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Abstract

Assessing a software engineer’s problem-solving ability to algorithmic programming
tasks has been an essential part of technical interviews at some of the most successful
technology companies for several years now. Despite the adoption of coding challenges
among these companies, we do not know what influences the performance of different
software engineers in solving such coding challenges. We conducted an exploratory
study with software engineering students to find hypothesis on what individual char-
acteristics make a good coding challenge solver. Our findings show that the better
coding challengers have also better exam grades and more programming experience.
Furthermore, conscientious as well as sad software engineers performed worse in our
study.
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1 Introduction

1.1 Motivation

Some of the biggest and most successful technology companies, including the big four
Amazon, Facebook, Google and Microsoft, let applicants do algorithmic programming
tasks as part of their technical interview process [McD15]. This might reveal how good
a programmer is in finding efficient and scalable algorithms to unknown problems and
show his or her ability to debug and test a small piece of source code. In the following we
refer to these tasks as coding challenges. Although in technical interviews aspects like, for
example, interpersonal skills play an important role [FBRP17], coding challenges form
an essential part of the interviews and the subsequent evaluation of the candidates.

Many books, online guides, practicing websites and experience reports exist to help
preparing for technical interviews and coding challenges in particular (e.g. [Dum17;
Entl7; Leel7; McD15; MK+12]). To the best of our knowledge there is neither
yet research on the impact of practicing coding challenges nor on which individual
characteristics could influence the performance in solving coding challenges. What is
known is that some software engineers perform better than others. This difference in
the performance ranges from computer science graduates who can not solve simple
programming tasks like the Fizz-Buzz challenge' to programmers who ace almost every
challenge in the finals of internationally recognized programming competitions. Based
on this observation, we set out to explore what individual characteristics of successful
coding challenge solvers could be. Findings of our work can help students to improve
early in their career in becoming better coding challenge solvers if they knew which
individual characteristics have an impact on their performance. If, for example, the
number of pull requests on GitHub strongly correlates with the performance in solving
coding challenges, it could be the case that students should early be encouraged to
contribute to open source projects.

!The Fizz-Buzz challenge is a trivial programming task that is used in interviews to filter out programmers
with insufficient programming skills. The task is to write a program that prints the numbers from 1 to
100. But for multiples of three print “Fizz” instead of the number and for the multiples of five print “Buzz”.
For numbers which are multiples of both three and five print “FizzBuzz” [Gho07].
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1 Introduction

1.2 Research objectives and contributions

The objective of our research is to identify and explore correlations between individual
characteristics, such as personality or programming experience, and the performance in
solving coding challenges. The contributions of this work are:

1. Persons with good exam grades are also good at solving coding challenges. We
found significant moderate and strong relationships between variables related to
academic performance and the coding challenge performance.

2. Sad software engineers perform worse in coding challenges. There was a sig-
nificant moderate negative relationship between the affective state sad and the
performance.

3. We observed a significant moderate positive relationship between the program-
ming experience of a software engineer and the performance in solving coding
challenges.

4. Conscientious persons perform worse in coding challenges. We found a significant
moderate negative relationship between the Big Five personality trait conscientious-
ness and the coding challenge performance.

1.3 Methodological approach

In order to investigate the correlations between individual characteristics of software en-
gineers and their performance in solving coding challenges we conducted an exploratory
study with the following research question:

RQ1 What individual characteristics make a good coding challenge solver?

A total of 32 software engineering students from the University of Stuttgart took part
in our study. Participants had to solve three coding challenges on a computer and
between the coding challenges they had to fill out questionnaires on their current mood,
personality, academic performance and prior training and experience.

Afterwards, we calculated for each participant a score for the performance in solving the
coding challenges. Solutions were evaluated relatively to solutions by other candidates
and according to correctness and time complexity. We then calculated the correlation
coefficient between the performance score and the quantifiable data we received from
the answers to the questionnaire items.
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1.4 Structure of the work

1.4 Structure of the work

The following chapter provides a summary of related work on general aspects of coding
challenges, using them for educational purposes as well as in programming competitions,
and on the relationship between the personality of a software engineer and his or
her problem-solving ability. Chapter 3 introduces coding challenges according to our
definition. We discuss what makes a good coding challenge, what they are used for,
what knowledge is required for solving such challenges and how solutions usually get
evaluated. In chapter 4 we describe in more detail the research methodology and the
design of our study. The findings of the study are presented in chapter 5, followed by a
discussion in chapter 6.
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2 Related work

Related work can be divided into two broad categories. The first category includes
literature on general aspects of coding challenges and programming competitions as
well as work on using coding challenges for educational purposes such as automated
grading of assignments and teaching algorithms. The second category comprises specific
aspects of behavioral software engineering, namely the personality of a software engineer
and his or her problem-solving ability.

2.1 Coding challenges and competitions

Scientific research on coding challenges focuses mainly on using them for educational
purposes, such as attracting and teaching students as well as judging assignments
automatically. Programming competitions are related to our work as most of them use
tasks similar to the kind of coding challenges we use for our study. Work on programming
competitions addresses, for example, the challenge and competition design as well as
preparation and training activities. In this section we primarily focus on findings from
computer science competitions in which contestants have to write code, but we also
include transferable findings from different, e.g. paper-and-pencil competitions where
contestants at least have to design an algorithm. Some of the most famous programming
competitions are the ACM International Collegiate Programming Contest (ICPC)?, the
International Olympiad in Informatics (IOI)2 and the Google Code Jam*.

Researchers agree that special care should be taken when designing coding challenges
and competitions [BHO8; DF08; VCM+06]. The criteria vary depending on the goals
and target group of the specific coding challenge or competition. Among other things,
criteria for good tasks deal with the time to solve a challenge, easily understandable
problem statements, the matter that the required algorithm for solving should not be too
similar to classic algorithms of known problems, and that several solutions to a problem

2https://icpc.baylor.edu/
3http://www.ioinformatics.org/
“https://code.google.com/codejam/
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of different difficulty and efficiency should be possible. Usually, strategically recalling
a correct algorithm is harder than implementing it. As an example, the ICPC consists
of eight to twelve challenges. The simpler ones require minimal knowledge on basic
data structures, problems of medium difficulty require knowledge on algorithms, such
as dynamic programming and greedy and graph algorithms, and the hardest problems
combine multiple concepts and sometimes require mathematical knowledge [BS16].

2.1.1 Preparation and training

Independent of how the tasks are designed, Forivsek [For10] found that the coding
challenges in competitions became harder over time. Also a pairwise comparison
of almost identical challenges used in contests from different years showed that the
percentage of participants which were able to solve the challenges increased and,
furthermore, the average time to solve the challenges decreased [For10]. In other words,
the performance level of the contestants has increased over time.

One reason could be that there now are several online resources where programmers
can practice coding challenges. And there are also many books on the preparation for
programming interviews that present approaches to solving coding challenges and teach
relevant algorithms and data structures [ALP12; McD15; MK+ 12]. Additionally, some
books specifically address the preparation for programming contests [Are06; SR06].
Bloomfield and Sotomayor [BS16] claim that the biggest success factor for programming
competitions are training activities like working through problems and running team
sessions in which problems are discussed. Unfortunately, they do not provide evidence
other than by reporting their own experience. Revilla et al. [RML08] conclude, from
statistics of an online judging system, that solving more coding challenges increases
the individual acceptance rate and decreases the rate for wrong answers as well as for
compilation errors, while the rate for submitted solutions that exceed a given time limit
doesn’t change. Additionally, for problems with a low acceptance rate the wrong answer
rate almost stays the same - independently from the number of problems a user solved.
Alexander and Izu [AI10] designed a course that teaches algorithmic techniques and
uses coding challenges for practicing as well as for the exam tasks. They found that
the number of practice problems solved by an individual correlates with the number of
exam problems solved (r = 0.34, p < 0.01).

2.1.2 Challenges for attracting and teaching students

Using coding challenges for educational purposes and sometimes with a competitive
character proved to be useful to attract and motivate student programmers [Dag10;
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2.1 Coding challenges and competitions

MN86]. The concept of algorithm efficiency with respect to running-time can be taught
early and intuitively by using problems similar to those we describe in our work and
described in [Gin96]. Others propose puzzle-like games for analyzing algorithms without
the need to program them in a specific programming language. Students could then
focus on the design of the algorithm instead of any programming syntax [CH17; Lev05].
The developed solutions, with or without source code, create a basis for subsequent
discussions between the students, who generally enjoy coding challenges and seem
to enjoy discussing the problems and their solutions [CJW11]. All in all, this leads
to a better understanding of efficiency and offers additional insights into algorithmic
problem-solving as well [Ast04; Gin96].

Paxton [Pax07] tried to improve students’ problem-solving abilities with a course that
used coding challenges from the ICPC for homework assignments and for the exam.
In an optional survey students responded that they enjoyed this approach and that
their problem-solving skills did improve during the course at least a little. Other
researchers also found that assignments based on programming interview questions
motivate students and by doing these kind of programming tasks they perform better in
exam questions on algorithms and data structures [GF09; Urn17].

Choosing interesting problems is important in this educational context as it will motivate
students to learn programming and participate in competitions [DS04]. Bloomfield and
Sotomayor [BS16] found that most students are not even motivated by the prizes when
participating in the ICPC. They saw that participating in programming contests requires
skills which are valuable when applying for positions where technical interview questions
are asked. And although solutions most often are only graded on their correctness but
not on code quality, Astrachan [Ast04] had the impression that giving students these
kind of algorithmic problems as programming assignments made them work better in
larger programming projects later, and better programmers in general.

