Institute of Parallel and Distributed Systems
University of Stuttgart

Universitatsstralle 38
D-70569 Stuttgart

Bachelorarbeit

Subspace-Optimal Data Mining
on Spatially Adaptive Sparse
Grids

Maximilian Luz

Course of Study: Informatik

Examiner: Jun.-Prof. Dr. rer. nat. Dirk Pfliiger
Supervisor: Dipl.-Inf. David Pfander
Commenced: May 15, 2017

Completed: November 15, 2017

CR-Classification: F2.1, G.1.0, G.1.2

Abstract

Continued improvements in technology lead to an ever-growing amount of data generated,
for example, by scientific measurements and simulations. Data-mining is required to gain
useful knowledge from this data, however, can be challenging especially due to the size and
dimensionality of these problems. The use of regular grids for such applications is often
limited by the curse of dimensionality, a phrase used to describe an exponential dependency
of the computational complexity of a problem on the dimensionality of this problem. For
many higher-dimensional problems, e.g. with 28 dimensions, regular grids cannot be used
to compute results with the desired accuracy in a reasonable amount of time, even if the
memory required to store and process them is available.

With spatially adaptive sparse grids, this problem can be overcome, as they lessen the influ-
ence of the dimensionality on the size of the grid, furthermore, they have been successfully
applied for many tasks, including regression on large data sets. However, the currently
preferred and in practice highly performant streaming-algorithm for regression on spatially
adaptive sparse grids employs many unnecessary operations to effectively utilize modern
parallel computer architectures, such as graphics processing units (GPUs).

In this thesis, we show that the implementation of a by computational complexity more
promising subspace-linear algorithm on the GPU is able to out-perform the currently pre-
ferred streaming-algorithm on many scenarios, even though the this algorithm does not
utilize modern architectures as well as the streaming-algorithm. Furthermore, we explore
the construction of a new algorithm by combining both, streaming- and subspace-linear
algorithm, which aims to process each subgrid of the grid with the algorithm deemed most
efficient for its structure.

We evaluated both of our algorithms against the highly optimized implementation of the
streaming-algorithm provided in the SG++ framework, and could indeed show speed-ups
for both algorithms, depending on the experiments.

Contents

1 Preface
1.1 Introduction and Motivation i
1.2 NOtation o i e e e e e e e e e e e e e e e e e
1.3 The Graphics Processing Unit

2 Sparse Grids
2.1 Sparse Grid Composition e e
2.2 Hierarchical Basis Functions
2.3 Spatially Adaptive Sparse Grids o
2.4 Regressionon Sparse Grids oo

3 Fast Regression Algorithms for Sparse Grids
3.1 ARecursive Approach e
3.2 The Streaming Algorithm L o
3.3 The Subspace-Linear Algorithm

4 Fast Regression Algorithms on the GPU
4.1 Subspace-Linear Regressionon GPUs
4.2 Subspace-Optimal Regressionon GPUs

5 Evaluation of Regression algorithms on the GPU
5.1 Hardware Used i i i i ittt ittt e e e
5.2 Data Setsand Scenarioso it e e e e e
5.3 The Subspace-Linear Algorithm
5.4 The Subspace-Adaptive Algorithm

6 Discussion and Outlook
A Statistics for Adaptive Sparse Grid Evaluation Scenarios

Bibliography

23
23
24
25

29
29
31
34
35

39
39
41
42

47
47
49

51
51
51
54
101

129

131

141

List of Figures

1.1

2.1
2.2
2.3
24
2.5

3.1

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

Lockstep EXecution o v i v v it e e e

Regular Sparse Grids in Two and Three Dimensions
Tableauof Subgrids
Hierarchical Hat Basis Functions
Sparse Grid Interpolation. L.
Spatially Adaptive Sparse Grid by Refinement

Recursive Evaluation on Sparse Grids

Duration of the Subspace-Linear Algorithm for BTa on the NVIDIA Tesla
P100 using Regular Sparse Grids with Data Set SDSS DR5 FP64, Plotted
over Grid Level
Duration of the Subspace-Linear Algorithm for BTa on the NVIDIA Tesla
P100 using Regular Sparse Grids with Data Set SDSS DR5 FP64, Plotted
over Grid Points L
Speed-Up of the Subspace-Linear Algorithm over the Streaming Algorithm
for BTa on the NVIDIA Tesla P100 using Regular Sparse Grids with Data
Set SDSS DR5 FP64, Plotted over GridLevel
Kernel Duration of the Subspace-Linear Algorithm for BT« on the NVIDIA
Tesla P100 using Regular Sparse Grids with Data Set SDSS DR5 FP64,
Plotted over Grid Level
Run-Time Composition of the Subspace-Linear Algorithm for BT« on the
NVIDIA Tesla P100 using Regular Sparse Grids with Data Set SDSS DR5
FP64, Plotted over Grid Level
Run-Time Composition of the Subspace-Linear Algorithm for BT« on the
NVIDIA Tesla P100 using Regular Sparse Grids with Data Set SDSS DR5
FP64, Plotted over Grid Points v v v v v i
Duration of the Subspace-Linear Algorithm for Bv on the NVIDIA Tesla
P100 using Regular Sparse Grids with Data Set SDSS DR5 FP64, Plotted
over Grid Level
Speed-Up of the Subspace-Linear Algorithm over the Streaming Algorithm
for Bv on the NVIDIA Tesla P100 using Regular Sparse Grids with Data Set
SDSS DR5 FP64, Plotted over Grid Level
Kernel Duration of the Subspace-Linear Algorithm for Bv on the NVIDIA
Tesla P100 using Regular Sparse Grids with Data Set SDSS DR5 FP64,
Plotted over Grid Level,

5.10

5.11

5.12

5.13

5.14

5.15

5.16

5.17

5.18

5.19

5.20

5.21

5.22

5.23

Duration of the Subspace-Linear Algorithm for BT« on the NVIDIA Tesla
K20Xm using Regular Sparse Grids with Data Set SDSS DR5 FP64, Plotted
over Grid Level e
Speed-Up of the Subspace-Linear Algorithm over the Streaming Algorithm
for BT on the NVIDIA Tesla K20Xm using Regular Sparse Grids with Data
Set SDSS DR5 FP64, Plotted over GridLevel
Duration of the Subspace-Linear Algorithm for Bv on the NVIDIA Tesla
K20Xm using Regular Sparse Grids with Data Set SDSS DR5 FP64, Plotted
over Grid Level
Speed-Up of the Subspace-Linear Algorithm over the Streaming Algorithm
for Bv on the NVIDIA Tesla K20Xm using Regular Sparse Grids with Data
Set SDSS DR5 FP64, Plotted over Grid Level
Run-Time Composition of the Subspace-Linear Algorithm for Bv on the
NVIDIA Tesla K20Xm using Regular Sparse Grids with Data Set SDSS DR5
FP64, Plotted over GridLevel
Duration of the Subspace-Linear Algorithm for BTa on the NVIDIA Tesla
P100 using Base Two Adaptive Sparse Grids with Data Set SDSS DR5 FP64,
Plotted over Refinement Steps,
Duration of the Subspace-Linear Algorithm for BT« on the NVIDIA Tesla
P100 using Base Two Adaptive Sparse Grids with Data Set SDSS DR5 FP64,
Plotted over Grid Points
Speed-Up of the Subspace-Linear Algorithm over the Streaming Algorithm
for BT on the NVIDIA Tesla P100 using Base Two Adaptive Sparse Grids
with Data Set SDSS DR5 FP64, Plotted over Refinement Steps
Kernel Duration of the Subspace-Linear Algorithm for BT« on the NVIDIA
Tesla P100 using Base Two Adaptive Sparse Grids with Data Set SDSS DR5
FP64, Plotted over Refinement Steps
Run-Time Composition of the Subspace-Linear Algorithm for BTa on the
NVIDIA Tesla P100 using Base Two Adaptive Sparse Grids with Data Set
SDSS DR5 FP64, Plotted over Refinement Steps
Duration of the Subspace-Linear Algorithm for Bv on the NVIDIA Tesla
P100 using Base Two Adaptive Sparse Grids with Data Set SDSS DR5 FP64,
Plotted over Refinement Steps
Duration of the Subspace-Linear Algorithm for Bv on the NVIDIA Tesla
P100 using Base Two Adaptive Sparse Grids with Data Set SDSS DR5 FP64,
Plotted over Grid Points
Speed-Up of the Subspace-Linear Algorithm over the Streaming Algorithm
for Bv on the NVIDIA Tesla P100 using Base Two Adaptive Sparse Grids
with Data Set SDSS DR5 FP64, Plotted over Refinement Steps
Kernel Duration of the Subspace-Linear Algorithm for Bv on the NVIDIA
Tesla P100 using Base Two Adaptive Sparse Grids with Data Set SDSS DR5
FP64, Plotted over Refinement Steps

5.24

5.25

5.26

5.27

5.28

5.29

5.30

5.31

5.32

5.33

5.34

5.35

5.36

5.37

Duration of the Subspace-Linear Algorithm for BT« on the NVIDIA Tesla
P100 using Base Two Adaptive Sparse Grids with Data Set HIGGS (5M)
FP64, Plotted over Refinement Steps
Speed-Up of the Subspace-Linear Algorithm over the Streaming Algorithm
for BT« on the NVIDIA Tesla P100 using Base Two Adaptive Sparse Grids
with Data Set HIGGS (5M) FP64, Plotted over Refinement Steps
Run-Time Composition of the Subspace-Linear Algorithm for BT« on the
NVIDIA Tesla P100 using Base Two Adaptive Sparse Grids with Data Set
HIGGS (5M) FP64, Plotted over Refinement Steps
Duration of the Subspace-Linear Algorithm for Bv on the NVIDIA Tesla
P100 using Base Two Adaptive Sparse Grids with Data Set HIGGS (5M)
FP64, Plotted over Refinement Steps
Speed-Up of the Subspace-Linear Algorithm over the Streaming Algorithm
for Bv on the NVIDIA Tesla P100 using Base Two Adaptive Sparse Grids
with Data Set HIGGS (5M) FP64, Plotted over Refinement Steps
Run-Time Composition of the Subspace-Linear Algorithm for Bv on the
NVIDIA Tesla P100 using Base Two Adaptive Sparse Grids with Data Set
HIGGS (5M) FP64, Plotted over Refinement Steps
Duration of the Subspace-Linear Algorithm for BT« on the NVIDIA Tesla
P100 using Base Five Adaptive Sparse Grids with Data Set SDSS DR5 FP64,
Plotted over Refinement Steps
Speed-Up of the Subspace-Linear Algorithm over the Streaming Algorithm
for BTa on the NVIDIA Tesla P100 using Base Five Adaptive Sparse Grids
with Data Set SDSS DR5 FP64, Plotted over Refinement Steps
Run-Time Composition of the Subspace-Linear Algorithm for BT« on the
NVIDIA Tesla P100 using Base Five Adaptive Sparse Grids with Data Set
SDSS DRS5 FP64, Plotted over Refinement Steps
Duration of the Subspace-Linear Algorithm for Bv on the NVIDIA Tesla
P100 using Base Five Adaptive Sparse Grids with Data Set SDSS DR5 FP64,
Plotted over Refinement Steps
Speed-Up of the Subspace-Linear Algorithm over the Streaming Algorithm
for Bv on the NVIDIA Tesla P100 using Base Five Adaptive Sparse Grids
with Data Set SDSS DR5 FP64, Plotted over Refinement Steps
Duration of the Subspace-Linear Algorithm for BTa on the NVIDIA Tesla
P100 using Base Seven Adaptive Sparse Grids with Data Set SDSS DR5
FP64, Plotted over Refinement Steps
Speed-Up of the Subspace-Linear Algorithm over the Streaming Algorithm
for BTa on the NVIDIA Tesla P100 using Base Seven Adaptive Sparse Grids
with Data Set SDSS DR5 FP64, Plotted over Refinement Steps
Run-Time Composition of the Subspace-Linear Algorithm for BT« on the
NVIDIA Tesla P100 using Base Seven Adaptive Sparse Grids with Data Set
SDSS DRS FP64, Plotted over Refinement Steps

10

5.38

5.39

5.40

5.41

5.42

5.43

5.44

5.45

5.46

5.47

5.48

5.49

5.50

Duration of the Subspace-Linear Algorithm for Bv on the NVIDIA Tesla
P100 using Base Seven Adaptive Sparse Grids with Data Set SDSS DR5
FP64, Plotted over Refinement Steps
Speed-Up of the Subspace-Linear Algorithm over the Streaming Algorithm
for Bv on the NVIDIA Tesla P100 using Base Seven Adaptive Sparse Grids
with Data Set SDSS DR5 FP64, Plotted over Refinement Steps
Duration of the Subspace-Linear Algorithm for BTa on the NVIDIA Tesla
P100 using Base Two Adaptive Sparse Grids with Five Dimensional Gaussian
Data Set, FP64, Plotted over Refinement Steps
Speed-Up of the Subspace-Linear Algorithm over the Streaming Algorithm
for BTa on the NVIDIA Tesla P100 using Base Two Adaptive Sparse Grids
with Five Dimensional Gaussian Data Set, FP64, Plotted over Refinement
Steps . .o e
Kernel Duration of the Subspace-Linear Algorithm for BT« on the NVIDIA
Tesla P100 using Base Two Adaptive Sparse Grids with Five Dimensional
Gaussian Data Set, FP64, Plotted over Refinement Steps
Run-Time Composition of the Subspace-Linear Algorithm for BTa on the
NVIDIA Tesla P100 using Base Two Adaptive Sparse Grids with Five Di-
mensional Gaussian Data Set, FP64, Plotted over Refinement Steps
Duration of the Subspace-Linear Algorithm for Bv on the NVIDIA Tesla
P100 using Base Two Adaptive Sparse Grids with Five Dimensional Gaussian
Data Set, FP64, Plotted over Refinement Steps
Speed-Up of the Subspace-Linear Algorithm over the Streaming Algorithm
for Bv on the NVIDIA Tesla P100 using Base Two Adaptive Sparse Grids
with Five Dimensional Gaussian Data Set, FP64, Plotted over Refinement
Steps . .. e e e e e e e
Kernel Duration of the Subspace-Linear Algorithm for Bv on the NVIDIA
Tesla P100 using Base Two Adaptive Sparse Grids with Five Dimensional
Gaussian Data Set, FP64, Plotted over Refinement Steps
Duration of the Subspace-Linear Algorithm for BT« on the NVIDIA Tesla
P100 using Base Five Adaptive Sparse Grids with Five Dimensional Gaussian
Data Set, FP64, Plotted over Refinement Steps
Speed-Up of the Subspace-Linear Algorithm over the Streaming Algorithm
for BTa on the NVIDIA Tesla P100 using Base Five Adaptive Sparse Grids
with Five Dimensional Gaussian Data Set, FP64, Plotted over Refinement
Steps . .o
Kernel Duration of the Subspace-Linear Algorithm for BT« on the NVIDIA
Tesla P100 using Base Five Adaptive Sparse Grids with Five Dimensional
Gaussian Data Set, FP64, Plotted over Refinement Steps
Run-Time Composition of the Subspace-Linear Algorithm for BT« on the
NVIDIA Tesla P100 using Base Five Adaptive Sparse Grids with Five Dimen-
sional Gaussian Data Set, FP64, Plotted over Refinement Steps

84

5.51

5.52

5.53

5.54

5.55

5.56

5.57

5.58

5.59

5.60

5.61

5.62

5.63

Duration of the Subspace-Linear Algorithm for Bv on the NVIDIA Tesla
P100 using Base Five Adaptive Sparse Grids with Five Dimensional Gaussian
Data Set, FP64, Plotted over Refinement Steps
Speed-Up of the Subspace-Linear Algorithm over the Streaming Algorithm
for Bv on the NVIDIA Tesla P100 using Base Five Adaptive Sparse Grids
with Five Dimensional Gaussian Data Set, FP64, Plotted over Refinement
Steps . .. e e
Kernel Duration of the Subspace-Linear Algorithm for Bv on the NVIDIA
Tesla P100 using Base Five Adaptive Sparse Grids with Five Dimensional
Gaussian Data Set, FP64, Plotted over Refinement Steps
Duration of the Subspace-Linear Algorithm for BT« on the NVIDIA Tesla
P100 using Base Seven Adaptive Sparse Grids with Five Dimensional Gaus-
sian Data Set, FP64, Plotted over Refinement Steps
Speed-Up of the Subspace-Linear Algorithm over the Streaming Algorithm
for BT on the NVIDIA Tesla P100 using Base Seven Adaptive Sparse Grids
with Five Dimensional Gaussian Data Set, FP64, Plotted over Refinement
StePS . . . e e
Kernel Duration of the Subspace-Linear Algorithm for BT« on the NVIDIA
Tesla P100 using Base Seven Adaptive Sparse Grids with Five Dimensional
Gaussian Data Set, FP64, Plotted over Refinement Steps
Run-Time Composition of the Subspace-Linear Algorithm for BT« on the
NVIDIA Tesla P100 using Base Seven Adaptive Sparse Grids with Five
Dimensional Gaussian Data Set, FP64, Plotted over Refinement Steps
Duration of the Subspace-Linear Algorithm for Bv on the NVIDIA Tesla P100
using Base Seven Adaptive Sparse Grids with Five Dimensional Gaussian
Data Set, FP64, Plotted over Refinement Steps
Speed-Up of the Subspace-Linear Algorithm over the Streaming Algorithm
for Bv on the NVIDIA Tesla P100 using Base Seven Adaptive Sparse Grids
with Five Dimensional Gaussian Data Set, FP64, Plotted over Refinement
Steps . . . e e e e e e e
Kernel Duration of the Subspace-Linear Algorithm for Bv on the NVIDIA
Tesla P100 using Base Seven Adaptive Sparse Grids with Five Dimensional
Gaussian Data Set, FP64, Plotted over Refinement Steps
Duration of the Subspace-Linear Algorithm for BTa on the NVIDIA Tesla
P100 using Base Two Adaptive Sparse Grids with Ten Dimensional Gaussian
Data Set, FP64, Plotted over Refinement Steps
Speed-Up of the Subspace-Linear Algorithm over the Streaming Algorithm
for BTax on the NVIDIA Tesla P100 using Base Two Adaptive Sparse Grids
with Ten Dimensional Gaussian Data Set, FP64, Plotted over Refinement
Steps . .o e
Kernel Duration of the Subspace-Linear Algorithm for BT« on the NVIDIA
Tesla P100 using Base Two Adaptive Sparse Grids with Ten Dimensional
Gaussian Data Set, FP64, Plotted over Refinement Steps

91

11

12

5.64

5.65

5.66

5.67

5.68

5.69

5.70

5.71

5.72

5.73

5.74

5.75

5.76

Run-Time Composition of the Subspace-Linear Algorithm for BT« on the
NVIDIA Tesla P100 using Base Two Adaptive Sparse Grids with Ten Dimen-
sional Gaussian Data Set, FP64, Plotted over Refinement Steps
Duration of the Subspace-Linear Algorithm for Bv on the NVIDIA Tesla
P100 using Base Two Adaptive Sparse Grids with Ten Dimensional Gaussian
Data Set, FP64, Plotted over Refinement Steps
Speed-Up of the Subspace-Linear Algorithm over the Streaming Algorithm
for Bv on the NVIDIA Tesla P100 using Base Two Adaptive Sparse Grids
with Ten Dimensional Gaussian Data Set, FP64, Plotted over Refinement
Steps . . . e
Kernel Duration of the Subspace-Linear Algorithm for Bv on the NVIDIA
Tesla P100 using Base Two Adaptive Sparse Grids with Ten Dimensional
Gaussian Data Set, FP64, Plotted over Refinement Steps
Duration of the Subspace-Linear Algorithm for BT« on the NVIDIA Tesla
P100 using Base Five Adaptive Sparse Grids with Ten Dimensional Gaussian
Data Set, FP64, Plotted over Refinement Steps
Speed-Up of the Subspace-Linear Algorithm over the Streaming Algorithm
for BTa on the NVIDIA Tesla P100 using Base Five Adaptive Sparse Grids
with Ten Dimensional Gaussian Data Set, FP64, Plotted over Refinement
StePS . . e e e e e e e e e e e e
Kernel Duration of the Subspace-Linear Algorithm for BT« on the NVIDIA
Tesla P100 using Base Five Adaptive Sparse Grids with Ten Dimensional
Gaussian Data Set, FP64, Plotted over Refinement Steps
Run-Time Composition of the Subspace-Linear Algorithm for BT« on the
NVIDIA Tesla P100 using Base Five Adaptive Sparse Grids with Ten Dimen-
sional Gaussian Data Set, FP64, Plotted over Refinement Steps
Duration of the Subspace-Linear Algorithm for Bv on the NVIDIA Tesla
P100 using Base Five Adaptive Sparse Grids with Ten Dimensional Gaussian
Data Set, FP64, Plotted over Refinement Steps
Speed-Up of the Subspace-Linear Algorithm over the Streaming Algorithm
for Bv on the NVIDIA Tesla P100 using Base Five Adaptive Sparse Grids
with Ten Dimensional Gaussian Data Set, FP64, Plotted over Refinement
Steps . . . e e e e e e e
Kernel Duration of the Subspace-Linear Algorithm for Bv on the NVIDIA
Tesla P100 using Base Five Adaptive Sparse Grids with Ten Dimensional
Gaussian Data Set, FP64, Plotted over Refinement Steps
Duration of the Subspace-Adaptive Algorithm, Including Preparation, for
BT« on the NVIDIA Tesla P100 using Base Two Adaptive Sparse Grids and
the SDSSDR5 Data Set oo v i ittt
Duration of the Subspace-Adaptive Algorithm, Excluding Preparation, for
BT« on the NVIDIA Tesla P100 using Base Two Adaptive Sparse Grids on
theDRSDataSet it

5.77

5.78

5.79

5.80

5.81

5.82

5.83

5.84

5.85

5.86

5.87

5.88

5.89

5.90

Duration of the Subspace-Adaptive Algorithm, Including Preparation, for
BT« on the NVIDIA Tesla P100 using Base Two Adaptive Sparse Grids on
the DR5 Data set, with Multiple Point Threshold Values
Speed-Up of the Subspace-Adaptive Algorithm over the Streaming Algo-
rithm for BT« on the NVIDIA Tesla P100 using Base Two Adaptive Sparse
Gridsonthe DR5DataSet
Duration of the Subspace-Adaptive Algorithm, Including Preparation, for
Bv on the NVIDIA Tesla P100 using Base Two Adaptive Sparse Grids on
theDRSDataSet it
Speed-Up of the Subspace-Adaptive Algorithm over the Streaming Algo-
rithm for Bv on the NVIDIA Tesla P100 using Base Two Adaptive Sparse
Gridsonthe DRSDataSet,
Duration of the Subspace-Adaptive Algorithm, Excluding Preparation, for
BT on the NVIDIA Tesla P100 using Base Five Adaptive Sparse Grids on
theDRSDataSet i ittt
Speed-Up of the Subspace-Adaptive Algorithm over the Streaming Algo-
rithm for BT« on the NVIDIA Tesla P100 using Base Five Adaptive Sparse
Gridsonthe DRS5DataSet v i,
Duration of the Subspace-Adaptive Algorithm, Including Preparation, for
Bv on the NVIDIA Tesla P100 using Base Five Adaptive Sparse Grids on
theDRSData Set o i i i
Speed-Up of the Subspace-Adaptive Algorithm over the Streaming Algo-
rithm for Bv on the NVIDIA Tesla P100 using Base Five Adaptive Sparse
Gridsonthe DR5DataSet,
Duration of the Subspace-Adaptive Algorithm, Excluding Preparation, for
BT« on the NVIDIA Tesla P100 using Base Seven Adaptive Sparse Grids on
theDRSDataSet i
Speed-Up of the Subspace-Adaptive Algorithm over the Streaming Algo-
rithm for BT on the NVIDIA Tesla P100 using Base Seven Adaptive Sparse
Gridsonthe DRSDataSet,
Duration of the Subspace-Adaptive Algorithm, Including Preparation, for
Bv on the NVIDIA Tesla P100 using Base Seven Adaptive Sparse Grids on
theDRSDataSet i ittt
Speed-Up of the Subspace-Adaptive Algorithm over the Streaming Algo-
rithm for Bv on the NVIDIA Tesla P100 using Base Seven Adaptive Sparse
Gridsonthe DRS5DataSet v i,
Duration of the Subspace-Adaptive Algorithm, Excluding Preparation, for
BT« on the NVIDIA Tesla P100 using Base Two Adaptive Sparse Grids on
the Gaussian (5D) Data Set o v i i e e e
Duration of the Subspace-Adaptive Algorithm, Including Preparation, for
BT« on the NVIDIA Tesla P100 using Base Two Adaptive Sparse Grids on
the Gaussian (5D) Data Set, with Multiple Point Threshold Values

13

14

5.91

5.92

5.93

5.94

5.95

5.96

5.97

5.98

5.99

5.100

5.101

5.102

5.103

5.104

Speed-Up of the Subspace-Adaptive Algorithm over the Streaming Algo-
rithm for BTa on the NVIDIA Tesla P100 using Base Two Adaptive Sparse
Grids on the Gaussian (5D) DataSet« v v v i
Duration of the Subspace-Adaptive Algorithm, Including Preparation, for
Bv on the NVIDIA Tesla P100 using Base Two Adaptive Sparse Grids on
the Gaussian (5D) Data Set v v i v e e e
Duration of the Subspace-Adaptive Algorithm, Including Preparation, for
Bv on the NVIDIA Tesla P100 using Base Two Adaptive Sparse Grids on
the Gaussian (5D) Data Set, with Multiple Point Threshold Values
Speed-Up of the Subspace-Adaptive Algorithm over the Streaming Algo-
rithm for Bv on the NVIDIA Tesla P100 using Base Two Adaptive Sparse
Grids on the Gaussian (5D) DataSet v v ..
Duration of the Subspace-Adaptive Algorithm, Excluding Preparation, for
BT on the NVIDIA Tesla P100 using Base Five Adaptive Sparse Grids on
the Gaussian (5D) DataSet,
Duration of the Subspace-Adaptive Algorithm, Including Preparation, for
BTa on the NVIDIA Tesla P100 using Base Five Adaptive Sparse Grids on
the Gaussian (5D) Data Set, with Multiple Point Threshold Values
Speed-Up of the Subspace-Adaptive Algorithm over the Streaming Algo-
rithm for BTa on the NVIDIA Tesla P100 using Base Five Adaptive Sparse
Grids on the Gaussian (5D) Data Set v v v v .
Duration of the Subspace-Adaptive Algorithm, Including Preparation, for
Bv on the NVIDIA Tesla P100 using Base Five Adaptive Sparse Grids on
the Gaussian (5D) Data Set v v i i e e e e e
Duration of the Subspace-Adaptive Algorithm, Including Preparation, for
Bv on the NVIDIA Tesla P100 using Base Five Adaptive Sparse Grids on
the Gaussian (5D) Data Set, with Multiple Point Threshold Values
Speed-Up of the Subspace-Adaptive Algorithm over the Streaming Algo-
rithm for Bv on the NVIDIA Tesla P100 using Base Five Adaptive Sparse
Grids on the Gaussian (5D) DataSet v v ..
Duration of the Subspace-Adaptive Algorithm, Excluding Preparation, for
BT on the NVIDIA Tesla P100 using Base Seven Adaptive Sparse Grids on
the Gaussian (5D) DataSet,
Speed-Up of the Subspace-Adaptive Algorithm over the Streaming Algo-
rithm for BTa on the NVIDIA Tesla P100 using Base Seven Adaptive Sparse
Grids on the Gaussian (5D) DataSet
Duration of the Subspace-Adaptive Algorithm, Including Preparation, for
Bv on the NVIDIA Tesla P100 using Base Seven Adaptive Sparse Grids on
the Gaussian (5D) Data Set o v i i e e e
Speed-Up of the Subspace-Adaptive Algorithm over the Streaming Algo-
rithm for Bv on the NVIDIA Tesla P100 using Base Seven Adaptive Sparse
Grids on the Gaussian (5D) DataSet v v v v v v .

5.105

5.106

5.107

5.108

5.109

5.110

5.111

5.112

5.113

5.114

5.115

5.116

5.117

Duration of the Subspace-Adaptive Algorithm, Including Preparation, for
BT« on the NVIDIA Tesla P100 using Base Two Adaptive Sparse Grids on
the Gaussian (10D) Data Set v v v v v i e e e e e
Duration of the Subspace-Adaptive Algorithm, Excluding Preparation, for
BT« on the NVIDIA Tesla P100 using Base Two Adaptive Sparse Grids on
the Gaussian (10D) Data Set v v v v v v i e e e e e
Speed-Up of the Subspace-Adaptive Algorithm over the Streaming Algo-
rithm for BT« on the NVIDIA Tesla P100 using Base Two Adaptive Sparse
Grids on the Gaussian (10D) Data Set v v v v v v v v v v
Duration of the Subspace-Adaptive Algorithm, Including Preparation, for
Bv on the NVIDIA Tesla P100 using Base Two Adaptive Sparse Grids on
the Gaussian (10D) Data Set v v v i v e e e e e
Speed-Up of the Subspace-Adaptive Algorithm over the Streaming Algo-
rithm for Bv on the NVIDIA Tesla P100 using Base Two Adaptive Sparse
Grids on the Gaussian (10D) DataSet
Duration of the Subspace-Adaptive Algorithm, Excluding Preparation, for
BTa on the NVIDIA Tesla P100 using Base Five Adaptive Sparse Grids on
the Gaussian (10D) Data Set v v i v i v it
Speed-Up of the Subspace-Adaptive Algorithm over the Streaming Algo-
rithm for BTa on the NVIDIA Tesla P100 using Base Five Adaptive Sparse
Grids on the Gaussian (10D) Data Set v v v v v v v v v
Duration of the Subspace-Adaptive Algorithm, Including Preparation, for
Bv on the NVIDIA Tesla P100 using Base Five Adaptive Sparse Grids on
the Gaussian (10D) Data Set v v v v v i i e e e e e
Speed-Up of the Subspace-Adaptive Algorithm over the Streaming Algo-
rithm for Bv on the NVIDIA Tesla P100 using Base Five Adaptive Sparse
Grids on the Gaussian (10D) Data Set v v v v v v v v v v
Duration of the Subspace-Adaptive Algorithm, Including Preparation, for
BTa on the NVIDIA Tesla P100 using Base Two Adaptive Sparse Grids on
the HIGGS Data Set o i i ittt it e
Speed-Up of the Subspace-Adaptive Algorithm over the Streaming Algo-
rithm for BT« on the NVIDIA Tesla P100 using Base Two Adaptive Sparse
Gridson the HIGGS DataSet
Duration of the Subspace-Adaptive Algorithm, Including Preparation, for
Bv on the NVIDIA Tesla P100 using Base Two Adaptive Sparse Grids on
the HIGGS Data Set o v v v it e e e e e e e e e e e e
Speed-Up of the Subspace-Adaptive Algorithm over the Streaming Algo-
rithm for Bv on the NVIDIA Tesla P100 using Base Two Adaptive Sparse
Grids on the HIGGS DataSet v i ..

