt SPF algorithm selects route1 due to its low cumulative cost, which
results in a MSTL value of 300 bytes as shown in Fig 5.2. This demonstrates the limitation
of wt-SPF algorithm of not being able to optimize the MSTL value. If the Flow4 was
routed over route3, the MSTL value would be equal to 200 bytes as shown in Fig 5.3. A
longer route (route3) might have a higher cumulative cost is comparison to a shorter
route (route1), but routing over longer routes presents an opportunity to distribute the
load of the network and reduce the MSTL value. Therefore, a routing algorithm for time
sensitive network (TSN) should be able to determine the circumstances in which the
routing of flows over longer routes is beneficial.

51

5 Routing Algorithms

Figure 5.2: Increased MSTL due to routing of Flow4 using Weighted Shortest Path First
(wtSPF) Algorithm

Figure 5.3: Alternate routing of Flow4 to optimize the MSTL

52

5.3 Weighted Equal Cost Multi Path Algorithm

Algorithmus 5.2 Weighted Equal Cost Multi Path Algorithm

1: procedure WEIGHTEDECMP
2: route← {}

3: load← {}

4: for all flow in F do
5: (src, dst, period, size)← flow

6: P ← ALLSHORTESTPATHS(topology, src, dst)
7: pathLoad← {}

8: for all path in P do
9: pathLoad[path]← max(load[edge] for edge in path)

10: end for
11: route[flow]← path with min(pathLoad)
12: for all edge in route[flow] do
13: load[edge]← load[edge] + length

14: end for
15: end for
16: return route

17: end procedure

5.3 Weighted Equal Cost Multi Path Algorithm

Equal Cost Multi Path (ECMP) algorithm returns multiple equal cost routes. The cost
function is usually based on the number of hops in a route, similar to SPF algorithm
refer Section 5.2. However, the algorithm lacks a mechanism for selecting a route from
the returned list of paths. The selection is usually random, hence it provides no control
over the distribution of data load.

To tackle this limitation we introduce the weighted ECMP (wt-ECMP) algorithm. It
works on the same principle as ECMP algorithm, it searches for all shortest routes in a
network between a pair of nodes and returns it as a list refer Alg 5.2 Line 6. A route
is a sequence of edges from source to destination, each edge‘s load is the cumulative
data it transmits. The edge with the highest load is determined and the value of its
load is assigned to the route. The algorithm parses through the returned list of routes,
for each route it identifies the maximum load transmitted and assigns this value to the
route. This value of maximum load (max-load) is used as a parameter for deciding
which route to choose. The wt-ECMp algorithm aims at routing over a route with the
lowest max-load. This guarantees distribution of load over the network and a gradual
increase in MSTL value. The wt-ECMP algorithm accounts for the number of hops as
well the the load on the route while routing the flows.

53

5 Routing Algorithms

Figure 5.4: Increased MSTL due to routing of flows using Weighted ECMP Algorithm
(wtECMP)

However there is a major drawback for this algorithm. We demonstrate this using the
same example used for wt-SPF algorithm. As shown in Fig 5.4 we want to route the flows
over the given network. The wt-ECMP algorithm returns a single route over Link(S1,S2)
as the shortest route for each flow. This is same as SPF algorithm and the resulting MSTL
value is 600 bytes. In spite of a highly connected network topology the algorithm fails to
take into consideration longer routes over which the flows can be routed. Thus, making
the algorithm dependent on the underlying topology to have multiple routes of same
length between nodes, over which it can distribute the data load. This severely limits its
use in diverse scenarios.

The results of both weighted Shortest Path First and weighted ECMP algorithm stress
on the need for an algorithm which is able to route over longer routes in order to
reduce the MSTL value. However, this approach comes with its own limitations. While
we understand that decrease in MSTL decreases the flowspan of a schedule. A longer
route leads to an increase in the number of transmission operations and consequently
increasing the number of gating events. These gating events impact the flowspan of
the schedule. With the increase in number of gating events the flowspan also increases.
Therefore, it is imperative the routing algorithm in a time sensitive network (TSN) takes
into account the MSTL value as well as the number of hops in a route while routing a
flow.

54

5.4 Tabu Search Algorithm

Algorithmus 5.3 Tabu Search: Initial Solution
1: route← {}

2: load← {}

3: flowsRoutedOnLink ← {}

4: for all flow in F do
5: (src, dst, period, size)← flow

6: MaxLoadLink ← edge with max(load)
7: remove MaxLoadLink from topology

8: route[flow]← SHORTESTPATH(topology, src, dst)
9: add MaxLoadLink to topology

10: TABU SEARCH: UPDATE LOAD

11: lowestMSTL← max(load)
12: bestSolution← route

13: end for
14: return lowestMSTL, bestSolution

Algorithmus 5.4 Tabu Search: Update Load

1: for all edge in route[flow] do
2: load[edge]← load[edge] + length

3: flowsRoutedOnLink[edge]← flow

4: end for

5.4 Tabu Search Algorithm

The routing algorithm introduced in this section is based on the heuristic algorithm Tabu
search. Tabu search is a local search algorithm, which begins from an independently
generated initial solution and searches for a neighboring feasible solution with a better
objective function value. Local search algorithm is likely to get stuck in a local optimum.
To overcome this limitations and guide the search towards the global optimum, tabu
search algorithm uses tabu list. The tabu list prevents cycling to previously visited
solutions and guides the search towards unexplored regions. The routing algorithm
can be broken down into four segments; Initial solution, neighborhood search, tabu
list and termination criteria. We discuss each segment independently to enable clear
understanding of its functionality in the algorithm.

55

5 Routing Algorithms

Figure 5.5: Initial Solution: routing Flow1 using Tabu Search Algorithm

5.4.1 Initial Solution

Tabu search algorithm begins by generating an initial solution. Since Tabu search is a
local search algorithm, our aim is to begin with an initial solution with minimum (or
maximum) possible objective function value. This gives the algorithm an opportunity
to discover better solutions faster. The initial solution in our problem entails to routing
each flow in the given set of flows over the network. While routing the flows we aim at
realizing the following two conditions:

• Finding the shortest path: routing over a longer path increases the number of
transmission operation. This impacts the quality of the schedule (flowspan).

• Minimizing the MSTL value: a lower MSTL value implies the load has been dis-
tributed over the entire network, thus reducing the number of flows in contention
with each other.

