
Institute of Architecture of Application Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Masterarbeit

A platform for collaborative
quality assurance of

bibliographical references and
notes

Tamara Müller

Course of Study: Softwaretechnik

Examiner: Prof. Dr. Dr. Frank Leymann

Supervisor: Dr. Oliver Kopp,
Dr. Uwe Breitenbücher

Commenced: May 17, 2017

Completed: November 17, 2017

Abstract

In scientific work it is common to work in teams, while dealing with an abundance of
literature. With the help of a literature management software these can be collected and
managed as well as exported in bibliographies. Many online sources offer functionalities
to import references into reference management tools. However, the entries are often
incomplete or faulty. Hence, this thesis covers a concept for a reference management
platform that supports collaborative work and quality assurance of references. The main
ideas are to use a group functionality to support collaboration and a rating system for the
quality assurance. Additionally, the users can edit reference entries to improve their quality.
As part of this thesis, a prototype was implemented which supports both aspects.

Kurzfassung

Beim wissenschaftlichen Arbeiten wird üblicherweise in Teams gearbeitet. Dabei befasst
man sich mit einer Menge von Literatur. Diese kann mit Hilfe von einem Literaturverwal-
tungsprogramm gesammelt und verwaltet, sowie in Literaturlisten exportiert werden. Viele
Onlinequellen bieten die Möglichkeit an Referenzen in Literaturverwaltungsprogramme
zu importieren. Jedoch sind diese Referenzen oft unvollständig oder fehlerhaft. Deshalb
befasst sich diese Arbeit mit einem Konzept für eine Literaturverwaltungsplattform welche
gemeinschaftliches Arbeiten und Qualitätssicherung von Literaturangaben unterstützt. Die
Hauptideen sind eine Gruppenfunktion für das Zusammenarbeiten von mehreren Personen
und ein Bewertungssystem zur Qualitätssicherung. Darüber hinaus können die Benutzer
eine Quellenangabe bearbeiten und somit verbessern. Im Rahmen dieser Arbeit wurde ein
Prototyp implementiert welche beide Aspekte unterstützt.

3

Contents

1 Introduction 15

2 Related Work 17
2.1 Requirements for a Reference Management Software for Collaborative Work

with Quality Assurance of References . 17
2.2 Aigaion . 18
2.3 BibSonomy . 20
2.4 Citavi . 22
2.5 CiteULike . 24
2.6 Colwiz . 27
2.7 Docear . 29
2.8 EndNote . 31
2.9 F1000Workspace . 33
2.10 JabRef . 35
2.11 RefWorks . 37
2.12 Comparison of the Reference Management Tools 40
2.13 Other Related Work . 40

3 Concept 45
3.1 Collaborative Work . 45
3.2 Quality Assurance of Bibliographical References 46
3.3 Managing Bibliographical References . 48
3.4 Managing Comments, Users, and Ratings . 61
3.5 System . 61

4 Architecture and Implementation 69
4.1 Architecture . 69
4.2 Design Decisions . 69
4.3 Implementation . 71

5 Conclusion and Future Work 75

Bibliography 77

5

List of Figures

2.1 Aigaion screenshot. 19
2.2 BibSonomy screenshot. 21
2.3 Citavi screenshot. 23
2.4 CiteULike screenshot. 25
2.5 Colwiz screenshot. 28
2.6 Docear screenshot. 30
2.7 EndNote X8 screenshot. 32
2.8 F1000Workspace screenshot. 34
2.9 JabRef screenshot. 36
2.10 RefWorks screenshot. 38

3.1 BPMN process of rating a reference. 46
3.2 BPMN process of rating a suggestion for modification of a reference. 47
3.3 BPMN process of the additional functionallities for a user with the role

maintainer. 48
3.4 Git repository example of CloudRef. 49
3.5 Page for creating a new user account in CloudRef. 62
3.6 Screenshot of the login page of CloudRef. 62
3.7 CloudRef screenshot of the page for the manual insertion of a new reference. 63
3.8 CloudRef screenshot of the .bib file import page. 64
3.9 CloudRef screenshot of the table with all references. 65
3.10 CloudRef screenshot of a reference entry. 65
3.11 CloudRef screenshot which shows the view of suggestions to modify a

reference. 66
3.12 Screenshot of the CloudRef view of a PDF file and corresponding comments. 67

4.1 Architecture of the CloudRef platform. 70
4.2 Architecture of the CloudRef platform with implementation details. 71
4.3 Database schema of the CloudRef platform. 73

7

List of Tables

2.1 Comparison of the reference management tools. 42
2.2 Comparison of the reference management tools (cont.). 43
2.3 Fulfillment of the requirements by the reference management tools. 44

3.1 Table that shows which examples of the cases use the Algorithm 3.1 to
resolve occurred merge conflicts. 61

9

List of Listings

3.1 Content of a .bib file of the reference with the BibTeX key “test-merge”. . . 50
3.2 First suggestion to modify the reference with the BibTeX key “test-merge”. . 50
3.3 Second suggestion to modify the reference with the BibTeX key “test-merge”. 50
3.4 Merge of the second suggestion with merge strategy “recursive” and the

option “theirs” of Git. 51
3.5 Correct merge of the second suggestion. 51
3.6 Content of the test-merge.bib file after merging second suggestion with

strategy “recursive” of Git. 52
3.7 Result of a Git “diff” operation on the second suggestion and the parent

commit on the master. 52
3.8 The reference with BibTeX key “test-merge” is added. 54
3.9 Example for Case 1. 55
3.10 Example for Case 2. 55
3.11 Example for Case 3. 55
3.12 First part of the example for Case 4.1. 56
3.13 Second part of the example for Case 4.1. 56
3.14 Result after merging second suggestion of Case 4.1. 56
3.15 First part of the example for Case 5.1. 56
3.16 Second part of the example for Case 5.1. 56
3.17 Result after merging second suggestion of Case 5.1. 57
3.18 First part of the example for Case 5.2. 57
3.19 Second part of the example for Case 5.2. 57
3.20 Result after merging second suggestion of Case 5.2. 57
3.21 Example for Case 6.1. 58
3.22 First part of the example for Case 6.2. 58
3.23 Second part of the example for Case 6.2. 58
3.24 Result after merging second suggestion of Case 6.2. 58
3.25 First part of the example for Case 7. 59
3.26 Second part of the example for Case 7. 59
3.27 Result after merging second suggestion of Case 7. 59
3.28 First part of the example for Case 8. 59
3.29 Second part of the example for Case 8. 59
3.30 Result after merging second suggestion of Case 8. 60
3.31 First part of the example for Case 9.1. 60
3.32 Second part of the example for Case 9.1. 60
3.33 Result after merging second suggestion of Case 9.1. 60
3.34 First part of the example for Case 9.2. 60

11

3.35 Second part of the example for Case 9.2. 60
3.36 Result after merging second suggestion of Case 9.2. 61

12

List of Algorithms

3.1 Algorithm for resolving merge conflicts. 53

13

1 Introduction

When writing a scientific paper, like an essay on a seminar topic, a thesis like this, or a
scientific article for a prestigious conference, one has always to deal with an abundance of
literature on the topic. Reference management software assists people in scientific work.
The tools are used to collect literature, manage references, and export bibliographies. They
provide an efficient way to keep an overview of a large amount of literature. Numerous
tools provide the opportunity to manage knowledge about references inside comments,
notes, or tags. In contrast to annotating and highlighting text inside a PDF reader, this
has the advantage that the entire knowledge base can be searched within the software.
Additionally, doing research is often a collaborative task, on which several people work
together. Thus, literature management programs should ideally support collaboration. This
includes sharing references and comments with other users or people who use another or
no literature management tool at all.

There are multiple resources on the web, where people can search for literature such as
Google Scholar1, IEEE Xplore2, Springer3, DBLP4, arXiv5, ResearchGate6, or Crossref7.
Many of them offer the functionality to import a reference into the preferred reference
management software. However, they often provide incomplete or faulty reference en-
tries [Kop16]. A correct and complete entry is required for a correct reference list and that
is on the other hand a prerequisite for publication. The publishers have different guidelines
on how a bibliography has to be printed and which fields are necessary. For example, ACM
(Association for Computing Machinery) requests the page numbers which are on the other
hand not needed for IEEE (Institute of Electrical and Electronics Engineers), and IEEE has
different journal abbreviations than others. To meet this dissimilar guidelines a faultless
and complete reference list is required which than can be adapted to the rules of the
publisher. Hence, a good quality of the reference entries is important. Many programs for
managing references provide a mechanism to detect missing required fields and highlight
this entries to show the user that they are incomplete. However, this is not sufficient
because wrong information is not detected. The users have to check each reference entry
by their own to ensure correctness.

1https://scholar.google.com
2http://ieeexplore.ieee.org
3https://link.springer.com
4http://dblp.uni-trier.de
5https://arxiv.org
6https://www.researchgate.net
7https://search.crossref.org

15

https://scholar.google.com
http://ieeexplore.ieee.org
https://link.springer.com
http://dblp.uni-trier.de
https://arxiv.org
https://www.researchgate.net
https://search.crossref.org

1 Introduction

The goal of this thesis is the development of a cloud-based web application for collaborative
reference management. To support the cooperation of several people it should be possible
to post comments to literature at different levels of visibility. Furthermore, the platform
should provide quality assurance for bibliographical references to ensure complete and
faultless references.

Structure

This work is structured as follows:

Chapter 2 – Related Work presents related work and several reference management tools
which are compared in regard to collaborative work and quality assurance of biblio-
graphical references. In addition, requirements which support these functionalities
are formulated.

Chapter 3 – Concept introduces the approach to realize a software for reference man-
agement which supports collaborative work and quality assurance of bibliographical
references. Furthermore, it explains the user interface of the system and evaluates
which of the previously defined requirements are fulfilled.

Chapter 4 – Architecture and Implementation gives an overview of the architecture of
the developed system and an insight into the implementation.

Chapter 5 – Conclusion and Future Work summarizes the work and provides an out-
look for future work.

16

2 Related Work

At the beginning of this chapter 20 requirements are defined for a reference management
software that supports collaborative work and quality assurance (Section 2.1). Afterwards,
Sections 2.2 to 2.11 present several tools for reference management and evaluate them
against the previously defined requirements. Section 2.12 provides an overview of the
features of the programs and which requirements they fulfill. Finally, Section 2.13 presents
other related works.

2.1 Requirements for a Reference Management Software for
Collaborative Work with Quality Assurance of References

This thesis covers a concept for an literature management system that supports collaborative
work and quality assurance of references. In the following requirements are defined for
such a tool. The requirements are grouped. For each requirement, first the description is
presented followed by the number of the requirement in brackets.

1. Comments to literature:
The users can write comments to literature within the software (Req. 1.1). Further-
more, comments in uploaded PDF files can be viewed (Req. 1.2) and extracted from
the program (Req. 1.3). The user who uploads the PDF file can decide on what level
of visibility the file (Req. 1.4) and comments (Req 1.5) are published.

2. Visibility levels for comments:
Comments can be published at different visibility levels: private (Req. 2.1), for single
selected users (Req. 2.2), for multiple groups of users (Req. 2.3), and public that all
users of the software can see it (Req. 2.4). The user can decide for each comment on
what level of visibility it will be published (Req. 2.5).

3. Collaborative reference management:
Every user can create groups1 (Req. 3.1) and invite several other users into these
groups (Req. 3.2). Each group member is allowed to add new references (Req. 3.3),
to upload files (Req. 3.4), and to write comments to literature (Req. 3.5).

1or something similar, e.g., a shared database

17

2 Related Work

4. Quality assurance of references:
References with missing information that is required are marked or correct references
are highlighted (Req. 4.1). The software is also able to detect duplicate entries of
references (Req. 4.2). Furthermore, a consistent notation of conferences (Req. 4.3),
authors (Req. 4.4), and abbreviations (Req. 4.5) is ensured.

2.2 Aigaion

The open source reference management program Aigaion is a web based software written
in PHP and MySQL [Aig13]. The latest version 2.2.b was released in 2010. To use the
system it has to be installed and configured for example on a webspace. The administrator
is able to create accounts for other users and manage their rights. After the installation
there are the user groups admins, readers, editors, and guests. In the following the features
of Aigaion are evaluated for users which are editors.

2.2.1 Import and Export

With Aigaion users can import and export BibTeX and RIS files [Aig13]. For importing
the format REFER is available as well. Aigaion does not provide an opportunity to import
references from web pages, search in other databases or a full-text search.

2.2.2 Data Input and Editing

New references can also be added manually. There are 13 available document types and
the users can cross-reference entries for example reprints. Attachment of documents such
as PDF files is also possible and in the site configuration new entry fields can be defined.
However, the software does not allow new definitions of document types. During the
import there is also the option to check for duplicates but only the titles are compared.

2.2.3 Data Display and Search

All references can be viewed in a list view (see Figure 2.1, center) and a single entry with
all its fields by clicking on the title. Publications can be sorted by author, title, type/journal,
year, and recently added in the navigation bar (see Figure 2.1, left). There is no support of
a search history.

18

2.2 Aigaion

Figure 2.1: Aigaion 2.2.b screenshot. The references are listed in the center, sorted by
the year of publication. At the navigation bar on the left side the sorting can
be changed.

2.2.4 Cooperation

With the software multiple users can cooperate. For users of the group editors it is possible
to create private, public or intern notes, references, and attachment of files. Public means
that also anonymous users can see the object but they are not accessible without account.
The access level intern is for all users which are not anonymous and private only for the
object owner. For each item the user can decide which rights are applied. The access level
is visualized with a traffic light next to the object.

2.2.5 Citation and Literature Lists

The software supports some citation styles but there is no opportunity to define or adapt
styles. Furthermore, there is no support for word processing programs and literature lists
can only be created statically.

19

2 Related Work

2.2.6 Organization of Knowledge

To manage the knowledge Aigaion supports tags, notes and hierarchical groups of references
called topics.

2.2.7 Fulfillment of the Requirements

The Requirements 1.1, 1.4 and 1.5 are met by Aigaion. From the second group of the re-
quirements all requirements are fulfilled except for Requirement 2.2. The Requirements 3.1
to 3.5 are fulfilled completely because everyone can install the software and invite others
to use it collaboratively. To support all these requirements every user needs suitable rights
allocated by the administrator. Futhermore, the Requirement 4.4 is supported and partly
Requirement 4.2 because only at the import a duplicate check is possible and only the titles
get compared. Therefore, Aigaion provides nearly 14 of the 20 requirements.

2.3 BibSonomy

The open source [Bib17f] web application BibSonomy is a free tool to save and share
publications and bookmarks.

