
Institute of Architecture of Application Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Masterarbeit Nr. MCS-0016

Deployment of TOSCA Cloud
Services Archives using

Kubernetes

Md. Rezzakul Haider

Course of Study: Computer Science

Examiner: Prof. Dr. Dr. h. c. Frank Leymann

Supervisor: Dipl. -Inf. Johannes Wettinger

Commenced: October 2, 2016

Completed: March 22, 2017

CR-Classification: C.2.4, D.2.9, K.6

Abstract

In recent years container virtualization and container management emerged in the
context of Cloud computing as a new paradigm in IT enterprises. It introduces new
approaches that enable the IT industry to manage their application and services more
effectively in the Cloud. With the rapid increase of usage of Cloud computing, IT
companies introduce new tools to manage their applications in Cloud environments.
However, each tool has its own kind of definitions and specifications on describing
the applications in their platforms which creates vendor lock-in for its users and also
hampers the portability features of Cloud applications. To solve this issue, TOSCA has
been introduced to the industry by OASIS. The Topology and Orchestration Specification
for Cloud Applications (TOSCA) provides a standardization approach enabling portability
of Cloud services between different Cloud Computing providers. The main goal of TOSCA
is to model enterprise applications in a standardized and technology-independent way
regardless of a specific Cloud provider or environment. To model and deploy applications
using TOSCA properly, all required artifacts are packaged and bundled as TOSCA Cloud
Service Archives (CSARs). Such CSARs are then used by Cloud orchestration engines to
deploy the application to Cloud platforms. At the technology level, several deployment
and cluster management approaches and tools are rapidly emerging such as Docker
Compose, Docker Swarm, Kubernetes, Nomad, and Apache Mesos. Most of them are
centered around containerization of middleware and application components.

The focus of this thesis is to provide mapping concepts of TOSCA application topologies
to a container-based deployment and management approach. Since Kubernetes and
Docker are the most prominent open-source solutions in this field, we specifically
consider Kubernetes and Docker as part of the prototype implementation. To assess
feasibility of the proposed approach and usability of the system, we also provide case
studies based on a motivating scenario.

Keywords: TOSCA, Deployment Automation, Container Virtualization, Cloud Comput-
ing, Docker, Kubernetes, Minikube.

3

Contents

1 Introduction 11
1.1 Motivation . 11
1.2 Objective . 12
1.3 Outline . 12

2 Fundamentals and Related Works 15
2.1 Deployment Automation . 15
2.2 Container Virtualization . 17
2.3 Topology and Orchestration Specification for Cloud Application 19

2.3.1 TOSCA Syntax . 19
2.3.2 TOSCA Example . 23

2.4 Kubernetes . 25
2.5 Docker . 33
2.6 Related Works . 35

2.6.1 OpenTOSCA . 35
2.6.2 Cloudify . 37
2.6.3 OpenStack Heat . 38

3 Requirements 41
3.1 Mapping Goal . 41
3.2 Architecture Requirements . 41

3.2.1 Technical Requirements . 42
3.2.2 Non-Technical Requirements . 43

3.3 Supported Operations . 44
3.4 Supported Artifacts . 44

4 Architecture and Design 47
4.1 Concept of Mapping Techniques . 47
4.2 Assumptions . 48
4.3 Mapping Concept using TOSCA Definition Files 50

4.3.1 Resolving Node Relationship . 53
4.3.2 Dockerfile Mapping . 55

5

4.3.3 Mapping to Kubernetes . 57

5 Implementation and Evaluation 63
5.1 Overall System Design . 63
5.2 TOSCA Parser . 64
5.3 Generators . 66

5.3.1 Dockerfile Generator . 66
5.3.2 Kubernetes File Generator . 67

5.4 System Automation . 69
5.4.1 Docker Container Management Automation 69
5.4.2 Minikube Provisioning Automation 70
5.4.3 Kubernetes Deployment Automation 71

5.5 Evaluation and Results . 71
5.5.1 Case Study with Containerized Node 72
5.5.2 Case Study of TOSCA Application Node’s with Scripts 77

6 Summary and Future Work 79

List of Abbreviations 81

Bibliography 83

6

List of Figures

1.1 Graphical Representation of an Application Topology 12

2.1 VM vs Container Virtualization Design 18
2.2 Diagram-TOSCA Template for a Simple Software Installation [TOSCA-

Simple-Profile-YAML16] . 25
2.3 Simple Kubernetes Architecture Diagram [DO15] 27
2.4 Example of Kubernetes Application Topology Based on [Gup16] 32
2.5 Graphical Representation of Multi-Container Pod 33
2.6 OpenTOSCA Ecosystem Overview . 35
2.7 OpenTOSCA Container Architecture . 36
2.8 Cloudify Architecture Overview . 37
2.9 Simplified Architecture Diagram of Heat-Translator 39

3.1 Conceptual Architecture Diagram . 42

4.1 TOSCA to Kubernetes Mapping Concept Diagram 47
4.2 TOSCA to Kubernetes Topology Mapping on Component Level 53
4.3 "HostedOn" Relationship base Nodes Mapping to Dockerfile 56
4.4 Mapping between TOSCA and Kubernetes Pods 58
4.5 Mapping between TOSCA and Kubernetes Sevice 59
4.6 Mapping of TOSCA "ConnectedTo" Relationship in Kubernetes 60

5.1 Class Diagram of "toscaparser" Package 63
5.2 Class Diagram of "cmd_response" Class 64
5.3 Dockerfile Generator Interaction Model 67
5.4 Minikube Dashboard for Monitoring . 71
5.5 Minikube Dashboard after Deployment 76
5.6 Pods in Minikube Dashboard . 76
5.7 Deployed "wordpress" Application URL 77
5.8 Docker Repository with Docker Images 78

7

Listings

2.1 Syntax of TOSCA Service Template [TOSCA-Simple-Profile-YAML16] . . 20
2.2 Syntax of TOSCA Topology Template [TOSCA-Simple-Profile-YAML16] . 21
2.3 Example-TOSCA Template for a Simple Software Installation [TOSCA-

Simple-Profile-YAML16] . 23
2.4 Example of Pod . 28
2.5 Example of Replication Controller . 29
2.6 Example of Service . 29
2.7 Example of Deployment . 31
2.8 Example of Multi-Container Pod Based on [kubernetes] 32

3.1 Sample Dockerfile Snippet of a Redis Server [Docker] 45
3.2 Sample Bash (.sh) Script . 45

4.1 ConnectedTo Relationship Syntax . 50
4.2 "kubernetes_metadata" Setup Syntax . 50
4.3 TOSCA Definition of Wordpress Application Based on [Openstack15] . . 50
4.4 Example of "host" Dependency in Node Template Based on [Openstack15] 54
4.5 Example of "Docker" Node Type in Node Template Based on [TOSCA-

Simple-Profile-YAML16] . 55
4.6 Input key in Interface Operation . 57
4.7 Environment Variable in Kubernetes . 57
4.8 Connection Syntax of Pod . 61

5.1 Sample "mysql-database" Deployment File Generated by Deployment File
Generator . 67

5.2 Sample "mysql-database" Service File Generated by Service File Generator 68
5.3 Docker Build Code Snippet . 69
5.4 Docker Push Code Snippet . 70
5.5 Minikube Start Code Snippet . 70
5.6 Minikube Dashboard Code Snippet . 70
5.7 Minikube Get URL Code Snippet . 70
5.8 Kubernetes Deployment Code Snippet 71
5.9 TOSCA Definition of Wordpress Application 72

9

5.10 Deployment File for "wordpress" Container 74
5.11 Deployment File for "mysql-database" Container 74
5.12 Service File for "wordpress" Container 75
5.13 Service File for "mysql-database" Container 75
5.14 "wordpress" Dockerfile Generated by Dockerfile Generator 78

10

1 Introduction

1.1 Motivation

In recent time, most of the modern applications are developed focusing on Cloud
platform [MG+11] and existing application are migrated into Cloud [LFM+11]. In the
IT industry there is a wide range of tools available to deploy applications in the Cloud.
However, the industry still faces the problem while orchestrating this complex set of
systems in the Cloud. Moreover, in order to maintain the dependencies between the
applications in the Cloud there are still some difficulties. When this is the case, OASIS 1

introduces a new solution to the Cloud community which is called TOSCA.

The OASIS Topology and Orchestration Specification for Cloud Applications (TOSCA) is
a standardization effort that aims to align the definition, deployment and management
of application topologies and corresponding plans in a technology-agnostic manner. Here
the word "plan" refers to management plan which specify the operational management
behavior of a Service Template. And "topology" refers to the structural description of
the application and the components it consists of and the relationships among them.
More details on TOSCA application topologies and management plan can be found in
[BBKL14a]. Figure 1.1 represents the graphical example of an applicatoin topology. All
required artifacts are packaged and bundled as TOSCA Cloud Service Archives (CSARs)
in a self-contained manner. Such CSARs are then used by Cloud orchestration engines
to deploy the application to Cloud platforms.

1https://www.oasis-open.org/

11

1 Introduction

Figure 1.1: Graphical Representation of an Applicatoin Topology2

Nowadays, the technology world is more focused on container virtualization as it makes
it more convenient to deploy application to Cloud platforms. At the technology level,
several deployments and cluster management approaches and tools are rapidly emerging
such as Docker Compose and Swarm, Kubernetes, Nomad, and Apache Mesos. Most of
them are centered around containerization of middleware application components.

1.2 Objective

The goal of this thesis is to map the concepts of TOSCA application topologies (specified
using the YAML-based TOSCA Simple Profile 1.0) to a container-based deployment
and management approach. Diverse mapping alternatives are discussed and compared.
Since Kubernetes is one of the most prominent open-source solutions in this field, this
thesis specifically considers Kubernetes at the implementation level. Also Docker has
been considered to containerize applications in this thesis.

1.3 Outline

The remainder of this document is organized into the following chapters:

2https://www.slideshare.net/OpenTOSCA/tosca-and-opentosca-tosca-introduction-and-opentosca-
ecosystem-overview

12

1.3 Outline

Chapter 2 – Fundamentals and Related Works: In this chapter, the fundamental con-
cepts and an overview of the related works that are essential to understand the
work are provided.

Chapter 3 – Requirements: In this chapter, the abstract mapping goal and a detailed
requirement analysis of system architecture has been provided.

Chapter 4 – Architecture and Design: This chapter provides a brief discussion on
mapping concept between TOSCA and Kubernetes. Also the assumptions have
been discussed in this chapter.

Chapter 5 – Implementation and Evaluation: This chapter discusses implementation
details of the system with a brief discussion on each component. Also the evaluation
process of the system has been discussed with different case studies.

Chapter 6 – Summary and Future Work: This chapter summarizes the results of this
thesis work and draws a conclusion. It also throws some light on the future work
to be extended based on this work.

13

2 Fundamentals and Related Works

This chapter provides an overview of the fundamental concepts needed to build a
foundation for the purpose of the thesis. These are key to understand the concepts
presented in this thesis. References are included for better clarity of the main topics.

2.1 Deployment Automation

Continuous delivery [HF10] appeared as a useful solution to bridge the gap between
developer and operational parties, this collaboration approach between development
and operations is often termed as DevOps [Hüt12]. As DevOps focuses on improving
the software release cycles, hence automated deployment plays an important role in
continuous delivery. Deployment automation enables applications to be deployed across
the different environments used in the development process, as well as in the final
production environments.

Cloud computing [MG+11], [LF09] appeared as unquestionable IT phenomena in recent
times. Nowadays applications are developed focusing on Cloud, that means applica-
tions are developed as Cloud-native applications [Wil12] or the existing applications
are moved into the Cloud [LFM+11], [BLS11]. Hence, one of the most important
requirements to make use of the Cloud computing is fully automated deployment of
applications [WGL14].

Nowadays, there are different kinds of deployment automation tools and approaches
available to deploy applications into the Cloud. These tools differ in various dimensions
based on the models they use, some are hosted-PaaS [MG+11] providers, some use
PaaS-centric framework to build on custom platform, even script based IaaS [MG+11]
tools are also used to deploy applications.

PaaS hosting providers enable a computing platform and a solution stack for software
vendors and developers who want to acquire and manage their own platform and at the
same time, also want to reduce the costs and complexity. Tools like Heroku 1,Google

1https://www.heroku.com/

15

2 Fundamentals and Related Works

App Engine 2, Docker Cloud 3, Openshift 4 etc. are Cloud providers and orchestration
solutions with deployment capabilities. Since this thesis is related to Cloud based
deployment automation and orchestration solutions, therefore, the following three tools
are picked as deployment automation examples.

Heroku
Heroku is a popular Cloud Platform-as-a-Service (PaaS) service provider which offers
developers a convenient web application hosting platform. This Platform is available in
the market since 2007, currently it supports wide range of programming languages and
web frameworks. Because of this reason Heroku is considered as a polyglot platform
since it lets the developer to build, run and scale applications in a similar manner across
all the languages.