2.1.3 Automatic source code evaluation

In programming competitions automated source code evaluation plays an important role,
especially in those with many participants. Among other authors, Leal and Silva [LS03]
presented a system for the judging of submissions in a programming contest. It is not
fully automated but it reports a classification of the submission which is subsequently
evaluated by a human judge.

Apart from programming contests, automated source code assessment could also be
used in programming courses. If done manually, grading and correcting of homework
assignments can be error-prone, tedious and time consuming. For these reasons the use
of automated online judges for educational purposes was proposed [CKLO03; TB13].
Coding challenges are especially suitable for this purpose, because the correctness of
solutions to such problems can be evaluated automatically and for judging the run time, a
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fixed time limit can be given in which a test case has to complete. By running automated
test cases on a submitted student’s solution the authors of [CKLO03] were able to
increase the number of assignments whereby students had more practice. Additionally;,
by using an automated online judge students receive immediate and objective feedback
on their submissions. Tonin and Bez [TB13] noticed that students were very enthusiastic
about their online judge for self-study as students could rank up by solving more
problems. Rosales et al. [RCC+16] also presented an interactive tool for judging code
submissions made by students. Their aim was to give students an overview of the
possible solutions and to group similar submissions automatically. A cluster graph
visualization could then for example show if several students made the same mistake
and thereby help instructors to give better feedback to the students. With the tool one
can also analyze the student’s attempts and how he or she approached a specific problem
to finally get to a solution. Helminen et al. [HIKM12] found that although almost all
students were able find a solution to some kind of programming learning puzzles there is
a notable variance in the paths students take to get to this solution. Hence, the authors
thought that inspecting the solving path is more meaningful than looking at the final
result when it comes to assessing the programming skills.

2.2 Personality and problem-solving ability

Programming contests and their challenges can be used for assessing the problem-solving
ability of a programmer and to keep track of their improvement over time [CJW11]. In
the previous section we reported on evidence that practicing coding challenges improves
the performance of an individual. However, why different programmers vary in their
performance when solving coding challenges might also depend on other aspects, such
as personality and emotional state. As an example, Graziotin et al. [GWA14] found that
happier software developers perform significantly better in analytic problem solving.
There is an increasing interest in research on the influence of a software engineer’s
personality [CSC15]. Personality characteristics and individual performance together
make up a quarter of the investigated topics in this research field [CSC15]. It should
be noted that programming performance in this related work section mostly refers to
observations over a longer period than the usual short period of time a contestant
would have in a programming competition or an interviewee would spend on a coding
challenge in an interview.

It has been shown that in terms of productivity, the performance of the best programmers
is several times better than that of the worst programmers [Gla02]. DeMarco and Lis-
ter [DL13] conducted a survey in which software developers from different organizations
compete in a coding task that has to be completed in minimal time. They observed that
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2.2 Personality and problem-solving ability

the best performance was 2.1 times better in terms of time than the average and about
nine times better than the worst performance. Furthermore, for participants with more
than six months of experience they found that there was no correlation between the
years of programming experience and the performance. Those participants with less
than six months’ experience performed worse than the rest. Back in 1968, Sackman et
al. [SEG68] already found that developers differ considerably in their performance, but
neither found a correlation between the performance of experienced programmers and
trainee class grades nor between the performance and the score in programming ability
tests like the BPKT®.

Evans and Simkin [ES89] found that the cognitive style according to Myers-Briggs type
indicator is a statistically significant explanatory factor for mastering computer concepts.
Cegielski and Hall [CHO6] found that personality and the cognitive ability both have a
decisive influence on the programming performance in the context of object-oriented
programming. More interestingly is that they found in contrast to previous studies
(e.g. [ES89]) that from those two factors the personality shows the stronger predictive
power. Darcy and Meng [DMO5] did not find a relationship between personality and
programming performance and also programming experience did not correlate with
the performance. However, they found that older participants and those with a better
academic performance did perform better in the programming task.

SThe Basic Programming Knowledge Test (BPKT) is a paper-and-pencil test used as a criterion of program-
ming proficiency. It has been developed by Berger et al., 1966 [Rig66].
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3 Coding challenges

A coding challenge, as introduced in section 1.1, is an algorithm and coding problem to
assess a programmers problem-solving skills. We introduce the term coding challenger to
describe a person who attempts to solve a coding challenge.

3.1 Areas of application

It is our impression that the term coding challenge is used as a synonym to programming
challenge and nowadays more common for competitive and algorithmic programming
problems than for programming or IT hurdles. Coding challenges are used in several
areas of applications and on the internet there are websites that offer different types
of coding challenges for learning, practicing and competing. Most often the coding
challenger has to find the most efficient algorithm or any correct algorithm within
limited time. These are the ones relevant to our work. Other types of coding challenges
include those that can be solved by completing code to win a game or by writing code
that passes all given test cases.

Coding challenges are well known for their usage in technical job interviews, especially
as they are used by some of the most successful technology companies [McD15]. One
can be critical about the usefulness of coding challenges for assessing a candidate’s
programming abilities in a technical job interview. Whiteboard coding in general is
arguably far from a software engineer’s daily work. However, interviewers rely on con-
ducting coding challenges to find a particular kind of employee, not only, but particularly
because attempting to solve a coding challenge demonstrates a programmers thought
processes and if he or she is actually able to translate an algorithm into code [McD15].
Second, coding challenges are also used as tasks for programming competitions. In
fact, programming competitions enjoy wide popularity. In 2017, the ACM International
Collegiate Programming Contest (ICPC) recorded a total of 46,381 students from 2,948
universities in 103 countries [Bayl7]. In the same year, the winner of the Google
Code Jam prevailed against more than 25,000 competitors and won a grand prize of
$15,000 [Gool7].
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3 Coding challenges

Finally, coding challenges are often used for attracting and teaching students. Chal-
lenging and competitive tasks motivate students. They can be used for teaching the
appropriate use of data structures and the functioning of algorithms. And the character-
istics of coding challenges allow for an automatic judging of assignments which results
in immediate feedback for the students. We elaborated on this point in section 2.1.

3.2 Good coding challenges

The answer to what makes a good coding challenge is subjective and to the best of
our knowledge there is no scientific research on this topic. For sure the selection of
an appropriate coding challenge depends on the context and what the reasons for
conducting or attempting the challenge are. For example, an interviewer wants to test a
candidate’s ability to develop an algorithm, whereas a teacher of a programming course
might want to teach time and space complexity. Coding challenges will be selected
accordingly. From what we know from the opinions and experiences of interviewers, we
can argue that the existence of the following characteristics of a coding challenge has
proven its worth in technical interviews [McD13; McD17].

A so-called brute-force solution, which describes an algorithm that systematically goes
through all possible solutions to a given problem, should not be the most efficient
solution to the problem. The reason is that brute-force algorithms usually are the
most obvious way of solving a coding challenge and so they are the first thing that
even a below-average coding challenger can come up with. If one reason for doing a
coding challenge is to find out if a coding challenger can critically think about his or her
initial solution and how this solution can be optimized, then coding challenges with an
inefficient brute-force solution and ways to improve it are great. Again, for interviewers
it is important to see the logical thinking process and how the coding challenger attempts
an unknown problem [McD13]. A coding challenge should therefore also not just test
a single piece of knowledge, for example, a particular programming language feature,
except this is what the interviewer aims for. There would be a high chance that some
otherwise good coding challengers do not know about this single fact and thus the
results become unreliable. More generally, McDowell recommends interviewers to “use
hard questions, not hard knowledge” in order to focus on problem-solving and other
skills that can not quickly be learned at work [McD15].

As described in the later section 4.1 and discussed in section 6.2 we designed our study
in a way that the coding challenger only has to interact with his computer and that
there should be no need for asking for further clarification. This is different from some
technical interviews where the challenge description does not give enough information
to find a satisfactory solution and the candidate is expected to ask further questions
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3.3 Required knowledge for solving

before attempting to solve the coding challenge. In our study we only measure the
combination of finding and implementing an algorithm to a given coding challenge, and
neither explicitly observe how well participants are in understanding problem statements
nor how much a participant cares about requirements engineering. Thus for our study a
good coding challenge is unambiguous and easily understandable.

3.3 Required knowledge for solving

The type of coding challenges we describe in this work requires some knowledge for
successfully finding and implementing an efficient solution [McD15; MK+12]. First,
without the use of appropriate data structures a coding challenger will not be able
to solve most coding challenges with an efficient algorithm or will not be able to
find a working solution at all. In-depth knowledge about data structures covers in
particular the structure, strengths and limitations of strings, arrays, hash tables, linked
lists, stacks, queues, trees and graphs. Second, there are some fundamental algorithms
that every coding challenger should be aware of. For example, to know sorting and
searching algorithms on common data structures as well as to know their time and
space complexity is often the basis for coding challenge solutions. Understanding the
concept of complexity in general is required knowledge when it comes to assessing the
efficiency of an algorithm. For the harder problems, some more concepts such as dynamic
programming, bit manipulation and mathematical principles must be understood, but
this of course depends on the context as, for example, the finals of the Google Code
Jam and a beginners’ course on data structures and algorithms would have different
requirements for the coding challengers.

Once a coding challenger has solved a sufficiently large number of coding challenges,
he or she might be able to quickly classify a given problem and to minimize the set of
potential data structures and algorithms for its solution. Otherwise, one can follow the
advice to walking through a problem by McDowell [McD15], which basically is to find a
brute-force solution and then optimize it by eliminating bottlenecks, unnecessary work
and duplicated work.