2.3.1 Import and Export

BibSonomy can import RIS, BibTeX and other files. Besides, the export supports
RIS [Bib17b], BibTeX, and other formats [Bib17b; Bib17c]. With an add-on new ref-
erences can be imported directly from the browser [Bib17c]. Furthermore, a database
search of their own database is available within the software and also a full-text search.

2.3.2 Data Input and Editing

References can be added manually as well. There are 20 different document types available
but neither new document types nor new entry fields can be defined. The software also
provides a search for metadata via DOI, ISBN, and other information. During the import of
publications the references can be checked for duplicates afterwards there is no duplicate
detection support. Uploading files to references is also possible [Bib17a]. Different
references cannot be cross-referenced in BibSonomy and there is also no functionality for
processing and evaluation of full texts.

20

2.3 BibSonomy

Figure 2.2: Screenshot of the BibSonomy system. In the middle the references are shown,
to the left all bookmarks and to the right the publications. On the right-
hand side of the screenshot are information of the user like his groups and a
tag cloud.

2.3.3 Data Display and Search

BibSonomy provides a list view of all entries (see Figure 2.2, center). Thereby, bookmarks
are shown on the left-hand side, whereas publications are located on the right-hand side.
The entries can be sorted by date and title at the top of the list view. Advanced sorting
options are available via adding parameters to the URL (see Figure 2.2, top) [Bib17e].
Each publication can be opened in a new site. There the most important information is
shown and at the bottom of the page also a citation display and the BibTeX source. In the
edit mode of a reference the user can see a full view of all entry fields. Furthermore, search
histories are saved in BibSonomy.

2.3.4 Cooperation

References can be shared with friends or groups while adding a new reference or in the
edit mode [Bib17d]. It is also possible to share a reference with multiple groups using the
system tag “for:<group name>”. Every user can create a group but it has to be accepted
by the system administrator. Similarly, joining a group has to be accepted by the group

21

2 Related Work

administrator. The group functionality allows collaborative work with BibSonomy [Bib17c].
Comments can be shared with the group members or friends and it is possible to write
private and anonymous notes [Bib17d]. In addition, there is a review functionality where
users can write a review for a reference and rate it.

2.3.5 Citation and Literature Lists

The application supports different citation styles but no self-definition or adaptation of
citation styles. A beta version of a Google Docs add-on is provided [Bib15]. Literature lists
can be created in a static manner.

2.3.6 Organization of Knowledge

To organize the knowledge the user can create tags [Bib17c] and notes. The tags are
shown in a tag cloud (see Figure 2.2, bottom right). Clicking on a tag shows all references
containing the selected tag in a list view. It is also possible to select multiple tags.

2.3.7 Fulfillment of the Requirements

BibSonomy complies the Requirements 1.1 and 1.2 as well as Requirements 2.1 and 2.3
to 2.5. The Requirement 2.2 is not supported. Instead the software has a visibility level for
comments that all friends of the user can see them. Additionally, the all requirements of
group 3 are fulfilled and partly the Requirement 4.2 because duplicates can only be detected
at the import. In summary, BibSonomy meets approximately 12 of 20 requirements.

2.4 Citavi

Citavi is a commercial reference management software for Windows [AMSW16; TUM16].
The available licenses can be categorized into Citavi Free, Citavi for Windows, and Citavi for
DBServer. Citavi Free can be used without charge for small projects up to 100 references.
The current version 5.6.0.2 of Citavi for Windows is considered in the following.

2.4.1 Import and Export

BibTeX and RIS are two of the supported import and export formats [TUM16]. Additionally,
references can be added with the Citavi Picker directly from the browsers Mozilla Firefox,
Internet Explorer, and Google Chrome [AMSW16; TUM16]. Within the software, database
search is provided at arXiv, Crossref, IEEE Xplore, Springer, and others Furthermore, the
user can search for full-texts [AMSW16; TUM16].

22

2.4 Citavi

Figure 2.3: Citavi 5 screenshot. On the left-hand side all references are listed. In the center
the selected entry is shown and on the right-hand side the corresponding PDF
file of the reference.

2.4.2 Data Input and Editing

In addition to all the import capabilities, the user can also add a reference manu-
ally [AMSW16]. 35 document types are supported by Citavi [AMSW16; TUM16] but
the user cannot define new ones [TUM16]. On the other hand, new entry fields can be
specified by the user [AMSW16; TUM16]. The user can link references, e.g. reprints and
upload files to references. Metadata can be completed automatically from PDF files with
DOI and via the update references button [TUM16]. Additionally, a duplicate check and
processing and evaluation of full-texts is provided by Citavi [AMSW16; TUM16].

2.4.3 Data Display and Search

The main window in Figure 2.3 shows a list view of all references [TUM16] on the left, an
overview of the selected reference in the middle and the attached PDF file of the chosen
reference on the right. The middle of the view has multiple tabs where all filled fields are
presented [TUM16]. Above the list view the selected reference is shown with a citation
style [AMSW16]. Moreover, all entries can be shown in a configurable table view in an

23

2 Related Work

additional window [TUM16]. The references can be sorted by the user and a search history
is available [AMSW16; TUM16].

2.4.4 Cooperation

With Citavi for Windows the cooperation of small teams is supported [Cit16d; TUM16].
The project has to be saved on a location where each user can access it and all members
must run the same version of Citavi. It is recommended that only three persons use the
project at once. If two users edit the same field of a reference concurrently the last change
is saved and overwrites the other one [Cit16b]. For larger groups Citavi for DBServer has
to be used where the project is stored on an SQL server [Cit16a; TUM16].

2.4.5 Citation and Literature Lists

There are many available citation styles in Citavi [AMSW16; TUM16]. In addition, the user
can create own styles and adapt existing ones [AMSW16; Cit16c; TUM16]. The references
can be inserted into the word processing programs Microsoft Word, LibreOffice, OpenOffice,
and also in several TeX editors [AMSW16; TUM16]. A static creation of the literature list is
supported and a dynamic creation for Microsoft Word and LaTeX.

2.4.6 Organization of Knowledge

The software has a knowledge organizer tab where thoughts [AMSW16], direct and indirect
quotations [AMSW16], summaries, comments, and red highlighted text of references
is shown. All of them and all references can be categorized, added to a group, and
provided with keywords. Furthermore, the user can generate tasks, e.g. verify bibliographic
information, and assign a date, priority, notes, and status to them.

2.4.7 Fulfillment of the Requirements

The Requirements 1.1, 1.4, 1.5, 2.1, and 2.2 are met. The third group of the requirements
is achieved but in Citavi for Windows collaborative work can be done only with small
groups. Besides, the Requirements 4.2 to 4.4 are met. In summary, Citavi fulfills 13 out of
20 requirements.

2.5 CiteULike

CiteULike is a free web application to manage references [Cit17b]. A Gold version provides
paying users additional features like annotating PDF files [Cit17a].

24

2.5 CiteULike

Figure 2.4: CiteULike screenshot. The references are shown in a list view. Above this list
are several sorting options.

2.5.1 Import and Export

The import of CiteULike supports BibTeX and RIS files [Cit17b]. During the import a
duplicate check can be executed. For exporting the formats BibTeX and RIS are also
provided and some additional ones. Furthermore, it is possible to add references from the
browser through a browser button. An installation is not required. CiteULike has an own
database with entries from their users which can be searched by anyone. However, there is
no search for full-texts available.

2.5.2 Data Input and Editing

In addition to the import options, users can also add references manually [Cit17b]. 17
document types are available but no definition of new types or entry fields. Besides,
entries cannot be linked and adding metadata to existing references via DOI or ISBN is not
supported. The attachment of files is limited to 2 documents and 5 images per reference.
Gold users of CiteULike are able to run a duplicate check also after the import and they can
annotate PDF files [Cit17a].

25

2 Related Work

2.5.3 Data Display and Search

Figure 2.4 shows a group of references in CiteULike which are presented in a list view. By
clicking on one entry it is shown in a short overview. It is also possible to show the BibTeX
source and the reference in a citation style. A full view of all fields is available in the edit
mode. Like in Figure 2.4 the entries can be sorted for example after reading priority. There
is no search history available.

2.5.4 Cooperation

The software provides groups for collaborative work [Cit17b]. These groups can be visible
for all users or only for members of the group. In the settings it is also possible to define
who is allowed to enter the group. Either everyone can join the group, or users have to ask
for permit to enter, or only invited users can join the group. Furthermore, the rights of the
members can be chosen. They can have all rights or restricted ones where for example no
references can be added. The creation of notes is always allowed.

2.5.5 Citation and Literature Lists

There are different citation styles available but the users cannot create their own. A word
processing program is also not supported but static literature lists can be exported.

2.5.6 Organization of Knowledge

The users can create notes, tags, and groups to organize their knowledge. The notes can be
published private or public.

2.5.7 Fulfillment of the Requirements

For the fulfillment of the requirements the features of Gold users are evaluated. All
requirements of the first and third group are met. In addition, the requirements of group 2
are fulfilled except Requirement 2.3. Of the last requirement group only Requirement 4.2
is met by CiteULike. Overall, 15 of 20 requirements are fulfilled.

26

2.6 Colwiz

2.6 Colwiz

Colwiz is a free tool for managing bibliographical references. It is limited to 5000 publica-
tion per account and a maximum online storage of 30 GB [TUM16]. After the registration
users have 2 GB storage which can be increased for example through inviting friends and
completing the profile details. There is a desktop application and a similar looking web
client. Below, the features of the desktop version 3.17.0606 are explained.

2.6.1 Import and Export

In Colwiz users can import and export BibTeX, RIS, and other formats [TUM16]. A Web
Importer is provided which allows adding references from many web sites directly from the
browser. Furthermore, web search with Google Scholar, arXiv, IEEE Xplore, DBLP, Springer,
Crossref, the programs own database, and others can be executed within the software.
Besides, full-text search is possible.

2.6.2 Data Input and Editing

In addition, users can add references manually. 15 publication types are supported by Col-
wiz. However, the users cannot create their own types or entry fields [TUM16]. Metadata
of entries can be completed via DOI, ISBN, and other information and a duplicate check is
executed automatically by the software. There is no possibility to link different references
like reprints but the users can attach files to publications and annotate full-texts.

2.6.3 Data Display and Search

Colwiz provides a list view (see Figure 2.5, center) and a table view for multiple refer-
ences [TUM16]. If an entry is selected a short overview of it is shown (see Figure 2.5, right)
and in the edit mode the users can look at all fields. Furthermore, there are several sorting
options and a search history [TUM16].

2.6.4 Cooperation

User groups can be created with the visibility levels private, public, and hidden. Users
can copy their references to groups and files can be shared via Colwiz Drive [col14].
Additionally, the annotation of multiple members is supported for PDF files, Microsoft Word
and Powerpoint documents.

27

2 Related Work

Figure 2.5: Colwiz 3.17 screenshot. At the center is a list view of references. The selected
reference of this list is shown on the right-hand side in more detail. Additionally,
on the left-hand side users can search and import literature and navigate inside
their groups.

2.6.5 Citation and Literature Lists

Colwiz supports different citation styles and also the creation and adaption of
styles [TUM16]. Dynamic creation of literature lists is supported for TeX editors, Mi-
crosoft Word, LibreOffice, OpenOffice [TUM16], and Google Docs. Besides, static literature
lists are supported through the export.

2.6.6 Organization of Knowledge

For the organization of knowledge users can create notes, groups [TUM16], and keywords.
In addition, smart groups are supported by the software.

2.6.7 Fulfillment of the Requirements

Colwiz fulfills the third group of the requirements completely if the group members have
administrator rights. The other groups are only partly supported. The Requirements 1.1,

28

2.7 Docear

1.4 and 1.5 as well as Requirements 2.1, 2.2 and 2.5 are provided. Furthermore, Require-
ment 4.2 is fulfilled by an automatic duplicate check. 12 of 20 requirements are met by
the application.

2.7 Docear

With the open source software Docear users can manage their literature and knowledge
using a mind map [Doc17b]. It uses the open source tools Freeplane2 for the mind map
functionality and JabRef to manage the references. A web client is not available yet but a
simple prototype is partly implemented [Doc17b]. The current version of Docear is 1.2.0.

2.7.1 Import and Export

In Docear users can import BibTeX files to new projects and export references to BibTeX,
RIS, and other formats. There is no add-on to import references from web pages, the user
has to copy the BibTeX source manually [Bee14]. In addition, currently there is no online
search provided within the program. Besides, full-text search does not exist [Doc17b;
Doc17c].

2.7.2 Data Input and Editing

The references can be added manually by the user and cross-referenced. Docear supports
19 document types but no definition for new ones. On the other hand, new entry fields ca
be defined by the user. Furthermore, files can be attached and comments extracted (see
result at Figure 2.6, center) [Doc17c]. The software provides a metadata search on Google
Scholar for PDF files. A duplicate check for references can be activated in the settings.

2.7.3 Data Display and Search

In Docear all bibliographical references can be displayed in a table view (see Figure 2.6,
right) and sorted by clicking on a column heading. All fields of a single entry are visible in
the edit mode where also a tab for the BibTeX source is available. At the lower right corner
of Figure 2.6 the preview of the selected entry is shown and can also be printed. Docear
provides a search history within one session and allows also to search in the mind map.

2https://www.freeplane.org

29

https://www.freeplane.org

2 Related Work

Figure 2.6: Docear 1.2.0 screenshot. On the left-hand side the mind map feature of the
software is shown and on the right-hand side the stored references.

2.7.4 Cooperation

Users can copy their project [Doc17c] or the BibTeX file and share them with others but
there is no support for collaborative work yet [Doc17b].

2.7.5 Citation and Literature Lists

Multiple citation styles are provided [Doc17a; Doc17b; Doc17c] and the creation of new
styles is also possible [Doc17a]. Furthermore, a Microsoft Word add-on is available for
Windows users and TeX editors are supported [Doc17b]. Literature lists can be created
dynamically for them and static literature lists are also supported.

2.7.6 Organization of Knowledge

Knowledge of the user about the literature can be managed in Docear with a mind map
feature. Comments can be extracted from PDF files and a manual creation of nodes is also
possible. All nodes can be moved by drag and drop interactions and arranged hierarchically.

30

2.8 EndNote

Furthermore, the user can add images and references to the mind map. The references
itself can be categorized into groups and have keywords.

2.7.7 Fulfillment of the Requirements

All partial requirements of 1 are fulfilled. There are no different visibility levels, as
everything is published private, thus only Requirement 2.1 is met of the second group of
requirements. Docear does not support collaborative work hence all requirements of group
3 are not supported. Besides, the Requirements 4.1, 4.2 and 4.4 are met. Requirement 4.4
is realized with an auto-complete functionality for different fields like author. In summary,
Docear fulfills 9 of the 20 requirements.

