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selbständig angefertigt und keine anderen als die angegebenen Hilfsmittel benutzt habe. Alle

Stellen, die dem Wortlaut oder dem Sinn nach anderen Werken, gegebenenfalls auch elektronis-

chen Medien entnommen sind, sind von mir durch Angabe der Quelle als Entlehnung kenntlich

gemacht.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ort, Datum Unterschrift

iii





Acknowledgements

I express my deepest gratitude to my doctoral advisor Prof. Dr. Ingo Steinwart who gave me the

opportunity to work with him in this research area. His continuous support and constructive

discussion with him on the technical challenges during the journey of my Ph.D. always helped

me to achieve my goals. He was also very supportive regarding non-technical issues. I could

not have imagined having a better advisor for my Ph.D. research work. Besides my advisor, I

warmly thank Prof. Dr. Andreas Christmann for his interest and willingness to be a co-examiner

for my doctoral thesis.

I would like to thank all my old and new colleagues of ISA who made my stay in this institute

memorable by giving me the opportunity of travelling with them and having fruitful discussions

with them. Special thanks go to Dr. Philipp Thomann, Simon Fischer, Ingrid Blaschzyk and

Thomas Hamm for reviewing my thesis and providing their valuable comments and suggestions

in order to improve it. I would also like to thank Elke Maurer for helping me in many different

ways throughout my journey.

With all my heart I express my deepest gratitude to my parents, the closest persons to whom

this thesis is especially dedicated. They always let me go the way I like and encourage me

to achieve my goals. Words cannot express the scarifies they have made in order to fulfill my

dreams. Thank you from the bottom of my heart! I am also thankful to my sisters and brother.

Their love, support, and prayers were always with me during this journey.

v





Contents

Abstract 1

Kurzfassung 3

Publications 5

Abbreviations 7

1 Introduction 9

2 Fundamentals 21

2.1 Some Properties of Losses and Their Risks . . . . . . . . . . . . . . . . . . . . . 21

2.2 Kernels and Reproducing Kernel Hilbert Spaces . . . . . . . . . . . . . . . . . . 26

2.3 An Overview of the Statistical Analysis of SVMs . . . . . . . . . . . . . . . . . . 29

2.4 Introduction to Convex Optimization . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Asymmetric Least Squares Loss: Self-Calibration and Variance Bounds 39

3.1 Loss Functions for Quantiles and Expectiles . . . . . . . . . . . . . . . . . . . . 39

3.2 Properties of the Asymmetric Least Squares Loss . . . . . . . . . . . . . . . . . 42

3.2.1 Convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.2 Clipping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.3 Local Lipschitz Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.4 Self-Calibration Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.5 Supremum and Variance Bounds . . . . . . . . . . . . . . . . . . . . . . 49

4 Learning Rates for Kernel-Based Expectile Regression 51

4.1 Learning Rates Assuming Gaussian RBF Kernels . . . . . . . . . . . . . . . . . 53

4.1.1 Improved Entroy Bounds for the Gaussian RKHSs . . . . . . . . . . . . . 53

4.1.2 Approximation Error Bounds . . . . . . . . . . . . . . . . . . . . . . . . 55

vii



viii

4.1.3 Learning Rates for Bounded Regression . . . . . . . . . . . . . . . . . . . 59

4.1.4 Learning Rates using Data Dependent Parameter Selction . . . . . . . . 63

4.1.5 Learning Rates for Unbounded Noise . . . . . . . . . . . . . . . . . . . . 66

4.2 Learning Rates Assuming Generic Kernels . . . . . . . . . . . . . . . . . . . . . 68

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 An SVM-like Solver for Expectiles Regression 75

5.1 Primal and Dual Optimization Problem . . . . . . . . . . . . . . . . . . . . . . . 76

5.2 Working Set of Size One . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2.1 Stopping Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2.2 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3 Working Set of Size Two . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3.1 Exact Solution of Two Dimensional Problem . . . . . . . . . . . . . . . . 90

5.3.2 Working Set Selection Strategies . . . . . . . . . . . . . . . . . . . . . . . 97

5.3.3 Stopping Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Appendix A 113

A.1 Results for Different Working Set Selection Methods . . . . . . . . . . 114

A.2 Results for Different Number of Nearest Neighbors . . . . . . . . . . . 118

A.3 Results for Different Initialization Methods . . . . . . . . . . . . . . . . 122

A.4 Results for Different Stopping Criteria . . . . . . . . . . . . . . . . . . . 126

Bibliography 131

Nomenclature 137



Abstract

Conditional expectiles are becoming an increasingly important tool in finance as well as in other

areas of application such as demography when the goal is to explore the conditional distribution

beyond the conditional mean. In this thesis, we consider a support vector machine (SVM) type

approach with the asymmetric least squares loss for estimating conditional expectiles. Firstly,

we establish learning rates for this approach that are minimax optimal modulo a logarithmic

factor if Gaussian RBF kernels are used and the desired expectile is smooth in a Besov sense.

It turns out that our learning rates, as a special case, improve the best known rates for kernel-

based least squares regression in aforementioned scenario. As key ingredients of our statistical

analysis, we establish a general calibration inequality for the asymmetric least squares loss, a

corresponding variance bound as well as an improved entropy number bound for Gaussian RBF

kernels. Furthermore, we establish optimal learning rates in the case of a generic kernel under

the assumption that the target function is in a real interpolation space.

Secondly, we complement the theoretical results of our SVM approach with the empirical

findings. For this purpose we use a sequential minimal optimization method and design an

SVM-like solver for expectile regression considering Gaussian RBF kernels. We conduct various

experiments in order to investigate the behavior of the designed solver with respect to different

combinations of initialization strategies, working set selection strategies, stopping criteria and

number of nearest neighbors, and then look for the best combination of them. We further

compare the results of our solver to the recent R-package ER-Boost and find that our solver

exhibits a better test performance. In terms of training time, our solver is found to be more

sensitive to the training set size and less sensitive to the dimensions of the data set, whereas,

ER-Boost behaves the other way around. In addition, our solver is found to be faster than a

similarly implemented solver for the quantile regression. Finally, we show the convergence of

our designed solver.
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Kurzfassung

Die Expectile Regression gewinnt im Finanzwesen, der Bevölkerungswissenschaft sowie in allen

Anwendungsgebieten an Bedeutung, in denen detaillierten Eigenschaften als der Erwartungswert

der bedingten Verteilung eine Rolle spielen. In dieser Arbeit betrachten wir einen Support Vec-

tor Machine (SVM) Ansatz unter Verwendung der asymmetrischen Least-Squares Verlustfunk-

tion zur Schätzung der Expectiles einer bedingten Verteilung. Im ersten Abschnitt beweisen

wir Lernraten für dieses Verfahren, welche bis auf einen logarithmischen Faktor minimax-

optimal sind, falls wir den Gauß-Kern verwenden und die zu schätzende Expectil-Funktion

in einem gewissen Besov-Raum liegt. Als Spezialfall enthält unsere Untersuchung die Least-

Squares Regression und in diesem Fall liefert unser Beweis die bisher besten Raten für Gauß-

Kerne. Unser Beweis stützt sich in erster Linie auf eine allgemeine Kalibrierungsungleichung

der asymmetrischen Least-Squares Verlustfunktion, einer zugehörigen Varianz-Schranke, sowie

einer verbesserten Schranke an die Entropie-Zahlen des Gauß-Kerns. Desweiteren beweisen

wir optimale Lernraten für beliebige Kerne unter der Annahme, dass die Expectil-Funktion in

einem reellen Interpolationsraum liegt.

Im zweiten Abschnitt untermauern wir die theoretischen Resultate bzgl. unseres SVM-

Ansatzes mit empirischen Untersuchungen. Dazu nutzen wir eine minimale sequentielle Op-

timierungsmethode, um einen Algorithmus zur Expectil-Regression bzgl. des Gauß-Kerns zu

entwickeln. Wir führen mehrere Expermimente durch, um das Verhalten unseres Algorithmuses

unter verschiedenen Kombinationen von Initialisierungsstrategien, Auswahlstrategien, Stopp-

kriterien und Anzahlen an Nearest Neighbors zu untersuchen. Ferner führen wir einen Vergleich

zwischen unserem Algorithmus und dem R-package ER-Boost durch, in dem feststellen, dass

unser Verfahren einen geringeren Testfehler aufweist. Die Trainingszeit unseres Algorithmuses

hängt stark von der Größe des Trainingsdatensatzes ab, jedoch spielt die Dimension der Daten

nur eine untergeordnete Rolle. Im Gegensatz dazu verhält sich die Zeitkomplexität des ER-

Boost genau umgekehrt. Zusätzlich scheint es, dass unser Algorithmus schneller ist, als ein

vergleichbarer Algorithmus zur Quantil-Regression. Abschließend beweisen wir die Konvergenz

unseres Optimierungsverfahrens.
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Chapter 1

Introduction

Suppose that we have an input/output data set D := ((x1, y1), . . . , (xn, yn)) ∈ (X ×R)n drawn

in an i.i.d. fashion from some unknown probability distribution P on X × Y , where X is an

arbitrary set and Y ⊂ R. In addition, suppose that there exists a probabilistic relationship

between input and output variables, that is, an input value x is drawn from the marginal dis-

tribution PX of P on X and the corresponding output value y is drawn from the conditional

distribution P(Y |x), x ∈ X. Then, one of the goals of statistical learning is to estimate the

characteristics of the conditional distribution P( · |x). For instance, one may be interested in

estimating the central location measures of P( · |x), that one can estimate either by the con-

ditional mean E( · |x), x ∈ X using (non)parametric least squares regression or the conditional

median med( · |x), x ∈ X with the help of (non)parametric median regression based on the least

absolute deviation loss function. However, estimation of E(·|x) or med(·|x) restricts us only to

the central locations’ measures of the conditional distribution. In some real life applications, it

is required to explore the conditional distribution P( · |x) beyond the center of the distribution.

A wonderful remark in this regard is given by Mosteller and Tukey (1977):

“What regression curve does is give a grand summary for the average of the dis-

tribution corresponding to the set of xs. We could go further and compute several

different regression curves corresponding to the various percentage points of the dis-

tributions and thus get a more complete picture of the set.”

One effort in this direction is made by Koenker and Bassett Jr (1978) by introducing the well-

known quantile regression, a natural extension of the median regression, where the conditional

quantiles of P( · |x) are obtained by minimizing the asymmetric least absolute deviation (ALAD)

loss function. To be more precise, if P( · |x) has a strictly positive Lebesgue density, then the

9
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τ -quantile qτ , τ ∈ (0, 1) of Y given x ∈ X is a solution to

P (Y ≤ qτ ) = τ . (1.1)

For a detailed description, different estimation methods, and the theoretical analysis for the

(conditional) quantile regression, we refer the reader to Koenker (2005), Takeuchi et al (2006),

Christmann and Steinwart (2007), Steinwart and Christmann (2011), and references therein.

Another approach to characterize the conditional distribution is the expectile regression

proposed by Newey and Powell (1987). Let us denote by Q := P(Y |x) the conditional distri-

bution of Y given x ∈ X. In addition we assume that the first moment of Q is finite, that is,

|Q|1 :=
∫
Y y dQ(y) <∞. Then the τ -expectile µ∗τ := µ∗τ,Q ∈ R for each τ ∈ (0, 1) is the unique

solution of

τ
∫ ∞
µ∗τ

(y − µ∗τ ) dQ(y) = (1− τ)
∫ µ∗τ

−∞
(µ∗τ − y) dQ(y) , (1.2)

which is also strictly monotonically increasing for τ ∈ (0, 1), and continuously differentiable if

the density of Q is continuously differentiable, see Newey and Powell (1987, Theorem 1). Unlike

the quantiles that are determined by tail probabilities of Q, the expectiles are determined by

the tail expectations.

One can estimate expectiles algorithmically by minimizing the expectation of a suitable loss

function. There exists a class of loss functions that are consistent for expectiles. A general form

of such class of loss functions can be found in Gneiting (2011, Theorem 10), see also Steinwart

et al (2014, Equation (26)). However the only known convex loss function is the asymmetric

least squares loss (ALS) that has been considered in the literature extensively. For t ∈ R and

τ ∈ (0, 1), the ALS loss is defined by

Lτ (y, t) =

 (1− τ)(y − t)2 , if y < t ,

τ(y − t)2 , if y > t .
(1.3)

Now using (1.3), the expectile µ∗τ , τ ∈ (0, 1) of the distribution Q, provided that the second

moment of Q is finite, can be obtained by the optimization problem of the form

µ∗τ := arg min
t∈R

Ey∼QLτ (y, t) , (1.4)

see also e.g. Efron (1991) and Abdous and Remillard (1995) for further details.

Both quantiles and expectiles are special cases of so called M -quantiles as described by

Breckling and Chambers (1988) and there exists a one-to-one mapping between them, see
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e.g. Jones (1994) and Yao and Tong (1996). However, in general, expectiles do not coincide

with quantiles of the same distribution. For instance, Jones (1994) showed that expectiles

are in fact quantiles of some distribution related to the distribution of expectiles. Therefore,

the choice between expectiles and quantiles mainly depends on the applications at hand, as it

is the case in the duality between the mean and the median. For example, if the goal is to

estimate a (conditional) threshold for which only a τ -fraction of (conditional) observations lie

below this threshold, then a (conditional) τ -quantile is the right choice. On the other hand,

if one is interested to estimate a (conditional) threshold for which the average distance of

observation above this threshold is equal to the k times the average distance of observations

below this threshold, then a τ -expectile regression is a preferable choice with k = 1−τ
τ

. Clearly,

the focus in quantiles is ordering of the observations while expectiles account magnitude of the

observations which makes expectiles sensitive to the extreme values of the distribution. Since

expectiles estimation is computationally more efficient than quantiles estimation, one can use

expectiles as a promising surrogate of quantiles in the situation where one is only interested in

exploring the conditional distribution.