15

List of Tables

2.1

5.1
5.2
5.3
5.4

Al
A2
A3
A4
A5
A6
A7
A8
A9

Benefits of Sparse Grids

Primary Evaluation System,
Secondary Evaluation System
Statistics for the Regular DR5 Scenario.
Parameters For Adaptive Sparse Grid Scenarios.

Subgrid Statistics for the Base Two SDSS DR5 Scenario
Subgrid Statistics for the Base Five SDSS DR5 Scenario
Subgrid Statistics for the Base Seven SDSS DR5 Scenario
Subgrid Statistics for the Base Two HIGGS (5M) Scenario
Subgrid Statistics for the Base Two Five Dimensional Gaussian Scenario . .
Subgrid Statistics for the Base Five Five Dimensional Gaussian Scenario . .
Subgrid Statistics for the Base Seven Five Dimensional Gaussian Scenario .
Subgrid Statistics for the Base Two Ten Dimensional Gaussian Scenario . .
Subgrid Statistics for the Base Five Ten Dimensional Gaussian Scenario . .

17

List of Algorithms

3.1
3.2
3.3
3.4
3.5

Streaming Algorithm for Multi-Evaluation 41
Streaming Algorithm for Transposed Multi-Evaluation 41
Common Functions for Subspace-Linear Multi-Evaluation 43
Subspace-Linear Algorithm for Multi-Evaluation 44
Subspace-Linear Algorithm for Transposed Multi-Evaluation 44

19

List of Abbreviations

API application programming interface. 25

CAS compare-and-swap. 56

CG conjugate gradient. 36

CPU central processing unit. 23, 25, 26, 40

DR5 data release 5. 51

DRAM dynamic random-access memory. 28

FP32 32bit floating point. 48

FP64 64 bit floating point. 48

GCN Graphics Core Next. 25

GPGPU general purpose graphics processing unit. 25
GPU graphics processing unit. 23

HBM2 2nd generation high bandwidth memory. 28, 65
HPC high performance computing. 28

LHC Large Hadron Collider. 53

MSE mean square error. 36

NaN Not-A-Number. 42

SDSS Sloan Digital Sky Survey. 51

SIMD single instruction multiple data. 26

SIMT single instruction multiple threads. 26

SLE system of linear equations. 36

SM Streaming Multiprocessor. 26

21

1 Preface

1.1 Introduction and Motivation

As it gets constantly easier to collect vast amounts of data, for example due to the increased
precision and speed of measurement systems, the extraction of useful information from
that data is critical. As many of these data sets are high-dimensional, a discretization of
the feature-space by use of regular grids would introduce a, with the dimensinality of the
problem, exponentially increasing number of data points whenever an increase in acuracy
is desired. Instead of regular grids, so-called sparse grids can be used to circumvent this
issue. They allow us to maintain accuracy while effectively reducing the required number
of grid points, and thus find application in many high-dimensional data-driven workloads,
such as encountered in finance, medicine, or even astrophysics [Pfl10].

Due to the large amount of data that needs to be processed, a parallelization of the workload
is essential. For highly parallel workloads, Graphics processing units (GPUs) are a desired
target architecture, as they provide a significantly larger throughput of arithmetic operations
than CPUs, especially when comparing their cost. However, algorithms have to be adapted
or developped specifically to fully exploit the benefits of this architecture.

For regression based data mining on sparse grids using the GPU, the currently preferred
algorithm is the so-called streaming algorithm. The basic concept of this algorithm is fairly
simple and is explicitly tailored towards this architecture, due to which even executes a
considerable amount of unnecessary operations. In the past, however, it has been proven to
out-perform, in terms of algorithmic run-time complexity, more desirable solutions [HP13].
To this end, Pfander, Heinecke, and Pfliiger [PHP16] proposed a new algorithm that
incorporates some of the desired algorithmical properties and also allows for an efficient
implementation on contemporary parallel architectures. While they were able to beat the
streaming-algorithm on CPUs, their algorithm has not been implemented and tested on
GPUs. Furthermore, the amount of memory required by this algorithm for spatially adaptive
sparse grids is dependent on the maximum depth of these grids, and not their actual size,
which poses problems for highly refined grids.

In this thesis, we explore the implementation of the subspace-linear algorithm on GPUs and
aim to find a solution to its problems. The rest of Chapter 1 presents the notation used
throughout this document, as well as a general introduction to the GPU-architecture and
some details of the NVIDIA Tesla P100 GPU we use for allmost all of our evaluation. An
introduction to sparse grids, including spatially adaptive sparse grids, and sparse-grid-based
regression is given in Chapter 2, which is followed by the discussion of existing sparse grid

23

1 Preface

regression algorithms in Chapter 3. The implementation of the subspace-linear algorithm on
the GPU is given in Chapter 4, as well as the construction of a new algorithm combining both,
streaming and subspace-linear approaches, to acheive better results. Their implementations
are evaluated in Chapter 5, followed by a discussion of this thesis in Chapter 6.

1.2 Notation

Throughout this thesis, we follow the common mathematical notations and conventions
as seen in similar literature, e.g. “Acta Numerica: Sparse grids” [BG04] and “Spatially
Adaptive Sparse Grids for High-Dimensional Problems” [Pfl10]. For clarification, and to
avoid misconceptions, this section will reiterate some of the lesser known notations and
provide the additional syntax and semantics used in this document.

We define a multi-index « as tuple
a=(a1,a9,...,aq) € Ng
For multi-indices and vector-valued properties we use the component-wise operations
(a+7);=ait+y
(a-7); = @iy
(@7); = (i)
(v%); =™
Bta),=6+a
B-a); =B o

with multi-indices (and/or vectors in R?) «, 8 and scalar v, based on their scalar counter-
parts. Note that definitions for the operators “—” and “+” follow by substitution.

We further define the scalar product as

d
<O’,, /8> = Z aiﬂi?
i=1

the relational operators

a<f & Vic<d:o <G,
a<pB & Vi< <p and o#p8,
asf & Viciq:o < B,

24

1.3 The Graphics Processing Unit

and the norms

|, = 112?<Xd|ai| (Loo- Or maximum norm),
d
ol = |ai (Ly-norm),
i=1
d
aly = | > a? (Ly-norm).
i=1

Additionally we define

k= [z]oqa

as shorthand notation to round x to the nearest odd integer k£ € N.

1.3 The Graphics Processing Unit

As a large part of this thesis focuses on the implementation and optimization of regression
algorithms for GPUs, an explanation of their underlying architecture, especially due to its
significant differences compared to the typical CPU-architecture, is in order. This architecture
has evolved over the years from a simple graphics-only co-processor to the highly parallel
general purpose graphics processing units (GPGPUs), accelerating many of today’s data-
driven workloads such as deep learning, classification, and regression, capable of executing
up to multiple thousands of threads in parallel and even more of them concurrently. While
this high level of parallelism provides a serious performance benefit over CPUs, it can only
be managed by architectural decisions inherently limiting the nature of tasks that can fully
exploit these devices, which we will discuss later in this section.

Since we are using NVIDIA GPUs for all of our evaluations, we will focus on their architecture
specifically and use the terms coined by them. Except for nomenclature, however, most of
the details discussed in this section are similar between vendors and generations, such as
NVIDIA’s Kepler, Maxwell, and Pascal [NVI16], or AMD’s current Graphics Core Next (GCN)
[AMD17] devices.

Aside from integrated hardware (which we will deliberately ignore hereafter), GPUs are
independent devices with their own memory, memory controller and instruction set. To
differentiate between these entities we commonly refer to the system hosting the GPU as
host and the GPU itself as device. To fully utilize the GPGPU capabilities, both, host and
device, have to be programmed respectively. Frameworks, such as OpenCL [SGS10] or CUDA
[NBGS08] (NVIDIA only) provide access from host-code to the GPU by giving programmers
the means to write functions — so-called kernels — compile them to device-specific machine
code, execute them on the GPU, synchronize them, and transfer the required memory back
and forth. The last of which may already be a first bottleneck for some applications as
this is limited by the bandwidth of the interface between CPU and GPU (at the time of

25

1 Preface

INSTRUCTIONS SIMT-THREADS
A A
‘ let x = (] v V) Vi V3 vz |);
if x == v; then Foo(x);

if x == v3 then Baz(x);

l if x == v, then Bar(x);

Figure 1.1: SIMT lockstep execution. Multiple hardware-threads execute the same vector
instruction at cycle t. If branching occurs (last three instructions), the diverging
paths are executed subsequently. Threads not on the current path are stalled
(white) while only threads on the path are executing the operations (colored).

writing commonly PCle Gen. 3 x 16 with a theoretical maximum of 15.75 GB/s or PCle Gen.
3 x8 with 7.88 GB/s, depending on the availability of PCle lanes and devices connected).
Both CUDA and OpenCL provide asynchronous application programming interfaces (APIs),
allowing to mitigate some of the latency introduced by memory transfers through overlapping
them with host- and even device-code execution.

Contemporary GPU-architecture is largely based on the single instruction multiple threads
(SIMT) principle, similar to the single instruction multiple data (SIMD) principle found on
CPUs. This means that batches, so-called warps, of multiple (for NVIDIA architectures 32)
threads are executed in parallel on a single Streaming Multiprocessor (SM), all executing the
same instruction. To allow for branching, instructions can be predicated on a thread-level
basis, with the predicate deciding if the operation is going to be executed on the current
thread. If the control flow diverges, i.e. some threads of a warp execute an operation based
on a predicate and others do not, the threads of this warp not executing the operation are
effectively stalled for that period of time (see Figure 1.1), yielding a scheme of execution
commonly referred to as lockstep execution. Due to this, the cost of managing hundreds of
threads is reduced to managing only one instruction path per SM at a time, however, this
also means that if-else branches are serialized and thus take more time to execute on the
GPU. Depending on the problem at hand, some of the control flow can be eliminated by
clever use of arithmetic instructions, or even by grouping input data, such as data points,
influencing the branching using, for example, space-filling curves.

In terms of memory, each SM has a large set of registers to store intermediate results,
partitioned between all threads on the SM. Additionally, SMs have a limited amount of
shared memory directly on the SM, a level one (L.1) cache, and an instruction cache. On
NVIDIA architectures, they are connected to multiple parallel level two (L2) caches. Each
L2-cache is connected to a memory controller, and each memory controller to a part of
the global memory. Loads and stores of multiple warps accessing global memory are
typically coalesced into one or more memory transactions per warp whenever possible
[NVI17]. Further performance problems can occur when single threads require too many
registers. If too many registers are used, some of the registers are spilled to local memory, a
per-multiprocessor reserved space in global memory often cached in the L1- or L2-cache,
or alternatively the number of threads scheduled on a single SM may be reduced. Even

26

1.3 The Graphics Processing Unit

with caching, this can severely impact the performance as neither caches, local memory, or
shared memory are as fast as registers. It may, however, be beneficial to pre-fetch global to
shared memory, effectively reducing pressure on the L2-cache and slower global memory.

To mitigate some of the memory, and even instruction latencies, GPUs allow to schedule
multiple warps on a single SM. With this, the SM can switch between warps to hide latencies.
Following Little’s Law, the number of instructions N required to hide a latency of L clock
cycles for a throughput of 7" instructions per clock is N = L - T'. As contemporary NVIDIA
Pascal devices are able to schedule two instructions per warp per clock cycle, this leads,
assuming a latency L of 11 clock cycles and maximum throughput for all instructions, to
22 required warp instructions per warp, and thus 704 required independent operations
per warp [NVI17]. These operations can be either provided by 704 other threads (22
other warps), or alternatively instruction level parallelism, i.e. subsequent independent
instructions.

Another limitation of GPUs are function calls and recursion. Due to the huge amount of
parallelism, maintaining an execution-stack on GPUs is difficult, often not viable, and, for
NVIDIA devices has been first introduced with compute capability 2.x [NVI17]. If a stack
is required, it cannot be stored in registers and thus is slow. Furthermore, large depths of
recursion are impossible, as this would require a significant amount of memory per thread.

In summary, GPUs require a highly parallel, non-diverging, and preferably non-memory-
driven workload. While some memory-related latencies can be eliminated by increasing the
number of concurrent threads, transfer from host to device memory may also be an issue.

1.3.1 CUDA

CUDA [NBGSO08; NVI17] is NVIDIA’s proprietary GPGPU API. In contrast to OpenCL, it
allows the integration of device code directly into C++ host code by employing a separate
compiler. This provides several benefits, such as ease of use and an exhaustive language
front end supporting most of the modern C++ features, however, also has some drawbacks.
It is not (directly) possible to employ code-generation at run-time, which would allow
certain optimizations such as parameter-specific loop unrolling. We chose CUDA over
OpenClL, as it provides better access to hardware-specific instructions, such as true 64 bit
atomic floating-point operations for devices with compute-capability 6.0 or higher, as well
as superior support for performance profiling on NVIDIA devices.!

The actual programming model of CUDA is largely identical to the one of OpenCL. Pro-
grammers write, except for indexing of memory, seemingly single-threaded code, that is
then executed in a parallel fashion on the GPU, with each scheduled thread receiving a
unique combination of identifiers. This can be somewhat seen as programming a parallel
for loop over a complete set of indices. Additionally, threads are grouped into so-called
thread-blocks, with only the threads inside a thread block being capable of accessing the

INVIDIA’s development tools only support CUDA, which would leave us solely with the performance measure-
ment functionalities provided by the OpenCL framework itself.

27

1 Preface

same shared memory, which can then be arranged in a grid-like fashion. Both thread-blocks
and the full grid can have up to three dimensions, depending on the programmers needs,
however, the only difference in dimensionality is the way single threads in the thread-block
and single thread-blocks in the grid are indexed. The size of thread-blocks and grid can
be specified at run-time by the programmer, but is limited by the executing hardware. For
newer devices, this is a maximum grid size of 232—1 in z-dimension and a maximum of
1024 threads per block.

Furthermore, CUDA provides a wide variety of device-code instructions for arithmetic
operations, thread synchronization and intra-thread-block communication, as well as the
standard memory-transfer and device-synchronization host-code procedures.

1.3.2 The NVIDIA Tesla P100

The Tesla P100 [NVI16] is, for non-selected entities, NVIDIA’s latest available professional
flagship GPGPU, designed for high performance computing (HPC) acceleration. It is based
on the Pascal architecture and features 56 SM, each containing 32 64 bit and 64 32 bit CUDA
cores, 2 x 32768 32 bit registers, and two warp schedulers. Additionally, each SM contains
64 kB of shared memory and a separated L1 cache. One SM is capable of executing four
warp-instructions per clock cycle, two for each scheduler, can have up to 64 resident warps,
and execute up to two of them in parallel. The SMs share a 4096 kB L2 cache, connected,
via eight memory controllers, to the 16 GiB of HBM2 DRAM main memory, divided into
four stacks, leading to a theoretical peak bandwidth of 180 GB/s per stack.

28

2 Sparse Grids

As computers are, inherently and due to practical limitations, constrained to computations
on a finite set of numbers, discretization of the problem space is a fundamental part of
all algorithms and methods dealing with (our approximation of) physical reality or other
continuous data. In computational science, the choice of the discretization scheme to
be used for this task is generally restricted by three pragmatic reasons: We want the
scheme, i.e. transformation of the problem into a discrete and thus approximated form,
to be easily applicable, the error of this approximation to be small, and the transformed
problem to be computable in an adequate amount of time. The straightforward choice is
thus a grid-based approach. However, most of said approaches fall victim to the so-called
curse of dimensionality, a phrase originating from Bellman [Bel61] nowadays often used
to describe the exponential increase of grid points n = O(N?) relative to the dimension
d of the grid. This exponential relation renders them, due to memory and computational
limitations, effectively unusable for moderate- and higher-dimensional problems, such as
data mining, regression, and various other scenarios extensively discussed by Bungartz and
Griebel [BG04], Buse [Bus15], Heinecke [Heil4], and Pfliiger [Pfl10]. Spars grids are the
result of a cost to benefit optimization designed to reduce the number of grid points while
keeping the error introduced by these changes small [BG04], and a viable, well-established
solution to mitigate this problem.

This chapter aims to introduce the general aspects of sparse grids used throughout this thesis.
We will, in the given order, look at the definition of sparse grids and their composition from
regular grids, the hierarchical hat basis functions, spatially adaptive sparse grids, and finally
conclude with an overview of regression on sparse grids.

A more thorough and in-depth discussion of sparse grids, their origin, derivation, and use,
can again be found in the literature by Bungartz and Griebel [BG04], Bungartz, Pfliiger,
and Zimmer [BPZ08], Buse [Bus15], Heinecke [Heil4], and Pfliiger [Pfl10].

2.1 Sparse Grid Composition

Throughout this thesis, we follow the common restrictions to functions of type f : 2 — R
with the d-dimensional hypercube Q2 = [0, 1]¢ as domain and boundary f|5q = 0. Note that
the limitation of the domain to (2 is not a loss generality: Functions f* : R? — R can be
normalized to fit, at least with the relevant part of their feature space, in €.

29

2 Sparse Grids

(0,1) (0,1)

(0,0) (1,0) (0,0) (1,0)

(0,0,1) (0,0,1)

.
L)
Lo it

. (X .
)
0cos@ o0 0
. .

°
®
o °° .
® 90 o oo
° .
L4
“
3
g,
'
L4
™

® o°0 O
°

o ®
'os
3
a

R o\fe
e g
So
X

°
N

5 : ol 9L .
BT KR > r" f.:"-’. c
. 3 23 Bee080an,5
) 3 Y] 3 B.ed *3
L . R LY
L — - ‘ 3 2% 5"
1 (1,0,0) ‘ o -
(0,1,0) ‘ J

(1,1,0) (1,1,0)

0,1,0) L

Figure 2.1: Regular sparse grids in two (top) and three dimensions (bottom), with a depth
of n = 4 on the left and a depth of n = 6 on the right. Note the projections of
the points (gray) to the xy-, xz-, and yz-planes in the three-dimensional figures
forming the respective two-dimensional grid.

A sparse grid on the hypercube (2 can be reached via a special hierarchical decomposition
of a regular grid in this domain. To this extent we define the index set

= {i = (i1,iz, .. ia) | 0 < ig < 2", ij. odd} (2.1)
with 1 € N? as level-vector. Using this set we can define regular grids,
Q= {x=i-m=i2"]ien}, 2.2)
the so-called subgrids, and using these create a composition of the full regular grid
Q) = | = {x15 € U |] < n} (2.3)
Moo <n

with spacing h = 27". Note that by using odd index values, there are no duplicate points
on all combined subgrids. Similarly, we can now define sparse grids as

ol = Ju ={xue |l <d+n-1}, (2.4)
11 <d+n—1

30

2.2 Hierarchical Basis Functions

=1 1 =2 1 =3
°
e O o
lo=1 [] ° ° o o o o ° (1)
XY XXX Q
° 3
e O o
°
° ° L] e o o o
lg =2
o ° L] e o o o
ece@co
by pt Iy o0 o0o@o 0o
ec@co (OO)
° ° L AU AN J
=3 1 Tereter iy
° L4 L4 ce0o0@eo 0o
° ° ° ececoe

Figure 2.2: Tableau of two-dimensional subgrids for ngo) and le), the difference being
indicated by the line separating them (left). The composition of the grids (right)
is highlighted by opacity and size of the grid points.

see Figure 2.1 for an illustration. The choice of subgrids is based on the contribution of
the function space spanned by the associated hierarchical basis functions, the so-called
subspace, to the interpolant versus their cost, i.e. the number of points on the subgrid, and
is elaborated in more detail by Bungartz and Griebel [BG04]. An example decomposition
of sparse grids and regular grids into their subgrids can be seen in Figure 2.2.

2.2 Hierarchical Basis Functions

As elaborated previously, sparse grids are a hierarchical arrangement of isotropic and
anisotropic regular subgrids. Therefore, they need to be combined with a set of hierarchical
basis functions, such as the piecewise linear, piecewise polynomial, Mexican hat, or B-spline
basis. In the context of this thesis, we limit ourselves to the use of the hierarchical piecewise
multilinear basis functions, commonly referred to the hierarchical hat basis functions. For a
detailed overview of these and various other functions see Pfliiger [Pfl10].

The d-dimensional hierarchical hat basis is a composition of the standard one-dimensional
hat function

¢ () = max (1 — |z],0). (2.5)

To complement the previously defined hypercube © = [0, 1]¢, we expand this function, using
dilation and translation, to a set of functions spanning the interval [0, 1] defined as

o1 () = (2l9€ — Z) , (2.6)

with level [€ N and index 7 € N. To extend the above to d dimensions, we use a tensor-
product-based approach, resulting in

d
o1 (%) = [eupir (@r) - 2.7
k=1

31

2 Sparse Grids

We again limit the index vectors to i € I} (see Equation (2.1)). This limitation creates,
for a fixed level 1, a set of non-overlapping multi-dimensional basis functions, which is an
important aspect referenced later on in this thesis, and the key difference to the similarly
defined nodal basis. For a subgrid (2; we can now obtain the corresponding subspace of basis
functions, also called the hierarchical increments,

W) ==span {¢1; (x) | i€ L} (2.8)
=span W, (2.9)
illustrated in Figure 2.3. The discrete approximation space V> for the full grid and A

for the sparse grid are the direct sum of subspaces, again selected by the corresponding
norms and limits:

V) — B, (2.10)
Moo <n

v~ D . 2.11)
11 <n+d—1

With this, we can now write a sparse grid function u € v,V as

u(x) = Z Z o111 (%) (2.12)

1] <n+d—1i€l,

N

= aipi (x) (2.13)
1=0

= (bx,), (2.14)

where N denotes the number of grid points, « the vector of sparse grid function coefficients,
also referred to as surpluses, and by the vector

ba = (120 (%) 01 (%) 1. oy ()T (2.15)

An exemplary interpolation on sparse grids with the resulting sparse grid function and its
surpluses can be found in Figure 2.4.

Having presented the basics of sparse grids we can now give a short overview of their benefit,
which can be found in Table 2.1.

Grid Type Number of Points Error of Interpolant
Regular Grid O (Qd'”) O (h2)
Sparse Grid O (2" : ndfl) @) (hi : ndfl)

Table 2.1: Benefits of sparse grids: In relation to the corresponding regular grids the
number of points is considerably lower, a factor improving relative to increasing
dimension, while the error is only slightly worse. Note that h,, = 2~". The error
terms are given with respect to both L?- and maximum-norm [BG04].

32

2.2 Hierarchical Basis Functions

W) , W(s,3)

Figure 2.3: Two dimensional hlerarchlcal hat basis functlons grouped by the corresponding
subspaces, for V3(. The difference between V3) and V3% is indicated by the
dashed line between subspaces. Note the corresponding one-dimensional basis
functions plotted on their respective planes.

3~
u(z) u(z) =Y aipi(z) Do Pl
//
f(x) /// N
/ \
/ \
/ \

’ \
h=2"3 // \\
1 y \
ot o i g /3

0.25 0.5 0.75 1 0.25 0.5 0.75 1 0.25 0.5 0.75 1

Figure 2.4: One-dimensional interpolation u(z) (blue) of f(x) (black) by use of the piece-
wise linear (nodal) hat basis functions (center, green) and the hierarchical hat
basis functions (right, green). The partial sums of the hierarchical basis func-
tions are indicated by the dashed lines.

33

2 Sparse Grids

2.3 Spatially Adaptive Sparse Grids

While regular sparse grids reduce memory and computational requirements over normal
regular grids drastically, up to the point of being suitable for higher-dimensional problems,
they too do not consider the structure of the underlying dataset. This leads to either a
potential spending of many points in areas where only few are needed (to retain accuracy
where a higher number of points is needed) or a loss of accuracy when not enough points
are spent in a certain area (to reduce computational cost of the overall grid). Adaptive
sparse grids allow us to selectively choose the areas, both spatial and dimensional, in which
we want to use more and the areas in which we want to use less points. In the following
chapters we will focus on spatially adaptive sparse grids exclusively, for dimensionally
adaptive sparse grids see Buse [Bus15].

We define spatially adaptive sparse grids analogous to regular sparse grids (see Sections 2.1
and 2.2), with the exception that we base everything on the index sets

I = {i € Iy | P(l,i) is true} (2.16)

with predicate P, instead of the sets [;. In the following we will refer to the components of
spatially adaptive sparse grids, e.g. their subspaces and subgrids, that have been redefined
by use of I; with a tilde. The definition of spatially adaptive sparse grids is not complete yet,
as they have to obey certain restrictions, thus P may not be chosen arbitrarily. To express
these restrictions, we begin by defining the relation I’ is parent of 1 as I’ < 1 holds, expand
this relation to subgrids and subspaces by comparing their respective level, and define the
relation is direct parent of as a stricter version thereof, where additionally |1, — |V'|; = 1.
Furthermore, let

A

Wi = {Wl’,i’ (x)

V<1 i €Iy, pyy(x) #0} (2.17)

be the set of all non-zero basis functions of the full hierarchical basis for each parent level
1’ of 1. Analogous to their previous definitions we now expand the relation is parent of to

points by support of the basis functions on parent subspaces, i.e. xy y is parent of x; iff

(1)

oy y(x) € Wl,i- For a spatially adaptive sparse grid 04 we then require

X)i € QS) = Wl,i - UWl (2.18)
1)1 <d+n—1

= Vory(x) € Wl,i i e fy (2.19)

= Yoy y(x) € Wi i xpy € O (2.20)

i.e. we require that, if a point z;; is present in a (spatially adaptive) sparse grid, parent
points have to be present in that grid as well (Equation (2.20)). Equivalently all basis
functions, that can potentially contribute to this point, of all parent subspaces have to be
present in the grid (Equations (2.18) and (2.19)) Remember that the sets W, and QS) are
based on the filtered index set I; instead of I;, and thus modified for adaptive grids, but
otherwise identical to the sets W or Q) of non-adaptive grids respectively. Note that for

34

2.4 Regression on Sparse Grids

e
(] [] L] L] L] °
(] [] (] ° ® o 0 o (] ® o 0 o o o o °
°
* g
H
° ° ° o o o o o9 ©
. 'l°§'

Figure 2.5: Two-dimensional spatially adaptive sparse grid (right) created from the regular
grid ngo) (left). The illustrated refinement process (left to right) expands a
single point (red) and adds all its children, as well as its parents if they have
not been part of the grid before (yellow).

the hierarchical hat basis functions there can at most be one direct parent for a point per
dimension, as there is only one supporting basis function for a point per subspace.

The predicate P is usually constructed by refinement in consideration of the underlying
dataset, meaning one or more promising grid points are chosen and some (or all) children
of this point are added to the grid, as well as, to uphold the characteristics noted above, all
parents of the added points if they are not already present. An example of a two-dimensional
spatially adaptive sparse grid and the construction thereof can be found in Figure 2.5. For
further details, such as the choice of grid points to refine, we refer to Pfliiger [Pfl10].

2.4 Regression on Sparse Grids

The general idea of regression is to create a reconstruction u of an unknown multivariate
function f, based on a set of M potentially noisy samples thereof, the so-called training
data set

T = {(Xm,ym) | @ x R}M_ | (2.21)

again with hypercube Q = [0, 1]% and restriction to f : Q — R !. Note that we can thus also
use regression as a form of binary classification: We can interpret regression as learning the
threshold u (x) = 0 between two classes, denoted by the values —1 and 1, where |u (x,,)]
indicates the certainty with which x,, belongs to class sign (u (x,,)). This approach can
even be adapted for non-binary classification problems [Pfl10].

IFor the definition of regression on sparse grids, we actually do not have to impose this limitation and could
choose f : RY — R. However, as we have restricted ourselves to sparse grids with |5; = 0, samples outside
of the defined hypercube would not make much sense. Furthermore, we hereafter assume that all sample
points x € [0, 1]%.

35

2 Sparse Grids

To reconstruct the function u from the samples of f, so that
w: QW SR, f:Q—=R, and u=f, (2.22)

we employ the commonly used least squares approach in combination with a Tikhonov
regularization

M
u = arg min (1 Z (Yym — u (Xm))2 +)\C(u)> , (2.23)
ue\/,gl) M m=1

with A controlling the trade-off between the mean square error (MSE) and the smoothness
ensured by the weight-decay regularization functional C(u) [Pfl10]. For said functional we
use the easy to calculate

Clu) = |al3, (2.24)

which exploits the intrinsic smoothness of the hierarchical basis functions and thus usually
leads to similar results compared to the norm of the gradient of f, as mentioned and
discussed by Pfliiger [Pfl10].

The solution of Equation (2.23) in combination with (2.24) can be obtained by setting the
gradient of the inner term to zero, and given by the linear system of equations

1 1
— BBT+)1 = —B 2.25
(BB+) o = —By. (2.25)

where y is a vector of size M containing the potentially noisy evaluations of f, 1 the identity
matrix, and B the matrix

B = (byy bxss - by) (2.26)
1(x1) p1(x2) - o1(xnm)

| eex) e (x2) - w2 (xum) 2.27)
on (x1) ¢n(x2) - o~ (xm)

containing the evaluations of the basis functions ; at the sample points x,,, [Pfl10]. The
solution of this system of linear equations (SLE), in turn, can be computed by applying a
solver, such as the conjugate gradient (CG) algorithm [HS52; She94], which we will use
throughout this thesis.

Looking at the computational cost of the process described above, we can see that the solver
itself is quite cheap in comparison to the two matrix multiplications

v =BT« (2.28)
v/ := Bv (2.29)

it has to calculate each iteration [PHP16]. As Equation (2.28) is nothing more than an evalu-
ation of u (x,,) for the points {x,, | 1 < m < M} in a single operation (see Equations (2.14)

36

2.4 Regression on Sparse Grids

and (2.26)), we also refer to it as multi-evaluation and to Equation (2.29) as transposed
multi-evaluation. The multiplication with matrix B and contents thereof imply an evalu-
ation of all basis functions ¢; at all points of evaluation x,,, leading to an approach with
cost O (N - M). However, with regards to the hierarchical hat basis functions introduced
in Section 2.2, this approach seems, at least in theory, to be naive, as there can only be
one non-zero evaluation ¢ ; (x,,) for all indices i for a given point x,,, and subspace ;.
The objective of this thesis is to develop algorithms for multi-evaluation and transposed
multi-evaluation that perform not only in theory, but also in practice on the GPU, better (on
regular and adaptive sparse grids) than the, at the time of writing, primarily used O (N - M)
solution.