To achieve the first condition we use the shortest path first (SPF) algorithm. This ensures
the flow is routed over the shortest path in the network. For example, in Fig 5.5 Flow1
is routed over the shortest path over Link(S1,S2). To encourage gradual increase in value
of MSTL, the algorithm identifies the link with maximum load (MaxLoadLink) and
stops considering it temporarily. In Fig 5.5 Link(S1,S2) has the maximum load, it is
removed from the topology and Flow2 is then routed over the next available shortest
path, over Link(S1,S3) and Link(S3,S2) as shown in Fig 5.6. On completion of routing the
MaxLoadLink Link(S1,S2) is added back to the topology.

To route Flow3 in the next iteration the algorithm selects the MaxLoadLink, three links
with the same load exist as shown in Fig 5.6, a random link is selected and removed

56

5.4 Tabu Search Algorithm

Figure 5.6: Initial Solution: routing Flow2 using Tabu Search Algorithm

Figure 5.7: Initial Solution: routing Flow3 using Tabu Search Algorithm

from the topology. Assuming Link(S1,S3) is selected as MaxLoadLink, the flow is routed
over the shortest path over Link(S1,S2) as shown in Fig 5.7, the resulting MSTL value is
of 300 bytes. In comparison, if Shortest Path First (SPF) algorithm was used without
removing the MaxLoadLink the resulting MSTL would be 500 bytes over Link(S1,S2).
Our algorithm returns paths resulting in low MSTL value, while ensuring that the length
of the paths are minimum, similar to the MSTL + Hops methodology.

57

5 Routing Algorithms

Algorithmus 5.5 Tabu Search: Selecting Flows

1: MSTL← max(load)
2: MaxLoadLink ← edge with MSTL

3: LoadHistory ← (MSTL, MaxLoadLink)
4: routedF lows← flowsRoutedOnLink[MaxLoadLink]
5: sort routedF lows by length

6: return routedF lows, LoadHistory

Algorithmus 5.6 Tabu Search: Re-Route Flow

1: remove MaxLoadLink from topology

2: route[flow]← DIJKSTRAPATH(topology, src, dst, weight)
3: add MaxLoadLink to topology

4: TABU SEARCH: UPDATE LOAD

The algorithm maintains two data structures; load to store the cumulative data bytes
transmitted over each edge in the network and flowsRoutedOnLink to store information
about each flow transmitted over individual edges in the network as shown in Alg 5.4.

There are other possibilities for generating of an initial solution. This includes using
standard routing algorithms like shortest path first (SPF) or equal cost multi path (ECMP)
to route the flows in the given flow set. The MSTL of the initial solution generated by
this approach would be very high. This violates the condition of minimizing the MSTL
value. Another approach is to use algorithms like weighted SPF or weighted ECMP for
routing. As shown in previous sections, they optimize the MSTL value by routing over
longer paths. This is violates the condition of finding the shortest path possible for each
flow. Due to violation of the conditions neither of the above mentioned approach is
feasible to generate an initial solution.

5.4.2 Neighborhood Search

After generating the first feasible solution the local search algorithm begins its search for
the neighboring solutions with a better objective function value. A neighboring solution
to the current solution entails a set of routes for flows in the given flow set such that the
MaxLoadLink is different from that of the current solution. The objective function is
the minimization of the MSTL value.

The first step is to identify flows to re-route. As shown in Alg 5.5 the edge with the
maximum load is identified (MaxLoadLink). The data structure flowsRoutedOnLink

is used to extract information about the flows routed over the MaxLoadLink. These
flows are sorted according to their data length and re-routed. The algorithm begins

58

5.4 Tabu Search Algorithm

Figure 5.8: Neighborhood Search: re-routing flows on MaxLoadLink to reduce MSTL
(Tabu Search Algorithm)

re-routing with the flow with the highest data length because it will have the maximum
impact on MSTL value.

The re-routing of flows is done using Dijkstra algorithm on a weighted graph. The
MaxLoadLink is temporarily removed from the topology to refrain routing of flows
over the link. If flows are allowed to be routed over the MaxLoadLink the MSTL value
might not decrease. On the contrary it might contribute to an increase in MSTL value
in some cases. To avoid this scenario the MaxLoadLink is not taken into consideration
while re-routing. The Dijkstra algorithm on a weighted graph ensures distribution
of the data load over the entire network by routing the flows over routes with lower
cumulative load. This occasionally results in routing of the flow over a longer route. The
MaxLoadLink is added back to the topology after routing and the data structures load

and flowsRoutedOnLink are updated.

The aim of the algorithm is to re-route flows of the MaxLoadLink such that the cu-
mulative data load over the link is reduced by distributing it across the network, thus
reducing the overall MSTL value. This is shown using the following example, as shown
in Fig 5.7 Link(S1,S2) is the MaxLoadLink. The flows routed on this link are Flow1 and
Flow3, of which Flow1 has the highest data length. The algorithm begins re-routing
with Flow1. As shown in Fig 5.8, the Link(S1,S2) is removed from the topology and Flow1
is re-routed over Link(S1,S4), Link(S4,S5) and Link(S5,S2) because this is the route with the
lowest cumulative data load. Flow1 is routed over a relatively longer path, but the MSTL

59

5 Routing Algorithms

value has reduced from 300 bytes to 200 bytes. Thus, the algorithm is successful in
finding a neighboring solution where the MaxLoadLink has changed and the MSTL
value is lowered.

5.4.3 Tabu List

The search for neighbor solution using local search algorithm might result in getting
stuck at local optimum. To encourage the algorithm to search for the global optimum
the algorithm should not be allowed to visit already visited solutions and should be
guided towards unexplored regions. This is achieved using Tabu List. Tabu as the name
suggest is prohibiting the algorithm from cycling back to an already visited solution. The
Tabu list stores the previously visited solutions or moves leading to the an already visited
solution. During execution the algorithm refrains from executing the moves stored in
the list. Thus, preventing it from cycling back in the same solution space. The Tabu list
is a FIFO queue of fixed size. When the queue is full the insertion of a new element
results in removal of the first element inserted to the queue.

Storing an entire solution in the Tabu list and comparing the current solution with the
elements of the list can be very expensive. Therefore, we must determine the parameters
that can be stored instead. The possible parameters for the routing problem are flows
and links. In this section we discuss the implementation of Tabu list to enable a guided
search for the optimal solution.