Google App Engine
Google App Engine [Eng12] is a platform for building scalable web applications and
hosting them in a scalable runtime environment. These take advantage of the large
computing infrastructure of Google to automatically scale the application based on
need. App Engine provides a secure development environment and features a wide
range of services that simplify the development of scalable and high-performance web
applications. These services include user authentication, logging, distributed in-memory
data cache, scalable data storage, asynchronous task queues, messaging and different
programming languages etc. Using the App Engine software development kit (SDK),
developers can easily develop and test their application from locally. Later deployment
tools allow developers to upload their application to the Cloud and manage different
versions of the application [Eng12].

PaaS Frameworks like Cloud Foundary 5 and Stratos 6 also provide deployment automa-
tion features to deploy different kinds of middleware and application components in a
development-centric manner.

Cloud Foundry
Cloud Foundry is an open source, multi Cloud application platform as a service (PaaS),
on which developers can build, deploy, run and scale applications on public and private
Cloud models. It was originally created by VMware and is now owned by Pivotal
Software. It supports Java, Node.js, Go, PHP, Python and Ruby programming languages.
The advantages Cloud Foundary has over other Cloud platforms is its free, open source
nature and the option to use the developers own tools and code by supporting multiple

2https://cloud.google.com/appengine/
3https://cloud.docker.com/
4https://www.openshift.com/
5https://www.cloudfoundry.org/
6http://stratos.apache.org

16

2.2 Container Virtualization

public Clouds. Another key feature of Cloud Foundry is, that, it can use multiple
frameworks, which means it can support Java Spring applications and Python Django
applications at the same time. It is also extensible to a PaaS engine supporting future
frameworks and future languages for developers.

There are also some IaaS [MG+11] Cloud infrastructure automation frameworks that
make it easy to deploy servers and applications to any physical, virtual, or Cloud location,
irrespective of size of the infrastructure. Such are Chef 7, Puppet 8, Juju 9 which are
also known as configuration management tools. These tools execute lists of scripts for
deployment automation.

2.2 Container Virtualization

In recent times the use of virtual machines (VMs) is extensively high in Cloud computing.
VMs provide the service as of infrastructure as a service (IaaS). As an example, Amazon
EC2 [Ama10] provides VMs services to customer while it also runs different services like
database services inside VMs.

The virtualization technologies are mostly based on Linux kernel and it can be di-
vided into three main categories such as full-virtualization [Mar07], para-virtualization
[Mar07] and container-based virtualization [SPF+07]. However, container-based vir-
tualization presents a compelling choice to virtualization in Cloud industry [SPF+07].
Container virtualization refers to the operating system (OS) level virtualization method
which runs multiple systems on a single host. Mostly containers are built based on Linux
kernel and are known as Linux Containers (LXC) [Hsi14], which are also known as
lightweight operating system virtualization. The Linux kernel achieves isolation through
Linux cgroups and namespaces, which means the container does not require to start
any virtual machine and also gets the complete isolation in the application’s view of
the operating environment, including process trees, network, user ids and mounted file
systems.

The main advantage of container virtualization over virtualization is that it shares a
single host OS and single kernel but creates containers inside that OS which include
all the software, environment and libraries for a particular application. Virtualization
on the other hand requires the system to run multiple copies of the guest OS, which
requires much memory and drastically degrades the performance of the whole system.

7https://www.chef.io/chef/
8https://puppet.com/
9https://jujucharms.com/

17

2 Fundamentals and Related Works

In container virtualization, the virtual OS does not need to duplicate the host system’s
functionality, the host system is responsible for managing these system calls and the
hardware. Which actually increases the performance of the system by hosting more
virtual machines (VMs) [SPF+07], [Sch14].

The main challenge in container virtualization is the isolation problem. Regardless of
the isolation between the containers, they still share the same host OS which makes
it vulnerable for security threats to the entire system. Another drawback of container
virtualization is that each container must use the same OS as the base OS, whereas
virtualization instances can each run on a unique OS. For example, a container created on
a Linux-based host could not run an instance of the Windows Server OS or applications
designed to run on Windows Server.

Figure 2.1: VM vs Container Virtualization Design10

Container virtualization achieved importance with the open source project Docker
[Tur14], which developed a method to give containers better portability and enable
them to be moved among any system that shares the host OS type without requiring
code changes. Details about Docker are being discussed in the following section 2.5. In
addition to Docker, CoreOS [Cora] delivers a well-organized alternative to market, which
is called Rocket [Corb]. In this thesis we consider Docker for our container virtualization

10https://msopentech.com/wp-content/uploads/Docker-containeraization.jpg

18

2.3 Topology and Orchestration Specification for Cloud Application

technology as it is now the most prominent and stable container virtualization technology
available.

2.3 Topology and Orchestration Specification for Cloud
Application

The Topology and Orchestration Specification for Cloud Applications (TOSCA) is an
XML based/YAML based language and a metamodel for describing service templates
[TOSCA-Simple-Profile-YAML16]. TOSCA enhances the portability of multi-cloud appli-
cations by enabling fully automated deployment, termination and further management
functionalities.

The relationship between the service structure and management aspects as well as
operational behavior of services are independent of the Cloud provider or a certain
environment. In TOSCA, the structure of a service template is described by the topology
template, which is a graph of node templates modeling the components. And relationship
between those components are modeled by relationship templates. TOSCA also provides
types for node template and relationship template. Here (i) node types are for node
templates and (ii) relationship types are for relationship templates.

The following sub-section explaines the most important elements of the TOSCA specifi-
cation [TOSCA-Simple-Profile-YAML16] using version 1.0.

2.3.1 TOSCA Syntax

Service Template
The service template element is the root element of a TOSCA YAML document. It has
a set of properties, a Service Template is typically used to specify the “topology” (or
structure) and “orchestration” (or invocation of management behavior) of IT services so
that they can be provisioned and managed in accordance with constraints and policies
[TOSCA-Simple-Profile-YAML16].

Specifically, TOSCA service templates optionally allow definitions of a TOSCA topology
template, TOSCA types (e.g., Node, Relationship, Capability, Artifact, etc.), groupings,
policies and constraints along with any input or output declarations [TOSCA-Simple-
Profile-YAML16].

19

2 Fundamentals and Related Works

tosca_definitions_version: # Required TOSCA Definitions version string

Optional metadata keyname: value pairs

metadata:

template_name: # Optional name of this service template

template_author: # Optional author of this service template

template_version: # Optional version of this service template

Optional list of domain or profile specific metadata keynames

Optional description of the definitions inside the file.

description: < template_type_description >

dsl_definitions:

list of YAML alias anchors (or macros)

repositories:

list of external repository definitions which host TOSCA artifacts

imports:

ordered list of import definitions

artifact_types:

list of artifact type definitions

data_types:

list of datatype definitions

capability_types:

list of capability type definitions

interface_types:

list of interface type definitions

relationship_types:

list of relationship type definitions

node_types:

list of node type definitions

group_types:

list of group type definitions

policy_types:

list of policy type definitions

20

2.3 Topology and Orchestration Specification for Cloud Application

topology_template:

topology template definition of the cloud application or service

Listing 2.1: Syntax of TOSCA Service Template [TOSCA-Simple-Profile-YAML16]

Topology Template
The following subsection describes the topology template which is the main element of
service template, node template, and relation template. A topology template defines
the structure of a service in the context of a service template. A topology template
consists of a set of node template and relationship template definitions that together
define the topology model of a service as a (not necessarily connected) directed graph
[TOSCA-Simple-Profile-YAML16].

The main elements of the topology template are node templates which represent the
components of the application and are assumed as the vertices of a graph, where rela-
tionship templates represent links between the components and are assumed as edges.
These relations define such as one component is "hosted on" or "communicates with"
the other component. These elements are defined in the nested node templates section
and the nested relationship templates sections, respectively. Furthermore, a topology
template allows for defining input parameters, output parameters as well as grouping of
node templates.

topology_template:

description: <template_description>

inputs: <input_parameter_list>

outputs: <output_parameter_list>

node_templates: <node_template_list>

relationship_templates: <relationship_template_list>

groups: <group_definition_list>

policies:

- <policy_definition_list>

Optional declaration that exports the Topology Template

as an implementation of a Node Type.

substitution_mappings:

node_type: <node_type_name>

capabilities:

<map_of_capability_mappings_to_expose>

requirements:

<map_of_requirement_mapping_to_expose>

Listing 2.2: Syntax of TOSCA Topology Template [TOSCA-Simple-Profile-YAML16]

Node Type
A node type describes the properties of one or more node templates. It has some

21

2 Fundamentals and Related Works

observable properties which are used to define a node template. Such are properties
definition, requirements, capabilities, interfaces and artifacts. The following paragraph
describes the above mentioned properties of a node type entity.

Properties define an optional list of property definitions for the node type. The property
definition defines a named, typed value and related data which can be associated
with node type. Properties are used by template authors to provide input values to
node type to indicate their "desired state" when they are instantiated. The value of
a property can be retrieved using the get_property function within TOSCA service
templates [TOSCA-Simple-Profile-YAML16].

Requirements describe an optional list of sequenced requirements definition for the Node
Type. According to TOSCA Simple Profile Specification [TOSCA-Simple-Profile-YAML16],
The Requirement definition describes a named requirement of a TOSCA Node Type
which needs to be fulfilled by a matching Capability definition declared by another
TOSCA entity. The requirement definition can explicitly include the specific name of the
fulfilling entity or provide an abstract type, along with additional filtering characteristics,
that a TOSCA orchestrator can use to fulfill the capability at runtime.

Capability Definitions
Describes the optional list of capability definitions for the node type. A capability
definition specifies a named, typed set of data that can be associated with node type to
describe a capability or feature of the software component the node describes, regarding
the TOSCA Simple Profile Specifications [TOSCA-Simple-Profile-YAML16].

Interfaces are reusable entities that define a set of operations that can be included as part
of a node type as well as relationship type definition. Each named operations may have
code or scripts associated with them that orchestrator can execute when transitioning
an application to a given state [TOSCA-Simple-Profile-YAML16].

Relationship Type
Relationship types specify the type of one or more relationships between node types or
node templates in a topology graph. Similar to the node types the relationship types
offer some featured properties and potential states during runtime. According to TOSCA
Simple Profile Specification [TOSCA-Simple-Profile-YAML16], the best practice is to use
TOSCA root relationship type (tosca.relationships.Root) to derive new types where pos-
sible, when defining new relationship types. It ensures that its normative configuration
interface (tosca.interfaces.relationship.Configure) can be used in a deterministic way by
TOSCA orchestrators.

Artifact Type
According to TOSCA Simple Profile Specification [TOSCA-Simple-Profile-YAML16], ar-
tifact types represent the types of packages and files used by the orchestrator when

22

2.3 Topology and Orchestration Specification for Cloud Application

deploying TOSCA node or relationship types or invoking their interfaces. Currently,
artifacts are logically divided into three categories [TOSCA-Simple-Profile-YAML16]:

• Deployment Types: includes those artifacts that are used during deployment (e.g.,
referenced on create and install operations) and include packaging files such as
RPMs, ZIPs, or TAR files.

• Implementation Types: includes those artifacts that represent imperative logic
and are used to implement TOSCA Interface operations. These typically include
scripting languages such as Bash (.sh), Chef and Puppet.

• Runtime Types: includes those artifacts that are used during runtime by a service
or component of the application. This could include a library or language runtime
that is needed by an application such as a PHP or Java library.

2.3.2 TOSCA Example

In this example section, we will discuss about a TOSCA template for a simple software
installation. This example is derived from TOSCA Simple Profile Specification [TOSCA-
Simple-Profile-YAML16].

tosca_definitions_version: tosca_simple_yaml_1_0

description: Template for deploying a single server with MySQL software on top.

topology_template:

inputs:

my_mysql_rootpw:

type: string

my_mysql_port:

type: integer

node_templates:

mysql:

type: tosca.nodes.DBMS.MySQL

properties:

root_password: { get_input: my_mysql_rootpw }

port: { get_input: my_mysql_port }

requirements:

- host: db_server

db_server:

type: tosca.nodes.Compute

capabilities:

Host container properties

host:

properties:

Compute properties

23

2 Fundamentals and Related Works

num_cpus: 1

mem_size: 2048 MB

disk_size: 10 GB

Guest Operating System properties

os:

properties:

host Operating System image properties

architecture: x86_64

type: linux

distribution: ubuntu

version: 14.01

Listing 2.3: Example-TOSCA Template for a Simple Software Installation [TOSCA-
Simple-Profile-YAML16]

The example provided in the listing 2.3, is a basic TOSCA template for software
installation. Installation of software can be defined in node templates with its re-
lated server where the software will be installed. In this example the used node
type is tosca.nodes.DBMSMYSQL for mysql node template which will install MYSQL
on a server. mysql node has multiple properties such as root_password and port.
root_password will set the password of the MYSQL root user at the deployment time.
These properties are set as an input parameter and used by get_input function, that
means a value will be provided by the user at the deployment time and this value will
be set to the corresponding property.

