
1

Quality Assessment Framework

for Business Processes as a

Service in a heterogeneous

Cloud Environment

Rupinder Vinayak

2996507

Master Computer Science

University Stuttgart

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Publikationen der Universität Stuttgart

https://core.ac.uk/display/147556788?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

ABSTRACT

A business process is an activity or set of multiple activities that will fulfill a

particular objective of the organization. Business process management (BPM)

is a methodological way for the improvement of those processes. Due to

increased competition in the market, companies are shifting their business

processes online using some sophisticated Business process management

(BPM) tools and methods.

The focus of this thesis is to design and implementation of an initial testing

system for business processes which are published on a heterogeneous Cloud

environment.

This thesis documents researched the state of the art of business process

testing (BPT) which covers some testing techniques and selected the best-

suited method for testing business process which is responsible for the quality

of the system.

Also, it concentrates on the state of the art of testing the Cloud. It focus on

different methodologies to test SaaS, PaaS, and IaaS. The main objective for

that, is to understand the way how testing Cloud environment works, hence,

it will lead to the understanding of testing of business processes as a service.

Additionally, it explains the general architecture of the TTCN-3. A design of a

test system to test the business process based on TTCN-3 is presented. A case

study of CloudSocket has been studied and according to the requirement, we

have introduced an initial work for testing BPaaS in a heterogeneous Cloud

environment. This initial test system was implemented and validated in the

CloudSocket Marketplace.

3

TABLE OF CONTENT

1 Introduction ... 6

1.1 Background ... 6

1.2 Objective ... 7

2 State of the Art of Business process testing 8

2.1 Business Processes .. 8

2.2 Business Process Testing ... 8

2.2.1 Process Cycle Test (PCT) ... 9

2.2.2 Decision Table Testing.. 10

2.2.3 Lights-out testing ... 13

3 Testing the Cloud (TTC) .. 15

3.1 Cloud Computing .. 15

3.2 Problems with quality of service on Clouds 16

3.3 Software as a Service (SaaS) ... 17

3.3.1 What is SaaS ... 17

3.3.2 What kind of testing methods are available for SaaS? 17

3.4 Platform as a Service (PaaS).. 18

3.4.1 What is PaaS ... 18

3.4.2 Which Testing Methods are available for PaaS? 18

3.5 Infrastructure as a Service (IaaS) .. 19

3.5.1 What is IaaS .. 19

3.5.2 Which Testing Methods are available for IaaS? 20

4 TTCN-3 in General .. 20

4

5 Applying TTCN-3 to BPaaS testing based on CloudSocket 26

5.1 CloudSocket as a Project ... 26

5.2 CloudSocket: Architecture .. 28

5.3 Part of Architecture related to this thesis 31

6 BPaaS Testing Approach for CloudSocket 32

6.1 BPaaS Testing Approach ... 32

6.2 Architecture of developed BPaaS Test System 33

7 TTCN-3 for testing CloudSocket BPaaS .. 36

7.1 Prototype and Realization .. 37

7.1.1 TTCN-3 Development Perspective 38

7.1.2 TTCN-3 Execution Management Perspective 41

7.1.3 Developed System Adapter ... 44

7.1.4 Developed Codec ... 47

7.2 Case study and Results ... 52

7.3 Suitability of TTCN-3 ... 55

8 Conclusion .. 59

9 Reference ... 60

5

ABBREVATIONS

bpt business process testing

bpaas business process and a service

ttc testing the cloud

cd coding/decoding

ets executable test suite

mtc main test component

pa platform adapter

ptc parallel test component

sa system adapter

sut system under test

tci ttcn-3 control interface

te test executable

tri ttcn-3 runtime interface

ttcn-3 testing and test control notation, version 3

qa quality assurance

qc quality control

qaf quality assessment framework

ptc parallel test component

6

1 INTRODUCTION

This thesis document begins with the introduction of the topic

undertaken. Background section provide the brief context of testing

Business Processes as a Service. Followed by the objective, which

comprise the ultimate goal of the thesis.

1.1 BACKGROUND

 Initially Cloud services were just comprised of “Infrastructure as a

Service” – followed by “Platform as a Service” and “Software as a

Service”. “Business processes as a Service” (BPaaS) (Thomas Barton,

2014) are new addition the fleet of this series which provide business

process services in a Cloud environment.

To provide such services, „quality” and a corresponding quality

assessment framework (QAF) targeting the full life cycle of the BPaaS

plays a very crucial role. Such a QAF serves as important element of a

respective ITIL service catalogue management (ITIL SCM) (itSMF UK,

2012). The quality of the provided service needs to be assessed so that

the service can meet the user/organization’s expectation.

7

1.2 OBJECTIVE

The main objective of this thesis is to propose, design and implement a

proof-of-concept of an initial version of a testing system to test business

processes running in heterogeneous Cloud environments. In this case,

we assume testing as the key methodology of “model-based testing” and

we will use the ETSI standard testing language TTCN-3 (TTCN-3, 2014) for

this purpose.

It also introduce CloudSocket EU project which aims to provide services

like business processes over Cloud environment. A corresponding test

approach is designed which targets the full lifecycle of the business

process provided as a Service (BPaaS) over the Cloud. This system is

deployed between CloudSocket Marketplace and the customer

(CloudSocket, 2016) to assure the high quality of the product provided.

In marketplace, end-users can subscribe to various BPaaS bundles

provided over Cloud. This testing approach tests all the processes in

marketplace provided as BPaaS bundle.

The aim to design such a testing system, is to assure the quality of the

BPaaS bundle to the customers. Besides, it includes the designing of an

automated test framework which will also provide proper test reports

and graphical logging for the executed testcases. To attain this

functionality, I used TTWorkbench tool (TTWorkbench - Spirent, 2016)

for writing test suites and testcases in TTCN-3.

8

2 STATE OF THE ART OF BUSINESS PROCESS TESTING

We begin this section by describing the state of the art of business

process testing followed by detailed explanation of three different types

of testing methodologies to test the business processes. The three

methodologies which are discussed to test the business processes in this

section are, process cycle test, decision table testing, and lights-out

testing.

2.1 BUSINESS PROCESSES

A business process is a set of steps performed by a particular group of

stakeholders to aiming to accomplish a concrete objective. These series

of steps are performed many times repeatedly, infrequently by multiple

users, mainly in specific and optimized way. A business process can be

automated or manual. If it is automated than the process is achieved

with technology aid which assists the clients in actualizing the process in

a more precise, standardized and optimized way. And, if it is manual than

the process is accomplished without the guide of an assisting technology

or automation.

2.2 BUSINESS PROCESS TESTING

The procedure of verification and validation of end-to-end point of the

business process is called as business process testing (BPT) (Testing

Concepts, Testing Methodologies, 2016). This process is performed in a

well-ordered manner to affirm that all business guidelines are working

effectively and meeting business expectations. Also, any deviation and

defects than the desired results are logged in Reports.

9

Based on the analysis of business process testing (BPT), it can be said

that BPT is one of the most advanced testing technique to test business

process (Testing Concepts, 2016). It lies somewhere in-between simple

manual testing and complex automated testing. It promotes the

automation of high-level business processes. Role-based model of BPT

allows non-technical SMEs to collaborate effectively with automation

engineers to increase the efficiency of the testing process.

We will focus on these below methods for the proposal of testing

business processes.

2.2.1 Process Cycle Test (PCT)

The process cycle test is a method that is connected specifically to the

testing of the quality characteristics for suitability. The basis of test ought

to contain organized data and information on the required framework

behavior the form of decision points and form of paths. The process cycle

test deviates on various points from most other test design techniques

and strategies:

The process cycle test is not a plan test, but rather a structure test: the

test cases issue from the structure of the flow of the process and not

from the outline particulars of the design specification of the test case

(Kees Blokland, 2013).