Tabu List: Flow Tabu

In the Alg 5.7 the Tabu list stores the flows that have been re-routed. Therefore, the
Tabu list is referred to as FlowTabu. Before re-routing a flow the algorithm checks if
the flow is present in FlowTabu. If present, the flow has been recently re-routed and
re-routing of this flow might lead it to an already visited solution. To avoid this the
algorithm refrains from re-routing the flows stored in the list. If the flow is not present
in the FlowTabu the algorithm re-routes the flow and adds it to the list.

The algorithm terminates the for-loop when the current MaxLoadLink is no longer
the edge with the highest cumulative data load transmitting over it. The algorithm
evaluates if the current solution is the best solution found using Alg 5.8. If the MSTL
of the current solution is lower than the lowest MSTL (lowestMSTL) found so far,
the data structure bestSolution is updated with the current solution (route) and the
lowestMSTL is assigned the value of the MSTL value of the current solution.

60

5.4 Tabu Search Algorithm

Algorithmus 5.7 Tabu Search: Tabu Flow

1: tabuLen := len(F) ∗ listSize

2: FlowTabu← deque(tabuLen)
3: LoadHistory ← []
4: lowestMSTL, bestSolution← TABU SEARCH: INITIAL SOLUTION

5: while True do
6: routedF lows, LoadHistory ← TABU SEARCH: SELECTING FLOWS

7: for all flow in routedF lows do
8: if flow in FlowTabu then
9: continue

10: else
11: FlowTabu← flow

12: TABU SEARCH: RE-ROUTE FLOW

13: NewMaxLoadLink ← edge with max(load)
14: if NewMaxLoadLink == MaxLoadLink then
15: continue
16: end if
17: end if
18: end for
19: lowestMSTL, bestSolution← TABU SEARCH: BEST SOLUTION UPDATE(lowestMSTL)
20: TABU SEARCH: TERMINATION CRITERIA(LoadHistory)
21: end while
22: return bestSolution

Algorithmus 5.8 Tabu Search: Best Solution Update

1: newMSTL← max(load)
2: if newMSTL < lowestMSTL then
3: bestSolution← route

4: lowestMSTL← newMSTL

5: end if
6: return lowestMSTL, bestSolution

61

5 Routing Algorithms

Algorithmus 5.9 Tabu Search: Tabu Link

1: tabuLen := len(E) ∗ listSize

2: LinkTabu← deque(tabuLen)
3: LoadHistory ← []
4: lowestMSTL, bestSolution← TABU SEARCH: INITIAL SOLUTION

5: while True do
6: routedF lows, LoadHistory ← TABU SEARCH: SELECTING FLOWS

7: for all flow in routedF lows do
8: remove edges in LinkTabu from topology

9: TABU SEARCH: RE-ROUTE FLOW

10: NewMaxLoadLink ← edge with max(load)
11: if NewMaxLoadLink == MaxLoadLink then
12: continue
13: else
14: add edges in LinkTabu to topology

15: LinkTabu← NewMaxLoadLink

16: end if
17: end for
18: lowestMSTL, bestSolution← TABU SEARCH: BEST SOLUTION UPDATE(lowestMSTL)
19: TABU SEARCH: TERMINATION CRITERIA(LoadHistory)
20: end while
21: return bestSolution

An important parameter to evaluate the impact of FlowTabu in search for an optimal
solution is the length of the Tabu list. The length of the list is a linear function of the
number of flows routed in the network. In chapter 6 the evaluations establishing the
relation between the length of the Tabu list and the MSTL value are presented. Also
discussed are the evaluations of Tabu Search + FlowTabu algorithm.

Tabu List: Link Tabu

In the Alg 5.9 instead of restricting the flows that can be re-routed, the algorithm restricts
the links over which routing is possible. The tabu list stores the links whose selective
flows have been re-routed. Therefore, it is referred to as LinkTabu. Before re-routing
the flows, all the links present in the LinkTabu are removed from the topology. Routing
of flows over these links might lead to an already visited solution. To avoid this the
algorithm refrains from routing over the links present in LinkTabu.

The algorithm terminates the for loop when the current MaxLoadLink is no longer the
edge with the highest cumulative data load transmitting over it and it adds this edge

62

5.4 Tabu Search Algorithm

Algorithmus 5.10 Tabu Search: Tabu Link Flow

1: flowTabuLen := len(F) ∗ flowListSize

2: linkTabuLen := len(E) ∗ linkListSize

3: FlowTabu← deque(flowTabuLen)
4: LinkTabu← deque(linkTabuLen)
5: LoadHistory ← []
6: lowestMSTL, bestSolution← TABU SEARCH: INITIAL SOLUTION

7: while True do
8: routedF lows, LoadHistory ← TABU SEARCH: SELECTING FLOWS

9: for all flow in routedF lows do
10: if flow in FlowTabu then
11: continue
12: else
13: FlowTabu← flow

14: remove edges in LinkTabu from topology

15: TABU SEARCH: RE-ROUTE FLOW

16: NewMaxLoadLink ← edge with max(load)
17: if NewMaxLoadLink == MaxLoadLink then
18: continue
19: else
20: add edges in LinkTabu to topology

21: LinkTabu← NewMaxLoadLink

22: end if
23: end if
24: end for
25: lowestMSTL, bestSolution← TABU SEARCH: BEST SOLUTION UPDATE(lowestMSTL)
26: TABU SEARCH: TERMINATION CRITERIA(LoadHistory)
27: end while
28: return bestSolution

to LinkTabu. The algorithm evaluates if the current solution is the best solution found
using Alg 5.8.

An important parameter to evaluate the impact of LinkTabu in search for an optimal
solution is the length of the tabu list. The length of the list is a linear function of the
number of edges in the network. In chapter 6 the evaluations establishing the relation
between the length of the tabu list and the MSTL value are presented. Also discussed
are the evaluations of Tabu Search + LinkTabu algorithm.

63

5 Routing Algorithms

Algorithmus 5.11 Tabu Search: Termination Criteria
1: tuples← LoadHistory last two consecutive elements

2: if occurrence of tuples in LoadHistory > 2 then
3: break while loop
4: end if

Tabu List: Link and Flow Tabu

In the Alg 5.10 we restrict the flows that can be re-routed as well as the links over
which routing is possible. The algorithm has two tabu lists: FlowTabu and LinkTabu.
FlowTabu stores the flows that have been re-routed and LinkTabu stores the links
whose flows have been re-routed.