Expectiles have attracted considerable attention in recent years and have been applied

successfully in many areas, for instance, in demography (see, Schnabel and Eilers, 2009a), in

education (see, Sobotka et al, 2013) and extensively in finance, see for instance Wang et al

(2011), Hamidi et al (2014), Xu et al (2016) and Kim and Lee (2016). In fact, it has recently

been shown (see, e.g. Bellini et al, 2014; Steinwart et al, 2014) that expectiles are the only

risk measures that enjoy the properties of coherence and elicitability, and therefore they have

been suggested as potentially better alternative to the Value at Risk (VaR), see e.g. Taylor

(2008), Ziegel (2016) and Bellini et al (2014). More importantly, for any τ ∈ (0, 1), expectile

immediately gives the realization of the gain-loss ratio or the Ω-ratio which is a well-known

performance measure in portfolio management, see e.g. Keating and Shadwick (2002). For

more applications of expectiles, we refer the interested readers to, e.g. Aragon et al (2005),

Stahlschmidt et al (2014) and Guler et al (2014).

Recall (1.4) that the τ -expectiles can be computed with the help of asymmetric risks. To

be more precise, for a measurable function f : X → R, the L-risk is defined by

RLτ ,P(f) :=
∫
X×Y

Lτ (y, f(x))dP(x, y) =
∫
X

∫
Y
Lτ (y, f(x))dP(y|x)dPX(x) . (1.5)

Then there exists a PX-almost surely unique function f ∗Lτ ,P : X → R such that

RLτ ,P(f ∗Lτ ,P) = R∗Lτ ,P := inf{RLτ ,P(f) | f : X → R measurable} ,
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provided that the second moment of P is finite, that is, |P|2 :=
Ä ∫

X×Y y
2 dP(x, y)

ä1/2
< ∞.

Here, f ∗Lτ ,P(x) is the optimal decision function that is often called the Bayes decision function,

and equals the τ -expectile of the conditional distribution P( · |x) for PX-almost all x ∈ X, that

is f ∗Lτ ,P(x) = µ∗τ,P(·|x)(x). A corresponding empirical estimator of f ∗Lτ ,P is denoted by fD : X → R

and can be obtained, for example, with the help of empirical Lτ -risks

RLτ ,D(f) =
1

n

n∑
i=1

Lτ (yi, f(xi)) . (1.6)

To obtain the empirical decision function fD, some semi-parametric and non-parametric meth-

ods have already been proposed in the literature . For instance, Schnabel and Eilers (2009b)

considered penalized splines to compute smooth expectile estimates, Sobotka and Kneib (2012)

proposed a couple of different procedures including least asymmetrically weighted squares in

combination with mixed models, boosting within an empirical risk minimization framework,

and a restricted expectiles regression model. Furthermore, a kernel method based on local lin-

ear fits was considered by Yao and Tong (1996), and a boosting method using regression trees

was proposed by Yang and Zou (2015).

Another class of non-parametric estimation methods, that we consider in this work, are the

so-called kernel based regularized empirical risk minimizers, which include the well known sup-

port vector machines (SVMs), see Vapnik (2000, p. 138ff). Recall that SVMs build a predictor

fD,λ by solving an optimization problem of the form

fD,λ = arg min
f∈H

λ‖f‖2
H +RL,D(f) . (1.7)

Here, λ > 0 is a regularization parameter, H is a reproducing kernel Hilbert space (RKHS) over

X with bounded, measurable kernel k, see e.g. Aronszajn (1950). These kernel-based methods

often enjoy state-of-the-art empirical performance, relatively simple implementations, and a

high flexibility. Their flexibility is based on two main ingredients, namely, the reproducing

kernel Hilbert space (RKHS) H and the loss function L. The RKHS can be used to adapt to

the nature of the input domain X, or more precisely, enables us to use both standard Rd-valued

data and non-standard data such as strings and graphs. Moreover, due to the so-called kernel-

trick, the choice of H has little to no algorithmic consequences for solving SVM optimization

problems. On the other hand, the choice of L determines the learning goal. For example,

the so-called hinge loss is used for classification (Hush et al, 2006; Steinwart et al, 2011), the

least squares loss leads to the conditional mean regression (Wu et al, 2006; Bauer et al, 2007;

Caponnetto and De Vito, 2007; Steinwart et al, 2009; Eberts and Steinwart, 2013; Tacchetti
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et al, 2013), and the ALAD loss is used to estimate conditional quantiles, see for example

Steinwart and Christmann (2011) and Eberts and Steinwart (2013).

Having found an empirical estimator fD (or fD,λ in the case of (1.7)), its quality can be

measured by its distance to the target function f ∗Lτ ,P, e.g. in terms of ‖fD − f ∗Lτ ,P‖L2(PX). For

estimators obtained by some empirical risk minimization scheme, however, one can hardly ever

estimate this L2-norm directly, since f ∗Lτ ,P and ‖ · ‖L2(PX) are unknown. Instead, the standard

tools of statistical learning theory give bounds on the excess risk RLτ ,P(fD)−R∗Lτ ,P. Therefore,

our first goal in this thesis is to establish a so-called calibration inequality of Lτ that relates

both quantities. To be more precise, we will show in Theorem 3.3 that

C−1
τ (RLτ ,P(f)−R∗Lτ ,P) ≤ ‖f − f ∗Lτ ,P‖

2
L2(PX) ≤ c−1

τ (RLτ ,P(f)−R∗Lτ ,P) , (1.8)

holds for all f ∈ L2(PX) and some constants cτ , Cτ only depending on τ . The right hand

side of (1.8) provides rates for ‖fD − f ∗Lτ ,P‖L2(PX) as soon as we have established rates for

RLτ ,P(fD) − R∗Lτ ,P. Furthermore, it is common knowledge in statistical learning theory that

bounds on RLτ ,P(fD) −R∗Lτ ,P can be improved if so-called variance bounds are available. We

will see in Lemma 3.4 that the right hand side of (1.8) leads to an optimal variance bound for

Lτ whenever Y is bounded. Note that both (1.8) and the variance bound are independent of

the considered expectile estimation method. In fact, both results are key ingredients for the

statistical analysis of any expectile estimation method based on some form of empirical risk

minimization. In addition, we will show in Lemma 4.12 that (1.8) leads to establish a bound

for approximation error function in the case of generic kernels if the target function is in a real

interpolation space, that is, f ∗Lτ ,P ∈ [L2(PX), H]β,∞ for some β ∈ (0, 1), where H is a RKHS for

a generic kernel.

Our second goal is to establish learning rates of the SVM-type algorithm (1.7). Since 2L1/2

equals the least squares loss, any statistical analysis of (1.7) also provides results for SVMs using

the least squares loss. The latter have already been extensively investigated in the literature.

For example, learning rates for generic kernels can be found in Cucker and Smale (2002),

De Vito et al (2005), Caponnetto and De Vito (2007), Steinwart et al (2009), Mendelson and

Neeman (2010) and references therein. Among these articles, only Cucker and Smale (2002),

Steinwart et al (2009) and Mendelson and Neeman (2010) obtain learning rates in minimax

sense under some specific assumptions. For example, Cucker and Smale (2002) assume that the

target function f ∗L1/2,P
∈ H, while Steinwart et al (2009) and Mendelson and Neeman (2010)

establish optimal learning rates for the case in which H does not contain the target function.
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Recently Eberts and Steinwart (2013) have established (essentially) asymptotically optimal

learning rates for least squares SVMs using Gaussian RBF kernels under the assumption that

the target function f ∗L1/2,P
is contained in some Sobolev or Besov space. Recall that the Gaussian

RBF kernels are defined by

kγ(x, x
′) := exp(−γ−2‖x− x′‖2

2) , x, x′ ∈ Rd ,

where γ > 0 is called the width parameter that is usually determined in a data-dependent way,

e.g. by cross-validation. A key ingredient of the work of Eberts and Steinwart (2013) is to

control the capacity of RKHS Hγ(X) for Gaussian RBF kernel kγ on the closed unit Euclidean

ball X ⊂ Rd by an entropy number bound

ei(id : Hγ(X)→ l∞(X)) ≤ cp,d(X) γ−
d
p i−

1
p , i ≥ 1 ,

see Steinwart and Christmann (2008, Theorem 6.27), which holds for all γ ∈ (0, 1] and all

p ∈ (0, 1]. Unfortunately, the constant cp,d(X) derived from Steinwart and Christmann (2008,

Theorem 6.27) depends on p in an unknown manner. As a consequence, Eberts and Steinwart

(2013) were only able to show learning rates of the form

n−
2α

2α+d
+ξ

for all ξ > 0. To address this issue, we use (van der Vaart and van Zanten, 2009, Lemma 4.5)

and derive the following improved entropy number bound

ei(id : Hγ(X)→ l∞(X)) ≤ (3K)
1
p

Ç
d+ 1

ep

å d+1
p

γ−
d
p i−

1
p , i ≥ 1 , (1.9)

which holds for all p ∈ (0, 1] and γ ∈ (0, 1] and some constant K only depending on d. Note

that (1.9) provides an upper bound for cp,d(X) whose dependence on p is explicitly known.

Using this new bound, we are then able to establish improved learning rates of the form

(log n)d+1n−
2α

2α+d . (1.10)

Clearly these new rates replace the nuisance factor nξ of learning rates of Eberts and Steinwart

(2013) by some logarithmic term. Up to this logarithmic factor our new rates are minimax

optimal (see Györfi et al, 2002, Chapter 1.7) if f ∗Lτ ,P ∈ W
α
2 (Rd) for α > d

2
or if f ∗Lτ ,P ∈ B

α
2,∞(Rd)

for α > d. In addition, our statistical analysis provides learning rates for all asymmetric cases,

that is, for τ 6= 1/2, which have not been established in the literature yet, and also were not

possible to induce from the work of Eberts and Steinwart (2013).
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Besides learning rates for the Gaussian RBF kernels (1.10), we also establish learning rates

for generic kernels. For this we further assume that Y ⊂ [−M,M ], M > 0 and that the target

function is in a real interpolation space, i.e. f ∗Lτ ,P ∈ [L2(PX), H]β,∞ for some β ∈ (0, 1), Then

we obtain optimal learning rates of the form

n−
β
β+p ,

where p ∈ (0, 1). For τ = 0.5, these rates are the same as the ones obtained by Steinwart et al

(2009) in case of the least squares loss. However, the advantage with our rates is that they

hold, modulo a constant term, for all τ ∈ (0, 1).

Our third goal in this thesis is to complement the above mentioned theoretical results of

SVMs for Gaussian RBF kernels with the empirical findings. For this purpose, we design in

the following an SVM-like solver for solving the optimization problem (1.7). Note that, besides

Huang et al (2014) who have considered a kernelized iteratively reweighted strategy, no fully

adaptive and efficient solver for the ALS loss has been proposed yet. For designing the solver,

let us fix a feature space H0 and a feature map Φ : X → H0 of the considered kernel k. Then

for all x ∈ X, one can represent f ∈ H in terms of w ∈ H0 via

f(x) = 〈w, φ(x)〉H0 , (1.11)

see Steinwart and Christmann (2008, Theorem 4.21) for further details. Note that the latter

theorem also shows that

‖f‖H = inf{‖w‖H0 : w ∈ H0 with f = 〈w, φ(· )〉H0} . (1.12)

By using (1.6) together with (1.12) in (1.7), we then obtain the standard regularized problem

for SVMs without offset

arg min
w∈H0

λ‖w‖2
H0

+
1

n

n∑
i=1

Lτ (yi, f(xi)) . (1.13)

About the last two decades the SVM-algorithms without offset have been considered because the

offset term does in general not promise any theoretical and empirical advantages if one consider

large RKHSs such as Gaussian RKHSs, see e.g. Vogt (2002), Steinwart (2003), Keerthi et al

(2006), Steinwart et al (2011) and references theirin. On the contrary, the offset term imposes

more restrictions on the solver. We will discuss on it in more details in Chapter 5.1. Now, we
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reformulate (1.13) and obtain the primal optimization problem of the form

arg min
(w,ξ+,ξ−)

w∈H

PC(w, ξ+, ξ−) :=
1

2
‖w‖2 + Cτ

n∑
i=1

ξ2
i,+ + C(1− τ)

n∑
i=1

ξ2
i,− ,

such that ξi,+ ≥ yi − 〈w, φ(xi)〉 ,

ξi,− ≥ 〈w, φ(xi)〉 − yi ,

ξi,+ , ξi,− ≥ 0 , ∀ i = 1, . . . , n ,

(1.14)

where C := 1
2nλ

> 0. Using standard Lagrangian techniques, one can easily obtain the dual

optimization problem

arg max
(α,β)

D(α, β) := 〈α− β,y〉 − 1

2
〈α− β,K(α− β)〉 − 1

4Cτ
〈α, α〉 − 1

4C(1− τ)
〈β, β〉 ,

(1.15)

αi ≥ 0, βi ≥ 0 , ∀ i = 1, . . . , n .