The anticipated outcome of the process cycle test is very simple, the

physical test case has to be executable. This verifies certainty that the

individual activities can be completed. As opposed to other test design

methods and techniques, no explicit expectations are made of the

outcomes, thus this does not need to be checked.

PCT is a test strategy where you have to test various processes of

components, where the elements are displayed by flowcharts. It is a

10

black box testing method and can be utilized for any framework (TMap

Sogeti, 2014).

Point of focus in the five general steps

1. To identify the test situations.

2. To create the logical test cases.

3. To create the physical test cases.

4. To establish the starting point.

5. To create the test scripts.

Limitations:

Sometimes, the business flow is too complicated. In that case, flowchart

method becomes complex and clumsy and due to that some bugs and

errors always remain undetected. Moreover if any alterations or changes

are required in later stage, whole flowchart may require to re-draw

completely.

2.2.2 Decision Table Testing

It is an easy approach which helps to identify the test scenarios for

complex business logic. Business rules and validations take up the major

part of the requirements that are given by the customers. The

requirements represented and communicated by business analysts or

customers to the entire project team are presented in a logical process

flow diagram. For any of the complex requirement, a rational process

flow diagram has many nodes, branches and decision boxes. Testers are

expected to cover all those branches touching every bits of such a

complex logical tree.

11

It was found that the technique of testing decision table is highly useful

in this aspect (Cai Ferriday, 2007) (Test strategy, Testing Methodologies,

2016). Following is an example showing how this technique helps in

making the test scenario preparation for complex business logic easier.

To write the test cases for a login screen with the help of decision table

technique, consider the diagram below for business requirement for

login:

Figure 2-1: Use case for login screen (image source: softwaretestinghelp.com)

Now, on the basis of leaves (1, 2, 3) and branches (a, b, c) we will build

the decision table.

12

Table 2.1 – Business flow decision table

Advantages:

 Any sophisticated business flow represented in the form of a

diagram can be easily described in the scope of this technique.

 It provides fast confidence and trust on the test cases and testers

do not need to review their own test cases multiple times to gain

confidence.

 Easily understandable and with the help of decision table

template anyone can make test cases. It gives complete coverage

at the very first shot. Hence, rework on the test case scenario can

be totally avoided.

Limitations:

Some of the test case preparation techniques like boundary value

analysis and equivalence partitioning cannot be directly accommodated

in this template. But, can be noted down in the combination column and

used while writing the test cases.

13

2.2.3 Lights-out testing

Test automation, particularly for bundled applications such as SAP and

Salesforce are rapidly turning into a standard best practice to guarantee

business processes are not disturbed by continuous enterprise

technology changes. It provides a consistent production environment

which helps user to get rid of undesired and costly downtime associated

with defects and unavailable systems. Glitches, imperfections, and

technology failures have serious impacts on customer satisfaction and

the user-experience. It is still difficult to hold back on quality

conformation, since testing has generally been an incredibly expensive

and tedious process. Manual testing and legacy script-based

arrangements require contribution from developers, analysts and

experienced QA experts. “Lights out” testing method has been

introduced to address these problems (Worksoft, 2015).

By automating the execution of critical routine tests, lights out testing

almost eliminates the requirement for human intervention.

It yields the following key benefits:

 Ensuring error-free execution of the business process.

 Accelerating all projects by reducing the test cycle times.

 Boosting the test coverage with unaccustomed resources.

 Promoting innovation and effectiveness.

 Excluding the manual audit and compliance with the help of

automated documentation.

Lights out testing is the recurring, automated, and unattended testing of

pre-eminent business processes.

14

Each of these terms has a distinct meaning:

 Recurring - Testing is being applied to each change paying little

respect to frequent occurrences. Recurring testing can be

reiterated as regularly as required (daily, weekly, monthly)

without tedious setup or time consumption. This has

extraordinary ramifications for test outline, managing data, and

execution.

 Automated - Test execution is high-speed, precise, and steady

with a completely documented audit trail. Just script free

automation mechanization can give satisfactory coverage inside

profoundly compacted delivery cycles without extra complexity

or cost.

 Unattended - Tests can be executed at any time of the day

without human intervention. Unattended testing must be

sufficiently flexible to handle sudden situations without

prematurely ending the whole test cycle or producing spurious

failures.

 Essential – Testing is centered on business forms that empower,

run, or control basic organizational operations. This testing is

about mitigating most extreme hazard in the briefest time

possible. This guarantees the business can keep on functioning

with the most elevated amounts of value and effectiveness, even

when fundamental innovations, technologies, and procedures

change.

Lights out testing is a demonstrated, effective approach that mitigates

the innovation risk, increment profitability, and lessens the expenses of

quality assurance. Most importantly, it gives organizations the certainty

that each business procedure is working as per the requirements.

15

Customary testing strategies just give a partial solution and can't address

the difficulties of a rapidly changing technology. That is the reason

effective organizations in each industry are swinging to Worksoft's wise

automation technology to guarantee the trustworthiness of their

venture applications and each business procedure.

3 TESTING THE CLOUD (TTC)

In this section, we discussed the state of the art of testing the Cloud

services. The section begins by addressing the definition of Cloud

computing followed by problems with the quality of services in Cloud

environment. This section of thesis also provide an overview of service

categories of Cloud computing, which also includes different testing

methodologies followed by respective type of Cloud service.

3.1 CLOUD COMPUTING

One of the most innovative and inventive methods which are well

focused on a well centric way to the utilization of the internet & remote

servers, specifically for the software application, information access,

information administration. Precisely, what Cloud computing does is, it

authorizes the users and organizations in such a way, to enable an easy

utilization of the applications without the need of installing software or

even access to any local files on their computer. Hence consequently

made them utilizable on any computer, which would have the internet

access of course (The NIST Definition of Cloud Computing, 2011).

16

3.2 PROBLEMS WITH QUALITY OF SERVICE ON CLOUDS

Undeniably, Cloud computing as well as the virtualization always lead to

some real and unique challenges (Gilad, 2011) for the services and

applications, which undeniably have to be well balanced for the dynamic

provisioning. There would be a well-noted change in the way the

applications get started and initiate the interface with the server,

whenever there would be an allocation or a shift of the resources from

the virtual environment or the Cloud system. The availability of

hardware and software resources will be one important factor, on which

it would be dependent. To give an instance, there are certain

applications (Danilo Ardagna, 2014), which have hard-coded server

name, which actually doesn’t work in the Cloud.

Mentioned below are top three IT concerned scenarios (McNickle, 2012)

which are meant for the applications in the virtual world.

1. First and foremost is the noticeable degradation of the services

during the transition phase of the infrastructure precisely from

Physical to Virtual infrastructure.

2. The possible negative influence on QoS of inter-application

shared resource contention;

3. Dilapidation of QoS at application load times, which are peak

usually

There are some more impactful factors (McNickle, 2012) which

eventually affect the quality of the services of the Cloud & its

performance which includes:

(a) Increment in the requirement of the Cloud-based system

(b) Enabling the ensured customer satisfaction & quality

(c) Remote testing

17

(d) Infrastructure

(e) The situation, when the providers for Cloud computing become

capable of more control

3.3 SOFTWARE AS A SERVICE (SAAS)

3.3.1 What is SaaS

SaaS, Software as a Service is the software, which is being deployed and

provided over the Cloud environment (Grance, 2009). It represents one

of the biggest Cloud markets and is growing exponentially fast (Rouse,

2016). The web is being used so that applications can be delivered,

which are thoroughly managed and organized by a third party vendor

and whose interface is undeniably accessed on the client’s side. The

majority of the SaaS applications can be run directly from a web browser,

needless of any downloads or installations. Some plugin’s requirement

would be there, though. Blaming to the web delivery model, there is a

well-noted eradication of the need for installation and process of

application’s running on individual computers by SaaS. Some imminent

examples of SaaS are: Google Apps, Salesforce, Workday, Concur, Citrix

GoToMeeting, and Cisco WebEx

3.3.2 What kind of testing methods are available for SaaS?

Various kinds of testing elements which are lying within the scope of old

traditional testing techniques can be well eliminated from the

techniques of SaaS Testing (Mengerink, 2013) (Apprenda Inc, 2016).