37

3 Fast Regression Algorithms for Sparse
Grids

With the mathematical foundation of regression on sparse grids introduced in the last section
of the previous chapter, we can now look at some existing algorithms thereof. We will begin
this chapter by outlining a few common properties and restrictions that influence their
composition. The main sections then discusses a simple recursive strategy, followed by the
commonly used streaming algorithm, expressing a straightforward approach to compute
the operators BT« and Bv, and finally the subspace-linear algorithm presented by Pfander,
Heinecke, and Pfliiger [PHP16], employing an, at least in theory, more favorable strategy.

Based on Equations (2.23) and (2.24) and the resulting system of linear equations (SLE)
(2.25), we exclusively focus on the multi-evaluation BTa and the transposed multi-
evaluation Bv, as they pose the biggest potential for problem-specific optimization. Note
that the choice of C(u) = |c|3 simplifies a potential third non-trivial operator to the identity
matrix. A property exploitable by all algorithms below is the fact that the individual sparse
grid function evaluations performed by BT« are completely independent from each other
and thus simple to parallelize. For Bv, the results are accumulated per basis function which
would suggest a parallelization over the grid points instead. Due to the size of the matrix B,
it is not feasible to explicitly assemble it. While we could reduce this size from N x M, N
being the number of grid points, M being the number of data points to evaluate, to N x N
by combining B and BT to BBT, as we generally consider N to be significantly smaller
than M, a storage requirement of O (N?) would still be impractical for at least larger grids.
Furthermore, as B consists of basis function evaluations of all basis functions on all data
points and the hat basis function has only one non-zero evaluation per point per subspace,
there would be a considerable amount of unnecessary function evaluations by its explicit
creation. Note that B, nevertheless, is not a sparse matrix, especially when we employ
adaptive sparse grids, which aim to reduce the amount of unimportant, i.e. zero or close-
to-zero, evaluations in comparison to a full sparse grid. Fortunately, these evaluations are
comparatively cheap, with a cost of O(d), and thus can be computed on the fly, which also
gives us an opportunity to select which basis functions to evaluate for which data points.

3.1 A Recursive Approach

A simple algorithm for the operator BT would be a recursive descent through the tree
of subspaces and dimensions for each data point z,,. By evaluating the dimensions subse-
quently, we can exploit the tensor product composition of our basis functions, as we only

39

3 Fast Regression Algorithms for Sparse Grids

h=1 i1 =2 L =3
la=1
lo =2
la =3

Figure 3.1: The recursive evaluation algorithm for a single data point (cross). Solid arrows
indicate the paths taken, leading to the grid point and basis function which
supports the data point, indicated by their highlighted domain. We begin by
the recursive descent at the root (1 = (1, 1)) in the last dimension (d = 2).
Note that, in this example, we can cache the one-dimensional results for d = 2.
Compare Figure 2.3 for the respective basis functions. [HP13]

have to calculate the one-dimensional evaluation «y,, ;, ¢, i, (€m,) once for dimension d and
can then multiply this result with the result of the corresponding subtree, i.e. the sum of
the components in the remaining d — 1 dimensions (see Figure 3.1) [HP13]. Note that for a
descent in a fixed dimension, the resulting tree of basis functions is binary and thus the
direction of traversal is easy to calculate.

To compute the operator Bv, we can adapt the algorithm described above. We still employ
the same traversal scheme, however, we now sum up the partial results v, o1 (x,,,) for each
basis function individually instead of calculating a weighted sum per data point [HP13].

While both algorithms are optimal in terms of multi-dimensional basis function evaluations,
we only evaluate one multi-dimensional basis function per subspace per point and even cache
some of the one-dimensional evaluations for BT« they pose implementational challenges.
Parallelization can be done straightforward over the data points, however the operator Bv
would then require synchronized access to sum up the partial results. Additionally, the
recursive structure of these algorithms render them difficult to be competitively implement
on the GPU!, and their need for a multi-dimensional access scheme of the grid points further
complicates matters.

!While CUDA supports recursive function calls, the size of the call stacks is considerably more limited than on
central processing units (CPUs). Furthermore, the call stacks are, due to their size, most likely allocated in
local (or possibly shared) memory, which would lead to a significant impact on performance over a primarily
register using non-recursive implementation.

40

3.2 The Streaming Algorithm

Algorithm 3.1 Streaming algorithm for the multi-evaluation BTax.

Function BAsiSEVAL is
Input :Level vector 1, index vector i, d-dimensional data point x,,

Output:s = ¢1; (Xm)

s+ 1

for k < 1toddo

L s 5 @i (Tm,) = s - Max(1 — |2 - 2, — x|, 0)
L return s

Procedure MULTIEVALSTREAMING iS
Input :Sparse grid (2, data set 7', surpluses «

Output:v = BT
parallel forall x,, € T'do
U < 0
forall (1,i) € 2 do
L U 4= Uy + 5 - BASISEVAL(L, i, x,,,)

Algorithm 3.2 Streaming algorithm for the transposed multi-evaluation Bv.

Procedure MULTIEVALSTREAMINGTRANSPOSED iS
Input :Sparse grid (2, data set 7', vector v

Output:v/ = Bv
parallel forall (1,i,k) € Q do
v, 0
forall x,, € T do
L V), <= U}, + Uy, - BASISEVAL(, i, X;,)

3.2 The Streaming Algorithm

In contrast to the recursive algorithm described in the previous section, the so-called
streaming algorithm is an iterative algorithm and tries to exploit the properties of modern
hardware. Due to this, it ignores most aspects of the basis functions. The unoptimized
algorithm for the operator BT« can be expressed as a loop over all grid points, evaluating
the corresponding basis function at each point individually. Again, the data points x,, are
evaluated in parallel, see Algorithm 3.1. Bv can be evaluated largely identical to BT,
however for it we parallelize over the grid points to avoid the need for potentially costly
synchronization, as the results are accumulated per grid point (see Algorithm 3.2).

The obvious drawback of the streaming algorithm is, that it essentially computes the full
matrix multiplication, meaning that it evaluates every basis function at every data point,
inevitably leading to a lot of zero-evaluations. Furthermore, the algorithm for Bv parallelizes
over the grid points. Generally, we consider the number of data points to be large enough to

41

3 Fast Regression Algorithms for Sparse Grids

saturate the need for parallelism on concurrent GPUs, however, we also expect the number of
grid points to be noticeably smaller. This may lead to problems exploiting the full potential
provided by the hardware, see Heinecke and Pfliiger [HP13] for details.

Regardless of its problems, this algorithm still performs notably well in practice. An important
aspect for this is the fact that all parallel threads process the same grid points in sequence
(thus the name streaming), which leads to a very cache-friendly behavior. As a result, this
algorithm does not depend as much on memory latency and bandwidth as the recursive
algorithm described in the previous section, effectively accessing the memory in a random
fashion. Additionally, a wide variety of standard hardware-based optimizations can be
easily implemented, such as for example, pre-fetching of data into caches or registers and
loop unrolling. The combination of structure and optimizations possible has, in the past,
been proven to make up for the many unnecessary evaluations it computes in terms of
performance and has led to it being the commonly used algorithm for regression on sparse
grids [Heil4; HP13]. A key aspect in these ascertainments is the fact that the overhead
created by those unnecessary evaluations is expectably lower on spatially adaptive sparse
grids, as these grids, in general, only contain comparatively few points per subgrid.

3.3 The Subspace-Linear Algorithm

Following the idea of the recursive approach, the so-called subspace-linear algorithm,
introduced by Pfander, Heinecke, and Pfliiger [PHP16], aims to avoid unnecessary zero-
evaluations, while in contrast to it being iterative. The general idea of the subspace-linear
algorithm is to linearize the tree of subspaces and iterate through the resulting list, evaluating
one multi-dimensional basis function per subspace per data point. We again parallelize over
the data points, this time however for both BTax and Bv.

For each subspace, we store its level-vector 1 and the corresponding set of surpluses «;.
When we process a subspace for a given data point x,,, we can calculate the index of the
closest grid point, and thus the supporting basis function, by using the relation x;; = i- 2!
(see Equation (2.2)) in combination with this data point and rounding the result to the
nearest odd:

i = [2m, - 2] (3.1)

odd

Having calculated the index vector we can now use it to evaluate the corresponding basis
functions and retrieve the respective surplus from the set of surpluses associated with this
subspace. Let us, for a moment, assume that we are dealing with full (potentially anisotropic)
regular subgrids, and thus regular sparse grids.. The maximum number of index-values for
a subgrid with level 1 in dimension & can then be given by 2/*~! which is directly related
to this subgrid. Thus we can effectively linearize the index vector i, allowing us to store
the surpluses of a subspace in a single one-dimensional array (see Algorithm 3.3) [PHP16].
For spatially adaptive sparse grids, however, the subgrids do not have to be regular. To
overcome this obstacle, we could, for the vector of surpluses, treat the grid as if it were
regular and insert a value of zero as replacement for each missing surplus. A better choice

42

3.3 The Subspace-Linear Algorithm

Algorithm 3.3 Common functions for subspace-linear multi-evaluation.

Function INDEXVECTOR is
Input :Level vector 1, d-dimensional data point x,,

Output : Index vector i

for k + 1toddo
L ix <+ ROUNDTONEXTODD (7, - 2*)

L return i
Function LINEARINDEX is
Input :Level vector 1 and index vector i, both d-dimensional
Output :Linearized index i
i+ 0
for k < 1to ddo
| i 2Tl [y 27
return ¢

for further optimization is the replacement of the missing surpluses with the IEEE 754
special Not-A-Number (NaN) value, due to which we can then differentiate between existing
and non-existing grid points. This, of course, requires a check for NaN valued surpluses.

For both operators, BT« and Bv, adaption of the process described above is straightforward.
For BT we again accumulate the result per data point, for Bv we use the (zero-initialized)
surplus arrays to accumulate the partial results of the corresponding basis function, which
we afterwards need to gather to create the resulting vector v'.

A, for adaptive sparse grids, important algorithmic improvement to this algorithm is subspace
skipping. From our sparse grid consistency definitions in Section 2.3 (Equations (2.18)
to (2.20)) follows that, if a point has support on a grid point x; ;, it has to have support on
all parent subspaces with level I’ < 1. In theory, we can now use this property to skip all
subspaces with level I’ > 1 once we encounter the first surplus value of NaN on level 1 for the
data point we are currently processing. Keeping track of all subspaces to skip is in practice
however not easily possible. To this end, Pfander, Heinecke, and Pfliiger [PHP16] propose
to sort the list of subspaces we employ lexicographically by their respective level vector, and
then only skip the subsequent child-subspaces in this list by use of a pre-calculated index
(per subspace), leading to Algorithms 3.4 and 3.5. Compare Figure 3.1 for the similarity
between the list of sorted subspaces and the recursive approach.

Pfander, Heinecke, and Pfliiger [PHP16] also describe another improvement to this algorithm.
Similar to the recursive algorithm described in Section 3.1, we can cache intermediate
results, this time not only the one-dimensional basis function evaluations, but also the
index components. As our subspaces are sorted lexicographically according to their level
vector, we expect that most of the time only few components of the level vector change
from one subspace to the next in the list. Due to the index-component and basis function
evaluation for a fixed dimension d on a given subspace together only depending on the
level component of that dimension, we can re-use all one-dimensional intermediate results,

43

3 Fast Regression Algorithms for Sparse Grids

Algorithm 3.4 Subspace-Linear algorithm for the multi-evaluation BTcx.

Procedure MULTIEVALSUBSPACELINEAR is

Input

ScaTTER(ar) — S
parallel forall x,, € T"do

U < 0
k<+1
while £ < |S| do
(1, Qy, l%) = LoaD(S, k)
i + INDEXVEcCTOR(], x,,)
s < LoaD (o, LINEARINDEX(1, 1))
if -IsNaAN(s) then
Um < Um + S - BASISEVAL(L, i, x;,,)
L k+—k+1

else
t k<« k

Algorithm 3.5 Subspace-Linear algorithm for the transposed multi-evaluation Bv.

Procedure MULTIEVALSUBSPACELINEARTRANSPOSED is
: Sparse grid 2 with list of subspaces S, data set 7', vector v

Output:v' = Bv

ScatTeERrR((0,0,...,0)T) —» S
parallel forall x,, € T'do

Input

v/ < GATHER(S)

k+1
while £ < |S| do
(1, ay, k) — LoaDn(S, k)
i «+ INDEXVECTOR(], x;,)
s < REFERENCE (o, LINEARINDEX (], i))
if -IsNAN(LoaD(s)) then
ATOoMICADD (s, v, - BASISEVAL(L, i, x,,,))
L k+—k+1

else
t k+— k

44

: Sparse grid 2 with list of subspaces S, data set 7', surpluses a
Output:v = BT

// Initialize existing surpluses to zero

// Collect result from surpluses

3.3 The Subspace-Linear Algorithm

i.e. the index-components and basis function evaluation, for dimensions in which the level-
vector components kept unchanged. Thus we can effectively apply caching for those.

While this algorithm, in comparison to the streaming algorithm, again uses a theoretically
more favorable approach by not brute-force style evaluating all basis functions, it also
introduces some overhead. We need to create the arrays for the surpluses, sort the subspaces,
and for each data point and subspace calculate the index of the surplus. Note that all of
these additional costs, however, do not impact the asymptotic run time class of the algorithm
in a negative way. Both, the multi-dimensional basis function evaluations and the index-
vectors can be calculated in O(d) each, creating the surplus arrays can be done in O(N),
and the subspaces can be sorted in O(S'log S), with N as the number of grid points, S as the
number of surpluses and d as the number of dimensions. We generally expect the number
of subspaces S to be notably smaller than the number of grid points N. A more serious
problem for concurrent architectures is the inevitable largely randomized memory access
and the synchronized access to the surpluses required for the operator Bv. Furthermore,
the algorithm, as described here, potentially requires a lot of memory as it stores every
subgrid as a full grid. For highly adaptive scenarios, this can lead to a significant increase
of memory required. To resolve this problem, Pfander, Heinecke, and Pfliiger [PHP16]
propose to compress largely unused subspaces. We aim to address this and other problems
later on in this thesis.

Nevertheless Pfander, Heinecke, and Pfliiger [PHP16] have shown that, at least on CPUs
and with hardware-based optimizations, this algorithm is able to out-perform the streaming
algorithm on all scenarios tested.

45

4 Fast Regression Algorithms on the GPU

In this chapter, we discuss our implementation of the subspace-linear algorithm on the GPU,
and explore the combination of subspace-linear and streaming algorithms to reduce the
overhead introduced per data point evaluation for the subspace-linear algorithm, as well as
lessen its, on the maximum level of the grid depending, memory requirement.

4.1 Subspace-Linear Regression on GPUs

To our knowledge, the subspace-linear algorithm presented in Section 3.3 has not yet been
implemented and tested on the GPU. We have already seen that the algorithm is highly
parallel, as we parallelize over all data points, and thus acceleration using GPUs is the next
step in achieving better performance. While the implementation of an unoptimized version
is pretty straight-forward, there are a few choices to consider regarding optimization for
these specific devices.

Starting with the algorithm employing subspace-skipping, as presented in Algorithms 3.4
and 3.5, we can see that index i of a grid point x; ; is only required to compute the index of
the corresponding surplus and the basis function evaluation. Both of these computations
can be implemented by a step-wise iteration over all dimensions, and for a single dimension
require only the index component of that dimension. By moving the computation of the basis
function evaluation out of the if-clause and interleaving it with the surplus-index calculation,
we can effectively save registers. To explicitly store the index, we would have required
one register per dimension, which can be costly considering higher-dimensional problems.
The if-clause now only contains the multiplication with the respective coefficient and the
summation of the result. Furthermore, this introduces more instruction-level parallelism, as
the basis function evaluation is independent from the surplus-index calculation. A downside
of this step is, that we now compute the basis function regardless of the existence of a
grid point. Note, however, that we still only evaluate a maximum of one basis function
per subspace and that, due to the lockstep execution of warps, we would experience a
similar run time of the original algorithm even if only one thread of the warp would have to
evaluate a basis function.

To further increase instruction-level parallelism, we do not only process one data point per
thread, but multiple, i.e. a block of data points. This also allows us to reduce the memory-
pressure if we process the subspaces coherently with respect to the block, meaning that the
complete block executes computations for the same subspace and thus we only have to load
the level-vector 1 of that subspace once per block instead of once per data point. A subspace

47

4 Fast Regression Algorithms on the GPU

is now skipped only when all data points of the block have no support on that subspace,
leading again to the drawback of more potentially unnecessary computations, which we in
this case, however, can control via the size of the blocks. We can reduce memory-pressure
and latency even more by pre-fetching the data point itself into registers.

We, at first, implemented the surplus scatter and gather steps on the CPU together with
the rest of the preparation, but, as one drawback of the subspace-linear algorithm is the
excessive memory requirement for large subspaces, the cost of memory transfer posed to be
too high to do so. To counteract this, we decided to transfer only non-NaN surplus values in
combination with their respective index and initialize, unpack and pack the surplus arrays
on the GPU using separate kernels. For adaptive sparse grids, this effectively reduces the
data to be transferred, for full subspaces, it is doubled. As we employ spatially adaptive
sparse grids to reduce grid points, it is implicit that larger subspaces contain, in general,
only a small subset of their potential grid points and thus this, expectedly and in practice,
does not pose an issue.

For the actual implementation, we used the features provided by the SG++ library into which
we also integrated our algorithm. The preparation steps, namely creating and sorting the
list of subspaces as well as preparation for the surplus arrays, is done entirely on the CPU.
To initialize the surpluses we employ three different kernels, two in succession for each
algorithm. The first kernel initializes all surplus arrays to NaN, while the second kernel,
depending on the algorithm, initializes the surpluses specified by the given indices either to
the specified values, in case of BT, or zero, in case of Bv. Using CUDA streams, the analog
to OpenCL command queues, we can schedule the initialization kernels to run parallel
to memory transfers required for the dataset and subspace list. Note that in case of the
operator Bv, a write-back of the surpluses is required and can be done in the same kernel
as used for the operator, as, in this case, no kernel-execution to memory-transfer parallelism
can be exploited.

While both operators are fairly similar to implement, the parallelization of Bv over the data
points requires synchronized access for the summation of the result. Beginning with devices
of compute capability 6.0, and thus the Pascal architecture, NVIDIA introduced true atomic
64 bit floating point (FP64) addition, a feature which has existed on previous generations
for 32 bit floating point (FP32) values only and has also been restructured on the newer
architecture to achieve a better performance. We use these instructions when provided by
the architecture and fall back to the slower, well-known, compare-and-swap simulation of
these instructions when not.

To mitigate the fact that CUDA does not support device-code compilation at run-time, we
made heavy use of C++ templates. Dimensionality and block-size are specified by template-
parameters, allowing loop-unrolling via a simple, recursive expanding template! accepting
a lambda-function. Small in-place lambda functions are generally inlined by the compiler,
even more so by NVIDIA’s nvcc CUDA compiler, as it generally inlines almost any function
due to the GPU architecture. We did not encounter any issues with this solution except for

IRecursive due to our limitation to the C++11 standard. With C++14, or alternatively a custom implementation
of template-index-sets, we could reduce some pressure on the compiler by employing an iterative solution.

48

4.2 Subspace-Optimal Regression on GPUs

the obvious drawback of the required explicit template instantiation for each combination of
dimensionality and block-size, leading to an increased compile-time for this specific source
file and a slightly larger shared-object size.

4.2 Subspace-Optimal Regression on GPUs

There are two major drawbacks to the subspace-linear algorithm: its overhead for the
index calculation and its significant memory requirement for large subspaces, the latter
sometimes even prohibiting execution on the GPU due to lack of on-device memory. On
spatially adaptive sparse grids, these large subspaces, in general, contain only a fraction
of their potential basis functions, thus most of the memory serves no other purpose than
allowing for easy indexing of the corresponding surpluses. Additionally, as the streaming
algorithm evaluates all, actually existing, basis functions for a single data point, the number
of unnecessary evaluations is effectively low for a subspace if it does not contain many basis
functions. Consideration of the overhead the subspace-linear algorithm has per evaluation,
and thus per subspace as there is only one evaluation per subspace, suggests the division of
the workload between the subspace-linear algorithm, processing densely used subspaces,
and the streaming algorithm, processing sparse subspaces.

As the algorithm itself, omitting the streaming and subspace-linear algorithms employed by
it, is intrinsically simple, the only real degree of freedom from a design perspective is the
division of the set of subspaces into the two subsets to be processed independently by the
streaming and subspace-linear algorithms.

To find such a selector, selecting which subspace to process with which algorithm, let us
begin by estimating the cost of evaluation for one such subspace S. For simplicity, we, for
now, only look at the core of the algorithms and ignore other aspects, such as preparation
steps, memory transfer and initialization. With this we can express the approximate costs

CE" = Cip + Cio! 4.1)
C§" = 15| Cava (4.2)
where

S is the subspace to be evaluated,
|S| is the number of basis functions, i.e. grid points, in S,
Clin s the cost of subspace S when using the subspace-linear algorithm,
Cg“)al is the cost of a single basis-function evaluation with summation of
the result when using the subspace-linear algorithm,
Clin s the cost of the overhead per subspace, e.g. loading of the skip-
pointer and similar, when using the subspace-linear algorithm.
Cg" is the cost of subspace S when using the streaming algorithm, and
s, is the cost of a single basis-function evaluation with summation of
the result when using the streaming algorithm.

49

4 Fast Regression Algorithms on the GPU

Note that CIn | Clin and CS depend on the cost of memory load operations which we,

without further knowledge, cannot quantify, but we generally expect C}j@ﬂ > CS%) to hold,
due to the streaming algorithm having coherent memory access across all threads. The only
dependence of Equations (4.1) and (4.2) on the subspace S is, in theory, by its size and
thus we can try to find a value |S| = p so that Ci? = C§, ultimately allowing us to decide
which algorithm to choose for the subspace by a simple comparison of its size with this
threshold value. We could now further break down the individual costs by counting the
respective operations and create a detailed model, however, this would only introduce more
unknowns depending on both, the architecture of the GPU and the scenario (dataset, grid,
etc.) used, that we cannot specify with certainty. A more practical method to deduce the

threshold value p is to use basic parameter tuning.

The use of a simple grid point-based threshold p does not solve the problem of large,
mostly unused subspaces. To this end, we propose the use of a secondary threshold u
based on the utilization of the subspaces, i.e. the number of actually used grid points |S| in
relation to the maximum size of this subspace |5|. This allows us to process large but sparse
subspaces using the streaming algorithm, while still processing large dense subspaces with
the subspace-linear algorithm. We again suggest parameter tuning to derive the optimal
value for u.

Combined, both thresholds yield the selector

streaming if S| <por 5l <y

151 (4.3)

algp,u(s) = {

subspace-linear otherwise

where

S is the subspace to be evaluated,

|S| is the number of basis functions, i.e. grid points, in .S,

|S| is the maximum number of grid points that could potentially be in S,
p is the grid-point threshold, and
u is the utilization threshold.

50

5 Evaluation of Regression algorithms on
the GPU

In this chapter, we present the evaluations of our, in the previous chapter discussed, im-
plementations for the subspace-linear and subspace-adaptive algorithm. To this end, we
begin by describing our evaluation process. We present the hardware as well as the data
sets and scenarios on which we ran our evaluations, followed by the actual evaluations of
those algorithms

All evaluations have been executed on the NVIDIA Tesla P100 GPU with 64 bit floating-point
and integer precision, unless stated otherwise, employing the following scheme: For all
evaluation scenarios, grids have been prepared ahead of time using the streaming algorithm
for adaptive refinement. All intermediate grids as well as the base grid were stored after
each refinement step of an adaptive scenario, ensuring complete comparability between
different algorithms as this allows us to use the same grids for all algorithms, making the
grids independent from the algorithm being evaluated. Evaluation of an algorithm and
operator on a single grid then consists of a single initial run to force library initialization (in
case of CUDA) and kernel compilation (in case of OpenCL), followed by five consecutive full
runs, each including preparation, of the algorithm (for the specific operator), their results
being averaged to reduce the impact of external influences.

5.1 Hardware Used

For our evaluations we used two test systems, shown in Tables 5.1 and 5.2. Both systems
are dual-socket server systems. The NVIDIA Tesla P100 GPU is described in more detail in
Section 1.3.2.

5.2 Data Sets and Scenarios

In this chapter, we will present the data sets and scenarios we will later on use for our
evaluations. We employ a total of four different data sets, one containing real-world
astrophysical data, one generated by simulation of particles in high energy physics, and
two based on Gaussian random distributions. As appropriate, we use multiple scenarios,
e.g. different parameter configurations for spatially adaptive refinement, per data set,
keeping them largely identical between data sets.

51

5 Evaluation of Regression algorithms on the GPU

CPU 2 x Intel Xeon E5-2620 @ 2.00 GHz
GPU NVIDIA Tesla P100

Architecture Pascal

Memory 16 GiB @ 4 x 180GiB/s

CUDA Cores 3584 Cores @ 1328 MHz

CUDA Compute Capability 6.0

GFLOPS 64 bit 5300

Table 5.1: Primary Evaluation System

CPU 2 x Intel Xeon E5-2650 @ 2.60 GHz
GPU NVIDIA Tesla K20Xm

Architecture Kepler

Memory 6 GiB @ 250 GiB/s

CUDA Cores 2688 Cores @ 732 MHz

CUDA Compute Capability 3.5

GFLOPS 64 bit 1311

Table 5.2: Secondary Evaluation System

5.2.1 Data Sets
The Fifth Data Release of the Sloan Digital Sky Survey (DR5)

Data release 5 (DR5) of the Sloan Digital Sky Survey (SDSS) [AAA+07] is an astrophysical
collection of survey quality photometric data taken through June 2005 at the Apache Point
Observatory in New Mexico. It contains spectroscopic data for 674 741 galaxies, 90 596
quasars, and 215 781 stars, collected over an area of 5713 square degree. This data is given
by the magnitudes of five bands, u, g, r, i, and z, spanning the range of wavelengths from
300 nm to 1000 nm, with the corresponding redshift of that stellar object.! Cosmological
redshifts are a phenomenon largely based on the Doppler effect, i.e. that occurs when the
wavelength of electromagnetic waves (including light) is shifted towards the red spectrum
based on movement of the source of these waves away from the observer. While there are
multiple other factors influencing this shift, such as gravity, they are commonly used to
determine, amongst others, velocities and parameterize masses of stars. As cosmological
redshifts and many properties derivable from them are difficult to obtain, it has become
popular to estimate them based on photometric quantities, e.g. the ones provided by SDSS
DR5. This makes the data set a five-dimensional real-world scenario.

For the evaluation of our algorithms, we use a filtered version of the spectroscopic subset of
DR5, as found in the literature by Heinecke and Pfliiger [HP13] and Pfander, Heinecke, and

'For comparison: The visible light spectrum ranges from approximately 400 nm to 700 nm.

52

5.2 Data Sets and Scenarios

Pfliiger [PHP16], containing 371 908 data points. Further details regarding the selection of
entries, as well as insights into the structure of this data set are given by Pfliiger [Pfl10].
The data set itself is interesting as its combination with spatial refinement results in highly
irregular adaptive sparse grids.

The HIGGS Data Set

High energy particle collisions, such as created by the Large Hadron Collider (LHC), contain
the desired exotic particles only in a small subset of the observed collisions. The Higgs
boson, for instance, can only be observed in approximately 300 of 10!! collisions [BSW14],
and it is thus necessary to classify the created data as significant or insignificant with respect
to the desired particles. The HIGGS data set [BSW14] is a binary classification that has
been created using monte carlo simulations and is intended as a benchmarking data set for
the accuracy of this classification of processes, specifically the detection of Higgs bosons.

The data set consists of 28 features, 21 kinematic properties measurable by particle detectors
in the accelerator and seven manually derived combinations thereof, developed to aid
classification. The original data set contains 11 million data points. To reduce load- and
evaluation times to, for our purposes, more acceptable levels, we truncated it to 5 million
data points and normalized it to fit in the hypercube [0, 1]25.

This data set is particularly interesting as it is a fairly high-dimensional data set that, similar
to the DR5, results in the creation of very irregular adaptive sparse grids with a large amount
of subspaces when combined with spatial refinement.

The Gaussian Data Sets

The Gaussian data sets are custom generated data sets based on multiple multivariate
Gaussian (normal) distributions. For a d-dimensional Gaussian data set, we scatter d
Gaussian distributions in the hypercube [0, 1]¢, their center being determined by a uniform
random distribution. To enforce smoothness, we require a minimum distance between their
center points of 32 times the standard derivation o of the Gaussian distributions, which is
at maximum 0.1 and is decreased automatically if this distance cannot be ensured. The
data points are divided equally between the individual distributions. As target value we
chose the probability density of the respective Gaussian distribution at the sample point.

For our evaluations, we generated two instances of this data set type, one five-dimensional
and one ten-dimensional, each containing one million data points. Both data sets lead to
somewhat more regular grid structures, compared to the DR5 and HIGGS data sets, when
combined with adaptive refinement.

53

5 Evaluation of Regression algorithms on the GPU

Level # Points # Subgrids Largest Subgrid (#Pt.)

2 11 6 2
3 71 21 4
4 351 56 8
5 1471 126 16
6 5503 252 32
7 18943 462 64
8 61183 792 128
9 187903 1287 256
10 553983 2002 512

Table 5.3: Statistics for the regular sparse grid scenario on the SDSS DR5 data set.

5.2.2 Scenarios

For reference and comparison of GPU architectures, we use regular sparse grids on the
SDSS DR5 data set with varying maximum level, increasing from two to ten. Details for
this scenario can be found in Table 5.3. This is the only scenario for regular sparse grids, as
the focus of this thesis lies on spatially adaptive sparse grids.

To analyze the performance of our algorithms, we chose multiple scenarios with different
base levels for refinement, whenever the dimensionality of the corresponding data set
allowed us to do so in a reasonable manner. All grids of the scenarios were created with the
OpenCL streaming algorithm provided by SG++ and stored prior to the evaluation, allowing
us to create results comparable in between algorithms.

For scenarios with a base level of two, we used the same parameters as provided by Pfander,
Heinecke, and Pfliiger [PHP16] to allow for comparability, while only slight modifications
to this configuration were made for other scenarios. The scenarios with base level two have
been chosen to create mostly irregular grids, whereas the other scenarios were created to
provide an increase in regularity over those. An overview of the most important parameters
can be found in Table 5.4, details regarding the resulting grids and their structure can be
found in Appendix A.