2.8 EndNote

EndNote X8 is a commercial desktop reference management software [AMSW16; TUM16].
There also exists a free version called EndNote basic which is a web application with
limited functionality, references, and storage capacity. In the following, only version X8
is considered.

2.8.1 Import and Export

EndNote provides database search with Crossref and many other search engines within the
program (see Figure 2.7, left). Additionally, there exists a tool to capture references from
websites [AMSW16; TUM16]. The import of EndNote supports RIS files and many other file
formats [TUM16], but no BibTeX. The export on the other hand supports RIS and BibTeX in
addition to other formats [TUM16]. A full text search is available via OpenURL [AMSW16;
TUM16].

2.8.2 Data Input and Editing

New references also can be entered manual by the user [AMSW16]. There are 51 different
document types supported by the program [AMSW16; TUM16] and the user can define
new document types [TUM16] and entry fields [AMSW16; TUM16]. Multiple references,
e.g. translations or reprints, cannot be interlinked in EndNote. Furthermore, metadata
can be added from PDF files with DOI information and via the update reference button
of the software [TUM16]. Attachment of files is also provided by EndNote and PDF
files and their annotations can be viewed and edited within the program (see Figure 2.7,
bottom) [AMSW16; TUM16]. There is also a duplicate detection for references available.

31

2 Related Work

Figure 2.7: EndNote X8 screenshot. At the upper part of the center the references are
listed. Below the PDF file of the selected reference is shown.

2.8.3 Data Display and Search

Multiple references can be viewed in a table (see Figure 2.7, center) and also a view of
all fields of a reference is available [AMSW16; TUM16]. In addition, EndNote shows a
reference with the selected citation style in the preview tab. In the table view the rows can
be sorted by clicking on the column headings. The software also provides a search history.

2.8.4 Cooperation

A library can be shared in EndNote X8 with up to 100 users but an online account is required
for each user [End17]. With that account the user has to synchronize his library first and
share it with others afterwards. Each member of a shared library can add references,
comments, and files. EndNote neither has a limited library size which can be shared nor
does the users have to make any additional payments to use this functionality.

32

2.9 F1000Workspace

2.8.5 Citation and Literature Lists

Many citation styles are installed with EndNote X8 and the user can download more from
the website3 [AMSW16; TUM16]. There are over 6000 styles in total. It is also possible
to create a new citation style or to adapt an existing one. EndNote provides add-ins for
Microsoft Word and OpenOffice. The literature lists can be created static or dynamic.

2.8.6 Organization of Knowledge

Knowledge can be organized in EndNote with tags, notes [AMSW16], and groups of
references. The group functionality also supports smart groups where the user for example
can define which word should be contained in the title. All matching references from the
library are added automatically to this group.

2.8.7 Fulfillment of the Requirements

The requirements of the first and third group are completely fulfilled by EndNote. How-
ever, the requirements of the other groups are only partly met. The Requirements 2.1
and 2.2 as well as Requirements 4.2 and 4.4 are provided. Overall, 14 of 20 requirements
are fulfilled.

2.9 F1000Workspace

F1000Workspace is a commercial reference manager on the web which offers different
types of accounts [F1017a]. There is also a free subscription with amongst other things
limited storage and projects.

2.9.1 Import and Export

The software provides import and export of BibTeX, RIS, and other file formats [F1017a;
F1017b]. Furthermore, importing directly from websites is supported through an add-on
for the browser [F1017a]. However, there is no full-text search and database search within
F1000Workspace but the user can insert references via DOI, ISBN, and other identifiers.

3Citation styles for EndNote: http://endnote.com/downloads/styles

33

http://endnote.com/downloads/styles

2 Related Work

Figure 2.8: F1000Workspace screenshot. References are listed at the center of the screen.
On the left side the user can navigate into projects where also collaborative
work is supported.

2.9.2 Data Input and Editing

Adding references can also be done manually by the user [F1017a]. The program supports
11 document types but no definition of new types or entry fields. References with missing
information are marked with a red exclamation point (see Figure 2.8, third entry) and the
missing metadata can be added via DOI, ISBN, and further options [F1017b]. Furthermore,
documents can be uploaded and a duplicate check is available [F1017a; F1017b]. Besides,
processing and evaluation of full texts is possible with a browser add-on [F1017a].

2.9.3 Data Display and Search

F1000Workspace displays multiple references in a list view (see Figure 2.8, center) which
can also be switched to a configurable table view. There are different sorting options for
the data displays available [F1017a]. By clicking on a reference it is shown in a short
overview with the most important information. All entry fields can be seen in the edit
mode. Furthermore, F1000Workspace provides a search history for the users.

34

2.10 JabRef

2.9.4 Cooperation

Users can create shared projects and invite others to them [F1017a]. All members are
allowed to add, edit, and delete references. Additionally, they can read notes from others
and insert their own. Only private notes are not visible to other project collaborators.

2.9.5 Citation and Literature Lists

F1000Workspace provides multiple citation styles [F1017a]. However, an adaption or
definition of new styles is not supported. Microsoft Word and Google Docs can be used
with static literature lists which can be updated through a button click.

2.9.6 Organization of Knowledge

For the organization of knowledge F1000Workspace provides notes, tags, and project
groups for references [F1017a]. The projects can also have subprojects.

2.9.7 Fulfillment of the Requirements

The requirements of group 1 and 3 are completely fulfilled. Requirements 2.1, 2.2, 2.5, 4.1
and 4.2 are also met. In summary, 15 of 20 requirements are fulfilled by F1000Workspace.

2.10 JabRef

JabRef is an open source software for managing bibliographical references [AMSW16;
TUM16]. It is written in Java and thus a platform independent desktop application. This
section analyses the features of JabRef version 4.0.0.

2.10.1 Import and Export

BibTeX, RIS and many other formats are supported by the import and export of the
program [TUM16]. An add-on for Firefox4 allows to import references directly from the
browser. Furthermore, new references can be imported via web search within JabRef (see
Figure 2.9, left) [AMSW16; TUM16]. Supported search engines are arXiv, Crossref, DBLP,
Google Scholar [Jab17a], IEEE Xplore, Springer, and others [Jab17a; TUM16]. Besides, a
full text search is available in the software [AMSW16; TUM16].

4Firefox add-on JabFox: https://addons.mozilla.org/de/firefox/addon/jabfox/

35

https://addons.mozilla.org/de/firefox/addon/jabfox/

2 Related Work

Figure 2.9: JabRef 4.0.0 screenshot. On the left side is a search bar to access the supported
web searches. In the center the references are listed in a table. Below that
table the currently selected reference entry is shown in detail.

2.10.2 Data Input and Editing

In addition to the import options, the user can add a reference manually [AMSW16].
There are 19 available document types [AMSW16; TUM16] and the user can define own
types [TUM16] and entry fields [AMSW16; TUM16]. Furthermore, references can be
linked in JabRef with the Crossref field and file attachments of many formats are supported.
Metadata can be added via DOI, ISBN, and from the metadata of PDF files [TUM16]. A
duplicate check is also available [AMSW16; TUM16]. Processing and evaluation of full
texts is not supported by JabRef.

2.10.3 Data Display and Search

Figure 2.9 shows the main view of JabRef which consists of a table view in the center.
The columns can be configured by the user and the table can be sorted by clicking on the
column headings. At the bottom of Figure 2.9 all fields of the selected entry are shown
in multiple tabs and can be edited. The last tab shows the BibTeX source code of the
reference. If the full view of an entry is closed the user can see a short preview of the

36

2.11 RefWorks

entry or the reference printed in the selected citation style. JabRef also provides a search
history [AMSW16; TUM16].

2.10.4 Cooperation

Users can share the BibTeX file or a SQL database with other users [AMSW16; Jab16b]. A
shared SQL database allows collaborative work with JabRef [Jab16a]. A prerequisite to use
this feature is a remote database. The user can choose between PostgreSQL, MySQL, and
Oracle as database type. Changes of the reference library are automatically updated and
merged if possible.

2.10.5 Citation and Literature Lists

Different citation styles are supported by JabRef including individual definition and adap-
tion of styles [AMSW16]. The word processing programs Microsoft Word [TUM16],
OpenOffice [AMSW16], and LibreOffice are supported as well as TeX editors [AMSW16;
TUM16]. The creation of literature lists can be done statically or dynamically [AMSW16].

2.10.6 Organization of Knowledge

For the organization of knowledge the software provides creation of hierarchical groups
of references [TUM16], smart groups, tags [AMSW16], and special fields [Jab16c]. The
special fields allow rating literature, and setting a priority and a read status. The user can
also toggle the fields relevance, quality assured, and print status. In the settings of JabRef
the user can choose if the special fields should be synchronized with keywords or written
to separate fields of the BibTeX source [Jab16c].

2.10.7 Fulfillment of the Requirements

JabRef fulfills completely the groups 1 and 3 of the defined requirements. Furthermore,
the Requirements 2.1 and 2.3 as well as the Requirements 4.1, 4.2, 4.4 and 4.5 are met.
Altogether, 16 of the 20 requirements are supported.

2.11 RefWorks

RefWorks is a web application [TUM16]. The version 2.0 is the legacy software of Ref-
Works [Ref17d] and has two different types of accounts: individual subscriber and organi-
zational subscriber [Ref17c]. An account via an organization enables additional features
like uploading files [Ref17a] and cooperative work [TUM16].

37

2 Related Work

Figure 2.10: RefWorks 2.0 screenshot. The references are listed in the center of the window.
On the right-hand side several functionalities are provided like importing and
exporting references or to navigate into folders of references.

2.11.1 Import and Export

The import and export support BibTeX, RIS and many other formats [TUM16]. Furthermore,
a database search is available within the software and an import from web pages by use of
the RefGrab-It tool [Ref17b; TUM16]. With an individual subscription there is no access to
full-text search [TUM16]. For that purpose an organizational account is required and the
organization has to configure the full-text search [Ref17f].

2.11.2 Data Input and Editing

The user can also add references by hand. RefWorks supports 31 different document
types and the definition of new entry fields [TUM16]. However, the user cannot create
own document types and link references. For adding documents an organizational ac-
count is required [Ref17a]. In addition, processing and evaluation of full texts is not
supported [TUM16]. On the other hand, checking for duplicates is provided.

38

2.11 RefWorks

2.11.3 Data Display and Search

Different views are available in RefWorks [Ref17f; TUM16]. The standard view (see
Figure 2.10, center) is a list view of multiple references. The user can switch to a short or
full view where less or all information is shown to each reference. All data displays can
also be sorted and there exists a history for search queries [TUM16].

2.11.4 Cooperation

Sharing records with other users and cooperative work is not supported with an individual
account. Therefore an organizational subscription is required [TUM16].

2.11.5 Citation and Literature Lists

The application provides multiple citation styles and allows the users to edit them or create
new ones from scratch [TUM16]. There exists a Write-N-Cite add-in for Microsoft Word
which can insert reference lists dynamically. Besides, the creation of static literature lists
is possible.

2.11.6 Organization of Knowledge

To manage the knowledge users can group references hierarchically [TUM16], add notes,
and write into additional free text fields.

2.11.7 Fulfillment of the Requirements

The Requirements 1.1, 1.4 and 1.5 are fulfilled. Furthermore, the user can add references,
files, and comments to his private library and share a folder or the library via URL with
others or with the entire organization if he uses an organizational subscription [Ref17e].
In the settings of a shared folder the user can enable comments of other persons but they
are not allowed to edit references. So the Requirements 2.1, 2.2, 2.3, 3.1, 3.2, and 3.5 are
fulfilled. Futhermore, the Requirements 4.2 and 4.4 are realized in the software. Overall,
11 of 20 requirements are met by RefWorks.

39

2 Related Work

2.12 Comparison of the Reference Management Tools

The tools in the previous sections provide different functionalities and are developed for
different scenarios. The Tables 2.1 and 2.2 give an overview of the features supported by
each software. Most of the tools support BibTeX and RIS to import and export references.
This allows to transfer references from one tool to another, so there is no vendor lock-in.
Organization of knowledge is similar at the most tools. They provide tags, notes, and
groups to organize knowledge on literature. Docear is the only software which additionally
allows to organize the information in a mind map. However, Docear is the only tool which
does not support collaborative work.

The fulfillment of the requirements from Section 2.1 are listed for each software in Ta-
ble 2.3. JabRef meets the most requirements with 16 of 20, followed by CiteULike and
F1000Workspace which support one requirement less. None of the programs fulfills all
requirements for quality assurance of references. Each provides some mechanism for
duplicate detection but the other partial requirements are only implemented rarely. Hence,
the next chapter introduces a concept for a reference management software which sup-
ports all of the requirements. The realization of the collaborative and quality assurance
requirements are especially considered.

2.13 Other Related Work

The focus of this chapter is on reference management tools but there are also other related
works. Sturm and Sunyaev [SS17a; SS17b] research a system for systematic literature
search. First, they introduce the requirements for such a kind of system – comprehensive-
ness, precision, and reproducibility. Afterwards, design principles are developed and also a
prototype [SS17a; SS17b; SSS15]. Beel and Langer [BL15] as well as Adomavicius and
Tuzhilin [AT05] analyze approaches for recommendation systems which show users related
articles in their research field. Such systems are for example used in JabRef [FSG+17] and
Docear [BLGN13].

Furthermore, there are other tools which can support people in scientific work. One
example is Hypothesis5 – an open source tool for annotations on web pages [Hyp17a]. It
does not need any implementation of the page owner to allow annotating a site, it uses a
layer on top of a website to provide this functionality. This enables annotating each page on
the web like a news article, a blog entry or a book. Everyone can create a free account and
add Hypothesis to the browser either by installing an add-on for Google Chrome or through
adding a button to the bookmarks of the browser [Hyp17c]. Furthermore, Hypothesis
supports collaborative work [Hyp17b]. Other people can be invited to cooperate by sharing
a link. There are different types of annotations – highlights, text notes, page notes, and
replies [Ude16]. Highlighted text passages are only visible for the user himself, they cannot

5https://hypothes.is

40

https://hypothes.is

2.13 Other Related Work

be shared. The text notes on the other hand are highlighted text with an additional note.
They can be tagged and published on different visibility levels. Page notes are similar to
text notes but do not refer to a text passage instead they provide notes for the entire web
page. With a reply a user can comment a note or another reply. Besides, tags and visibility
levels are supported by replies. However, Hypothesis does not provide a functionality to
store references.