There lies no requirement for testing of the cases for: Server or Client

installations, multi-platform back-end support, multiple version support

or backward compatibility.

18

In order to speed up the application testing, the SaaS testing

methodology incorporates agile methods specifically, so that to make

SaaS Vendor’s services more rapidly delivered to the market.

As a matter of fact, SaaS has the capability of employing automation

tools, to handle any specific QA (quality assurance) tasks, which precisely

includes: Unit testing, functional testing, testing of SOA interfaces and

performance testing of the application which is running on the platform

of Cloud services.

3.4 PLATFORM AS A SERVICE (PAAS)

3.4.1 What is PaaS

As clear from the abbreviation, it stands for Platform as a service (PaaS),

which are majorly used for applications and another kind of

development, while the provision of the Cloud components to software

is done (Grance, 2009). So what exactly the developers achieve as an

advantage with PaaS, is precisely a well-defined framework which they

can build upon to develop or customize applications?

PaaS possess the capability of making the development, testing and

deployment of applications faster, subtle and more profit oriented .i.e.

cost effective! (Cloud Standards Customer Council, 2015) With the

advent of this technology, enterprise operations, or a third-party

provider gains the capability of managing OSs, virtualization, servers,

storage, networking, and the PaaS software itself. Developers, however,

manage the applications (Apprenda Inc, 2016).

3.4.2 Which Testing Methods are available for PaaS?

There are various testing methods by which we use to test the PaaS

environments (Dr. Rahul Malhotra, 2013):

19

 Elasticity Testing.

 Security Testing: Security testing which is a crucial aspect of

testing applications due to increase in the security breaches in

business. This has the potential of providing an assurance that

business critical data is stored & transported securely.

 High Availability (HA) and Performance testing: Used to test the

behavior of an application or a system when subjected to

amplified load from multiple locations.

 Compatibility testing: It inculcates testing user interfaces of the

Cloud based application, and validating its compatibility when

migrated to a Cloud platform.

 Multi-Tenancy Testing: The main emphasis of this testing is to

confirm that users from different organizations become capable

of using the Cloud services. It also involves validating the Cloud

offering such that the service is customized for every client’s

requirement.

 TMap and TPI (Sogeti GmbH, Capgemini, 2014).

3.5 INFRASTRUCTURE AS A SERVICE (IAAS)

3.5.1 What is IaaS

Infrastructure as a Service (IaaS), is a kind of self-service model where

one can access, monitor, and manage remote datacenter

infrastructures, such as compute, storage, networking, and networking

services (e.g. firewalls) (Grance, 2009) (The NIST Definition of Cloud

Computing, 2011). Instead of buying hardware outright, users can

purchase IaaS based on their consumption and need, similar to

electricity or other utility billing.

20

As compared to SaaS and PaaS, IaaS users are responsible for managing

applications, runtime, data, OSs’, and middleware, (Apprenda Inc, 2016).

Providers of IAAS, still manage virtualization, hard drives, servers,

storage, and networking.

IaaS Examples: Amazon Web Services, Microsoft Azure, Cisco Metapod,

Joyent, Google Compute Engine (GCE).

3.5.2 Which Testing Methods are available for IaaS?

Testing is important, not only for software developers but also for the

people working with IT operations. These below are few point which

could be considered while testing an IaaS (Bertram, 2015):

 Workloads are being tested: All the Cloud services or an on-

premises processes?

 Performance considerations: Do we need 100 Input/output

Operations per Second (IOPS) or more like 100,000 IOPS?

 Commitment to Time: How much time do we want to invest?

 Availability: Do we need to access it from everywhere?

4 TTCN-3 IN GENERAL

The testing and test Control Notation version 3 (TTCN-3) is a test

specification and test implementation language created by industry and

academia experts at the European Telecommunications standards

Institute (ESTI) (TTCN-3, 2014). It is a powerful scripting language and has

been successfully employed in testing composite applications enabled in

SOA.

TTCN-3 is easy to use as a standardized testing language which has a look

and feel of a regular programming language with comparatively less

21

complexities. The main objective behind designing TTCN-3 is to provide

well-formed easy to understand test case definition independent from

any application domain. It mainly comprises well-defined operational

semantics, robust built-in matching mechanisms, it support timers, and

is able to configure runtime parameters for the test execution. It also

supports message- and procedure-based communication to exchange

messages with the system under test (SUT). TTCN-3 can be used in many

type of testing namely, validation testing, unit, integration, software

module testing, functional and load testing, regression and approval

testing, etc.

The development of a TTCN-3 test system (TTCN-3, 2014) requires:

 TTCN-3 test suite

 TTCN-3 Compiler

 Implementations of testcases in TTCN-3 using TTWorkbench

 Implementation of a Codec for encoding and decoding of the data

send/receive from the SUT.

 Implementation of SUT Adapter for establishing the required

communication channel with SUT interfaces.

22

Figure 4-1: General TTCN-3 Architecture (Testing_Tech, 2016)

The standardized interfaces like TCI and TRI make it feasible for a TTCN-

3 test suite to be adjusted, so that it can be execute in a scope of various

scenarios, platforms, operating systems, and environments. Besides, it

encourages testing in early developmental period of SUT because, for

instance, the communication channel can be adjusted to the currently

available system.

TTCN-3 is used to indicate tests in a dynamic and abstract way, however,

a test framework is required to execute these tests. A TTCN-3 test

framework involves elements that acquire conceptual details of TTCN-3

into concrete implementation of the test framework. For instance,

virtually characterized communication is mapped to real physical/real

communication channels. In this thesis, the focus is on two major

interface between TTCN-3 test framework and system under test. These

are ttcn-3 runtime interface component system adapter and ttcn-3

control interface component Codec (Testing Technologies IST GmbH, 23

November 2015).

23

The TTCN-3 Executables are the part of the test system which depicts

how it manage interpretation and execution of the test system. This can

be correlated with the test framework implementation environment to

produce and compile the code by the TTCN-3 compiler TTWorkbench.

The rest of the part of TTCN-3 test framework, which manages any

perspective that cannot be concluded from the information being

available in original module, can be decomposed into test management,

System Adapter (SA), etc. (see Section 8.2)

A TTCN-3 test framework has two noteworthy interfaces, TTCN-3

Runtime Interface (TRI) component System Adapter and TTCN-3 Control

Interface (TCI) component Codec (Figure 4-1) (TTCN-3, 2014).

TTCN-3 Control Interface (TCI)

Test management (TM): It is responsible for the general administration

and management of the test framework, user interface for the test

system, execution of tests and management of runtime parameters.

Test Logging (TL): This part belongs to the management of logging the

events and exceptions of the test system.

Coding and Decoding (CD): The role of Codec is to understand the type

and structure of the payload which is received from the SUT via system

adapter. It fetches the data and starts decoding it with the help of using

respective parsers used according to the type of expected payload. Here

templates for the expected payload can also be defined to match the

quality of the System under test.

Component Handling (CH): It plays the role of the channel which is used

to handle the communication between two or more test components.