The flow to be re-routed is checked for in the FlowTabu. If not present, first all the links
present in the LinkTabu are removed from the topology and then the flow is re-routed.
This flow is then added to FlowTabu. Routing of flows in FlowTabu or routing over
links in LinkTabu might lead to an already visited solution.

The algorithm terminates the for loop when the current MaxLoadLink is no longer the
edge with the highest cumulative data load transmitting over it and it adds this edge
to LinkTabu. The algorithm evaluates if the current solution is the best solution found
using Alg 5.8.

In chapter 6 the evaluations establishing the relation between the length of LinkTabu

and FlowTabu, and the MSTL value are presented. Also discussed are the evaluations of
Tabu Search + LinkTabu + FlowTabu algorithm.

5.4.4 Termination Criteria

The search for a feasible neighbor solution is continued until the termination criteria
is met. The algorithm may be terminated after a fixed number of iterations or when
the objective reaches a specified threshold value. We avoid using either of the above
mentioned approaches since they would limit the scope of the search. Instead we
propose terminating the iterations when the algorithm observes recurring objective
function values.

The data structure LoadHistory stores the MSTL value and MaxLoadLink of the net-
work as a tuple. At the end of each iteration the algorithm evaluates the number of
times the last two tuples in LoadHistory have occurred consecutively. If this count is
greater than two then the algorithm is oscillating in the same solution space. Hence we
terminate the search and return the best solution found so far.

64

5.5 Dynamic Routing Using Tabu Search

Figure 5.9: Routing of flows in set F1

5.5 Dynamic Routing Using Tabu Search

The routing and scheduling of time triggered flows discussed so far was for a fixed set
of flows. In this section we try to understand the behavior of Tabu Search algorithm
in situations where new set of flows are introduced in the network post successful
scheduling of the earlier set. This problem can be solved using three different methods.
Each method is discussed and analyzed with the help of the following example. Given
a topology as shown in Fig 5.9 and two sets of flows. F1 includes Flow1, Flow2 and
Flow3 and F2 includes Flow4 and Flow5. F1 has already been scheduled, post which F2
is introduced into the network for scheduling.

METHOD 1: The first method to solve the scheduling problem when new flows are
introduced into the network is to discard the previous transmission schedule, and
schedule the sets F1 and F2 together. While this is the simplest approach and is more
likely to deliver an optimal solution to the problem, it is expensive in terms of time. Also
in certain scenarios where transmission of F1 flows have already begun, this approach is
infeasible.

METHOD 2: The second method to schedule the new set of flows is to view it as an
independent scheduling problem. The previous flow set scheduled on the network is
not taken into consideration. This approach aims at generating an optimal solution
only for flows in F2. The drawback of this approach is that the second schedule cannot
begin until the first schedule has been completed. This is due to the fact that the second
schedule has been developed in isolation from first schedule, it holds no knowledge

65

5 Routing Algorithms

Figure 5.10: Initial Solution using Tabu Search Algorithm

of its transmission operations and thus cannot accommodate its own operations such
that it saves on time. Certain scenarios present opportunity to overlap the two schedule
in time domain, reducing the completion time of the second schedule. However, this
approach is unable to support this merge.

METHOD 3: In third method the solution of the flow set F1 is taken into consideration
while generating a schedule for flow set F2. It is imperative no changes are made to the
schedule of F1. The aim of this method is to route the flows in F2 with respect to the
already scheduled flows of F1 such that the new MSTL value is minimal.

The tabu search algorithms first generates an initial solution. It uses the same topology as
Fig 5.9 including the load on its edges reflecting the best solution found. The algorithm
routes the flows in F2 using Alg 5.3. The route selected for Flow4 and Flow5 is shown in
Fig 5.10 and the resulting MSTL is equal to 400 bytes.

Tabu search begins the search for feasible neighboring solution with lower MSTL value
using Alg 5.5. Only the flows in F2 will be re-routed. A feasible neighboring solution is
shown in Fig 5.11 whose resulting MSTL is equal to 300 bytes, lower than the initial
solution.

66

5.5 Dynamic Routing Using Tabu Search

Figure 5.11: Neighboring solution using Tabu Search Algorithm

The algorithm ends when the termination criteria is met. However, in case of dynamic
routing another termination criteria can be considered. If the new MSTL value equals the
old MSTL value, it is the lowest possible value it can achieve. Therefore, the algorithm
can be terminated under such conditions.

The advantage of this method is that it allows us to generate a new schedule without
having to re-schedule the previous set of flows as in method 1. Also it does not require
to wait for the completion of previous schedule as seen in method 2. However, it is
possible the solution generated by this method is not optimal, a better solution might be
found if flows from F1 and F2 were routed together.

It must be noted that the routing algorithms discussed in this chapter do not consider
the order in which the flows are routed. Evaluations have shown that ordering of flows
based on data length, source of the flow and destination of the flow and routing has an
impact on the MSTL value. However, in this thesis we have not analyzed this aspect,
instead we propose it as future work.

67

6 Results and Evaluations

In this section, we shall present the results of the evaluations done for the routing
algorithms introduced in Chapter 5. The following evaluations were performed: the
impact of the routing algorithms on the MSTL value of the network, the impact of the
reduced MSTL on the quality of the transmission schedules and the scalability of the
discussed routing algorithms. The evaluations for the quality of schedule has been done
for the two scheduling methods discussed in section 2.2; NW-PSP based Method and
SMT based method.

6.1 Impact of Routing Algorithms on MSTL

As discussed in Chapter 5, the routing algorithms used to route time triggered flows
influence the MSTL value by distributing the data load over the entire network. In this
section we evaluate and analyze the impact of the discussed routing algorithms on the
MSTL value with respect to number of flows transmitted in the network and the graph
connectivity.

The algorithms evaluated are shortest path first (SPF), weighted shortest path first (wt-
SPF), weighted ECMP (wtECMP), ILP based algorithms; Load Aware algorithm (LA) and
Load+Hop Aware algorithm (LHA) refer section 2.4 and Tabu search based algorithms.
The Tabu search based algorithms include TabuFlow, TabuLink and TabuLinkFlow refer
section 5.4.