3.4 Judging solutions

In a technical interview, interviewers compare a candidate’s performance to other
candidates who had to solve the same coding challenge. So it is not necessarily a
disadvantage to get a hard challenge as it might be hard for every other candidate as
well. The time a candidate needs to get to a correct and efficient solution and how
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much guidance and help a candidate receives from the interviewer are criteria for the
evaluation of the candidate [McD15].

The way solutions to coding challenges get evaluated in programming contests varies,
but there are more objective and absolute judgment criteria than in a technical job
interview. It is common that solutions are scored by correctness and for that purpose
for each coding challenge there are a couple of test cases. However, different scoring
schemes have been proposed, that differ in the way of scoring solutions which pass some
test cases [KVCO06]. For example, the ACM ICPC differentiates only between a correct
and an incorrect solution. If any test case fails then a solution receives no points. The
more problems a team solves, the higher it is ranked and in case of a tie, the time needed
to solve the problems is the decisive criterion [BS16]. The Google Code Jam works in
a similar way, except that each time a participant submits an incorrect solution he or
she receives an additional time penalty. In case of a tie, the participant with the lowest
penalty time will be ranked first.

Other scoring schemes give points for each successful test case. Graeme et al. [KVCO06]
proposed to award the full score for each batch of tests if the solution produces a correct
output for any test case in that batch. In addition to judging the correctness of a solution,
some contests also have a time limit in which a solution has to produce a correct output
for a given test case [BS16]. This forces participants of a programming competition to
not only find a correct algorithm but also to find an efficient one.

In section 4.5 we describe how we scored the solutions of the participants of our study.
Basically, we combined the relative evaluation that is common for technical interviews
with the All-or-Nothing scoring [KVC06] known from several programming competitions.
If a given solution passed all test cases it was scored according to time complexity and
relative to the other solutions. We specified a time limit for each challenge but did not
consider the time to complete a challenge in our scoring scheme.
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4 Methodology

In our work we want to find hypothesis for the varying performance in coding challenges
among software engineers.

4.1 Research design

To answer the research question we conducted an exploratory study in which participants
had to solve three coding challenges on a computer and in between they filled out
questionnaires about their individual characteristics. Exploratory research intends to
gain information for further research through exploring a research question. “Exploratory
research cannot provide a conclusive answer to research problems [...], but they can
provide significant insights to a given situation” [Sin07].

To motivate potential participants to take part in the study, they were told that the study
would last at most 90 minutes and that it was about coding challenges, similar to those
used by several software and technology companies during their interview process. They
were also told that the reason for the study is to find out why some software engineers
perform better in coding challenges than others. Per slot, one or two participants then
got invited to a quiet room where they were provided with an informed consent and
introduced verbally to the study. We used a script to make sure that every participant
received the same information. A translated English version of this script is given in the
appendix. After the introduction, participants had the chance to ask questions before
they started to fill out the first questionnaire.

Participants had to solve coding challenges on a computer without the use of the internet
or other helping material. To make sure that there was no advantage or disadvantage
for any participant due to not knowing the used development environment, participants
were asked if they were familiar with Eclipse and Java. Each coding challenge had to be
solved individually and within a given time. There was a method signature given so that
the type of the return value as well as the parameters of this method were defined. It
was therefore not allowed to change the method signature in any way. A description of
the problem was given as a comment above the method. We describe the challenges in
section 4.3. The task then was to implement the method with a time-efficient solution to
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4 Methodology

the problem. It was allowed to add private methods if needed and to use methods and
data structures of the predefined Java packages. Participants were told that the solutions
would be evaluated by correctness and time complexity, which are common judgment
criteria for modern programming contests [For10] and coding interviews [McD15].
While solving a coding challenge, participants were allowed to take notes on paper.

In addition to the given method signature for each challenge, there was also a main
method given with an example call of the method to implement. The expected output
was given as well. We provided the example to make it easier for the participants
to understand the task and to increase the likelihood that no further questions were
necessary while a participant solved a coding challenge. The participants were allowed
to run the main method and to modify it to add their own test cases if desired. There
was no other feedback on the correctness or efficiency of a participant’s solution than
what the main method tested. Participants were told that there was no advantage in
submitting a solution before the time was up. If a candidate implemented multiple
solutions within the time limit, he or she had to decide which one to submit in the end.
When evaluating the solutions afterwards we only considered the implementation given
in the prescribed method signature.

4.2 Participants

All participants of the study had to be software engineering students of the University of
Stuttgart and they had to be at least at the end of the second semester of their bachelor’s
program. The reason for the latter requirement is that at this point of time a student
has the fundamental knowledge of data structures, algorithms and time complexity that
is required for solving the coding challenges in a time-efficient way. In their second
semester, software engineering students attend a lecture which is specifically about data
structures and algorithms.

The sample consisted, on the one hand, of 14 bachelor students at the end of the second
semester. As part of a course they had to take part in a study and they were given the
choice between five different studies, including ours. Additionally, the sample consisted
of seven students who were in a higher bachelor semester and eleven students who
studied in the master’s program. These students were personally invited by email. In
total, 32 participants took part in our study.
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4.3 Coding challenges

4.3 Coding challenges

For the study we selected three different coding challenges. As described in section 4.1
the participants had to solve them one at a time, in Eclipse and within a given time
limit. In section 3.2 we discussed what makes a good coding challenge and based
on this discussion we chose easily understandable challenges with several possible
solutions. Additionally, we chose challenges were the finding of an efficient algorithm
was challenging but the implementation should have been straightforward. To not make
the participants spend too much time on handling edge cases, some limitations to the
input parameters were given in the task description.

The set of coding challenges we chose covers a range of concepts which are commonly
required for solving coding challenges. This includes the use of appropriate data
structures, an optimization problem and recursive thinking.

In the following we describe each of the coding challenges. They were presented to the
participants in German, which is their native language, for minimizing misunderstand-
ings. The given time limit was for understanding the task, finding an algorithm and
implementing the algorithm. We piloted the study with a test participant in advance
to make sure that the time limit for each challenge is not too short for the participant
to come up with a solution. Additionally, to control for time pressure we asked the
participants after each coding challenge if they felt that they were under time pressure.
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4.3.1 Challenge 1 - Pairs of Integers

/ x%
* In the given array, find the number of integer pairs with a given difference.

*

An example is given in the main method.

* The following applies:

* numbers contains at least two integers

* numbers contains no duplicates

* dif >=1

x/

public static int pairCount(int[] numbers, int dif) {
// TODO
return 0;

public static void main(String[] args) {
int[] numbers = {1,5,3,6,8};
int dif = 2;

// Expected output: 3
// The pairs with a difference of two are: {1,3} {5,3} {6,8}.
System.out.println(pairCount(numbers, dif));

Listing 4.1: Coding challenge 1.

The fist coding challenge was considered to be the easiest one, at least when it comes
to finding any correct solution to the problem. The brute force algorithm, where every
possible combination of two numbers is tested in two for-loops, is straightforward and
runs in O(n?), where n is the number of integers. One has to go through all the integers
of the array and search in the rest of the array for the integer that makes a pair with
the current integer. Such a solution is given in Listing 4.2. By sorting the array in
the beginning, one can improve the solution and do a binary search on the rest of the
array when searching for the corresponding integer to build a pair with the current
integer. This solution would run in O(n - log(n)), but it still can be improved by using an
appropriate data structure. One has to go through all the integers again and each integer
that has been visited already has to be put into a HashSet. When searching for the
integer that makes a pair with the current integer, one now can check in constant time
if this number is in the HashSet, so that each number has to be visited only once and
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4.3 Coding challenges

therefore the time complexity for this solution is O(n). A solution that uses a HashSet is
given in Listing 4.3.

The implementations of these algorithms might vary, but the key thing is that there are
several possible solutions of different time complexities to this first coding challenge.
Participants had 15 minutes to solve this challenge.

public static int pairCount(int[] numbers, int dif) {
int count = 0;
for (int 1 = 0; 1 < numbers.length; i++) {
for (int j = i+l; j < numbers.length; j++) {
if (Math.abs(numbers[i] - numbers[j]) == dif) {
count++;

}

return count;

Listing 4.2: A brute-force solution to coding challenge 1 in O(n?).

public static int pairCount(int[] numbers, int dif) {
HashSet<Integer> set = new HashSet<Integer>();
int count = 0;
for (int i : numbers) {
if (set.contains(i + dif)) {
count++;
}
if (set.contains(i - dif)) {
count++;
}
set.add(1i);
}

return count;

Listing 4.3: A solution to coding challenge 1 in O(n).
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4.3.2 Challenge 2 - Mansion

/ x%
* You want to build a mansion along a road. On the other side of the street
there are houses, in which a certain number of people live.

*

* Your mansion is as long as w houses together.

* Place your mansion in such a way that on the other side of the street as
* many people as possible live opposite your mansion.
* This greatest possible number should be returned by this method.

* An example is given in the main method.

* The following applies:
* 1 <= w <= houses.length <= 100000
* The number of people in each house is >= 0
*/
public static int mansion(int[] houses, int w) {
// TODO
return 0;

Listing 4.4: Coding challenge 2.

This challenge was taken from the Australian Informatics Olympiad 2007. In the main
method there was a detailed example given including an ASCII art that illustrated the
scenario, similar to the example and illustration given in the task description of the AIO
task®. Participants had 25 minutes to solve this challenge.