Here y is the n×1 vector of labels and K is the n×n matrix with entries Ki,j := k(xi, xj), i, j =

1, . . . , n. The convexity of the loss (1.3) leads to the convexity of (1.14) which as a result leads

to the concavity of (1.15). This ensures the fulfillment of the strong duality assumptions and

consequently, the primal optimal solution can be obtained from a dual optimal solution using

a simple transformation. To be more precise, if (α∗, β∗) is an optimal solution of the dual

problem (1.15), then the optimal solution of the corresponding primal problem (1.14), for fixed

τ ∈ (0, 1), can be obtained by

w∗ :=
n∑
i=1

(α∗i − β∗i )φ(xi) ,

ξ∗i,+ := max
ß

0, yi − 〈w∗, φ(xi)〉
™
,

ξ∗i,− := max
ß

0, 〈w∗, φ(xi)〉 − yi
™
,

(1.16)

Moreover, we obtain for D∗ := D(α∗, β∗) and P∗ := P∗C(w∗, ξ∗+, ξ
∗
−) that D∗ = P∗. We further

obtain for fixed τ ∈ (0, 1) the following dual representation of the empirical conditional expectile

estimator fD,λ defined by (1.7)

fD,λ(·) =
n∑
i=1

(α∗i − β∗i )k( · , xi) . (1.17)

In order to achieve (1.17), we need to solve (1.15). Since (1.15) is of quadratic nature, we

can implement quadratic programming (QP) techniques to solve (1.15). In the literature, we

find many quadratic techniques for this purpose. However, in this thesis, we use the limiting

case of decomposition method, namely, the Sequential Minimal Optimization (SMO) method



Introduction 17

that optimizes two coordinates at each iteration (Platt, 1999). Note that the without-offset

version of SVM allows us to design an SMO-type algorithm, namely, the 1D algorithm that can

update one coordinate per iteration. For constants b1, b2 ∈ (1,∞) and ci ∈ R, i ∈ {1, . . . , n},

we will show in Theorem 5.2 that this algorithm finds the 1D-feasible solution of (1.15) by

using

α+
i = max

Å
0,
ci
b1

ã
, β+

i = max
Å

0,− ci
b2

ã
,

where ci := yi −
∑n
j 6=i=1(αj − βj)k(xi, xj) and then chooses the best direction i∗ using the 1D-

gain of the dual objective function. For constants b1, b2 ∈ (1,∞) and δ, η ∈ R, the 1D-gain for

each i ∈ {1, . . . , n} is obtained by

G(δi, ηi) := δi

Ç
∇Dαi(α, β)− b1δi

2

å
+ ηi

Ç
∇Dβi(α, β)− b2ηi

2

å
+ δiηi ,

where δi = α+
i − αi and ηi = β+

i − βi denote the difference between the new and the old values

of αi and βi respectively, and ∇Dαi(α, β) and ∇Dβi(α, β) are the gradients of D(α, β) w.r.t. αi

and βi, respectively. Besides that, we establish a duality gap criterion to determine when 1D

solver stops iterating. In addition, we design initialization strategies, namely, cold start and

warm start, where the former initialize the solver with zeros and latter by recycling the old

solution. Note that our designed SMO-type algorithm uses more than first order information,

namely, the quadratic and concave nature of D(α, β) and exactly maximizing the gain in the

dual during each iteration. Extending the idea of the 1D algorithm, we also design an SMO

algorithm that updates two dual coordinates per iteration, see Section 5.3 for further details.

In order to to obtain the optimal solution for (1.15), using only either the 1D algorithm above

or a 2D algorithm that looks for the best pair of directions is not a suitable choice, because the

former takes a longer time to converge and the latter requires a O(n2) search, see Steinwart

et al (2011) in the case of the hinge loss. We therefore design two low-cost best direction search

strategies, namely, WSS 1 and WSS 2. The former searches for two 1D directions from two equal

splits of the index set {1, . . . , n}, say i∗ and j∗, respectively, for which the 1D-gain is maximum,

and the latter first fix the i∗ chosen by WSS 1, and then searches for another direction j∗ based

on the maximum 2D gain from k-nearest neighbors of xi with the metric d(x, x′) := ‖x− x′‖2.

We also show the theoretical convergence of our solver for expectile regression in Section 5.4.

The behavior of the designed solver for the expectile regression is investigated by conducting

various experiments. It turns out that the solver performs at its best when one chooses the warm

start initialization method, the WSS 2 working set selection strategy, the nearest neighbors size

15 and the duality gap without clipping as a stopping criterion. On the contrary, Steinwart
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et al (2011) show that their solver for the hinge loss performs at its best when clipped duality

gap is used as a stopping criterion with nearest neighbors size 10 while keeping the setting of

aforementioned others criteria the same. We further compare the performance of our solver

with respect to test error and training time to the R-package ER-Boost proposed by Yang and

Zou (2015) for expectile regression. The results show, see Section 5.5, that the test performance

of our solver is better than ER-Boost on various data sets. Regarding training time, we observe

that our solver is more sensitive to the training set size and less sensitive to the dimensions

of the data set, whereas, ER-Boost behaves the other way around. Finally, recall that one can

use the expectiles as a computationally surrogate of the quantiles if one is interested only to

explore the conditional distribution. We therefore compare the run times of our solver to the

run time of the solver for quantile regression. It turns out the expectile solver is, depending

on the data set size of the considered examples in Section 5.5, between 2 and 10 times faster

than the solver for quantile regression, which shows the clear computational advantage of using

expectile regression over quantile regression.

The rest of the thesis is organized as follows: Chapter 2 introduces some basic concepts,

which include some properties of losses and their risks (Section 2.1), basics of kernels and their

RKHSs (Section 2.2), a brief overview of the statistical analysis of SVMs (Section 2.3) and

basic concepts of working with convex optimization problems (Section 2.4). In Chapter 3, we

characterize the ALS loss function. Besides establishing Lipschitz continuity bounds for the

ALS loss (Lemma 3.1), the so-called self-calibration inequalities (Theorem 3.3) are the main

results of this chapter. These inequalities are then used to establish variance bounds in Lemma

3.4 for the ALS loss. The self-calibration inequalities and the corresponding variance bounds

together with improved entropy bounds for Gaussian RKHSs (Lemma 4.2) are used as the

key ingredients in Chapter 4 for establishing oracle inequalities (Theorem 4.6) and minimax

optimal learning rates (Corollary 4.7) for SVMs under the assumption that Y ⊆ [−M,M ],

M > 0 and the target function is smooth in a Besov sense (Section 4.1.3). In Section 4.1.4,

we use a data-dependent parameter selection method that splits the data set D into a training

and a validation set and achieves same learning rates adaptively, that is, without knowning

the unknown smoothness parameters. Furthermore, we replace the assumption of bounded

regression with the assumption of exponential decay of Y -tails in Section 4.1.5 and achieve

the same learning rates. Finally, in Section 4.2, we consider generic kernels and obtain the

learning rates under the assumption that Y ⊆ [−M,M ] and that the target function is in a

real interpolation space.
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In Chapter 5 we design an SVM-like solver for expectile regression. This includes the

formulation of the primal and the dual optimization problem for our learning scenario (Section

5.1), an algorithm for updating one coordinate along with some initialization strategies (Section

5.2) and an algorithm for updating two coordinates with some working set selection strategies

(Section 5.3). In addition, the convergence analysis of the designed solver is given in Section 5.4.

Finally, experimental results are presented in Section 5.5 where we investigate the behavior of

the solver and compare its performance with the performance of existing R-package ER-Boost.

The detailed results of the experiments are given in the appendix A.

In the end, we would like to mention that many of the results presented in this thesis have

been published in advance. For instance, the results of Chapter 3 and partly of Chapter 4 have

been published in Farooq and Steinwart (2017a). Moreover, the findings of Chapter 5 have

been published in Farooq and Steinwart (2017b). Furthermore, the source code of the solver

for expectile regression (ex-svm) has been added in the larger package liquidSVM, see Steinwart

and Thomann (2017), that can be downloaded from http://www.isa.uni-stuttgart.de/

software/.

http://www.isa.uni-stuttgart.de/software/
http://www.isa.uni-stuttgart.de/software/
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Chapter 2

Fundamentals

This chapter introduces some basic concepts which we use in the subsequent chapters. In

Section 2.1 we present some notions of loss functions and their associated risks which will

extensively be used in Chapter 3 to characterize the ALS loss function. Section 2.2 deals with

basic concepts of kernels and their reproducing kernel Hilbert spaces. We also briefly describe

the RKHSs of the well-known Gaussian RBF kernels that are often used in SVMs. After this, an

overview of the statistical analysis of SVMs is given in Section 2.3. The concepts given in both

Section 2.2 and Section 2.3 will be used in Chapter 4 in order to establish oracle inequalities

and learning rates for the optimization problem (1.7). Finally, Section 2.4 covers the basics

concepts of convex optimization that will be used in Chapter 5 to develop an algorithm using

an SVM-like approach for solving (1.7). The contents of this chapter are primarily based on

Cristianini and Shawe-Taylor (2000), Schölkopf and Smola (2002), Boyd and Vandenberghe

(2004), Abe (2005) and Steinwart and Christmann (2008).

2.1 Some Properties of Losses and Their Risks

Given an i.i.d. data set D := ((x1, y1), . . . , (xn, yn)) ∈ (X × Y )n drawn from some unknown

probability distribution P on X × Y , where X ⊂ Rd and Y ⊂ R, the goal of (supervised)

statistical learning is to find a function f : X → R such that for every pair (x, y) ∈ (X × Y ),

the evaluation f(x) is a good prediction of the possible response y at x. In order to assess the

quality of the “learned” function f , we recall some well established concepts from Steinwart

and Christmann (2008, Chapter 2 and Chapter 3) and Schölkopf and Smola (2002, Chapter

3). Let us begin by introducing the notion of loss function that measures the loss or cost of

predicting response y at different levels of input variable(s).

21



22 2.1. Some Properties of Losses and Their Risks

Definition 2.1 (cf. Steinwart and Christmann (2008, Definition 2.1)). Let (X,A) be a mea-

surable space and Y ⊂ R be a closed subset. Then a function L : X × Y ×R→ [0,∞) is called

a loss function if it is measurable.

We often use the notation L ◦ f to represent the function (x, y) → L(x, y, f(x)). The

loss function L can either be a supervised loss function defined by L := Y × R → [0,∞)

or an unsupervised loss function defined by L : X × R → [0,∞). In practice, the choice of

loss function is determined by the learning problem at hand. For instance, in the case of the

supervised loss, the classification loss Lclass := {−1, 1} × R → [0,∞) defined by Lclass(y, t) :=

1(−∞,0](ysignt) is used for the classification problem and the least squares loss LLS := Y ×R→

[0,∞) defined by LLS(y, t) := (y − t)2 is used for prediction. Furthermore, to study quantiles

and expectiles, the pin-ball loss and the asymmetric least squares loss are used respectively,

see Steinwart and Christmann (2011) and Farooq and Steinwart (2017b) for further details.

Note that a loss function can be characterized by its desirable properties. We define in the

following the convexity and continuity of the loss function, see e.g. Steinwart and Christmann

(2008, Definition 2.12 and 2.14), and we will further see in Chapter 5 that how the convex loss

function leads to the convex optimization problem.

Definition 2.2 (cf. Steinwart and Christmann (2008, Definition 2.12 and 2.14)). A loss L :

X × Y ×R→ [0,∞) is called (strictly) convex and continuous if L(x, y, ·) : R→ [0,∞) is

(strictly) convex and continuous, respectively, for all x ∈ X and y ∈ Y .

Recall Definition 2.1 that the loss function L measures only the loss of a function f for a

fixed pair (x, y). In statistical learning, we are rather interested in the average loss, where the

average is taken with respect to the probability distribution P.

Definition 2.3 (cf. Steinwart and Christmann (2008, Definition 2.2 and 2.3)). For a loss

function L : X × Y × R → [0,∞) and a probability distribution P on X × Y , the L-risk of a

measurable function f : X → R is defined by

RL,P(f) :=
∫
X×Y

L(x, y, f(x))dP(x, y) =
∫
X

∫
Y
L(x, y, f(x))dP(y|x)dPX(x) . (2.1)

Moreover, the minimal L-risk is defined by

R∗L,P := inf{RL,P(f)|f : X → R is measurable} ,

which is also called the Bayes risk for some loss function L with respect to P.
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Here, the integral over X×Y always exists because (x, y) 7→ L(x, y, f(x)) is measurable and

non-negative. If there exists a measurable function f ∗L,P : X → R such that RL,P(f ∗L,P) = R∗L,P,

then f ∗L,P is called the Bayes decision function (we will often call an optimal decision function).

We will see in Chapter 3 in the case of the ALS loss that f ∗L,P is unique, however, in some other

cases it is not, see e.g. Steinwart and Christmann (2011) for the pinball loss.

The risk function RL,P(·) is measurable in the following scenario, see Steinwart and Christ-

mann (2008, Lemma 2.11) for proof. Assume that F ⊂ L0(X) := {f : X → R|f measurable}

is a subset equipped with a complete and separable metric d, and the corresponding Borel

σ-algebra. We also assume that

lim
n→∞

d(fn, f) = 0 =⇒ lim
n→∞

fn(x) = f(x) , x ∈ X ,

for all fn, f ∈ F , that is d dominates the pointwise convergence. Then the map F ×X → R,

(f, x) 7→ f(x) is measurable and thus are the map X×Y ×F → [0,∞), (x, y, f) 7→ L(x, y, f(x))

and the risk functional RL,P : F → [0,∞]. Here, it is interesting to note that the pointwise

convergence of the sequence of measurable functions (fn) to some f : X → R implies the

convergence of L(x, y, fn(x)) → L(x, y, f(x)) for all (x, y) ∈ X × Y . However, this does not

generally hold for the convergence of associated risk RL,P(fn) to RL,P(f). In other words, the

risk of a continuous loss is not necessarily continuous. In that case, one can measure (local)

Lipschitz continuity that holds for almost all frequently used loss functions.

Definition 2.4 (cf Steinwart and Christmann (2008, Definition 2.18)). A loss function L :

X × Y × R→ [0,∞) is called

i) locally Lipschitz continuous if for all M > 0, we have

|L|M,1 := sup
t,t′∈[−M,M ]

t 6=t′

sup
x∈X
y∈Y

L(x, y, t)− L(x, y, t′)

|t− t′|
<∞ .

ii) Lipschitz continuous if |L|1 := supM>0|L|M,1 <∞.

If Y ⊂ R is finite and L : Y × R→ [0,∞) is a convex loss function, then by Steinwart and

Christmann (2008, Lemma A.6.5), the loss L is locally Lipschitz continuous, and by Steinwart

and Christmann (2008, Lemma 2.13 and Lemma 2.19), RL,P : L0(X) → [0,∞] is convex

and locally Lipschitz continuous, respectively. To be more precise, for all M > 0 and all

f, g ∈ L∞(PX) with ‖f‖∞ ≤M and ‖g‖∞ ≤M , we have, see Steinwart and Christmann (2008,

Lemma 2.19)

|RL,P(f)−RL,P(g)| ≤ |L|M,1 · ‖f − g‖L1(PX) .
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In the following, we present the notion of Nemitski loss.