In the db_server node template, the ‘host’ capability contains some optional properties
that allow application developers to set the number of CPUs, memory size and disk
size they think will be needed when the Compute node is instantiated in order to run
the respective applications. Similarly, the ‘os’ capability is used to provide values to
indicate which type of operating system should be used, when the Compute node get
initialized.

In the topology template, the mysql node template depends on the db_server node
template, which has the type tosca.nodes.Compute. The relationship between these
two node has been established using the requirements section’s ‘host’ field in the mysql
node template. This ‘host’ relationship indicates where the MYSQL application is to be
installed. Nodes are related in the TOSCA metamodel based on requirements, where
one node needs some features and another node is providing those features against the
requirement, these type of requirements are defined by the node type. From the ongoing
example, where MYSQL is a software type which needs to be hosted or installed on
Compute type resource.

24

2.4 Kubernetes

Figure 2.2: Diagram-TOSCA Template for a Simple Software Installation [TOSCA-
Simple-Profile-YAML16]

2.4 Kubernetes

Kubernetes [kubernetes] is an open source platform for automating container operations
such as deployment, scheduling and scalability across a cluster of nodes. It has been
developed by Google. And it is a similar approach to Borg and Omega [BGO+16],
those projects were used within Google for long time and considered as a first unified
container management system developed in Google but not considered as open source.

25

2 Fundamentals and Related Works

If user have ever used Docker container technology to deploy their containers, then think
of Docker as a low level component used internally by Kubernetes to deploy containers.
Kubernetes not only support Docker also supports Rocket, which is another container
technology available in the market.

Kubernetes allows the user to declaratively specify the desired state of a cluster using
high-level primitives. For example, the user may specify that they want three instances
of the Wordpress application container running. Kubernetes’ self-healing mechanisms,
such as auto-restarting, rescheduling and replicating containers then converge the actual
state towards the desired state.

Kubernetes cluster can be started from different platforms, the most common ones
used being Vagrant, Amazon Web Service (AWS), Google Compute Engine (GCE), and
Azure etc. To run Kubernetes locally and easily Minikube is the most prominent solution
nowadays. This thesis considers the Minikube tool to run Kubernetes for implementation
and testing purposes as it is open source and it can be used locally. Details on Kubernetes
management and design for different platforms are described in [Voh17].

Kubernetes orchestrates the containers in such a way that together they are performing
as a Symphony. Some of them are followings [kubernetes]:

• automate the deployment and replication of containers,

• scale in or out containers on the fly,

• organize containers in groups and provide load balancing between them,

• easily roll out of new versions of application containers,

• provide container resilience, if a container dies it gets replaced, etc.

Key Concepts of Kubernetes

Cluster

A cluster is a group of nodes. They can be physical servers or virtual machines that have
the Kubernetes platform installed. The diagram below is an illustration of such cluster.
This diagram is very simplified to highlight the key concepts [DO15].

According to the 2.3 diagram, the following Kubernetes components are:

• Pod

• Container

• Label

• Replication Controller

26

2.4 Kubernetes

Kubernetes Master

API Server
Replication
Controller

kubelet kube-proxy docker

Node

Pod

Container

Pod

Container

kubelet kube-proxy docker

Node

Pod

Container

Pod

Container

Kubernetes Cluster

my-service1

my-service2

= Labels = Service

Scheduler

Figure 2.3: Simple Kubernetes Architecture Diagram [DO15]

• Service

• Node

• Kubernetes Master

Pod

Pods are the smallest deployable units in Kubernetes that can be created, scheduled
and managed. It is all about the Pods, if a user deploys a single container it will be
deployed in its own Pod. Hence, it is a logical collection of containers that belong to an
application.

Pods are scheduled to Nodes and contain a group of co-located Containers and Volumes.
Containers in the same Pod share the same network namespace and can communicate
with each other using localhost. Pods are considered to be ephemeral rather than durable
entities.

27

2 Fundamentals and Related Works

apiVersion: v1

kind: Pod

labels attached to this Pod

metadata:

labels:

name: wordpress-pod

spec:

containers:

- name: wordpress

Docker image that will run in this Pod

image: wordpress

ports:

- containerPort: 8080

Listing 2.4: Example of Pod

Label

A Label is a key/value pair attached to Pods and conveys user-defined attributes. Labels
define identifying for the object and are only meaningful and relevant to the user.
Multiple labels can be attached to a resource. Labels can be used to organize and to
select subsets of objects.

For example, users might create a ‘tier’ and an ‘app’ tag to tag their containers by applying
the Labels (tier=frontend, app=myapp) to the frontend Pods and Labels (tier=backend,
app=myapp) to backend Pods. Users can then use Selectors to select Pods with particular
Labels and apply Services or Replication Controllers to them [Gup16].

Replication Controller

Replication Controllers ensure the specified number of Pod ‘replicas’ that are running at
any moment. If users created a Replication Controller for a Pod and specified 3 replicas,
this will create 3 Pods and will continuously monitor them. If one Pod dies then the
Replication Controller will replace it to maintain a total count of 3.

If the Pod that died comes back then users have 4 Pods, so consequently the Replication
Controller will terminate one and the total count is 3. Again if users change the number
of replicas to 5 on the fly, the Replication Controller will immediately start 2 new Pods so
the total count is 5. User can also scale down Pods this way, a handy feature performing
rolling updates.

When creating a Replication Controller users need to specify two things:

• Pod Template: the template that will be used to create the Pods replicas.

• Labels: the labels for the Pods that this Replication Controller should monitor.

28

2.4 Kubernetes

Following is the example of a replication controller.

apiVersion: v1

kind: ReplicationController

metadata:

name: wordpress-controller

spec:

Two replicas of the Pod to be created

replicas: 2

Identifies the label key and value on the Pod that

this Replication Controller is responsible for managing

selector:

app: wordpress-rc-pod

"cookie cutter" used for creating new pods when necessary

template:

metadata:

labels:

label key and value on the pod.

These must match the selector above.

app: wordpress-rc-pod

spec:

containers:

- name: wordpress

image: wordpress

ports:

- containerPort: 8080

Listing 2.5: Example of Replication Controller

Service

Service is an abstraction that defines a set of Pods and a policy to access them. Services
find their group of Pods using Labels. The IP address assigned to a Service does not
change over time and thus can be relied upon by other Pods. Usually, the Pods belonging
to a Service are defined by a label selector. The labels used in selector must match the
metadata used for creating the Pod by the Replication Controller.

apiVersion: v1

kind: Service

metadata:

name: wordpress-service

labels:

app: wordpress-service

spec:

ports:

- port: 8080

29

2 Fundamentals and Related Works

label keys and values of the Pod started elsewhere

selector:

app: wordpress-container

Listing 2.6: Example of Service

Node

A node is a physical or virtual machine that acts as a Kubernetes worker, used to be
called Minion. Every node has the following components such as kubelet, kube-proxy
and Docker [DO15].

Kubelet

Kubelet runs on every node act as a primary node agent, which manages the containers.
And it is managed by the master. It works on the base of Pod specification accepting
JSON or YAML which describes the Pod, also ensures that the containers inside the Pods
are started and running.

Kubernetes Master

Kubernetes master is the central control point which manages the other worker nodes.
It provides unified view into the cluster and has a number of components. It includes
replication controller which is responsible for creation and replication of pods.

Deployment

Deployment is the next generation replication controller, recently introduced by Ku-
bernetes. It provides declarative updates for Pods and Replica Sets. User only need
to describe the desired state in a Deployment object, and the Deployment controller
will change the actual state to the desired state at a controlled rate. Users can define
Deployments to create new resources or replace existing ones by new ones. According
to Kubernetes guideline use cases of deployment are the following [kubernetes]:

• Perform a Deployment to set up a Replica Set and Pods,

• Monitoring the status of a deployment,

• Update the existing deployment to recreate the Pods,

• If current deployment is not stable it is possible to rollback to previous stable
version,

• Option to pause and resume a Deployment.

30

2.4 Kubernetes

Either Replication Controller or Deployment can be used to create and replicate Pods.
But Deployment provides some advanced features over Replication Controller like, it
allows for easy updating of a Replica Set as well as the ability to roll back to a previous
deployment.

Following is the example of a deployment artifact:

apiVersion: v1

kind: Deployment

metadata:

name: wordpress-container

labels:

app: wordpress-container

spec:

replicas: 2

template:

metadata:

labels:

app: wordpress-container

spec:

containers:

- name: wordpress

image: wordpress:4.6.1-apache

env:

- name: WORDPRESS_DB_HOST

value: mysql-container

- name: WORDPRESS_DB_PASSWORD

value: root

ports:

- containerPort: 80

Listing 2.7: Example of Deployment

Topological example of Kubernetes

After deploying the 2.7 deployment file and 2.6 file in Kubernetes the topological view
inside the cluster might look like the following diagram:

31

2 Fundamentals and Related Works

Figure 2.4: Example of Kubernetes Application Topology Based on [Gup16]

In the figure 2.4 here two "wordpress" pods have been created and both of them are
discovered by the corresponding "wordpress" service.

Example of Multi-Container Pods in Kubernetes

The example 2.4 shows a single Pod with a single container, while a single Pod can have
multiple containers as well. According to the definition of Pod, “A pod is a group of
containers that are scheduled onto the same host. Pods serve as units of scheduling,
deployment, and horizontal scaling/replication” [kubernetes]. Hence, it is defined
from the definition of Pod that we can have multiple containers inside a single Pod.
In this following example 2.8 we will show how to create a single Pod with multiple
containers.

The following example 2.8 has been used from Kubernetes website [kubernetes]:

apiVersion: v1

kind: Pod

metadata:

name: redis-django

labels:

32

2.5 Docker

app: web

spec:

containers:

- name: Key-value-store

image: redis

ports:

- containerPort: 6379

- name: frontend

image: django

ports:

- containerPort: 8080

Listing 2.8: Example of Multi-Container Pod Based on [kubernetes]

In the example 2.8 each container definition has been defined in the "containers array".
Each container object must contain "name" of the container and "image" Docker image
name.

Following diagram 2.5 is the pictorial representation of the example 2.8.

Figure 2.5: Graphical Representation of Multi-Container Pod

2.5 Docker

According to Docker website, it is described as “an open-source engine that automates
the deployment of any application as a lightweight, portable, self-sufficient container
that will run virtually anywhere.” [Docker]

33

2 Fundamentals and Related Works

Docker makes it easier for organizations to automate infrastructure, isolate applications,
maintain consistency and improve resource utilization.

There are many key components of Docker which are used to manage Docker. These
are:

• Docker Images

• Docker Containers

• Docker Client

• Docker Host

• Docker Registry

• Docker Machine

Key Concepts of Docker

Docker Image

A template for creating containers. An image contains the installation steps of an
application instance with its software and independence, and the process to run when
the container is launched. Docker images can be build from a Dockerfile. Pre-built
Docker images can be found in the Docker registry.

Dockerfile

The core component of a Docker project is the Dockerfile. This file contains the instruc-
tions for Docker on how to build the Docker Image. Using "docker build" command users
can easily build a Docker image from a Dockerfile.

Docker Container

Docker Container is a runtime component of Docker which is a virtual machine. It is
created from the instruction found in the Docker image. A container holds everything
that is needed for an application instance to run, including an operating system, user-
added files, meta-data, and application instance dependencies.

Docker Registry

Docker Registry is a repository of images, where users can upload their created images
or can download a pre-built image. Docker registry can be public or private. The most
popular public Docker registry is Docker Hub 11.

11https://hub.docker.com

34

2.6 Related Works

2.6 Related Works

In the following section, similar works related to the fundamental concepts involved in
this thesis are presented. These similar projects are related to the area of virtualization
deployment, specially those related to container deployment and cluster deployment
of containers, Also Cloud orchestrators which use the TOSCA standard specification to
deploy and manage applications in Cloud.

2.6.1 OpenTOSCA

OpenTOSCA [BBKL14a] is an open-source runtime environment for TOSCA environment,
which was developed by “Institute of Architecture of Application Systems” (IAAS) at
the University of Stuttgart. The OpenTOSCA-ecosystem is split into three parts: (i)
OpenTOSCA-Container, (ii) Winery and (iii) Vinothek.