24

TTCN-3 Runtime Interface (TRI)

System Adapter (SA): The role of system adapter is similar to the network

adapters and it is used to connect the test component with the system

under test to get the information from SUT in the form of payload.

System adapter basically takes the information from the SUTs with the

help of defined transmission control protocols under some set of rules.

Platform Adaptor (PA): It executes the TTCN-3 external functions and

gives framework the single time notion.

TTCN-3 has a fundamental model of separation of concerns which is

clearly depicted in the Figure 4-1. This separates the Abstract Test Suite

(ATS) from the coding/decoding and communication, and presentation

details; providing powerful matching mechanism that separates

behavior and the conditions governing the behaviors and there by

promoting a systematic approach to testing. This separation of concern

provides full portability of test suites, making them independent of

platform implementation.

TTCN-3 provides powerful re-usable test oracle specification language

construct called a template and corresponding built-in matching

mechanism for test oracles verification. The template concept is based

on data structure and allows for the specification of multiple test oracles

in one single operation. The TTCN-3 concept of a template is a double-

edged concept that is used both to define data to be sent to an SUT and

test oracles to be matched against incoming messages. A template

resembles a structured variable data assignment as follows:

25

The above template can be used to send its data to the SUT using the

TTCN-3 send keyword as follow:

It can also be matched against incoming messages using the TTCN-3

receive keyword as follows:

This concept allows powerful re-usability compared to the usual

assertions of JUnit for example. The TTCN-3 concept of template actually

enables the separation of concerns between test behaviors and

condition governing behavior. This avoids the usual pitfalls of spot

checking with its trail of errors and omissions. TTCN-3 also provides a

wide selection of tools that offer powerful test execution results

inspection features that enable the tester to focus on individual

elements of a web page.

TTCN-3 is an international standard that was originally designed for

testing telecommunication protocols which consist of discrete messages

between communication entities. It is a strongly typed test scripting

language which was successfully employed in conformance testing of

26

communicating systems, where in discrete events like sending/receiving

of data units of protocols and abstract service primitives are used.

Conformance test suites are developed based on the protocol

specification. TTCN-3 is also employed in testing avionics systems that

send or receive huge series of periodic messages with an identical

payload at precise time intervals (TTCN-3, 2013).

TTCN-3’s matching mechanism enables multi-user matching of request-

responses with precise detection and location of faults and quality of

service issue. The test specification approach used in TTCN-3 supports

parallel testing and promotes reusability of data types tied to reusable

components.

5 APPLYING TTCN-3 TO BPAAS TESTING BASED ON

CLOUDSOCKET

This section will be concentrating principally on introduction of the

concept of CloudSocket. Here, this document describes the definition of

CloudSocket project and its vision. Then, the architecture of CloudSocket

is explained which includes four essential blocks of BPaaS lifecycle in

CloudSocket project. Lastly, this section also provides an overview of the

part of the BPaaS lifecycle architecture which is related to this thesis.

5.1 CLOUDSOCKET AS A PROJECT

CloudSocket is the name given to the project which aims to provide

business processes to organizations through its online marketplace over

Cloud (CloudSocket, European Union's Horizon 2020 Framework

Programme). The objective of the project is to encompass a “hybrid

27

process” modeling system that reconciles semantic derivation, protocol

based induction, meta-modelling management methods and

information management methodologies. Hence, conveying SMEs closer

to the Cloud by creating them attractive for them to consolidate Cloud

resources and component for the acknowledgment of the objectives.

The proposed system executes a layered approach for managing the

complexity of bridging the semantic separation from business process to

the configuration business process work flows in the Cloud.

"Business Process as a Service”

(BPaaS) is considered as another

new concept that is being

presented as the successor of the

Cloud concepts after IaaS, PaaS,

and SaaS. Consequently, BPaaS is

not seen as a technical blend of

SaaS but rather is viewed as an

intermediate type between IT-

agnostic business clients and Cloud

Computing (CloudSocket, 2015). Business process management is a very

well established approach based on modelling (Frank Leymann, 2000);

henceforth CloudSocket utilizes business process models as the sources

of IT-Cloud requirements. This project of CloudSocket, advances the

possibility of a "Hybrid process" modelling framework with the help of

already known techniques for rule-based inference, meta-modelling,

semantics and knowledge management techniques which fills the gap

between business requirements and exploitation of Cloud resources and

components.

28

The proposed structure actualizes a layered approach for dealing with

the multifaceted and complex scenarios to bridge the semantic

separation from the business process to workflow design the

configuration of BPaaS in the Cloud (CloudSocket, 2015).

5.2 CLOUDSOCKET: ARCHITECTURE

The growing demand of the business processes over Cloud has increased

the demand for BPaaS testing as well. However, there are multiple

challenges that are experienced in the whole course of Business Process

as a Service Testing (BPaaST). For example, designing a test system for

testing the business processes over the Cloud environment. But rather

than discussing the challenges and their solutions, firstly we should be

aware of the big picture of the implementation and architecture of the

CloudSocket project. Basically to have a deep understanding of the

concept of CloudSocket.

The CloudSocket technical infrastructure indicates the four BPaaS

environments relating to previous ideas and concepts. Whereas the

focus is on the interaction between the distinctive scenarios and the

expected results, as those environments and scenarios can be

acknowledged by different implementations. Technical project partners

realize and understand each BPaaS environment, however, the

CloudSocket can likely be built up with other set of tools, as long as the

interfaces between the BPaaS environments are obeyed.

29

 Figure 5-1: CloudSocket Architecture (CloudSocket Consortium, 2015)

The technical infrastructure of CloudSocket includes four primary

building blocks/environments which guide to the four unique phases of

the business process lifecycle.

The figure (see figure 5-1) visualizes CloudSocket’s initial design where

every environment, not just only concentrates alternate business

process lifecycle, additionally endeavors to provide the appropriate

support empowering business and IT alignment (CloudSocket

Consortium, 2015). It should also be highlighted that apart from the four

principle environments, there is also the BPaaS MarketPlace which goes

about as an outer interface of the BPaaS execution environment giving

fundamental marketplace functionality to CloudSocket agent clients that

incorporate the visualization, purchase, and deployment of BPaaS

offerings. Finishing, we quickly examine the fundamental basic

30

usefulness and functionality of each environment by also indicating

which component delivers which part of the primary functionality.

In the first block (see Figure 5-1) we can see there is a business process

design environment containing different kinds of business processes to

be served over the Cloud as a service with the help of incubators. It gives

the modeling and mapping functionality to CloudSocket agents

empowering them to plan applied business process and also map them

to the specifications of the executable workflows that acknowledge

them.

Next, The BPaaS Allocation Environment goes for bundling the

executable workflows into a Cloud-deployable workflow package which

can then be given as another BPaaS offering by the CloudSocket

Marketplace. Here, things like Service Selection, Service discovery, etc.

will take place.

At the point when a specific BPaaS offering is bought by means of the

Marketplace, the BPaaS Execution Environment is responsible for

conveying it in the Cloud via Cloud Provider Engine, thus bringing it into

operations. Here Marketplace is modeled and designed, and with the

help of BPaaS modeling, the marketplace is realized on the Cloud with

different rules.

The BPaaS Evaluation Environment is the best place for BPaaS

performance analysis and improvement. It offers representation

mechanisms via Hybrid Business Dashboard which not only permits

demonstrations of KPI assessments but also their drill-down into lower-

level KPI and metric assessments.

31

5.3 PART OF ARCHITECTURE RELATED TO THIS THESIS

A client of CloudSocket browses the Marketplace and chooses a specific

BPaaS application package through the support of the marketplace

assistance framework. A CloudSocket customer buys this package and

makes some Cloud services incorporated into it. Once these activities are

completed, the package is deployable and hence sent to the Execution

Environment for adaptive provisioning and operation.