5.3 The Subspace-Linear Algorithm

For the performance evaluation of our implementation of the subspace-linear algorithm,
we use the data sets and scenarios described in Section 5.2 and the hardware described
in Section 5.1. We compare our implementation with the parameter-tuned and highly
optimized streaming algorithm provided by SG++ [HP13].

54

5.3 The Subspace-Linear Algorithm

Dataset Base Level # Refinements # Points Refined Max. CG Iter. A

DR5 2 30 80 120 1x107°
DR5 5 20 100 150 1x107°
DR5 7 15 100 150 1x107°
Gaussian (5D) 2 30 80 120 1x107°
Gaussian (5D) 5 20 100 150 1x107°
Gaussian (5D) 7 10 100 150 1x107°
Gaussian (10D) 2 20 80 120 1x107°
Gaussian (10D) 5 10 100 150 1x10°°
HIGGS (5M) 2 15 80 120 1x107°

Table 5.4: Choice of parameters for the spatially adaptive sparse grid scenarios.

5.3.1 A Note on Regular Sparse Grids and Atomics

Although our main interest is in spatially adaptive sparse grids, let us begin this section by
verifying some of our expectations with respect to regular sparse grids, using the SDSS DR5
data set. As the streaming algorithm performs N - M evaluations (N being the number of
grid points, M being the number of data points), and thus exponentially more unnecessary
evaluations with increasing grid level, we expect a continuously growing speed-up for the
subspace-linear algorithm and a sufficiently large base level. We can indeed verify this for
the operator BTa, see Figures 5.1 to 5.3, however, we can also observe that the run-time of
our implementation of the subspace-linear algorithm is seemingly linear with regards to
the grid points (Figure 5.2). Looking at the device kernel execution time only (Figure 5.4),
we can see that the run-time of the core algorithm is more as expected. Considering at the
composition of the run-time for the complete implementation (Figures 5.5 and 5.6), we
can conclude that, for regular sparse grids, it is dominated by the preparation step. This
step is indeed linear with regards to the number of grid points. The implementation of the
subspace-linear algorithm in SG++ requires us to iterate over all grid points to retrieve the
set of subgrids assembling the sparse grid, as SG++ essentially only stores a list of grid points
for a grid. Note, however, that for adaptive refinement, the preparation step has generally
to be executed only once for possibly hundreds of solver iterations, reducing its impact on
the run-time severely. Memory transfers are, in this scenario, dominated by the data set
transfer from host to device and thus negligible.

We are able to present a speed-up of approximately one for grids with level two to five
and a continued gain for grids with a larger level, leading up to a speed-up of 7.5 for
sparse grids with level ten, expecting further increase beyond. Comparing these numbers
with the maximum possible speed-ups for the respective grids, derivable from Table 5.3,
makes it evident that there is still a considerable amount of overhead involved, even when
preparation is completely neglected. The level five grid, for example, has a theoretical
maximal speed-up of approximately 11.7, as there are (approximately) 11.7 points per
subgrid, but only a speed-up of approximately 1.2 can be observed. For level ten grids,
we achieve, again without preparation, a speed-up of approximately 48, with a theoretical

55

5 Evaluation of Regression algorithms on the GPU

maximum of (approximately) 278 (compare Table 5.3). While the reached numbers are
small in comparison, the non-contiguous memory accesses required for this algorithm, as
well as their latency, make it unlikely to reach this speed-up in practice.

We can also verify that, at least for the operator BT« processing multiple evaluations in a
single thread can lead to a slightly improved performance, likely due to the reduction of
load operations required for the level vector (as a block shares the same level, thus it only
needs to be loaded once for a block instead of once per thread) and increased instruction
level parallelism.

For the transposed multi-evaluation Bv Figures 5.7 to 5.9, we can observe mostly the same,
except for two key differences. First off, the speed-up for smaller grid levels is significantly
larger, ranging from two to three (Figure 5.8) where it is one for non-transposed the
multi-evaluation (Figure 5.3). This is due to the fact that the streaming algorithm, for Bv,
parallelizes over the grid points (whereas the subspace-linear algorithm parallelizes over
the data points for both operators), and thus is not able to fully utilize the massively parallel
architecture of the GPU for small grid sizes. The second difference is the exclusively negative
impact of blocking, i.e. the grouping of multiple data point evaluations in a single thread
(Figure 5.9). This is most likely caused by the use of an atomic addition to accumulate the
results per grid point. A further impact of the atomic operation seems to be the decline
in kernel execution time from grids with level three to grids with level five (Figure 5.9),
which can be explained by more wide-spread atomic accesses for increased grid size, in
other words, the congestion emerging from multiple atomic accesses to the same location is
likely to be reduced by the increase of those locations.

Interestingly, no other impacts of atomics can be observed for the transposed multi eval-
uation on the NVIDIA Tesla P100 GPU. We can attribute this fact to the 64 bit hardware
implementation of these atomics on the Pascal architecture, a serious benefit of this architec-
ture over older architectures, such as Fermi and Kepler, where such operations where partly
implemented in software [NVI16]. If we compare our evaluations on the Tesla P100 (Pascal
architecture) with evaluations on the Tesla K20Xm (Kepler architecture), we can clearly
observe this difference. The operator BT« is on the K20Xm largely identical in run-time
behavior to the P100 (compare Figures 5.10 and 5.11 with Figures 5.1 to 5.6), whereas a
serious performance impact can be observed for the operator Bv (compare Figures 5.12
to 5.14 with Figures 5.7 to 5.9) due to software-emulated atomics. Interestingly, we can
see a decline in overall execution time with increasing grid size up to grids of level six(Fig-
ure 5.12). An explanation of this behavior is the increase of operations, due to which warps
can be scheduled more freely, reducing access to the same elements at the same time, and
thus reducing contention of the atomic operation. When looking at the device kernel times
for Bv on the K20Xm (Figure 5.14), we can observe that the block-size severely impacts the
results as well. With increasing block-size, the execution time is reduced. This is due to the
inherent nature of processing multiple evaluations in a single thread: Instead of processing
all atomic additions in parallel, the additions of a block are processed subsequently, reducing
the number of threads accessing the same elements atomically, again effectively reducing
contention. Note, that we had to emulate the 64 bit floating point additions on the Kepler

56

5.3 The Subspace-Linear Algorithm

Streaming (Tuned)
—e— Subspace-Linear (Block-Size 1)
Subspace-Linear (Block-Size 2)
—e— Subspace-Linear (Block-Size 3)
Subspace-Linear (Block-Size 4)
—e— Subspace-Linear (Block-Size 5)
Subspace-Linear (Block-Size 6)

Grid Level

Figure 5.1: Absolute duration of streaming and subspace-linear algorithms (with multiple

0.5 +

block-size values) for BTa on the NVIDIA Tesla P100, using regular sparse
grids, the SDSS DRS data set, and 64 bit precision. Plotted over the grid level.

Streaming (Tuned)
—e— Subspace-Linear (Block-Size 1)
Subspace-Linear (Block-Size 2)
—e— Subspace-Linear (Block-Size 3)
Subspace-Linear (Block-Size 4)
—e— Subspace-Linear (Block-Size 5)
Subspace-Linear (Block-Size 6)

2-10° 3-105 4-105 5-10°

Grid Points

1-10°

Figure 5.2: Absolute duration of streaming and subspace-linear algorithms (with multiple

block-size values) for BTa on the NVIDIA Tesla P100, using regular sparse
grids, the SDSS DR5 data set, and 64 bit precision. Plotted over the grid points.

57

5 Evaluation of Regression algorithms on the GPU

Subspace-Linear (Block-Size 1)
—e— Subspace-Linear (Block-Size 2)
Subspace-Linear (Block-Size 3)
—e— Subspace-Linear (Block-Size 4)
Subspace-Linear (Block-Size 5)

—e— Subspace-Linear (Block-Size 6)

Grid Level

Figure 5.3: Speed-up of the subspace-linear algorithm over the streaming algorithm for
BT« on the NVIDIA Tesla P100, using regular sparse grids, the SDSS DR5 data
set, and 64 bit precision. Plotted over the grid level.

4-1072 4

>

Subspace-Linear (Block-Size 1)
—e— Subspace-Linear (Block-Size 2)
Subspace-Linear (Block-Size 3)
3.10-2 | —e— Subspace-Linear (Block-Size 4)
Subspace-Linear (Block-Size 5)
—e— Subspace-Linear (Block-Size 6)

2-1072 |

1-1072 |

Grid Level

Figure 5.4: Kernel duration of the subspace-linear algorithm (with multiple block-size
values) for BTa on the NVIDIA Tesla P100, using regular sparse grids, the
SDSS DRS data set, and 64 bit precision. Plotted over the grid level.

58

5.3 The Subspace-Linear Algorithm

0.3 +

0.25 +

0.2 +

0.15 +

t s

0.1 +

5.1072

Figure 5.5:

0.3 +
0.25
0.2

0.15 +

Preparation (Host)
—e— Surplus Initialization (Device)
Memory Transfers (Host to Device)

—o— Kernel (Device)

Memory Transfers (Device to Host)

Grid Level

Run-time composition of one complete execution of the subspace-linear algo-
rithm (with block-size of three) for BT« on the NVIDIA Tesla P100, using
regular sparse grids, the SDSS DR5 data set, and 64 bit precision. Plotted over
the grid level.

Preparation (Host)
Surplus Initialization (Device)
Memory Transfers (Host to Device)
Kernel (Device)

Memory Transfers (Device to Host)

— e

— e

Figure 5.6:

1-105 2-10° 3-10° 4-10° 5-10°
Grid Points

Run-time composition of one complete execution of the subspace-linear algo-
rithm (with block-size of three) for BTa on the NVIDIA Tesla P100, using
regular sparse grids, the SDSS DR5 data set, and 64 bit precision. Plotted over
the grid points.

59

5 Evaluation of Regression algorithms on the GPU

Streaming (Tuned)
—e— Subspace-Linear (Block-Size 1)
9 | Subspace-Linear (Block-Size 2)
—e— Subspace-Linear (Block-Size 3)
Subspace-Linear (Block-Size 4)
15 | —e— Subspace-Linear (Block-Size 5)
Subspace-Linear (Block-Size 6)
o
+w 1
0.5 |
////
2 3 4 5 6 7 8 9 10

Grid Level

Figure 5.7: Absolute duration of streaming and subspace-linear algorithms (with multiple
block-size values) for Bv on the NVIDIA Tesla P100, using regular sparse grids,
the SDSS DRS5 data set, and 64 bit precision. Plotted over the grid level.

Subspace-Linear (Block-Size 1)
[/B e Subspace-Linear (Block-Size 2)
Subspace-Linear (Block-Size 3)
6| —e— Subspace-Linear (Block-Size 4)
Subspace-Linear (Block-Size 5)
—e— Subspace-Linear (Block-Size 6)
5 1
o,
=
=4
(5]
[«F]
o
n
3 1
2 T Il Il Il / Il Il Il |
2 3 4 5 6 7 8 9 10

Grid Level

Figure 5.8: Speed-up of the subspace-linear algorithm over the streaming algorithm for Bv
on the NVIDIA Tesla P100, using regular sparse grids, the SDSS DR5 data set,
and 64 bit precision. Plotted over the grid level.

60

5.3 The Subspace-Linear Algorithm

and other pre-Pascal architectures using a compare-and-swap (CAS)-loop as these architec-
tures do not provide such operations, due to which the problem of contention is especially
severe. For the streaming algorithm, this problem is solved by parallelization over the grid
points instead of the data points, which is not directly applicable to the subspace-linear
algorithm. The parallelization over grid points, however, can also become a problem for the
streaming-algorithm on smaller grids, as a certain minimum of parallel tasks is required to
fully utilize the GPU architecture. Nevertheless, the subspace-linear algorithm for Bv is
still faster than the streaming algorithm on large regular grids.

61

5 Evaluation of Regression algorithms on the GPU

6-1072 1

5-1072 |

4-1072 ¢

=+3.1072 1

Subspace-Linear (Block-Size 1)
—e— Subspace-Linear (Block-Size 2)
Subspace-Linear (Block-Size 3)
—e— Subspace-Linear (Block-Size 4)
Subspace-Linear (Block-Size 5)
—e— Subspace-Linear (Block-Size 6)

Grid Level

Figure 5.9: Kernel duration of the subspace-linear algorithm (with multiple block-size
values) for Bv on the NVIDIA Tesla P100, using regular sparse grids, the SDSS

DRS5 data set, and 64 bit precision. Plotted over the grid level.

Streaming (Tuned)
—e— Subspace-Linear (Block-Size 1)
Subspace-Linear (Block-Size 2)
—e— Subspace-Linear (Block-Size 3)
Subspace-Linear (Block-Size 4)
—e— Subspace-Linear (Block-Size 5)
Subspace-Linear (Block-Size 6)

6,,
4,,
=
+~
2,,
2 3 4 5 6 7 8 9

Grid Level

Figure 5.10: Absolute duration of streaming and subspace-linear algorithms (with multiple
block-size values) for BT« on the NVIDIA Tesla K20Xm, using regular sparse
grids, the SDSS DRS5 data set, and 64 bit precision. Plotted over the grid level.

62

5.3 The Subspace-Linear Algorithm

Subspace-Linear (Block-Size 1)
—e— Subspace-Linear (Block-Size 2)
20 1 Subspace-Linear (Block-Size 3)
—e— Subspace-Linear (Block-Size 4)
Subspace-Linear (Block-Size 5)
15 —e— Subspace-Linear (Block-Size 6)
=
=
=10 +
[}
9]
(a9
7)
5 4
2 3 10

Grid Level

Figure 5.11: Speed-up of the subspace-linear algorithm over the streaming algorithm for
BTa on the NVIDIA Tesla K20Xm, using regular sparse grids, the SDSS DR5
data set, and 64 bit precision. Plotted over the grid level.

Streaming (Tuned)
—e— Subspace-Linear (Block-Size 1)
Subspace-Linear (Block-Size 2)
6 + —e— Subspace-Linear (Block-Size 3)
Subspace-Linear (Block-Size 4)
—e— Subspace-Linear (Block-Size 5)
Subspace-Linear (Block-Size 6)

Grid Level

Figure 5.12: Absolute duration of streaming and subspace-linear algorithms (with multiple
block-size values) for Bv on the NVIDIA Tesla K20Xm, using regular sparse
grids, the SDSS DRS5 data set, and 64 bit precision. Plotted over the grid level.

63

5 Evaluation of Regression algorithms on the GPU

5 1 Subspace-Linear (Block-Size 1)
—e— Subspace-Linear (Block-Size 2)
Subspace-Linear (Block-Size 3)
4 1] - Subspace-Linear (Block-Size 4)
Subspace-Linear (Block-Size 5)
—e— Subspace-Linear (Block-Size 6)
3 4+
o
=
2|
o}
o
)
1 4+
2 3 4 5 10

Grid Level

Figure 5.13: Speed-up of the subspace-linear algorithm over the streaming algorithm for
Bv on the NVIDIA Tesla K20Xm, using regular sparse grids, the SDSS DR5
data set, and 64 bit precision. Plotted over the grid level.

Preparation (Host)
—o— Surplus Initialization (Device)
Memory Transfers (Host to Device)
o Kernel (Device)
Memory Transfers (Device to Host)

Grid Level

Figure 5.14: Run-time composition of one complete execution of the subspace-linear al-
gorithm (with block-size of six) for Bv on the NVIDIA Tesla K20Xm, using
regular sparse grids, the SDSS DR5 data set, and 64 bit precision. Plotted over

the grid level.

64

5.3 The Subspace-Linear Algorithm

5.3.2 Spatially Adaptive Scenarios
On the SDSS DR5 Data Set with a Level Two Base Grid

Let us now look at some more interesting spatially adaptive scenarios. The first scenario
is again based on the SDSS DR5 dataset and has been created through surplus-based
refinement, beginning with a level two regular sparse grid. We ran 30 refinement steps,
each refining 80 points with a maximum number of 120 solver iterations, combined with a
regularization factor A of 1 x 10°. This scenario is based on the one chosen by Pfander,
Heinecke, and Pfliiger [PHP16] and results in a very irregular grid structure, with only up
to approximately 9.5 grid points per subspace on average (see Table A.1 in Appendix A for
detailed statistics). Due to this, the scenario is relatively close to what we would expect a
real-world worst case scenario for the subspace-linear algorithm to look like. Furthermore,
the high number of refinement steps leads to a fairly large maximum level of the adaptive
grid, resulting in big subgrids, with a maximum of 224 grid points for the largest subgrid.
We chose the number of refinement steps explicitly to force this issue, which allows us
to observe the behavior of the subspace-linear algorithm when using a significant part of
the available GPU memory, as its memory usage depends on the size of the respective full
subgrids and not on the number of points actually used on these subgrids. Ultimately, this
choice leads to a memory requirement of more than 16 GiB for refinement steps 29 and 30,
exceeding the memory available on the P100, due to which it cannot be executed on this
GPU for those grids.

Looking at the absolute duration of operator Ba (Figures 5.15 and 5.16 including prepara-
tion), we can again see a speed-up over the streaming algorithm (Figure 5.17) that tends to
increase with growing grid size, this time, however, only up to a certain point, with declines
in between peaks, and a severe drop after refinement step 26. For almost all refinement
steps, the speedup of the subspace-linear algorithm (in combination with an appropriately
chosen block-size value) over the parameter-tuned streaming algorithm exceeds one. The
reason for all of this can be found in Table A.1 in Appendix A: While, as expected, the
average subgrid utilization, i.e. the number of points on the subgrid in relation to its po-
tential maximum size averaged over all subgrids, drops with increasing refinement steps
from 100 % for the fully regular subgrid to only about 2.5 % for refinement step 26, the
average number of points per subspace increases from 1.38 to approximately 9 for the same
range. This indicates that the refinement process, for this scenario, not only extends in
depth, but also in breadth, which ultimately favors the subspace-linear algorithm, at least
up to refinement step 26. The intermediate declines in the speed-up relate to significant
increases in the number of potential grid points of all subgrids were full, created by the
addition of (potentially) larger subgrids through refinement, in turn resulting in an increase
of memory required to store the surpluses. Note that this does not necessarily create a drop
in the average number of points per subgrid (again see Table A.1). Beyond refinement step
26, the number of points per subspace keeps increasing, but the performance drops severely.
We can observe, that for these steps, the run-time of the algorithm is severely impacted by
the surplus initialization step (Figure 5.19), which consists of two parts: the initialization of
all surpluses of the full subgrids (not only the used parts, as we need full grids for indexing)

65

5 Evaluation of Regression algorithms on the GPU

to NaN (in case of BT«) or zero (in case of Bv), and the transfer and unpacking of the
surpluses for used grid points. Note that the timings for this step also include the transfer
of the surpluses, and thus the time for memory-transfer from host to device depicted in
the run-time composition figures (e.g. Figure 5.19) is dominated by the data set (due to
which it is largely constant). As there is no significant increase in grid points (in comparison
to previous refinement steps) it stands to reason that this behavior is a side-effect of the
excessive memory use. Through further measurements, we could indeed verify that the
initialization to NaN is the problematic step, as the time required to unpack the surpluses
is almost insignificantly small. If we look at the number of maximum grid points, i.e. the
number of grid points that would be on that grid if all subgrids were full, which is also
the number of surpluses we need to store, we can see that the grid for refinement-step 26
requires approximately 7.56 GiB, while the grid for refinement-step 27 requires 8.68 GiB.
Note that we are using 64 bit floating point numbers to store these. Interestingly, this in-
crease represents a change from less than half to more than half of the memory available on
the NVIDIA Tesla P100, being required solely to store surpluses. Lacking further knowledge
about the memory related hardware of the P100, except that it contains four 4 GiB 2nd
generation high bandwidth memory (HBM2) dies, each connected, via two 512 bit memory
controllers, to two 512 kB slices of the L2 cache, one slice per controller, we are not able to
confidently state a concrete reason for this behavior. This issue, however, could potentially
be resolved by writing to multiple locations in a single initialization thread instead of only
one, effectively reducing parallel memory accesses.

Most of these observations can also be made for the operator Bv. A difference between
operators is, except for influence of the block-size value which will be discussed later, the
behavior of the speed-up over the streaming algorithm (Figure 5.22). For the transposed
multi evaluation, this tends to decrease from the base grid until approximately refinement
step 10, beyond which it fluctuates around 1.25 for a block-size of one. These fluctuations
can again be explained by the changes in grid properties as described previously, the decline,
however, is due to the implementation of Bv for the streaming algorithm. We could already
see this behavior in the regular scenario and the explanation is still the same: due to its
parallelization over the grid points for this operator, it is not able to fully saturate the GPU
for small grid sizes. This time, it only seems to be more extreme as the largest speed-up of
the subspace-linear algorithm can be observed on those smaller grid sizes.

Just like in the regular scenario presented above, we can see a difference in kernel execution
times related to the block-size used, with a block-size of five providing the best result for
BT« (Figure 5.18) and again a block-size of one for Bv (Figure 5.23), again most likely
being caused by the use of an atomic addition in the implementation of Bv. An interesting
difference to the regular scenario is the semblance of linearity the kernel duration expresses
with relation to the grid points for higher refinement steps (Figures 5.18 and 5.23). This is
due to a considerably larger increase in the number of subgrids with relation to the number
of gridpoints being added for each of these refinement steps, which can also be seen in the
average number of grid points per subgrids (again see Table A.1 for details), meaning that,
on average, a new subgrid is introduced for only a few points refined, which we ultimately
have to traverse or skip with our algorithm.

66

5.3 The Subspace-Linear Algorithm

Again, the preparation step takes a significant amount of time and is included in all evalu-
ations (except for sole kernel duration, of course). We again emphasize this because we
would only have to prepare the algorithms once the grid changes, and thus only once for a
larger number of solver iterations. For such applications, the expected speed-up would be
even higher as the streaming algorithm does not require any significant preparation.

On the HIGGS Data Set with a Level Two Base Grid

With 28 dimensions, the to five million data points truncated HIGGS data set is fairly
challenging, and we expect it to provide interesting insights into the performance of the
algorithm for higher-dimensional data sets. We again used a surplus-based refinement
strategy refining 80 points per step with a maximum of 120 solver iterations and a regu-
larization factor of 1 x 107>, this time refining 15 steps. The high dimensionality of this
data set causes a significant number of subgrids to be added for each step, leading to a
total of 1.9 million subgrids after the last refinement step and a decrease of the average
number of points per subgrids after the first step to around 2.2 for the last 8 steps. Again,
we are not able to run the subspace-linear algorithm on the last grid, as this would require
approximately 34.2 GiB, however, this would also have about 4.1 million grid points and
thus almost as much grid points as data points. Further details for this scenario can be
found in Appendix A Table A.4. Due to the inherently large execution times of this data set,
we limited some of our evaluations to ten refinement steps only

In Figures 5.24 and 5.27 we can see that the high number of subgrids and the low number
of points per subspace indeed lead to a considerably worse run-time of the subspace-linear
algorithm when compared to the streaming algorithm. Interestingly, we achieve a speed-up
greater than one for smaller grids (base grid and the first refined grid), and more importantly,
the speed-up declines even though both grids use all available points and there is an increase
in the average number of points per subgrid (see Figures 5.25 and 5.28 Nevertheless there
are already 435 subgrids after the first refinement step while there are only 1681 points,
likely being the reason for this drop. After further refinement steps, the speedup seems
to converge to approximately 0.6 for both operators and best observed block-size value,
which is again one for Bv. For BT« this value is three, whereas it has been five for the
SDSS DR5 data set, indicating that there is more disagreement inside the block, i.e. that, on
average, a block processes multiple data points that are often not supported on the same
subspaces leading to an increase in run-time with increased block-size. Looking at the
complete run-time composition (Figures 5.26 and 5.29) we can see that, for this scenario,
the preparation, memory transfer, and surplus initialization steps are largely insignificant
compared to the raw device-kernel duration.

On the SDSS DR5 Data Set with a Level Five Base Grid

The next scenario is again based on the SDSS DR5 data set. We ran 20 surplus-based
refinement steps, refining 100 points each, with a maximum of 150 solver iterations and a

67

5 Evaluation of Regression algorithms on the GPU

0.7 +

0.6

0.5

04 +

0.3 1

0.2 +

0.1 +

Streaming (Tuned)
—e— Subspace-Linear (Block-Size 1)
Subspace-Linear (Block-Size 2)
—e— Subspace-Linear (Block-Size 3)
Subspace-Linear (Block-Size 4)
—e— Subspace-Linear (Block-Size 5)
Subspace-Linear (Block-Size 6)

2 :;./‘
-~ e
= Y |
5 10 15 20 25 30
Grid Level

Figure 5.15: Absolute duration of streaming and subspace-linear algorithms (with multiple

0.7 +

0.6

0.5 +

04 +

0.3 1

0.2 +

0.1 +

block-size values) for BTa on the NVIDIA Tesla P100, using spatially adaptive
sparse grids with base-level two, the SDSS DR5 data set, and 64 bit precision.
Plotted over the refinement steps.

Streaming (Tuned)
—e— Subspace-Linear (Block-Size 1)
Subspace-Linear (Block-Size 2)
—e— Subspace-Linear (Block-Size 3)
Subspace-Linear (Block-Size 4)
—e— Subspace-Linear (Block-Size 5)
Subspace-Linear (Block-Size 6)

o~

20,000 40,000 60,000 80,000 1.1051.2-1051.4-10°
Grid Points

Figure 5.16: Absolute duration of streaming and subspace-linear algorithms (with multiple

68

block-size values) for BTa on the NVIDIA Tesla P100, using spatially adaptive
sparse grids with base-level two, the SDSS DR5 data set, and 64 bit precision.
Plotted over the grid points.

5.3 The Subspace-Linear Algorithm

Subspace-Linear (Block-Size 1)
—e— Subspace-Linear (Block-Size 2)
/- Subspace-Linear (Block-Size 3)
—e— Subspace-Linear (Block-Size 4)
] Subspace-Linear (Block-Size 5)
—e— Subspace-Linear (Block-Size 6)

5 10 15 20 25
Grid Level

Figure 5.17: Speed-up of the subspace-linear algorithm over the streaming algorithm for

0.25 +

0.2 +

0.15 +

0.1 +

5-1072 |

BTa on the NVIDIA Tesla P100, using spatially adaptive sparse grids with
base-level two, the SDSS DR5 data set, and 64 bit precision. Plotted over the
refinement steps.

Subspace-Linear (Block-Size 1)
—e— Subspace-Linear (Block-Size 2)
Subspace-Linear (Block-Size 3)
—e— Subspace-Linear (Block-Size 4)
Subspace-Linear (Block-Size 5)
—e— Subspace-Linear (Block-Size 6)

Grid Level

Figure 5.18: Kernel duration of the subspace-linear algorithm (with multiple block-size

values) for BT on the NVIDIA Tesla P100, using spatially adaptive sparse
grids with base-level two, the SDSS DR5 data set, and 64 bit precision. Plotted
over the refinement steps.

69

5 Evaluation of Regression algorithms on the GPU

0.7 ¢ Preparation (Host)
—e— Surplus Initialization (Device)
0.6 | Memory Transfers (Host to Device)
—e— Kernel (Device)
0.5 | Memory Transfers (Device to Host)

| |

0.2 + /

0.1

0 5 10 15 20 25
Grid Level

Figure 5.19: Run-time composition of one complete execution of the subspace-linear al-
gorithm (with block-size of five) for BTa on the NVIDIA Tesla P100, using
spatially adaptive sparse grids with base-level two, the SDSS DR5 data set,
and 64 bit precision. Plotted over the refinement steps.

Streaming (Tuned)
0s | —e— Subspace-Linear (Block-Size 1)
' Subspace-Linear (Block-Size 2)
—e— Subspace-Linear (Block-Size 3)
Subspace-Linear (Block-Size 4)
0.6 1 —e— Subspace-Linear (Block-Size 5)
Subspace-Linear (Block-Size 6)
n
0.4
-~
0.2
|_om D=4 |
0 30

Grid Level

Figure 5.20: Absolute duration of streaming and subspace-linear algorithms (with multiple
block-size values) for Bv on the NVIDIA Tesla P100, using spatially adaptive
sparse grids with base-level two, the SDSS DR5 data set, and 64 bit precision.
Plotted over the refinement steps.

70

5.3 The Subspace-Linear Algorithm

Streaming (Tuned)

08 | —e— Subspace-Linear (Block-Size 1)

Subspace-Linear (Block-Size 2)

—e— Subspace-Linear (Block-Size 3)

Subspace-Linear (Block-Size 4)

0.6 —e— Subspace-Linear (Block-Size 5)

Subspace-Linear (Block-Size 6)
0.4

S

0.2

! o Il Il Il Il Il Il Il

0 20,000 40,000 60,000 80,000 1.10°1.2.-10%1.4-10°
Grid Points

Figure 5.21: Absolute duration of streaming and subspace-linear algorithms (with multiple
block-size values) for Bv on the NVIDIA Tesla P100, using spatially adaptive
sparse grids with base-level two, the SDSS DR5 data set, and 64 bit precision.
Plotted over the grid points.

Subspace-Linear (Block-Size 1)
—e— Subspace-Linear (Block-Size 2)
Subspace-Linear (Block-Size 3)
—e— Subspace-Linear (Block-Size 4)
Subspace-Linear (Block-Size 5)
—e— Subspace-Linear (Block-Size 6)

Grid Level

Figure 5.22: Speed-up of the subspace-linear algorithm over the streaming algorithm for
Bv on the NVIDIA Tesla P100, using spatially adaptive sparse grids with
base-level two, the SDSS DR5 data set, and 64 bit precision. Plotted over the
refinement steps.

71

5 Evaluation of Regression algorithms on the GPU

Subspace-Linear (Block-Size 1)

0.4 | —e— Subspace-Linear (Block-Size 2)

Subspace-Linear (Block-Size 3)

—e— Subspace-Linear (Block-Size 4)

03 | Subspace-Linear (Block-Size 5)

’ —e— Subspace-Linear (Block-Size 6)
0.2 1

-
0.1 +
0 5 10 15 20 25

Grid Level

Figure 5.23: Kernel duration of the subspace-linear algorithm (with multiple block-size
values) for Bv on the NVIDIA Tesla P100, using spatially adaptive sparse grids
with base-level two, the SDSS DR5 data set, and 64 bit precision. Plotted over
the refinement steps.

Streaming (Tuned)
—e— Subspace-Linear (Block-Size 1)
1,500 Subspace-Linear (Block-Size 2)
—e— Subspace-Linear (Block-Size 3)
Subspace-Linear (Block-Size 4)
—e— Subspace-Linear (Block-Size 5)
1,000 | Subspace-Linear (Block-Size 6)
iy
-~
500 +
0 ———
0 2 4

Grid Level

Figure 5.24: Absolute duration of streaming and subspace-linear algorithms (with multiple
block-size values) for BT« on the NVIDIA Tesla P100, using spatially adaptive
sparse grids with base-level two, the HIGGS (5M) data set, and 64 bit precision.
Plotted over the refinement steps.