6.1.1 MSTL vs No. of Flows

Analyzing the MSTL value with respect to the number of flows transmitted through
the network helps us assess how well the routing algorithm distributes the data load
across the network. A lower MSTL value implies that flows that would otherwise have
been routed over the bottleneck link have been routed over different routes to ensure
minimum contention between flows on the link. This probably will result in generation
of a better quality schedule as discussed in section 2.4.

69

6 Results and Evaluations

Figure 6.1: MSTL vs Number of Flow

Evaluations of the routing algorithms mentioned above with respect to the resulting
MSTL for transmitting a certain number of flows has been shown in Fig 6.1. Shortest
path first (SPF) which is a standard routing algorithm returns a very high MSTL value,
this implies that the algorithm concentrates the transmission of flows over selected few
routes, consequently increasing the contention between these flows. The ILP based
algorithms; Load Aware (LA) and Load Hop Aware (LHA) have the lowest MSTL values.
They successfully distribute the data load over the network and as a result decrease the
contention between flows over a link. The difference in the MSTL values increases with
an increase in the data load on the network. This indicates that use of shortest path
first (SPF) algorithm would not be feasible in scenarios requiring transmission of large
amount of data.

Evaluations of Tabu search based algorithms are potted separately in Fig 6.2. This is done
to emphasis the difference in resulting MSTL, since the difference in the values are too
low to be displayed clearly in the previous figure. In Fig 6.1 we have plotted the results
of TabuFlow algorithm exclusively to demonstrate that it’s MSTL values are very close to
the values returned by ILP based algorithms. In Fig 6.2 we observe that the difference
in MSTL values between Tabu search based algorithms and ILP based algorithms, the
Tabu search based algorithms’ MSTL are higher by 1.3% to 1.7%. Comparison between
the Tabu search based algorithms reveal that TabuFlow algorithm returns better results.
However, the difference in MSTL values is not stark. Further evaluations are required to
determine which algorithm fares better.

70

6.1 Impact of Routing Algorithms on MSTL

Figure 6.2: MSTL vs Number of Flows (Tabu Search)

71

6 Results and Evaluations

Figure 6.3: MSTL vs Graph Connectivity

6.1.2 MSTL vs Graph Connectivity

For our evaluations we use Erdős–Re̋nyi model to generate the network topology. The
parameters taken by the model to generate the topology include; number of nodes (n),
probability for edge creation (p), seed for random number generator (seed). We refer
parameter probability for edge creation (p) of the network as graph connectivity. It
indicates the probability of a connection existing between a pair of nodes. Higher the
value of graph connectivity, higher is the number of routes of varying lengths between a
pair of nodes over which data can be transmitted. To understand the dependency of the
routing algorithms on the number of routes available for transmission, we evaluate the
algorithms on networks with varying graph connectivity.

Evaluations of the resulting MSTL on network topologies with varying graph connectivity
was done by routing 100 flows of data length varying between 300-1500 bytes. The
values have been plotted in Fig 6.3. Shortest path first (SPF) has the highest MSTL across
all network topologies. The lowest MSTL values are returned by ILP based algorithms;
Load Aware (LA) and Load Hop Aware (LHA). It is observed that the MSTL decreases
with increase in graph connectivity, this is due to an increase in number of routes over
which data can be transmitted.

As shown in Fig 6.3, the MSTL values of TabuFlow algorithm are comparable to the
values returned by ILP based algorithms. However, it must be noted the difference in
values decreases with increase in connectivity. This indicates the TabuFlow algorithm’s

72

6.1 Impact of Routing Algorithms on MSTL

Figure 6.4: MSTL vs Graph Connectivity (Tabu Search)

73

6 Results and Evaluations

Figure 6.5: MSTL vs Tabu List Size

dependency on the number of available routes to perform as well as ILP based algo-
rithms. In Fig 6.4 the results of Tabu search based algorithms are plotted separately to
demonstrate the difference in returned MSTL values. The MSTL value of Tabu search
based algorithms is higher by 1.7% to 12% in comparison to ILP based algorithms. It is
observed that the TabuFlow algorithm fares better than the others in all the evaluated
network topologies. However, the difference is observable only in a mesh network. For
a topology with low connectivity the difference is too low to be considered.

6.1.3 Size of Tabu List

The Tabu List is a FIFO queue of fixed sized refer section 5.4.3. In TabuFlow algorithm
the list size (Alg 5.6 Line 1) is a function of the number of flows routed in the network.
In TabuLink algorithm the list size (Alg 5.8 Line 1) is a function of the number of links
in the network. TabuLinkFlow algorithm has two tabu lists corresponding to the lists
mentioned above; for flows (FlowTabu) and for links (LinkTabu). The size of the lists
are altered using the variable listSize.

Evaluations for the impact of the list size on the MSTL value is shown in Fig 6.5. The
TabuFlow algorithm returns best solution when the variable listSize is equal to 0.06.
The TabuLink algorithm returns best solution when listSize is 0.03.

74

6.1 Impact of Routing Algorithms on MSTL

Figure 6.6: MSTL vs Number of Iterations

During previous evaluations we observed that the TabuFlow algorithm returns better so-
lutions than TabuLink algorithm. Therefore, the listSize for FlowTabu in TabuLinkFlow
was fixed as 0.06 and evaluations to determine the listSize for listSize were done. As
shown in Fig 6.5 the value of 0.04 returns the best solution. These values have been
used in further evaluations presented in the thesis.

6.1.4 Termination Criteria

In Section 5.4 we discussed the termination criteria for Tabu search based algorithms.
We proposed terminating the algorithm when recurring values of MSTL are observed. To
evaluate the termination criteria we routed 100 flows with data length varying between
300-1500 bytes in a mesh network. The resulting MSTL for each iteration of the Tabu
search based algorithms are plotted in Fig 6.6.

It was observed that the TabuLink and TabuLinkFlow algorithm terminate after en-
countering the same MSTL value for four consecutive iterations. However, TabuFlow
algorithm continues oscillating between values. The termination for TabuFlow algorithm
is done when a set of already visited solutions are encountered more than two times.
This behavior is consistent across multiple scenarios with varying number of flows.