Definition 2.5 (cf. Steinwart and Christmann (2008, Definition 2.16)). A loss L : X×Y ×R→

[0,∞) is called a Nemitski loss if there exists a measurable function b : X × Y → [0,∞) and

an increasing function h : [0,∞)→ [0,∞) such that

L(x, y, t) ≤ b(x, y) + h(|t|) , (x, y, t) ∈ X × Y × R .

Furthermore, L is called a Nemitski loss of order p ∈ (0,∞), if there exists a constant

c > 0 such that

L(x, y, t) ≤ b(x, y) + c |t|p , (x, y, t) ∈ X × Y × R .

Finally, if P is a distribution on X × Y with b ∈ L1(P), we say L is P-integrable Nemitski

loss.

From Definition 2.3 it is trivial to see that the risk function (2.1) can be computed by iterated

integrals. In other words, one can compute inner and outer integrals of (2.1) separately. This

generates the idea of inner risks that are key ingredients of our analysis in Chapter 3.

Definition 2.6 (cf. Steinwart and Christmann (2008, Definition 3.3)). For a loss L : X × Y ×

R→ [0,∞) and a distribution Q on Y , the inner L-risk of Q are defined by

CL,Q,x(t) :=
∫
Y
L(x, y, t)dQ(y) , x ∈ X, t ∈ R ,

and the minimal inner L-risks are defined by

C∗L,Q,x := inf
t∈R
CL,Q,x(t) , x ∈ X .

Given a distribution P on X × Y , the inner risks CL,P (·|x),x(f) of a function f can be used

to compute the risk RL,P(f) by

RL,P(f) =
∫
X
CL,P(·|x),x(f(x))dPX(x) .

Furthermore, Steinwart and Christmann (2008, Lemma 3.4 and Lemma 3.11) show that the

minimal inner risk C∗L,P (·|x),x is measurable in x ∈ X and finite. Therefore,R∗L,P can be computed

by

R∗L,P =
∫
X
C∗L,P(·|x),xdPX(x) .
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In other words, the minimal risk R∗L,P can be achieved by pointwisely minimizing the inner risks

CL,P(·|x),x, x ∈ X, which, in general, is easier than direct minimization of RL,P(·). Moreover,

one can compute the excess L-risk, when R∗L,P <∞ holds, by

RL,P(f)−R∗L,P =
∫
X
CL,P(·|x),x(f(x))− C∗L,P(·|x),xdPX(x) , (2.2)

for all measurable f : X → R. Clearly, one can obtain the excess risk first by analyzing the

excess inner L-risks CL,P(·|x),x(f(x)) − C∗L,P(·|x),x, x ∈ X and then investigating the integration

with respect to PX , see Steinwart (2007). Besides some technical advantages, the analysis

only depends on P via the conditional distributions P(·|x) and hence allows us to consider the

excess inner L-risks CL,Q,x(f(x)) − C∗L,Q,x for classes of distributions Q on Y as a template for

CL,P(·|x),x(f(x))−C∗L,P(·|x),x. This idea is very useful in the context of machine learning where we

assume that the distribution P and hence P(·|x), x ∈ X, is (almost) completely unknown, and

the only information we have is that the distribution P belongs to a group of a certain type of

distributions.

We conclude this section by presenting the idea of clipping that was first used by Bousquet

and Elisseeff (2002) in the context of SVMs. Here we assume that Y ⊂ [−M,M ] for some

M > 0, and we are interested in [−M,M ]-valued estimator on X. For this, we need to restrict

the loss L to X × Y × [−M,M ].

Definition 2.7 (cf. Steinwart and Christmann (2008, Definition 2.22)). Let L : X × Y ×R→

[0,∞) be a loss function and M > 0. Then we say that L can be clipped at M , if for all

(x, y, t) ∈ (X × Y × R) we have

L(x, y, Ût ) ≤ L(x, y, t) ,

where Ût denotes the clipped value of t at ±M , that is

Ût :=


−M if t < −M ,

t if t ∈ [−M,M ] ,

M if t > M .

If L is a convex loss function, then by Steinwart and Christmann (2008, Lemma 2.23) L

can be clipped at M only if Y ⊆ [−M,M ] and L has at least one global minimizer in [−M,M ].

In addition, the clipping operation potentially reduces the risks, that is, RL,P( Ûf) ≤ RL,P(f).

We are therefore mostly interested in bounds of risk RL,P( Ûf) of the clipped decision function

rather than the risk RL,P(f) of the unclipped decision function. This also gives us algorithmic

advantages, see Steinwart et al (2011) and Chapter 5 for the case of the hinge loss and the ALS

loss, respectively.
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2.2 Kernels and Reproducing Kernel Hilbert Spaces

Reproducing kernels and their associated reproducing kernel Hilbert spaces (RKHS) are one of

the main building blocks of SVMs, as we will see in Chapter 4 and Chapter 5. In this section,

we present some basic notions of them. Let us first define kernels.

Definition 2.8 (c.f. Steinwart and Christmann (2008, Definition 4.1)). Let X be a non-empty

set. Then a function k : X ×X → R is called a kernel on X, if there exists a Hilbert Space H

and a map Φ : X → H such that, for all x, x′ ∈ X, we have

k(x, x′) = 〈Φ(x),Φ(x′)〉H , (2.3)

where Φ is called a feature map and H a feature space of k.

In general, the feature map Φ and the feature space H are not uniquely determined, however,

different feature maps and corresponding feature spaces associated to the same kernel k lead

to the unique inner product 〈Φ(x),Φ(x′)〉. For instance, we have Φ1 and Φ2 that map into

feature spaces H1 and H2, respectively, associated to the same kernel k. If Φ1(x) 6= Φ2(x)

then consequently H1 6= H2, and furthermore spaces H1 and H2 may differ in terms of their

dimensions. However, we always have 〈Φ1(x),Φ1(x′)〉H1 = 〈Φ2(x),Φ2(x′)〉H2 . For further details

in this context, we refer the reader to Schölkopf and Smola (2002, Chapter 2.2.2 and 2.2.4).

Note that in case of high dimensional feature spaces, the computation of the inner product

〈Φ(x),Φ(x′)〉 is expensive. However, for learning methods which only require the inner product

of feature maps such as SVMs, the so called kernel trick provides an alternative way to compute

inner product without knowing the feature space H and without explicitly mapping into H. In

fact, the kernel trick makes it possible to compute the result of the inner product in the original

space X implicitly, as we can see in the following examples of kernels. The detailed properties

of these kernels can be found in Schölkopf and Smola (2002, Chapter 2.3).

Example 2.9 (Polynomial Kernel). For m ∈ N, c > 0, and x, x′ ∈ Rd for d ≥ 1, the kernel

k(x, x′) := (〈x, x′〉+ c)m (2.4)

is called inhomogeneous polynomial kernel of order m. For c = 0, it is called homogeneous

polynomial kernel. Finally, for m = 1 and c = 0, it is called linear kernel.

Example 2.10 (Exponential Kernel). For d ∈ N and x, x′ ∈ Rd, the kernel

k(x, x′) := exp(〈x, x′〉) , (2.5)

is called exponential kernel.
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In Definition 2.8 the feature space H is required in order to decide whether a given function

k is a kernel, and this requirement sometimes becomes difficult to fulfill. In the following, we

characterize kernels in terms of inequalities that helps to define kernels in a different way.

Definition 2.11 (cf. Steinwart and Christmann (2008, Definition 4.15)). A function k : X ×

X → R is called positive definite if

n∑
i,j=1

cicjk(xi, xj) ≥ 0 (2.6)

holds for all n ∈ N, c1, . . . , cn, and all x1, . . . , xn ∈ X. Moreover, k is said to be strictly

positive definite if, for mutually distinct x1, . . . , xn ∈ X, the equality in (2.6) only holds for

c1 = · · · = cn = 0. Finally, k is called symmetric if k(x, x′) = k(x′, x) for all x, x′ ∈ X.

In the latter definition, K := (k(xi, xj))i,j for all fixed x1 . . . xn ∈ X is called the Gram

matrix, and (2.6) is equivalent to saying that Gram matrices are positive definite. The classical

and well-known result shows that the definiteness and symmetry of a function k are necessary

and sufficient conditions to say that k is a kernel, see Steinwart and Christmann (2008, The-

orem 4.16) for a proof. For more properties of kernel k, we refer the reader to Steinwart and

Christmann (2008, Chapter 4.1).

In Definition 2.8, we note that the feature map Φ and the corresponding feature space H

are not uniquely determined. One way to resolve this problem is to choose a canonical feature

map of the kernel k that leads to a well-known space called the reproducing kernel Hilbert

space (RKHS). This space is the smallest feature space of the kernel k in a certain sense.

Definition 2.12 (cf. Steinwart and Christmann (2008, Definition 4.18)). Let X 6= ∅ and H be

a real-valued Hilbert function space over X.

i) A function k : X × X → R is called reproducing kernel of H if we have k(·, x) ∈ H

for all x ∈ X and if the reproducing property

f(x) = 〈f, k(·, x)〉 ,

holds for all f ∈ H and all x ∈ X.

ii) The space H is called a reproducing kernel Hilbert space over X if for all x ∈ X

the Dirac functional δx : H → R defined by

δx(f) := f(x) ,

is continuous.
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It is important to note that not every Hilbert space is RKHS but only those for which ii)

holds, i.e, the Hilbert spaces in which the evaluation functionals are bounded. We further note

that the reproducing kernel k is a kernel in the sense of (2.3) with feature space H and canonical

feature map Φ : X → H (see Steinwart and Christmann, 2008, Lemma 4.19). It is also known,

see Steinwart and Christmann (2008, Theorem 4.20, 4.21), that reproducing kernel of a RKHS

is unique, and so is the RKHS associated to the positive definite kernel.

Another way of constructing RKHSs for a continuous positive definite kernel k is to choose

Mercer maps that are combinations of eigenvalues-eigenfunctions of the integral operator Tk :

L2(X) → L2(X). To be more precise, let k be a measurable and bounded kernel on X with

separable RKHS H and µ be a finite measure on X. Then the integral operator

(Tkf)(·) :=
∫
X
k(·, x)f(x)dµ(x) ,

is compact, self-adjoint, and non-negative. Consequently, there exists an at most countable

family of eigenvalues (λi)i∈I ⊂ (0,∞) and corresponding orthonormal system (ONS) ([ẽi]∼)i∈I ⊂

L2(PX) of eigenfunctions of Tk. Moreover, we have
∑
i∈I λi < ∞, and there exists a family

(ei)i∈I ∈ H with

[ei]∼ = [ẽi]∼ ∀i ∈ I

and a measure set N ∈ X with PX(N) = 0 such that

k(x, x′) =
∑
i∈I

λi · ei(x)ei(x
′) , ∀x, x′ ∈ X \N .

For further details, see Steinwart and Scovel (2012, Lemma 2.1 and Corollary 3.2).

In the following, we recall the Gaussian RBF kernel and describe its associated RKHS when

the input space X is a subset of Rd. However, if X exhibits a special structure, such as text

strings or DNA sequence, it is required to use a RKHS that is suitable to this structure, see

e.g. Shawe-Taylor and Cristianini (2004) for a detailed overview in this context. For more

technical details on the Gaussian RBF kernels and their associated RKHSs if X ⊂ Rd, we refer

to Steinwart and Christmann (2008, Chapter 4.4).

Definition 2.13 (cf. Steinwart and Christmann (2008, Proposition 4.10)). Let x, x′ ∈ Rd,

d ∈ N. Then for all γ > 0, the R-valued kernel

kγ(x, x
′) := exp(−γ−2‖x− x′‖2

2) , (2.7)

is called Gaussian RBF kernel with width γ. Here ‖ · ‖2 denotes the Euclidean norm on Rd.
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Gaussian RBF kernel is translation invariant which is also referred to the stationarity of a

kernel. Furthermore, a feature map Φγ : X → L2(Rd) of the Gaussian RBF kernel kγ for all

γ > 0, see (Steinwart and Christmann, 2008, Lemma 4.45), is

Φγ(x) :=

Ç
2√
πγ

å d
2

exp(−2γ−2‖x− ·‖2
2) x ∈ X ,

where L2(Rd) is a feature space of kγ. Let us denote by Hγ the RKHS of the Gaussian RBF

kernel kγ, then by Steinwart and Christmann (2008, Proposition 4.46) for any non-empty set

X ⊂ Rd and γ > 0 the operator Tγ : L2(Rd)→ Hγ(X)

Tγg(x) :=

Ç
2√
πγ

å d
2
∫
Rd

exp(−2γ−2‖x− y‖2
2)g(y)dy g ∈ L2(Rd) , x ∈ X ,

is a metric surjection. In addition, by Steinwart and Christmann (2008, Theorem 4.63), the

RKHS Hγ(Rd) is dense in Lp(µ) where µ is a finite measure on Rd and p ∈ [1,∞). If we restrict

kγ to k̃γ := kγ|X×X where X ⊂ Rd is a compact subset then the corresponding RKHS H̃γ is

dense in C(X) and thus k̃γ is a universal kernel, see also Steinwart and Christmann (2008,

Lemma 4.55 and Corollary 4.58).

2.3 An Overview of the Statistical Analysis of SVMs

In this section, we give an overview of the statistical analysis of SVMs. We will also present the

general oracle inequality that will serve as the basis to establish oracle inequalities and leaning

rates in the case of the ALS loss in Chapter 4. For further technical details in the context of

statistical analysis of SVMs, we refer to Steinwart and Christmann (2008, Chapter 4, 5, 6 & 7).

Here, we recall Steinwart and Christmann (2008, Chapter 5.1) for the general SVM solution.