Figure 2.6: OpenTOSCA Ecosystem Overview12

OpenTOSCA-Container
OpenTOSCA-Container [BBH+13] is a runtime environment for the TOSCA descrip-
tion which is responsible for deployment and management. It processes the Cloud
Service Archives (CSARs), runs plans and also manages the deployment states. Inside
this OpenTOSCA-Container it is possible to deploy and manage TOSCA generated ap-
plications. From the definition of OpenTOSCA-Container [BBH+13], it is defined as
TOSCA runtime environment, therefore, this is not a container in the sense of container
virtualization. More details about OpenTOSCA runtime architecture and components
are provided in [BBH+13].

12http://www.iaas.uni-stuttgart.de/OpenTOSCA/OpenTOSCAEcosystem.png
13http://www.iaas.uni-stuttgart.de/OpenTOSCA/container_architecture.php

35

2 Fundamentals and Related Works

Figure 2.7: OpenTOSCA Container Architecture13

Winery
Winery [KBBL13] is a graphical modeling TOSCA tool to create TOSCA CSARs. Currently
it supports visual modeling of topologies, defining TOSCA-Types and Templates and
management plans. Which can be later exported as a CSAR to a TOSCA runtime. Winery
enables users to build new web or Cloud applications by using the existing node types
and relationship types. The CSAR files generated from Winery consists of XML-based
definition file. On the other hand, this thesis is focused on YAML based TOSCA definition
file. Therefore, it is difficult to reuse the features of Winery in this thesis.

Vinothek
Vinothek [BBKL14b] is a Web-based self-service portal for “OpenTOSCA”. It hides the
technical details of TOSCA runtimes and provides end users a graphical interface to
provisioning Cloud services over “OpenTOSCA”. Provisioning term means the process
to get the needed Cloud resources such as CPU, memory and storage etc. More details
about Vinothek User Interaction and system overview are provided in [BBKL14b].

36

2.6 Related Works

Figure 2.8: Cloudify Architecture Overview14

2.6.2 Cloudify

Cloudify [Gig] is an open source Cloud orchestration tool developed by GigaSpaces
Technologies. Cloudify is designed in such a way so that it can support any application
regardless of the application stack (i.e. languages and dependencies), can be deployed
on any IaaS Cloud, and provides full control over the underlying infrastructure to its
users, such as monitoring all aspects of the deployed application, detecting issues and
failure, manually or automatically repairing them and handle ongoing maintenance
tasks.

Cloudify’s DSL (Domain Specific Language) is based on TOSCA’s YAML Simple Profile
[TOSCA-Simple-Profile-YAML16], which are called “blueprint” defines the application’s
configurations, services and their topology. Using these blueprints Cloudify orchestrate
the deployment phases of applications to Cloud computing and Virtualization infras-
tructure. In this blueprint files user can define the execution plans for the lifecycle of
the application for installing, starting, terminating, orchestrating and monitoring the
application. One of major part of Cloudify is the Cloudify DSL parser, which intends to
read and validate the TOSCA blueprints and using its own workflow engine provide a
mechanism for mapping operations to Cloudify plugins. More details about Cloudify
DSL is provided in [Gig].

14http://getcloudify.org/guide/images3/architecture/cloudify_flows.png

37

2 Fundamentals and Related Works

Cloudify is already integrated with Microsoft Windows Azure, Amazon EC2, Docker and
Kubernetes. Also supports configuration management tools like Chef, Puppet, Ansible.

Despite the fact that, Cloudify completely comply with our thesis goal, but we think
that in some part it does not support the whole TOSCA features such as Cloudify does
not support CSARs and also it has own specific DSL version that looks for namespacing
specific to Cloudify. Therefore, Cloudify does not compliance with the TOSCA standard
completely and creates vendor lock-in for its users.

2.6.3 OpenStack Heat

OpenStack Heat [Opea] is an open-source project which initially launched as an alterna-
tive to AWS CloudFormation which is a closed source project. This is one of the largest
projects to adopt TOSCA as one of the main templating languages.

Heat is the main orchestration component of the OpenStack [Opec] orchestration
program. It allows users to describe deployments of composite Cloud applications in text
files called Heat templates. These templates define infrastructure resource requirements,
the relationship between these resources, and any software configuration necessary in
order to manage a complete application lifecycle. Later on these templates are then
parsed and executed by the Heat engine. Heat also accepts the AWS CloudFormation
template format, so that many existing CloudFormation templates can be launched on
OpenStack. Heat provides both an OpenStack-native ReST 15 API and a CloudFormation-
compatible Query API.

As OpenStack Foundation is moving towards TOSCA standardization for the entire
project, therefore they established TOSCA as their primary templating language. From
the recent Heat Translator project [Opeb], It takes a TOSCA flat YAML template or
template embedded in TOSCA Cloud Service Archive (CSAR) format as an input, calls
an appropriate Parser (e.g. TOSCA Parser) per the type of input template to parse it
and create an in-memory graph, maps it to Heat resources and then produces a Heat
Orchestration Template (HOT) as an output.

15https://developer.openstack.org/api-ref/orchestration/index.html

38

2.6 Related Works

Figure 2.9: Simplified Architecture Diagram of Heat-Translator16

In recent time Heat is integrated with Kubernetes and Cloudify beside AWS platform.
Which makes it more powerful and increases its usability as a strong Cloud Orchenstra-
tion tool.

This project could be the best fit for our thesis, despite of its strong functionality and
usability this project is mostly infrastructure focused. Even though Heat project takes
TOSCA YAML as an input but later on it translates TOSCA to its own defined Heat
Orchestration Template (HOT). After that HOT templates are used for Orchestration
purpose. Which makes this project mostly OpenStack centric. Therefore, it mostly
compatible with Other OpenStack components.

16https://www.ibm.com/blogs/cloud-computing/wp-content/uploads/2014/08/Heat-Translator-
architecture.png

39

3 Requirements

In this part, the abstract mapping goal and the requirements of system architecture
will be discussed. Technologies and different components which have emerged in
the building process of the system architecture will be explored in this requirements
section.

3.1 Mapping Goal

As described in the introduction chapter the goal of this thesis is to deploy TOSCA
Cloud service archives using Kubernetes. From the fundamental chapters, it is found that
TOSCA archives has its own definition files along with different artifact files, while on the
other hand Kubernetes requires different deployment artifact files to deploy applications
in it. Hence, it is obvious that different TOSCA files need to be mapped with diverse
Kubernetes requirement and have to generate Kubernetes deployable files. The overall
mapping goal is to map each TOSCA specific requirement to the Kubernetes specific
requirement and include all necessary components to generate Kubernetes artifacts. A
more detailed description is given in Chapter 4.

3.2 Architecture Requirements

To map between TOSCA and Kubernetes it is required to build a transformation engine
which will transform TOSCA specific artifact and maps it to Kubernetes specific artifact.
The building process of the transformation engine requires a system architecture which
is composed of some key technologies.

System requirements have been distinguished between technical and non-technical
requirements based on the system architecture. In the following subsections both of
these requirements are described.

41

3 Requirements

Following figure 3.1 is the basic system architecture with the key components and
required technologies:

Figure 3.1: Conceptual Architecture Diagram

3.2.1 Technical Requirements

Main key technologies shown in the figure 3.1 of system architecture to construct the
transformation engine are:

• TOSCA archives: TOSCA archives are the TOSCA specification files which define
the nodes, metadata, node topology and relationship between the nodes. Also it
provides supporting documents as a script to maintain the applications.

• TOSCA parser: A parser is required to parse the TOSCA archives and get the
required information from the definition files. This parser will be based on python
runtime. It takes TOSCA archive (CSAR) files as an input. Also the definition files
provided in the CSAR file must be of ".yaml" extension. To parse the ".yaml" file
this parser uses the python yaml parser library as a base parser to read the file and
extract the parsed data.

• Mapper: To map TOSCA to Kubernetes and the intermediate Dockerfile a mapper
will be needed. This mapper will get the required data from the TOSCA parser
and map the diverse system requirements between TOSCA and Kubernetes. This
mapper will be based on python.

• Kubernetes file generator: File generator for generating the Kubernetes specific
deployment file. This file generator generates two different types of file (i) Deploy-
ment and (ii) Service file for Kubernetes deployment. The file extension is ".yaml"
type.

• Dockerfile generator: This file generator will generate the Docker specific file.
The extension of the file will be Dockerfile. Also this file generator copies the

42

3.2 Architecture Requirements

required scripts/files to the same directory of the Dockerfile in order to copy this
file inside the Docker container and execute them inside the Docker container.

• Docker Engine: Docker Engine is required to be configured in the host machine
to build and push Dockerfiles to the Docker hub. It is required to build and run
containers.

• Kubernetes Engine: Pre-Installed Kubernetes is required in the host machine to
be able to deploy Kubernetes specific file and generate Pods and associated service
for the Pods. "Minikube" can be used to run Kubernetes locally. According to
[Minikube] , "Minikube" is a tool that makes it easy to run Kubernetes locally.
Minikube runs a single-node Kubernetes cluster inside a VM on user’s laptop for
users looking to try out Kubernetes or develop with it day-to-day."

3.2.2 Non-Technical Requirements

Apart from the technical requirement there are also some non-technical requirements in
the system. This non-technical components are involved in all of the system to maintain
the end-to-end process of the transformation engine. Such non-technical components
are:

• TOSCA CSAR: TOSCA Cloud service archive (CSAR) is a zip file, which contains
all the required artifacts of TOSCA such as scripts, binaries, configuration files
along with the metadata file and definition files. These files are required to deploy
TOSCA using a TOSCA orchestrator.

• TOSCA artifacts: TOSCA artifacts consist of different scripts and configuration
files, which are needed to create, install, implement and configure TOSCA applica-
tion properly while deploying it into the Cloud.

• Dockerfiles: Dockerfiles are an intermediate requirement in the whole mapping
process between TOSCA and Kubernetes. As Kubernetes only supports pre-built
Docker image for its container deployment process, it is needed to map between
TOSCA to Dockerfiles and then build Docker images from these files. Another
way is to provide Docker image name of the specific application in the TOSCA
definition file which can be directly mapped to Kubernetes.

• Kubernetes Deployment files: Deploying applications into Kubernetes requires
two essential files which are the deployment file and service file. Deployment file
is a manifest file which describes the Pods and Containers, as well as the Ports
and the Replication process. The service file is to discover the proper Pod which is

43

3 Requirements

currently running. Details about deployment and service artifacts are provided in
Chapter 2

3.3 Supported Operations

The Transformation engine needs to support some specific operations in order to success-
fully map TOSCA to Docker and Kubernetes. According to the Simple Profile specification
of TOSCA [TOSCA-Simple-Profile-YAML16] these operations are described as Standard
Lifecycle Interface ("tosca.interfaces.node.lifecycle.Standard"). This interface can be
included into a node type definition as a set of operations. Each operation can have
scripts attached with it, which can be executed by the orchestrators while transitioning
an application to a desired state. The essential lifecycle operations which are supported
by TOSCA nodes are the following:

• create: A standard lifecycle operation. It is used to create the resource or service
the node represents in its definition. The orchestrators expect the node to provide
a deployment artifact or an implementation artifact of a defined artifact type that
it is able to process.

• configure: This operation is used to configure the resource the node represents in
the topology.

• start: Start operation has the same kind of features as described in the create and
configure operation.

These standard operations are supported in the transformation engine to generate node
specific resources and configure them. Each of these operations and their corresponding
artifacts have been mapped to Docker file to execute them in a required manner.

3.4 Supported Artifacts

From the fundamental chapter 2.3.1 and according to TOSCA simple profile specification
[TOSCA-Simple-Profile-YAML16], an artifact definition defines a named, typed file that
can be associated with Node Type or Node Template and is used by orchestration engine
to facilitate deployment and implementation of interface operations. Therefore, artifacts
might be of different types such as deployment artifacts and implementation artifacts,
which can be used by the orchestrator for the deployment and implementation purpose.
These artifact files can have different variations such as ZIP files, TAR files or scripting
languages such as Bash (.sh) scripts. Hence, to run the operations in the lifecycle

44

3.4 Supported Artifacts

interface defined in TOSCA node templates, it is required to provide these artifacts
(scripts or code) to the orchestrator which then will be executed to get the desired
service or resource.

The artifacts supported by the Transformation engine are currently Bash (.sh) scripts
and Docker image. If Docker image link is provided in the TOSCA node template
for a node type then this image will be directly mapped to Kubernetes deploy-
ment file as a container image. This Docker image is a deployment artifact type
(tosca.artifacts.Deployment.Image.Container.Docker).

Following 3.1 is an example of a Dockerfile snippet which can be used as an artifact in
the TOSCA node template:

FROM ubuntu:14.04

RUN apt-get update && apt-get install -y redis-server

EXPOSE 6379

ENTRYPOINT ["/usr/bin/redis-server"]

Listing 3.1: Sample Dockerfile Snippet of a Redis Server [Docker]

This 3.1 Dockerfile can be used to build an image of redis-server.