75

6 Results and Evaluations

6.2 Impact of Reduced MSTL on Quality of Schedule

6.2.1 Flowspan vs MSTL

Analyzing the flowspan with respect to the MSTL helps us assess the impact of load
distribution on the flowspan of the schedule. A lower MSTL value implies that the
contention between flows on a link is low; therefore a lower flowspan can be expected
refer section 2.4.4. We demonstrate this relation of flowspan and MSTL using the
example shown in Table 6.1. For the given example 100 flows of data length varying
between 300-1500 bytes were scheduled over a mesh network.

Routing Alg. MSTL Flowspan
(bytes) (Time units)

SPF 11623 96
wt SPF 9234 80

wt ECMP 11623 96

Load Aware 7316 78
Load Hop Aware 7320 70

Tabu Flow 7414 72
Tabu Link 7792 70

Tabu Link Flow 7447 73

Table 6.1: Impact of MSTL on Flowspan

Shortest path first (SPF) algorithm has the highest MSTL value, consequently the
flowspan is equally high. Change in MSTL as seen for weighted shortest path first
(wtSPF) algorithm lowers the flowspan as well.

The ILP based algorithms; Load Aware (LA) and Load Hop Aware (LHA) have the lowest
MSTL and are therefore expected to have the lowest flowspan. However, it is observed
that in spite of having a lower MSTL Load Aware (LA) algorithm’s flowspan is higher
than that of Load Hop Aware (LHA), this is because LHA considers the number of hops
in a route while routing. Thus, establishing a direct relation between the number of
hops in a route and the flowspan.

The flowspan of tabu search based algorithms are comparable to that of LHA’s flowspan.
This is due to two factors; low MSTL values and the initial solution generated by tabu

76

6.2 Impact of Reduced MSTL on Quality of Schedule

Figure 6.7: Flowspan vs Number of Flows

search based algorithms are conscious of number of hops in a route. TabuFlow has a
lower MSTL compared to TabuLink, however their flowspan values are almost the same.
This indicates that the routes selected while re-routing the flows in TabuFlow algorithm
are longer, thus impacting its flowspan value.

6.2.2 Flowspan vs Number of Flows

Analyzing flowspan with respect to the number of flows transmitted through the network
helps us assess the impact of increasing data load on the flowspan.

Shortest path first (SPF) algorithm has the highest flowspan. The value increases rapidly
with increase in the data load on the network. Load hop aware (LHA) has the lowest
flowspan, the increase with increase in data load is gradual.

Evaluations of Tabu search based algorithms are plotted separately in Fig 6.8 to emphasis
on the difference in results. They perform better than Load Aware (LA) algorithm.
However, the deviation of Tabu search based algorithms from Load Hop Aware (LHA)
algorithm is higher by 2.85% to 4.3%. The difference in values between Tabu search
based algorithms is too low to evaluate which performs better.

77

6 Results and Evaluations

Figure 6.8: Flowspan vs Number of Flows (Tabu)

78

6.2 Impact of Reduced MSTL on Quality of Schedule

Figure 6.9: Flowspan vs Graph Connectivity

6.2.3 Flowspan vs Graph Connectivity

Evaluation of impact on the flowspan value due to varying graph connectivity is shown
in Fig 6.9. The availability of alternate routes for transmission is bound to decrease the
load on links, consequently reducing the flowspan. However, the length of these routes
also influences the flowspan value. With this evaluation we understand the behavior of
the routing algorithms in different scenarios.

Shortest path first (SPF) has the highest flowspan value across different topologies and
the ILP based algorithm Load hop aware (LHA) has the lowest flowspan. This is due to
the direct relation between MSTL and flowspan refer section 2.4.4. The curves of the
two algorithms are same as that in Fig 6.1.

Evaluations of Tabu search based algorithms are plotted separately in Fig 6.10 to
emphasis on the difference in results. In most topologies they perform better than
Load Aware (LA) algorithm. However, the deviation of Tabu search based algorithms
from Load Hop Aware (LHA) algorithm is higher by 0% to 6.4%. The performance of
each Tabu search based algorithm varies in different topology, therefore neither can be
assessed as a better option.

79

6 Results and Evaluations

Figure 6.10: Flowspan vs Graph Connectivity (Tabu)

6.2.4 Breaking Point vs MSTL

The quality of a schedule generated by SMT method is analyzed using the metric
"Breaking Point" refer section 4.2. In this section we establish the impact of MSTL value
on the breaking point of a schedule.

We begin by assessing the MSTL returned by each routing algorithm when 50 flows of
data length varying between 300-1500 bytes and end to end latency equal to 100 units
of time were scheduled on a mesh network. The hyper-cycle of the schedule was equal
to 200 units of time. The results are shown in Table 6.2.

Shortest path first (SPF) algorithm has the highest MSTL value and is not schedulable.
This is because the transmission time of some flows exceeds the hyper-cycle refer section
4.2.

The other routing algorithms return routes which are schedulable in the given hyper-
cycle. Of the discussed routing algorithms load hop aware (LHA) algorithm returns the
lowest MSTL value. The MSTL value of Tabu search based algorithms is 16% to 20%
higher than load hop aware (LHA) algorithm.

To assess the impact of these algorithms on the number of flows schedulable in a hyper-
cycle of 100 units of time, we tried routing varying number of flows with data length

80

6.2 Impact of Reduced MSTL on Quality of Schedule

Routing Alg. MSTL

SPF 87
wt SPF 31

wt ECMP 35

Load Aware 35
Load Hop Aware 24

Tabu Flow 28
Tabu Link 29

Tabu Link Flow 29

Table 6.2: MSTL for routing algorithms routing 50 flows

Routing Alg. Breaking Point

SPF 20
wt SPF 80

wt ECMP 70

Load Aware 100
Load Hop Aware 110

Tabu Flow 50
Tabu Link 50

Tabu Link Flow 50

Table 6.3: Breaking Point of routing algorithms

between (300-1500) bytes across a mesh network. The results are presented in Table
6.3.

Shortest path first (SPF) scheduled the least number of flows, this is due to the high
MSTL value returned by it. Load hop aware (LHA) algorithm schedule the highest
number of flows, due to low MSTL.

Tabu search based routing algorithm in spite of having a low MSTL are unable to
schedule more than 50 flows. This is due to routing over longer routes. The tabu search
based algorithms do not consider number of hops while re-routing. Routing over longer
routes may violate the end to end latency constraint. Even if a single flow’s end to end
latency constraint is violated a schedule would not be generated.