Definition 2.14. Let L : X × Y ×R→ [0,∞) be a loss, H be a RKHS of a measurable kernel

k over X and P be a distribution on X × Y . Then for λ > 0, a function fP,λ ∈ H satisfying

λ‖fP,λ‖2
H +RL,P(fP,λ) = inf

f∈H
λ‖f‖2

H +RL,P(f)

is called general SVM solution. Moreover, for fP,λ we have

λ‖fP,λ‖2
H ≤ λ‖fP,λ‖2

H +RL,P(fP,λ) ≤ RL,P(0).

It is important to know that a unique fP,λ exists if P is a distribution on X × Y with

RL,P(0) <∞, L is a convex and locally Lipschitz continuous loss, and H is a separable RKHS

of a bounded measurable kernel k over X, see Steinwart and Christmann (2008, Lemma 5.1,
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Theorem 5.2 and Corollary 5.3). Since the distribution P is unknown in practice, we therefore

consider the corresponding empirical SVM solution, see e.g. Steinwart and Christmann

(2008, Theorem 5.5).

Theorem 2.15 (Representer Theorem). Let L : X × Y ×R→ [0,∞) be a convex loss, H be a

RKHS over X and D := ((x1, yn), . . . , (xn, yn)) ∈ (X × Y )n be a data set. Then for all λ > 0,

there exits a unique fD,λ ∈ H such that

λ‖fD,λ‖2
H +RL,D(fD,λ) = inf

f∈H
λ‖f‖2

H +RL,D(f) . (2.8)

In addition, there exist α1, . . . αn ∈ R such that

fD,λ(·) =
n∑
i=1

αik(xi, ·) . (2.9)

If L is a convex loss and H is a separable RKHS, then the decision function fD,λ for all

λ > 0 and the corresponding learning method producing fD,λ are measurable, see Steinwart and

Christmann (2008, Lemma 6.23). Additionally, if L is a continuous loss that is differentiable,

then the maps D 7→ fD,λ mapping (X×Y )n to H are continuous, see Steinwart and Christmann

(2008, Lemma 5.13). From (2.9) we further see that the decision function fD,λ elucidates

the importance of kernels. In other words, by transferring the solution fD,λ into a kernel

representation, often called dual representation with dual variables α ∈ Rn, one can reduce the

computational efforts in applications. We will elaborate the general idea of dual formulation of

an optimization problem in Section 2.4 and the computation of dual variables in the context

of ALS loss in Chapter 5. To this end, we return to the idea of the general SVM solution fP,λ.

If L : X × Y ×R→ [0,∞) is a convex, P-integrable Nemitski loss of order p ∈ [1,∞), then by

Steinwart and Christmann (2008, Chapter 5.2) and Steinwart and Christmann (2008, Theorem

5.8), the kernel representation of fP,λ is

fP,λ(·) = − 1

2λ

∫
X×Y

h(x, y)k(x, ·)dP (x, y) = − 1

2λ
EPhΦ , (2.10)

where h(x, y) ∈ ∂L(x, y, fP,λ(x)), (x, y) ∈ X × Y and ∂L(·) denotes the subdifferential of L

w.r.t. the third argument, see (Steinwart and Christmann, 2008, Lemma A.6.15) for further

details. Similar to (2.10), we now reformulate the kernel representation of the empirical SVM

solution fD,λ (2.9), that is

fD,λ(·) = − 1

2nλ

n∑
i=1

h(xi, yi)k(xi, ·) = − 1

2λ
EDhΦ , (2.11)
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where h(x, y) ∈ ∂L(x, y, fD,λ(x)) for all (x, y) ∈ X × Y . From (2.11) we see that the possible

dual coefficients αi, i = 1, . . . , n are determined by

αi :=
h(xi, yi)

2nλ
, i = 1, . . . , n .

Both the decision function fD,λ produced by the SVM in Theorem 2.15 and the associated risk

RL,P(fD,λ) are random variables because data D in general comprises i.i.d. observations from

some unknown distribution P. Therefore, for an fD,λ, one is usually interested to determine

learning ability of an SVM. In other words, one wants to know that with what probability, the

risk RL,P(fD,λ) is close to the Bayes’ risk R∗L,P. One way to address this question is to establish

the L-risk consistency for P, see Steinwart and Christmann (2008, Definition 6.4), that is

lim
n→∞

P n(D ∈ (X × Y )n : RL,P(fD,λ) ≤ R∗L,P + ε) = 1 , (2.12)

for all ε > 0. Moreover, (2.12) leads to universal L-risk consistency, if it is L-risk consistent

for all distributions P on X × Y . For universal consistency of learning methods for binary

classification and least squares regression, we refer to Devroye et al (1996) and Györfi et al

(2002), respectively. Clearly, the consistency definition (2.12) does not specify the speed of

convergence of the learning method. Therefore, a better approach is to establish learning rates,

see, e.g. Steinwart and Christmann (2008, Lemma 6.5). To be more precise, for a fixed sequence

(εn) ⊂ (0, 1] that converges to 0, we say that the learning method learns with rate (εn), if there

exists a family (c%)%∈(0,1] such that for all n ≥ 1 and all % ∈ (0, 1], we have

P n(D ∈ (X × Y ) : RL,P(fD,λ) ≤ R∗L,P + cP c% εn) ≥ 1− % . (2.13)

Note that learning rate (2.13) includes a constant cP that depends on the unknown data gener-

ating distribution P , and by no-free-lunch theorem (see, e.g. Devroye et al, 1996, Theorem 7.2)

there exists no learning method that enjoys uniform learning rates for all distributions P. One

way to cope with this issue is to make a priori assumptions on the distribution P, that is, by

establishing learning rates under different assumptions on P, one can explore the distributions

for which learning method learns well.

Recall that the statistical analysis of both empirical risk minimization (ERM), see Steinwart

and Christmann (2008, Chapter 6.3) for further details, and SVMs relies on bounds of the

probabilities

P n(D ∈ (X × Y )n : |RL,D(fD,λ)−RL,P(fD,λ)| > ε) .
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In order to establish these bounds, well-known concentration inequalities such as Markov’s

inequality, Hoeffding’s inequality, Berstein’s inequality and Talagrand’s inequality are given

in (Steinwart and Christmann, 2008, Chapter 6.2 and Appendix A.9). These lead to oracle

inequalities for SVMs where each relates the risk of an empirical SVM solution to the corre-

sponding infinite-sample SVM. For more details on oracle inequalities for SVMs, we refer to

Steinwart and Christmann (2008, Chapter 6.4 & Chapter 7.4). In this section, we will only

recall the general oracle inequality for SVMs established in (Steinwart and Christmann, 2008,

Theorem 7.23). In order to fully understand this oracle inequality, we first recall notions of

supremum bound and variance bound of a loss function L.

Definition 2.16. Let L : X × Y × R→ R be a loss that can be clipped at some M > 0 and P

be a distribution on X × Y such that the Bayes decision function f ∗L,P : X → [−M,M ] exists.

Then we say that L satisfies a supremum bound

‖L ◦ f − L ◦ f ∗L,P‖∞ ≤ B , (2.14)

if there exists a constant B > 0. In addition, for all (x, y) ∈ X × Y and f : X → [−M,M ], L

satisfies a variance bound

EP(L ◦ f − L ◦ f ∗L,P)2 ≤ V (EP(L ◦ f − L ◦ f ∗L,P))ϑ , (2.15)

if there exists a ϑ ∈ (0, 1) such that V ≥ B2−ϑ.

For many loss functions, establishing a variance bound (2.15) is a non-trivial task. We refer

the reader to Steinwart and Christmann (2008, Theorem 8.24), Steinwart and Christmann

(2008, Example 7.3) and Steinwart and Christmann (2011, Theorem 2.8) for variance bounds

of hinge loss, least squares loss and pinball loss, respectively. Moreover, the variance bounds

for the ALS loss are established in Chapter 4.

We now introduce the concept of covering numbers, see e.g. Steinwart and Christmann

(2008, Definition 6.19) which is used to control the capacity of the underlying RKHS H.

Definition 2.17. For a metric space (F , d) and ε > 0, a subset S ⊂ F is called an ε-net of F

if for all f ∈ F there exists an s ∈ S with d(s, f) ≤ ε. Moreover, the ε-covering number of F

is defined by

N (F , d, ε) := inf
ß
n ≥ 1 : ∃ s1, . . . sn ∈ F such that F ⊂

n⋃
i=1

Bd(si, ε)
™
,

where inf ∅ := ∞ and Bd(s, ε) := {f ∈ F : d(f, s) ≤ ε} denotes the closed ball with center

s ∈ F and radius ε.
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The covering numberN (F , d, ε) is in fact the size of the smallest possible ε-net that is needed

to approximate the set F with accuracy ε. Another way to control the capacity of RKHSs is

the entropy numbers, see e.g.Steinwart and Christmann (2008, Definition 6.20), which is the

dual of the covering numbers..

Definition 2.18 (Entropy number). Let (F , d) be a metric space and n ≥ 1 be an integer.

Then the n-th (dyadic) entropy number of (F , d) is defined by

en(F , d) := inf
ß
ε > 0 : ∃ s1, . . . sn ∈ F such that F ⊂

2n−1⋃
i=1

Bd(si, ε)
™
.

Moreover, let T : E → F be a bounded, linear operator between the normed spaces E and F ,

then ei(T ) := ei(TBE, ‖ · ‖F ) .

Note that the bounds on entropy numbers imply equivalent bounds on covering numbers

and vice verse, as shown in Steinwart and Christmann (2008, Lemma 6.21) and Steinwart and

Christmann (2008, Exercise 6.8). In the following lemma, we present one directional relation.

Lemma 2.19. Let (F , d) be a metric space, c > 0 and p > 0 be constants such that

lnN (F , d, ε) <
Åc
ε

ãp
,

for all ε > 0. Then en(F , d) ≤ 3
1
p c n−

1
p for all n ≥ 1.

Let us now present a general oracle inequality for SVMs that is given in Steinwart and

Christmann (2008, Theorem 7.23). This will provide the basis to establish oracle inequalities

and corresponding learning rates in the case of the ALS loss in Chapter 4.

Theorem 2.20 (Oracle inequality for SVMs). Let L : X×Y ×R→ [0,∞) be a locally Lipschitz

continuous loss that can be clipped at M > 0 and satisfies the supremum bound (2.14) for a

B > 0. Moreover, let H be a separable RKHS of a measurable kernel k over X and P be a

distribution on X × Y such that the variance bound (2.15) is satisfied for constants ϑ ∈ [0, 1],

V ≥ B2−ϑ, and all f ∈ H. Assume that for fixed n ≥ 1, there exist constants p ∈ (0, 1) and

a ≥ B such that

ED∼PnXen(id : H → L2(DX)) ≤ an−
1
2p , i ≥ 1 . (2.16)

Finally, fix an f0 ∈ H and a constant B0 ≥ B such that |L ◦ f0|∞ ≤ B0. Then, for all fixed

% > 0 and λ > 0, the SVM using H and L satisfies

λ‖fD,λ‖2
H +RL,P( ÛfD,λ)−R∗L,P ≤ 9(λ‖f0‖2

H +RL,P(f0)−R∗L,P)
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+K

Ç
a2p

λpn

å 1
2−p−ϑ+ϑp

+ 3

Ç
72V %

n

å 1
2−ϑ

+
15B0%

n
, (2.17)

with probability Pn not less than 1− 3e−%, where K ≥ 1 is a constant only depending on p, M ,

ϑ and V .

If k is a Gaussian kernel, the constant K in (2.17) depends on p in an unknown manner,

see (Steinwart and Christmann, 2008, Theorem 7.16). In Chapter 4 we will show an explicit

bound for K considering p ∈ (0, 1
2
]. The right hand side of the oracle inequality (2.17) consists

of two parts, namely the approximation error and the estimation error. If the distribution P

is such that R∗L,P < ∞ holds, then the approximation error function A : [0,∞) → [0,∞), see

Steinwart and Christmann (2008, Definition 5.14), is defined by

A(λ) := inf
f∈H

λ‖f‖2
H +RL,P(f)−R∗L,P <∞ , λ ≥ 0 , (2.18)

The approximation error function A(λ) is increasing, concave and continuous (see, Steinwart

and Christmann, 2008, Lemma 5.15)). By Steinwart and Christmann (2008, Corollary 5.18),

there exists a constant c > 0 such that the approximation error function can be bounded by

A(λ) ≤ c λ for all λ > 0 if and only if f ∗P,λ ∈ H.

2.4 Introduction to Convex Optimization

This section contains an overview of some of the basic tools that are required to solve the

optimization problem (1.7). In particular, we will deal with constrained convex optimization

problems. In addition, we will give a brief overview on optimization algorithms to deal with such

problems. The contents of this section mainly follow Schölkopf and Smola (2002, Chapter 6),

Cristianini and Shawe-Taylor (2000, Chapter 5), Steinwart and Christmann (2008, Chapter 11)

and Boyd and Vandenberghe (2004). Let us begin by the definition of the primal optimization

problem, see e.g Cristianini and Shawe-Taylor (2000, Definition 5.1), Schölkopf and Smola

(2002, Chapter 6.3) and Abe (2005, Chapter 5.5.1).