72

5.3 The Subspace-Linear Algorithm

Subspace-Linear (Block-Size 1)
—e— Subspace-Linear (Block-Size 2)
Subspace-Linear (Block-Size 3)
—e— Subspace-Linear (Block-Size 4)
Subspace-Linear (Block-Size 5)
—e— Subspace-Linear (Block-Size 6)

Grid Level

Figure 5.25: Speed-up of the subspace-linear algorithm over the streaming algorithm for

BTa on the NVIDIA Tesla P100, using spatially adaptive sparse grids with
base-level two, the HIGGS (5M) data set, and 64 bit precision. Plotted over
the refinement steps.

Preparation (Host)
—e— Surplus Initialization (Device)
Memory Transfers (Host to Device)
e Kernel (Device)

Memory Transfers (Device to Host)

2 4 6 8 14

Grid Level

10 12

Figure 5.26: Run-time composition of one complete execution of the subspace-linear al-

gorithm (with block-size of two) for BT« on the NVIDIA Tesla P100, using
spatially adaptive sparse grids with base-level two, the HIGGS (5M) data set,
and 64 bit precision. Plotted over the refinement steps.

73

5 Evaluation of Regression algorithms on the GPU

1,600 + Streaming (Tuned)
—e— Subspace-Linear (Block-Size 1)
1,400 Subspace-Linear (Block-Size 2)
1.200 1 —e— Subspace-Linear (Block-Size 3)
’ Subspace-Linear (Block-Size 4)
1.000 - —e— Subspace-Linear (Block-Size 5)
Subspace-Linear (Block-Size 6)
—_, 800 +
2,
-~
600 +
400 + /.
200 + 2
S S == | | |
0 2 4 6 8 10 12 14
Grid Level

Figure 5.27: Absolute duration of streaming and subspace-linear algorithms (with multiple
block-size values) for Bv on the NVIDIA Tesla P100, using spatially adaptive
sparse grids with base-level two, the HIGGS (5M) data set, and 64 bit precision.
Plotted over the refinement steps.

Subspace-Linear (Block-Size 1)
\ —e— Subspace-Linear (Block-Size 2)
6 Subspace-Linear (Block-Size 3)
\ —e— Subspace-Linear (Block-Size 4)
Subspace-Linear (Block-Size 5)

—e— Subspace-Linear (Block-Size 6)

SpeecCL—Up

N
L

Grid Level

Figure 5.28: Speed-up of the subspace-linear algorithm over the streaming algorithm for
Bv on the NVIDIA Tesla P100, using spatially adaptive sparse grids with base-
level two, the HIGGS (5M) data set, and 64 bit precision. Plotted over the
refinement steps.

74

5.3 The Subspace-Linear Algorithm

regularization factor of 1 x 10~°. The behavior of this scenario is similar to the previous
DR5 scenario with a base level of two (compare Figures 5.30, 5.31 and 5.32 to 5.34 with
Figures 5.15 to 5.23). We can again observe the same impacts of block-size and grid structure
(see again Appendix A for details), however, this time we are able to achieve a consistently
higher speed-up for BT and a somewhat higher speed-up for Bv over the streaming
algorithm. This is expected, as we increased the regularity of the grid by using a higher base-
level on which to start refinement, thus increasing the number of unnecessary operations
the streaming algorithm makes, ultimately favoring the subspace-linear algorithm.

On the SDSS DR5 Data Set with a Level Seven Base Grid

Increasing the base-level from the previous scenario even further (all other parameters
have not been modified, except for the reduction of refinement steps to 15), we can see a
further increase in speed-up over the streaming algorithm (compare Figures 5.35 to 5.39
with Figures 5.30, 5.31 and 5.32 to 5.34), now constantly being over 1.5 for all refinement
steps (and selected block-sizes), with a decline over those. This decline is caused by the
percentage of the regular structures in the grid being reduced by the refinement steps. We
can see this explicitly in the absolute duration of the algorithms (Figures 5.35 and 5.38),
where this is represented as an offset in run-time.

On the Five Dimensional Gaussian Data Set with a Level Two Base Grid

Let us now look at the five-dimensional Gaussian data set, beginning again with a scenario
using a base grid of two and the same parameters of the corresponding SDSS DR5 scenario,
i.e. 30 refinement steps with 80 points refined per step, a maximum of 120 solver iterations
and a regularization factor of 1 x 107,

Compared to the DR5 scenario, we can see a higher speed-up (Figures 5.41 and 5.45),
ultimately decreasing with higher refinement steps, again caused by the excessive amount
memory required to store the surpluses (compare Figure 5.43 and Table A.5), and more im-
portantly, a stronger effect of the block-size on the kernel run-time (Figures 5.42 and 5.46).
This influence can be explained by the structure of the data set. The data set has been gener-
ated by subsequently adding random clusters, generated by a gaussian random distribution.
Due to this, the data set is largely ordered, meaning that it is likely for points that are close
to each other in the feature space and thus likely to share support on most of their subspaces,
to be also close in the list of data points. For the subspace-linear algorithm, this leads to less
subspaces to be processed in the block, as most data points agree on which subspaces to skip,
leading to a decrease in run-time by the reduced load operations required to load the level
vector (one per block instead of one per data point) and only little overhead by processing
subspaces where data points have no support (as the data points of a block share most of
them). Note that a higher block-size increases the possibility of warp divergence, however,
the impact of this divergence would again be reduced through the locality of the points.
Interestingly, this also changes the influence of the block size-with respect to the DR5 from

75

5 Evaluation of Regression algorithms on the GPU

Preparation (Host)
1,400 + —e— Surplus Initialization (Device)
Memory Transfers (Host to Device)
1,200 + e Kernel (Device)
Memory Transfers (Device to Host)
1,000 |
800 |
)
= 600 |
400 |
200 |
0 +— —e —s¢
0 2 4 6 8 10 12 14

Grid Level

Figure 5.29: Run-time composition of one complete execution of the subspace-linear al-
gorithm (with block-size of one) for Bv on the NVIDIA Tesla P100, using
spatially adaptive sparse grids with base-level two, the HIGGS (5M) data set,
and 64 bit precision. Plotted over the refinement steps.

! Streaming (Tuned)
—e— Subspace-Linear (Block-Size 1)
0.5 1 Subspace-Linear (Block-Size 2)
—e— Subspace-Linear (Block-Size 3)
04 | Subspace-Linear (Block-Size 4)
—e— Subspace-Linear (Block-Size 5)
Subspace-Linear (Block-Size 6)
_ 03+
2,
-
0.2 1

Grid Level

Figure 5.30: Absolute duration of streaming and subspace-linear algorithms (with multiple
block-size values) for BT« on the NVIDIA Tesla P100, using spatially adaptive
sparse grids with base-level five, the SDSS DR5 data set, and 64 bit precision.
Plotted over the refinement steps.

76

5.3 The Subspace-Linear Algorithm

1.6

Spegii-Up
o

Subspace-Linear (Block-Size 1)
—e— Subspace-Linear (Block-Size 2)
¢ Subspace-Linear (Block-Size 3)
—e— Subspace-Linear (Block-Size 4)

Subspace-Linear (Block-Size 5)
—e— Subspace-Linear (Block-Size 6)

10 12 14 18 20

Grid Level

16

Figure 5.31: Speed-up of the subspace-linear algorithm over the streaming algorithm for

0.5 +

0.4 +

BTa on the NVIDIA Tesla P100, using spatially adaptive sparse grids with
base-level five, the SDSS DR5 data set, and 64 bit precision. Plotted over the
refinement steps.

Preparation (Host)
—e— Surplus Initialization (Device)
Memory Transfers (Host to Device)
- Kernel (Device)

Memory Transfers (Device to Host)

Grid Level

Figure 5.32: Run-time composition of one complete execution of the subspace-linear al-

gorithm (with block-size of five) for BTa on the NVIDIA Tesla P100, using
spatially adaptive sparse grids with base-level five, the SDSS DR5 data set,
and 64 bit precision. Plotted over the refinement steps.

77

5 Evaluation of Regression algorithms on the GPU

0.7% Streaming (Tuned)

—e— Subspace-Linear (Block-Size 1)
Subspace-Linear (Block-Size 2)

—e— Subspace-Linear (Block-Size 3)
Subspace-Linear (Block-Size 4)

—e— Subspace-Linear (Block-Size 5)
Subspace-Linear (Block-Size 6)

0.6

0.5 +

04 +

+0.3 1

0.2 +

0.1 +

Grid Level

Figure 5.33: Absolute duration of streaming and subspace-linear algorithms (with multiple
block-size values) for Bv on the NVIDIA Tesla P100, using spatially adaptive
sparse grids with base-level five, the SDSS DR5 data set, and 64 bit precision.
Plotted over the refinement steps.

Subspace-Linear (Block-Size 1)
—e— Subspace-Linear (Block-Size 2)
25 Subspace-Linear (Block-Size 3)
—e— Subspace-Linear (Block-Size 4)

Subspace-Linear (Block-Size 5)

—e— Subspace-Linear (Block-Size 6)

14 16 18 20

0 2 4 6 8 10 12
Grid Level

Figure 5.34: Speed-up of the subspace-linear algorithm over the streaming algorithm for
Bv on the NVIDIA Tesla P100, using spatially adaptive sparse grids with
base-level five, the SDSS DR5 data set, and 64 bit precision. Plotted over the
refinement steps.

78

5.3 The Subspace-Linear Algorithm

0.4 +

0.3

+0.2 1

0.1

Streaming (Tuned)
| —e— Subspace-Linear (Block-Size 1)
Subspace-Linear (Block-Size 2)
—e— Subspace-Linear (Block-Size 3)
Subspace-Linear (Block-Size 4)
T —e— Subspace-Linear (Block-Size 5)
/ Subspace-Linear (Block-Size 6)
| p4
=
L e— /
=T
=7 : : : : : :
0 2 4 6 8 10 12 14

Grid Level

Figure 5.35: Absolute duration of streaming and subspace-linear algorithms (with multiple
block-size values) for BTa on the NVIDIA Tesla P100, using spatially adaptive
sparse grids with base-level seven, the SDSS DR5 data set, and 64 bit precision.
Plotted over the refinement steps.

Figure 5.

Subspace-Linear (Block-Size 1)
—e— Subspace-Linear (Block-Size 2)
Subspace-Linear (Block-Size 3)
—e— Subspace-Linear (Block-Size 4)
Subspace-Linear (Block-Size 5)
—e— Subspace-Linear (Block-Size 6)

Grid Level

36: Speed-up of the subspace-linear algorithm over the streaming algorithm for
BT« on the NVIDIA Tesla P100, using spatially adaptive sparse grids with
base-level seven, the SDSS DR5 data set, and 64 bit precision. Plotted over
the refinement steps.

79

5 Evaluation of Regression algorithms on the GPU

0.25 4 Preparation (Host)
—e— Surplus Initialization (Device)
Memory Transfers (Host to Device)
0.2 1 —e— Kernel (Device)

Memory Transfers (Device to Host)

0.15 +

5.1072

o 2 4 6 8 0 12 14
Grid Level
Figure 5.37: Run-time composition of one complete execution of the subspace-linear al-
gorithm (with block-size of five) for BT« on the NVIDIA Tesla P100, using

spatially adaptive sparse grids with base-level seven, the SDSS DR5 data set,
and 64 bit precision. Plotted over the refinement steps.

Streaming (Tuned)
—e— Subspace-Linear (Block-Size 1)
Subspace-Linear (Block-Size 2)
—e— Subspace-Linear (Block-Size 3)
Subspace-Linear (Block-Size 4)
—e— Subspace-Linear (Block-Size 5)
Subspace-Linear (Block-Size 6)

0 2 4 6 8 10 12 14
Grid Level

Figure 5.38: Absolute duration of streaming and subspace-linear algorithms (with multiple
block-size values) for Bv on the NVIDIA Tesla P100, using spatially adaptive
sparse grids with base-level seven, the SDSS DR5 data set, and 64 bit precision.
Plotted over the refinement steps.

80

5.3 The Subspace-Linear Algorithm

a negative one to a positive one for the operator Bv. Furthermore, we can observe that
with larger block-sizes we are able to achieve a speed-up of more than a factor of three over
the streaming algorithm, whereas with smaller block-sizes we only achieve a speed-up up
to two. For all block sizes, the behavior and increase of the speed-up is similar, beginning
after the first refinement steps it rises and stagnates after step 10 to 20, depending on the
block-size, with smaller block-sizes stagnating earlier, which fits the earlier explanation as
subspace-skipping is more important for higher refined grids.

On the Five Dimensional Gaussian Data Set with Level Five and Level Seven Base
Grids

With an increased base-level to five (other parameters are again equivalent to the respective
SDSS DRS5 scenario), we can again see a behavior similar to grids with base-level two but
clearly also an impact of the larger regular sub-structure of the grid (Figures 5.47 and 5.51)
resulting in an increased speed-up (Figures 5.48 and 5.52). Note that, for this scenario, we
did not encounter the earlier memory related issues, as we did not run enough refinement
steps to generate the larger subgrids (see Table A.6 for details).

Increasing the base-level further to seven (other parameters still similar to the respective
SDSS DR5 scenario), we can again observe similar changes (see Figures 5.54 and 5.58).
A further change, however, is the reduced impact of the block-size on the operator BT«
(Figures 5.56 and 5.60), especially for a blocks-size larger than three, which may be caused
by hightened warp divergence. Nevertheless we can still present a speed-up of almost 3.5
for BTa and a speed-up ranging from 2.5 to 3 for Bv (Figures 5.55 and 5.59).

On the Ten Dimensional Gaussian Data Set with Level Two and Level Five Base
Grids

By increasing the dimensionality of the Gaussian data set to ten we can test if our observations
still hold true for higher-dimensional data sets. Due to this increase, we expect a significantly
higher number of subgrids to be generated by refinement and thus ultimately a decrease in
performance of the subspace-linear algorithm.

Let us first begin with a base-level of two and 20 refinement-steps employing the parameters
of previously used scenarios for this base-level. Following previous observations for the
five-dimensional Gaussian data set, we can again see a considerable impact of the block-size,
allowing us once more to beat the streaming algorithm (Figures 5.61 and 5.65). As expected,
however, the speed-up on the ten-dimensional data set turns out to be less than the speed-up
on the five-dimensional data set (Figures 5.62 and 5.66), for BT« this speed-up increases
over the refinement steps (for larger block-sizes), for Bv it stagnates approximately after
refinement step five, again most likely due to the influence of atomics. Nevertheless higher
block-sizes once more tend to achieve better results for both operators and we consistently
reach a speed-up higher one, specifically from approximately 1.2 to above 2.5 for the multi
evaluation and approximately two for the transposed multi evaluation.

81

5 Evaluation of Regression algorithms on the GPU

Subspace-Linear (Block-Size 1)
—e— Subspace-Linear (Block-Size 2)
Subspace-Linear (Block-Size 3)
—e— Subspace-Linear (Block-Size 4)
Subspace-Linear (Block-Size 5)

—e— Subspace-Linear (Block-Size 6)

Grid Level

Figure 5.39: Speed-up of the subspace-linear algorithm over the streaming algorithm for
Bv on the NVIDIA Tesla P100, using spatially adaptive sparse grids with base-
level seven, the SDSS DR5 data set, and 64 bit precision. Plotted over the
refinement steps.

3| Streaming (Tuned)

—e— Subspace-Linear (Block-Size 1)
Subspace-Linear (Block-Size 2)

—e— Subspace-Linear (Block-Size 3)
Subspace-Linear (Block-Size 4)

—e— Subspace-Linear (Block-Size 5)
Subspace-Linear (Block-Size 6)

Grid Level

Figure 5.40: Absolute duration of streaming and subspace-linear algorithms (with multiple
block-size values) for BT« on the NVIDIA Tesla P100, using spatially adaptive
sparse grids with base-level two, the five-dimensional Gaussian data set, and
64 bit precision. Plotted over the refinement steps.

82

5.3 The Subspace-Linear Algorithm

.‘.\- Subspace-Linear (Block-Size 1)
—e— Subspace-Linear (Block-Size 2)
Iy \/. Subspace-Linear (Block-Size 3)
7 —e— Subspace-Linear (Block-Size 4)
Subspace-Linear (Block-Size 5)
/ / —e— Subspace-Linear (Block-Size 6)
5 10 15 20 25 30
Grid Level

Figure 5.41: Speed-up of the subspace-linear algorithm over the streaming algorithm for

2.5 1

0.5 +

BTa on the NVIDIA Tesla P100, using spatially adaptive sparse grids with
base-level two, the five-dimensional Gaussian data set, and 64 bit precision.
Plotted over the refinement steps.

Subspace-Linear (Block-Size 1)
—e— Subspace-Linear (Block-Size 2)
Subspace-Linear (Block-Size 3)
—e— Subspace-Linear (Block-Size 4)
Subspace-Linear (Block-Size 5)
—e— Subspace-Linear (Block-Size 6)

5 10 15 20 25 30
Grid Level

Figure 5.42: Kernel duration of the subspace-linear algorithm (with multiple block-size

values) for BTa on the NVIDIA Tesla P100, using spatially adaptive sparse
grids with base-level two, the five-dimensional Gaussian data set, and 64 bit
precision. Plotted over the refinement steps.

83

5 Evaluation of Regression algorithms on the GPU

144 Preparation (Host)
—e— Surplus Initialization (Device)
127 Memory Transfers (Host to Device)
—— Kernel (Device)
1+ Memory Transfers (Device to Host)
0.8 +
=
0.6 T
0.4 +
0.2
0

Grid Level

Figure 5.43: Run-time composition of one complete execution of the subspace-linear al-
gorithm (with block-size of six) for BTa on the NVIDIA Tesla P100, using
spatially adaptive sparse grids with base-level two, the five-dimensional Gaus-
sian data set, and 64 bit precision. Plotted over the refinement steps.

Streaming (Tuned)
—e— Subspace-Linear (Block-Size 1)
Subspace-Linear (Block-Size 2)
—e— Subspace-Linear (Block-Size 3)
Subspace-Linear (Block-Size 4)
—e— Subspace-Linear (Block-Size 5)
Subspace-Linear (Block-Size 6)

Grid Level

Figure 5.44: Absolute duration of streaming and subspace-linear algorithms (with multiple
block-size values) for Bv on the NVIDIA Tesla P100, using spatially adaptive
sparse grids with base-level two, the five-dimensional Gaussian data set, and
64 bit precision. Plotted over the refinement steps.

84

5.3 The Subspace-Linear Algorithm

Subspace-Linear (Block-Size 1)
| —e— Subspace-Linear (Block-Size 2)
‘ Subspace-Linear (Block-Size 3)

3.5

—e— Subspace-Linear (Block-Size 4)
Subspace-Linear (Block-Size 5)
—e— Subspace-Linear (Block-Size 6)

Grid Level

Figure 5.45: Speed-up of the subspace-linear algorithm over the streaming algorithm for
Bv on the NVIDIA Tesla P100, using spatially adaptive sparse grids with base-
level two, the five-dimensional Gaussian data set, and 64 bit precision. Plotted
over the refinement steps.

4+ Subspace-Linear (Block-Size 1)
—e— Subspace-Linear (Block-Size 2)
Subspace-Linear (Block-Size 3)
—e— Subspace-Linear (Block-Size 4)
37 Subspace-Linear (Block-Size 5)
—e— Subspace-Linear (Block-Size 6)
—2
2,
-~
1 4
0

Grid Level

Figure 5.46: Kernel duration of the subspace-linear algorithm (with multiple block-size
values) for Bv on the NVIDIA Tesla P100, using spatially adaptive sparse
grids with base-level two, the five-dimensional Gaussian data set, and 64 bit
precision. Plotted over the refinement steps.

85

5 Evaluation of Regression algorithms on the GPU

Streaming (Tuned)
—e— Subspace-Linear (Block-Size 1)
1.5 | Subspace-Linear (Block-Size 2)
—e— Subspace-Linear (Block-Size 3)
Subspace-Linear (Block-Size 4)
—e— Subspace-Linear (Block-Size 5)
Subspace-Linear (Block-Size 6)

Grid Level

Figure 5.47: Absolute duration of streaming and subspace-linear algorithms (with multiple
block-size values) for BT« on the NVIDIA Tesla P100, using spatially adaptive
sparse grids with base-level five, the five-dimensional Gaussian data set, and
64 bit precision. Plotted over the refinement steps.

3.5 | Subspace-Linear (Block-Size 1)
—e— Subspace-Linear (Block-Size 2)

Subspace-Linear (Block-Size 3)
3t / —e— Subspace-Linear (Block-Size 4)

/4.\/- Subspace-Linear (Block-Size 5)
—e— Subspace-Linear (Block-Size 6)

Grid Level

Figure 5.48: Speed-up of the subspace-linear algorithm over the streaming algorithm for
BT« on the NVIDIA Tesla P100, using spatially adaptive sparse grids with
base-level five, the five-dimensional Gaussian data set, and 64 bit precision.
Plotted over the refinement steps.

86

5.3 The Subspace-Linear Algorithm

0.8 +

0.6

D4

0.2 +

Subspace-Linear (Block-Size 1)
—e— Subspace-Linear (Block-Size 2)
Subspace-Linear (Block-Size 3)
—e— Subspace-Linear (Block-Size 4)
Subspace-Linear (Block-Size 5)
—e— Subspace-Linear (Block-Size 6)

Grid Level

Figure 5.49: Kernel duration of the subspace-linear algorithm (with multiple block-size

0.5 4

0.4 +

0.2 |

values) for BTa on the NVIDIA Tesla P100, using spatially adaptive sparse
grids with base-level five, the five-dimensional Gaussian data set, and 64 bit
precision. Plotted over the refinement steps.

/ Preparation (Host)
—e— Surplus Initialization (Device)
Memory Transfers (Host to Device)

—e— Kernel (Device)
//‘” Memory Transfers (Device to Host)
o 7
o—a
e

Grid Level

Figure 5.50: Run-time composition of one complete execution of the subspace-linear al-

gorithm (with block-size of six) for BTa on the NVIDIA Tesla P100, using
spatially adaptive sparse grids with base-level five, the five-dimensional Gaus-
sian data set, and 64 bit precision. Plotted over the refinement steps.

87

5 Evaluation of Regression algorithms on the GPU

Streaming (Tuned)
—e— Subspace-Linear (Block-Size 1)
Subspace-Linear (Block-Size 2)
—e— Subspace-Linear (Block-Size 3)
” Subspace-Linear (Block-Size 4)
—e— Subspace-Linear (Block-Size 5)
Subspace-Linear (Block-Size 6)

Grid Level

Figure 5.51: Absolute duration of streaming and subspace-linear algorithms (with multiple
block-size values) for Bv on the NVIDIA Tesla P100, using spatially adaptive
sparse grids with base-level five, the five-dimensional Gaussian data set, and
64 bit precision. Plotted over the refinement steps.

Subspace-Linear (Block-Size 1)
—e— Subspace-Linear (Block-Size 2)
Subspace-Linear (Block-Size 3)
—e— Subspace-Linear (Block-Size 4)
Subspace-Linear (Block-Size 5)
—e— Subspace-Linear (Block-Size 6)

0 2 4 6 8 10 12 14 16 18 20
Grid Level

Figure 5.52: Speed-up of the subspace-linear algorithm over the streaming algorithm for
Bv on the NVIDIA Tesla P100, using spatially adaptive sparse grids with base-
level five, the five-dimensional Gaussian data set, and 64 bit precision. Plotted
over the refinement steps.

88

5.3 The Subspace-Linear Algorithm

1.2
Subspace-Linear (Block-Size 1)

—e— Subspace-Linear (Block-Size 2)
Subspace-Linear (Block-Size 3)
—e— Subspace-Linear (Block-Size 4)
Subspace-Linear (Block-Size 5)
—e— Subspace-Linear (Block-Size 6)

Grid Level

Figure 5.53: Kernel duration of the subspace-linear algorithm (with multiple block-size
values) for Bv on the NVIDIA Tesla P100, using spatially adaptive sparse
grids with base-level five, the five-dimensional Gaussian data set, and 64 bit
precision. Plotted over the refinement steps.

Streaming (Tuned)
0.8 71 —e— Subspace-Linear (Block-Size 1)
Subspace-Linear (Block-Size 2)
—e— Subspace-Linear (Block-Size 3)
06 | Subspace-Linear (Block-Size 4)
’ —e— Subspace-Linear (Block-Size 5)
Subspace-Linear (Block-Size 6)
o
04
0.2 | e
0 2 4 6 8 10

Grid Level

Figure 5.54: Absolute duration of streaming and subspace-linear algorithms (with multiple
block-size values) for BT« on the NVIDIA Tesla P100, using spatially adaptive
sparse grids with base-level seven, the five-dimensional Gaussian data set,
and 64 bit precision. Plotted over the refinement steps.

89

5 Evaluation of Regression algorithms on the GPU

Subspace-Linear (Block-Size 1)
—e— Subspace-Linear (Block-Size 2)
Subspace-Linear (Block-Size 3)
—e— Subspace-Linear (Block-Size 4)
Subspace-Linear (Block-Size 5)
—e— Subspace-Linear (Block-Size 6)

Grid Level

Figure 5.55: Speed-up of the subspace-linear algorithm over the streaming algorithm for
BTa on the NVIDIA Tesla P100, using spatially adaptive sparse grids with
base-level seven, the five-dimensional Gaussian data set, and 64 bit precision.
Plotted over the refinement steps.

0.35 #
Subspace-Linear (Block-Size 1)
—e— Subspace-Linear (Block-Size 2)
03 1 Subspace-Linear (Block-Size 3)
—e— Subspace-Linear (Block-Size 4)
0.25 + Subspace-Linear (Block-Size 5)
—e— Subspace-Linear (Block-Size 6)

0.1

5-102

Grid Level

Figure 5.56: Kernel duration of the subspace-linear algorithm (with multiple block-size
values) for BTa on the NVIDIA Tesla P100, using spatially adaptive sparse
grids with base-level seven, the five-dimensional Gaussian data set, and 64 bit
precision. Plotted over the refinement steps.

90

5.3 The Subspace-Linear Algorithm

0.25 1 Preparation (Host)

—e— Surplus Initialization (Device)
Memory Transfers (Host to Device)

0.2 + —— Kernel (Device)

Memory Transfers (Device to Host)

0.15 +

t [s]

Grid Level

Figure 5.57: Run-time composition of one complete execution of the subspace-linear al-
gorithm (with block-size of six) for BTa on the NVIDIA Tesla P100, using
spatially adaptive sparse grids with base-level seven, the five-dimensional
Gaussian data set, and 64 bit precision. Plotted over the refinement steps.

Streaming (Tuned)
—e— Subspace-Linear (Block-Size 1)
Subspace-Linear (Block-Size 2)
0.8 7 —e— Subspace-Linear (Block-Size 3)
Subspace-Linear (Block-Size 4)
—e— Subspace-Linear (Block-Size 5)
0.6 Subspace-Linear (Block-Size 6)

Grid Level

Figure 5.58: Absolute duration of streaming and subspace-linear algorithms (with multiple
block-size values) for Bv on the NVIDIA Tesla P100, using spatially adaptive
sparse grids with base-level seven, the five-dimensional Gaussian data set,
and 64 bit precision. Plotted over the refinement steps.

91

5 Evaluation of Regression algorithms on the GPU

Subspace-Linear (Block-Size 1)
—e— Subspace-Linear (Block-Size 2)
4.5 | Subspace-Linear (Block-Size 3)
—e— Subspace-Linear (Block-Size 4)

Subspace-Linear (Block-Size 5)

—e— Subspace-Linear (Block-Size 6)

Grid Level

Figure 5.59: Speed-up of the subspace-linear algorithm over the streaming algorithm for
Bv on the NVIDIA Tesla P100, using spatially adaptive sparse grids with
base-level seven, the five-dimensional Gaussian data set, and 64 bit precision.
Plotted over the refinement steps.

Subspace-Linear (Block-Size 1)
—e— Subspace-Linear (Block-Size 2)
Subspace-Linear (Block-Size 3)
—e— Subspace-Linear (Block-Size 4)
Subspace-Linear (Block-Size 5)
—e— Subspace-Linear (Block-Size 6)

Grid Level

Figure 5.60: Kernel duration of the subspace-linear algorithm (with multiple block-size
values) for Bv on the NVIDIA Tesla P100, using spatially adaptive sparse
grids with base-level seven, the five-dimensional Gaussian data set, and 64 bit
precision. Plotted over the refinement steps.

92

5.3 The Subspace-Linear Algorithm

Streaming (Tuned)
14 ¢ —e— Subspace-Linear (Block-Size 1)
Subspace-Linear (Block-Size 2)
12 7 —e— Subspace-Linear (Block-Size 3)
Subspace-Linear (Block-Size 4)
10 —e— Subspace-Linear (Block-Size 5)
Subspace-Linear (Block-Size 6)
8 4+
o
-~ 6 4+
4 4
2 4+

Grid Level

Figure 5.61: Absolute duration of streaming and subspace-linear algorithms (with multiple
block-size values) for BTa on the NVIDIA Tesla P100, using spatially adaptive
sparse grids with base-level two, the ten-dimensional Gaussian data set, and
64 bit precision. Plotted over the refinement steps.

4.5 + /:f.//.< Subspace-Linear (Block-Size 1)
/V —e— Subspace-Linear (Block-Size 2)

4+ Subspace-Linear (Block-Size 3)
,/’/ —e— Subspace-Linear (Block-Size 4)

3.5 + Subspace-Linear (Block-Size 5)
—e— Subspace-Linear (Block-Size 6)

Speecfl\;Up
(@23

o
[N}
N
(@]
oo
=
o
=
[N}
—
S
=
[«
=
oo
[\~}
o

Grid Level

Figure 5.62: Speed-up of the subspace-linear algorithm over the streaming algorithm for
BT« on the NVIDIA Tesla P100, using spatially adaptive sparse grids with
base-level two, the ten-dimensional Gaussian data set, and 64 bit precision.
Plotted over the refinement steps.

93

5 Evaluation of Regression algorithms on the GPU

t [s]

Subspace-Linear (Block-Size 1)
—e— Subspace-Linear (Block-Size 2)
Subspace-Linear (Block-Size 3)
—e— Subspace-Linear (Block-Size 4)
Subspace-Linear (Block-Size 5)

—e— Subspace-Linear (Block-Size 6)

Grid Level

Figure 5.63: Kernel duration of the subspace-linear algorithm (with multiple block-size

2.5

0.5

values) for BTa on the NVIDIA Tesla P100, using spatially adaptive sparse
grids with base-level two, the ten-dimensional Gaussian data set, and 64 bit
precision. Plotted over the refinement steps.