41

2 Related Work

Software Open
Source

Web
client

Import
filter

Export Full-text
search

Link
references

Processing
and evaluation
of full texts

Sharing
records with
other users

Cooperative
use

Self-definition
or adaptation of
citation styles

Organization
of knowledge

Aigaion yes yes BibTeX,
RIS,
others

BibTeX,
RIS

no yes no yes yes no groups,
notes,
tags

BibSonomy yes yes BibTeX,
RIS,
others

BibTeX,
RIS,
others

yes no no yes yes no notes,
tags

Citavi no no BibTeX,
RIS,
others

BibTeX,
RIS,
others

yes yes yes yes yes yes free text fields,
groups,
notes,
tags

CiteULike no yes BibTeX,
RIS

BibTeX,
RIS,
others

no no yes yes yes no groups,
notes,
tags

Colwiz no yes BibTeX,
RIS,
others

BibTeX,
RIS,
others

yes no yes yes yes yes groups,
notes,
tags

Docear yes no BibTeX BibTeX,
RIS,
others

no yes yes yes no yes groups,
mind map,
notes,
tags

EndNote no yes RIS,
others

BibTeX,
RIS,
others

yes no yes yes yes yes groups,
notes,
tags

F1000Workspace no yes BibTeX,
RIS,
others

BibTeX,
RIS,
others

no no yes yes yes no groups,
notes,
tags

JabRef yes no BibTeX,
RIS,
others

BibTeX,
RIS,
others

yes yes no yes yes yes groups,
special fields,
tags

RefWorks no yes BibTeX,
RIS,
others

BibTeX,
RIS,
others

yes (L) no no yes (L) yes (L) yes groups,
free text fields,
notes

Table 2.1: Comparison of the reference management tools from the previous sections.

42

2.13 Other Related Work

Software Open
Source

Web
client

Import
filter

Export Full-text
search

Link
references

Processing
and evaluation
of full texts

Sharing
records with
other users

Cooperative
use

Self-definition
or adaptation of
citation styles

Organization
of knowledge

Aigaion yes yes BibTeX,
RIS,
others

BibTeX,
RIS

no yes no yes yes no groups,
notes,
tags

BibSonomy yes yes BibTeX,
RIS,
others

BibTeX,
RIS,
others

yes no no yes yes no notes,
tags

Citavi no no BibTeX,
RIS,
others

BibTeX,
RIS,
others

yes yes yes yes yes yes free text fields,
groups,
notes,
tags

CiteULike no yes BibTeX,
RIS

BibTeX,
RIS,
others

no no yes yes yes no groups,
notes,
tags

Colwiz no yes BibTeX,
RIS,
others

BibTeX,
RIS,
others

yes no yes yes yes yes groups,
notes,
tags

Docear yes no BibTeX BibTeX,
RIS,
others

no yes yes yes no yes groups,
mind map,
notes,
tags

EndNote no yes RIS,
others

BibTeX,
RIS,
others

yes no yes yes yes yes groups,
notes,
tags

F1000Workspace no yes BibTeX,
RIS,
others

BibTeX,
RIS,
others

no no yes yes yes no groups,
notes,
tags

JabRef yes no BibTeX,
RIS,
others

BibTeX,
RIS,
others

yes yes no yes yes yes groups,
special fields,
tags

RefWorks no yes BibTeX,
RIS,
others

BibTeX,
RIS,
others

yes (L) no no yes (L) yes (L) yes groups,
free text fields,
notes

Table 2.2: Comparison of the reference management tools from the previous sections
(cont.). Full table available at https://ultimate-comparisons.github.io/ultimate-
reference-management-software-comparison.

43

https://ultimate-comparisons.github.io/ultimate-reference-management-software-comparison/
https://ultimate-comparisons.github.io/ultimate-reference-management-software-comparison/

2
R

elated
W

orkRequirements

Software 1.1 1.2 1.3 1.4 1.5 2.1 2.2 2.3 2.4 2.5 3.1 3.2 3.3 3.4 3.5 4.1 4.2 4.3 4.4 4.5

Aigaion ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ (✓) ✗ ✓ ✗

BibSonomy ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ (✓) ✗ ✗ ✗

Citavi ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗

CiteULike ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗

Colwiz ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗

Docear ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✗

EndNote ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✗

F1000Workspace ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗

JabRef ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓

RefWorks ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✗

Table 2.3: Fulfillment of the requirements defined in Section 2.1 by the reference management tools from the previous sections.

44

3 Concept

The previous chapter evaluated 10 reference management tools against 20 requirements
for such software that supports collaborative work and quality assurance of references. It
shows that none of the programs fulfills all requirements. Therefore, this chapter introduces
a concept for a new system which aims to cover all requirements (Sections 3.1 to 3.4).
Finally, in Section 3.5 the implemented platform “CloudRef” gets presented and evaluated
against the requirements of Section 2.1.

3.1 Collaborative Work

For the work with bibliographical references in a group of multiple persons like at scientific
work it is necessary to share a list of references with others. Therefor, a group functionality
can be used which allows every user to create groups and invite other users into them.
Inside such a group all members can add references and PDF files. To store and exchange
knowledge about the literature the system should provide a comment functionality and
a mechanism to share these comments with others. Different visibility levels for the
comments can achieve this. They allow the users to write private notes only visible for
themselves or to share a comment with other selected users, multiple groups, or all users
of the system. The users should decide for each comment separately on which level of
visibility it gets published.

Comments are often written in the PDF file of a reference. In a single user system they can
be integrated by showing the PDF and the corresponding comments in a frame inside the
reference management program similar as in a PDF reader. However, the concept of this
chapter aims to provide a system that supports collaborative work, hence this is not enough
because every group member can have own notes in a separate PDF file. The comments
have to be extracted from the PDF files so that the users do not have to copy their comments
to the platform. A tool which can be used for this is Scimappr1. Furthermore, the users
should be able to decide for each comment inside the PDF on which visibility level it gets
published. However, it should also be possible to show an uploaded PDF file for a reference
inside the software so that not every user has to download the corresponding file and show
it next to the system to work efficiently. Comments are not saved at a PDF file, because
users can create private ones which nobody except themselves should see. The separate
storage also allows filtering comments for example to show all comments of a user.

1https://github.com/koppor/scimappr

45

https://github.com/koppor/scimappr

3 Concept

Figure 3.1: BPMN process of rating a reference either positive or negative. If a threshold is
reached the reference gets marked as confirmed otherwise it is unconfirmed.
The state confirmed is an indicator that the quality of the reference is good.

3.2 Quality Assurance of Bibliographical References

Bibliographical references are often incomplete or faulty [Kop16]. If references are used
for a publication it is important that the required fields are provided in the correct way. For
example, ACM asks for a page number which is not needed for IEEE, and IEEE has different
journal abbreviations than others. A prerequisite to provide a correct bibliography after the
guidelines of the publishers is to have complete and correct reference entries.

To ensure a good quality of the bibliographies in the reference management platform a
rating system is used. The rating system allows the users to rate a reference positive, for
example if they think all necessary information is provided and the data is correct. A
reference can also be rated negative, for example if the user thinks something is missing
or faulty. A flow of this activity is depicted in Figure 3.1. Afterwards a user rates a
bibliographical reference the system calculates the new rating of this reference. Initially the
total rating is zero. Each positive vote adds one to the sum and each negative subtracts one.
If a positive threshold is reached, the reference is classified as complete and correct, and
gets marks as confirmed. This confirmed status means that many users rated this reference
positive which is an indicator that the quality of this entry is good. To provide such an
quality assurance all users of the system must work on the same references which can be
voted by everyone. Furthermore, the references require unique BibTeX keys in order to be
clearly identified and to provide an export of all entries in a single, valid .bib file.

Furthermore, if a user detects a mistake at a bibliography he should be able to edit the
reference in the system whether the reference was marked as confirmed before or not. The
changes do not overwrite the old information immediately but get published as suggestion
for modification. All users can rate such suggestions positive or negative (see Figure 3.2)
like the rating of a reference explained before. After each rating of a suggestion the system

46

3.2 Quality Assurance of Bibliographical References

Figure 3.2: BPMN process of rating a suggestion for modification of a reference. If a
positive or negative threshold is reached the suggestion gets either accepted or
rejected otherwise it stays in the system as suggestion.

calculates the sum of all votes and if the result is lower than a given minimum threshold
the suggestion gets rejected. On the other hand, if it is over another maximum threshold,
the suggestion is accepted by the users which means that the old reference entry adopt the
changes. If the total rating is between these both threshold the suggestion stays unaltered
in the system accessible for further ratings of users.

If a suggestion fixes for example a spelling mistake it would be useful to have a mechanism
to accept these change faster than with the rating system. For this purpose a special user
role is introduced – the maintainer. As illustrated in Figure 3.3 he can accept or reject
a suggestion directly and is also allowed to edit a suggestion. If a maintainer edits a
suggestion for modification the previous ratings of the users are discarded automatically by
the system because they refer to an outdated version of the suggestion.

For reference management tools it is important to have a duplicate detection because users
fill in input fields differently [HJSS06]. Thus, a reference can be added multiple times to
the system with slight variations. Duplicate detection can be done with an edit distance
algorithm as in JabRef [Jab17b]. The fields author, editor, title, and journal have more
weight than the others to improve the accuracy of detecting real duplicates. Furthermore,
to support consistent notations of authors, conferences, and abbreviations the data has to
be stored so that it can be reused in new reference entries. A autocomplete functionality at
the user interface allows the users to select previous information or to add new data. To
avoid multiple author entries of the same person, for example one entry with the middle
name and one without, additional information can be saved. Many publications provide
the e-mail addresses of the authors which can be used to identify a person. Because an
e-mail address can change – for example if the person changes the company – multiple
addresses should be able to be added. Likewise, different abbreviations can be stored for a
text. This provides the opportunity to define other abbreviations for IEEE which can be
used for the export of a bibliography to match the publisher’s guidelines.

47

3 Concept

Figure 3.3: A maintainer has additional options on a suggestion for modification. He can
induce that a suggestion is applied or rejected directly and he is also able to
edit a suggestion.

3.3 Managing Bibliographical References

The references which are stored in CloudRef are saved each in a separate .bib file on the
hard disk because a single file with all reference can get very huge. Furthermore, the
references are under version control to support traceability of changes made by suggestions
to modify a reference. References which are inserted in the system are added inside a new
.bib file to the master branch. There is no validation of the completeness or correctness of
the reference. Each suggestion for modification is stored at a new branch of the repository
and if it is accepted or rejected the branch gets merged into the master branch, where all
references except suggestions are stored.

Figure 3.4 shows an example of a Git repository generated by CloudRef. On the left side the
branches are visualized with the commits on each branch as a circle. The commits are sorted
by the time they were created, with the first commit at the bottom. The corresponding
commit information is printed to the right of a circle. The first value inside the brackets is
the name of the branch, the following text to the hyphen is the commit message, and the
text after the hyphen the author of the commit. The committer – the one who applies the
commit – is always the CloudRef system. Below this information the added and modified
files of the commit are listed, with the added files marked by a green square and the
changed ones with a yellow square. The blue branch stands for the master branch and
the first commit there adds a reference with the BibTeX key “test”. The following two
commits change these reference, each on a separate branch because they are two different
suggestions by users. The fourth commit changes the first suggestion for the reference

48

3.3 Managing Bibliographical References

Figure 3.4: Git repository example of CloudRef. On the left side the branches are visualized
with the commits as circles. To the right of each circle more information about
the commit is provided. Added files are indicated with a green square and
modified ones with a yellow square. The commits are sorted by the time they
were created with the first commit at the bottom.

with the BibTeX key “test”. The user who made this change has the user role maintainer
because only such users are allowed to modify suggestions (see Section 3.2). The next
commit illustrates an import of multiple references from a .bib file. This is the only case
where multiple files are added. Afterwards, the first suggestion is accepted by the users
and the corresponding branch “test/1” is merged from the CloudRef system into the master.
The last commit of the figure shows how a suggestion is rejected by the users. The branch
“test/2” is merged into the master but no files are modified because the changes of the
branch are rejected and are not allowed to change anything on the master.

3.3.1 Merging Suggestions

For merging a rejection of a suggestion the “ours” strategy of Git can be used which ignores
all changes made on the branch and uses only the tree of the master [Git17]. A correct
merge of an accepted suggestion takes all changes made on the branch by a user and applies
them to the reference on the master because the suggestion was accepted by the users and
should replace the current reference. Also if a field was meanwhile changed at the master
if is was changed on the branch the version of the branch should be preferred. However,
if a field was not changed at the branch but meanwhile on the master the version of the
master should be taken. Accepted suggestions cannot always use a available merge strategy
that results in a correct merge without conflicts in the sense of the CloudRef application.
This is explained by a simple example in the following.

49

3 Concept

Listing 3.1 Content of a .bib file which contains a reference with the BibTeX key “test-
merge”.

@article{test-merge,

title = {Test reference to show merge strategies.},

year = {2017},

keywords = {test, merge strategy}

}

Listing 3.1 shows a reference which has a type, BibTeX key, title, year, and keywords. In
Listing 3.2 an author is added to this reference as suggestion to modify the reference and
Listing 3.3 shows another suggestion where the month is added. Both suggestions are on
a different branch of the Git repository. The first suggestion of Listing 3.2 can be merged
with the “recursive” strategy – the default strategy for merging a branch in Git [Git17] –
without generating any conflict because meanwhile the reference on the branch has not
changed. The file content of the reference on the master will look like at the branch before.
On the other hand, if we afterwards merge the other suggestion of Listing 3.3 with the
same strategy into the master we get a conflict because the reference on the master was
changed by the first suggestion. Git does not know which of the inserted lines it should
take because they are at the same location of the file.

Listing 3.2 Suggestion to modify the reference with the BibTeX-key “test-merge”. The
author is added to the reference.

@article{test-merge,

title = {Test reference to show merge strategies.},

+ author = {Tamara Mueller},

year = {2017},

keywords = {test, merge strategy}

}

Listing 3.3 Suggestion to modify the reference with the BibTeX-key “test-merge”. The
month is added to the reference.

@article{test-merge,

title = {Test reference to show merge strategies.},

+ month = {oct},

year = {2017},

keywords = {test, merge strategy}

}

To resolve merge conflicts automatically, Git provides the opportunity to add the option
“ours” or “theirs” to the recursive strategy which prefers the chosen version if conflicts
occur [Git17]. The result of merging the second suggestion with this strategy and the option
“theirs” is shown in Listing 3.4. The line which contains the author from the first suggestion
we merged first gets replaced by the line of the second suggestion which contains the month.
This is because we prefer from these two conflicting lines the version of the branch which
contains the second suggestion. Hence, this strategy neither solves the merge problem of
CloudRef. A correct result of merging both suggestions one after the other is shown in
Listing 3.5. There are both new fields – author and month – added to the reference entry.