One approach of solving this coding challenge is to use a sliding window of length w that
covers w houses and gets shifted along all the houses in the array. The sum of people
living in these w houses is the amount of people living opposite the mansion. Each time
when shifting the window, one can either calculate the sum of all houses covered by the
window or simply use the last sum and subtract the people from the one house that is no
longer covered by the window and adding the number of people of the one house that is
now covered by the window. These two solutions differ in their time complexity. The
first one runs in O(n - w) and the second solution runs in O(n), where n is the number
of houses.

®http://archive.is/ESqQEG
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4.3 Coding challenges

public static int pairCount(int[] houses, int w) {
int count = 0;
for (int 1 = 0; 1 < w; i++) {
count += houses[i];

int lastWindow = count;
for (int i = 1; i + w <= houses.length; i++) {
int currentWindow lastWindow - houses[i-1] + houses[i-1 + w];
if (currentWindow > count) {
count = currentWindow;

}

lastWindow = currentWindow;

return count;

Listing 4.5: A solution to coding challenge 2 in O(n).
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4.3.3 Challenge 3 - Triple step

/ *%

*

A child is climbing up a staircase with n steps, and can hop either 1 step,
2 steps, or 3 steps at a time. Implement a method to count how many possible

*

* ways the child can jump up the stairs.

* An example is given in the main method.

* The following applies:

* 0 <=n <= 30

* if n =0 return 1

*/

public static int countWays(int n) {
// TODO
return 0;

public static void main(String[] args) {
int n = 3;

// Expected output: 4

// These are the possibilities to climb the three stairs:
/7 {1,1,1}, {1,2}, {2,1}, {3}
System.out.println(countWays(n));

Listing 4.6: Coding challenge 3.

The third coding challenge was supposed to be the hardest one in our study. It was
taken from the book Cracking the Coding Inteview [McD15] and the ability of recursive
thinking is beneficial to find a solving approach. A simple recursive solution with a time
complexity of roughly O(3") is given in Listing 4.7.
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public static int countWays(int n) {
if (n <0) {
return 0;
} else if (n =0 || n==1) {
return 1;
} else {
return countWays(n - 1) + countWays(n - 2) + countWays(n - 3);

Listing 4.7: A recursive solution to coding challenge 3 in O(3").

An alternative implementation would be a recursive depth-first search for all possible
permutations starting from the bottom of the staircase. In either case the time complexity
is not ideal as the same subtrees have to be calculated multiple times. For example
in the recursive solution given in Listing 4.7 for n = 4 the algorithm calculates the
solution for countWays(2) twice. One could store the solutions to such a subproblem in
an additional memory structure. This reduces the time complexity to O(n). As we told
the participants that each solution is only evaluated by correctness and time complexity,
we ignore the differences in space complexity at this point. However, with the iterative
solution given in Listing 4.8 one can avoid the need for additional memory and get to a
solution that runs in O(n) as well.

public static int countWays(int n) {
int result = 1;

int a = 1;
int b = 0;
int ¢ = 0;

for (int 1
result = a + b + c;

Il
(o}

;1 <n; i) A

c =b;

b =a;

a = result;
}
return result;

Listing 4.8: An iterative solution to coding challenge 3 in O(n).

Participants had 25 minutes to solve this challenge.
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4.4 Candidates for predictor variables

The research question asks for individual characteristics of good coding challenge
solvers. To assess the individual characteristics, each participant had to fill out a total of
four questionnaires on the current mood, personality, academic performance and prior
training and programming experience.

The first questionnaire asked for demographic data and the current mood. It had to be
filled out before the first coding challenge. Demographic data included the name, an e-
mail address for being able to contact the participant afterwards with follow-up questions,
and the age and gender for describing the population sample. To assess the current
mood we used the Scale of Positive and Negative Experience (SPANE) [DWT+10]. Itis a
validated model [RHS17] that subjectively measures how often a participant had a given
feeling during the last four weeks and offers aggregation models. There are six positive
and six negative affective states for which the participant had to indicate the frequency
on a 5-point scale. The positive and negative states can be aggregated to a SPANE-P and
SPANE-N value by summing up the indicated values on the 5-point scale. A subtraction
of the SPANE-N from the SPANE-P value results in the so-called affect balance value,
SPANE-B [DWT+10]. However, using the SPANE-B value is not recommended by Rahm
et al. [RHS17] as it is not clear how to interpret this value and the calculation results in
a loss of information on the actual extent of the positive and negative feelings. We will
report results for the correlation coefficient for SPANE-B anyway as the pure difference
in the frequency of positive and negative affects could be predictive for the performance
in solving coding challenges.

The second questionnaire had to be filled out after the first coding challenge and was
about personality and academic performance. Like in the third and fourth questionnaire
the first question of these questionnaires asked the participant on an 5-point agree-
ment scale if he or she was under time pressure when solving the previously assigned
coding challenge. The participant’s personality was assessed via a validated German
version of the Big Five Inventory [LLAO1] for measuring the five factor model of per-
sonality [Dig90]. In the five factor model five dimensions for describing personality
traits exist: extraversion, agreeableness, conscientiousness, neuroticism and openness
to experience. Different researchers used different terms for the five factors in the
past [Dig90]. We use the previously given terms, which were coined primarily by Costa
and McCrae [Dig90; MJ92]. The used inventory consists of 44 statements related to
the five dimensions. Participants had to agree or disagree on these statements on a
5-point scale, which in turn is used to calculate a score for each of the five dimensions
by summing up the participant’s values for the corresponding statements. The following
description of the five factors is a collection of the related statements, taken from the
original English verison by John and Srivastava [JS99]. A person with a high score for
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extraversion is talkative, outgoing, sociable, full of energy, assertive and generates a lot
of enthusiasm. He or she does not tend to be quiet, reserved, or shy. Agreeableness
is the extent to which someone is helpful, unselfish with others, generally trusting,
considerate, kind to almost everyone, has a forgiving nature and likes to cooperate with
others. The score for agreeableness gets reduced if a person tends to find fault with
others, starts quarrels with others, can be cold and aloof and is sometimes rude to others.
Conscientiousness describes the extend to which a person is a reliable worker, perseveres
until the task is finished, does a thorough job and does things efficiently. A conscientious
person is not somewhat careless, does not tend to be disorganized or to be lazy and
is not easily distracted. Someone who is depressed, gets nervous easily, worries a lot,
can be tense and moody will be scored high for the neuroticism factor. The score for
this factor gets reduced if the person handles stress well, is relaxed, emotionally stable,
remains calm in tense situations and is not easily upset. Finally, a person with a high
score for openness to experience comes up with new ideas, is original, curious about
many different things, ingenious, a deep thinker, sophisticated in art, music or literature,
has an active imagination, values artistic and aesthetic and likes to reflect and play with
ideas. Someone is not considered to be open to experience if he or she prefers work that
is routine and has few artistic interests.

After the part on personality, in the second questionnaire each participant was asked
whether he or she is currently enrolled in the bachelor’s or master’s degree program and
in which semester. We wanted to know the current grade point average, as well as the
grading for two specific exams on data structures, algorithms and time complexity. If
the participant was enrolled in the master’s program we also asked for the grade point
average he or she finished the bachelor’s program with.

The third questionnaire started with a question on the feeling for time pressure when
solving the second coding challenge. Afterwards programming experience related
questions were asked. On a 6-point frequency scale we wanted to know about the
participant’s experience with coding challenges in the past year. We then asked for the
years of programming experience, the years of programming experience particularly
with Java, and the years of experience the participant had with working in a software
related company. If the participant was involved in open source projects, we asked for
a corresponding online profile, for example a GitHub profile. We were also interested
in the URL to a Stack Overflow profile if one was available. For both, the open source
projects profile and the Stack Overflow profile, we were interested mainly in to what
extent the participant was involved in the corresponding communities and in his or her
corresponding contributions.

Finally, after the third and last coding challenge, the only question on the fourth
questionnaire was intended again to control for time pressure when solving the latest
coding challenge. The original questionnaire items are given in the appendix.
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SPANE Experience

o SPANE-B, SPANE-P, SPANE-N
o 12 affective states:
positive, negative, good, bad,
pleasant, unpleasant, happy, sad,
joyful, afraid, contented, angry

Coding challenge experience
Programming experience
Java experience

Work experience

Open source contributions
Stack Overflow contributions

Coding
challenge
performance

Academic Big Five - Personality

Current GPA o Agreeableness
B.Sc. GPA « Conscientiousness
Study progress « Extraversion
L]
L]

Exam gradings for courses on Neuroticism
data structures and algorithms Openness

Figure 4.1: Overview of the measured variables.
4.5 Analysis procedure

To answer the research question we calculated several correlation coefficients between a
participant’s performance in solving the three coding challenges described in section 4.3
and the quantitative answers to the questionnaire items described in section 4.4. In
order to do so, we needed to objectively score a participant’s performance. Previously, in
section 3.4 we described how solutions to coding challenges usually get evaluated in
different areas of application. We stayed close to how recruiters evaluate the performance
of candidates in technical job interviews, namely in relation to each other and with
respect to correctness and time complexity. The latter aspect was told to the participants
before the study. Although it would have been possible to determine the best possible
time complexity class of an algorithm to the given problems, we could not be sure that
this solution could be achieved under the conditions of our study. It was therefore
essential to score the participant’s solution in relation to each other.

For a participant’s solution to a single coding challenge we first run automated test cases
on the given source code to see if it produced correct results. If any test case failed,
the solution was considered to be incorrect and was scored with zero points. If the
solution passed all test cases we analyzed its time complexity. Solutions in the best given
time complexity class, which were in our scenario the solutions with the most efficient
algorithm to the problem, were scored with one point. In case participants came up
with more than one correct algorithm in different complexity classes, the solutions were
ranked and scored on a linear scale between zero and one. This means, for example, that
for two correct solutions in different time complexity classes the second best solution
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receives a score of 0.5, whereas for three correct solutions in different time complexity
classes the second best receives a score of 0.66 and the third best solution receives a
score of 0.33.