On the other hand, instead of providing a Docker image, simple Bash (.sh) scripts can
be provided as an artifact for deployment and implementation purpose. These scripts
can also have some input values which can be provided in the node template along with
the artifact definition. These scripts will be directly mapped to Dockerfile and will be
executed inside the Dockerfile. Also the required inputs and environmental variables
will be mapped and passed to the Dockerfile accordingly.

Following 3.2 is an example of a Bash (.sh) script file which can be used as an artifact in
the TOSCA node template:

#!/bin/bash

#This script installs mysql server

apt-get update

debconf-set-selections <<< "mysql-server mysql-server/root_password password

$db_root_password"

debconf-set-selections <<< "mysql-server mysql-server/root_password_again password

$db_root_password"

apt-get -y install --fix-missing mysql-server

Listing 3.2: Sample Bash (.sh) Script

45

4 Architecture and Design

In this chapter the mapping techniques from TOSCA definition to Kubernetes are to be
described. Furthermore, the assumptions taken for this mapping will be discussed in the
following section 4.2.

4.1 Concept of Mapping Techniques

Graphical Overview of Mapping Concept

Following is the pictorial representation of TOSCA to Kubernetes mapping concept.

Figure 4.1: TOSCA to Kubernetes Mapping Concept Diagram

In the mentioned concept diagram the major components are following :

• TOSCA Template Parser : It will parse the TOSCA csar file and provides the
required topology template, nodes and relationships with their properties.

47

4 Architecture and Design

• Docker Mapper : It will map the consolidated "HostedOn" relationship nodes to
a Dockerfile and generate multiple Dockerfiles based on the requirements. Later
it will build Docker image from Dockerfiles and push these images to Docker
repository.

• Kubernetes Mapper : Kubernetes mapper will map the Docker images based on
the "ConnectedTo" node relationship. It will generate the required deployment
artifact to deploy the node in Kubernetes engine.

Before explaining the mapping concept on a more granular level, the assumptions made
will be discussed in the following section 4.2. Therefore, it will be more clearer that
how the mapping techniques works and what assumptions taken into account while
mapping.

4.2 Assumptions

TOSCA itself is a quite enormous specification, having a large number of node types
and relationship types, which also support vast amount of operations and properties.
As the Transformation engine is a proto-type system, there are some limitations and
specification assumptions have been made for the implementation purpose. Also, these
assumptions have been taken because of mapping the diverse TOSCA specification to
Kubernetes specific deployment. These assumptions illustrate the scope of this thesis
and also depict its limitations.

Assumption 1: TOSCA archive (csar) files provided as a zip format

This thesis only considers the TOSCA archive (csar) files as a zip format with all the
required artifacts. This csar file contains sub directories such as "TOSCA-Metadata",
"Definitions" and "Scripts". "TOSCA-Metadata" sub directory contain entry definition
path of TOSCA template along with other meta-data. "Definitions" sub directory contain
the definition files of TOSCA topology template and node template. "Scripts" contain the
provided artifact scripts which are needed for deployment and implementation purpose
of the node type.

Assumption 2: Supported node types

The transformation engine will support two types of nodes. If the Docker image name is
provided in the node template it has to be "tosca.nodes.Container.Application.Docker"
node type. Otherwise, the node type has to be TOSCA application node type, which will
be used as a Docker image name afterwards.

Assumption 3: Inputs will be mapped as environment variables

48

4.2 Assumptions

Inputs in the TOSCA topology template will be treated as environment variables, when
mapping these inputs to Kubernetes deployment artifacts and Dockerfiles. Hence, it
is considered in this thesis that all provided input name must be exactly same as the
environment variable name in the application. The Transformation engine will prompt
for user input if it detects inputs in TOSCA topology template.

Assumption 4: Supported functions to set properties and input values

In this Transformation engine only "get_input" and "get_property" built-in functions
from TOSCA definition file have been considered to resolve when setting up the node
inputs and node properties. These functions are built-in property functions in TOSCA,
which are used within a service template to get the property values from property
definitions which are defined somewhere else in the service template. Furthermore,
these functions may only resolve the static values of property definitions of a TOSCA
application. The Transformation engine will execute these property functions when there
is a depedency between node which are related to specific node property. Furthermore,
when there is a need to set user input value to particular node property that time
"get_input" function will be executed.

Assumption 5: Considered relationship between nodes

It is needed to link between two deployed applications in Kubernetes if there is a de-
pendency between them. To map this requirement from TOSCA to Kubernetes, in this
thesis "host", "database_endpoint", "service_endpoint", "database_link" keywords in
the node’s requirement section have been considered as a relationship type between
nodes. Hence, it is expected to use the exact same keywords in the TOSCA definition
files. The "host" keyword mimics the "HostedOn" relationship between two nodes
which is required for Dockerfile mapping. This resolves the application hosting depen-
dency. On the other hand "database_endpoint", "service_endpoint", "database_link"
keywords mimic the "ConnectedTo" relationship between the nodes, which is required
in Kubernetes for linking between applications.

Assumption 6: Mapping of connection between nodes

In Kubernetes two deployed applications can be connected via environment variables
and dns lookup. Therefore, it is required to map the proper Environment variable from
TOSCA to Kubernetes for connecting two applications. As mentioned in Assumption
5, the connection between two nodes will be defined by "database_endpoint", "ser-
vice_endpoint", "data_baselink" keywords and the target node name as its value in
the requirement section. To get the "Environment variable" for connection purpose, it
is assumed in this thesis, that in the TOSCA node templates of the target node inside
the artifact section there will be a "kubernetes_metadata" part which will contain the
"Environment variable" name as a value of key value-pair of "link_address".

49

4 Architecture and Design

Connection between two nodes as an example:

requirements:

- database_link: mysql_container

Listing 4.1: ConnectedTo Relationship Syntax

"kubernetes_metadata" setup in the target node as an example:

mysql_container:

artifacts:

kubernetes_metadata:

link_address: WORDPRESS_DB_HOST

Listing 4.2: "kubernetes_metadata" Setup Syntax

Later on this "ConnectedTo" relation will be mapped as a link between two applications
in Kubernetes along with the key value pair.

The mapping concept has been described with TOSCA definition files on the following
section 4.3. Here a single instance wordpress deployment scenario has been used to
represent the mapping concept in different stages.

4.3 Mapping Concept using TOSCA Definition Files

Following is the TOSCA definition file of the wordpress example.

tosca_definitions_version: tosca_simple_yaml_1_0

description: >

TOSCA simple profile with wordpress, web server and mysql on the same server.

imports:

- wordpress.yaml

topology_template:

inputs:

db_name:

type: string

description: The name of the database.

db_user:

type: string

description: The user name of the DB user.

db_pwd:

50

4.3 Mapping Concept using TOSCA Definition Files

type: string

description: The WordPress database admin account password.

db_root_pwd:

type: string

description: Root password for MySQL.

db_port:

type: integer

description: The host port that maps to port 3306 of the MySQL database.

wp_host_port:

type: integer

description: The host port that maps to port 80 of the WordPress.

node_templates:

wordpress:

type: tosca.nodes.WebApplication.WordPress

properties:

service_type: LoadBalancer

port: { get_input: wp_host_port }

requirements:

- host: webserver

- database_endpoint: mysql_database

interfaces:

Standard:

create: ../Scripts/WordPress/install.sh

configure:

implementation: ../Scripts/WordPress/configure.sh

inputs:

wp_db_name: { get_property: [mysql_database, name] }

wp_db_user: { get_property: [mysql_database, user] }

wp_db_password: { get_property: [mysql_database, password] }

mysql_database:

type: tosca.nodes.Database

properties:

name: { get_input: db_name }

user: { get_input: db_user }

password: { get_input: db_pwd }

port: { get_input: db_port }

requirements:

- host: mysql_dbms

artifacts:

kubernetes_metadata:

link_address: wp_db_host

interfaces:

Standard:

configure:

implementation: ../Scripts/MYSQLDatabase/configure.sh

inputs:

db_name: { get_property: [mysql_database, name] }

51

4 Architecture and Design

db_user: { get_property: [mysql_database, user] }

db_password: { get_property: [mysql_database, password] }

db_root_password: { get_property: [mysql_dbms, root_password] }

mysql_dbms:

type: tosca.nodes.DBMS

properties:

root_password: { get_input: db_root_pwd }

port: { get_input: db_port }

requirements:

- host: server

interfaces:

Standard:

create: ../Scripts/MYSQLDBMS/install.sh

start: ../Scripts/MYSQLDBMS/start.sh

configure:

implementation: ../Scripts/MYSQLDBMS/configure.sh

inputs:

db_root_password: { get_property: [mysql_dbms, root_password] }

webserver:

type: tosca.nodes.WebServer

requirements:

- host: server

interfaces:

Standard:

create: ../Scripts/WebServer/install.sh

start: ../Scripts/WebServer/start.sh

server:

type: tosca.nodes.Compute

capabilities:

host:

properties:

disk_size: 10 GB

num_cpus: 1

mem_size: 4096 MB

os:

properties:

architecture: x86_64

type: Linux

distribution: Ubuntu

version: 16.0

outputs:

website_url:

description: IP address for Wordpress wiki.

value: { get_attribute: [server, private_address] }

52

4.3 Mapping Concept using TOSCA Definition Files

Listing 4.3: TOSCA Definition of Wordpress Application Based on [Openstack15]

Based on this example 4.3, the mapping between TOSCA to kuberetes at component
level can be shown as below figure 4.2.

Figure 4.2: TOSCA to Kubernetes Topology Mapping on Component Level

4.3.1 Resolving Node Relationship

In this section relationships and dependencies between nodes are discussed. As for
TOSCA non-normative type definitions we assume that dependencies between the
nodes in the node templates are mentioned in the requirement part of each node.
From our Assumptions 5 and 6 for mapping between TOSCA and Kubernetes, the
required relationships are "HosteOn", "ConnectedTo". These can be mentioned in
the nodes requirement section as "host", "database_endpoint", "service_endpoint",
"data_baselink" etc.

53

4 Architecture and Design

Mapping HostedON Relationship

Each "HostedOn" relationship of nodes needs to be resolved, in order to find out the
node dependency. For TOSCA to Kubernetes mapping we need all the dependent node
and their topological order. In the "requirement" section of each node of the node
template, there is a "host" key which provides the name of the dependent node in the
node template. Therefore, by iterating through all the nodes in the node template we
can get the desired dependencies of the nodes.

node_templates:

wordpress:

type: tosca.nodes.WebApplication.WordPress

properties:

port: { get_input: wp_host_port }

requirements:

- host: webserver

interfaces:

Standard:

create: ../Scripts/WordPress/install.sh

configure:

implementation: ../Scripts/WordPress/configure.sh

inputs:

wp_db_name: { get_property: [mysql_database, name] }

wp_db_user: { get_property: [mysql_database, user] }

wp_db_password: { get_property: [mysql_database, password] }

webserver:

type: tosca.nodes.WebServer

requirements:

- host: server

interfaces:

Standard:

create: ../Scripts/WebServer/install.sh

start: ../Scripts/WebServer/start.sh

server:

type: tosca.nodes.Compute

capabilities:

host:

properties:

disk_size: 10 GB

num_cpus: { get_input: cpus }

mem_size: 4096 MB

Listing 4.4: Example of "host" Dependency in Node Template Based on [Openstack15]

54

4.3 Mapping Concept using TOSCA Definition Files

Topological Sorting of Dependent Nodes

Along with all the dependent node relationships, we also need the topological order of
these nodes. To sort the nodes into their topological order, we are using graph theories
as we already have nodes and their "HostedOn" relationships. From there we can have
vertices and the edges as nodes and relationships in the graph. We can set the in-degree
of each vertex in order to get the starting node in the graph. After that by applying the
"BFS" algorithm to the graph we can get the start to end path for our node in a sorted
order. Applying this topological sorting technique, at the end we can get all the possible
"HostedOn" nodes groups along with their topological order.