50

3.3 Managing Bibliographical References

The order of the fields is not important, for example if the month is listed before the author
it would also be a correct merge. To achieve this result, an own algorithm for resolving
merge conflicts must be used because out of the box solutions from Git do not work like
presented before. How this algorithm works is explained in the following.

Listing 3.4 Merge of the second suggestion with the merge strategy “recursive” and the
option “theirs” of Git.

@article{test-merge,

title = {Test reference to show merge strategies.},

- author = {Tamara Mueller},

+ month = {oct},

year = {2017},

keywords = {test, merge strategy}

}

Listing 3.5 Correct merge of the second suggestion.
@article{test-merge,

title = {Test reference to show merge strategies.},

author = {Tamara Mueller},

+ month = {oct},

year = {2017},

keywords = {test, merge strategy}

}

Listing 3.6 shows the content of the test-merge.bib file after merging the second sugges-
tion with the merge strategy “recursive” of Git. The file contains the occurred conflict. The
beginning of a conflicting region is labeled in Git with “<<<<<<<” followed by the version
of the first input tree which is in our case the master branch [Git17]. Then a separation
of the first and second input tree is indicated by “=======” followed by the version of the
second input tree. Afterwards, “>>>>>>>” marks the end of the conflict. At the example
in Listing 3.6 the lines 1, 2, 8, 9, and 10 do not contain a conflict because they are the
same at both suggestions. On the other hand, the lines 3 to 7 contain a conflict where line
4 presents the version at the master branch and line 6 the version of the branch of the
second suggestion. This information is used by CloudRef to resolve the merge conflicts
through an algorithm. The idea is to use all lines of the .bib file where no conflicts are.
In conflicting areas all parts of the branch are used if they were edited in the suggestion
for modification. Additionally, all fields of the reference which are on the master and
not modified on the branch are taken because they come from meanwhile changes of the
reference entry through other accepted suggestions.

Algorithm 3.1 depicts the pseudo code for resolving the merge conflicts. At line 3 all fields
which are changed on the branch by the user are fetched. This is done by getting the
differences between the .bib file from the head of the branch and the parent commit on the
master – the commit the suggestion was created from. Such functionality is supported by
the “diff” operation of Git. The output of the “diff” for our example is shown in Listing 3.7.
Added and deleted lines are marked inside the file with a single plus or minus sign at the
beginning of the line (see Listing 3.7, line 8). Thus, changes can be searched inside the

51

3 Concept

Listing 3.6 Content of the test-merge.bib file after merging the second suggestion with
strategy “recursive” of Git. The file contains conflicts which must be resolved.

1 @article{test-merge,

2 title = {Test reference to show merge strategies.},

3 <<<<<<< HEAD

4 author = {Tamara Mueller},

5 =======

6 month = {oct},

7 >>>>>>> refs/heads/test-merge/6

8 year = {2017},

9 keywords = {test, merge strategy}

10 }

Listing 3.7 Result of a Git “diff” operation on the second suggestion and the parent commit
on the master.

1 diff --git a/test-merge.bib b/test-merge.bib

2 index d5a3c38..ff87f77 100644

3 --- a/test-merge.bib

4 +++ b/test-merge.bib

5 @@ -1,5 +1,6 @@

6 @article{test-merge,

7 title = {Test reference to show merge strategies.},

8 + month = {oct},

9 year = {2017},

10 keywords = {test, merge strategy}

11 }

“diff” output. If a change is found, the corresponding name of the field is added to a set or
if the line contains the type and BibTeX key of the reference the string “type” is added to
indicate that the first line of the reference has been changed. Furthermore, if the changed
line only includes a added or deleted comma at the end of a line it is not added to the set
because the user did not change the value. Afterwards, the set with all changes is returned
to Algorithm 3.1. In the example this would be the field “month”.

From line 4 to 34 the Algorithm 3.1 reads each line from the .bib file (line 5) of the
merge result (see Listing 3.6). Lines which only contain a closing curly bracket are skipped
because such a line can only occur at the end of the file and is added manually at the end
of the algorithm in line 35. Furthermore, if the line does not belong to a conflicting area it
is directly added to the result (line 7 and 8), otherwise the algorithm checks if it has to use
the version of the master or the branch. Lines 10 to 20 check for lines which contain a field
of the reference, not the type and BibTeX key, if it belongs to the version of the branch or
the master and if it has to be added to the result or not. A line is added to the result if is
was changed at the branch and the line belongs to the branch (line 12 to 15) or if it was not
changed on the branch and belongs to the master (line 16 to 20). The second case refers to
meanwhile changes on the master which must be adopted if the branch does not change
them. Similarly, the lines 21 to 30 check if a line has to be added which contains the type
and BibTeX key. If the algorithm has read all lines of the file it adds a closing curly bracket
to the result (line 35) which is always the last line of a BibTeX entry. Afterwards, the result

52

3.3 Managing Bibliographical References

Algorithm 3.1 Algorithm for resolving merge conflicts.

1: procedure RESOLVECONFLICTS(file, bibtexkey, idsuggestion)
2: result← ∅
3: changed← GETCHANGEDFIELDSOFBRANCH(bibtexkey, idsuggestion)
4: while not reached end of file do
5: line← GETNEXTLINE(file)
6: if line not contains single closing curly bracket then // at end of a BibTeX entry
7: if line not in conflicting region of file then
8: add line to result

9: else
10: if line contains field then
11: fieldname← GETFIELDNAMEFROMLINE(line)
12: if changed contains fieldname then
13: if line is version of branch then
14: add line to result

15: end if
16: else // field not changed on branch, hence use version of master
17: if line is version of master then
18: add line to result

19: end if
20: end if
21: else // line contains type and BibTeX key
22: if changed contains “type” then
23: if line is version of branch then
24: add line to result

25: end if
26: else // type not changed on branch, hence use version of master
27: if line is version of master then
28: add line to result

29: end if
30: end if
31: end if
32: end if
33: end if
34: end while
35: add single closing curly bracket to result // end of BibTeX entry
36: // add line breaks and ensure correct use of commas between lines
37: WRITERESULTTOFILE(result, file)
38: end procedure

53

3 Concept

is used to overwrite the .bib file of the reference which contains the conflict. Line breaks
are generated after each element of the result and commas are added or deleted at the end
of each line if necessary to match a correct BibTeX file without a comma after the last field
of the reference.

3.3.2 Case Distinction for Merging Suggestions

The list below enumerates all cases that can occur when accepting change requests in the
system which are created from the same version of a reference. It will look at change
suggestions from one and two users, as well as all possible combinations of adding,
changing, and deleting information at the same or a different location. The location refers
to a field or the type of the reference, not the position in the .bib file.

Case 1 User A adds information, user B does nothing.

Case 2 User A changes information, user B does nothing.

Case 3 User A deletes information, user B does nothing.

Case 4.1 User A and user B add information at the same location.

Case 4.2 User A and user B add information at a different location.

Case 5.1 User A and user B change information at the same location.

Case 5.2 User A and user B change information at a different location.

Case 6.1 User A and user B delete information at the same location.

Case 6.2 User A and user B delete information at a different location.

Case 7 User A adds information and user B changes information at a different location.

Case 8 User A adds information and user B deletes information at a different location.

Case 9.1 User A changes information and user B deletes information at the same location.

Case 9.2 User A changes information and user B deletes information at a different location.

In the following, an example for each case is presented. Listing 3.8 shows the content of
the reference which is used as base for the first example. It is a new inserted reference
in the system with the type “article”, the BibTeX key “test-merge”, and the fields title and
keywords. All other examples are based on each other. The cases 1, 2, and 3 consider
changes made by one user without any simultaneous changes of the reference.

Listing 3.8 The reference with BibTeX key “test-merge” is added.
+ @article{test-merge,

+ title = {Test reference to show merge strategies.},

+ keywords = {test, merge strategy}

+ }

54

3.3 Managing Bibliographical References

Listing 3.9 is an example for Case 1. A user adds a note to the reference. In the listing
also the line with the keywords is changed because a trailing comma between this line and
the new inserted field “notes” is needed. This example can be merged by the “recursive”
strategy of Git without producing any conflict because there are no meanwhile changes on
the master branch. The result looks like in Listing 3.9. Case 2 is visualized in Listing 3.10,
there the note is changed by a user. This suggestion can also be merged with the default
strategy “recursive” and the resulting reference file looks like at the branch before. Similarly,
Case 3 (see Listing 3.11) can be merged because only one user modified the reference so
there are no conflicts during the merge.

Listing 3.9 Example for Case 1.
@article{test-merge,

title = {Test reference to show merge strategies.},

- keywords = {test, merge strategy}

+ keywords = {test, merge strategy},

+ note = {This is a reference to show merge strategies.}

}

Listing 3.10 Example for Case 2.
@article{test-merge,

title = {Test reference to show merge strategies.},

keywords = {test, merge strategy},

- note = {This is a reference to show merge strategies.}

+ note = {This is a reference to show different merge strategies.}

}

Listing 3.11 Example for Case 3.
@article{test-merge,

title = {Test reference to show merge strategies.},

- keywords = {test, merge strategy},

- note = {This is a reference to show different merge strategies.}

+ keywords = {test, merge strategy}

}

Case 4.1 is the first case where two users modify the reference simultaneously. In the
example both users add the field “year” with a different value (see Listings 3.12 and 3.13).
If both suggestions get merged on after the other a merge conflict occurs which gets
resolved by Algorithm 3.1. The first merged suggestion with the year “2016” is replaced
in Listing 3.14 by the second suggestion with the year “2017” because changes made by
the user in a suggestion overwrite always the value on the master if the suggestion was
accepted by the users.

An example for Case 4.2 is presented in the previous section. Listing 3.2 adds an author
and Listing 3.3 a month to the reference. The first suggestion can be merged with the
“recursive” strategy, however the second merge results in a conflict. After resolving these
conflict with Algorithm 3.1 both new fields are added to the reference (see Listing 3.5).

55

3 Concept

Listing 3.12 First part of the example for Case 4.1.
@article{test-merge,

title = {Test reference to show merge strategies.},

+ year = {2016},

keywords = {test, merge strategy}

}

Listing 3.13 Second part of the example for Case 4.1.
@article{test-merge,

title = {Test reference to show merge strategies.},

+ year = {2017},

keywords = {test, merge strategy}

}

Listing 3.14 Result after merging second suggestion of Case 4.1.
@article{test-merge,

title = {Test reference to show merge strategies.},

- year = {2016},

+ year = {2017},

keywords = {test, merge strategy}

}

In Case 5.1 two user change the same information about the reference to a different value
(see Listings 3.15 and 3.16). Merging the second suggestion results in a conflict like at the
example before because the “recursive” strategy of Git does not know which of the changed
values it should take as new value. The Algorithm 3.1 takes always the latest accepted
changes as new value. In the example this is the second suggestion because it was last
merged. The resulting reference is shown in Listing 3.17.

Listing 3.15 First part of the example for Case 5.1.
@article{test-merge,

title = {Test reference to show merge strategies.},

author = {Tamara Mueller},

- month = {oct},

+ month = {10},

year = {2017},

keywords = {test, merge strategy}

}

Listing 3.16 Second part of the example for Case 5.1.
@article{test-merge,

title = {Test reference to show merge strategies.},

author = {Tamara Mueller},

- month = {oct},

+ month = {nov},

year = {2017},

keywords = {test, merge strategy}

}

56

3.3 Managing Bibliographical References

Listing 3.17 Result after merging second suggestion of Case 5.1.
@article{test-merge,

title = {Test reference to show merge strategies.},

author = {Tamara Mueller},

- month = {10},

+ month = {nov},

year = {2017},

keywords = {test, merge strategy}

}

In the example for Case 5.2 user A changes the author (see Listing 3.18) and user B the
keywords (see Listing 3.19). This suggestions can be merged without conflicts by the
“recursive” strategy of Git because they change values of different fields. The result of the
reference is illustrated in Listing 3.20.

Listing 3.18 First part of the example for Case 5.2.
@article{test-merge,

title = {Test reference to show merge strategies.},

- author = {Tamara Mueller},

+ author = {Tamara M\"{u}ller},

month = {nov},

year = {2017},

keywords = {test, merge strategy}

}

Listing 3.19 Second part of the example for Case 5.2.
@article{test-merge,

title = {Test reference to show merge strategies.},

author = {Tamara Mueller},

month = {nov},

year = {2017},

- keywords = {test, merge strategy}

+ keywords = {test, merge strategy, recursive, theirs, ours}

}

Listing 3.20 Result after merging second suggestion of Case 5.2.
@article{test-merge,

title = {Test reference to show merge strategies.},

author = {Tamara M\"{u}ller},

month = {nov},

year = {2017},

- keywords = {test, merge strategy}

+ keywords = {test, merge strategy, recursive, theirs, ours}

}

Two user delete the same information in Case 6.1, for example the month like in List-
ing 3.21. Because both users suggest the same change there does not occur a merge conflict.
Furthermore, the file of the reference is not modified by the second merge because the
changes are already adopted by merging the first suggestion. Afterwards, the reference
looks like in Listing 3.21.

57

3 Concept

Listing 3.21 Example for Case 6.1.
@article{test-merge,

title = {Test reference to show merge strategies.},

author = {Tamara M\"{u}ller},

- month = {nov},

year = {2017},

keywords = {test, merge strategy, recursive, theirs, ours}

}

In Listing 3.22 user A deletes the information about the year and in Listing 3.23 user B the
keywords. This is an example for Case 6.2. Merging the second suggestion ends with a
conflict because this suggestion changes also the line with the year (see Listing 3.23, line 4
and 5). The year was not changed by the user but the system deleted the comma at the
end of the line because it is the last field of the reference after the keywords are deleted.
The field year is already deleted on the master branch because the first suggestion was
merged. The “recursive” merge strategy of Git does not know if the line should be changed
or deleted, hence a conflict occurs. Algorithm 3.1 can resolve these kind of conflict. After
the algorithm is finished the reference on the master looks like Listing 3.24, both fields –
year and keywords – are deleted.

Listing 3.22 First part of the example for Case 6.2.
@article{test-merge,

title = {Test reference to show merge strategies.},

author = {Tamara M\"{u}ller},

- year = {2017},

keywords = {test, merge strategy, recursive, theirs, ours}

}

Listing 3.23 Second part of the example for Case 6.2.
@article{test-merge,

title = {Test reference to show merge strategies.},

author = {Tamara M\"{u}ller},

- year = {2017},

+ year = {2017}

- keywords = {test, merge strategy, recursive, theirs, ours}

}

Listing 3.24 Result after merging second suggestion of Case 6.2.
@article{test-merge,

title = {Test reference to show merge strategies.},

- author = {Tamara M\"{u}ller},

- keywords = {test, merge strategy, recursive, theirs, ours}

+ author = {Tamara M\"{u}ller}

}

For Case 7 first user A adds the year (see Listing 3.25) and then the type of the reference
is changed by user B (see Listing 3.26). Merging both suggestions does not produce a
conflict because the changes are on different parts of the .bib file. The result is shown in
Listing 3.27.