The CloudSocket Execution Environment empowers managing,

monitoring, and adapting the execution of the BPaaS packages produced

in the allocation block, which has been published over a heterogeneous

Cloud via Marketplace. So, all the BPaaS offerings presented in Figure 5-

1 are provided to clients via Marketplace along with Execution

Environment which empowers their operations in the Cloud (Figure 5-2).

Figure 5-2: Highlighting the modules for Test System and Marketplace in

BPaaS Execution Environment.

32

The role of the marketplace is to publish the BPaaS bundles so that the

customers, organizations, Cloud providers, and the systems can

purchase. To increase the efficiency of the published content, BPaaS

bundles should be thoroughly tested before going live on the Cloud via

Marketplace. The marketplace is the System under Test in this thesis. In

figure 5-2, you can see the additional Test System added just before the

marketplace to achieve the goal precisely.

6 BPAAS TESTING APPROACH FOR CLOUDSOCKET

This section describes the need of BPaaS testing approach in the

CloudSocket environment. Followed by the architecture of the designed

test system implementation approach for prototyping and designing of

the Test System in CloudSocket environment. Next, this document

describes the architecture of designed test system for BPaaS.

6.1 BPAAS TESTING APPROACH

CloudSocket Marketplace manage: publish, subscribe and purchase

process of business process bundle for the customers (CloudSocket

Consortium, 2015)(Section-5.1). This process depends upon few other

phases of business process lifecycle (see figure 5-1), the earlier system

of the CloudSocket architecture was lacking with the dedicated

framework for quality assessment of business processes. Before the

thesis started, requirements for the testing data were captured in

natural language documents. The absence of a testing framework

reduces the confidence of the published business processes if they meet

the desired expectation of the customer or not. All the teams working

on their respective modules were testing the systems at their end only.

33

Testing BpaaS (BpaaST) ensures high quality across the deployment

lifecycle. It also includes the security, privacy, accessibility, and standard

compliance as well. The automated validation and testing of the

functional and non-functional aspects of the business process as a

service help shorten the release cycle of the frequent upgrading

application. The key to successful BPaaST (testing Business process as a

service) is putting together the right combination of test strategies,

automate the tests for functional and non-functional requirements, and

leveraging the best practices that would help maximize the client

investment. In intend to achieve company's ultimate goal of business

outcome.

6.2 ARCHITECTURE OF DEVELOPED BPAAS TEST SYSTEM

At this point I commenced the structure to test the business processes

before publishing over BPaaS bundles to CloudSocket Marketplace. Any

BPaaS bundle should be tested to increase its efficiency of deployment.

Newly developed TTCN-3 test framework is induced between end-user

and CloudSocket Marketplace (see figure 6-1), so that every BPaaS

bundle will be thorougly tested before the subscription for the service

starts. The main components of this designed test system are, TTCN-3

test framework, System adapter, and Codecs.

34

 Figure 6-1: Developed TTCN-3 Test Framework

The test system gets the data from CloudSocket Marketplace via HTTP

Apache System Adapter, and decode it for further manipulation.

Received data is then compared with the data which is already defined

in TTCN-3 test framework expected data templates to match the quality.

If the received data matched with the expected data, the test will be

passed, else failed.

The objective of the thesis is to design an initial testing approach for the

business process bundles kept on CloudSocket Marketplace (as depicted

in figure 6-2).

35

Figure 6-2: BPaaS under test: CloudSocket Marketplace; (Image source:

http://csmarket.ymens.com:8080/#/product-list)

For instance, a business process from the CloudSocket marketplace (has

been imported. In diagram (see figure 6-3) the case for the multichannel

digital media marketing business process has been taken into

consideration as the system under test to assess its quality from our QAF.

Test components receive the test data of this type of business process

from CloudSocket servers in the form of JSON payload. Here, newly

designed QAF plays a crucial role to match the received payload to pre-

defined expected payload according to the test case.

http://csmarket.ymens.com:8080/#/product-list

36

Figure 6-3: Business Process Model: Multichannel digital marketing

For the above-depicted Business process, we used TTCN-3 to verify and

validate the quality of the data received from SUT csmarket servers

through system adapter (HYRKKÄNEN, 2004) and codecs.

7 TTCN-3 FOR TESTING CLOUDSOCKET BPAAS

Testing and Test Notation (TTCN-3) is an internationally standardized

language for testing the system by defining test scenarios. It is developed

purely for testing purpose by European Telecommunication Standards

Institute (ETSI) in 2000 (TTCN-3, 2014). Here, this thesis presents the

prototyping and realization of the designed test system using various

components of TTCN-3. This section begins with the explanation of the

problem description of our case study of CloudSocket. Followed by the

detailed description of writing testcase using TTWorkbench

Development Perspective. And explains about the test execution process

used in TTWorkbench Execution Management Perspective. Then, this

37

section provide a detailed overview of the System adapter and the

Codecs which are developed exclusively for this test system.

7.1 PROTOTYPE AND REALIZATION

In the implementation of the CloudSocket project, there were several

services which have to be executed simultaneously to test the quality of

the designed framework and business processes. To execute these test

component in-parallel, TTCN-3 is used to verify the multi-service

orchestration testing verification of the results at critical points

throughout the architecture. To achieve the quality of the

product/service to be given over Cloud, few test measures are done with

the help of designed test cases in TTCN-3. Testing is performed to ensure

BPM system provides maximum desired quality to the customer with

correct results. A detailed example of the TTCN-3 implementation of

CloudSocket Marketplace in TTWorkbench can be seen further in the

section. It also consists of some powerful features like graphical logging,

which enable users to see the test results in more interactive manner. In

addition to this, summarized report of the test results is also available

for the entire execution of the test. TTCN-3 editor like TTWorkbench has

different perspectives for programming and management of the project.

First is “TTCN-3 Development Perspective” (Testing Technologies IST

GmbH, 23 November 2015) view where the user can write/update the

source code for TTCN-3 test cases, System adapter, Codec, etc.

Second is “TTCN-3 Execution Management Perspective”, where the user

can execute the designed testcases in an interactive interface. (Testing

Technologies IST GmbH, 23 November 2015)

38

7.1.1 TTCN-3 Development Perspective

All the development and implementation of source code related to the

TTCN-3 project, either it is TTCN executable source codes or Java

implementations of System adapters or Codecs is done in TTCN-3

Development Perspective.

Figure 7-1: TTCN Project Explorer

A typical view of TTCN-3 project explorer in TTWorkbench looks like as

depicted in figure 7-1 on the left (TTWorkbench - Spirent, 2016). For each

test case component in the given testSuite, a TTCN-3 test case module is

produced including templates to be sent and received and behavior

definitions for the client and server sides. Any TTCN-3 module can be

categorized with different module declarations. There can be data types,

template, function, test case, etc. in a typical TTCN-3 executable

(Testing_Tech, 2016).

39

Figure 7-2: Typical content of a TTCN-3 Module

Different type of declarations can be seen in any particular TTCN-3

executable.

 //type declaration: this part of a program consists of a user-

defined code, which defines data types (messages, information

elements, set of various elements). “type” can be a record, a

record of, set, set of, etc. We have defined the structure of our

expected payload here using “record of” and “set of”.

 //configuration declaration consists of the definition of the

communication protocols for the test components and ports. Our

port type for httpport is defined under this part of code. By

defining our http component here, we can now use the protocol

to send/receive the messages and information from the system

under test (SUT).

 //module parameter and external function declaration, basically

define the execution configuration for the source code.

 //template declaration is the design and the structure of the data

which is being sent/received from SUT. In order to test the actual

data received through the port, encoding has to be done in a way

that TTCN runtime environment can understand the structure

40

and syntax as mentioned in this template declaration. We will be

accessing the csmarket servers to extract the payload for the

quality assurance. Templates declarations contain test data,

which is transmitted or expected during the test execution.