4.3.2 Dockerfile Mapping

Decision on Creating Dockerfile

From the description of Kubernetes we know that for creating containers inside Pods, we
need a pre-built Docker image from Docker hub, which will be pulled by the Kubernetes
Orchestration engine by its name. Hence, we need to make the decision on whether we
create Dockerfiles or provide the pre-built Docker image name along with the TOSCA
definition file. To make this decision, we need to check some conditions on node type
and relationship type of the requirement section of the node. One possible option is
that at the beginning, to check if the relationship type in the node’s requirement section
is "host". This means that the node has a dependency on other nodes, hence we need
to create the Dockerfile with all the dependent nodes. If we have other relationship
on the requirement section other than "host" then we can check the node type. If the
node type is "Docker", it indicates that the Docker image name and repository link are
already provided. Another possible solution is, that the node type can be checked at the
beginning and if the node type is "Docker", that means the Docker repository link and
name is provided, hence there is no need to create Docker image for this node and no
need to check for "host" relationship in the requirement section.

node_templates:

The WordPress container based on official WordPress image in Docker hub

wordpress_container:

type: tosca.nodes.Container.Application.Docker

requirements:

- database_link: mysql_container

artifacts:

my_image:

file: wordpress

type: tosca.artifacts.Deployment.Image.Container.Docker

repository: docker_hub

55

4 Architecture and Design

interfaces:

Standard:

create:

implementation: my_image

inputs:

host_port: { get_input: wp_host_port }

Listing 4.5: Example of "Docker" Node Type in Node Template Based on [TOSCA-Simple-
Profile-YAML16]

Mapping to Dockerfile

Kubernetes only supports pre-built containers inside its pods. Currently it supports
Docker image for creating Kubernetes pods. Thus, we need to create Dockerfile and
register it to the Docker hub before we go for Kubernetes mapping and deployment.
Our first step will be mapping nodes to Dockerfiles, which are consolidated as a group
based on "HostedOn" relationship. For each "HostedOn" relationship group we need a
separate Dockerfile. Inside the Dockerfile, initially we are mapping the implementation
and configuration artifacts i.e. some executable scripts which will set up the application
and its dependency nodes inside Docker container. We also need to map the properties
of each node to the Dockerfile to be able to configure the nodes properly.

Figure 4.3: "HostedOn" Relationship base Nodes Mapping to Dockerfile

56

4.3 Mapping Concept using TOSCA Definition Files

4.3.3 Mapping to Kubernetes

Environment Variable Mapping

As discussed in the Assumption 3, Input ‘key’ in the node template of each interface
operation will be mapped as an Environment variable in Dockerfile and Kubernetes
artifacts regarding the corresponding node.

Following is the example of an interface operation with inputs key :

interfaces:

Standard:

create:

implementation: my_image

inputs:

MYSQL_ROOT_PASSWORD: { get_input: db_root_pwd }

Listing 4.6: Input key in Interface Operation

Following is the example of a Kubernetes Pod specification with env variable :

spec:

containers:

- name: mysql

image: mysql:5.6

env:

- name: MYSQL_ROOT_PASSWORD

value: root

ports:

- containerPort: 3306

Listing 4.7: Environment Variable in Kubernetes

Here in example 4.6 the input key "MYSQL_ROOT_PASSWORD" has been mapped as
an environment variable in example 4.7.

Properties Mapping

Properties defined in the TOSCA node template were used in each dependent node’s
interface operation as an input. Also specific required properties have been mapped to
Kubernetes specific properties. Such as "port", "service_type" etc.

Mapping to Kubernetes Pods

As described in the fundamental chapters, a container is the core part of a Kubernetes
Pods. By mapping the TOSCA node’s Docker image to the container of a Kubernetes Pods,

57

4 Architecture and Design

Mapping between TOSCA to Kubernetes would be achieved. The mapping between node
in TOSCA topology and container in Kubernetes topology has been shown in the figure
4.2.

Mapping to the Kubernetes part basically depends on the Docker container. Once the
Docker image has been built and is available in Docker Hub or a pre-built Docker image
name and repository link is provided in the TOSCA definition file along with the node
template, this Docker image name will be mapped to Kubernetes container image name.
Also the required properties from a specific node will be mapped to corresponding
Kubernetes container properties.

Figure 4.4: Mapping between TOSCA and Kubernetes Pods

Mapping to Kubernetes Service File

Pods are able to locate one another using Kubernetes services. Consequently, it is also
needed to create services for the application nodes. In the service file each application
node will be discovered by its label selector. Therefore, it is important to map the
correct deployment pod (node) name to the service file’s label selector. Furthermore, it
is required to map the correct port to expose the service and the service type which will
indicate whether the Pods will be exposed to outside world or it will be only available
inside the cluster.

58

4.3 Mapping Concept using TOSCA Definition Files

Figure 4.5: Mapping between TOSCA and Kubernetes Sevice

TOSCA "relationship" Mapping to Kubernetes

In this part, the mapping between TOSCA "ConnectedTo" relationships with Kubernetes
Pods "connection" mapping will be discussed.

59

4 Architecture and Design

Figure 4.6: Mapping of TOSCA "ConnectedTo" Relationship in Kubernetes

It is mentioned in Assumption 5 and Assumption 6 which relationships between nodes
will be considered in TOSCA and which relationships will be mapped for connection
between nodes.

From the TOSCA definition file the "ConnectedTo" relationship between two nodes
will be mapped in Kubernetes to establish the connection between regarding Pods. In
listing 4.1 and listing 4.2, it is shown how a "ConnectedTo" relationship described in the
template and where the "Environment variable" for Kubernetes metadata regarding the
target node is being mentioned. From the relationship the target node name has been
taken and from the metadata the link address environment variable has been picked.
Then these two values have been used as a key-value pair in the Kubernetes deployment
artifact of dependent Pod under "Env" section. After deploying these artifacts the de-
pended pod will look for the target pod’s service and upon discovering the dependent
pod it will connect with the target Pod.

60

4.3 Mapping Concept using TOSCA Definition Files

env:

- name: WORDPRESS_HOST

value: mysql

Listing 4.8: Connection Syntax of Pod

In the following chapter 5 we will briefly discuss about the implementation and evalua-
tion of the proposed “Transformation Engine”.

61

5 Implementation and Evaluation

In this following chapter the implementation of the Transformation Engine is described
on the component level. Furthermore, the evaluation process of the system and the
result are being shown.

5.1 Overall System Design

Figure 5.1 represents the class diagram of the toscaparser package

Figure 5.1: Class Diagram of "toscaparser" Package

63

5 Implementation and Evaluation

This toscaparser package also uses another helper package to automate command
line execution, which is called commandexecutor. This commandexecutor package
comprises of cmd_response.py class and command_executor.py module.

Following 5.2 is the class diagram of cmd_response.py class.

Figure 5.2: Class Diagram of "cmd_response" Class

Details of each component from Transformation Engine are discussed in the next
sections.

5.2 TOSCA Parser

The parser is the core part of the Transformation engine. toscaparser.py module acts as
a central point of operation of the Transformation engine. Python "yaml" library has been
used for file reading and for parsing purpose. Hence, the TOSCA definition files needs to
be ".yaml" format. Besides parsing the definition file, the toscaparser.py module is also
responsible for mapping between TOSCA definition to Kubernetes deployment specific
requirements. The tasks performed by the TOSCA parser are as follows:

• Reading and extracting zip csar file: "toscaparser" class is the entry point of
the TOSCA Parser. "readfile()" gets the csar file path as input. It then extracts
the file to the same path and at first reads the ‘TOSCA-Metadata/TOSCA.meta’
file and from there it obtains the ‘Entry-Definitions’ file path and name. Next
this "readfile()" method starts parsing the definitions file. The parsing results are
stored as a python dictionary object.

• Parsing TOSCA definition files: In this part the TOSCA parser parses each part
of the definition file and look for keys such as ‘imports’, ‘topology_template’
etc. When the parser detects ‘imports’ key in the definition file, it obtains the file

64

5.2 TOSCA Parser

name which needs to be imported from the other definition file then the reader
imports the node definition and appended it into the main dictionary object. Inside
the ‘topology_template’ the parser looks for ‘inputs’ and ‘node_templates’ keys.
When the parser encounter ‘inputs’ key inside the ‘topology_template’, for each
‘input’ the parser invokes "bind_inputparam()" which will then take input by user
interaction through the command prompt. This ‘inputs’ will be then mapped as
a key-value pair in the ‘topology_template’. The same checking and setting will
be done for the ‘node_templates’ as well. To set the input value and property
value of the nodes the parser uses the ‘get_input’ and ‘get_property’ built-in
function from the TOSCA topology template.

• Making decision of mapping type: In this part the parser makes a decision
on mapping to Dockerfile and creating Dockefile. This decision is based on the
node type. If the node type is ‘tosca.nodes.Container.Application.Docker’ then
the parser starts mapping for Dockerfile, otherwise it will first try to resolve
the node dependency. Graph theory has been applied to create the graph and
to solve the node topology. In the Transformation engine the "tosca_graph.py"
module is responsible for creating graph and solving the node topology. In this
"tosca_graph.py" module the "Graph" class uses the nodes and their relationships
as parameters and later represents them as vertices and edges accordingly.

• Mapping between TOSCA to Docker: For each separate set of node de-
pendency the parser creates a separate set of Dockerfile. To map between
TOSCA to Docker, it is required to map each node related bash (.sh) script
to Dockerfile according to topologically sorted order. Thus, at the begin-
ning we stored each node related artifact to an ordered dictionary called
‘nodeDetails[node_template_key]’ there we also stored the node name as
a key value pair into the ‘node_template_key’ key. Furthermore, each in-
terface operation artifacts related to the node are also being stored in this
dictionary. That is ‘create’, ‘start’, ‘configure’ operation’s artifact has been
mapped to ‘nodeDetails[node_template_key][interfaces][create]’, ‘nodeDe-
tails[node_template_key][interfaces][start]’,
‘nodeDetails[node_template_key][interfaces][configure]’ accordingly. For a
single set of node dependency such as ‘wordpress’ → ‘webserver’ → ‘server’
each node detail has been mapped then to a separately ordered dictionary called
‘dockerNodeDetails[nodeName]’ from the ‘nodeDetails[node_template_key]’
dictionary which actually contains all node details.

• Mapping between TOSCA to Kubernetes: Mapping to Kubernetes specific re-
quirements needs the application node’s Docker image name and the specific
property values along with environment variables with its values. These names
and properties have been stored in an ordered dictionary as a key-value pair. As

65

5 Implementation and Evaluation

an example the Docker image name of the application node has been mapped
to ‘containerTemplate[node_template_key][image_name]’ and environment
variables have been mapped to ‘containerTemplate[node_template_key][env]’,
same way the properties have been mapped as well.

• Initiating Dockerfile generator: After successfully mapping the Dockerfile re-
quirements to the dictionary, the parser then initialize the "DockerFileGenerator"
class with required parameters. This DockerFileGenerator then creates the required
Dockerfile which will be discussed in details on 5.3.1 subsection.

• Initiating Kubernetes file generator: Once all the mapping for the Kubernetes
deployment have been completed, the parser then invoke Kubernetes file generator.
There are two separate file generator classes for Kubernetes to generate two differ-
ent types of files. "DeployementFileGenerator" class is responsible for generating
deployment file and on the other hand "ServiceFileGenerator" is responsible for
creating service file.

• Initiating Command Line Executor: After successfully generating all the required
artifacts the parser then invoke command line executor, which is responsible for
the Docker container management automation, minikube provisioning automation
and Kubernetes deployment automation. Details of the command line executor
have been discussed in 5.4 section.

5.3 Generators

In this section, Generators refers to the different types of file generators in the "Trans-
formation Engine". In the following subsections 5.3.1 and 5.3.2 Dockerile Generator
and Kubernetes File Generators are discussed.

5.3.1 Dockerfile Generator

Dockerfile generator is responsible for creating system specific Dockerfiles. These Docker-
files are intermediate requirement for successfully deploying application into Kubernetes.
The Dockerfile generator writes Docker specific requirements inside the Dockerfile such
as adding all the required scripts and make them executable inside Docker container
before the system starts building the Docker image. This file generator also copies all
the required scripts to the same directory as the Dockerfile, when building the Docker
container, it is required that all the files should be in the same folder with the Dockerfile
which are required to be copied inside the Docker container. "DockerFileGenerator"

66

5.3 Generators

class in "dockerfile_generator" package is responsible for generating the Dockerfiles
and copying the relevant artifacts.

Following figure 5.3 is a sample Dockerfile generator interaction model.

Figure 5.3: Dockerfile Generator Interaction Model

5.3.2 Kubernetes File Generator

This Kubernetes file generator is a composition of two different types of file generators,
the Deployment file generator and the Service file generator.

Deployment File Generator

The deployment of the containerized application in Kubernetes requires a specific de-
ployment file. "DeployementFileGenerator" class is responsible for generating the
deployment files. This class gets initialized by the TOSCA parser with the application
name, file creation path and other required parameters. Each of these methods "gen-
erate_file()", "add_metadata()", "add_deployment_spec()" gets invoked to create the
file in a specified location, adding the deployment specific metedata and writing the
deployment specification in the files accordingly.