58

3.3 Managing Bibliographical References

Listing 3.25 First part of the example for Case 7.
@article{test-merge,

title = {Test reference to show merge strategies.},

- author = {Tamara M\"{u}ller}

+ author = {Tamara M\"{u}ller},

+ year = {2017}

}

Listing 3.26 Second part of the example for Case 7.
- @article{test-merge,

+ @misc{test-merge,

title = {Test reference to show merge strategies.},

author = {Tamara M\"{u}ller}

}

Listing 3.27 Result after merging second suggestion of Case 7.
- @article{test-merge,

+ @misc{test-merge,

title = {Test reference to show merge strategies.},

author = {Tamara M\"{u}ller},

year = {2017}

}

In Case 8 user A also adds a field. In the example at Listing 3.28 this is the field “month”. On
the other hand, user B deletes the author of the bibliographical reference (see Listing 3.29).
This changes result in a merge conflict which is resolved by Algorithm 3.1 to Listing 3.30.

Listing 3.28 First part of the example for Case 8.
@misc{test-merge,

title = {Test reference to show merge strategies.},

author = {Tamara M\"{u}ller},

+ month = {nov},

year = {2017}

}

Listing 3.29 Second part of the example for Case 8.
@misc{test-merge,

title = {Test reference to show merge strategies.},

- author = {Tamara M\"{u}ller},

year = {2017}

}

The last two cases deal with changing and deleting a field. In Case 9.1 both fields are the
same. The example is shown in Listings 3.31 and 3.32 where the month is edited and
deleted. Merging these suggestions results again in a merge conflict because they affect the
same field and the “recursive” algorithm of Git does not know which change is correct. The
reference after executing Algorithm 3.1 is shown in Listing 3.33.

59

3 Concept

Listing 3.30 Result after merging second suggestion of Case 8.
@misc{test-merge,

title = {Test reference to show merge strategies.},

- author = {Tamara M\"{u}ller},

month = {nov},

year = {2017}

}

Listing 3.31 First part of the example for Case 9.1.
@misc{test-merge,

title = {Test reference to show merge strategies.},

- month = {nov},

+ month = {11},

year = {2017}

}

Listing 3.32 Second part of the example for Case 9.1.
@misc{test-merge,

title = {Test reference to show merge strategies.},

- month = {nov},

year = {2017}

}

Listing 3.33 Result after merging second suggestion of Case 9.1.
@misc{test-merge,

title = {Test reference to show merge strategies.},

- month = {11},

year = {2017}

}

In the last example for Case 9.2 user A changes the type and user B deletes the year of the
reference entry (see Listings 3.34 and 3.35). Like before, merging ends with a conflict that
is resolved by Algorithm 3.1. The final reference after the merge is shown in Listing 3.36.

Listing 3.34 First part of the example for Case 9.2.
- @misc{test-merge,

+ @article{test-merge,

title = {Test reference to show merge strategies.},

year = {2017}

}

Listing 3.35 Second part of the example for Case 9.2.
@misc{test-merge,

- title = {Test reference to show merge strategies.},

- year = {2017}

+ title = {Test reference to show merge strategies.}

}

60

3.4 Managing Comments, Users, and Ratings

Listing 3.36 Result after merging second suggestion of Case 9.2.
@article{test-merge,

- title = {Test reference to show merge strategies.},

- year = {2017}

+ title = {Test reference to show merge strategies.}

}

Table 3.1 gives an overview of which examples only use the “recursive” strategy of Git
to merge the suggestions and which additionally need Algorithm 3.1 to resolve occurred
merge conflicts. This information does not fit to each possible alternative of a case because
not only the case is relevant if suggestions can be merged without conflicts or not, also the
position of the changed information in the .bib file plays a role.

Example for Case 1 2 3 4.1 4.2 5.1 5.2 6.1 6.2 7 8 9.1 9.2

Algorithm 3.1 ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✓ ✓

Table 3.1: Shows which examples of the cases use the Algorithm 3.1 to resolve occurred
merge conflicts. Cases that have a cross use only the “recursive” strategy of Git
without producing conflicts.

3.4 Managing Comments, Users, and Ratings

CloudRef stores users, comments to literature, and ratings of references and suggestions
in a database. The platform needs user accounts to assign the comments and ratings to a
specific user. Furthermore, each user is allowed to rate a reference or a suggestion only
once. As described in Section 3.2 a user has a role which can be user or maintainer. This
must also be saved in the account of the user.

To relate the comments with the references which are saved in .bib files on the hard disk
the BibTeX key of the corresponding reference is saved in the table where the comments
are stored. Additionally, the visibility level of each comment is managed in the database.
The mapping of the ratings to the corresponding reference or suggestion is also done by
the BibTeX key and additionally by an identifier for the different suggestions.

3.5 System

This section introduces the developed reference management platform CloudRef and
explains all its functionalities. At the end there is also a section about the fulfillment of the
requirements stated in Section 2.1.

61

3 Concept

Figure 3.5: Page for creating a new user account in CloudRef.

Figure 3.6: Screenshot of the login page of CloudRef.

62

3.5 System

Figure 3.7: CloudRef screenshot of the page for the manual insertion of a new reference.
Different document types are supported and also an upload for PDF files.

3.5.1 Registration and Login

If a person uses the system the first time, he has to create a new account with a unique
user name. Furthermore, the first name, last name, and e-mail address of the person are
required to register at the system and the user has to choose a password (see Figure 3.5).
After the registration, the user gets logged in automatically and can use the reference
management software. For each login in the future the user name and password have to
be entered to access the system (see Figure 3.6). Every user who registers on the user
interface has the role “user”. The role of a registered user can be upgraded to “maintainer”
in the database.

3.5.2 Adding References

A user of the CloudRef software can insert new references either by entering them manually
via a form (see Figure 3.7) or through uploading a .bib file (see Figure 3.8). The form
for the manual insertion distinguishes between the reference types: article, book, booklet,
conference, inbook, incollection, inproceedings, manual, mastersthesis, misc, phdthesis,
proceedings, techreport, unpublished, and standard. For each reference a type and BibTeX
key are required, all other fields can be empty. In addition, the BibTeX key must be unique
and may contain numbers (0-9), letters without special characters (a-z, A-Z), and hyphens.

63

3 Concept

Figure 3.8: CloudRef screenshot of the .bib file import page. References can be modi-
fied during the import to ensure unique BibTeX keys and match their nam-
ing schema.

The form is divided into multiple tabs like in JabRef (see Section 2.10) to increase the
clarity. It is also possible to link a cross reference and to upload a PDF file. References and
their PDF files are visible to every user of the CloudRef system.

The import of a .bib file ensures that the BibTeX keys in the system are unique, this means
that if an key exists already in the system the new inserted reference key gets modified
during the import process. The BibTeX key also changes if the naming schema explained in
the previous paragraph is not met. After a successful insertion of the bibliographical refer-
ences the user gets redirected to a table view of all references of the CloudRef system (see
Figure 3.9).

3.5.3 References

All references which are saved in CloudRef are listed in a table (see Figure 3.9). This table
supports pagination, that only 12 references are shown at the same time. Furthermore, the
entries can be sorted through clicking on the column titles and the width of the columns
can be adjusted by the user. CloudRef has a feature to allow users to classify the quality
of a reference as good, such a confirmed reference is highlighted in the table with green
background color and has a check mark at the confirmed column like the third reference
in Figure 3.9.

64

3.5 System

Figure 3.9: CloudRef screenshot of the table with all references. Confirmed references
indicate that the quality of this entry is good.

Figure 3.10: CloudRef screenshot of a reference entry. On the left side are rating buttons
and an check mark if the reference is already confirmed.

65

3 Concept

Figure 3.11: CloudRef screenshot which shows the view of suggestions to modify a refer-
ence. On the left side the current reference entry is printed and on the right
side the changed version. The differences are highlighted on the modified
version. To the left of this version comparison are rating buttons and between
them the current rating of all users.

If the user selects a reference in the table he gets redirected to the page of this reference
(see Figure 3.10) which looks similar to the manual import on Figure 3.7. There the user
can upload a PDF file if none has been uploaded before. Furthermore, he can edit the
reference and publish the changes as a suggestion to modify the bibliography or if he does
not want to provide a suggestion but thinks the entry is incomplete or faulty he can just
rate the reference negative. On the other hand, if the user thinks the reference is good he
can rate it positive. The value of the rating is initially zero. Each positive vote increases the
value by one and all negative votes decrease it also by one. If the user voted already the
button of his decision is colored but it is also possible to change the voting. Between the
buttons the current rating of all users is shown. If the rating reaches a positive threshold
the reference is classified as confirmed (see Section 3.1). A green check mark is shown
below the rating buttons if the reference is confirmed by the users. At the bottom of the
page are buttons to navigate to the suggestions which are available for this reference and
to a PDF and comments view if a PDF file was uploaded.

Figure 3.11 shows the page of the suggestions for a reference. The reference and the
suggestions to modify it are shown side by side. At the changed version, on the right side,
the differences are highlighted. Removed parts are red and crossed out, added text on

66

3.5 System

Figure 3.12: CloudRef screenshot which shows a PDF file of a reference and the corre-
sponding comments of the users. Only the comments of the current PDF page
are visible. Above the comments are buttons to create a new comment or to
navigate to the reference view.

the other hand is blue. To the left of the comparison of both references are buttons to
rate the suggestion positive or negative like at the view of a single reference. Between
the buttons also the current rating of all users is shown. If this value reaches a positive or
negative threshold the suggestion gets accepted or rejected automatically by the system.
Accepting means that the current reference is adapted by the suggestion and rejecting that
the suggestion is removed from the suggestions view (see Section 3.2). If the signed in
user has the role maintainer, below the rating buttons are three buttons for modifying the
suggestion or for accepting or rejecting it immediately (see Section 3.2).

3.5.4 PDF and Comments

The PDF and comments view in Figure 3.12 shows the PDF file of a reference and all
public published comments as well as all comments of the user who is logged in. New
comments can be written and published private or visible for all users of the system. Only
the comments of the current PDF page are visible for the user. If the user scrolls in the
PDF to another page, the currently shown comments fade out and the comments of the
new selected page fade in. The comments initially look the same no matter who is the
author of the comment like the first and third comment on the figure. A signed in user

67

3 Concept

can click on his comments to edit them (see Figure 3.12, second comment) similar than
in the Adobe PDF reader. He can change the visibility level as well as the content of
the comment. Furthermore, users can delete their own comments. This action requires
verification through a confirmation dialog to avoid deleting comments by mistake.

3.5.5 Fulfillment of the Requirements

Section 2.1 defines 20 requirements for a cooperative reference management software with
quality assurance of references. CloudRef supports the Requirements 1.1 and 1.2 through
allowing users to add PDF files to references. If an uploaded PDF contains comments
they are shown inside the frame of the file. Extracting these comments (Requirement 1.3)
and the visibility level of the file (Requirement 1.4) and the comments within the PDF
(Requirement 1.5) cannot be changed, they are always visible for all users of the platform.
The visibility levels private and public are available in CloudRef for comments, thus the
Requirements 2.1 and 2.4 are fulfilled. Additionally, the Requirement 2.5 is met because
the users can decide for each comment separately who is allowed to see it.

The third group of the requirements is about cooperative use which is supported by
CloudRef but there is no group functionality implemented. It is only possible to share
content with all other users of the platform. However, the platform can be set up by every
person and he can invite his colleagues to use it. Thus, the platform supports something
similar than described in Requirements 3.1 and 3.2. Additionally, the Requirements 3.3
to 3.5 are supported because every user is allowed to add references and PDF files as well as
write comments to literature. Of the quality assurance requirements only Requirement 4.1
is implemented in the software by highlighting confirmed references in the table with all
requirements as well as in the view of a single reference entry. Overall, CloudRef provides
11 of the 20 requirements.

68

4 Architecture and Implementation

This chapter describes the architecture of the CloudRef system and how the components
work together. Afterwards, the design decisions are evaluated and finally, there is a deeper
insight into the implementation of CloudRef to show how the platform is realized.

4.1 Architecture

The CloudRef platform consists of two parts, a user interface and a back end application.
The architecture is illustrated as Fundamental Modeling Concepts1 block diagram in
Figure 4.1. The back end provides a REST interface with that the user interface can interact
through HTTP requests. As described in Sections 3.3 and 3.4 the platform uses a local
version control system and a relational database to store information. The bibliographical
references saved in CloudRef are stored in separate .bib files on the hard disk, as well as
the corresponding PDF files. Furthermore, the files containing the references are under
version control. All other information, like comments to literature, are stored in a relational
database. The back end has read and write access to these storages which is provided
through a data access layer.

4.2 Design Decisions

The references can be stored each in a single .bib file or all in one file. At the beginning
we decided to store them in separate files to enable multi user access. A file can only
be written by one user, meanwhile all other accesses are blocked – reading as well as
writing. Additionally, a single file can get very huge if all references are stored there which
is another reason for storing all in an own file. For the naming of the files we decided to
use the unique BibTeX keys of the references. Not every character is supported for the
naming of a file like a slash or colon. Hence, the BibTeX keys can only contain numbers
(0-9), letters without special characters (a-z, A-Z), and hyphens. Furthermore, to support
multiple versions of references and to provide traceability for them we decided to use a
version control system instead of a plain file system. Suggestions to modify a reference
are stored each on a new branch because they are new versions of a reference which do
not immediately replace the current version (see Section 3.2). The branches are named

1http://www.fmc-modeling.org

69

http://www.fmc-modeling.org

4 Architecture and Implementation

User Interface

Back end

HTTP

File System

Version Control System

REST Interface

 R

Relational Database

Data Access Layer

Figure 4.1: Architecture of the CloudRef platform. It consists of two parts, a user interface
and a back end. The back end provides a REST interface with that the user
interface can interact. Furthermore, the back end has read and write access to
a relational database and the file system through a data access layer. The file
system has also a version control system which handles different versions of a
reference entry.

by the schema {BibTeX_key}/{suggestion_id} to clearly separate the BibTeX key from
the suggestion identifier. If such a suggestion is rejected by the users the branch could be
deleted or merged without changing the current version of the reference. To provide full
traceability rejected suggestions are merged and not deleted.