 //function declaration is used to determine the test behavior of

the TTCN-3 test case. Furthermore, declarations, timer

operations, and statements can also be integrated into the

function. Functions can also call other functions recursively to do

particular tests according to the requirement and the design.

Figure 7-3: TTCN-3 Function declaration

 //testcase declaration: Syntactically, any test case function should

start from keyword test case followed by the complete signature

of the test case. The test case speaks to the dynamic test behavior

and can generate more parallel test components. Similar to

functions, test cases may also contain a declaration, statements,

timer functions, function calling operations, etc. In our case, the

test case is executing the function ptcBehaviour() according to the

number of parallel test components (PTCs), NUMBER_OF_PTCS is

a macro which is usually defined in starting of the code. The role

for the function ptcBehaiviour() is to compare the decoded JSON

input stream to the template values already given for Quality

assurance.

41

All these declarations can be put into one single file for simpler and small

projects. But if the project is more complex (for instance CloudSocket)

and comparatively larger, then it is good to follow modular approach for

programming. Also, calling different modules as a function of other

modules as per requirement of the code. A modular approach for our

TTCN-3 files can be seen in the image on left where, Functions,

Templates, Types, and Test cases, all are defined and declared in

separate modules.

7.1.2 TTCN-3 Execution Management Perspective

TTWorkbench is a full-fledged tool which integrates test development

and Test execution management perspective in single IDE. For running

and executing the designed tests, we may require particular

environment runtime variables which can be configured only in a specific

environment.

42

Figure 7-4: Screenshot depicting different views in the Execution

Management Perspective

TTWorkbench provides us with that type of environment called as TTCN-

3 Execution management perspective. Here, we define/re-define the

existing variables to be tested under runtime variables. As depicted in

the Figure 7-4, TTCN-3 Execution Management View is buildup with 7

different views:

 The management view is the focal perspective of TTWorkbench

Execution Management perspective. It gives an interface to the

user to choose a test suite to initialize and abort the test

execution. All operations in the view will be then with respect to

the chosen test suite.

43

 The parameter view permits the user to view and edit the runtime

variables.

 TTCN-3 graphical logging view shows the output of test execution

in a graphical way.

 TTCN-3 Textual logging shows the same test execution output

view in textual format.

 The test data view is used to show the data exchange between

test components and SUT during test execution.

 The dump view is used to display the data exchange as hex or

plain text.

We can access the Execution management perspective by just double

clicking *.clf in a project explorer from development view. Test campaign

loader file (*.clf file) is an executable file which is used to execute the

test suites. We can write and edit these files according to our

requirement. I have created my own clf file which contains a declaration

of different runtime parameters and test case groups. As seen in Figure

7-5, test cases are grouped according to the type of there execution.

This grouping in clf file can be seen in management view in execution

management perspective. See Figure 7-5:

Figure 7-5: Grouped Testcases according to their categories

44

Runtime parameters in execution management perspective can play a

vital role in test execution, as the user can do real-time changes to the

parameters. For example, the user can increase or decrease the number

of PTCs to be used during the test, in this thesis, I have written the code

accordingly so that user can also enter the number_of_days into runtime

parameters to get the data from SUT for that particular number of days.

Similarly, if the user wants new or updated data, this can be also

mentioned directly in runtime parameters during test execution. You can

see the runtime parameter view and declaration of runtime variables in

clf file in below Figure 7-6.

Figure 7-6: Runtime parameter view in Execution management

perspective

7.1.3 Developed System Adapter

System adapter is integral part of TTCN-3 runtime environment

(HYRKKÄNEN, 2004). It is a framework which basically concentrates on

the interface with which SUT System adapter communicates and interact

with the rest of the test component system.

45

Figure 7-7: TTCN-3 Runtime Interface (TRI), showing System adapter

and triCommunication

 Figure 7-8: Merging different elements to generate Link variable

System Adapter is a bit of source code that handles the real

communication between the system under test servers and the

programs that run test cases like test components and decide their test

results. It realizes the message- and procedure-based communication

with SUT. In this implementation, we can see the static connection is

being made between test components and SUT via Apache HTTP

communication protocols.

46

In System Adapter, I mentioned the rule for establishing the connection

by using Apache HTTP GET method. (Apache HTTP Project, 2005-2016).

To put it briefly, System adapter (SA) is responsible for the actual

communication of test components with the SUT. In other words, we can

mention that the real message exchange between test component and

SUT is happening under the scope of SUT System adapter.

Figure 7-9: Apache HTTP GET Method in System Adapter (SA)

The runtime interface between test component TTCN-3 executable and

SUT System Adapter (SA) is called as a triCommunication interface

(Testing Technologies IST GmbH, 23 November 2015). It is generally

written and implemented in Java. As mentioned earlier, the majority of

the implementation of the transmission methods used, are mentioned

in SA. Any form reference to triCommunication or TTCN-3 Runtime

interface basically means the interface between TE and System adapter.

SUT is able to send a message to test component via System adapter

using send statement. It is done by calling triSend() function. In this

thesis, I have implemented system adapter using Apache HTTP Get

method. When SA receives a message from SUT over mentioned

method, it starts streaming all the messages in an output buffer to send

further to Test component. It can forward the messages received to TE

by just calling the operation triEnqueueMsg(). When SA call the

triEnqueueMsg() function, TE internally notifies its receiving

components, which could be blocked at a receive. So, Apache HTTP GET

47

method is implemented in System Adapter to get the payload from SUT

to Test Components using TTCN-3 Runtime Interface.

7.1.4 Developed Codec

In other to receive/transmit the actual data over a TTCN-3 port to/from

the SUT, we must require few entities like encoder and decoders.

Encoders can encode the transmitting data to SUT representation. On

the other hand, approaching information also need to be read. Decoders

are used to decode the incoming data from SUT, to allow coordinating

and matching against TTCN-3 template definitions for quality assurance.

Codecs are small program responsible to encode and decode the values

of TTCN-3 types understandable to SUT. These are specified in the

standard TTCN-3 Control Interface (TCI-CD) (TTCN-3, 2014). It is feasible

if one wants to write their own encoders and decoders. Decoder

contains the decodenodes() function which could tell the codec which all

types are present in the test case, and then it should assign a codec for

each type and values. This entity basically responsible for providing TCI-

Codecs, which are used to encode TTCN-3 values into transmission

syntax form (if any data is sent to SUT) and decode data in transmission

syntax form back to TTCN-3 understandable format (decoders comes

under the picture in the case whenever we are receiving the data from

SUT). Usually, we write single system for the codec which include

encoders and decoders using the functions encode() and decode().

In below figure 7-10 you can see the code representation of encode()

function, which is used to encrypt the TTCN-3 values into TriMessage

representation to send it further to SUT.

48

Figure 7-10: TCI-CD encode() function representation

On the other hand, decode () function is responsible to read and

understand the data receiving from SUT. It converts the Bitstring data to

TTCN-3 data representation. I wrote decoder according to the

requirement of my case study so that our data can be matched to the

expect data to assess the quality of the service over Cloud. This method

basically decodes the TTCN-3 Value receiving from SUT in form of

TriMessage representation. In this case, TriMessage contains JSON

structured payload. TE may query more than one time for the same

bitstring to parse the data. In below code snippet Figure 7-11, decoding

process is explained that how data is streamed into

bytearrayinputstream().