In addition we multiplied the achieved score for a coding challenge with a constant
factor that was calculated in relation to the number of correct solutions for this coding
challenge. We considered coding challenges with less correct solutions as harder and
therefore multiplied the points for a correct solution with a higher factor and in such
way that the worst solution to a significantly harder challenge received the same score
as the best solution to the easier challenge(s). Otherwise the second best solution to the
hardest problem would have been scored with less points than a solution for an easy
problem that every participant came up with. In technical interviews one usually does
not have to handle the issue of weighting individual coding challenges as there is only
one problem that has to be solved. Some programming competitions score each coding
challenge equally with one point for a correct solution or zero points for an incorrect
solution. Other competitions, like the Google Code Jam, award points depending on
the size of the sub-problems. A concrete scoring scheme based on our results is given in
Table 5.1.

The overall performance score of a participant was obtained through summing up the
scores for each of the three coding challenges.

We used Pearson’s correlation coefficient to explore which individual characteristics
were related to the performance in solving coding challenges. For variables that did
not meet the assumptions for the Pearson’s correlation coefficient we used Spearman’s
rank correlation coefficient. In both cases the coefficient value ranges from -1 to 1. We
are aware of an open debate on the nature of frequency and agreement scales such as
the ones we used for assessing the current mood (SPANE) and the personality (Big Five
inventory), which affects the decision for or against Pearson’s r. For the affective states
we decided against Pearson’s r and instead reported Spearman’s rho. The distribution of
our sample data for the affective states was not even close to a normal distribution and
we had no reason to believe that this was due to a small sample size. The same applied
for work experience. Other variables for which we calculated Spearman’s rho because of
their types of data were the experience with coding challenges and the study progress.

We report all calculated correlation coefficients in chapter 5 with emphasis on moderate
and strong relationships.
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5 Results

The sample consisted of 32 software engineering students, from which five identified
themselves as female and 27 as male. The average age of the participants was 21.88
years with a standard deviation of 2.4.

The study was designed to answer the question of which individual characteristics make
a good coding challenge solver. We calculated a performance score for each participant
and evaluated his or her answers to our questionnaires on the current mood, personality,
academic performance and prior training and experience. Identifiers for the participants
reflected the performance scores descending. This contributes to the anonymization
process and whenever we refer to a particular participant we know that he or she is at
least as good as all participants with higher numbers in their identifier. Participants were
not aware of this.

We first want to report on the performance of each individual participant to give a clear
overview of the frequency of time complexity classes for correct solutions and how the
overall score for each participant is achieved. In section 4.5 we described the scoring
method and explained why the scores for harder challenges have to be multiplied with a
higher factor than the scores for easier challenges and that the weighting for a coding
challenge is based on the number of correct solutions for this coding challenge. As it was
significantly harder to implement a correct solution for the third coding challenge than
for the other two challenges, the factors are 1.0 for the first and the second challenge
and 2.0 for the third challenge. The worst solution to the third coding challenge now
receives the same score as the best solution to the easier coding challenges. A maximum
score of 4.0 was achievable. Table 5.1 shows the concrete scoring scheme and Table 5.2
shows the resulting scores for the participants and illustrates the effect of our scoring
scheme. However, the ranking of the participants would not look much different with
equal factors of 1.0 for all three coding challenges. PO6 would have the same score as
P07 to P11. PO2 would be ranked after PO5 and before PO6.

The average participant had 1.72 correct solutions and a score of 1.04. Eleven partic-
ipants scored the median and mode value of 0.83. Only one participant achieved the
highest score and four participants solved none of the challenges correctly and thus had
a score of 0.
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Challenge 1 Challenge 2 Challenge 3
Complexity = Score Complexity Score Complexity Score
O(n) 1.0 O(n) 1.0 O(n) 2.0
O(n-log(n)) 0.66 O(n-w) 0.5 O(3") 1.0
O(n?) 0.33

Table 5.1: Mapping from a solution’s time complexity class to score.

From Table 5.2 we see that 28 participants came up with a solution to the first coding
challenge, but only two participants were able to implement something different from
the brute-force algorithm. For the second challenge from 20 correct solutions nine run
in linear time, which is the best possible for all challenges. Participant P02 as well as
P23 to P28 were close to a solution for the second challenge, but did not implement
the termination condition for their loop correctly which resulted in failed test cases.
The third coding challenge was solved by six participants. Although the number of
correct solutions was the smallest of the three coding challenges and the number of
complexity classes to which these solutions belong was not higher than for the other
coding challenges, with four different algorithms the diversity of correct solutions was
the highest for the third challenge.

After each coding challenge participants had to indicate on a 5-point scale how much
they agree on the statement that they were under time pressure when solving the
previously assigned coding challenge. We mapped their answers to values from one to
five, where one means that they strongly disagreed and five means that they strongly
agreed. Accordingly, for the first coding challenge the average time pressure was 2.22
and 1.92 for only those participants that came up with a correct solution. For the
second coding challenge the average time pressure was 2.19 and 1.71 for participants
with correct solutions. The median value was 2 and the mode was 1 for both coding
challenges, which means that participants most often disagreed on the statement that
they felt under time pressure. This is different for the third coding challenge, for which
the average time pressure was 3.84 (median = 4.5, mode = 5) and 2.67 for the six
participants with a correct solution.
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Participant Challenge 1 Challenge 2 Challenge 3 Score

PO1 O(n) O(n) O(n) 4.0
P02 O(n-log(n)) - O(n 2.66
P03 O(n?) O(n) 0(3") 2.33
P04 O(n?) O(n) O(3") 2.33
POS O(n?) O(n) 03" 2.33
P06 O(n?) O(n-w) O(3") 1.83
P07 O(n?) O(n) - 1.33
P08 O(n?) O(n) - 1.33
P09 O(n?) O(n) - 1.33
P10 O(n?) O(n) - 1.33
P11 On?) O(n) _ 1.33
P12 O(n?) O(n-w) - 0.83
P13 O(n?) O(n - w) - 0.83
P14 O(n?) O(n-w) - 0.83
P15 O(n?) O(n - w) - 0.83
P16 O(n?) O(n-w) - 0.83
P17 O(n?) O(n-w) - 0.83
P18 O(n?) O(n - w) - 0.83
P19 O(n?) O(n - w) - 0.83
P20 O(n?) O(n-w) - 0.83
P21 O(n?) O(n - w) - 0.83
P22 O(n?) O(n - w) - 0.83
P23 On?) - - 0.33
P24 On?) - - 0.33
P25 O(n?) - _ 0.33
P26 O(n?) - - 0.33
P27 O(n2) - - 0.33
P28 O(n2) _ _ 0.33
P29 - - - 0.0
P30 - - - 0.0
P31 - - - 0.0
P32 - - - 0.0

Table 5.2: Individual performance of the participants. Each row contains the time
complexity classes of a participant’s correct solution to the corresponding
challenge. Incorrect solutions are marked with a dash.
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Variable I's P

SPANE-B 0.055 0.770
SPANE-P 0.031 0.870
SPANE-N -0.139 0.455
positive -0.148 0.426
negative 0.166 0.373
good -0.030 0.872
bad -0.237 0.199
pleasant 0.254 0.168
unpleasant 0.013 0.945

happy -0.149 0.425
sad -0.390 0.030
joyful -0.062 0.740
afraid -0.005 0.979
contented -0.052 0.780
angry -0.135 0.470

Table 5.3: Summary of the correlation coefficients between Scale of Positive and Neg-
ative Experience (SPANE) and the coding challenge performance score
(n = 31)".

The Scale of Positive and Negative Experience (SPANE) consists of six positive and six
negative affective states for which the participants had to indicate on a 5-point scale how
often they felt this way in the past four weeks. SPANE-P is the sum of positive states and
SPANE-N the sum of negative states, both are in the range between six and 30. For our
participants the average SPANE-P value of 22.65 was higher than the average SPANE-N
value of 12.10 and each of the six positive states that contribute to the SPANE-P value
were on average higher than their counterparts.

Our results show that there is a significant moderate negative relationship between
sad and the coding challenge performance score, r;(29) = -0.390, p < 0.05. With
reference to the discussion in section 4.5 and for the sake of completeness, for this
affective state r(29) = -0.383. Figure 5.1 illustrates the relationship. As higher values
for the affective states stand for higher frequencies, this negative correlation means that
participants who were often sad in the past four weeks tended to perform worse. The
Spearman’s rank correlation between bad and the performance score is weak negative,

’One participant did not indicate the frequency for all of the affective states. For this reason we dropped
his or her record.
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Figure 5.1: Relationship between scores for the coding challenge performance and the
SPANE feeling sad, r,(29) = -0.390, p < 0.05.

1,(29) = -0.237, and additionally there is a weak positive relationship between pleasant
and the performance score, 1,(29) = 0.254. The p-values for these two correlations are
above the significance level of 0.05.

For assessing a participant’s personality we used the five factor model which describes
a personality with five different traits: extraversion, agreeableness, conscientiousness,
neuroticism and openness. Table 5.4 shows the correlation coefficients between these
traits and the coding challenge performance score. What we see from our results is
that there is a significant moderate negative relationship between conscientiousness and
the performance score, r(30) = -0.352, p < 0.05. This relationship is illustrated in
Figure 5.2. Also there is a weak negative relationship between extraversion and the
performance score, r(30) = -0.228. Conscientiousness describes the extent to which a
person is a reliable worker and how easily he or she is distractible. Extraversion describes
how sociable a person is. We described the five factors in more detail in section 4.4.
For the other three personality traits there is no relationship in our data.