/ Preparation (Host)
—e— Surplus Initialization (Device)

Memory Transfers (Host to Device)
—o— Kernel (Device)
Memory Transfers (Device to Host)

Grid Level

Figure 5.64: Run-time composition of one complete execution of the subspace-linear al-

94

gorithm (with block-size of six) for BTa on the NVIDIA Tesla P100, using
spatially adaptive sparse grids with base-level two, the ten-dimensional Gaus-
sian data set, and 64 bit precision. Plotted over the refinement steps.

5.3 The Subspace-Linear Algorithm

Streaming (Tuned)
—e— Subspace-Linear (Block-Size 1)
Subspace-Linear (Block-Size 2)
—e— Subspace-Linear (Block-Size 3)
Subspace-Linear (Block-Size 4)
—e— Subspace-Linear (Block-Size 5)
Subspace-Linear (Block-Size 6)

Grid Level

Figure 5.65: Absolute duration of streaming and subspace-linear algorithms (with multiple

3

6

)
5 q

block-size values) for Bv on the NVIDIA Tesla P100, using spatially adaptive
sparse grids with base-level two, the ten-dimensional Gaussian data set, and
64 bit precision. Plotted over the refinement steps.

Subspace-Linear (Block-Size 1)
—e— Subspace-Linear (Block-Size 2)
Subspace-Linear (Block-Size 3)
—e— Subspace-Linear (Block-Size 4)
Subspace-Linear (Block-Size 5)
—e— Subspace-Linear (Block-Size 6)

\
| AT T

Grid Level

Figure 5.66: Speed-up of the subspace-linear algorithm over the streaming algorithm for

Bv on the NVIDIA Tesla P100, using spatially adaptive sparse grids with base-
level two, the ten-dimensional Gaussian data set, and 64 bit precision. Plotted
over the refinement steps.

95

5 Evaluation of Regression algorithms on the GPU

Increasing the base-level to five (and using the refinement-parameters from previous base-
level five scenarios), we can again see an overall increase in the speed-up of the subspace-
linear algorithm over the streaming algorithm, especially for smaller sized grids while it is
somewhat similar on larger sized grids (Figures 5.69, 5.69, 5.73 and 5.73). This is most
likely caused by the faster reduction in points per subspace, observable for the scenario with
base-level seven (compare Table A.8 and Table A.9).

Due to the comparatively small maximum number of potential grid points, i.e. the number of
grid points if all subgrids were full, we encounter no memory-related issues on both scenarios.
Again, the speed-up can be further improved if the preparation step is executed only when
the grid changes, e.g. when the algorithm is applied for refinement (Figure 5.71).

5.3.3 Conclusion and Outlook

With the results from the previous section, we can present speed-ups of the subspace-linear
algorithm over the highly optimized and parameter-tuned streaming algorithm in all except
the adaptive scenario for the HIGGS data set. This data set is particularly challenging
for the subspace-linear algorithm due to its high dimensionality (28 dimensions), its high
irregularity, and the resulting number of approximately 1.9 million subspaces. Aside from
this scenario, the subspace-linear algorithm outperforms the parameter-tuned streaming
algorithm by margins largely depending on the data set. By comparison of the SDSS DR5
data set with the five-dimensional Gaussian data set, we saw that the data set itself is an
important factor to achieve higher speed-ups. While the structures both the data sets are
vastly different, we assume that most of the changes in speed-up are related to the, at least
partially, ordered structure of the Gaussian data sets, due to which points adjacent in the
feature space are likely to be stored close to each other in the data set. A concrete proof
of this assumption would require further investigation, such as testing against a shuffeled
version of the Gaussian data set, however, we think that it should at least be considered
to sort the data set beforehand according to a space-filling Z-order curve for moderate-
dimensional problems (as this has only to be done once for the data set, assuming it does
not change). For higher-dimensional problems, the impact of such a sorting step is likely to
be reduced, as more dimensions inherently lead to more subspaces for the same number of
data points.

All evaluations presented in this chapter include the preparation steps in their results. This
means that the speed-ups presented could be, depending on the data set and scenario used,
further improved, as this step is substantially more time consuming for the subspace-linear
algorithm than for the streaming algorithm and it only has to be executed after the grid has
changed. Note, however, that the run-time of these preparation steps may be significantly
smaller on frameworks other than SG++, as they depend on the representation of the grid.
For such frameworks, the streaming algorithm may have a longer preparation time.

A somewhat surprising observation we made regarding NVIDIA’s Pascal architecture is,
that the performance of 64 bit atomic operations improved significantly in comparison to
previous architectures, due to NVIDIA’s re-design of those [NVI16]. This allows for an

96

5.3 The Subspace-Linear Algorithm

Subspace-Linear (Block-Size 1)
10 + —e— Subspace-Linear (Block-Size 2)

Subspace-Linear (Block-Size 3)
—e— Subspace-Linear (Block-Size 4)

81 Subspace-Linear (Block-Size 5)
—e— Subspace-Linear (Block-Size 6)
6 4+
o
= /|
4t /
2 4+

Grid Level

Figure 5.67: Kernel duration of the subspace-linear algorithm (with multiple block-size
values) for Bv on the NVIDIA Tesla P100, using spatially adaptive sparse
grids with base-level two, the ten-dimensional Gaussian data set, and 64 bit
precision. Plotted over the refinement steps.

Streaming (Tuned)
—e— Subspace-Linear (Block-Size 1)
Subspace-Linear (Block-Size 2)
—e— Subspace-Linear (Block-Size 3)
Subspace-Linear (Block-Size 4)
—e— Subspace-Linear (Block-Size 5)
Subspace-Linear (Block-Size 6)

Grid Level

Figure 5.68: Absolute duration of streaming and subspace-linear algorithms (with multiple
block-size values) for BT« on the NVIDIA Tesla P100, using spatially adaptive
sparse grids with base-level five, the ten-dimensional Gaussian data set, and
64 bit precision. Plotted over the refinement steps.

97

5 Evaluation of Regression algorithms on the GPU

Subspace-Linear (Block-Size 1)
—e— Subspace-Linear (Block-Size 2)
Subspace-Linear (Block-Size 3)
—e— Subspace-Linear (Block-Size 4)
Subspace-Linear (Block-Size 5)

—e— Subspace-Linear (Block-Size 6)

Grid Level

Figure 5.69: Speed-up of the subspace-linear algorithm over the streaming algorithm for

BTa on the NVIDIA Tesla P100, using spatially adaptive sparse grids with
base-level five, the ten-dimensional Gaussian data set, and 64 bit precision.
Plotted over the refinement steps.

Subspace-Linear (Block-Size 1)
—e— Subspace-Linear (Block-Size 2)
Subspace-Linear (Block-Size 3)
—e— Subspace-Linear (Block-Size 4)
Subspace-Linear (Block-Size 5)
—e— Subspace-Linear (Block-Size 6)

Grid Level

Figure 5.70: Kernel duration of the subspace-linear algorithm (with multiple block-size

98

values) for BTa on the NVIDIA Tesla P100, using spatially adaptive sparse
grids with base-level five, the ten-dimensional Gaussian data set, and 64 bit
precision. Plotted over the refinement steps.

5.3 The Subspace-Linear Algorithm

Preparation (Host)
—e— Surplus Initialization (Device)
1.5 + Memory Transfers (Host to Device)
- Kernel (Device)

Memory Transfers (Device to Host)

Grid Level

Figure 5.71: Run-time composition of one complete execution of the subspace-linear al-
gorithm (with block-size of six) for BTa on the NVIDIA Tesla P100, using
spatially adaptive sparse grids with base-level five, the ten-dimensional Gaus-
sian data set, and 64 bit precision. Plotted over the refinement steps.

Streaming (Tuned)
—e— Subspace-Linear (Block-Size 1)
Subspace-Linear (Block-Size 2)
—e— Subspace-Linear (Block-Size 3)
Subspace-Linear (Block-Size 4)
—e— Subspace-Linear (Block-Size 5)
Subspace-Linear (Block-Size 6)

Grid Level

Figure 5.72: Absolute duration of streaming and subspace-linear algorithms (with multiple
block-size values) for Bv on the NVIDIA Tesla P100, using spatially adaptive
sparse grids with base-level five, the ten-dimensional Gaussian data set, and
64 bit precision. Plotted over the refinement steps.

99

5 Evaluation of Regression algorithms on the GPU

Subspace-Linear (Block-Size 1)
—e— Subspace-Linear (Block-Size 2)
Subspace-Linear (Block-Size 3)
—e— Subspace-Linear (Block-Size 4)
Subspace-Linear (Block-Size 5)

—e— Subspace-Linear (Block-Size 6)

Grid Level

Figure 5.73: Speed-up of the subspace-linear algorithm over the streaming algorithm for
Bv on the NVIDIA Tesla P100, using spatially adaptive sparse grids with base-
level five, the ten-dimensional Gaussian data set, and 64 bit precision. Plotted

over the refinement steps.

Subspace-Linear (Block-Size 1)
—e— Subspace-Linear (Block-Size 2)
Subspace-Linear (Block-Size 3)
—e— Subspace-Linear (Block-Size 4)
Subspace-Linear (Block-Size 5)
—e— Subspace-Linear (Block-Size 6)

Grid Level

Figure 5.74: Kernel duration of the subspace-linear algorithm (with multiple block-size
values) for Bv on the NVIDIA Tesla P100, using spatially adaptive sparse
grids with base-level five, the ten-dimensional Gaussian data set, and 64 bit

precision. Plotted over the refinement steps.

100

5.4 The Subspace-Adaptive Algorithm

efficient implementation of the operator Bv with the subspace-linear algorithm on the
Pascal architecture. While the use of atomics still has a significant impact, as we could see
in the different behavior of the operators BTa and Bv even though their implementation
is, apart from the atomic operation, largely identical, we were not required to make any
algorithmic changes or specific optimizations to be competitive with the streaming algorithm.
Regarding the subject of optimizations, we only employed basic loop unrolling via a recursive
C++ template and introduced the processing of multiple data point evaluations in a single
thread, thus, further optimization of our implementation may be possible. As we have seen,
the number of evaluations processed in a single thread has a considerable impact on the
run-time of the algorithm, especially for partially ordered data sets. For such data sets,
we may be able to further improve the run-time by abandoning the concept of evaluating
multiple data points per thread and instead evaluate a single subspace per thread-block,
reducing the required surplus and subspace-node load operations to one per thread-block.
Subspace-skipping could then be done, for example, with CUDA’s warp vote functions,
however, further evaluation of their performance would be required to give a definitive
answer for this.

A severe limitation of the subspace-linear algorithm, introducing performance penalties for
highly refined grids, is its memory requirement. We could observe this problem on several
scenarios, even preventing us from executing the algorithm on some of the involved grids.
Note that this limit would be especially severe if we would choose 32 bit integers instead of
64 bit integers to address the surplus values. It may be possible to circumvent the issue of
execution by use of NVIDIA’s unified memory capabilities [NVI16; NVI17], allowing the GPU
to access CPU-memory by use of paging, however, we aim to provide a different solution for
this problem in the next chapter.

5.4 The Subspace-Adaptive Algorithm

For comparisons, we use the parameter-tuned and highly optimized OpenCL streaming
algorithm provided by SG++, as well as the CUDA implementation of the subspace-linear
algorithm described in-depth in the previous section. Note that both of these algorithms
also form the base of our implementation of the subspace-linear algorithm. In all following
evaluations, we will only show results where both algorithms have been executed at least
for some grids in the scenario, except for the subspace-adaptive algorithm with thresholds
p = 0 and v = 0, which executes only the subspace-linear algorithm and is included as a
reference for it.

5.4.1 Spatially Adaptive Scenarios

As it makes little sense to apply the streaming algorithm on completely regular sparse
grids, see the results of the previous section, we exclusively evaluate the subspace-adaptive
algorithm on spatially adaptive sparse grid scenarios.

101

5 Evaluation of Regression algorithms on the GPU

On the SDSS DR5 Data Set with a Level Two Base Grid

We begin again with the SDSS DR5 data set, a base grid of level two, 30 surplus-based
refinement steps each refining 80 points refined per step with a maximum of 120 CG solver
iterations, and a regularization factor of 1 x 107°.

If we look at the absolute duration of the subspace-adaptive algorithm for the operator BT«
in comparison to its two competitors Figure 5.75, the subspace-linear and the streaming
algorithm, we can see that it, depending on the chosen threshold values and refinement steps,
performs similar or somewhat worse than the streaming algorithm and notably worse than
the subspace-linear algorithm, with the exception of the higher refinement steps where the
subspace-linear algorithm runs into memory-related problems (described in Section 5.3.2).
This comparison, however, includes the preparation steps required for each algorithm. Due
to our implementation of the subspace-adaptive algorithm as modular solution which allows
us to switch out the implementation of the sub-algorithms (streaming and subspace-linear),
an additional preparation step is required. This preparation step has again only to be
executed once the grid changes and is the main reason for the different execution times of
the subspace-linear algorithm and the subspace-adaptive algorithm with threshold-values
of p =0 and u = 0 (compare Figure 5.75). Note that the subspace-adaptive algorithm with
this threshold will always select the subspace-linear algorithm for all subgrids.

Excluding all preparation steps (of the subspace-linear and subspace-adaptive algorithms)
yields a significant change in run-time (Figure 5.76). Now the subspace-adaptive algorithm
with p = 0 and u = 0 performs similar to the subspace-linear algorithm, as it should (with the
notable exception of refinement steps 27 and 28 which still show some impact of the excessive
memory use, however, inexplicably to us, this seems to be reduced). We are, depending on
the selected threshold values, able to lessen or remove the impact of the memory-related
issues encountered on the subspace-linear algorithm (discussed in Section 5.3.2), leading to
speed-up over this algorithm for the refinement-steps 27 and higher. For the operator Bv,
we can observe a similar behavior when taking into account the behavior of this operator
for the streaming and subspace-linear algorithms (Figure 5.79).

While we tried to tune the threshold values according to the properties of the grids and
subgrids involved in this scenario (see Appendix A Table A.1 for details) and evaluated
different combinations, we can see that their selection is not perfect. Ideally, we would want
a run-time better than both, the subspace-linear algorithm and the streaming algorithm, as
well as combination of these that does not require as much memory as the subspace-linear
algorithm alone, thus avoiding memory-related problems. Especially in Figure 5.77, we
can observe that the grid point-based selector brings, at least in this scenario, no benefit
at all. The overhead introduced by running the streaming kernel in succession to the
subspace-linear one seems to be larger than the overhead of the subspace-linear algorithm
over the streaming algorithm for the subgrids with only a few number of points. However,
we can also observe that the point-base selector has a significant influence for the higher
refinement steps, especially as the streaming-algorithm is required on these steps due to
the high memory-consumption of the subspace-linear algorithm. We originally designed
the utilization threshold to handle the problems encountered in these steps, however our

102

5.4 The Subspace-Adaptive Algorithm

threshold-values for this step have proven to be either too aggressive (in case of u = 2 x 10~7
and v = 5 x 1077), thus not selecting enough large subgrids to be executed with the
streaming algorithm and therefore not resolving memory problems, or too lax (in case
of u = 1 x 1077), leading to performance-penalties by selecting too many subgrids to be
executed with the streaming algorithm (Figure 5.76). Based on these observations, we can
conclude that a relative measure, such as utilization may not be the best choice, as it is easily
influenced by the number of used points on the subgrid. A probably better solution would
be the separation of this threshold into two thresholds, checking the maximum possible size
of the subgrid and if this above a chosen value schedule it to be executed with the streaming
algorithm if it does not have at least a larger amount of points, determined by the second
threshold value.

By switching our point-based threshold value from p = 0 to p = 4 after refinement step
26 (or using a new selector as proposed above), we can present a speed-up over the
streaming algorithm on all grids, with execution times roughly equivalent to the subspace-
linear algorithm, and even undercutting these in refinement steps 27 and 28 (Figures 5.78
and 5.80). Note that with the appropriate threshold values, we are able to continue execution
on refinement steps 29 and 30, where the subspace-linear algorithm could not be executed
at all due to its excessive memory requirements.

On the SDSS DR5 Data Set with a Level Five and Seven Base Grid

Using a regular sparse grid with level five as base for the refinement and slightly changing
the parameters (see Table 5.4 for details) on the same data set leads to similar results,
especially when taking our observations previously made on the subspace-linear algorithm
into account (compare Figures 5.81 to 5.84 and Figures 5.75 to 5.80 as well as Section 5.3.2).
We encounter the same problems with the utilization-based threshold selector, due to which
we, in this case, are not able to out-perform the subspace-linear algorithm, even on the
higher refinement steps.

Increasing the base-level further to seven follows this pattern (Figures 5.85 to 5.88). We
are again unable to beat the subspace-linear algorithm, as it has no severe memory-related
performance penalties on this scenario.

On the Five-Dimensional Gaussian Data Set

For the five-dimensional Gaussian data set we reach conclusions equivalent to the ones we
already reached on the SDSS DR5 data set, with respect to the changes in performance
of the subspace-linear algorithm already discussed in Section 5.3.2: We can overcome the
memory related issues of the subspace-linear algorithm, are able to beat the streaming
algorithm on all involved grids, but are unable to beat the subspace-linear algorithm when
it does not require an excessive amount of memory (Figures 5.89 to 5.104). An interesting
observation we can make for the scenario with base-level two, is the different impact of
the point-threshold in higher refinement steps for the transposed multi-evaluation Bv.

103

5 Evaluation of Regression algorithms on the GPU

Streaming (Tuned)

e Subspace-Linear (Block-Size 5)
Subspace-Adaptive (p = 0,u = 0)
.ﬁ —e— Subspace-Adaptive (p = 0,u = 5 - 10~7)

Subspace-Adaptive (p = 0,u = 2-10~7)
—e— Subspace-Adaptive (p = 0,u = 1-10"7)
Subspace-Adaptive (p = 4,u = 0)
Subspace-Adaptive (p = 4,u = 5-10"7)
Subspace-Adaptive (p = 4,u = 2-10~7)
—e— Subspace-Adaptive (p = 4,u = 1-1077)

5 10 15 20 25 30
Refinement Step

Figure 5.75: Absolute duration of the subspace-adaptive algorithm in comparison to the

subspace-linear and streaming algorithm for BT« on the NVIDIA Tesla P100,
using spatially adaptive sparse grids with base-level two, the SDSS DR5 data
set, and 64 bit precision. All timings include preparation steps. All executions
of the subspace-linear algorithm (including from the subspace-adaptive) use
a block-size of five.

Streaming (Tuned)
e Subspace-Linear (Block-Size 5)
Subspace-Adaptive (p = 0,u = 0)
—eo— Subspace-Adaptive (p = 0,u = 5-1077)
Subspace-Adaptive (p = 0,u = 2-10~7)
—e— Subspace-Adaptive (p = 0,u = 1-1077)
Subspace-Adaptive (p = 4,u = 0)
Subspace-Adaptive (p = 4,u = 5-10"7)
Subspace-Adaptive (p = 4,u =2-10~7)
—e— Subspace-Adaptive (p = 4,u =1-10"7)

5 10 15 20 25 30
Refinement Step

Figure 5.76: Absolute duration of the subspace-adaptive algorithm in comparison to the

104

subspace-linear and streaming algorithm for BT« on the NVIDIA Tesla P100,
using spatially adaptive sparse grids with base-level two, the SDSS DR5
data set, and 64 bit precision. Timings for the subspace-linear and subspace-
adaptive algorithms do not include preparation steps. All executions of the
subspace-linear algorithm (including from the subspace-adaptive) use a block-
size of five.

5.4 The Subspace-Adaptive Algorithm

Streaming (Tuned)
e Subspace-Linear (Block-Size 5)
Subspace-Adaptive (p = 0,u = 0)
—e— Subspace-Adaptive (p = 0,u = 5-10~7)
Subspace-Adaptive (p = 4,u = 0)
—e— Subspace-Adaptive (p = 4,u = 5-10~7)
Subspace-Adaptive (p = 8,u = 0)
Subspace-Adaptive (p = 8,u = 5-10"7)
Subspace-Adaptive (p = 16, u = 0)
—e— Subspace-Adaptive (p = 16,u = 5-10"7)

Refinement Step

Figure 5.77: Absolute duration of the subspace-adaptive algorithm in comparison to the
subspace-linear and streaming algorithm for BT« on the NVIDIA Tesla P100,
using spatially adaptive sparse grids with base-level two, the SDSS DR5
data set, and 64 bit precision. Timings for the subspace-linear and subspace-
adaptive algorithms do not include preparation steps. All executions of the
subspace-linear algorithm (including from the subspace-adaptive) use a block-
size of five.

Subspace-Adaptive (p = 0,u = 0)
—e— Subspace-Adaptive (p = 0,u = 5-1077)
Subspace-Adaptive (p = 0,u =2-10~7)

r\,//'/ /.\\‘.
~ /,‘ / \
7 .
% —e— Subspace-Adaptive (p = 0,u = 1-10"7)

\\H'/
N oos \\H Subspace-Adaptive (p = 4, u = 0)
./.

/ —e— Subspace-Adaptive (p = 4,u = 5-10"7)
15 1+ ' '7-/\\% U Subspace-Adaptive (p = 4,u =2-10"7)

Subspace-Adaptive (p = 4,u = 1-10"7)

Speed-Up
AN

74 N I N S B

0 5 10 15 20 25 30
Refinement Step

Figure 5.78: Speed-up of the subspace-adaptive algorithm over the streaming algorithm
for BTa on the NVIDIA Tesla P100, using spatially adaptive sparse grids with
base-level two, the SDSS DR5 data set, and 64 bit precision. Preparation steps
are not included. A block-size of five has been chosen for all executions of
the subspace-linear algorithm (including those from the subspace-adaptive
algorithm).

105

5 Evaluation of Regression algorithms on the GPU

0.5 +

0.4 +

+0.3

;
v

Refinement Step

Streaming (Tuned)
e Subspace-Linear (Block-Size 1)
Subspace-Adaptive (p = 0,u = 0)
—e— Subspace-Adaptive (p = 0,u = 5 - 10~7)
Subspace-Adaptive (p = 0,u = 2-10~7)
—e— Subspace-Adaptive (p = 0,u = 1-10"7)
Subspace-Adaptive (p = 4,u = 0)
Subspace-Adaptive (p = 4,u = 5-10"7)
Subspace-Adaptive (p = 4,u =2-10"7)
—e— Subspace-Adaptive (p = 4,u = 1-1077)

Figure 5.79: Absolute duration of the subspace-adaptive algorithm in comparison to the

subspace-linear and streaming algorithm for Bv on the NVIDIA Tesla P100, us-
ing spatially adaptive sparse grids with base-level two, the SDSS DR5 data set,

and 64 bit precision. Timings for the subspace-linear and subspace-adaptive

algorithms do not include preparation steps. All executions of the subspace-
linear algorithm (including from the subspace-adaptive) use a block-size of

one.

Refinement Step

Figure 5.80: Speed-up of the subspace-adaptive algorithm over the streaming algorithm
for Bv on the NVIDIA Tesla P100, using spatially adaptive sparse grids with
base-level two, the SDSS DR5 data set, and 64 bit precision. Preparation steps
are not included. A block-size of one has been chosen for all executions of
the subspace-linear algorithm (including those from the subspace-adaptive

algorithm).

106

Subspace-Adaptive (p = 0,u = 0)
—e— Subspace-Adaptive (p = 0,u = 5-10"7)
Subspace-Adaptive (p = 0,u = 2-10~7)
—e— Subspace-Adaptive (p = 0,u = 1-1077)
Subspace-Adaptive (p = 4,u = 0)
—e— Subspace-Adaptive (p = 4,u = 5-1077)
Subspace-Adaptive (p = 4,u =2-10~7)
Subspace-Adaptive (p = 4,u =1-10"7)

5.4 The Subspace-Adaptive Algorithm

Streaming (Tuned)

0.5 +
e Subspace-Linear (Block-Size 5)
Subspace-Adaptive (p = 0,u = 0)
04 | —e— Subspace-Adaptive (p = 0,u = 1-1075)

Subspace-Adaptive (p = 0,u = 1-10~9)
—e— Subspace-Adaptive (p = 0,u = 2-1077)
0.3 Subspace-Adaptive (p = 4,u = 0)

Subspace-Adaptive (p = 4,u = 1-107?)

Subspace-Adaptive (p = 4,u = 1-1079)
—e— Subspace-Adaptive (p = 4,u = 2-1077)

Refinement Step

Figure 5.81: Absolute duration of the subspace-adaptive algorithm in comparison to the
subspace-linear and streaming algorithm for BT« on the NVIDIA Tesla P100,
using spatially adaptive sparse grids with base-level five, the SDSS DR5 data set,
and 64 bit precision. Timings for the subspace-linear and subspace-adaptive
algorithms do not include preparation steps. All executions of the subspace-
linear algorithm (including from the subspace-adaptive) use a block-size of
five.

Subspace-Adaptive (p = 0,u = 0)
—e— Subspace-Adaptive (p = 0,u = 1-107?)
Subspace-Adaptive (p = 0,u = 1-10~9)
—e— Subspace-Adaptive (p = 0,u =2-10"7)
Subspace-Adaptive (p = 4,u = 0)
—e— Subspace-Adaptive (p = 4,u = 1-1075)
Subspace-Adaptive (p = 4,u = 1-1079)
Subspace-Adaptive (p = 4,u = 2-10~7)

Refinement Step

Figure 5.82: Speed-up of the subspace-adaptive algorithm over the streaming algorithm
for BTa on the NVIDIA Tesla P100, using spatially adaptive sparse grids with
base-level five, the SDSS DR5 data set, and 64 bit precision. Preparation steps
are not included. A block-size of five has been chosen for all executions of
the subspace-linear algorithm (including those from the subspace-adaptive
algorithm).

107

5 Evaluation of Regression algorithms on the GPU

0.5

Streaming (Tuned)
e Subspace-Linear (Block-Size 1)

2 Subspace-Adaptive (p = 0,u = 0)
| | —— Subspace-Adaptive (p = 0,u = 1-105)
/%. Subspace-Adaptive (p = 0,u = 1-10~9)
Ve —e— Subspace-Adaptive (p = 0,u = 2-1077)

Subspace-Adaptive (p = 4,u = 0)
Subspace-Adaptive (p = 4,u = 1-107?)
Subspace-Adaptive (p = 4,u = 1-1079)
—e— Subspace-Adaptive (p = 4,u = 2-1077)

Refinement Step

Figure 5.83: Absolute duration of the subspace-adaptive algorithm in comparison to the

subspace-linear and streaming algorithm for Bv on the NVIDIA Tesla P100,
using spatially adaptive sparse grids with base-level five, the SDSS DR5 data set,
and 64 bit precision. Timings for the subspace-linear and subspace-adaptive
algorithms do not include preparation steps. All executions of the subspace-
linear algorithm (including from the subspace-adaptive) use a block-size of
one.

Subspace-Adaptive (p = 0,u = 0)
—e— Subspace-Adaptive (p = 0,u = 1-107?)
Subspace-Adaptive (p = 0,u = 1-10~9)
—e— Subspace-Adaptive (p = 0,u =2-10"7)
Subspace-Adaptive (p = 4,u = 0)
—e— Subspace-Adaptive (p = 4,u = 1-1075)
Subspace-Adaptive (p = 4,u = 1-1079)
Subspace-Adaptive (p = 4,u = 2-10~7)

| \ g \ A ZA \o
SN

| ANt

L. A/

L —— 1 1 1 1 1 1 1 |

0 4 6 8 10 12 14 16 18 20

Refinement Step

Figure 5.84: Speed-up of the subspace-adaptive algorithm over the streaming algorithm

108

for Bv on the NVIDIA Tesla P100, using spatially adaptive sparse grids with
base-level five, the SDSS DR5 data set, and 64 bit precision. Preparation steps
are not included. A block-size of one has been chosen for all executions of
the subspace-linear algorithm (including those from the subspace-adaptive
algorithm).

5.4 The Subspace-Adaptive Algorithm

Streaming (Tuned)
0.4 | e Subspace-Linear (Block-Size 5)
Subspace-Adaptive (p = 0,u = 0)
—e— Subspace-Adaptive (p = 0,u = 1-1075)
Subspace-Adaptive (p = 0,u = 2 - 10~9)
—e— Subspace-Adaptive (p = 0,u = 1-1075)
Subspace-Adaptive (p = 4,u = 0)
Subspace-Adaptive (p = 4,u = 1-107?)
Subspace-Adaptive (p = 4,u = 2 - 109)
—e— Subspace-Adaptive (p = 4,u = 1-1076)

Refinement Step

Figure 5.85: Absolute duration of the subspace-adaptive algorithm in comparison to the
subspace-linear and streaming algorithm for BT« on the NVIDIA Tesla P100,
using spatially adaptive sparse grids with base-level seven, the SDSS DR5
data set, and 64 bit precision. Timings for the subspace-linear and subspace-
adaptive algorithms do not include preparation steps. All executions of the
subspace-linear algorithm (including from the subspace-adaptive) use a block-

size of five.
4.5 R
Subspace-Adaptive (p = 0,u = 0)
—e— Subspace-Adaptive (p = 0,u = 1-107?)
41 Subspace-Adaptive (p = 0,u = 2 - 10~9)
f —e— Subspace-Adaptive (p = 0,u = 1-1079)
Subspace-Adaptive (p = 4,u = 0)
3.5 | —e— Subspace-Adaptive (p = 4,u = 1-1075)
Subspace-Adaptive (p = 4,u = 2 - 10~9)
a, \ Subspace-Adaptive (p = 4,u = 1-10~9)
o
5]
()
a,
%)
2.5
7 - =%
2 1 U =%
0 2 4 6 8 10 12 14

Refinement Step

Figure 5.86: Speed-up of the subspace-adaptive algorithm over the streaming algorithm
for BTa on the NVIDIA Tesla P100, using spatially adaptive sparse grids with
base-level seven, the SDSS DR5 data set, and 64 bit precision. Preparation
steps are not included. A block-size of five has been chosen for all executions
of the subspace-linear algorithm (including those from the subspace-adaptive
algorithm).

109

5 Evaluation of Regression algorithms on the GPU

Streaming (Tuned)
e Subspace-Linear (Block-Size 1)
Subspace-Adaptive (p = 0,u = 0)
—e— Subspace-Adaptive (p = 0,u = 1-1075)

/’ Subspace-Adaptive (p = 0,u = 2 - 10~9)

/ —e— Subspace-Adaptive (p = 0,u = 1-1075)
/ Subspace-Adaptive (p = 4,u = 0)

/ Subspace-Adaptive (p = 4,u = 1-107?)