81

6 Results and Evaluations

Figure 6.11: Routing Time vs Number of Flow

Figure 6.12: Routing Time vs Number of Flows (Tabu Search)

82

6.3 Scalability of Routing Algorithms

6.3 Scalability of Routing Algorithms

6.3.1 Routing Time vs No. of Flows

Analyzing the scalability of the routing algorithms with respect to the number of flows
transmitted through the network helps us assess the runtime time of the algorithms with
increase in data load across the network.

The routing time shown in Fig 6.11 is represented in log scale. The load hop aware
algorithm’s runtime increases exponentially with increase in data load. Therefore,
use of the algorithm in scenarios with high data load is not feasible. The runtime of
other algorithms in gradual. However, the difference in runtime time between the ILP
based algorithms and Tabu search based algorithms is stark. The runtime of ILP based
algorithms is higher by 47% to 64% in comparison to Tabu search based algorithms.

Evaluations of runtime of Tabu search based algorithms are plotted separately in Fig
6.12 to emphasis on the difference in results. TabuLinkFlow algorithms has the lowest
runtime of the three algorithms and TabuLink the highest. These evaluations help assess
which algorithm to select for routing.

6.3.2 Routing Time vs Graph Connectivity

Evaluations of runtime of the routing algorithms across topologies with varying graph
connectivity is shown in Fig 6.13.

The results are similar to that of the previous evaluation. ILP based algorithms have the
highest runtime. Due which their use in infeasible. The runtime of all algorithms increase
with increase in connectivity, due to increase in number of routes to be evaluated for
transmission of data. The runtime of ILP based algorithms is higher by 38% and 66% in
comparison to the Tabu search based algorithms.

Evaluations of runtime of Tabu search based algorithms are plotted separately in Fig
6.14 to emphasis on the difference in results. TabuLinkFlow algorithms has the lowest
runtime of the three algorithms and TabuLink the highest. This behavior is consistent
with the previous evaluations shown in Fig 6.12.

83

6 Results and Evaluations

Figure 6.13: Routing Time vs Graph Connectivity

Figure 6.14: Routing Time vs Graph Connectivity (Tabu Search)

84

7 Conclusion

This thesis presented generic routing algorithms based on heuristic algorithm tabu search
to route time triggered traffic in order to optimize the MSTL of the network. The MSTL
is an indication of the distribution of data load across the network. It was attempted
to benchmark MSTL as a metric that could be used by different scheduling methods to
assess the impact of load distribution on the quality of transmission schedule generated
by them. However, the primary aim was to prove that routing algorithms impact the
quality of a transmission schedule irrespective of the scheduling method employed.

Evaluations done in the thesis have proven that MSTL can be used as a standard metric to
assess the impact of load distribution on the quality of transmission schedule generated
by different scheduling methods. The NW-PSP method’s schedule quality is measured
using the metric flowspan. A decrease in MSTL consequently decreased the flowspan of
the schedule. This behavior was consistent across multiple scenarios. The SMT based
method’s schedule quality is measured using the metric Breaking Point, which indicated
the number of flows scheduled in a single cycle of transmission schedule. As expected
reduction in the MSTL increased the number of flows scheduled in a single cycle.

In this thesis three tabu search based routing algorithms were presented; TabuFlow,
TabuLink and TabuLinkFlow. Evaluations of the algorithms indicate that the MSTL value
returned by each is at most 1.7% higher than the optimal solution. This behavior is
consistent across multiple scenarios; increasing data load on the network and varying
connectivity of the topology. However, of the three algorithms the TabuFlow algorithm
returns the lowest MSTL values. The scalability analysis of the algorithms show a
reduction of 65% in runtime in comparison to the algorithms generating optimal solution.
It can be concluded that the tabu search based algorithms are a feasible approach to
solving routing problem in larger scenarios.

A drawback of the tabu search based algorithms is that during the search of a feasible
neighboring solution they do not consider the number of hops in a route while re-routing
the flows. A longer route occasionally violates the end to end latency constraint. The
impact of which manifested in the schedule of the SMT based method. The number of
flows scheduled in a single cycle was much lower than expected. The algorithms can
be improved by making them aware of the number of hops in a route while routing the
flows, and additionally ensuring that the end to end constraint is not violated.

85

7 Conclusion

There is always room for improvement and enhancement in any scientific work. This
thesis being no exception the following suggestions are proposed. In the thesis while
routing the given set of flows the order of flows was not considered. Evaluations suggest
ordering the flows based on data length, source of the flows and destination of the
flows impact the routing and consequently the MSTL. Hence it is suggested to take this
parameter into consideration for future work and consider ordering of flows to further
optimize the MSTL value.

The presented routing algorithms are based on tabu search algorithm, however other
heuristic and meta heuristic algorithms are available such as A* algorithm, ant colony op-
timization, particle swarm optimization etc. It is suggested to consider these algorithms
for developing routing algorithms aimed at optimizing the MSTL of the network.

86

Bibliography

[1] 802.1AS-2011 - IEEE Standard for Local and Metropolitan Area Networks - Timing
and Synchronization for Time-Sensitive Applications in Bridged Local Area Networks.
Mar. 2011. DOI: 10.1109/IEEESTD.2011.5741898 (cit. on p. 17).

[2] 802.1Qbv-2015 - IEEE Standard for Local and metropolitan area networks – Bridges
and Bridged Networks - Amendment 25: Enhancements for Scheduled Traffic. Mar.
2016. DOI: 10.1109/IEEESTD.2016.7572858 (cit. on p. 18).

[3] 802.1Qca-2015 - IEEE Standard for Local and metropolitan area networks– Bridges
and Bridged Networks - Amendment 24: Path Control and Reservation. Mar. 2016.
DOI: 10.1109/IEEESTD.2016.7434544 (cit. on p. 17).

[4] 802.3-2015 - IEEE Standard for Ethernet. TTTech Computertechnik AG, Vienna,
Austria, Mar. 2016. DOI: 10.1109/IEEESTD.2016.7428776 (cit. on p. 16).

[5] Cisco. IS-IS Overview and Basic Configuration. URL: https://www.cisco.com/c/en/
us/td/docs/ios-xml/ios/iproute_isis/configuration/15-mt/irs-15-mt-book/irs-
ovrw-cf.pdf (cit. on p. 31).