The variables for the academic performance provide the highest values for Pearson’s
r in our data set. From the results shown in Table 5.5 we see that there is a strong
negative relationship between the performance scores and the grade point averages
master students received in their bachelor’s degree, r(8) = -0.620. Also there is a
significant strong negative relationship between the performance scores and the grades
for the data structures and algorithms course, r(16) = -0.557, p < 0.05 and a significant
moderate negative relationship between the performance scores and the current grade
point average, r(29) = -0.448, p < 0.05. As in Germany lower grades are better than
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Variable Pearson’sr p

extraversion -0.228 0.210
agreeableness -0.058 0.755
conscientiousness -0.352 0.048
neuroticism -0.098 0.592
openness 0.069 0.708

Table 5.4: Summary of the correlation coefficients between the Big Five personality
traits and the coding challenge performance score (n = 32).
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Figure 5.2: Relationship between scores for the coding challenge performance and Big
Five personality trait conscientiousness, r(30) = -0.352, p < 0.05.

Variable Pearson’sr r; p n

Current GPA -0.448 0.011 31
B.Sc. GPA (master students only) -0.620 0.056 10
Grade for data structures and algorithms course -0.557 0.016 18
Grade for algorithms and complexity course -0.183 0.452 19
Study progress 0.179 0.328 32

Table 5.5: Summary of the correlation coefficients between the academic performance
and the coding challenge performance score.
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Figure 5.3: Relationship between scores for the coding challenge performance and the
B.Sc. GPA of master students only, r(8) = -0.620, p = 0.056.

high grades, these negative relationships mean that participants with a better grading
were also the better coding challengers.

The average grade for the data structures and algorithms course was 1.66 (sd = 0.79)
and therefore much better than the average grade for the algorithms and complexity
course which was 3.11 (sd = 0.83). We only see a weak negative correlation for the
latter course with the coding challenge performance score, r(17) = -0.183.

A weak positive relationship can be seen between the study progress and the performance
scores, 1;(30) = 0.179. Study progress was mapped from one of three groups: students
at the beginning of their bachelor’s program, students that are at least in the fourth
semester of the bachelor’s program and one group for the master students. Our sample
consisted of 14 bachelor students that belong to the first group, seven bachelor students
that belong to the second group and eleven master students that belong to the third
group. The positive relationship therefore means that the more advanced students
performed better, but from the correlation coefficient alone we can not tell to what
extent. The highest score of 4.0 was achieved by a master student, the maximum score
in the group with the advanced bachelor students was 2.66 and the maximum score
for the students at the beginning of their bachelor’s program was 1.83. On average the
advanced bachelor students had a score of 1.89 (median = 1.83) and outperformed the
first group which had an average score of 0.66 (median = 0.83) as well as the third
group which had an average score of 1.07 (median = 0.83).

In the last part of the questionnaires we asked the participants experience-related
questions. Programming experience, experience with Java and experience with working
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Figure 5.4: Relationship between scores for the coding challenge performance and the
DSA course grades, r(16) = -0.557, p < 0.05.

000000

coding challenge score
[\]

0o oo
0 o o o
| | |

| | |
1.3 1.7 21 25 29 3.3
current GPA

Figure 5.5: Relationship between scores for the coding challenge performance and the
current GPA, r(29) = -0.448, p < 0.05.
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Variable Pearson’sr Ty p

Coding challenge experience 0.227 0.211
Programming experience 0.420 0.017
Java experience 0.184 0.315
Work experience 0.196 0.283

Table 5.6: Summary of the correlation coefficients between experience and the coding
challenge performance score (n = 32).

in a company with focus on software development were measured in years. Experience
with coding challenges in the past year was indicated by the participants on a 6-point
frequency scale.

From Table 5.6 we see a significant moderate positive relationship between the cod-
ing challenge performance score and the programming experience of a participant,
r(30) = 0.420, p < 0.05. This relationship is illustrated in Figure 5.6. On average,
participants had 5.02 years of programming experience (sd = 2.47). For the work
experience, coding challenge experience and the experience with Java we only observed
weak positive relationships with the performance score. 21 participants answered that
they never made experience with coding challenges in the last year, five participants
did coding challenges for one or two times per semester, five participants for one or
two times per month and one made experience with coding challenges once per week.
When we asked the participants afterwards what their concrete experience with coding
challenges was, they mainly told us about exercises they had to do for the algorithm and
complexity class and that these exercises were pretty similar to the coding challenges
we used in our study. The one participant who indicated to solve coding challenges once
per week told us that he or she makes them for fun on the internet. This participant had
the second best coding challenge performance score of 2.66, while the participant with
the best performance score of 4.0 never made experience with coding challenges in the
last year.

As described in section 4.4 we asked participants for their online open source profiles and
their Stack Overflow profile to explore the contributions to the respective communities
and see how they correlate with the scores for the coding challenge performance.
From the 32 participants only four participants had a Stack Overflow profile, of whom
three have contributed at least one question or answer to the network. The coding
challenge performance scores for these three participants were above average, but their
contributions were made mainly to fields unrelated to Java, algorithms or programming
puzzles. More participants provided us a URL to their GitHub or GitLab profiles and
eight of them contributed at least one public pull request, but there was no relationship
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coding challenge score
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Figure 5.6: Relationship between scores for the coding challenge performance and the
programming experience in years, r(30) = 0.420, p < 0.05.

between the number of pull requests and the performance score. The eight participants
with public open source contributions had an average performance score of 1.16, which
is slightly higher than the average performance score of 0.98 for participants without
public open source contributions. The majority of projects they contributed to were
programmed in Java or JavaScript.
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6 Discussion

6.1 Findings

Although there exists research on different aspects of coding challenges, little research
was done on what individual characteristics make a good coding challenge solver. What
was known is that some software engineers perform better than others and this is also
what we observed in our exploratory study. Additionally, we found relationships between
some of the measured variables and the coding challenge performance score. Based on
these findings we state and discuss the following hypothesis.

Hypothesis: persons with a good GPA are also good at solving coding
challenges

We found moderate to strong linear correlations between two GPA-related variables
and the performance score. The significant moderate negative relationship between the
current GPA and the performance score, r(29) = -0.448, p < 0.05, shows that students
with better grades performed better in the coding challenges. Additionally, the Pearson’s
correlation coefficient between the B.Sc. GPA and the performance score was strong
negative, r(8) = -0.620, but due to the small number of master students, the relationship
could have occurred by chance (p = 0.056).

Many of the bachelor students at the end of the second semester mentioned that their
current GPA consisted only of one or two grades. As this group of students made up
about 44% of our sample this should be taken into account. However, because we
observed more negative relationships for grade related variables, it can be reasonably
assumed that we would have observed a negative relationship also if students had taken
more than one or two exams.

There was only a weak positive correlation between study progress and the performance
score, 15(30) = 0.179, and we observed that the group of higher bachelor semesters
performed best. In discussions after the study, participants told us that in the algorithms
and complexity course, students nowadays have to solve tasks similar to the coding
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challenges we used in our study. As this course is usually taken in a higher bachelor
semester, this could have been the reason for them to perform better. Furthermore,
as students at the beginning of their bachelor’s program performed worst and master
students did not perform much worse than students in a higher bachelor semester, we
assume that there is a baseline of knowledge one has to be aware of when solving coding
challenges but further academic progress does not make a coding challenger better.

Taking all this, and especially the previous paragraph, into consideration, we can not
assume that receiving better grades leads to better coding challenge performances. But
we can assume that there is a third variable that predicts how well a student performs in
his or her exams and how well he or she performs in solving coding challenges.

Hypothesis: persons with a good grade in the data structure and
algorithm course are also good at solving coding challenges

Our results show a significant strong negative relationship between the grade for the data
structure and algorithms course and the performance score, r(16) = -0.557, p < 0.05.
For the weak negative relationship between the grade for the algorithms and complexity
course and the performance score, r(17) = -0.183, we would like to notice that some of
the participants were examined by a different examiner and they told us that the exam
became therefore significantly easier.

In section 3.3 we discussed that a good understanding of data structures and algorithms
is fundamental for finding an efficient algorithm to a given coding challenge. Therefore,
we assume that a good preparation for the data structure and algorithms exam not only
leads to a good grade but also improves the coding challenge performance. Taking
this finding one step further, it provides at least an indication of how the targeted
preparation for solving coding challenges could have an impact on the coding challenge
performance.

Hypothesis: if a software engineer is sad, he or she will perform worse in
coding challenges

On a more abstract level of algorithm design and execution, Graziotin et al. [GWA14]
found that happy software developers perform significantly better in analytic problem
solving. Although we observed a weak positive relationship between the positive affective
state pleasant and the performance, r;(29) = 0.254, we neither can confirm that there is
a positive correlation between SPANE-B and the performance, nor did we find a positive
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correlation between the affective state happy and the performance in solving coding
challenges, r;(29) = -0.149.

However, we found that sad software engineers performed significantly worse, r;(29) = -
0.390, p < 0.05. We believe that there could be a cause-effect relationship between
sadness and the coding challenge performance, because from the participants who felt
sometimes or often sad in the past four weeks (~28%), nobody came up with a correct
solution to coding challenge 3 and for the first two challenges nobody came up with an
algorithm that was different from brute-force solutions. Consequently, none of the sad
participants had a score higher than 0.83.