Subspace-Adaptive (p = 4,u = 2 - 109)
—e— Subspace-Adaptive (p = 4,u = 1-1076)

4 6 8 10 12 14
Refinement Step

Figure 5.87: Absolute duration of the subspace-adaptive algorithm in comparison to the

—e— Subspace-Adaptive (p = 4,u = 1-1075)
Subspace-Adaptive (p = 4,u = 2 - 10~9)

subspace-linear and streaming algorithm for Bv on the NVIDIA Tesla P100,
using spatially adaptive sparse grids with base-level seven, the SDSS DR5
data set, and 64 bit precision. Timings for the subspace-linear and subspace-
adaptive algorithms do not include preparation steps. All executions of the
subspace-linear algorithm (including from the subspace-adaptive) use a block-
size of one.

Subspace-Adaptive (p = 0,u = 0)
—e— Subspace-Adaptive (p = 0,u = 1-1075)
Subspace-Adaptive (p = 0,u = 2 - 10~9)
—e— Subspace-Adaptive (p = 0,u = 1-1076)
Subspace-Adaptive (p = 4,u = 0)

Subspace-Adaptive (p = 4,u = 1-1079)

R e e il

4 6 8 10 12 14
Refinement Step

Figure 5.88: Speed-up of the subspace-adaptive algorithm over the streaming algorithm

110

for Bv on the NVIDIA Tesla P100, using spatially adaptive sparse grids with
base-level seven, the SDSS DR5 data set, and 64 bit precision. Preparation
steps are not included. A block-size of one has been chosen for all executions
of the subspace-linear algorithm (including those from the subspace-adaptive
algorithm).

5.4 The Subspace-Adaptive Algorithm

Generally, a point-threshold of p = 4 has been proven to be the best overall selection (in
our limited set of tested parameters) other than p = 0 for both operators, BT« and Bv, see
for example Figures 5.90 and 5.99. On this scenario, however, a point-threshold of p = 8
performs notably better than p = 4 for Bv on the final six refinement steps (Figure 5.93).
It make sense, that, for some workloads, the best point threshold value tends to be higher
for Bv than for BTa due to the use of atomics in the subspace-linear algorithm, which
introduces an additional overhead on a per grid-point basis, as the results of this operator
are accumulated per grid-point (by use of said atomics).

On the Ten-Dimensional Gaussian Data Set

For the ten-dimensional Gaussian data set we can again observe similar results with respect to
the previous evaluations of this data set for the subspace-linear agorithm and the evaluations
of the five-dimensional Gaussian data set (Figures 5.105 to 5.113). Due to the higher
kernel execution times, the preparation steps are relatively small in comparison to previous
scenarios, however, their impact can still be observed (Figures 5.105 and 5.106). We are
again unable to out-perform the subspace-linear algorithm.

On the HIGGS Data Set with a Level Two Base Grid

The HIGGS data set provides, in comparison to the previously discussed scenarios, different
and interesting results. We again used the scenario given in Table 5.4, however, limited it
to ten refinement steps due to the large execution encountered in the later steps.

Even with all preparation steps included, the speed-up of the subspace-linear algorithm over
the streaming algorithm is largely one for operator BTa, with a trend to be slightly more
than one on the last three refinement steps for a point threshold of p = 4 and utilization
thresholds of v = 1 x 1072 and v = 1 x 102 (Figures 5.114 and 5.115). This shows
that we can indeed beat the subspace-linear algorithm (at least on some scenarios for
the operator BTax), even if we encounter no performance-penalties due to its memory-
requirement, as well as the streaming algorithm (ever so slightly) by a clever combination
of both algorithms.

For the non-transposed multi evaluation Bv we also converge towards a speed-up of one,
however are not able to exceed it (Figures 5.116 and 5.117).

5.4.2 Conclusion and Outlook

Based on the results above, we can conclude that the subspace-adaptive algorithm is able to
outperform the streaming algorithm by similar margins as the subspace-linear algorithm, but
is on many scenarios not notably faster than the subspace-linear algorithm itself. However,
we also could obviate the high memory usage of the subspace-linear algorithm to some
extent, by combining it with the streaming algorithm and thus provide speed-ups similar

111

5 Evaluation of Regression algorithms on the GPU

2.5

Streaming (Tuned)
e Subspace-Linear (Block-Size 5)
Subspace-Adaptive (p = 0,u = 0)
—e— Subspace-Adaptive (p = 0,u = 1-10~9)
Subspace-Adaptive (p = 0,u = 5-10"7)
—e— Subspace-Adaptive (p = 0,u = 2-1077)
Subspace-Adaptive (p = 4,u = 0)
Subspace-Adaptive (p = 4,u = 1-1079)
Subspace-Adaptive (p = 4,u = 5-10"7)
—e— Subspace-Adaptive (p = 4,u = 2-1077)

5 10 15 20 25 30

Refinement Step

Figure 5.89: Absolute duration of the subspace-adaptive algorithm in comparison to the

subspace-linear and streaming algorithm for BT« on the NVIDIA Tesla P100,
using spatially adaptive sparse grids with base-level two, the five-dimensional
Gaussian data set, and 64 bit precision. Timings for the subspace-linear and
subspace-adaptive algorithms do not include preparation steps. All executions
of the subspace-linear algorithm use a block-size of six.

Streaming (Tuned)
e Subspace-Linear (Block-Size 5)
Subspace-Adaptive (p = 0,u = 0)
—e— Subspace-Adaptive (p = 0,u = 5-1077)
Subspace-Adaptive (p = 4,u = 0)
—e— Subspace-Adaptive (p = 4,u = 5-10~7)
Subspace-Adaptive (p = 8,u = 0)
Subspace-Adaptive (p = 8,u = 5-10"7)

Subspace-Adaptive (p = 16, u = 0)
/: —e— Subspace-Adaptive (p = 16,u = 5-10~7)
7]

Refinement Step

Figure 5.90: Absolute duration of the subspace-adaptive algorithm in comparison to the

112

subspace-linear and streaming algorithm for BT« on the NVIDIA Tesla P100,
using spatially adaptive sparse grids with base-level two, the five-dimensional
Gaussian data set, and 64 bit precision. Timings for the subspace-linear and
subspace-adaptive algorithms do not include preparation steps. All executions
of the subspace-linear algorithm use a block-size of six.

5.4 The Subspace-Adaptive Algorithm

//v”‘/\ Subspace-Adaptive (p = 0,u = 0)
47 . \ —e— Subspace-Adaptive (p = 0,u = 1-1075)
/ = A\ Subspace-Adaptive (p = 0,u = 5-10"7)
724

SN
‘ . \\- —e— Subspace-Adaptive (p = 0,u = 2-1077)
5 o y /'/ N Subspace-Adaptive (p = 4,u = 0)
/ * | —— Subspace-Adaptive (p = 4,u = 1-1079)
A ' Subspace-Adaptive (p = 4,u = 5-10"7)
% /r Subspace-Adaptive (p = 4,u = 2-10~7)
,.62 ry i /""/
(]
L)
‘ /
Y
11 L &
A
0 5 10 15 20 25 30

Refinement Step

Figure 5.91: Speed-up of the subspace-adaptive algorithm over the streaming algorithm
for BTa on the NVIDIA Tesla P100, using spatially adaptive sparse grids with
base-level two, the five-dimensional Gaussian data set, and 64 bit precision.
Preparation steps are not included. A block-size of six has been chosen for
all executions of the subspace-linear algorithm (including those from the
subspace-adaptive algorithm).

Streaming (Tuned)
—— Subspace-Linear (Block-Size 1)
Subspace-Adaptive (p = 0,u = 0)
—e— Subspace-Adaptive (p = 0,u = 1-1076)
Subspace-Adaptive (p = 0,u = 5-10~7)
—e— Subspace-Adaptive (p = 0,u = 2-10~7)
Subspace-Adaptive (p = 8,u = 0)
Subspace-Adaptive (p = 8,u = 1-10~6)
Subspace-Adaptive (p = 8,u =5-10""7)
—e— Subspace-Adaptive (p = 8,u = 2-1077)

Refinement Step

Figure 5.92: Absolute duration of the subspace-adaptive algorithm in comparison to the
subspace-linear and streaming algorithm for Bv on the NVIDIA Tesla P100,
using spatially adaptive sparse grids with base-level two, the five-dimensional
Gaussian data set, and 64 bit precision. Timings for the subspace-linear and
subspace-adaptive algorithms do not include preparation steps. All executions
of the subspace-linear algorithm use a block-size of six.

113

5 Evaluation of Regression algorithms on the GPU

Streaming (Tuned)
e Subspace-Linear (Block-Size 5)
Subspace-Adaptive (p = 0,u = 0)
/ —e— Subspace-Adaptive (p = 0,u = 5-10~7)
Subspace-Adaptive (p = 4,u = 0)
—e— Subspace-Adaptive (p = 4,u = 5-10~7)

///-/' Subspace-Adaptive (p = 8,u = 0)

Subspace-Adaptive (p = 8,u = 5-10"7)

Subspace-Adaptive (p = 16, u = 0)
/./'%7. —e— Subspace-Adaptive (p = 16,u = 5-10"7)

5 10 15 20 25 30

Refinement Step

Figure 5.93: Absolute duration of the subspace-adaptive algorithm in comparison to the

subspace-linear and streaming algorithm for Bv on the NVIDIA Tesla P100,
using spatially adaptive sparse grids with base-level two, the five-dimensional
Gaussian data set, and 64 bit precision. Timings for the subspace-linear and
subspace-adaptive algorithms do not include preparation steps. All executions
of the subspace-linear algorithm use a block-size of six.

4 Subspace-Adaptive (p = 0,u = 0)
—e— Subspace-Adaptive (p = 0,u = 1-1076)
25 Subspace-Adaptive (p = 0,u = 5-10~7)
' 1\ /\ —e— Subspace-Adaptive (p = 0,u = 2-10~7)
5 e Subspace-Adaptive (p = 8,u = 0)
\ —e— Subspace-Adaptive (p = 8,u = 1-1079)
- i = —=5-.-10"7
05 | 8 ./\ A Subspace-Adaptive (p = 8,u =5-10"")
[=9 ’7;(/ Subspace-Adaptive (p = 8,u =2-10"7)
o 2t R 2 v X
2 A vi/yx -
97 4
1.5 + o
W
1% /\/
| \eptey 1 1 1 1 |
0 5 10 15 20 25 30

Refinement Step

Figure 5.94: Speed-up of the subspace-adaptive algorithm over the streaming algorithm

114

for Bv on the NVIDIA Tesla P100, using spatially adaptive sparse grids with
base-level two, the five-dimensional Gaussian data set, and 64 bit precision.
Preparation steps are not included. A block-size of six has been chosen for
all executions of the subspace-linear algorithm (including those from the
subspace-adaptive algorithm).

5.4 The Subspace-Adaptive Algorithm

Streaming (Tuned)
e Subspace-Linear (Block-Size 5)
15 | Subspace-Adaptive (p = 0,u = 0)
—e— Subspace-Adaptive (p = 0,u = 2 - 10~6)
Subspace-Adaptive (p = 0,u = 1-10~9)
—e— Subspace-Adaptive (p = 0,u = 5-1077)
1| Subspace-Adaptive (p = 4,u = 0)
Subspace-Adaptive (p = 4,u = 2 - 1079)
Subspace-Adaptive (p = 4,u = 1-1079)
—e— Subspace-Adaptive (p = 4,u = 5-1077)

t[s]

Refinement Step

Figure 5.95: Absolute duration of the subspace-adaptive algorithm in comparison to the
subspace-linear and streaming algorithm for BT« on the NVIDIA Tesla P100,
using spatially adaptive sparse grids with base-level five, the five-dimensional
Gaussian data set, and 64 bit precision. Timings for the subspace-linear and
subspace-adaptive algorithms do not include preparation steps. All executions
of the subspace-linear algorithm use a block-size of six.

Streaming (Tuned)
e Subspace-Linear (Block-Size 5)
1.5 | Subspace-Adaptive (p = 0,u = 0)
—e— Subspace-Adaptive (p = 0,u = 5-1077)
Subspace-Adaptive (p = 4,u = 0)
—e— Subspace-Adaptive (p = 4,u = 5-10~7)
11 Subspace-Adaptive (p = 8,u = 0)
. Subspace-Adaptive (p = 8,u = 5-10"7)
Subspace-Adaptive (p = 16, u = 0)

—e— Subspace-Adaptive (p = 16,u = 5-10~7)

Refinement Step

Figure 5.96: Absolute duration of the subspace-adaptive algorithm in comparison to the
subspace-linear and streaming algorithm for BT« on the NVIDIA Tesla P100,
using spatially adaptive sparse grids with base-level five, the five-dimensional
Gaussian data set, and 64 bit precision. Timings for the subspace-linear and
subspace-adaptive algorithms do not include preparation steps. All executions
of the subspace-linear algorithm use a block-size of six.

115

5 Evaluation of Regression algorithms on the GPU

Subspace-Adaptive (p = 0,u = 0)
—e— Subspace-Adaptive (p = 0,u = 2 - 1076)
Subspace-Adaptive (p = 0,u = 1-1079)
—e— Subspace-Adaptive (p = 0,u = 5-1077)
Subspace-Adaptive (p = 4,u = 0)
—e— Subspace-Adaptive (p = 4,u = 2 - 107)

3
Subspace-Adaptive (p = 4,u = 1-10~9)
% Subspace-Adaptive (p = 4,u = 5-10"7)
T
®2
,
97)

0 2 4 6 8 10 12 14 16 18 20
Refinement Step

Figure 5.97: Speed-up of the subspace-adaptive algorithm over the streaming algorithm
for BTa on the NVIDIA Tesla P100, using spatially adaptive sparse grids with
base-level five, the five-dimensional Gaussian data set, and 64 bit precision.
Preparation steps are not included. A block-size of six has been chosen for
all executions of the subspace-linear algorithm (including those from the
subspace-adaptive algorithm).

Streaming (Tuned)
—— Subspace-Linear (Block-Size 1)
Subspace-Adaptive (p = 0,u = 0)
—e— Subspace-Adaptive (p = 0,u = 2 - 1076)
Subspace-Adaptive (p = 0,u = 1-10~9)
—e— Subspace-Adaptive (p = 0,u = 5-10~7)
Subspace-Adaptive (p = 4,u = 0)
Subspace-Adaptive (p = 4,u = 2 - 10~9)
Subspace-Adaptive (p = 4,u = 1-1079)
—e— Subspace-Adaptive (p = 4,u = 5-10~7)

Refinement Step

Figure 5.98: Absolute duration of the subspace-adaptive algorithm in comparison to the
subspace-linear and streaming algorithm for Bv on the NVIDIA Tesla P100,
using spatially adaptive sparse grids with base-level five, the five-dimensional
Gaussian data set, and 64 bit precision. Timings for the subspace-linear and
subspace-adaptive algorithms do not include preparation steps. All executions
of the subspace-linear algorithm use a block-size of six.

116

5.4 The Subspace-Adaptive Algorithm

Streaming (Tuned)
e Subspace-Linear (Block-Size 5)
Subspace-Adaptive (p = 0,u = 0)
—e— Subspace-Adaptive (p = 0,u = 5-10~7)
Subspace-Adaptive (p = 4,u = 0)
—e— Subspace-Adaptive (p = 4,u = 5-10~7)
Subspace-Adaptive (p = 8,u = 0)
Subspace-Adaptive (p = 8,u = 5-10"7)
Subspace-Adaptive (p = 16, u = 0)

//j/‘
//;/ —e— Subspace-Adaptive (p = 16,u = 5-10"7)
va

0 2 4 6 8 10 12 14 16 18 20
Refinement Step

Figure 5.99: Absolute duration of the subspace-adaptive algorithm in comparison to the
subspace-linear and streaming algorithm for Bv on the NVIDIA Tesla P100,
using spatially adaptive sparse grids with base-level two, the five-dimensional
Gaussian data set, and 64 bit precision. Timings for the subspace-linear and
subspace-adaptive algorithms do not include preparation steps. All executions
of the subspace-linear algorithm use a block-size of six.

Subspace-Adaptive (p = 0,u = 0)
—e— Subspace-Adaptive (p = 0,u = 2-10~9)
Subspace-Adaptive (p = 0,u = 1-10~5)
—e— Subspace-Adaptive (p = 0,u = 5-10"7)
Subspace-Adaptive (p = 4,u = 0)
—e— Subspace-Adaptive (p = 4,u = 2-1079)
Subspace-Adaptive (p = 4,u = 1-10~9)
Subspace-Adaptive (p = 4,u = 5-10""7)

4 6 8 10 12 14 16 18 20
Refinement Step

Figure 5.100: Speed-up of the subspace-adaptive algorithm over the streaming algorithm
for Bv on the NVIDIA Tesla P100, using spatially adaptive sparse grids with
base-level five, the five-dimensional Gaussian data set, and 64 bit precision.
Preparation steps are not included. A block-size of six has been chosen for
all executions of the subspace-linear algorithm (including those from the
subspace-adaptive algorithm).

117

5 Evaluation of Regression algorithms on the GPU

Streaming (Tuned)

0.8 1 —— Subspace-Linear (Block-Size 5)
Subspace-Adaptive (p = 0,u = 0)
—e— Subspace-Adaptive (p = 0,u = 2 - 10~%)
0.6 I Subspace-Adaptive (p = 0,u = 1-10%)

—e— Subspace-Adaptive (p = 0,u = 2 - 1075)
Subspace-Adaptive (p = 4,u = 0)
— Subspace-Adaptive (p = 4,u = 2-10~%)
S04 T Subspace-Adaptive (p = 4,u = 1-10~%)
—e— Subspace-Adaptive (p = 4,u = 2 - 10~5)

Refinement Step

Figure 5.101: Absolute duration of the subspace-adaptive algorithm in comparison to
the subspace-linear and streaming algorithm for BT« on the NVIDIA Tesla
P100, using spatially adaptive sparse grids with base-level seven, the five-
dimensional Gaussian data set, and 64 bit precision. Timings for the subspace-
linear and subspace-adaptive algorithms do not include preparation steps.
All executions of the subspace-linear algorithm use a block-size of six.

5 | Subspace-Adaptive (p = 0,u = 0)
—e— Subspace-Adaptive (p = 0,u = 2-10~%)
Subspace-Adaptive (p = 0,u = 1-10~%)
4.5 —e— Subspace-Adaptive (p = 0,u = 2-107?)
\/ Subspace-Adaptive (p = 4,u = 0)
41 | o —e— Subspace-Adaptive (p = 4,u = 2-10~%)
Subspace-Adaptive (p = 4,u = 1-10"%)
- i —4.4=2-10"°
83- 5 | Subspace-Adaptive (p ,u=2-107°)
o
]
& /’7‘
w 3 i
A=<
| | —
2.5 AN /-/
,\/ \(
0 2 4 6 8 10

Refinement Step

Figure 5.102: Speed-up of the subspace-adaptive algorithm over the streaming algorithm
for BT on the NVIDIA Tesla P100, using spatially adaptive sparse grids with
base-level seven, the five-dimensional Gaussian data set, and 64 bit precision.
Preparation steps are not included. A block-size of six has been chosen for
all executions of the subspace-linear algorithm (including those from the
subspace-adaptive algorithm).

118

5.4 The Subspace-Adaptive Algorithm

1t Streaming (Tuned)
e Subspace-Linear (Block-Size 1)

Subspace-Adaptive (p = 0,u = 0)
0.8 + —e— Subspace-Adaptive (p = 0,u = 2 - 10~%)
Subspace-Adaptive (p = 0,u = 1-10%)
—e— Subspace-Adaptive (p = 0,u = 2 - 1075)

0.6 + Subspace-Adaptive (p = 4,u = 0)
Subspace-Adaptive (p = 4,u = 2 - 10~%)
Subspace-Adaptive (p = 4,u = 1-10%)
—e— Subspace-Adaptive (p = 4,u = 2 - 10~5)

Refinement Step

Figure 5.103: Absolute duration of the subspace-adaptive algorithm in comparison to
the subspace-linear and streaming algorithm for Bv on the NVIDIA Tesla
P100, using spatially adaptive sparse grids with base-level seven, the five-
dimensional Gaussian data set, and 64 bit precision. Timings for the subspace-
linear and subspace-adaptive algorithms do not include preparation steps.
All executions of the subspace-linear algorithm use a block-size of six.

57 Subspace-Adaptive (p = 0,u = 0)
—e— Subspace-Adaptive (p = 0,u = 2 - 10~%)
e Subspace-Adaptive (p = 0,u = 1-10~%)
4l —e— Subspace-Adaptive (p = 0,u = 2 - 10~5)
Subspace-Adaptive (p = 4,u = 0)
—e— Subspace-Adaptive (p = 4,u = 2 - 10~%)
. Subspace-Adaptive (p = 4,u = 1-10"%)
:Sﬁ 1 \/ Subspace-Adaptive (p = 4,u = 2 - 107°)
o
5]
]
A
7]
2 o — \.\;/ -
o
— i
0 2 4 6 8 10

Refinement Step

Figure 5.104: Speed-up of the subspace-adaptive algorithm over the streaming algorithm
for Bv on the NVIDIA Tesla P100, using spatially adaptive sparse grids with
base-level seven, the five-dimensional Gaussian data set, and 64 bit precision.
Preparation steps are not included. A block-size of six has been chosen for
all executions of the subspace-linear algorithm (including those from the
subspace-adaptive algorithm).

119

5 Evaluation of Regression algorithms on the GPU

14

Streaming (Tuned)
e Subspace-Linear (Block-Size 5)
Subspace-Adaptive (p = 0,u = 0)
—e— Subspace-Adaptive (p = 0,u = 5 - 10~5)
Subspace-Adaptive (p = 0,u = 2 - 107°)
—e— Subspace-Adaptive (p = 0,u = 1-1075)
Subspace-Adaptive (p = 4,u = 0)
Subspace-Adaptive (p = 4,u = 5-107?)
Subspace-Adaptive (p = 4,u = 2 - 107?)
—e— Subspace-Adaptive (p = 4,u = 1-1075)

4 6 8 10 12 14 16 18 20
Refinement Step

Figure 5.105: Absolute duration of the subspace-adaptive algorithm in comparison to the

14

12

10

subspace-linear and streaming algorithm for BT« on the NVIDIA Tesla P100,
using spatially adaptive sparse grids with base-level two, the ten-dimensional
Gaussian data set, and 64 bit precision. All timings include preparation steps.
All executions of the subspace-linear algorithm use a block-size of six.

Streaming (Tuned)
e Subspace-Linear (Block-Size 5)
Subspace-Adaptive (p = 0,u = 0)
—e— Subspace-Adaptive (p = 0,u = 5 - 1075)
Subspace-Adaptive (p = 0,u = 2 - 10~?)
—e— Subspace-Adaptive (p = 0,u = 1-1075)
Subspace-Adaptive (p = 4,u = 0)
Subspace-Adaptive (p = 4,u = 5-10?)
Subspace-Adaptive (p = 4,u = 2 -107°)
—e— Subspace-Adaptive (p = 4,u = 1-1075)

Refinement Step

Figure 5.106: Absolute duration of the subspace-adaptive algorithm in comparison to the

120

subspace-linear and streaming algorithm for BT« on the NVIDIA Tesla P100,
using spatially adaptive sparse grids with base-level two, the ten-dimensional
Gaussian data set, and 64 bit precision. Timings for the subspace-linear
and subspace-adaptive algorithms do not include preparation steps. All
executions of the subspace-linear algorithm use a block-size of six.

5.4 The Subspace-Adaptive Algorithm

Subspace-Adaptive (p = 0,u = 0)
—e— Subspace-Adaptive (p = 0,u = 5-1075)
Subspace-Adaptive (p = 0,u = 2 - 107°)
—e— Subspace-Adaptive (p = 0,u = 1-107?)
Subspace-Adaptive (p = 4,u = 0)
—e— Subspace-Adaptive (p = 4,u = 5 - 1075)
Subspace-Adaptive (p = 4,u = 2-10~?)
Subspace-Adaptive (p = 4,u = 1-10~?)

0 2 4 6 8 10 12 14 16 18 20

Refinement Step

Figure 5.107: Speed-up of the subspace-adaptive algorithm over the streaming algorithm
for BTa on the NVIDIA Tesla P100, using spatially adaptive sparse grids with
base-level two, the ten-dimensional Gaussian data set, and 64 bit precision.
Preparation steps are not included. All executions of the subspace-linear
algorithm use a block-size of six.

Streaming (Tuned)
14 | — Subspace-Linear (Block-Size 1)
Subspace-Adaptive (p = 0,u = 0)

12 | —e— Subspace-Adaptive (p = 0,u = 5 - 10~5)
Subspace-Adaptive (p = 0,u = 2 - 107°)
10 —e— Subspace-Adaptive (p = 0,u = 1-1075)

Subspace-Adaptive (p = 4,u = 0)
Subspace-Adaptive (p = 4,u = 5-107?)
Subspace-Adaptive (p = 4,u = 2 - 1075)

—e— Subspace-Adaptive (p = 4,u = 1-1075)

Refinement Step

Figure 5.108: Absolute duration of the subspace-adaptive algorithm in comparison to the
subspace-linear and streaming algorithm for Bv on the NVIDIA Tesla P100,
using spatially adaptive sparse grids with base-level two, the ten-dimensional
Gaussian data set, and 64 bit precision. Timings for the subspace-linear
and subspace-adaptive algorithms do not include preparation steps. All
executions of the subspace-linear algorithm use a block-size of six.

121

5 Evaluation of Regression algorithms on the GPU

7 4 Subspace-Adaptive (p = 0,u = 0)
—e— Subspace-Adaptive (p = 0,u = 5 - 1075)
6 | Subspace-Adaptive (p = 0,u = 2 - 107°)
| —e— Subspace-Adaptive (p = 0,u = 1-1075)
5 Subspace-Adaptive (p = 4,u = 0)
—e— Subspace-Adaptive (p = 4,u = 5 - 1075)
Subspace-Adaptive (p = 4,u = 2-10~?)
%4 T Subspace-Adaptive (p = 4,u = 1-1075)
] M
5]
a3 |
97)
] R gt ” M ¢
2 7N
4

0 2 4 6 8 10 12 14 16 18 20
Refinement Step

Figure 5.109: Speed-up of the subspace-adaptive algorithm over the streaming algorithm
for Bv on the NVIDIA Tesla P100, using spatially adaptive sparse grids with
base-level two, the ten-dimensional Gaussian data set, and 64 bit precision.
Preparation steps are not included. All executions of the subspace-linear
algorithm use a block-size of six.

Streaming (Tuned)
e Subspace-Linear (Block-Size 5)
4 + Subspace-Adaptive (p = 0,u = 0)
—e— Subspace-Adaptive (p = 0,u = 3-10~%)
Subspace-Adaptive (p = 0,u = 2-10~%)
3+ —e— Subspace-Adaptive (p = 0,u = 1-107?)
Subspace-Adaptive (p = 4,u = 0)
Subspace-Adaptive (p = 4,u = 3 - 10~%)
Subspace-Adaptive (p = 4,u = 2 - 10~%)

—e— Subspace-Adaptive (p = 4,u = 1-107?)

Refinement Step

Figure 5.110: Absolute duration of the subspace-adaptive algorithm in comparison to the
subspace-linear and streaming algorithm for BT« on the NVIDIA Tesla P100,
using spatially adaptive sparse grids with base-level five, the ten-dimensional
Gaussian data set, and 64 bit precision. Timings for the subspace-linear
and subspace-adaptive algorithms do not include preparation steps. All
executions of the subspace-linear algorithm use a block-size of six.

122

5.4 The Subspace-Adaptive Algorithm

J; — Subspace-Adaptive (p = 0, u = 0)
3 —e— Subspace-Adaptive (p = 0,u = 3-10~%)
Subspace-Adaptive (p = 0,u = 2-10~%)
—e— Subspace-Adaptive (p = 0,u = 1-1075)

Subspace-Adaptive (p = 4,u = 0)
—e— Subspace-Adaptive (p = 4,u = 3-107%)
Subspace-Adaptive (p = 4,u = 2-10~%)
Subspace-Adaptive (p = 4,u = 1-107°)

0 2 4 6 8 10
Refinement Step

Figure 5.111: Speed-up of the subspace-adaptive algorithm over the streaming algorithm
for BTa on the NVIDIA Tesla P100, using spatially adaptive sparse grids with
base-level five, the ten-dimensional Gaussian data set, and 64 bit precision.
Preparation steps are not included. All executions of the subspace-linear
algorithm use a block-size of six.

Streaming (Tuned)
e Subspace-Linear (Block-Size 1)
47 Subspace-Adaptive (p = 0,u = 0)
—e— Subspace-Adaptive (p = 0,u = 3-10~%)
Subspace-Adaptive (p = 0,u = 2 - 10~%)
—e— Subspace-Adaptive (p = 0,u = 1-107?)
Subspace-Adaptive (p = 4,u = 0)
Subspace-Adaptive (p = 4,u = 3-10~%)
Subspace-Adaptive (p = 4,u = 2-10~%)
—e— Subspace-Adaptive (p = 4,u = 1-107?)

Refinement Step

Figure 5.112: Absolute duration of the subspace-adaptive algorithm in comparison to the
subspace-linear and streaming algorithm for Bv on the NVIDIA Tesla P100,
using spatially adaptive sparse grids with base-level five, the ten-dimensional
Gaussian data set, and 64 bit precision. Timings for the subspace-linear
and subspace-adaptive algorithms do not include preparation steps. All
executions of the subspace-linear algorithm use a block-size of six.

123

5 Evaluation of Regression algorithms on the GPU

4

Refinement Step

Subspace-Adaptive (p = 0,u = 0)
—e— Subspace-Adaptive (p = 0,u = 3 -10~%)
Subspace-Adaptive (p = 0,u = 2 - 10~%)
—e— Subspace-Adaptive (p = 0,u = 1-107?)
Subspace-Adaptive (p = 4,u = 0)
—e— Subspace-Adaptive (p = 4,u = 3 - 10~%)
Subspace-Adaptive (p = 4,u = 2-10~%)
Subspace-Adaptive (p = 4,u = 1-107?)

Figure 5.113: Speed-up of the subspace-adaptive algorithm over the streaming algorithm
for Bv on the NVIDIA Tesla P100, using spatially adaptive sparse grids with
base-level five, the ten-dimensional Gaussian data set, and 64 bit precision.
Preparation steps are not included. All executions of the subspace-linear
algorithm use a block-size of six.