Following 5.1 is the example of a deployment file generated by Deployment File Genera-
tor.

apiVersion: extensions/v1beta1

kind: Deployment

metadata:

67

5 Implementation and Evaluation

name: mysql-database

labels:

app: mysql-database

spec:

replicas: 1

template:

metadata:

labels:

app: mysql-database

spec:

containers:

- name: mysql-database

image: toscakube/mysql-database

env:

- name: db_password

value: ****
- name: db_name

value: MYSQL

- name: db_root_password

value: ****
- name: db_user

value: ****
ports:

- containerPort: 3306

Listing 5.1: Sample "mysql-database" Deployment File Generated by Deployment File
Generator

Service File Generator

Inside the deployed application in Kubernetes each pod gets assigned a unique IP
addresses but if the pod is recreated it might have a different IP address, hence it gets
difficult to discover an application. In this case service come to the rescue, a service
defined a logical set of Pods and policy to access them.

The "ServiceFileGenerator" class get instantiated after successfully creation of the
deployment file. This class initialized with the same application name as deployment
file, file creation path and other required parameters such as the label-selector app
name, port etc. "generate_file()", "add_metadata()", "add_service_spec()" methods
are responsible for creating file, adding metadata and service specifications.

5.2 is an example of mysql-database service file generated by Service File Generator.

apiVersion: v1

kind: Service

metadata:

name: mysql-database

68

5.4 System Automation

labels:

app: mysql-database

spec:

ports:

- port: 3306

selector:

app: mysql-database

Listing 5.2: Sample "mysql-database" Service File Generated by Service File Generator

5.4 System Automation

System Automation manages the automation part of "Transformation Engine". com-
mand_executor.py module takes care of all the automations. This automation part
specifically focuses on three major automation parts such as Docker Container Man-
agement Automation, Minikube Provisioning Automation and Kubernetes Deployment
Automation. These automation mechanisms are discussed in the following subsections.

5.4.1 Docker Container Management Automation

From the previous chapters we already know that Docker image is a prerequisite for
Kubernetes deployment. As our file generator generates the Dockerfile, this Dockerfile
needs to be built as a Docker image and afterwards be pushed to the Docker hub (public
Docker repository). Our system automation module takes care of this part by executing
Docker commands itself, hence reducing the manual interaction to build the Docker
image and push it to the repository.

Following are some Docker commands which get executed from the command_executor
.py:

def docker_build(file_path,node_name):

if ’_’ in node_name:

node_name = node_name.replace("_","-")

docker_command = ’docker build ’ + file_path + ’ -t ’ + node_name

return __exc(docker_command)

Listing 5.3: Docker Build Code Snippet

69

5 Implementation and Evaluation

def docker_push(node_name):

if ’_’ in node_name:

node_name = node_name.replace("_","-")

docker_command = ’docker push ’ + node_name

return __exc(docker_command)

Listing 5.4: Docker Push Code Snippet

5.4.2 Minikube Provisioning Automation

We use Minikube [Minikube] tool to run Kubernetes locally for our testing purpose.
For automating the provisioning of minikube we need to perform some task, which
will start the minikube VM, get the minikube dashboard and provide the application
URL to the end user by the command prompt. Some of the performed task are as follows:

def start_minikube():

return __exc(’minikube start’)

Listing 5.5: Minikube Start Code Snippet

def minikube_dashboard():

return __exc(’minikube dashboard’)

Listing 5.6: Minikube Dashboard Code Snippet

def minikube_get_url(service_name):

kube_command = ’minikube service ’+service_name+’ --url’

return __exc(kube_command)

Listing 5.7: Minikube Get URL Code Snippet

70

5.5 Evaluation and Results

Figure 5.4: Minikube Dashboard for Monitoring

5.4.3 Kubernetes Deployment Automation

Deploying containerized applications in Kubernetes is automated using the same com-
mand_executor.py module. As we used minikube to run Kubernetes locally, therefore in
this automation part the deployment process will be minikube oriented. The commands
we executed here in this experiment to deploy the Kubernetes specific artifacts are system
independent, that means the same commands can be executed to deploy Kubernetes
artifacts in other tool rather than minikube.

Deploying the deployment artifact in Kubernetes code snippet is shown in the following
example:

def kube_deployment(file_path):

kube_command = ’kubectl create -f ’ + file_path

return __exc(kube_command)

Listing 5.8: Kubernetes Deployment Code Snippet

5.5 Evaluation and Results

In this section we will discuss about the evaluation process and the results of the
"Transformation Engine". For the evaluation purpose we will use a case study of

71

5 Implementation and Evaluation

wordpress and mysql application deployment with TOSCA specification to evaluate the
system.

5.5.1 Case Study with Containerized Node

Following is the TOSCA definition file of wordpress application.

tosca_definitions_version: tosca_simple_yaml_1_0

description: >

TOSCA simple profile with wordpress, web server and mysql on the same server.

Repositories to retrieve code artifacts from

repositories:

docker_hub: https://registry.hub.docker.com/

topology_template:

inputs:

wp_host_port:

type: integer

description: The host port that maps to port 80 of the WordPress container.

db_host_port:

type: integer

description: The host port that maps to port 3306 of the MySQL container.

db_root_pwd:

type: string

description: Root password for MySQL.

wp_db_pwd:

type: string

description: Root password for Wordpress.

node_templates:

The MYSQL container based on official MySQL image in Docker hub

mysql_container:

type: tosca.nodes.Container.Application.Docker

properties:

port: { get_input: db_host_port }

capabilities:

go: tosca.capabilities.Docker.Link

artifacts:

my_image:

file: mysql:5.6

type: tosca.artifacts.Deployment.Image.Container.Docker

repository: docker_hub

72

5.5 Evaluation and Results

kubernetes_metadata:

link_address: WORDPRESS_DB_HOST

interfaces:

Standard:

create:

implementation: my_image

inputs:

MYSQL_ROOT_PASSWORD: { get_input: db_root_pwd }

The WordPress container based on official WordPress image in Docker hub

wordpress_container:

type: tosca.nodes.Container.Application.Docker

properties:

port: { get_input: wp_host_port }

service_type: LoadBalancer

requirements:

- database_link: mysql_container

artifacts:

my_image:

file: wordpress:4.6.1-apache

type: tosca.artifacts.Deployment.Image.Container.Docker

repository: docker_hub

interfaces:

Standard:

create:

implementation: my_image

inputs:

WORDPRESS_DB_PASSWORD: { get_input: wp_db_pwd }

Listing 5.9: TOSCA Definition of Wordpress Application

Description of the scenario
Based on the 5.9 definition file, conceptually we will have two separate sets of Application
node. One is wordpress application node and the other one is mysql database application
node. These two application node will be also connected. If we think about this scenario
as Kubernetes deployment perspective, then we will have two separate sets of Pod such
as wordpress application Pod and mysql database application Pod. Also we will have
two distinct services to discover and allow access to these two Pods. The wordpress Pod
will be connected to the mysql database Pod using the mysql service.

Evaluation Results
We used this definition 5.9 file along with other required scripts as a zip file. The
Transformation Engine first loads the zip file from the provided path. Afterwards the
engine reads metadata file and definition file and starts parsing the file. Once the file
parsing is done the parser starts mapping the requirements and generates requirement
specific artifacts. E.g. if a Docker file is needed the system will create the Dockerfile
and then it will also create the deployment and service file for Kubernetes. From the

73

5 Implementation and Evaluation

above scenario, the system will generate two sets of deployment files and service files for
wordpress and mysql application. These files will then be deployed to Kubernetes locally
using minikube tool from the transformation engine without any human interaction.

The deployment files generated from the 5.9 by the Transformation Engine are as follows:

apiVersion: extensions/v1beta1

kind: Deployment

metadata:

name: wordpress-container

labels:

app: wordpress-container

spec:

replicas: 1

template:

metadata:

labels:

app: wordpress-container

spec:

containers:

- name: wordpress-container

image: wordpress:4.6.1-apache

env:

- name: WORDPRESS_DB_HOST

value: mysql-container

- name: WORDPRESS_DB_PASSWORD

value: root

ports:

- containerPort: 80

Listing 5.10: Deployment File for "wordpress" Container

apiVersion: extensions/v1beta1

kind: Deployment

metadata:

name: mysql-container

labels:

app: mysql-container

spec:

replicas: 1

template:

metadata:

labels:

app: mysql-container

spec:

containers:

74

5.5 Evaluation and Results

- name: mysql-container

image: mysql:5.6

env:

- name: MYSQL_ROOT_PASSWORD

value: root

ports:

- containerPort: 3306

Listing 5.11: Deployment File for "mysql-database" Container

The service files generated from the 5.9 by the Transformation Engine are following:

apiVersion: v1

kind: Service

metadata:

name: wordpress-container

labels:

app: wordpress-container

spec:

ports:

- port: 80

selector:

app: wordpress-container

type: LoadBalancer

Listing 5.12: Service File for "wordpress" Container

apiVersion: v1

kind: Service

metadata:

name: mysql-container

labels:

app: mysql-container

spec:

ports:

- port: 3306

selector:

app: mysql-container

Listing 5.13: Service File for "mysql-database" Container

After deploying the above mentioned deployment and service artifacts into Kubernetes,
the minikube dashboard appeared as following:

75

5 Implementation and Evaluation

Figure 5.5: Minikube Dashboard after Deployment

Figure 5.6: Pods in Minikube Dashboard

At the end the final application URL is following:

76

5.5 Evaluation and Results

Figure 5.7: Deployed "wordpress" Application URL

5.5.2 Case Study of TOSCA Application Node’s with Scripts

The definition file for this case study is 4.3, which is already mentioned in chapter 4,
section 4.3.

Description of the scenario
The major difference in this case study 5.5.2 with the previous one 5.5.1 is that in the
current definition file we have installation and deployment scripts of the nodes unlike
the Docker image of the first case study. As Kubernetes only supports Docker image to
create its container, we need to create Dockerfile based on these provided scripts, build
Docker image and push it to Docker repository. Once the Docker image is available in
the repository Kubernetes can pull it and use this image to create its container.

Evaluation Results
For this case study 5.5.2 processing and results of the Transformation Engine were
the same as the first case study 5.5.1 with additional processing steps, such as Dock-
erfile mapping, Dockerfile creation, Docker image build and pushing the image to
Docker repository. Except this Docker specific tasks all other task performed by the
Transformation Engine were the same as in the previous case study.

Listing 5.14 represents the Dockerfile created by the Transformation Engine for word-
press node.

77

5 Implementation and Evaluation

FROM ubuntu

Maintainer auto generated Dockerfile

RUN apt-get -y update

ADD ./mysql_dbms/install.sh mysql_dbms-install.sh

ADD ./mysql_dbms/start.sh mysql_dbms-start.sh

ADD ./mysql_dbms/configure.sh mysql_dbms-configure.sh

ADD ./mysql_database/configure.sh mysql_database-configure.sh

RUN /bin/sh /webserver-install.sh

RUN /bin/sh /webserver-start.sh

RUN /bin/sh /wordpress-install.sh

RUN /bin/sh /wordpress-configure.sh

Listing 5.14: "wordpress" Dockerfile Generated by Dockerfile Generator

Figure 5.8 represents the view of Docker repository after pushing the generated Docker
images to it.

Figure 5.8: Docker Repository with Docker Images

Except the newly created Dockerfiles all other artifacts e.g. Kubernetes deployment
files and service files are same as the previously created deployment files 5.10 and
5.11, service files 5.12 5.13. Furthermore, the minikube dashboard 5.5 and the final
application URL 5.7 are same for this case study as well.

78

6 Summary and Future Work

In this thesis, we presented the scope of developing a concept by which TOSCA can be
easily integrated with container virtualization and Cloud management technology. This
increases the usability of TOSCA YAML based standardization in the field of deployment
automation and container virtualization. The goal of this thesis was to bridge the
strengths of TOSCA based Cloud applications with container virtualization. Thus,
we provided a mapping concept of TOSCA to Kubernetes and Docker, and also an
implemented prototype which demonstrates the overall processes.

At the beginning of chapter 1, we provided the motivation scenario and the objective of
this thesis, we discussed the goal of this thesis. In chapter 2, we discussed about the
main ideas related to this thesis, which built the necessary background. To be more
precise, the basics of deployment automation, container virtualization is explained in
details. Also, we provided the details of technologies and tools we used to implement the
concepts discussed in this thesis. In addition, some similar works and research efforts
related to containers virtualization and deployment using the TOSCA standard were
discussed. In this related work we discussed about the functionalities provided by these
similar works and provided the reason why we cannot use these tools in our work.

In chapter 3, firstly we set our mapping goal and derived the conceptual architecture
diagram of the overall system. Later based on this architecture diagram we split the
requirements into two categories i.e. as functional and non-functional requirements of
the system. Additionally, we discussed about the artifacts and operations from TOSCA
specification which are being supported by our approach.

Chapter 4 proposes the mapping techniques to map between TOSCA and Kubernetes. In
this chapter we discussed on how to solve the node dependency, mapping concepts to
Docker, Kubernetes mapping requirements. Moreover, the assumptions have been dis-
cussed, which were taken to reduce the mapping diversity between TOSCA, Kubernetes,
and Docker. The prototypical implementation details and evaluation of the system have
been provided in chapter 5. For the assessment purpose of the system we used different
case studies to evaluate the system. The case study helped to assess the feasibility of
the proposed system. From this chapter we drew a clear line that the integration of
TOSCA and Kubernetes is not only valuable from a conceptual point of view. In fact, the
underlying concepts and approaches can be implemented in practice.