Hypothesis: gaining programming experience leads to a better coding
challenge performance

For the experience-related variables we observed a weak positive relationship between
the coding challenge experience and the performance, r;(30) = 0.227, between the Java
experience and the performance, r(30) = 0.184, as well as between the work experience
and the performance, r;(30) = 0.196. The weak correlation coefficient for the Java
experience could be explained by our selection of coding challenges which do not require
specific knowledge about the programming language. The positive relationship between
the experience with coding challenges and the performance in solving such, is in line
with what related work found (see subsection 2.1.1).

More importantly, we observed a significant moderate linear relationship between the
years of programming experience and the coding challenge performance, r(30) = 0.420,
p < 0.05. A study conducted by DeMarco and Lister [DL13] did not find a correlation
between the years of programming experience and the performance in terms of time to
complete a programming task, at least not for participants with more than six months’
experience. The contradictory results could be due to the difference in the programming
tasks and the different definitions of performance. Working as fast as possible on an
ordinary programming task arguably requires different skills than finding an efficient
algorithm to a coding challenge. According to our results we believe that an increase in
programming experience leads to a better coding challenge performance. This might
only hold true until a threshold, but it seems to be greater than the six months observed
by DeMarco and Lister.
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Hypothesis: conscientious persons perform worse in coding challenges

We expected to find that persons with a low score for extraversion perform worse in
algorithmic problem solving and observed this correlation to a certain extent, r(30) = -
0.228, but the results were not significant. For the other personality traits of the five
factor model, we did not expect to find any correlation with the coding challenge
performance and at least for agreeableness, neuroticism and openness we were right.
However, conscientiousness showed a significant moderate negative relationship with the
coding challenge performance score, r(30) = -0.352, p < 0.05. This means the higher
the score for conscientiousness, the lower the coding challenge performance score. To
understand this relationship we had a look at the answers to the statements of the Big
Five inventory of the six participants with the highest performance score. Interestingly,
they tended to be reliable workers, which increased their score for conscientiousness and
they did not tended to be easily distracted, which would have lowered their score for
the personality trait. Their average score for conscientiousness was 4.17, which is only
slightly below the average value of 6.69 for the rest of the sample. Beside Pearson’s r,
we also always had a look at Spearman’s rho to avoid wrong assumptions due to the
possibly strong influence of outliers and sequences which are not entirely homoscedastic.
Still there was a negative monotonic relationship, r;(30) = -0.294. Although we can not
explain the relationship, based on our findings we would like to state the hypothesis
that conscientious persons perform worse in coding challenges and let future research
examine this relationship in more detail.

6.2 Limitations

The study design, as described in section 4.1, has some limitations which have to
be considered when interpreting the results. These limitations primarily address the
external validity of our study, with respect to transferring our findings to technical
interviews. Future research can benefit from our thoughts and might be able to adapt
the study design accordingly.

6.2.1 An IDE and a white board differ

In a technical on-site interview candidates would rather have to solve a coding challenge
on a white board than on a computer [McD15] and there are differences in the way a
programmer writes code in the respective cases. An integrated development environment
offers features such as syntax highlighting and automatic source code completion. It
is also possible to run and debug the program on a computer within a short time to
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test the correctness, compared to manually going through a test case which can also be
error-prone. Syntactic errors that make a participant’s solution no longer executable
result in zero points in our study whereas in white board interviews, if at all, the extent
to which a candidate makes these errors is considered.

Our main reasons for not conducting the coding challenges on a white board were that
we are not trained as interviewers and objective scoring of a participant’s solution would
have been much harder if variable extent of guidance and, for example, empathy were
involved. An experienced interviewer could solve this issue.

6.2.2 There was no guidance for the participants

As previously said we did not conduct white board challenges as we are not trained
for conducting interviews and the variable extent of guidance would make an objective
scoring of the solutions harder. However, the fact that there was no guidance for
the participants was a limitation in itself. An interviewer would give small hints to
the interviewee when it is appropriate [McD15]. As we did not give any hints while
the participants worked on their solution for the coding challenges, it occurred, for
example, that a participant came up with an overall correct algorithm but overlooked a
minor mistake in its implementation that did not pass our automated test cases for the
correctness of the solution. Another point is that in our study a common strategy for
solving the coding challenges was to implement a working, but obvious and inefficient
algorithm first and then to try to find a more efficient one, which sometimes resulted
in time pressure at the end. This was only due to the fact that a participant had no
other way to communicate his or her ability to find the inefficient algorithm and did
not want to take the risk of not having any correct solution in the end. An interviewer
who also evaluates the participants performance in the end can help to overcome this
limitation.

6.2.3 Participants were unprepared

Participants of our study were students, of whom most did not prepare for solving coding
challenges in the past. Not much research has been done yet to examine the effect of
targeted preparation for coding challenges so we do not know about its impact and how
well our results can be transferred to a group of software engineers, who all recently
prepared for programming interviews or programming competitions.

Solving the challenges we chose does not require knowledge of particular programming
language features or the like that would not be present to a student who is currently
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enrolled in a software engineering course of study. However, refreshing one’s knowledge
on data structures and algorithms before solving coding challenges can be beneficial
and it could improve the performance of one participant more than the performance of
another participant, thus changing the correlation results. As we do not know about the
impact of preparation, we at least controlled for it in our study with a question on past
experience with coding challenges. Future research can repeat our study with prepared
participants and see if and how the results differ.

6.2.4 Code quality did not matter

We scored the combination of finding and implementing an algorithm, which is similar
to what candidates in a programming interview would have to do. While in our study
we did not consider the code quality of the participants’ solutions, it is relevant to a
certain extent when programming in an interview. McDowell [McD15] lists the following
properties for good code as employers want to see it: correct, efficient, simple, readable
and maintainable.

While we looked at the first two properties, correctness and efficiency, we did not
consider simplicity, readability, maintainability or other code quality characteristics
when we evaluated the solutions. We chose problems to which possible solutions usually
should be around ten to twenty lines long. Therefore, we did not discover too many
differences in the solutions of different participants regarding the code quality. Also as
for some of these properties like efficiency and maintainability there could be a trade-off
that influences possible outcomes, we encouraged participants to focus on correctness
and efficiency so that our evaluation process was as objective as possible in the end.

6.2.5 Motivation, stress and anxiety

Although some students might have had a high motivation for solving the coding
challenges as an end in itself, others might have had insufficient motivation due to the
fact that we did not reward them in any way. We assumed that when students voluntarily
take part in our study there is already some willingness to support our research and
thus participants try to get the most out of it. However, as some of our participants had
to take part in a study as an exam precondition, there is still a chance that they were
less motivated to try their best at the coding challenges. In future studies public and
possibly anonymized score rankings of every participant’s performance can arouse the
ambition of the individual and give the participant a way to see how he or she performed
compared to others.
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Another thing to consider are emotions like stress and anxiety which are higher in a job
interview where the interviewee is not anonymous, but instead facing the interviewer
and trying to not fail as the stakes might be high. In our study we tried to create a relaxed
atmosphere and so should an interviewer do. Future work can examine the performance
of candidates in real technical interviews and assess the individual characteristics of
the candidates. This would result in more meaningful results for technical interview
scenarios regarding the emotional situation and also regarding some of the previously
named limitations.

6.2.6 We had little knowledge on which solutions were achievable

It would have been beneficial to have evidence that participants will come up with
correct and different solutions to each of the coding challenges within the parameters of
our study before we conducted the study. In the worst case we would have ended up
with everybody receiving the same score, as, for example, nobody was able to solve any
challenge correctly or everybody was able to solve every coding challenge in the best
possible way. To counteract this limitation, we first selected coding challenges where
we knew that there were different solutions and the best possible solution was not the
most obvious one. We then piloted the study with one test participant and had a good
feeling about the outcome as the test participant solved the first challenge with the
most obvious but not the most efficient solution, the second coding challenge with the
best possible solution and for the third coding challenge the test participant could not
come up with a correct solution but was able to understand possible solutions that we
explained in a subsequent talk.

From our results we see that the selected coding challenges were a good choice in terms
of difficulty, because there is a wide variety of well distributed scores. We also see that
at least for the first two coding challenges participants were not under time pressure.
For the third coding challenge we do not know if participants, who did not solve the
challenge correctly, would find a correct solution if they had more time.

Future studies could use more test participants to have greater assurance that the
solutions to the coding challenges will vary between participants and tweak their
selection accordingly before conducting the study.
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7 Conclusion

The ability to be a successful coding challenge solver is essential in programming
competitions and many technical job interviews. We found that a good coding challenger
is an experienced programmer, is not conscientious, was seldom sad in the past weeks,
has a good GPA and a good grade in the data structures and algorithms course. For moral
reasons, we do not want to suggest students to be less conscientious, if this is possible
at all. To be less often sad in the time before attempting to solve coding challenges in
competitions or technical interviews is advisable, but this might not always be within
one’s power.

As discussed in the previous chapter, we do not believe that there is a cause-effect
relationship between the GPA and the coding challenge performance. However, we
might be wrong in this point and even if there is no cause-effect relationship, receiving
good grades would still be beneficial in other areas of life. For hiring managers the found
relationship between the academic performance and the performance in solving coding
challenges can be taken into consideration when having to review a lot of applications
and to decide which candidate to invite to a technical interview, although we would
recommend to not only focus on grades for evaluating a candidate.