160

140

120

100

Refinement Step

Streaming (Tuned)
e Subspace-Linear (Block-Size 3)
Subspace-Adaptive (p = 0,u = 0)
—e— Subspace-Adaptive (p = 0,u = 5 - 10~7)
Subspace-Adaptive (p = 0,u = 2-10~7)
—e— Subspace-Adaptive (p = 0,u = 1-10"7)
Subspace-Adaptive (p = 4,u = 0)
Subspace-Adaptive (p = 4,u = 5-10"7)
Subspace-Adaptive (p = 4,u = 2-10~7)
—e— Subspace-Adaptive (p = 4,u = 1-10"7)

Figure 5.114: Absolute duration of the subspace-adaptive algorithm in comparison to the
subspace-linear and streaming algorithm for BT« on the NVIDIA Tesla P100,
using spatially adaptive sparse grids with base-level two, the HIGGS data set,
and 64 bit precision. All timings include preparation steps. All executions of
the subspace-linear algorithm use a block-size of three.

124

5.4 The Subspace-Adaptive Algorithm

Subspace-Adaptive (p = 0,u = 0)
1.6 —e— Subspace-Adaptive (p = 0,u = 1-1071)
Subspace-Adaptive (p = 0,u = 1-1072)
—e— Subspace-Adaptive (p = 0,u = 1-1073)

Subspace-Adaptive (p = 4,u = 0)
—e— Subspace-Adaptive (p = 4,u = 1-10"1)
Subspace-Adaptive (p = 4,u = 1-10"2)
Subspace-Adaptive (p = 4,u = 1-1073)

¥

O T/ ————a
\

[N}
IS
(@)
o]
=
o

Refinement Step

Figure 5.115: Speed-up of the subspace-adaptive algorithm over the streaming algorithm
for BTa on the NVIDIA Tesla P100, using spatially adaptive sparse grids
with base-level seven, the HIGGS data set, and 64 bit precision. All timings
include preparation steps. All executions of the subspace-linear algorithm
use a block-size of three.

200 | Streaming (Tuned)

e Subspace-Linear (Block-Size 1)
Subspace-Adaptive (p = 0,u = 0)

—e— Subspace-Adaptive (p = 0,u = 5-10~7)

150 Subspace-Adaptive (p = 0,u = 2-10~7)

—e— Subspace-Adaptive (p = 0,u = 1-10"7)
Subspace-Adaptive (p = 4,u = 0)

(] Subspace-Adaptive (p = 4,u = 5-10"7)

EIOO +
- Subspace-Adaptive (p = 4,u =2-10"7)
// —e— Subspace-Adaptive (p = 4,u = 1-10"7)

Refinement Step

Figure 5.116: Absolute duration of the subspace-adaptive algorithm in comparison to the
subspace-linear and streaming algorithm for Bv on the NVIDIA Tesla P100,
using spatially adaptive sparse grids with base-level two, the HIGGS data set,
and 64 bit precision. All timings include preparation steps. All executions of
the subspace-linear algorithm use a block-size of three.

125

5 Evaluation of Regression algorithms on the GPU

to the subspace-linear algorithm on grids where the subspace-linear algorithm could not
be executed due to this issue. The only scenario where the subspace-adaptive algorithm
outperformed the subspace-linear algorithm without such problems is based on the HIGGS
data set, which has, as seen in the previous chapter, proven to be notably difficult for this
algorithm.

We have also seen that the utilization-threshold is somewhat flawed, as it is influenced by
the number of actual grid-points on the subgrid too easily. For example, the addition of a
single grid-point to a subgrid of size one doubles its utilization, however, if the potential
maximum size of the subgrid is large, it is, in many cases, still not advisable to include
it, due to its impact on memory. To this end, we suggest the evaluation of the following
replacement for the utilization-threshold:

uthy , = {streaming if |S| > @ and |S| < u G.1)

subspace-linear otherwise

where

S is the subspace to be evaluated,
|S| is the number of basis functions, i.e. grid points, in S,
|S| is the maximum number of grid points that could potentially be in S,
and
wand @ define the selector.

This selector could then be combined with the point-based threshold as described in Sec-
tion 4.2.

While the implementation of the subspace-adaptive algorithm is largely a preparation step,
thus outside the critical code path, and rather insignificant for larger scenarios (see the
HIGGS scenario for an example), it could still be improved. A limitation of our implementa-
tion is the successive execution of the different sub-algorithms. Using, for example, CUDA
streams and two kernels implemented in CUDA, we could schedule both in parallel, which
could lead to a better utilization of the GPU and reduced overhead.

126

5.4 The Subspace-Adaptive Algorithm

Subspace-Adaptive (p = 0,u = 0)
6 —e— Subspace-Adaptive (p = 0,u = 5-1077)
Subspace-Adaptive (p = 0,u = 2-10~7)
—e— Subspace-Adaptive (p = 0,u = 1-1077)

Subspace-Adaptive (p = 4,u = 0)
—e— Subspace-Adaptive (p = 4,u = 5-10~7)
Subspace-Adaptive (p = 4,u =2-10~7)
Subspace-Adaptive (p = 4,u = 1-10"7)

>0
>0

6 8 10

X —
..\w;"/{.\. :
4
Refinement Step

Figure 5.117: Speed-up of the subspace-adaptive algorithm over the streaming algorithm
for Bv on the NVIDIA Tesla P100, using spatially adaptive sparse grids
with base-level seven, the HIGGS data set, and 64 bit precision. All timings
include preparation steps. All executions of the subspace-linear algorithm
use a block-size of three.

127

6 Discussion and Outlook

In this thesis, we have presented a short introduction to the GPU-architecture, on which we
implemented our algorithms, and an introduction to regression on spatially adaptive sparse
grids. We have then discussed already existing regression algorithms for such grids, after
which we have presented an implementation of the subspace-linear algorithm on GPUs. To
mitigate some of its problems, we introduced the subspace-adaptive algorithm, switching
between subspace-linear and streaming algorithm.

Both algorithms have been validated and tested against the highly optimized streaming
algorithm provided by the SG++ framework [HP13] on multiple data sets, ranging from 5
to 28 dimensions, using multiple surplus-based refinement scenarios. Both algorithms have
shown speed-ups over the streaming algorithm on most scenarios, however, the subspace-
adaptive algorithm has not been able to out-perform the subspace-linear algorithm, except
in scenarios where the specific problems of the subspace-linear algorithm have become
evident. For such scenarios, the subspace-adaptive algorithm presents a viable alternative
to the streaming algorithm. As already discussed in their individual sections (Sections 5.3.3
and 5.4.2), we believe that there is still potential for improvements to both of our imple-
mentations.

129

A Statistics for Adaptive Sparse Grid
Evaluation Scenarios

In this appendix, we provide further details for the spatially adaptive sparse grid evaluation
scenarios presented in Section 5.2 (specifically Table 5.4).

Tables A.1 to A.9 contain information about the spatially adaptive sparse grids generated
after each refinement step for the respective scenarios, a refinement step of zero indicates
the entry for the regular base sparse grid. The number of grid points used states how many
grid points the grid actually has, while the maximum number of grid points is the number of
grid points the grid would have if all subgrids were full grids, latter of which can be used to
calculate the memory required to store all surpluses for the subpace-linear algorithm. The
average subgrid utilization is the utilization, i.e. the ratio of used to potential maximum grid
points, of all individual subgrids averaged (and therefore not the utilization of the grid). It
can be used to estimate the regularity of these grids, as it, in contrast to the average number
of points per subgrid, incorporates their maximum size. The last four columns are given to
provide some insight into the absolute size of the largest subgrids, which are determined by
both, the numbers of actually used and maximum potential grid points on that subgrid.

131

% # Grid Points Subgrids Largest Subgrid by Used Largest Subgrid by Max.
Ref. Used Max. # of Avg. Utilization Avg. # Pt. per # Pt. Used # Pt. Max. # Pt.Used # Pt. Max.
0 11 11 6 100.00 % 1.83 2 2 2 2
1 71 71 21 100.00 % 3.38 4 4 4 4
2 351 351 56 100.00 % 6.27 8 8 8 8
3 900 1471 126 71.68 % 7.14 11 16 11 16
4 1514 5375 248 44.43 % 6.10 12 16 9 32
5 2275 14751 396 31.57 % 5.74 12 16 8 64
6 3307 38847 603 22.85 % 5.48 13 32 10 128
7 4442 83839 801 18.49 % 5.55 15 32 8 256
8 5924 196735 1103 14.30 % 5.37 15 32 7 512
9 7778 422527 1418 11.75 % 5.49 15 32 9 1024
10 9691 849919 1783 9.85 % 5.44 16 32 7 2048
11 12003 1603711 2132 8.69 % 5.63 16 32 6 4096
12 15371 3361343 2677 7.28 % 5.74 17 128 6 8192
13 19669 6707903 3293 6.28 % 5.97 18 64 6 16384
14 24065 13082047 4028 5.38 % 5.97 20 512 6 32768
15 30121 25782399 4858 4.69 % 6.20 21 128 6 65536
16 35333 44684415 5349 4.46 % 6.61 25 1024 6 131072
17 41714 89747455 6223 3.98 % 6.70 27 1024 6 262144
18 47 965 159725311 7006 3.65 % 6.85 29 1024 6 524288
19 54849 244054271 7705 3.43 % 7.12 30 256 4 1048576
20 62262 375044 863 8408 3.24 % 7.41 31 256 3 2097152
21 70307 539774847 9257 3.02 % 7.60 33 1024 2 4194304
22 79419 571278463 9851 2.94 % 8.06 38 2048 2 4194304
23 87998 686487679 10576 2.83 % 8.32 39 2048 3 4194304
24 97113 751159935 11383 2.68 % 8.53 40 4096 3 4194304
25 106489 937764479 12229 2.55 % 8.71 40 2048 3 4194304
26 113780 1015177471 12631 2.52 % 9.01 40 2048 3 4194304
27 121658 1164712959 13301 2.44 % 9.15 41 2048 3 4194304
28 131261 1529741567 14126 2.33 % 9.29 41 2048 2 8388608
29 139602 2622677247 14844 2.25 % 9.40 43 4096 3 16777216
30 148431 2738560255 15549 2.18 % 9.55 45 4096 3 16777216

Table A.1: Statistics of the grids created for the SDSS DR5 data set (371 908 data points, 5 dimensions) using surplus-based refinement,

starting with a level two regular sparse grid (refinement step zero).

SOLIBUSOS UONEN[_AT pLL) asiedg aAldepy 1o} sonsiels v

ect

Grid Points Subgrids Largest Subgrid by Used Largest Subgrid by Max.

Ref. Used Max. #of Avg. Utilization Avg. # Pt. per # Pt. Used # Pt. Max. # Pt. Used # Pt. Max.
0 1471 1471 126 100.00 % 11.67 16 16 16 16
1 2193 5439 250 59.42 % 8.77 16 16 9 32
2 3119 15743 411 40.37 % 7.59 16 16 10 64
3 4276 40479 617 29.05 % 6.93 16 16 12 128
4 5709 96415 871 21.82 % 6.55 16 16 11 256
5 7437 222175 1182 16.89 % 6.29 17 64 9 512
6 9890 500671 1586 13.31 % 6.24 18 64 7 1024
7 12875 1076927 2045 1091 % 6.30 18 64 7 2048
8 16977 2226047 2557 9.19 % 6.64 19 512 6 4096
9 22412 4555583 3219 7.72 % 6.96 20 128 6 8192
10 27561 8665279 3821 6.78 % 7.21 25 1024 6 16384
11 34419 15852927 4593 5.88 % 7.49 25 1024 6 32768
12 41442 30805887 5452 5.12 % 7.60 27 1024 6 65536
13 49040 55904 639 6217 4.66 % 7.89 28 256 6 131072
14 58251 108 523 391 7282 413 % 8.00 34 512 6 262144
15 66772 189390079 8308 3.74 % 8.04 36 512 6 524288
16 75276 278453759 8871 3.61 % 8.49 36 512 6 1048576
17 84444 398373119 9484 3.48 % 8.90 39 2048 3 2097152
18 95060 667786239 10312 3.28 % 9.22 43 1024 2 4194304
19 106856 891597055 11204 3.10 % 9.54 46 4096 3 4194304
20 119063 1111972095 12115 293 % 9.83 47 4096 2 8388608

Table A.2: Statistics of the grids created for the SDSS DR5 data set (371 908 data points, 5 dimensions) using surplus-based refinement,

starting with a level five regular sparse grid (refinement step zero).

129"

Grid Points Subgrids Largest Subgrid by Used Largest Subgrid by Max.

Ref. Used Max. # of Avg. Utilization Avg. # Pt. per # Pt. Used # Pt. Max. # Pt.Used # Pt. Max.
0 18943 18943 462 100.00 % 41.00 64 64 64 64
1 19741 43 647 655 71.49 % 30.14 64 64 11 128
2 20990 106751 931 51.01 % 22.55 64 64 11 256
3 22641 233855 1239 38.87 % 18.27 64 64 11 512
4 25020 512127 1612 30.37 % 15.52 64 64 11 1024
5 27791 1043711 2005 24.78 % 13.86 64 64 9 2048
6 31470 2022911 2398 21.08 % 13.12 64 64 8 4096
7 36717 4288383 3101 16.63 % 11.84 64 64 6 8192
8 41901 8947071 3832 13.64 % 10.93 64 64 6 16384
9 48592 17354495 4670 11.39 % 10.41 64 64 6 32768
10 55674 32556799 5501 9.83 % 10.12 64 64 6 65536
11 62977 60370687 6426 8.54 % 9.80 64 64 6 131072
12 71932 105743615 7316 7.62 % 9.83 64 64 6 262144
13 81219 186369535 8270 6.83 % 9.82 64 64 6 524288
14 89815 278642687 8861 6.46 % 10.14 64 64 5 1048576
15 99423 415405823 9701 5.97 % 10.25 64 64 3 2097152

Table A.3: Statistics of the grids created for the SDSS DR5 data set (371 908 data points, 5 dimensions) using surplus-based refinement,

starting with a level seven regular sparse grid (refinement step zero).

SOLIBUSOS UONEN[_AT pLL) asiedg aAldepy 1o} sonsiels v

Gel

Grid Points Subgrids Largest Subgrid by Used Largest Subgrid by Max.

Ref. Used Max. # of Avg. Utilization Avg. # Pt. per # Pt. Used # Pt. Max. # Pt.Used # Pt. Max.
0 57 57 29 100.00 % 1.97 2 2 2 2
1 1681 1681 435 100.00 % 3.86 4 4 4 4
2 5551 14721 2065 44.49 % 2.69 4 4 4 8
3 9632 44177 3906 30.05 % 2.47 5 16 5 16
4 13853 105217 5833 22.43 % 2.37 6 32 6 32
5 20910 262289 9011 16.52 % 2.32 7 64 7 64
6 36432 734625 16026 11.55 % 2.27 8 128 8 128
7 63127 2030769 28129 8.11 % 2.24 9 256 9 256
8 107 746 5525649 48 542 5.77 % 2.22 9 256 9 512
9 163923 13421297 74235 4.31 % 2.21 9 256 9 1024

10 261332 34453393 119075 3.13 % 2.19 10 2048 10 2048
11 387830 83008817 177336 234 % 2.19 10 2048 10 4096
12 576580 196611105 263670 1.79 % 2.19 11 8192 11 8192
13 1066560 503831113 487401 1.44 % 2.19 12 16384 12 16384
14 2241597 1562636505 1016509 1.03 % 2.21 12 16384 12 32768
15 4176860 4595140841 1901485 0.74 % 2.20 12 16384 12 65536

Table A.4: Statistics of the grids created for the truncated HIGGS data set (5 x 10° data points, 28 dimensions) using surplus-based
refinement, starting with a level two regular sparse grid (refinement step zero).

g # Grid Points Subgrids Largest Subgrid by Used Largest Subgrid by Max.
Ref. Used Max. # of Avg. Utilization Avg. # Pt. per # Pt. Used # Pt. Max. # Pt.Used # Pt. Max.
0 11 11 6 100.00 % 1.83 2 2 2 2
1 71 71 21 100.00 % 3.38 4 4 4 4
2 351 351 56 100.00 % 6.27 8 8 8 8
3 939 1471 126 73.61 % 7.45 12 16 12 16
4 1730 5119 240 50.77 % 7.21 15 32 15 32
5 2804 15295 405 36.06 % 6.92 15 32 10 64
6 4205 37631 599 28.01 % 7.02 16 32 11 128
7 6204 94911 886 21.33 % 7.00 18 32 8 256
8 9075 239359 1291 16.40 % 7.03 20 64 7 512
9 12742 565503 1812 12.75 % 7.03 23 64 8 1024
10 17350 1146111 2316 11.04 % 7.49 26 64 7 2048
11 22103 2134783 2810 9.70 % 7.87 26 64 5 4096
12 27589 4261503 3486 8.23 % 7.91 26 64 5 8192
13 34186 6435199 3928 7.87 % 8.70 28 128 4 16384
14 41227 11387263 4652 6.98 % 8.86 28 128 2 32768
15 47775 17 650047 5196 6.52 % 9.19 31 128 2 65536
16 55547 31730047 6175 5.65 % 9.00 31 128 4 65536
17 64728 54548991 7267 4.98 % 8.91 33 128 3 131072
18 78059 88397311 8178 4.58 % 9.54 34 128 2 262144
19 92531 162740991 9389 411 % 9.86 35 256 4 524288
20 106048 243066879 10470 3.81 % 10.13 38 128 4 1048576
21 117527 337545215 11106 3.69 % 10.58 39 128 2 2097152
22 129632 397405183 11473 3.62 % 11.30 39 128 3 2097152
23 141414 481090047 12119 3.46 % 11.67 40 512 3 2097152
24 153758 541669119 12659 3.36 % 12.15 40 512 3 2097152
25 169286 793880831 14036 3.07 % 12.06 41 256 2 4194304
26 185579 892506879 14681 297 % 12.64 41 256 2 4194304
27 202774 1105010431 15740 281 % 12.88 41 256 2 4194304
28 221817 1372762879 17047 2.64 % 13.01 43 512 4 4194304
29 238482 1840448255 17828 2.56 % 13.38 44 512 2 8388608
30 250169 1915067135 18160 2.56 % 13.78 44 512 4 8388608

Table A.5: Statistics of the grids created for the five-dimensional Gaussian data set (1 x 10° data points, 5 dimensions) using surplus-
based refinement, starting with a level two regular sparse grid (refinement step zero).

SOLIBUSOS UONEN[_AT pLL) asiedg aAldepy 1o} sonsiels v

LEL

Grid Points Subgrids Largest Subgrid by Used Largest Subgrid by Max.

Ref. Used Max. # of Avg. Utilization Avg. # Pt. per # Pt. Used # Pt. Max. # Pt.Used # Pt. Max.
0 1471 1471 126 100.00 % 11.67 16 16 16 16
1 2293 5375 248 61.16 % 9.25 16 16 16 32
2 3451 16127 418 42.17 % 8.26 18 32 10 64
3 5216 42047 640 31.61 % 8.15 18 32 13 128
4 7548 105343 941 23.90 % 8.02 18 32 11 256
5 10152 263551 1370 17.77 % 7.41 19 32 6 512
6 13581 577919 1854 14.12 % 7.33 22 64 5 1024
7 17787 1054591 2290 12.32 % 7.77 23 64 6 2048
8 22209 1855487 2711 11.07 % 8.19 27 64 6 4096
9 28 247 3790847 3378 9.39 % 8.36 29 128 5 8192

10 35999 7 545599 4162 8.11 % 8.65 31 128 3 16384
11 43868 14054143 4955 7.10 % 8.85 31 128 4 32768
12 50925 24980735 5684 6.44 % 8.96 34 128 3 65536
13 58820 44558335 6609 5.75 % 8.90 36 128 3 131072
14 71099 76308479 7639 5.12 % 9.31 37 128 2 262144
15 86512 147477759 8911 4.54 % 9.71 38 128 4 524288
16 100577 195752703 9619 4.32 % 10.46 39 128 4 1048576
17 114411 305725183 10534 4.05 % 10.86 39 128 2 2097152
18 126943 355229439 10995 3.97 % 11.55 40 128 2 2097152
19 139465 361625343 11197 3.97 % 12.46 41 128 2 2097152
20 155516 461233151 12206 3.70 % 12.74 41 128 3 2097152

Table A.6: Statistics of the grids created for the five-dimensional Gaussian data set (1 x 10° data points, 5 dimensions) using surplus-
based refinement, starting with a level five regular sparse grid (refinement step zero).

8¢ct

Grid Points Subgrids Largest Subgrid by Used Largest Subgrid by Max.

Ref. Used Max. # of Avg. Utilization Avg. # Pt. per # Pt. Used # Pt. Max. # Pt.Used # Pt. Max.
0 18943 18943 462 100.00 % 41.00 64 64 64 64
1 19825 41599 639 73.38 % 31.03 64 64 14 128
2 21501 103551 931 51.44 % 23.09 64 64 12 256
3 23957 268159 1382 35.51 % 17.34 64 64 7 512
4 27506 578175 1850 27.28 % 14.87 64 64 7 1024
5 31988 1084671 2278 22.80 % 14.04 64 64 8 2048
6 37308 2055167 2800 19.03 % 13.32 64 64 5 4096
7 44440 4344319 3566 15.34 % 12.46 64 64 6 8192
8 51956 7996159 4290 13.07 % 12.11 64 64 4 16384
9 62001 15101695 5186 11.06 % 11.96 64 64 4 32768
10 73031 29947647 6253 9.35 % 11.68 64 64 4 65536

Table A.7: Statistics of the grids created for the five-dimensional Gaussian data set (1 x 10° data points, 5 dimensions) using surplus-

based refinement, starting with a level seven regular sparse grid (refinement step zero).

SOLIBUSOS UONEN[_AT pLL) asiedg aAldepy 1o} sonsiels v

6€}

Grid Points Subgrids Largest Subgrid by Used Largest Subgrid by Max.

Ref. Used Max. #of Avg. Utilization Avg. # Pt. per # Pt. Used # Pt. Max. # Pt. Used # Pt. Max.
0 21 21 11 100.00 % 1.91 2 2 2 2
1 241 241 66 100.00 % 3.65 4 4 4 4
2 1400 1961 281 75.04 % 4.98 8 8 8 8
3 3144 8961 720 46.88 % 4.37 8 8 8 16
4 5901 28233 1414 33.50 % 4.17 11 16 10 32
5 9955 73665 2385 26.03 % 4.17 12 16 5 64
6 16653 174337 3915 21.09 % 4.25 13 16 6 128
7 24332 323681 5556 18.63 % 4.38 14 16 3 256
8 33607 625601 7895 15.54 % 4.26 16 32 3 512
9 39695 898593 9283 14.43 % 4.28 16 32 2 1024

10 48247 1467809 11402 12.93 % 4.23 18 32 2 2048
11 59973 2026657 13897 11.85 % 4.32 18 32 2 2048
12 84619 4907745 20693 9.26 % 4.09 18 32 3 4096
13 106876 8229569 26989 7.88 % 3.96 20 64 2 8192
14 134276 15454977 35207 6.57 % 3.81 21 32 2 16384
15 178488 28432193 46609 5.55 % 3.83 22 32 2 32768
16 218257 36616065 54766 521 % 3.99 23 32 2 32768
17 267937 50833537 66118 4.74 % 4.05 23 32 2 32768
18 295293 61014465 72439 4.54 % 4.08 25 32 2 32768
19 354077 92111553 87670 4.03 % 4.04 25 32 2 65536
20 401790 130813505 97811 3.85 % 4.11 25 32 2 131072

Table A.8: Statistics of the grids created for the ten-dimensional Gaussian data set (1 x 10° data points, 5 dimensions) using surplus-
based refinement, starting with a level two regular sparse grid (refinement step zero).

ovl

Grid Points Subgrids Largest Subgrid by Used Largest Subgrid by Max.

Ref. Used Max. # of Avg. Utilization = Avg. # Pt. per # Pt. Used # Pt. Max. # Pt. Used # Pt. Max.
0 13441 13441 1001 100.00 % 13.43 16 16 16 16
1 15342 26561 1411 75.15 % 10.87 16 16 16 32
2 18377 59873 2000 56.48 % 9.19 18 32 12 64
3 22504 129441 2957 41.10 % 7.61 18 32 6 128
4 32691 416449 5910 23.64 % 5.53 18 32 4 256
5 48139 1128801 10432 15.56 % 4.61 19 32 4 512
6 70491 2615777 16142 11.64 % 4.37 22 64 4 1024
7 99655 5306657 23241 9.39 % 4.29 23 64 4 2048
8 133776 10238145 31866 7.75 % 4.20 24 32 3 4096
9 166287 15918881 39577 6.85 % 4.20 25 64 2 8192
10 207515 25666401 49116 6.08 % 4.22 26 64 2 16384

Table A.9: Statistics of the grids created for the ten-dimensional Gaussian data set (1 x 10° data points, 5 dimensions) using surplus-
based refinement, starting with a level five regular sparse grid (refinement step zero).

SOLIBUSOS UONEN[_AT pLL) asiedg aAldepy 1o} sonsiels v

Bibliography

[AAA+07]

[AMD17]

[Bel61]

[BGO4]

[BPZ08]

[BSW14]

[Bus15]

[Heil4]

[HP13]

[HS52]

[NBGSO08]

[NVI16]

J. K. Adelman-McCarthy et al. “The Fifth Data Release of the Sloan Digital Sky
Survey.” In: The Astrophysical Journal Supplement Series 172.2 (2007), p. 634
(cit. on p. 52).

AMD. "Vega” Instruction Set Architecture. Tech. rep. Advanced Micro Devices,
Inc., July 28, 2017 (cit. on p. 25).

R. E. Bellman. Adaptive Control Processes - A Guided Tour. Princeton, New Jersey,
U.S.A.: Princeton University Press, 1961, p. 255 (cit. on p. 29).

H.-J. Bungartz, M. Griebel. “Sparse grids.” In: Acta Numerica 13 (2004),
pp. 147-269 (cit. on pp. 24, 29, 31, 32).

H.-J. Bungartz, D. Pfliiger, S. Zimmer. “Adaptive Sparse Grid Techniques for
Data Mining.” In: Modeling, Simulation and Optimization of Complex Processes:
Proceedings of the Third International Conference on High Performance Scientific
Computing, March 6-10, 2006, Hanoi, Vietnam. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008, pp. 121-130 (cit. on p. 29).

P. Baldi, P. Sadowski, D. Whiteson. “Searching for Exotic Particles in High-
Energy Physics with Deep Learning.” In: Nature Communications 5 (2014),
p.- 4308 (cit. on p. 53).

G. Buse. “Exploiting Many-Core Architectures for Dimensionally Adaptive
Sparse Grids.” Dissertation. Miinchen: Institut fiir Informatik, Technische
Universitat Miinchen, May 2015 (cit. on pp. 29, 34).

A. Heinecke. “Boosting Scientific Computing Applications through Leveraging
Data Parallel Architectures.” PhD thesis. Technical University Munich, 2014
(cit. on pp. 29, 42).

A. Heinecke, D. Pfliiger. “Emerging Architectures Enable to Boost Massively
Parallel Data Mining using Adaptive Sparse Grids.” In: International Journal of
Parallel Programming 41.3 (June 2013), pp. 357-399 (cit. on pp. 23, 40, 42,
52, 54, 129).

M. R. Hestenes, E. Stiefel. “Methods of Conjugate Gradients for Solving Linear
Systems.” In: Journal of Research of the National Bureau of Standards 49.6 (Dec.
1952), pp. 409-436 (cit. on p. 36).

J. Nickolls, I. Buck, M. Garland, K. Skadron. “Scalable Parallel Programming
with CUDA.” In: Queue 6.2 (Mar. 2008), pp. 40-53 (cit. on pp. 25, 27).

NVIDIA. NVIDIA Tesla P100. Tech. rep. WP-08019-001 v01.1. NVIDIA, May 9,
2016 (cit. on pp. 25, 28, 56, 96, 101).

141

Bibliography

[NVI17]

[Pf110]

[PHP16]

[SGS10]

[She94]

142

NVIDIA. CUDA C Programming Guide. Tech. rep. PG-02829-001_v9.0. NVIDIA,
Sept. 22, 2017 (cit. on pp. 26, 27, 101).

D. Pfliiger. “Spatially Adaptive Sparse Grids for High-Dimensional Prob-
lems.” Dissertation. Miinchen: Institut fiir Informatik, Technische Universitat
Miinchen, Feb. 2010 (cit. on pp. 23, 24, 29, 31, 35, 36, 53).

D. Pfander, A. Heinecke, D. Pfliiger. “A New Subspace-Based Algorithm for
Efficient Spatially Adaptive Sparse Grid Regression, Classification and Multi-
evaluation.” In: Sparse Grids and Applications - Stuttgart 2014. Cham: Springer
International Publishing, 2016, pp. 221-246 (cit. on pp. 23, 36, 39, 42, 43,
45, 52, 54, 65).

J.E. Stone, D. Gohara, G. Shi. “OpenCL: A Parallel Programming Standard
for Heterogeneous Computing Systems.” In: IEEE Des. Test 12.3 (May 2010),
pp. 66-73 (cit. on p. 25).

J.R. Shewchuk. An Introduction to the Conjugate Gradient Method Without

the Agonizing Pain. Tech. rep. Pittsburgh, PA, USA: Department of Computer
Science, Carnegie-Mellon University, 1994 (cit. on p. 36).

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources and
references than the listed ones. I have marked all direct or
indirect statements from other sources contained therein as
quotations. Neither this work nor significant parts of it were
part of another examination procedure. I have not published
this work in whole or in part before. The electronic copy is
consistent with all submitted copies.

place, date, signature

	1 Preface
	1.1 Introduction and Motivation
	1.2 Notation
	1.3 The Graphics Processing Unit

	2 Sparse Grids
	2.1 Sparse Grid Composition
	2.2 Hierarchical Basis Functions
	2.3 Spatially Adaptive Sparse Grids
	2.4 Regression on Sparse Grids

	3 Fast Regression Algorithms for Sparse Grids
	3.1 A Recursive Approach
	3.2 The Streaming Algorithm
	3.3 The Subspace-Linear Algorithm

	4 Fast Regression Algorithms on the GPU
	4.1 Subspace-Linear Regression on GPUs
	4.2 Subspace-Optimal Regression on GPUs

	5 Evaluation of Regression algorithms on the GPU
	5.1 Hardware Used
	5.2 Data Sets and Scenarios
	5.3 The Subspace-Linear Algorithm
	5.4 The Subspace-Adaptive Algorithm

	6 Discussion and Outlook
	A Statistics for Adaptive Sparse Grid Evaluation Scenarios
	Bibliography