Definition 2.21. Let f , gi, i = 1, . . . k and hj, j = 1, . . . ` be functions defined on a domain

Ω ⊆ Rn. Then a primal optimization problem (P) is of the form:

min
w∈Ω

f(w) (2.19)

subject to gi(w) ≤ 0 , i = 1, . . . , k , (2.20)

hj(w) = 0 , j = 1, . . . , ` , (2.21)
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The function f(w) in (2.19) is the objective function, and (2.20) and (2.21) are inequality

and equality constraints, respectively. In general, there exists the region M of the domain

Ω ⊆ Rn called feasible region

M := {w ∈ Ω : g(w) ≤ 0,h(w) = 0} , (2.22)

that contain the solution, either local or global, of the optimization problem P if M 6= ∅. In

other words, the solution w∗ ∈M is called the global minimum if there exists no other w ∈M

for which f(w) < f(w∗) holds and as a result f(w∗) is called the optimal value of P . On the

other hand, w∗ ∈M is called a local minimum if there is an ε > 0 with f(w) ≥ f(w∗) for all for

all w ∈M with ‖w−w∗‖ < ε. Note that if all constraints are linear and the objective function

is quadratic, then the optimization problem is called quadratic programming. However, it is

called linear programming if the objective function is linear too. The optimization problem is

said to be convex if the objective function and all the constraints are convex. In the following,

we will always consider the quadratic optimization problem which is convex too and refer to

Steinwart and Christmann (2008, Appendix A.6) for basic properties of convex functions. The

main reasons for considering aforementioned problem are, first, it leads to a unique global

solution, see Schölkopf and Smola (2002, Theorem 6.11) and Steinwart and Christmann (2008,

A.6.9)), and secondly, there are many efficient algorithms available to solve convex quadratic

programs, that we will discuss briefly later in this section.

To this end, we define the Lagrangian function that is a key ingredient to find the solution

of an optimization problem.

Definition 2.22. Consider the optimization problem P where f, gi, hj : Rn → R for i = 1, . . . , k

and j = 1, . . . , `. Then the Lagrangian function L : Rn × Rk × R` → R is defined by

L(w, α, β) := f(w) +
n∑
i=1

αigi(w) +
m∑
j=1

βjhj(w) , (2.23)

where αi ∈ [0,∞) for i = 1, . . . , n and βj ∈ R for j = 1, . . . ,m are called Lagrange multipli-

ers or dual variables associated with problem P.

Based on the the Lagrangian function L, we now transform the primal optimization problem

P into the Lagrangian dual optimization problem.

Definition 2.23. Let P be a convex problem and L be the Lagrangian function. Moreover,

define the function D : Rn → R by

D(α, β) := inf
w∈Rn
L(w, α, β) . (2.24)
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Then the dual optimization problem is

arg max
α,β

D(α, β) ,

subject to α ≥ 0 .

(2.25)

Note that the dual function D is concave even when the primal P is not convex, because the

dual function D is the point-wise infimum of a family of affine functions of (α, β). Furthermore,

for each pair (α, β) with α ≥ 0, the Lagrange dual function D(α, β) gives a lower bound on the

optimal value f(w∗) of the optimization problem P , where the optimal value of the Lagrange

dual problem D(α∗, β∗) is the best lower bound on f(w∗). This relationship between the

solution of the primal and the dual problem can be explained by the notion of weak duality

theorem, see e.g. Cristianini and Shawe-Taylor (2000, Theorem 5.15).

Theorem 2.24 (cf. Cristianini and Shawe-Taylor (2000, Theorem 5.15 and Corollary 5.16)).

Let w ∈ Rn be a feasible solution of a primal problem P and (α, β) be a feasible solution of a

dual problem D. Then

f(w) ≥ D(α, β) .

Moreover, the value of the dual D is upper bounded by the value of the primal P

sup{D(α, β) : α ≥ 0} ≤ inf{f(w) : g(w) ≤ 0,h(w) = 0} . (2.26)

Clearly, we see from (2.26) that the difference between values of the primal and the dual

problems may exists and this difference is called the duality gap. Note that this duality gap, in

fact, may serve as a stopping criterion of the algorithm used to solve the optimization problem.

We refer the reader to Chapter 5 to see the technical details for establishing the duality gap in

the case of the ALS loss. To this end, we present the notion of strong duality, which guarantees

that the dual and the primal problems reach the same solution for an optimization problem.

Theorem 2.25 (cf. Cristianini and Shawe-Taylor (2000, Theorem 5.20)). Given an optimiza-

tion problem P with convex domain Ω ⊂ Rn, and affine functions gi and hj in (2.20) and (2.21)

respectively, that is

h(w) = Aw − b ,

holds for some matrix A and vector b, the duality gap is zero.

Note that if w∗ and (α∗, β∗) are the primal and the dual optimal solution such that the

strong duality holds, then (w∗, α∗, β∗) form a saddle-point for the Lagrangian function L, and
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vise versa. To be more precise, the vector (w∗, α∗, β∗) is called a saddle point of L(w, α, β)

with respect to maximizing in α and β, and minimizing in w if for all w ∈ Rn, α ∈ [0,∞)k and

β ∈ R`, we have

L(w∗, α, β) ≤ L(w∗, α∗, β∗) ≤ L(w, α∗, β∗) (2.27)

In the following, we give the Kuhn-Tucker conditions for an optimum solution to an optimization

problem.

Theorem 2.26 (cf. Cristianini and Shawe-Taylor (2000, Theorem 5.21)). Let P be a convex

optimization problem with Ω ⊂ Rn. Moreover, assume that f is convex function and gi, hj are

affine. Then the necessary and sufficient conditions for a normal point w∗ to be an optimum

are the existence of α∗ and β∗ such that

∂L(w∗, α∗, β∗)

∂w
= 0 , (2.28)

∂L(w∗, α∗, β∗)

∂β
= 0 , (2.29)

α∗i gi(w
∗) = 0 , i = 1, . . . , k , (2.30)

gi(w
∗) ≤ 0 , i = 1, . . . , k , (2.31)

α∗i ≥ 0 , i = 1, . . . , k . (2.32)

Here, the third condition (2.30) is called Karush–Kuhn–Tucker (KKT) complementary con-

dition which implies that for an active constraint, the dual variable α∗i > 0 holds, and for an

inactive constraint we have α∗i = 0. However, perturbing inactive constraints have no influence

on the solution of optimization problem.

The standard approach of solving an SVM problem basically solves a convex optimization

problem of the form shown in Definition 2.21 using sample information, which we further trans-

form into dual form like Definition 2.23, see e.g. Cristianini and Shawe-Taylor (2000, Chapter

6) and Steinwart and Christmann (2008, Chapter 11.1). There are several standard numerical

methods to solve the convex optimization problem like descent methods, interior-point methods,

decomposition methods, etc. We refer the interested reader to Cristianini and Shawe-Taylor

(2000, Chapter 7), Schölkopf and Smola (2002, Chapter 10), Boyd and Vandenberghe (2004)

and Steinwart and Christmann (2008, Chapter 11.2) for detailed survey on different convex

optimization methods. In the following, we mainly focus on the decomposition methods (also

called chunking or subset selection method) which is used in case of large sample size. The

main idea of this method is to break the optimization problem into smaller subproblems and
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then solve each subproblem in an iterative manner. In other words, a subset of dual variable,

generally called working set or active set, is updated in each iteration in contrast to other

convex optimization methods like descent methods or interior-point methods, where the whole

vector of dual variable is updated in each step. In additoin, this method does not require to

store the kernel matrix into the RAM of computer. However, updating few components at each

iteration can increase overall computation time when the sample size is very large due to the

requirement of many iterations for convergence. Hence, it is important to choose a working set

in a very smart way, e.g., choosing the points that contribute most to the duality gap or those

that most violate the KKT conditions, such that the optimization of the sub-problem leads to

an improvement in the overall objective function.

The extreme case of the decomposition method proposed by Platt (1999) is sequential

minimal optimization (SMO) method where the optimization step is done for working set of size

two. In other words, at each step, SMO optimizes two chosen points of dual vector keeping fixed

all others, and then updates the whole dual vector accordingly. Interestingly, the optimization

problem in case of SVM for two points can often be calculated analytically. This in return,

despite needing more iterations to converge, saves a lot of computation time by eliminating

the need of calling an iterative convex program optimizer at each iteration step as required by

general decomposition methods. Note that, the standard SVM optimization problem includes

a bias term and leads to a condition which is only fulfilled if two dual points are updated at

each iteration. On the other hand, SVMs without bias term eliminate this condition and thus

we can establish an SMO algorithm for one working set. In order to see technical details of

establishing SMO-type algorithms for one and two working set in the case of the ALS loss, we

refer to Chapter 5 and also refer to Steinwart et al (2011). for the case of hinge loss.



Chapter 3

Asymmetric Least Squares Loss:

Self-Calibration and Variance Bounds

The goal of this chapter is to characterize the asymmetric least square (ALS) loss function. To

be more precise, we investigate some properties for the case of the ALS loss such as Lipschitz

continuity, a self-calibration inequality, a supremum bound, and a variance bound. To the

best of our knowledge, these properties have not been investigated in the literature. With the

help of these properties, oracle inequalities and learning rates will be established for SVM-type

learning algorithm for expectile regression in Chapter 4.

3.1 Loss Functions for Quantiles and Expectiles

There exists a class of loss functions that are consistent to quantiles. A general form of such loss

functions can be found in Gneiting (2011, Theorem 9), see also Steinwart et al (2014, Equation

(21)). However, the only loss function that has been used in the literature in order to estimate

(conditional) quantiles is the asymmetric least absolute deviation (ALAD) loss function, see,

e.g Koenker and Bassett Jr (1978). For all t ∈ R and any α ∈ (0, 1), the ALAD loss is defined

by

Lα(y, t) =

 (1− α)|y − t| , if y < t ,

α|y − t| , if y > t .
(3.1)

Note that Lα- loss is convex and continuous but its first derivative with respect to second

argument does not exist at t = 0. Consequently, the loss (3.1) makes the the analytic solution

of optimization problem very challenging.

Analogous to quantiles, there also exits a class of loss functions for expectiles. We refer to

39
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Figure 3.1: The ALS loss (solid lines) and the ALAD loss (dotted lines) for τ (andα) = 0.25 (left),

τ (andα) = 0.50 (middle) and τ (andα) = 0.75 (right) considering r := (y − t) ∈ [−3, 3].

Gneiting (2011, Theorem 10) and Steinwart et al (2014, Equation (26)) for the general form

of such loss functions. Here it is also interesting to note that only the ALS loss proposed by

Newey and Powell (1987) has been used in the literature so far in order to estimate (conditional)

expectiles. Recall Newey and Powell (1987) that for any τ ∈ (0, 1) and all t ∈ R, the ALS loss

is defined by

Lτ (y, t) =

 (1− τ)(y − t)2 , if y < t ,

τ(y − t)2 , if y > t .
(3.2)

The Lτ -loss is also convex and continuous. In addition, it is is differentiable at all t. Therefore

the optimization problem based on (3.2) can be solved with the help of gradient-based methods.

The illustration of both the Lα-loss and the Lτ -loss for τ = α = 0.25, 0.5, 0.75 is given in Figure

3.1.

It is interesting to note that the Lα-loss and the Lτ -loss behave differently. Therefore, the

resultant expectiles and quantiles for τ = α ∈ (0, 1) based on their respective losses, in general,

do not coincide to each others. We further refer to Jones (1994) where it has been shown that

expectiles of a distribution, say Q, coincide with quantiles of some other distribution that is

related to Q. This fact is illustrated in Figure 3.2 for some standard distributions. In addition,

Figure 3.3 illustrates the expectiles and quantiles of student t-distribution, where we notice

that for student t-distribution with 2 degree of freedom, expectiles and quantiles coincide. The

rescaled version of this distribution is derived by Koenker (1992) and named it the Koenker

distribution. However, note that, the variance of both of the aforementioned distributions is

not finite, which is considered a crucial assumption for statistical analysis for SVM-tpye leaning

algorithm for expectile regression, see Chapter 4 for further details.
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Figure 3.2: Expectiles (solid lines) and quantiles (dotted lines) for τ = α ∈ (0, 1) for uniform distribu-

tion U(0, 1) (top-left), normal distribution N(0, 1) (top-middle), lognormal distribution

logN(0, 1) (top-right), exponential distribution exp(λ = 1) (bottom-left), gamma distri-

bution Gamma(α = 3, β = 1) (bottom-middle) and beta distribution Beta(α = 2, β = 2)

(bottom-right).
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Figure 3.3: Expectiles (solid lines) and quantiles (dotted lines) for τ = α ∈ (0, 1) for student t

distribution with df = 2 (left), df = 3 (middle) and df = 5(right).
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In Figure 3.1 we also see that the Lτ -loss is more sensitive to the extreme values. It was also

observed by Koenker (2005) that expectiles have more global dependence on the shape of the

distribution compared to quantiles. This means that altering the one tail of distribution does

not effect the quantiles of the other tail, but it does effect all the expectiles of the distribution.

For more properties of expectiles, we refer the interested reader to Newey and Powell (1987),

Jones (1994) and Abdous and Remillard (1995). In the following, we present some properties

of Lτ . To the best of our knowledge, most of them have not been investigated in the literature.

3.2 Properties of the Asymmetric Least Squares Loss

Throughout this section, we assume that X is an arbitrary, non-empty set equipped with a

σ-algebra, and Y ⊂ R, if it is not stated otherwise, is a closed non-empty set. In addition, we

assume that P is the probability distribution on X×Y satisfies |P|2 :=
Ä ∫

X×Y y
2 dP(x, y)

ä1/2
<

∞, P( · |x) is a regular conditional distribution on Y given x ∈ X and Q is some distribution

on Y . Furthermore, we assume that Lτ : Y × R→ [0,∞) is the ALS loss defined by (3.2) and

f : X → R is a measurable function.

3.2.1 Convexity

It is trivial to show that Lτ for each τ ∈ (0, 1) is convex in t, see also Figure 3.1 for illustration.

This convexity further ensures that the optimization problem (1.7) is efficiently solvable. In

addition, by (Steinwart and Christmann, 2008, Lemma 2.13) convexity of Lτ implies convexity

of the corresponding risk. By Definition 2.3, given a predictor f : X → R the Lτ -risk for each

τ ∈ (0, 1) is defined by

RLτ ,P(f) :=
∫
X×Y

Lτ (y, f(x))dP(x, y) =
∫
X

∫
Y
Lτ (y, f(x))dP(y|x)dPX(x) (3.3)

and the minimal Lτ -risk is defined by

R∗Lτ ,P := inf{RLτ ,P(f)|f : X → R is measurable} . (3.4)

The integral over X × Y always exists because (x, y) 7→ Lτ (y, f(x)) is measurable and non-

negative. Moreover, one can easily show that RLτ ,P(0) <∞ since |P|2 <∞.