49

Figure 7-11: TCI-CD decode() function representation

There could be many System.out.println() commands used in the source

code, which is solely used for debugging purpose. This above decode()

function is designed to handle both JSON and XML type of payload

structure. Since our payload from csmarket servers is in JSON format,

hence we will use convert() function to convert the received payload into

XML ByteArrayInputStream, which is further parsed elements by

element to check and match the quality of the data received as per

expectation. The parser is responsible about the parsing of the function

parameter InputStream input. It will throw the TciException if an error

occurs during the parsing.

50

Figure 7-12: TCI-CD Representation of parser() function used by

decode()

Figure 7-13: Represents convert() to be used by decode()

51

Convert() is used by decoder; in case if it JSON payload is received

convert() function will be called to convert the structure of the JSON to

XML so that it can be parsed into more structured way.

Figure 7-14: Source code snippet for representation of decodenode()

function

Other function used in TCI-CD Codec is decodeNodes(). It decodes the

XML/JSON code into a TTCN-3 Value representation by matching TTCN-

3 templates Types and Values to the structure mentioned in this

function. This method is usually invoked recursively to decode

structured payload. Function parameter value2feed are the expected

52

TTCN-3 Value values, and node parameter in the function is pointing

towards the payload structure nodes. This function will return decoded

TTCN3 Value to the function decode().

7.2 CASE STUDY AND RESULTS

In this section, we will represent the quality assurance aspects and test

results of our proposed framework for testing the business processes

over the Cloud. Organizations are aggressively taking their business

processes online using BPM tools and technologies, which might put

them into the position of an incubator to host the business process as a

service, and providing support for BPaaS. And mostly, quality assurance

in such scenarios where companies are offering business process as

services are handled as just another testing of a web service or an

application. You have already gone through with the framework for

testing the business process as services in Section 7.1. In this section, you

can see the detailed explanation of TTCN-3 implementations of the

former. We have already explained about our SUT (i.e. CloudSocket

marketplace providing Business processes as a Service).

For the business process (shown in figure 6-3), TTCN-3 was used to verify

and validate the quality of the data which is received from SUT csmarket

servers through system adapter and codecs. Firstly, we will receive some

data from the server using Apache HTTP GET method in system adapter,

which is decoded via code. That message from the server is presented in

Test data view as shown in figure 7-15.

53

Figure 7-15: Displaying actual information received from csmarket

server

Then, this received data will be matched with the data entered in TTCN-

3 Template for quality assurance. Next figure 7-16 shows the template

data which has to be matched for the quality assessment.

Figure 7-16: Template for the expected message received

54

For example, information for different parameters of the data and

uploaded image is received from SUT JSON payload and only a few are

matched with the template of TTCN-3 code, to assure the quality of the

Business process.

Figure 7-17: Test execution view depicting matched test parameters

TTCN-3 has a very interesting and influential characteristic of displaying

the test case execution graphically; also with good reporting attribute

for summarizing and concluding the test results. The whole execution of

passed test is graphically presented in figure 7-18, where only 1 PTC is

taken into consideration. The user can add as many as test components

he/she wants to add.

Figure 7-18: Graphical representation of passed test cases

55

If in above figure 7-17, if any of the test cases failed to match the quality

standard mentioned in TTCN template, the whole test will be considered

fail and will be logged in the report on the same time. A screenshot for

the deliberately failed test case is depicted in image below, where

System under test send some information to test component3 (as seen

in Figure 7-19), but it failed to match the values mentioned in the

template.

Figure 7-19: Graphical representation of failed test cases

7.3 SUITABILITY OF TTCN-3

This section discusses the suitability of TTCN-3 testing standards for

testing the business processes in the Cloud-based environment. The

objective of the thesis was to develop a test system to test the quality of

published BPaaS bundle on the CloudSocket market before end-users

can get access to them. The aim was to deploy TTCN-3 methodologies to

test the BPaaS bundles with the desired quality from CloudSocket

Marketplace and check if this approach is feasible to test the BPaaS

bundles in a heterogeneous Cloud environment.

56

According to the work done in the thesis, we have found that the

approach for using TTCN-3 for testing the quality of BPaaS is feasible as

of current status of the project. It might get any complications as project

advances to the next level. In this thesis, designed test system have three

building blocks, viz. TTCN-3 Test Framework; System adapter; and Codec.

TTCN-3 test framework sets the protocols for data to be matched using

TTCN-3 templates. System adapter is an essential component used to

build an interface between CloudSocket Marketplace (BPaaS under test)

and test component (TTCN-3 test framework). It acts as a local client

application designed to use Apache HTTP GET method and access the

JSON payload from csmarket servers using RESTful web-services. The

reason for using this approach is that we have data on the CloudSocket

servers which cannot be changed. Due to that, we ought to use only GET

method, as other HTTP methods are not required in this CloudSocket

module. This test system is only extracting the JSON payload to match

the quality of the received data. This is the reason we can conclude that,

technically, it is meaningful to exploit the BPaaS CloudSocket system

modeling effort towards a TTCN-3 test framework.

Our TTCN-3 testcase basically describes the extraction of the test data

from the system under test (SUT) using RESTful services and HTTP get

method. Adjacently codec is deployed to decode the received content

and parse it to the system understandable format. In parallel,

development of other essential TTCN-3 components is done using

TTWorkbench. TTCN-3 templates are created which contains the

expected data to be received from the web server as an answer to assess

the quality of the payload. After defining the structure of the expected

messages in templates, we created the test component instances in a

file testcase.ttcn3. There can be a multiple number of test components,

parallel test components (PTCs) which are responsible for sending the

57

request to CloudSocket server. Bpaasfunction.ttcn3 file is also generated

which is responsible to define function ptcbehaviour(). This function is

responsible for the behavior of parallel test component (PTC) against

received content and provides the verdict using setverdict function. To

compute the verdict Testcase for matching both the data is also written

using TTCN-3.

There are the research papers based on the suitability of TTCN-3 for BPT

(Mallur, 2015). The evaluation done by them is that testing business

processes using TTCN-3 is not desirable and efficient approach. However

they were more involved in the unit testing of business process and

providing a performance reports. Resulting, they opted IBM BPM testing

asset over TTCN-3 because they are not dealing with the Cloud-based

environment. The main reason that TTCN-3 is used in our report is that

in Cloud-based business process scenarios we are extracting the data of

BPaaS bundles directly from CloudSocket Maketplace to test the quality

of the BPaaS system. For this, we must establish the reliable message

exchange interface between the test system and SUT. TTCN-3 provide

this functionality in their core component TRI using triCommunication. It

should be noted that it is possible to test the quality of the business

processes provided as a service over Cloud environment using TTCN-3.

The next step of the research is to assess this testing system with even

more complex scenarios to ensure the robustness of the module. To do

this, we require various kinds of BPaaS bundles from CloudSocket

Marketplace with different and unique requirements. More test

parameters can be added to increase the quality assessment standards.

This also aims to increase the TTCN-3 support for testing the BPaaS and

making the test system more generic. I.e. to expand the support of the

58

test system with various kind of payloads. This will include development

of a whole new generic codec for parsing the data and testing the BPaaS.

Another future work is to expand the TTCN-3 support for model-based

testing towards the automatic derivation of test models together with

the system model (Kavya Mallur, September 2015). However this is still

ongoing work in companies associated with the CloudSocket project. The

reason for the potential expansion of the CloudSocket project to support

model-based testing is that apart from assessing the quality of the pre-

designed business process, the project in principle needs the testing of

all stages of the BPaaS lifecycle. Model-based testing then would exploit

eventually both the methodologies of the BPaaS design environment

(the BP level) and of the allocation environment (the Cloud level) (meta-

modelling and semantic annotations). Such a TTCN-3 oriented testing

frameworks would represent a key element of a “Quality Assessment

Framework for Business Process as a Service in a heterogeneous Cloud

Environment”.