[6] S. S. Craciunas, R. S. Oliver, M. Chmelik, W. Steiner. Scheduling real-time commu-
nication in IEEE 802.1 Qbv time sensitive networks. ACM, 2016 (cit. on pp. 18, 27,
46).

[7] M. Dell’Amico, M. Trubian. “Applying tabu search to the job-shop scheduling
problem.” In: Annals of Operations research 41.3 (1993), pp. 231–252 (cit. on
p. 34).

[8] Don Jacob. A Quick Start to Path Computation Element (PCE). URL: http://www.
packetdesign.com/blog/quick-start-path-computation-element-pce/ (cit. on
p. 32).

[9] F. Duerr, N. G. Nayak. Routing Algorithms for IEEE 802.1Qbv Networks. 2017
(cit. on pp. 19, 33, 41, 43, 45).

[10] F. Dürr, N. G. Nayak. No-wait packet scheduling for IEEE time-sensitive networks
(TSN). ACM, 2016 (cit. on pp. 18, 26, 40, 45).

[11] R.-T. Ethernet. SERCOS III: Proposal for a Publicly Available Specification for
Real-Time Ethernet (cit. on p. 16).

87

http://dx.doi.org/10.1109/IEEESTD.2011.5741898
http://dx.doi.org/10.1109/IEEESTD.2016.7572858
http://dx.doi.org/10.1109/IEEESTD.2016.7434544
http://dx.doi.org/10.1109/IEEESTD.2016.7428776
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/iproute_isis/configuration/15-mt/irs-15-mt-book/irs-ovrw-cf.pdf
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/iproute_isis/configuration/15-mt/irs-15-mt-book/irs-ovrw-cf.pdf
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/iproute_isis/configuration/15-mt/irs-15-mt-book/irs-ovrw-cf.pdf
http://www.packetdesign.com/blog/quick-start-path-computation-element-pce/
http://www.packetdesign.com/blog/quick-start-path-computation-element-pce/

[12] R. Hummen. What is TSN? A Look at Its Role in Future Ethernet Networks. Feb.
2017. URL: http://www.belden.com/blog/industrialethernet/what-is-tsn-a-look-
at-its-role-in-future-ethernet-networks.cfm (cit. on p. 15).

[13] “IEEE Standard for Local and metropolitan area networks– Bridges and Bridged
Networks - Amendment 24: Path Control and Reservation.” In: IEEE Std 802.1Qca-
2015 (Amendment to IEEE Std 802.1Q-2014 as amended by IEEE Std 802.1Qcd-
2015 and IEEE Std 802.1Q-2014/Cor 1-2015) (Mar. 2016), pp. 1–120. DOI:
10.1109/IEEESTD.2016.7434544 (cit. on p. 30).

[14] “IEEE Standard for Local and metropolitan area networks – Bridges and Bridged
Networks - Amendment 25: Enhancements for Scheduled Traffic.” In: IEEE Std
802.1Qbv-2015 (Amendment to IEEE Std 802.1Q— as amended by IEEE Std
802.1Qca-2015, IEEE Std 802.1Qcd-2015, and IEEE Std 802.1Q—/Cor 1-2015)
(Mar. 2016), pp. 1–57. DOI: 10.1109/IEEESTD.2016.7572858 (cit. on pp. 22–24).

[15] D. Jansen, H. Buttner. “Real-time Ethernet: the EtherCAT solution.” In: Computing
and Control Engineering 15.1 (2004), pp. 16–21 (cit. on p. 16).

[16] N. Kokash. An introduction to heuristic algorithms. 2005 (cit. on p. 34).

[17] Time-Sensitive Networking: A Technical Introduction. 2017 (cit. on p. 16).

[18] E. Tovar, F. Vasques. Real-time fieldbus communications using Profibus networks.
1999 (cit. on p. 16).

[19] Wikipedia. IEEE 802.1aq. [Online; accessed 7-Oct-20017]. URL: https : //en .
wikipedia.org/wiki/IEEE_802.1aq (cit. on p. 32).

[20] W. Xia, Y. Wen, C. H. Foh, D. Niyato, H. Xie. “A survey on software-defined
networking.” In: IEEE Communications Surveys & Tutorials 17.1 (2015), pp. 27–51
(cit. on p. 29).

All links were last followed on October 22, 2017.

http://www.belden.com/blog/industrialethernet/what-is-tsn-a-look-at-its-role-in-future-ethernet-networks.cfm
http://www.belden.com/blog/industrialethernet/what-is-tsn-a-look-at-its-role-in-future-ethernet-networks.cfm
http://dx.doi.org/10.1109/IEEESTD.2016.7434544
http://dx.doi.org/10.1109/IEEESTD.2016.7572858
https://en.wikipedia.org/wiki/IEEE_802.1aq
https://en.wikipedia.org/wiki/IEEE_802.1aq

Declaration

I hereby declare that the work presented in this thesis
is entirely my own. I did not use any other sources and
references that the listed ones. I have marked all direct
or indirect statements from other sources contained
therein as quotations. Neither this work nor significant
parts of it were part of another examination procedure.
I have not published this work in whole or in part before.
The electronic copy is consistent with all submitted
copies

place, date, signature

	1 Introduction
	2 Background
	2.1 IEEE 802.1Qbv
	2.2 Scheduling
	2.3 Software Defined Network (SDN)
	2.4 IEEE 802.1Qca
	2.5 Heuristic Algorithms

	3 Time Sensitive Network
	3.1 System Model
	3.2 Problem Statement

	4 Impact of Routing on Scheduling Methods
	4.1 No-Wait Packet Scheduling for IEEE Time Sensitive Networks (TSN)
	4.2 Scheduling Real Time Communication in IEEE 802.1Qbv Time Sensitive Networks

	5 Routing Algorithms
	5.1 Terminology
	5.2 Weighted Shortest Path First Algorithm
	5.3 Weighted Equal Cost Multi Path Algorithm
	5.4 Tabu Search Algorithm
	5.5 Dynamic Routing Using Tabu Search

	6 Results and Evaluations
	6.1 Impact of Routing Algorithms on MSTL
	6.2 Impact of Reduced MSTL on Quality of Schedule
	6.3 Scalability of Routing Algorithms

	7 Conclusion
	Bibliography