Comments to literature can be stored in the reference entry or in a separate file. Fur-
thermore, a combination of both can be used where public comments are stored in the
reference entry and private comments in a separate file. All three approaches have the
drawback that consistency is hard to achieve. For example comments can be deleted in the
meanwhile. On the other hand, the comments must numbered consecutively. To overcome
these issues a database management system is used instead. There are several possibilities
for a primary key. A composite variant could use the BibTeX key and the comment identifier.
Additionally, the username can be added to this composite primary key. On the other
hand, also the comment identifier on its own can be used but this has the drawback that
the identifier is increased by each comment. With the first strategy the identifier can be
increased for comments on each reference individually. This is used because it matches the
REST style of our resource where each reference has an consecutively increasing number
for the comments of all users.

70

4.3 Implementation

User Interface: Angular

Back end

HTTP

File System

Version Control System: Git

REST Interface: Jersey

 R

Relational Database: SQLite

Data Access Layer: Java

Figure 4.2: Architecture of the CloudRef platform with implementation details. The user
interface is a Angular application and the back end a Java program. The REST
interface uses Jersey and the version control system is Git. The data are stored
in a SQLite database.

4.3 Implementation

The front end of CloudRef – the user interface – is an Angular application and the back end
a Java program (see Figure 4.2). The implementation of the REST interface uses Jersey
which is a framework to program RESTful web services in Java and supports the JAX-RS
API2 [Jer17; TESW15]. The code at the front end which calls the REST API is generated
with Swagger Codegen3 but some parts of it had to be adapted to work properly. For
storing user accounts, comments to literature, and ratings of references and suggestions for
modification a relational SQLite database is used. Furthermore, Git is the version control
system in CloudRef which allows to manage different versions of a reference entry.

4.3.1 Front end

The Angular application at the front end uses the Angular and Bootstrap 4 Admin Template
“Ng2-Admin”4 from Akveo. To show the PDF files at the front end PDF.js5 is used (see
Figure 3.12) which is the standard PDF viewer in Firefox. The library Jdenticon6 enables

2https://github.com/jax-rs
3https://swagger.io/swagger-codegen
4https://akveo.github.io/ng2-admin
5https://mozilla.github.io/pdf.js/getting_started
6https://jdenticon.com

71

https://github.com/jax-rs
https://swagger.io/swagger-codegen/
https://akveo.github.io/ng2-admin/
https://mozilla.github.io/pdf.js/getting_started/
https://jdenticon.com/

4 Architecture and Implementation

to show an avatar for each user generated from his username hash value (see Figure 3.12,
top right). Finally, the Angular component ngx-datatable7 is used to show the overview
table of all references (see Figure 3.9). The table comes with many features like column
resizing, sorting, and pagination which are used for CloudRef.

4.3.2 Back end

To read and write the BibTeX files from hard disk the Java library JBibTeX8 is used. It
allows to convert each reference into an “BibTeXEntry” Java object which gets send to the
front end to show a reference entry and from the front end to the back end to save or
update an entry. The fields of an “BibTeXEntry” contain an abstract class, hence the type
of the field has to be added in the JSON representation to enable unmarshalling of the
received objects from the front end. Furthermore, empty constructors have to be added to
some classes of the library.

As explained in Section 3.3 the CloudRef platform uses a local Git repository to manage
different versions of reference entries. The Java library JGit9 provides access to this
repository from the source code. To merge a rejected suggestion the merge strategy “ours”
of JGit is used which works like the “ours” strategy of Git, it takes the tree of the master
and ignores the changes from the branch [ecl17; Git17]. This is exactly what we want if
the changes are not accepted by the users. On the other hand, if the changes are accepted
the changes made on the branch have to be adopted by the master. It is achieved by
CloudRef through merging the branch with the “recursive” strategy into the master and
resolving the occurred conflicts with Algorithm 3.1. The “recursive” strategy is used to
merge the accepted suggestions because there is no strategy which can resolve all conflicts
automatically in the right way (see Section 3.3) and “recursive” is the default strategy in
Git to merge a branch [Git17].

In CloudRef the users, comments on literature, and ratings of references are stored in a
relational SQLite Database. To access the database from the Java source code, the library
Hibernate is used. It enables a Object/Relational Mapping which means that it maps Java
Objects into the relational database and vice versa [Hib17a; Hib17b]. The database schema
is depicted in Figure 4.3.

To authenticate the users of the platform HTTP basic authentication is used. To access a
resource at the back end the username and password have to be provided in the HTTP
request from the front end application [TESW15]. This information is encoded with base64
which represents the text in letters without special characters (a-z, A-Z), numbers (0-9),
plus signs, and slashes. This encoding is used to send texts over channels that accept only a
basic character set, the data is not encrypted. The back end decodes this information and

7https://github.com/swimlane/ngx-datatable
8https://github.com/jbibtex/jbibtex
9https://www.eclipse.org/jgit

72

https://github.com/swimlane/ngx-datatable
https://github.com/jbibtex/jbibtex
https://www.eclipse.org/jgit/

4.3 Implementation

Comment

bibtexkey VARCHAR(255)

id INT

content VARCHAR(255)

real_page_number VARCHAR(255)

sequential_page_number INT

publish TINYINT

author VARCHAR(255)

Indexes

Rating

bibtexkey VARCHAR(255)

suggestion_id INT

username VARCHAR(255)

rating INT

Indexes

User

username VARCHAR(255)

email VARCHAR(255)

first_name VARCHAR(255)

last_name VARCHAR(255)

password VARCHAR(255)

salt BLOB

role VARCHAR(255)

Indexes

Figure 4.3: Database schema of CloudRef.

extracts the username and password. Afterwards, it can check if the user exists and provide
him access to the resource.

To provide a login functionality all registered users are stored in the database (see Figure 4.3,
center). The password of a user account is encrypted and not saved in plain text. Therefor
the hash function “PBKDF2” is used [Def17]. Furthermore, to avoid that same passwords
are stored with the same hash value a random string – called salt – is added to the password
before hashing it [Def17; Wor16]. Another salt is used for each password. This prevents
that lookup tables and rainbow tables can be used to crack the hash [Def17]. The salt is
generated with a cryptographically secure pseudo-random number generator which is in
Java provided by the class “SecureRandom”10. Such a generator is needed to prevent that
the salt is predictable which would decrease the security. Afterwards, the hashed password
with the salt and the salt itself are stored in the database (see Figure 4.3, center) [Def17;
Wor16]. The salt has to be stored to enable checking if the user information is correct.
This is done by hashing the provided password of the user with the same hash function
as before and the salt from the database. The password is valid if the result of this hash
function call and the password stored in the database match.

Comments to references are also stored in the database (see Figure 4.3, left). The author
column of a comment stores only the username and has no foreign key relation to the user
table because the mapped Java objects of these table are sent via the REST interface to the
front end, hence a comment should not contain all information of the author like his email
address or password. The sequential page number is additionally saved because the real
page number can be empty for example if the reference is a book which has some empty
pages after the cover.

The ratings of references and suggestions are saved in another table of the database (see
Figure 4.3, right). There the mapping to the corresponding reference or suggestion is done
by the BibTeX key and additionally by an identifier for the different suggestions. If the

10https://docs.oracle.com/javase/8/docs/api/java/security/SecureRandom.html

73

https://docs.oracle.com/javase/8/docs/api/java/security/SecureRandom.html

4 Architecture and Implementation

rating belongs to a reference, not a suggestion, the identifier is zero. The ratings of the
references and suggestions are saved in one table because all columns except the identifier
of the suggestions are the same.

74

5 Conclusion and Future Work

Literature management programs are used for scientific work to collect, manage, and
export bibliographical references. They provide the functionality to store knowledge about
literature in form of comments, tags, or inside the corresponding PDF file. In scientific
work it is common to work together with other persons, hence a reference management
software should support collaborative work. For that purpose, references and comments
must be able to be shared with other users or people who use another or no literature
management software at all. In addition, in scientific work the bibliographies are used
for publications. The publishers have different guidelines about which information is
needed for a reference entry. Furthermore, a correct and complete bibliography is required
for publication. References from online sources like Google Scholar are often faulty
or incomplete [Kop16], therefore a quality assurance of references inside the reference
management software is desirable. Many tools provide a mechanism to detect missing
required fields and highlight these entries as incomplete. However, this is not sufficient
because wrong information is not detected.

This thesis covers a concept how to realize a reference management software that supports
collaborative work and quality assurance of references. At the beginning, 20 requirements
are defined for such a software (Section 2.1). Chapter 3 presents how to achieve these
requirements. The first part of the chapter deals with the realization of the requirements
for collaborative work. A group functionality can be used which allows the users to share
references and comments with other group members. Furthermore, it is possible to share
them with all users of the system through publishing them public or on the other hand
make comments private that they are only visible for the user himself. For each comment
the visibility level can be set separately. The second part of Chapter 3 deals with the quality
assurance of references. This is achieved by a rating system which allows the users to rate
reference entries positive or negative. If a rating of a reference reaches a positive threshold
the entry is marked as confirmed. Such a confirmed status is an indicator for that the quality
of the reference is good. Additionally, reference entries can be improved through editing
them and publish this changed version as suggestion for modification. These suggestions
can be rated like the references before. If a positive threshold is reached the suggestion
replaces the reference and on the other hand if a negative threshold is reached than the
suggestion is rejected. A prototype – named “CloudRef” – was implemented as part of this
thesis. It implements several of the introduced concepts and fulfills 11 of the 20 defined
requirements.

75

5 Conclusion and Future Work

Future Work

CloudRef does not implement all presented concepts and therefore not all defined require-
ments are fulfilled by the platform. Further steps should expand the functionalities of
the system with the aim to meet all 20 requirements. This includes first especially the
requirements for quality assurance of bibliographical references. The collaborative aspects
are already fulfilled roughly and fine granular features can be integrated at a later point
in time. If the quality assurance parts – detection of duplicates and consistent notation
of conferences, authors, and abbreviations – as well as an export for bibliographies are
implemented the platform can be used and evaluated. Such an evaluation can uncover
if the system fulfills its purpose, which parts should be adjusted, and if there are missing
functionalities.

Afterwards, there can be added additional features like replies to comments. This can
be useful in collaborative work to allow discussions about literature. Furthermore, the
platform can be expanded by a recommender system which shows the users related
articles to a reference. Another idea would be to insert a mind map functionality like in
Docear (see Section 2.7).

76

Bibliography

[Aig13] Aigaion. Web based bibliography management system. 2013. URL: https://
sourceforge.net/projects/aigaion/ (cit. on p. 18).

[AMSW16] M. Adam, J. Musiat, M. Stöhr, C. Wenzel. Literaturverwaltungsprogramme im
Überblick. SLUB Dresden. Dec. 6, 2016. URL: http://nbn-resolving.de/urn:
nbn:de:bsz:14-qucosa2-77350 (cit. on pp. 22–24, 31–33, 35–37).

[AT05] G. Adomavicius, A. Tuzhilin. “Towards the Next Generation of Recommender
Systems: A Survey of the State-of-the-Art and Possible Extensions.” In: IEEE
Transactions on Knowledge and Data Engineering 17.6 (2005), pp. 734–749
(cit. on p. 40).

[Bee14] J. Beel. Docear – Howto: Import references from webpages (e.g. PubMed, IEEE,
ACM, . . .) July 22, 2014. URL: https://www.docear.org/2014/07/22/howto-
import-references-from-webpages-e-g-pubmed-ieee-acm/ (cit. on p. 29).

[Bib15] BibSonomy. Wiki: BibSonomy GoogleDocs Add-on. Jan. 28, 2015. URL: https:
//bitbucket.org/fwhkoenig/bibsonomy-googledocs-add-on/wiki/Home
(cit. on p. 22).

[Bib17a] BibSonomy. Attach a private document to publications. 2017. URL: https :
//www.bibsonomy.org/help_en/AttachDocuments (cit. on p. 20).

[Bib17b] BibSonomy. BibSonomy – Export. 2017. URL: https://www.bibsonomy.org/
export (cit. on p. 20).

[Bib17c] BibSonomy. Getting started with BibSonomy. 2017. URL: https : / / www.
bibsonomy.org/gettingStarted?lang=en (cit. on pp. 20, 22).

[Bib17d] BibSonomy. Group functions. 2017. URL: https://www.bibsonomy.org/help_
en/GroupFunctions (cit. on pp. 21, 22).

[Bib17e] BibSonomy. Sorting publications. 2017. URL: https://www.bibsonomy.org/
help_en/SortingPublications (cit. on p. 21).

[Bib17f] BibSonomy. Source. 2017. URL: https : / / bitbucket . org / bibsonomy /
bibsonomy/src (cit. on p. 20).

[BL15] J. Beel, S. Langer. “A Comparison of Offline Evaluations, Online Evaluations,
and User Studies in the Context of Research-Paper Recommender Systems.”
In: TPDL. Vol. 9316. Lecture Notes in Computer Science. Springer, 2015,
pp. 153–168 (cit. on p. 40).

[BLGN13] J. Beel, S. Langer, M. Genzmehr, A. Nürnberger. “Introducing Docear’s re-
search paper recommender system.” In: JCDL. ACM, 2013, pp. 459–460 (cit.
on p. 40).

77

https://sourceforge.net/projects/aigaion/
https://sourceforge.net/projects/aigaion/
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa2-77350
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa2-77350
https://www.docear.org/2014/07/22/howto-import-references-from-webpages-e-g-pubmed-ieee-acm/
https://www.docear.org/2014/07/22/howto-import-references-from-webpages-e-g-pubmed-ieee-acm/
https://bitbucket.org/fwhkoenig/bibsonomy-googledocs-add-on/wiki/Home
https://bitbucket.org/fwhkoenig/bibsonomy-googledocs-add-on/wiki/Home
https://www.bibsonomy.org/help_en/AttachDocuments
https://www.bibsonomy.org/help_en/AttachDocuments
https://www.bibsonomy.org/export
https://www.bibsonomy.org/export
https://www.bibsonomy.org/gettingStarted?lang=en
https://www.bibsonomy.org/gettingStarted?lang=en
https://www.bibsonomy.org/help_en/GroupFunctions
https://www.bibsonomy.org/help_en/GroupFunctions
https://www.bibsonomy.org/help_en/SortingPublications
https://www.bibsonomy.org/help_en/SortingPublications
https://bitbucket.org/bibsonomy/bibsonomy/src
https://bitbucket.org/bibsonomy/bibsonomy/src

Bibliography

[Cit16a] Citavi. Citavi for DBServer. 2016. URL: https://www.citavi.com/sub/manual5/
en/citavi_for_db_server_overview.html (cit. on p. 24).