59

8 CONCLUSION

In this thesis, we have introduced an initial work for testing Business

Processes as a Service in a heterogeneous Cloud Environment. We have

taken few steps to get to the conclusion of this thesis which includes; (a)

State of the Art for Business process testing, (b) The selection of Decision

table testing for the testing of Business processes, (c) State of the Art for

Testing the Cloud, (d) Understanding the concept of Cloud testing and

introducing the method BPaaS – where business processes are provided

as a service over the Cloud, (e) Implementation of test cases in TTCN-3

and this initial test case was implemented and validated against the

CloudSocket marketplace. (f) Finally we have commented on the

suitability of TTCN-3 within a “Quality Assessment Framework for

Business Process as a Service in a heterogeneous Cloud Environment”.

60

9 REFERENCE

The NIST Definition of Cloud Computing. (2011, October 24). Final Version of

NIST Cloud Computing Definition Published. Retrieved from NIST:

https://www.nist.gov/news-events/news/2011/10/final-version-nist-

cloud-computing-definition-published

Apache HTTP Project. (2005-2016). Retrieved from Apache HTTP:

https://hc.apache.org/httpcomponents-client-ga/examples.html

Apprenda Inc. (2016). IaaS, PaaS, SaaS (Explained and Compared). Retrieved

from APPRENDA: https://apprenda.com/library/paas/iaas-paas-saas-

explained-compared/

Bertram, A. (2015, July 10). How To Build An IaaS Test Lab In Windows Azure.

Retrieved from tom's IT PRO:

http://www.tomsitpro.com/articles/windows-azure-iaas-test-lab,2-

699.html

Cai Ferriday, T. D. (2007). A Review Paper on Decision Table-Based Testing.

Cloud Standards Customer Council. (2015). Practical Guide to Platform-as-a-

Service. Cloud Standards Customer Council.

CloudSocket. (2015). CloudSocket common understandings wiki. Retrieved

from cloudsocket.eu:

https://www.cloudsocket.eu/web/guest/common-understanding-wiki

CloudSocket. (2016). Demonstration: End-User Perspective. Retrieved from

CloudSocket:

https://www.cloudsocket.eu/web/guest/demonstration-end-user-

perspective

CloudSocket Consortium. (2015, August 31). FIRST CLOUDSOCKET

ARCHITECTURE. CloudSocket. CloudSocket Consortium.

61

CloudSocket. (European Union's Horizon 2020 Framework Programme).

CloudSocket Idea. Retrieved from CloudSocket:

https://www.cloudsocket.eu/project

Danilo Ardagna, G. C. (2014). Quality-of-service in cloud computing: modeling

techniques and their applications. In G. C. Danilo Ardagna, Journal of

Internet Services and Applications. BioMed Central Ltd.

Dr. Rahul Malhotra, P. J. (2013). Testing Techniques and its Challenges in a

Cloud Computing Envirnment. Punjab, India: The Standard

International Journals (The SIJ) .

Frank Leymann, D. R. (2000). Production Workflow: Conceepts and

techniques. Presntice Hall.

Gilad, Z. (2011, October 19). The Problem with Quality in the Cloud. Retrieved

from Database rends and application:

http://www.dbta.com/Editorial/Think-About-It/The-Problem-with-

Quality-in-the-Cloud-78187.aspx

Grance, P. M. (2009, July 10). The NIST Definition of Cloud Computing.

Retrieved from National Institute of Standards and Technology,

Information Technology Laboratory:

https://www.nist.gov/sites/default/files/documents/itl/cloud/cloud-

def-v15.pdf

HYRKKÄNEN, A. (2004, June 9). General Purpose SUT Adapter for TTCN-3.

Retrieved from TTCN-3: http://www.ttcn-

3.org/files/GeneralPurposeTTCN3SA.pdf

itSMF UK. (2012). An Introductory Overview . London: TSO (The Stationery

Office) .

Kavya Mallur, M. A. (September 2015). A Model-based Quality Assurance

Framework for Online Business Processes. ACM/IEEE 18th

International Conference on Model Driven Engineering Languages and

Systems (p. 4). Ottawa, Ontario, Canada: ResearchGate.

62

Kees Blokland, J. M. (2013). Testing Cloud Services. California: Polteq.

Mallur, K. (2015, March 30). A Quality Assurance Framework for Business

Process Management. University of Ottawa, Ontario, Canada.

McNickle, M. (2012, February 2). 5 issues affecting cloud service quality and

performance. Retrieved from

http://www.healthcareitnews.com/news/5-issues-affecting-cloud-

service-quality-and-performance

Mengerink, P. B. (2013). Testing Cloud Services, How to Test Saas, Paas &

Iaas. ISBN 978-1-937538-38-5: Rockynook Inc.

Parastoo Mohagheghi, J. A. (2007). Evaluating Quality in Model-Driven

Engineering . 29th International Conference on Software Engineering

Workshops(ICSEW'07 (p. 2). Oslo, Norway: IEEE.

Rouse, M. (2016, May). Software as a Service (SaaS). Retrieved from Tech

Target:

http://searchcloudcomputing.techtarget.com/definition/Software-as-

a-Service

Sogeti GmbH, Capgemini. (2014, June 26). Testing Platform-as-a-service.

Retrieved from Sogeti:

https://www.sogeti.com/solutions/testing/specialized-testing-

services/testing-platform-as-a-service/

Test strategy, Testing Methodologies. (2016, December 14). How to Write

Complex Business Logic Test Scenarios Using Decision Table

Technique. Retrieved from Spftware Testing Help:

http://www.softwaretestinghelp.com/decision-table-test-case-

design-technique/

Testing Concepts, T. M. (2016, December 14). Business Process Testing (BPT)

– How to Simplify and Speed Up the Testing Process Using BPT.

Retrieved from Software testing help:

63

http://www.softwaretestinghelp.com/what-is-business-process-

testing-bpt/

Testing Concepts, Testing Methodologies. (2016, December 14). Business

Process Testing (BPT) – How to Simplify and Speed Up the Testing

Process Using BPT. Retrieved from Software testing help:

http://www.softwaretestinghelp.com/what-is-business-process-

testing-bpt/

Testing Technologies IST GmbH. (23 November 2015). Testing Technologies

TTworkbench User's Guide. Testing Technologies IST GmbH.

Testing_Tech. (2016). The execution of TTCN-3 tests: The TTCN-3 Runtime and

Control Interfaces. www.testingtech.com.

Thomas Barton, C. S. (2014). BusinessProcessasa Service– Status and

architecture. University of Applied Sciences Worms, University of

Applied Sciences Landshut.

TMap Sogeti. (2014, October 24). Process Cycle Test (PCT). Retrieved from

www.tmap.net: http://www.tmap.net/wiki/process-cycle-test-pct

TTCN-3. (2013). Application Domains. Retrieved from TTCN-3 :

http://www.ttcn-3.org/index.php/about/references/applicatio-

domains

TTCN-3. (2014, December 09). Introduction. Retrieved from TTCN-3:

http://www.ttcn-3.org

TTCN-3. (2014, December 09). TTCN-3 Test System Reference Architecture.

Retrieved from TTCN-3: http://www.ttcn-

3.org/index.php/about/referrence-architecture

TTWorkbench - Spirent. (2016, November). TTworkbench: Build, Execute, and

Analyze Complex Test Scenarios. Retrieved from Spirent

Commuications Inc.: https://www.spirent.com/-

/media/Datasheets/TT/TTworkbench.pdf?la=en

64

Worksoft. (2015, July 20). Lights Out Business Process Testing. What it is. Why

you need it. Retrieved from Worksoft Inc.:

https://www.worksoft.com/files/resources/Lights-Out-Business-

Process-Testing.pdf