79

6 Summary and Future Work

When it comes to the future work part, there is a lot of potential to improve the
implementation and mapping part. Our system is an initial solution to enable the
deployment of TOSCA CSARs in Kubernetes. In future works it could be improved in
several directions. For example, the concepts outlined in chapter 4 to create a mapping
structure between TOSCA-based model and Kubernetes do not cover all the features
offered by TOSCA and Kubernetes. For the prototypical solution we considered TOSCA
containerized node with Docker image and nodes with Shell scripts for configuration
and installation. For the artifacts we considered only Bash (.sh) scripts. In future besides
Docker image other containerized nodes can be added. Additionally for configuration
purpose artifacts from Chef, Puppet etc can be added as a new feature. Currently in
our system we are not supporting BlockStorage or storage volumes. Therefore, these
features can be added to the mapping part and the existing prototype implementations,
which will make it more robust and reliable in the future. Finally, to be more precise
this work provided an approach that defines basics of deploying TOSCA CSARs to
Kubernetes, which will influence the DevOps world to consider bridging the gap between
TOSCA-based model and Container Virtualization world.

80

Abbreviations

API Application Program Interface
AWS Amazon Web Service

CSARs Cloud Service Archives

DevOps Development and Operations
DSL Domain Specific Language

EC2 Elastic Cloud Compute

GCE Google Compute Engine

HOT Heat Orchestration Template

IAAS Institute of Architecture of Application Systems
IaaS Infrastructure as a Service

NIST National Institute of Standards and Technology

OS Operating System

PaaS Platform-as-a-Service

REST Representational State Transfer Protocol

SDK Software Development Kit

TOSCA Topology and Orchestration Specification for Cloud Applications

URL Uniform Resource Locator

VM Virtual Machine

XML Extensible Markup Language

YAML YAML Ain’t Markup Language

81

Bibliography

[Ama10] E. Amazon. “Amazon elastic compute cloud (Amazon
EC2).” In: Amazon Elastic Compute Cloud (Amazon
EC2) (2010) (cit. on p. 17).

[BBH+13] T. Binz, U. Breitenbücher, F. Haupt, O. Kopp, F. Ley-
mann, A. Nowak, S. Wagner. “OpenTOSCA–a run-
time for TOSCA-based cloud applications.” In: Inter-
national Conference on Service-Oriented Computing.
Springer. 2013, pp. 692–695 (cit. on p. 35).

[BBKL14a] T. Binz, U. Breitenbücher, O. Kopp, F. Leymann.
“TOSCA: portable automated deployment and man-
agement of cloud applications.” In: Advanced Web
Services. Springer, 2014, pp. 527–549 (cit. on pp. 11,
35).

[BBKL14b] U. Breitenbücher, T. Binz, O. Kopp, F. Leymann.
“Vinothek-A Self-Service Portal for TOSCA.” In: ZEUS.
Citeseer. 2014, pp. 69–72 (cit. on p. 36).

[BGO+16] B. Burns, B. Grant, D. Oppenheimer, E. Brewer,
J. Wilkes. “Borg, omega, and kubernetes.” In: Com-
munications of the ACM 59.5 (2016), pp. 50–57 (cit.
on p. 25).

[BLS11] T. Binz, F. Leymann, D. Schumm. “CMotion: A Frame-
work for Migration of Applications into and between
Clouds.” In: Service-Oriented Computing and Applica-
tions (SOCA), 2011 IEEE International Conference on.
IEEE. 2011, pp. 1–4 (cit. on p. 15).

[Cora] Coreos. Coreos. URL: https://coreos.com/ (cit. on
p. 18).

[Corb] Coreos. rkt -A security-minded, standards-based con-
tainer engine. URL: https://coreos.com/rkt (cit. on
p. 18).

83

https://coreos.com/
https://coreos.com/rkt

Bibliography

[DO15] O. Dawelbeit. Learn the Kubernetes Key Concepts | IT
with Passion. 2015. URL: http://omerio.com/2015/
12/18/learn-the-kubernetes-key-concepts-in-10-
minutes/ (visited on 12/20/2016) (cit. on pp. 26,
27, 30).

[Docker] docker. Docker - Build, Ship, and Run Any App, Any-
where. URL: https://www.docker.com/ (visited on
01/30/2017) (cit. on pp. 33, 45).

[Eng12] G. A. Engine. The App Engine Standard Environment |
App Engine Documentation. 2012. URL: https://cloud.
google.com/appengine/docs/standard/ (visited on
02/23/2017) (cit. on p. 16).

[Gig] GigaSpaces. cloudify -The New Hybrid Cloud Stack.
One Tool. URL: http://getcloudify.org/ (cit. on p. 37).

[Gup16] A. Gupta. Getting Started with Kubernetes - DZone -
Refcardz. 2016. URL: https://dzone.com/refcardz/
kubernetes-essentials (visited on 01/30/2017) (cit.
on pp. 28, 32).

[HF10] J. Humble, D. Farley. Continuous Delivery: Reliable
Software Releases through Build, Test, and Deploy-
ment Automation (Adobe Reader). Pearson Education,
2010 (cit. on p. 15).

[Hsi14] M.-C. Hsiao. The Study of a Linux Container-Based
Cloud Operating System for Platform as a Service.
2014 (cit. on p. 17).

[Hüt12] M. Hüttermann. “DevOps for Developers, Apress.”
In: (2012) (cit. on p. 15).

[KBBL13] O. Kopp, T. Binz, U. Breitenbücher, F. Leymann.
“Winery–a modeling tool for TOSCA-based cloud
applications.” In: International Conference on Service-
Oriented Computing. Springer. 2013, pp. 700–704
(cit. on p. 36).

[kubernetes] kubernetes. Kubernetes - Production-Grade Container
Orchestration. URL: https://kubernetes.io/ (visited
on 01/30/2017) (cit. on pp. 25, 26, 30, 32, 33).

[LF09] F. Leymann, D. Fritsch. “Cloud computing: The next
revolution in IT.” In: Proceedings of the 52th Pho-
togrammetric Week (2009), pp. 3–12 (cit. on p. 15).

84

http://omerio.com/2015/12/18/learn-the-kubernetes-key-concepts-in-10-minutes/
http://omerio.com/2015/12/18/learn-the-kubernetes-key-concepts-in-10-minutes/
http://omerio.com/2015/12/18/learn-the-kubernetes-key-concepts-in-10-minutes/
https://www.docker.com/
https://cloud.google.com/appengine/docs/standard/
https://cloud.google.com/appengine/docs/standard/
http://getcloudify.org/
https://dzone.com/refcardz/kubernetes-essentials
https://dzone.com/refcardz/kubernetes-essentials
https://kubernetes.io/

Bibliography

[LFM+11] F. Leymann, C. Fehling, R. Mietzner, A. Nowak,
S. Dustdar. “Moving applications to the cloud: an
approach based on application model enrichment.”
In: International Journal of Cooperative Information
Systems 20.03 (2011), pp. 307–356 (cit. on pp. 11,
15).

[Mar07] D. Marshall. “Understanding Full Virtualization, Par-
avirtualization, and Hardware Assist.” In: VMWare
White Paper (2007) (cit. on p. 17).

[MG+11] P. Mell, T. Grance, et al. “The NIST definition of
cloud computing.” In: (2011) (cit. on pp. 11, 15,
17).

[Minikube] kubernetes. GitHub - kubernetes/minikube: Run
Kubernetes locally. URL: https : / / github . com /
kubernetes/minikube (visited on 02/06/2017) (cit.
on pp. 43, 70).

[Opea] OpenStack.org. Heat - OpenStack. URL: https://wiki.
openstack.org/wiki/Heat (visited on 02/27/2017)
(cit. on p. 38).

[Opeb] OpenStack.org. Heat-Translator. URL: https : / /
github.com/openstack/heat-translator (visited on
02/27/2017) (cit. on p. 38).

[Opec] OpenStack.org. OpenStack - Open source software
for creating private and public clouds. URL: https :
//www.openstack .org/ (visited on 02/27/2017)
(cit. on p. 38).

[Openstack15] openstack. openstack/heat-translator. 2015. URL:
https : / / github . com / openstack / heat - translator
(visited on 12/22/2016) (cit. on pp. 53, 54).

[Sch14] M. J. Scheepers. “Virtualization and containerization
of application infrastructure: A comparison.” In: 21st
Twente Student Conference on IT. 2014, pp. 1–7 (cit.
on p. 18).

[SPF+07] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, L. Pe-
terson. “Container-based operating system virtual-
ization: a scalable, high-performance alternative to
hypervisors.” In: ACM SIGOPS Operating Systems Re-

85

https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://wiki.openstack.org/wiki/Heat
https://wiki.openstack.org/wiki/Heat
https://github.com/openstack/heat-translator
https://github.com/openstack/heat-translator
https://www.openstack.org/
https://www.openstack.org/
https://github.com/openstack/heat-translator

view. Vol. 41. 3. ACM. 2007, pp. 275–287 (cit. on
pp. 17, 18).

[TOSCA-Simple-Profile-YAML16] OASIS. TOSCA Simple Profile in YAML Version 1.0.
Ed. by D. Palma, M. Rutkowski, T. Spatzier. June 12,
2016. URL: http://docs.oasisopen.org/tosca/TOSCA-
Simple-Profile-YAML/v1.0/cs01/TOSCA-Simple-
Profile-YAML-v1.0-cs01.html (cit. on pp. 19, 21–25,
37, 44, 56).

[Tur14] J. Turnbull. The Docker Book: Containerization is the
new virtualization. James Turnbull, 2014 (cit. on
p. 18).

[Voh17] D. Vohra. “Kubernetes Management Design Pat-
terns.” In: (2017) (cit. on p. 26).

[WGL14] J. Wettinger, K. Görlach, F. Leymann. “Deployment
aggregates-a generic deployment automation ap-
proach for applications operated in the cloud.” In:
Enterprise Distributed Object Computing Conference
Workshops and Demonstrations (EDOCW), 2014 IEEE
18th International. IEEE. 2014, pp. 173–180 (cit. on
p. 15).

[Wil12] B. Wilder. Cloud architecture patterns: using microsoft
azure. " O’Reilly Media, Inc.", 2012 (cit. on p. 15).

All links were last followed on March 19, 2017.

http://docs.oasisopen.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/cs01/TOSCA-Simple-Profile-YAML-v1.0-cs01.html
http://docs.oasisopen.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/cs01/TOSCA-Simple-Profile-YAML-v1.0-cs01.html
http://docs.oasisopen.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/cs01/TOSCA-Simple-Profile-YAML-v1.0-cs01.html

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources
and references than the listed ones. I have marked all
direct or indirect statements from other sources con-
tained therein as quotations. Neither this work nor
significant parts of it were part of another examination
procedure. I have not published this work in whole or
in part before. The electronic copy is consistent with all
submitted copies.

place, date, signature

	1 Introduction
	1.1 Motivation
	1.2 Objective
	1.3 Outline

	2 Fundamentals and Related Works
	2.1 Deployment Automation
	2.2 Container Virtualization
	2.3 Topology and Orchestration Specification for Cloud Application
	2.3.1 TOSCA Syntax
	2.3.2 TOSCA Example

	2.4 Kubernetes
	2.5 Docker
	2.6 Related Works
	2.6.1 OpenTOSCA
	2.6.2 Cloudify
	2.6.3 OpenStack Heat

	3 Requirements
	3.1 Mapping Goal
	3.2 Architecture Requirements
	3.2.1 Technical Requirements
	3.2.2 Non-Technical Requirements

	3.3 Supported Operations
	3.4 Supported Artifacts

	4 Architecture and Design
	4.1 Concept of Mapping Techniques
	4.2 Assumptions
	4.3 Mapping Concept using TOSCA Definition Files
	4.3.1 Resolving Node Relationship
	4.3.2 Dockerfile Mapping
	4.3.3 Mapping to Kubernetes

	5 Implementation and Evaluation
	5.1 Overall System Design
	5.2 TOSCA Parser
	5.3 Generators
	5.3.1 Dockerfile Generator
	5.3.2 Kubernetes File Generator

	5.4 System Automation
	5.4.1 Docker Container Management Automation
	5.4.2 Minikube Provisioning Automation
	5.4.3 Kubernetes Deployment Automation

	5.5 Evaluation and Results
	5.5.1 Case Study with Containerized Node
	5.5.2 Case Study of TOSCA Application Node's with Scripts

	6 Summary and Future Work
	List of Abbreviations
	Bibliography