3.2.2 Clipping

Let us assume that Y ⊆ [−M,M ] for some M > 0, then convexity of Lτ ensures that Lτ (y, ·)

leads to a global minimizer in Y for all y ∈ Y ⊆ [−M,M ], see Steinwart and Christmann (2008,
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Lemma 2.23). This further implies that Lτ can be clipped at M in the sense of Definition 2.7.

Note that the clipping assumption has already been utilized while establishing learning rates for

SVMs, see for instance Chen et al (2004); Steinwart et al (2011) for hinge loss, and Christmann

and Steinwart (2007) and Steinwart and Christmann (2011) for pinball loss. If we denote byÛf : X → [−M,M ] the clipped decision function, then we have RLτ ,P( Ûf) ≤ RLτ ,P(f) for every

f : X → R. In other words, the clipping operation potentially reduces the risks. In Chapter

4, we will therefore bound the risk RLτ ,P( ÛfD) of the clipped decision function rather than the

risk RLτ ,P(fD), where fD is the decision function obtained by solving optimization problem of

the form (1.7) . In practice, see Chapter 5, the training algorithm for (1.7) remains unchanged

and the evaluation of the resulting decision function requires only a slight change. For further

details on algorithmic advantages of clipping for SVMs using the hinge loss and the ALS loss,

we refer the reader to Steinwart et al (2011) and Chapter 5, respectively.

3.2.3 Local Lipschitz Continuity

Recall Definition 2.4 that a loss function is called locally Lipschitz continuous if for all a ≥ 0

there exists a constant ca such that

sup
y∈Y
|L(y, t)− L(y, t′)| ≤ ca |t− t′| , t, t′ ∈ [−a, a] .

In the following we consider a := M and denote for a given M > 0 the smallest such constant

ca by |L|1,M , and show that the ALS loss is locally Lipschitz continuous.

Lemma 3.1. Let Y ⊆ [−M,M ] with M > 0 and t ∈ Y , then the loss function Lτ : Y ×

[−M,M ]→ [0,∞) is locally Lipschitz continuous with Lipschitz constant

|Lτ |1,M = Cτ 4M ,

where Cτ := max{τ, 1− τ}.

Proof of Lemma 3.1. We define ψ : R→ R by

ψ(r) :=

 (1− τ)r2 , if r < 0 ,

τr2 , if r > 0 .

Clearly, ψ is convex and thus by (Steinwart and Christmann, 2008, Lemma A.6.5) ψ is locally

Lipschitz continuous. Moreover, for y ∈ [−M,M ] (see Steinwart and Christmann, 2008, Lemma

A.6.8) we obtain

|L)|1,M = sup
y∈[−M,M ]

|ψ(y − ·)|1,M ,
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= sup
y∈[−M,M ]

sup
t∈[−M,M ]

|ψ′(y − t)| ,

= max{τ, 1− τ} sup
y∈[−M,M ]

sup
t∈[M,−M ]

|2(y − t)| ,

= Cτ 4M ,

where Cτ := max{τ, 1− τ}.

Note that Lτ being locally Lipschitz continuous implies by Steinwart and Christmann (2008,

Lemma 2.19) that the corresponding risk RLτ ,P(f) is also locally Lipschitz continuous. In

addition, since RLτ ,P(0) <∞, local Lipschitz continuity of Lτ also implies that Lτ is a Nemitski

loss of order 2 in the sense of Definition 2.5.

3.2.4 Self-Calibration Inequalities

The risk RLτ ,P(f) defined by (3.3) can be computed by treating the inner and the outer

integrals separately. The inner integral leads to inner Lτ -risks which are key ingredients for

establishing the self-calibration inequalities in Theorem 3.3. By Definition 2.6, for a distribution

Q on Y ⊂ R and the Lτ -loss, the inner Lτ -risks are defined by

CLτ ,Q(t) :=
∫
Y
Lτ (y, t)dQ(y) , t ∈ R , (3.5)

and the minimal inner Lτ -risk is defined by

C∗Lτ ,Q := inf
t∈R
CLτ ,Q(t) . (3.6)

Here, the inner risks CLτ ,Q(·) for a suitable classes of distributions Q on Y are considered as

a template for CLτ ,P(·|x)(·). Since Lτ is a convex loss function, the Lτ -inner risk is convex too.

This is also illustrated in Figure 3.4 by considering different conditional distributions.

With the help of (3.5) and (3.6) one can immediately obtain risks (3.3) and the optimal

risk (3.4) respectively, that is

RLτ ,P(f) =
∫
X
CLτ ,P(·|x) f(x) dPX(x) ,

and

R∗Lτ ,P =
∫
X
C∗Lτ ,P(·|x)dPX(x) .

Furthermore, the excess Lτ -risk, when R∗Lτ ,P <∞ holds, is obtained by

RLτ ,P(f)−R∗Lτ ,P =
∫
X
CLτ ,P(·|x)(f(x))− C∗Lτ ,P(·|x)dPX(x) . (3.7)
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Figure 3.4: The Lτ -inner risks for τ = 0.25 (left), τ = 0.50 (middle) and τ = 0.75 (right) assum-

ing that the conditional distribution is a uniform distribution U(−1, 1) (top), an

exponential distirubiton exp(λ = 1)(middle) and a mixture of normal distirubitons

0.4N (0, 1) + 0.6N (5, 3)(bottom).

It is interesting to note that bounds on excess Lτ -risks can easily be translated from bounds on

excess inner Lτ -risks. Based on this idea, we establish lower and upper bounds of excess inner
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Lτ -risks in the following theorem.

Theorem 3.2. Let Lτ : Y × R → [0,∞) be the ALS loss and Q be a distribution on R for

which |Q|1 <∞ and C∗Lτ ,Q <∞ hold. Then, for all t ∈ R and τ ∈ (0, 1) we have

cτ (t− t∗)2 ≤ CLτ ,Q(t)− C∗Lτ ,Q ≤ Cτ (t− t∗)2 , (3.8)

where cτ := min{τ, 1− τ} and Cτ is defined in Lemma 3.1.

Proof of Theorem 3.2. Let us fix τ ∈ (0, 1). Since the distirubiton Q on R has a finite first

moment, i.e. |Q|1 <∞ holds, we obtain by (1.2) the τ -expectile t∗ as a unique solution to

τ
∫
y≥t∗

(y − t∗)dQ(y) = (1− τ)
∫
y<t∗

(t∗ − y)dQ(y) , (3.9)

For computing the excess inner risks of Lτ with respect to Q, we fix a t ≥ t∗. Then we have

∫
y<t

(y − t)2dQ(y)

=
∫
y<t

(y − t∗ + t∗ − t)2dQ(y)

=
∫
y<t

(y − t∗)2dQ(y) + 2(t∗ − t)
∫
y<t

(y − t∗)dQ(y) + (t∗ − t)2Q((−∞, t))

=
∫
y<t∗

(y − t∗)2dQ(y) +
∫
t∗≤y<t

(y − t∗)2dQ(y) + (t∗ − t)2Q((−∞, t))

+ 2(t∗ − t)
∫
y<t∗

(y − t∗)dQ(y) + 2(t∗ − t)
∫
t∗≤y<t

(y − t∗)dQ(y) ,

and

∫
y≥t

(y − t)2dQ(y)

=
∫
y≥t∗

(y − t∗)2dQ(y)−
∫
t∗≤y<t

(y − t∗)2dQ(y) + (t∗ − t)2Q([t,∞))

+ 2(t∗ − t)
∫
y≥t∗

(y − t∗)dQ(y)− 2(t∗ − t)
∫
t∗≤y<t

(y − t∗)dQ(y) .

By using (3.5), (3.6) and (3.9) we obtain

CLτ ,Q(t) = (1− τ)
∫
y<t

(y − t)2dQ(y) + τ
∫
y≥t

(y − t)2dQ(y)

= τ
∫
y<t∗

(y − t∗)2dQ(y) + (1− τ)
∫
y≥t∗

(y − t∗)2dQ(y)

+ 2(t∗ − t)
Å
τ
∫
y<t∗

(y − t∗)dQ(y) + (1− τ)
∫
y≥t∗

(y − t∗)dQ(y)
ã

+ (1− 2τ)
∫
t∗≤y<t

(y − t∗)2dQ(y) + 2(1− 2τ)
∫
t∗≤y<t

(y − t∗)dQ(y)

+ (t∗ − t)2(1− τ)Q((−∞, t)) + (t∗ − t)2τQ([t,∞))
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= CLτ ,Q(t∗) + (t∗ − t)2(1− τ)Q((−∞, t)) + (t∗ − t)2τQ([t,∞))

+ (1− 2τ)
∫
t∗≤y<t

(y − t∗)2 + 2(t∗ − t)(y − t∗)dQ(y) ,

and this leads to the following excess inner Lτ -risk

CLτ ,Q(t)− CLτ ,Q(t∗)

= (t∗ − t)2(1− τ)Q((−∞, t∗)) + (t∗ − t)2(1− τ)Q([t∗, t)) + (t∗ − t)2τQ([t,∞))

+ (1− 2τ)
∫
t∗≤y<t

(y − t∗)2 + 2(t∗ − t)(y − t∗)dQ(y)

= (t∗ − t)2
Å

(1− τ)Q((−∞, t∗)) + τQ([t,∞))
ã

− τ
∫
t∗≤y<t

(y − t∗)2 + 2(t∗ − t)(y − t∗)dQ(y)

+ (t∗ − t)2(1− τ)Q([t∗, t)) + (1− τ)
∫
t∗≤y<t

(y − t∗)2 + 2(t∗ − t)(y − t∗)dQ(y)

= (t∗ − t)2
Å

(1− τ)Q((−∞, t∗)) + τQ([t,∞))
ã
− τ

∫
t∗≤y<t

(y − t∗)(y + t∗ − 2t)dQ(y)

+ (1− τ)
∫
t∗≤y<t

(y − t∗)2 + 2(t∗ − t)(y − t∗) + (t∗ − t)2dQ(y)

= (t∗ − t)2
Å

(1− τ)Q((−∞, t∗)) + τQ([t,∞))
ã

+ τ
∫
t∗≤y<t

(y − t∗)(2t− t∗ − y)dQ(y)

+ (1− τ)
∫
t∗≤y<t

(y − t)2dQ(y) . (3.10)

Let us define cτ := min{τ, 1− τ}, then (3.10) leads to the following lower bound of excess inner

Lτ -risk when t ≥ t∗:

CLτ ,Q(t)− CLτ ,Q(t∗)

≥ cτ (t
∗ − t)2

Å
Q((−∞, t∗)) +Q([t,∞))

ã
+ cτ

∫
t∗≤y<t

(y − t∗)(2t− t∗ − y) + (y − t)2dQ(y)

= cτ (t
∗ − t)2

Å
Q((−∞, t∗)) +Q([t,∞))

ã
+ cτ

∫
t∗≤y<t

(t∗)2 + 2tt∗ + t2dQ(y)

= cτ (t
∗ − t)2

Å
Q((−∞, t∗)) +Q([t,∞))

ã
+ cτ (t

∗ − t)2Q([t∗, t))

= cτ (t
∗ − t)2 . (3.11)

Likewise, the excess inner Lτ -risk when t < t∗ is

CLτ ,Q(t)− CLτ ,Q(t∗)

= (t∗ − t)2
Å

(1− τ)Q((−∞, t) + τ)Q([t∗,∞))
ã

+ τ
∫
t≤y<t∗

(y − t)2dQ(y)

+ (1− τ)
∫
t≤y<t∗

(t∗ − y)(y + t∗ − 2t)dQ(y) ,

(3.12)

that also leads to the lower bound (3.11). Now, for the proof of upper bound of the excess

inner Lτ -risks, we define Cτ := max{τ, 1− τ}. Then (3.10) leads to the following upper bound
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of excess inner Lτ -risks when t ≥ t∗:

CLτ ,Q(t)− CLτ ,Q(t∗) ≤ Cτ (t
∗ − t)2

Å
Q((−∞, t∗)) +Q([t,∞))

ã
+ Cτ

∫
t∗≤y<t

Ä
(y − t∗)(2t− t∗ − y) + (y − t)2

ä
dQ(y)

= Cτ (t
∗ − t)2 . (3.13)

Analogously, for the case of t < t∗, (3.12) also leads to the upper bound (3.13) for excess inner

Lτ -risks.

Recall that the empirical methods of estimating expectile using the Lτ -loss typically lead

to a function fD for which RLτ ,P(fD) is close to R∗Lτ ,P with high probability. The convexity

of Lτ then ensures that fD approximates f ∗Lτ ,P in a weak sense, that is, in probability PX ,

see (Steinwart, 2007, Remark 3.18). However, no guarantee on the speed of convergence can

be given. The following theorem addresses this issue by establishing a so-called calibration

inequality for the excess Lτ -risk.

Theorem 3.3. Let Lτ be the ALS loss function and P be a distribution on R satisfying |P|2 <

∞. Moreover, assume that for any τ ∈ (0, 1), the conditional τ -expectile f ∗Lτ ,P(x) < ∞ holds

and f ∗Lτ ,P ∈ L2(PX) for PX-almost all x ∈ X. Then, for all measurable f : X → R, we have

C−1/2
τ (RLτ ,P(f)−R∗Lτ ,P)1/2 ≤ ‖f − f ∗Lτ ,P‖L2(PX) ≤ c−1/2

τ (RLτ ,P(f)−R∗Lτ ,P)1/2 , (3.14)

where cτ := min{τ, 1− τ} and Cτ is defined in Lemma 3.1.