[Cit16b] Citavi. Conflict Management. 2016. URL: https ://www.citavi . com/sub/
manual5/en/team_conflict_management.html (cit. on p. 24).

[Cit16c] Citavi. Creating Citation Styles. 2016. URL: https://www.citavi.com/sub/
manual5/en/cse_creating_citation_styles_overview.html (cit. on p. 24).

[Cit16d] Citavi. Overview of Team Features. 2016. URL: https://www.citavi.com/sub/
manual5/en/team_functions_overview.html (cit. on p. 24).

[Cit17a] CiteULike. CiteULike Gold. 2017. URL: http://www.citeulike.org/gold (cit. on
pp. 24, 25).

[Cit17b] CiteULike. Frequently Asked Questions. 2017. URL: http://www.citeulike.org/
faq/faq.adp (cit. on pp. 24–26).

[col14] colwiz Team. New Feature: Collectively read and annotate documents through
the colwiz Drive. Sept. 1, 2014. URL: http://blog.colwiz.com/2014/09/01/
new-feature-collectively-read-and-annotate-docs-through-colwiz-drive/
(cit. on p. 27).

[Def17] Defuse Security. Salted Password Hashing – Doing it Right. Aug. 1, 2017. URL:
https://crackstation.net/hashing-security.htm (cit. on p. 73).

[Doc17a] Docear. Citation Styles. 2017. URL: http://www.docear.org/software/add-
ons/docear4word/citation-styles/ (cit. on p. 30).

[Doc17b] Docear. Details & Features. 2017. URL: http://www.docear.org/software/
details/ (cit. on pp. 29, 30).

[Doc17c] Docear. User Manual. 2017. URL: http://www.docear.org/support/user-
manual/ (cit. on pp. 29, 30).

[ecl17] eclipse JGit Project. Class MergeStrategy. 2017. URL: http://download.eclipse.
org/jgit/site/4.9.0.201710071750- r/apidocs/org/eclipse/jgit/merge/
MergeStrategy.html (cit. on p. 72).

[End17] EndNote. Library Sharing. 2017. URL: http://endnote.com/product-details/
library- sharing?utm_source=en- online&utm_medium=referral&utm_
campaign=en-online-banner (cit. on p. 32).

[F1017a] F1000Workspace. F1000Workspace user guide. Jan. 27, 2017. URL: http :
//f1000.com/resources/Workspace_User_Manual.FINAL.pdf (cit. on pp. 33–
35).

[F1017b] F1000Workspace. Help guide – Working with references. 2017. URL: http :
//f1000.com/work/faq/references-in-f1000 (cit. on pp. 33, 34).

[FSG+17] S. Feyer, S. Siebert, B. Gipp, A. Aizawa, J. Beel. “Integration of the Scientific
Recommender System Mr. DLib into the Reference Manager JabRef.” In: ECIR.
Vol. 10193. Lecture Notes in Computer Science. 2017, pp. 770–774 (cit. on
p. 40).

78

https://www.citavi.com/sub/manual5/en/citavi_for_db_server_overview.html
https://www.citavi.com/sub/manual5/en/citavi_for_db_server_overview.html
https://www.citavi.com/sub/manual5/en/team_conflict_management.html
https://www.citavi.com/sub/manual5/en/team_conflict_management.html
https://www.citavi.com/sub/manual5/en/cse_creating_citation_styles_overview.html
https://www.citavi.com/sub/manual5/en/cse_creating_citation_styles_overview.html
https://www.citavi.com/sub/manual5/en/team_functions_overview.html
https://www.citavi.com/sub/manual5/en/team_functions_overview.html
http://www.citeulike.org/gold
http://www.citeulike.org/faq/faq.adp
http://www.citeulike.org/faq/faq.adp
http://blog.colwiz.com/2014/09/01/new-feature-collectively-read-and-annotate-docs-through-colwiz-drive/
http://blog.colwiz.com/2014/09/01/new-feature-collectively-read-and-annotate-docs-through-colwiz-drive/
https://crackstation.net/hashing-security.htm
http://www.docear.org/software/add-ons/docear4word/citation-styles/
http://www.docear.org/software/add-ons/docear4word/citation-styles/
http://www.docear.org/software/details/
http://www.docear.org/software/details/
http://www.docear.org/support/user-manual/
http://www.docear.org/support/user-manual/
http://download.eclipse.org/jgit/site/4.9.0.201710071750-r/apidocs/org/eclipse/jgit/merge/MergeStrategy.html
http://download.eclipse.org/jgit/site/4.9.0.201710071750-r/apidocs/org/eclipse/jgit/merge/MergeStrategy.html
http://download.eclipse.org/jgit/site/4.9.0.201710071750-r/apidocs/org/eclipse/jgit/merge/MergeStrategy.html
http://endnote.com/product-details/library-sharing?utm_source=en-online&utm_medium=referral&utm_campaign=en-online-banner
http://endnote.com/product-details/library-sharing?utm_source=en-online&utm_medium=referral&utm_campaign=en-online-banner
http://endnote.com/product-details/library-sharing?utm_source=en-online&utm_medium=referral&utm_campaign=en-online-banner
http://f1000.com/resources/Workspace_User_Manual.FINAL.pdf
http://f1000.com/resources/Workspace_User_Manual.FINAL.pdf
http://f1000.com/work/faq/references-in-f1000
http://f1000.com/work/faq/references-in-f1000

Bibliography

[Git17] Git. Git Merge. Oct. 23, 2017. URL: https://git-scm.com/docs/git-merge
(cit. on pp. 49–51, 72).

[Hib17a] Hibernate. Hibernate ORM – What is Object/Relational Mapping? 2017. URL:
http://hibernate.org/orm/what-is-an-orm/ (cit. on p. 72).

[Hib17b] Hibernate. Hibernate ORM – Your relational data. Objectively. 2017. URL:
http://hibernate.org/orm/ (cit. on p. 72).

[HJSS06] A. Hotho, R. Jäschke, C. Schmitz, G. Stumme. “BibSonomy: A Social Book-
mark and Publication Sharing System.” In: Proceedings of the Conceptual
Structures Tool Interoperability Workshop at the 14th International Conference
on Conceptual Structures. Vol. 87. 2006, pp. 87–102 (cit. on p. 47).

[Hyp17a] Hypothesis. About Us. 2017. URL: https://web.hypothes.is/about/ (cit. on
p. 40).

[Hyp17b] Hypothesis. Annotating with Groups. 2017. URL: https://web.hypothes.is/
annotating-with-groups/ (cit. on p. 40).

[Hyp17c] Hypothesis. Get started. 2017. URL: https://web.hypothes.is/start/ (cit. on
p. 40).

[Jab16a] JabRef. Shared SQL Database. Nov. 18, 2016. URL: http://help.jabref.org/en/
SQLDatabase (cit. on p. 37).

[Jab16b] JabRef. Sharing a Bib(La)TeX Database. Sept. 26, 2016. URL: http://help.
jabref.org/en/SharedBibFile (cit. on p. 37).

[Jab16c] JabRef. Special Fields. Oct. 27, 2016. URL: http : / / help . jabref . org / en /
SpecialFields (cit. on p. 37).

[Jab17a] JabRef. Fetching entries from the web. Jan. 4, 2017. URL: http://help.jabref.
org/en/#fetching-entries-from-the-web (cit. on p. 35).

[Jab17b] JabRef. Find duplicates. Sept. 4, 2017. URL: http://help . jabref.org/en/
FindDuplicates (cit. on p. 47).

[Jer17] Jersey. Jersey – RESTful Web Services in Java. June 9, 2017. URL: https :
//jersey.github.io/ (cit. on p. 71).

[Kop16] O. Kopp. JabCloud. June 9, 2016. URL: https://github.com/JabRef/jabcloud/
wiki (cit. on pp. 15, 46, 75).

[Ref17a] RefWorks. Attaching Files To A Reference. 2017. URL: https://www.refworks.
com/refworks/help/Attaching_Files_To_A_Reference.htm (cit. on pp. 37,
38).

[Ref17b] RefWorks. Capturing Web Page Data With RefGrab-It. 2017. URL: https://www.
refworks.com/refworks/help/Using_RefGrab-It_to_Capture_Web_Page_
Data.htm (cit. on p. 38).

[Ref17c] RefWorks. Creating Your Account. 2017. URL: http://www.refworks.com/
rwathens/help/Setting_up_Your_Account.htm (cit. on p. 37).

[Ref17d] RefWorks. RefWorks. 2017. URL: http : / / www. proquest . com / products -
services/research-tools/refworks.html (cit. on p. 37).

79

https://git-scm.com/docs/git-merge
http://hibernate.org/orm/what-is-an-orm/
http://hibernate.org/orm/
https://web.hypothes.is/about/
https://web.hypothes.is/annotating-with-groups/
https://web.hypothes.is/annotating-with-groups/
https://web.hypothes.is/start/
http://help.jabref.org/en/SQLDatabase
http://help.jabref.org/en/SQLDatabase
http://help.jabref.org/en/SharedBibFile
http://help.jabref.org/en/SharedBibFile
http://help.jabref.org/en/SpecialFields
http://help.jabref.org/en/SpecialFields
http://help.jabref.org/en/#fetching-entries-from-the-web
http://help.jabref.org/en/#fetching-entries-from-the-web
http://help.jabref.org/en/FindDuplicates
http://help.jabref.org/en/FindDuplicates
https://jersey.github.io/
https://jersey.github.io/
https://github.com/JabRef/jabcloud/wiki
https://github.com/JabRef/jabcloud/wiki
https://www.refworks.com/refworks/help/Attaching_Files_To_A_Reference.htm
https://www.refworks.com/refworks/help/Attaching_Files_To_A_Reference.htm
https://www.refworks.com/refworks/help/Using_RefGrab-It_to_Capture_Web_Page_Data.htm
https://www.refworks.com/refworks/help/Using_RefGrab-It_to_Capture_Web_Page_Data.htm
https://www.refworks.com/refworks/help/Using_RefGrab-It_to_Capture_Web_Page_Data.htm
http://www.refworks.com/rwathens/help/Setting_up_Your_Account.htm
http://www.refworks.com/rwathens/help/Setting_up_Your_Account.htm
http://www.proquest.com/products-services/research-tools/refworks.html
http://www.proquest.com/products-services/research-tools/refworks.html

[Ref17e] RefWorks. Sharing A Folder Or Your Entire Database. 2017. URL: http://www.
refworks.com/refworks/help/sharing_your_database.htm (cit. on p. 39).

[Ref17f] RefWorks. Viewing References. 2017. URL: http : / / www. refworks . com /
rwathens/help/Viewing_References.htm (cit. on pp. 38, 39).

[SS17a] B. Sturm, A. Sunyaev. “If You Want Your Research Done Right, Do You Have
to Do It All Yourself? Developing Design Principles for Systematic Literature
Search Systems.” In: Designing the Digital Transformation: DESRIST 2017
Research in Progress Proceedings of the 12th International Conference on Design
Science Research in Information Systems and Technology. Karlsruhe, Germany.
30 May-1 Jun. Ed. by A. Maedche, J. v. Brocke, A. Hevner. Karlsruher Institut
für Technologie (KIT). 2017, pp. 138–146 (cit. on p. 40).

[SS17b] B. Sturm, A. Sunyaev. “You Can’t Make Bricks Without Straw: Designing
Systematic Literature Search Systems.” In: (2017). Ed. by A. for Information
Systems, pp. 1–9 (cit. on p. 40).

[SSS15] B. Sturm, S. Schneider, A. Sunyaev. “Leave No Stone Unturned: Introducing a
Revolutionary Meta-search Tool for Rigorous and Efficient Systematic Litera-
ture Searches.” In: Proceedings of the 23rd European Conference on Information
Systems ECIS. 2015, pp. 1–10 (cit. on p. 40).

[TESW15] S. Tilkov, M. Eigenbrodt, S. Schreier, O. Wolf. REST und HTTP: Entwick-
lung und Integration nach dem Architekturstil des Web. dpunkt.verlag GmbH,
Apr. 28, 2015. ISBN: 9783864901201 (cit. on pp. 71, 72).

[TUM16] Universitätsbibliothek, Technische Universität München. Literaturverwal-
tungsprogramme im Vergleich. Technische Universität München, Universitäts-
bibliothek. Aug. 3, 2016. URL: https://mediatum.ub.tum.de/1316333 (cit. on
pp. 22–24, 27, 28, 31–33, 35–39).

[Ude16] J. Udell. An Illustrated Taxonomy of Annotation Types. Jan. 6, 2016. URL:
https://web.hypothes.is/blog/varieties-of-hypothesis-annotations-and-
their-uses/ (cit. on p. 40).

[Wor16] Wordfence. Password Authentication and Password Cracking. Feb. 15, 2016.
URL: https://www.wordfence.com/learn/how-passwords-work-and-cracking-
passwords (cit. on p. 73).

All links were last followed on November 16, 2017.

http://www.refworks.com/refworks/help/sharing_your_database.htm
http://www.refworks.com/refworks/help/sharing_your_database.htm
http://www.refworks.com/rwathens/help/Viewing_References.htm
http://www.refworks.com/rwathens/help/Viewing_References.htm
https://mediatum.ub.tum.de/1316333
https://web.hypothes.is/blog/varieties-of-hypothesis-annotations-and-their-uses/
https://web.hypothes.is/blog/varieties-of-hypothesis-annotations-and-their-uses/
https://www.wordfence.com/learn/how-passwords-work-and-cracking-passwords
https://www.wordfence.com/learn/how-passwords-work-and-cracking-passwords

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources and
references than the listed ones. I have marked all direct or
indirect statements from other sources contained therein as
quotations. Neither this work nor significant parts of it were
part of another examination procedure. I have not published
this work in whole or in part before. The electronic copy is
consistent with all submitted copies.

place, date, signature

	1 Introduction
	2 Related Work
	2.1 Requirements for a Reference Management Software for Collaborative Work with Quality Assurance of References
	2.2 Aigaion
	2.3 BibSonomy
	2.4 Citavi
	2.5 CiteULike
	2.6 Colwiz
	2.7 Docear
	2.8 EndNote
	2.9 F1000Workspace
	2.10 JabRef
	2.11 RefWorks
	2.12 Comparison of the Reference Management Tools
	2.13 Other Related Work

	3 Concept
	3.1 Collaborative Work
	3.2 Quality Assurance of Bibliographical References
	3.3 Managing Bibliographical References
	3.4 Managing Comments, Users, and Ratings
	3.5 System

	4 Architecture and Implementation
	4.1 Architecture
	4.2 Design Decisions
	4.3 Implementation

	5 Conclusion and Future Work
	Bibliography