Finally, what a software engineer can do to possibly improve his or her coding challenge
performance is to gain programming experience and prepare well for the exam on
data structures and algorithms. We believe that up to a certain threshold gaining
programming experience leads to a better performance and that knowledge attained in
the data structure and algorithms course has a positive influence on the coding challenge
performance.

Future work

Future work can statistically confirm or refute our hypothesis. Taking some of the
limitations into consideration, future studies can be designed to be more similar to
technical interviews and could conduct such a study with prepared candidates to see
how the results differ.

From the set of hypothesis, we would find it particularly interesting to examine the
relationship between the academic performance and the coding challenge performance.
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In case that there is a third variable that influences both the GPA and the coding
challenge performance, it might be worth to investigate this relationship and to find
ways to improve in this third variable. It would also be interesting to find out if there is
a cause-effect relationship between programming experience and the coding challenge
performance and if there is a threshold for which this relationship can be observed.
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Script for introducing participants into
the study

For the verbal introduction of participants to the study we used a script to make sure that
every participant received the same information. The following is a translated English
version of our notes that we read to the participants after a cordial welcome and after
they have read the consent form.

Do you have questions regarding the consent form?

It is important to understand that I will be able to see from who the answers to
the questionnaires and the solutions to the coding challenges are. However, before
I discuss the results with anybody, including my supervisor and examiner, these
data will be anonymized.

Do you study software engineering?
Are you familiar with Eclipse and Java?

There will be three coding challenges in total and between them you have to fill
out questionnaires. At the end of each questionnaire there is the instruction to
raise your hand. I will then open the next coding challenge for you.

For each coding challenge a method signature is given. It is not allowed to
change this signature, so that the type of the return value and the parameters of
the methods are well-defined. Above the method signature, there is a comment
explaining what the task is.

It is allowed to create private methods if this helps you to structure your solution
or to solve the problem.

It is not allowed to use the internet when solving the coding challenges. For
answering the questionnaires it is allowed to use the internet. You will be asked,
for example, for your DSA mark. If you do not remember it, it is fine to look on
the internet.

It is allowed to use all methods and data structures from the standard Java package
(importjava.x).

61



A Script for introducing participants into the study

62

It is allowed to run the code. With each challenge there is also a main method
given which contains a call of the method that you have to implement. For the
input of that call the expected output is given as well. You are allowed to modify
the main method if desired.

You have a pen and a paper at your place for taking notes.

For each challenge there is a time limit for understanding the problem, finding
an algorithm and implementing the algorithm. For example, for the first coding
challenge this time limit is 15 minutes. If you want to submit a solution before
the time is up, please tell me and we will continue. This will not affect the score
for your solution, so it might be a good idea to use the remaining time in order to
improve your algorithm.

We evaluate your solutions for correctness and time complexity. It is always better
to have a correct solution than no solution. And the more efficient the solution is
in terms of the Big O notation, the better the score.

Please do not use your mobile phone in the next 90 minutes.

Do you have any questions?



B Questionnaire items

In section 4.4 we describe four questionnaires on the current mood, personality, academic
performance and prior training and programming experience that had to be filled out
by the participants of our study. In the following the original questionnaire items are
given.

Demographische Fragen
(1.) Vor- und Nachname:

(2.) E-Mail-Adresse:

(3.) Alter:

(4.) Geschlecht, mit dem Sie sich identifizieren:
[ ] mannlich
[ ] weiblich

[ 1 anderes, und zwar:
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Aktuelle Gefiihlslage

(5.) Bitte denken Sie an das, was Sie in den letzten 4 Wochen getan und erlebt haben.
Anschliel3end kreuzen Sie bitte in der folgenden Liste an, wie héufig Sie sich so gefiihlt
haben.

sehr selten selten gelegentlich oft sehr oft od.
oder nie immer
positiv 0 0 0 O O
negativ U 0 0 O O
gut U 0 0 0] O
schlecht O O O O O
angenehm O OJ OJ O O
unangenehm O O O O O
gliicklich O O O O O
traurig O O O O O
von Freude erfiillt O O O O O
angstlich O O O O O
zufrieden O O O O O
wiitend O O O O O

Frage zu Coding challenge #1

(6.) Ich bin bei Coding challenge #1 unter Zeitdruck geraten
[ ] stimme voll und ganz zu

[ ] stimme eher zu

[ ] teils/teils

[ ] stimme eher nicht zu

[ ] stimme gar nicht zu

Personlichkeit

(7.) Im Folgenden finden Sie eine Reihe von Beschreibungen, die auf Sie zutreffen
konnen oder nicht. Bitte schreiben Sie eine Zahl links neben jede der aufgefiihrten
Beschreibungen, um anzuzeigen, wie sehr diese Aussage auf Sie zutrifft oder nicht
zutrifft.
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Trifft {iberhaupt
nicht zu

Trifft wenig zu

Trifft teils/teils

zu

Trifft gut zu | Trifft sehr gut
zu

0

2

3 4

Ich sehe mich selbst als jemand, der ...

1. gesprachig ist, sich gerne unterhalt

23. bequem ist und zur Faulheit neigt

2. dazu neigt, andere zu kritisieren

24. ausgeglichen ist, nicht leicht aus
der Fassung zu bringen

3. Aufgaben griindlich erledigt

25. erfinderisch und einfallsreich ist

4. deprimiert, niedergeschlagen ist

26. durchsetzungsfahig und energisch
ist

5. originell ist, neue Ideen entwickelt

27. sich kalt und distanziert verhalten
kann

6. eher zuriickhaltend und reserviert
ist

28. nicht aufgibt ehe die Aufgabe
erledigt ist

7. hilfsbereit und selbstlos gegeniiber
anderen ist

29. launisch sein kann, schwankende
Stimmungen hat

8. etwas achtlos sein kann

30. kiinstlerische und asthetische Ein-
driicke schatzt

9. entspannt ist, sich durch Stress
nicht aus der Ruhe bringen lasst

31. manchmal schiichtern und
gehemmt ist

10. vielseitig interessiert ist

32. riicksichtsvoll und einfithlsam zu
anderen ist

11. voller Energie und Tatendrang ist

33. tiichtig ist und flott arbeitet

12. haufig in Streitereien verwickelt
ist

34. ruhig bleibt, selbst in angespan-
nten Situationen

13. zuverldssig und gewissenhaft ar-
beitet

35. routineméfige und einfache Auf-
gaben bevorzugt

14. leicht angespannt reagiert

36. aus sich herausgeht, gesellig ist

15. tiefsinnig ist, gerne liber Sachen
nachdenkt

37. schroff und abweisend zu anderen
sein kann

16. begeisterungsfahig ist und andere
mitreillen kann

38. Plane macht und diese auch
durchfiihrt
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Trifft iberhaupt | Trifft wenig zu | Trifft teils/teils | Trifft gut zu | Trifft sehr gut
nicht zu zu zu
0 1 2 3 4

17. nicht nachtragend ist, anderen
leicht vergibt

39. leicht nervos und unsicher wird

18. dazu neigt, unordentlich zu sein

40. gerne Uberlegungen anstellt, mit
Ideen spielt

19. sich viele Sorgen macht

41. nur wenig kiinstlerische Inter-
essen hat

20. eine lebhafte Vorstellungskraft
hat, phantasievoll ist

42. sich kooperativ verhélt, Zusamme-
narbeit dem Wettbewerb vorzieht

21. eher still und wortkarg ist

43. leicht ablenkbar ist, nicht bei der
Sache bleibt

22. anderen Vertrauen schenkt

44. sich gut in Musik, Kunst und Lit-
eratur auskennt

Bisherige akademische Leistung

(8.) Ich studiere im
[ 1 Bachelor
[ ] Master

(9.) Im wievielten Fachsemester befinden Sie sich?

(10.) Aktueller Notenschnitt:

(11.) Falls Sie sich im Master befinden, geben Sie bitte hier zuséatzlich den Bachelor-
Notenschnitt an:

(12.) Falls Sie die Priifung , Datenstrukturen und Algorithmen“ abgelegt und bestanden
haben, geben Sie bitte Ihre Note an:
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(13.) Falls Sie die Priifung ,, Algorithmen und Berechenbarkeit“ abgelegt und bestanden
haben, geben Sie bitte Ihre Note an:

Frage zu Coding challenge #2

(14.) Ich bin bei Coding challenge #2 unter Zeitdruck geraten
[ ] stimme voll und ganz zu

[ ] stimme eher zu

[ ] teils/teils

[ ] stimme eher nicht zu

[ ] stimme gar nicht zu

Programmiererfahrung

(15.) Wie héufig haben Sie im letzten Jahr Erfahrungen mit Coding challenges gemacht?
[ ] Nie

[ ] 1-2 mal pro Semester

[ ] 1-2 mal pro Monat

[ ] Einmal pro Woche

[ 1 2-3 mal pro Woche

[ ] Taglich

(16.) Programmiererfahrung in Jahren:
(17.) Erfahrung mit Java in Jahren

(18.) Arbeitserfahrung mit Tatigkeitsschwerpunkt auf Softwareentwicklung in Un-
ternehmen in Jahren:

(19.) Falls Sie an Open-Source-Projekten mitarbeiten, geben Sie bitte einen Link zu
Threm Profil an (z.B. GitHub):

(20.) Falls Sie einen ,,Stack Overflow“-Account besitzen, geben Sie bitte einen Link zu
Threm Profil an:
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Frage zu Coding challenge #3

(21.) Ich bin bei Coding challenge #3 unter Zeitdruck geraten
[ ] stimme voll und ganz zu

[ ] stimme eher zu

[ ] teils/teils

[ ] stimme eher nicht zu

[ ] stimme gar nicht zu
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