Proof of Theorem 3.3. For a fixed x ∈ X, we write t := f(x) and t∗ := f ∗Lτ ,P(x). By

Theorem 3.2, for Q := P( · |x), we then immediately obtain

C−1
τ (CLτ ,P(·|x)(f(x))− C∗Lτ ,P(·|x)) ≤ |f(x)− f ∗Lτ ,P(x)|2 ≤ c−1

τ (CLτ ,P(·|x)(f(x))− C∗Lτ ,P(·|x))

Integrating with respect to PX leads to the assertion.

Note that the right-hand side of (3.14) in particular ensures that fD → f ∗Lτ ,P in L2(PX)

whenever RLτ ,P(fD) → R∗Lτ ,P. In addition, the convergence rates can be directly translated.

Moreover, the inequality on the left shows that modulo constants the calibration inequality is

sharp. We will also use this left inequality when bounding the approximation error function for

Gaussian RBF kernels in the proof of Theorem 4.3. Finally, in Lemma 4.12, we will show that

the inequality (3.14) leads to the bound of the approximation error in case of generic kernels if

and only if the target function is in a real interpolation space, that is, f ∗Lτ ,P ∈ [L2(PX), H]β,∞

for some β ∈ (0, 1).
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3.2.5 Supremum and Variance Bounds

Like the calibration inequality of Theorem 3.3, supremum and variance bounds for the Lτ -loss

are also useful for analyzing the statistical properties of any Lτ -based empirical risk minimiza-

tion scheme as we will see in Chapter 4 while establishing oracle inequalities for the SVM-type

learning algorithm (1.7). In the following Lemma we present the supremum and variance

bounds for the Lτ -loss.

Lemma 3.4. Let X ⊂ Rd be a non-empty set, Y ⊂ [−M,M ] be a closed subset where M > 0,

and P be a distribution on X × Y . Additionally, we assume that Lτ : Y × R → [0,∞) is the

ALS loss and f ∗Lτ ,P is the conditional τ -expectile for fixed τ ∈ (0, 1). Then for all measurable

f : X → [−M,M ] we have

i) ‖Lτ ◦ f − Lτ ◦ f ∗Lτ ,P‖∞ ≤ 4Cτ M
2 .

ii) EP (Lτ ◦ f − Lτ ◦ f ∗Lτ ,P)2 ≤ 16C2
τ c
−1
τ M2(RLτ ,P(f)−R∗Lτ ,P) .

Proof of Lemma 3.4. i) Since Lτ can be clipped at M and the conditional τ -expectile satisfies

f ∗Lτ ,P(x) ∈ [−M,M ] almost surely for all x ∈ X, we obtain

|Lτ (y, f(x))− Lτ (y, f ∗Lτ ,P(x))| ≤ max{τ, 1− τ} sup
y,t∈[−M,M ]

(y − t)2

= Cτ 4M2 ,

which holds for all f : X → [−M,M ] and all (x, y) ∈ X × Y .

ii) Using local Lipschitz continuity of Lτ and Theorem 3.3, we obtain

EP(Lτ ◦ f − Lτ ◦ f ∗Lτ ,P)2 ≤ |Lτ |21,M EPX |f − f ∗Lτ ,P|
2

≤ 16c−1
τ C2

τ M
2 (RLτ ,P(f)−R∗Lτ ,P) .
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Chapter 4

Learning Rates for Kernel-Based

Expectile Regression

We devote this chapter for statistical analysis of SVM-type learning algorithm for expectile

regression. This includes establishing learning rates considering Gaussian RBF kernels, see

Section 4.1, and generic kernels shown in Section 4.2. For τ = 0.5, we also compare our

achieved learning rates with the best-known learning rates for least squares regression in both

scenarios.

Let us assume that P is the probability distribution on X × Y , where X ⊂ Rd and

Y ⊂ R. In addition we assume that H is a separable RKHS over X associated to a mea-

surable and positive definite kernel k. Furthermore, we assume that k is bounded that is,

‖k‖∞ := supx∈X
»
k(x, x) < ∞ which implies that H consists of bounded functions with

‖f‖∞ ≤ ‖k‖∞‖f‖H for all f ∈ H. Moreover, we denote by Hγ a Gaussian RKHS associ-

ated to a Gaussian RBF kernel kγ defined by (2.7), where γ is called the width parameter and

it is usually determine in a data-dependent way, e.g. by cross validation.

We now recall that given an i.i.d. data set D := ((x1, y1), . . . , (xn, yn)) drawn from some

unknown distribution P, SVMs construct a predictor fD,λ by solving the convex optimization

problem of the form

fD,λ = arg min
f∈H

λ‖f‖2
H +RLτ ,D(f) , (4.1)

where λ > 0 is a regularization parameter and RLτ ,D(·) is the empirical Lτ -risk defined by

(1.6). A typical way to access the quality of an estimator fD (fD,λ in our case) produced by a

learning method like (4.1), is to measure its distance to the target function f ∗Lτ ,P, e.g. in terms

of ‖fD − f ∗Lτ ,P‖L2(PX). For estimators obtained by some empirical risk minimization scheme,

however, one can hardly ever estimate this L2-norm directly. Instead, the standard approach
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of statistical learning theory deals with the excess risk RLτ ,P(fD)−R∗Lτ ,P. In other words, one

is interested to know the probability that RLτ ,P(fD) is close to R∗Lτ ,P. This leads to the notion

of consistency of learning methods. In the following theorem, we show that our considered

learning method (4.1) for estimating the conditional τ -expectiles is universally consistent for a

suitably chosen data-dependent null sequence of regularization parameters (λn) with λn > 0.

Theorem 4.1. Let P be a distribution on X×Y with |P|2 <∞, Lτ be the ALS loss, and f ∗Lτ ,P

be the conditional τ -expectile function. Moreover, let k be a bounded, measurable kernel whose

RKHS is separable and dense in L2(PX). Then for all sequences λn → 0 with λ4
nn → ∞ and

all ε > 0, we have

lim
n→∞

P n
Ä
D ∈ (X × R)n : RLτ ,P(fD,λn)−R∗Lτ ,P > ε

ä
= 0 , (4.2)

and

lim
n→∞

P n
Ä
D ∈ (X × R)n : ‖fD,λn − f ∗Lτ ,P‖0 > ε

ä
= 0 ,

where ‖g‖0 :=
∫

min{1, |g|}dPX is a translation-invariant metric describing convergence in

probability PX . Moreover, if f ∗Lτ ,P ∈ L2(PX), then

lim
n→∞

P n
Ä
D ∈ (X × R)n : ‖fD,λn − f ∗Lτ ,P‖L2(PX) > ε

ä
= 0 .

Proof of Theorem 4.1. The first convergence follows from (Steinwart and Christmann,

2008, Theorem 9.1) and the second convergence is a consequence of the first convergence and

(Steinwart and Christmann, 2008, Corollary 3.62), where we note that we do not need the

completeness of X since we already know the existence and uniqueness of f ∗Lτ ,P. Finally, the

third convergence is a consequence of the first convergence and the self-calibration inequality

in Theorem 3.3.

Theorem 4.1 shows that, for sufficiently large training sets, the learning method (4.1) pro-

duces nearly optimal decision function with high probability, without knowing any specifics of

the data-generating distribution P. However, note that the notion of (universal) consistency is

purely of asymptotic nature. In other words, (4.2) does not quantify the speed of convergence

of RLτ ,P(fD,λn) to R∗Lτ ,P, which is a more natural and practical requirement. We cope with this

issue in Section 4.1 and Section 4.2 by establishing learning rates for learning method (4.1) us-

ing Gaussian RBF kernels and generic kernels, respectively. However, learning with guaranteed

rates of convergence almost always requires assumptions on the unknown distribution P. In

fact, by no-free-lunch theorem (see Devroye et al, 1996, Theorem 7.2) no method learns with a

fixed rate and confidence for all distributions P. In other words, no learning method enjoys a

uniform learning rates, see e.g. Steinwart and Christmann (2008, Corollary 6.7 & 6.8).
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4.1 Learning Rates Assuming Gaussian RBF Kernels

This section presents learning rates for SVM-type learning algorithm for the expectile regression

considering Gaussian RBF kernels. In Section 4.1.1, we first establish an improved entropy

number bound for the Gaussian RKHSs to control its capacity. Section 4.1.2 gives an upper

bound for an approximation error function. Then we use the results of Section 4.1.1 and Section

4.1.2 together already established results in Chapter 3 and establish learning rates in Section

4.1.3 under the assumptions that Y ⊆ [−M,M ] where M > 0 and the target function f ∗Lτ ,P

is smooth in a Besov sense. In Section 4.1.4, we use the data-dependent parameters’ selection

method and obtain the same learning rates adaptively, that is, without knowing the smoothness

parameter. Finally, we replace the assumption of bounded regression with the assumption of

exponential decay of Y -tails in Section 4.1.5 and obtain learning rates under this scenario.

4.1.1 Improved Entroy Bounds for the Gaussian RKHSs

In order to control the capacity of a RKHS in terms of some bounds, one way is to estimate

eigenvalues of a linear operator induced by the kernel k. Recall that given a kernel k over X

with a separable RKHS H and a distribution PX , the integral operator Tk : L2(µ) → L2(µ) is

defined by

Tkf(·) :=
∫
X
k(x, ·)f(x)dµ(x) ,

The operator Tk is compact, positive, self-adjoint and nuclear (see Steinwart and Christmann,

2008, Theorem 4.27), and has at most countably many non-zero (and non-negative) eigenval-

ues λi(Tk). Ordering these eigenvalues (with geometric multiplicities) and extending the cor-

responding sequence by zeros, if there are only finitely many non-zero eigenvalues, we obtain

the extended sequence of eigenvalues (λi(Tk))i≥1 that satisfies
∑∞
i=1 λi(Tk) < ∞ (see Steinwart

and Christmann, 2008, Theorem 7.29). This summability implies that for some constant a > 1

and i ≥ 1, we have λi(Tk) ≤ ai−1. By Steinwart et al (2009), this eigenvalues assumption can

converge even faster to zero, that is, for p ∈ (0, 1), we often have

λi(Tk) ≤ a i−
1
p , i ≥ 1. (4.3)

It turns out that the speed of convergence of λi(Tk) influences learning rates for SVMs. For

instance, Blanchard et al (2008) used (4.3) to establish learning rates for SVMs using hinge

loss, and Caponnetto and De Vito (2007) and Mendelson and Neeman (2010) for SVMs using

least squares loss.



54 4.1. Learning Rates Assuming Gaussian RBF Kernels

Another way to control the capacity of RKHS H is based on entropy numbers that is the

dual of covering numbers. Let T : E → F be a bounded, linear operator between the Banach

spaces E and F , and i ≥ 1 be an integer. Then the i-th (dyadic) entropy number of T is defined

by

ei(T ) := inf
{
ε > 0 : ∃x1, . . . , x2i−1 such that TBE ⊂ ∪2i−1

j=1 (xj + εBF )
}
,

where BF is called closed unit ball of F , see Definition 2.18. In the Hilbert space case, the

eigenvalues and entropy number decay are closely related. For example, Steinwart (2009)

showed that (4.3) is equivalent (modulo a constant only depending on p) to

ei(id : H → L2(PX)) ≤
√
a i−

1
2p , i ≥ 1 , (4.4)

It is further shown by Steinwart (2009) that (4.4) implies a bound on average entropy numbers,

that is, for empirical distribution associated to the data set DX := (x1, · · · , xn) ∈ Xn, the

average entropy number, modulo some constant, is

EDX∼PnXei(id : H → L2(PX)) ≤ a i−
1
2p , i ≥ 1 ,

which is used in Theorem 2.20 to establish the general oracle inequality for SVMs. A bound

of the form (4.4) was also derived in (Steinwart and Christmann, 2008, Theorem 6.27) for

Gaussian RBF kernels. To be more precise, let X ⊂ Rd be a closed unit Euclidean ball. Then

for all γ ∈ (0, 1] and p ∈ (0, 1), there exists a constant cp,d(X) such that

ei(id : Hγ(X)→ l∞(X)) ≤ cp,d(X) γ−
d
p i−

1
p , , i ≥ 1 , (4.5)

which has been used by Eberts and Steinwart (2013) to establish leaning rates for least squares

SVMs. Note that the constant cp,d(X) depends on p in an unknown manner. To address

this issue, we use the result of van der Vaart and van Zanten (2009, Lemma 4.5) and derive

an improved entropy number bound in the following theorem. Our improved entropy bound

provides an upper bound for cp,d(X) whose dependence on p is known explicitly. In addition,

we will further see in Corollary 4.7 that by using this improved bound, we establish up to

logarithmic factor minimax optimal learning rates for Lτ .

Theorem 4.2. Let X ⊆ Rd be the closed unit Euclidean ball. Then there exists a constant

K > 0, such that, for all p ∈ (0, 1), γ ∈ (0, 1] and i ≥ 1, we have

ei(id : Hγ(X)→ l∞(X)) ≤ (3K)
1
p

Ç
d+ 1

ep

å d+1
p

γ−
d
p i−

1
p (4.6)



Learning Rates for Kernel-Based Expectile Regression 55

Proof of Theorem 4.2. By van der Vaart and van Zanten (2009, Lemma 4.5), the ‖ · ‖∞-

log covering numbers of unit ball Bγ(X) of the Gaussian RKHS Hγ(X) for all γ ∈ (0, 1) and

ε ∈ (0, 1
2
) satisfy

lnN (Bγ(X), ‖ · ‖∞, ε) ≤ Kd

Ç
log

1

ε

åd+1

γ−d , (4.7)

where Kd ≥ 1 is a constant depending only on d. From this, obtain

sup
ε∈(0, 1

2
)

εp lnN (Bγ(X), ‖ · ‖∞, ε) ≤ Kd γ
−d sup

ε∈(0, 1
2

)

εp
Ç

log
1

ε

åd+1

.

Let h(ε) := εp
Ä
log 1

ε

äd+1
. In order to obtain the optimal value of h(ε), we differentiate it with

respect to ε

dh(ε)

dε
= p εp−1

Ç
log

1

ε

åd+1

− εp (d+ 1)

Ç
log

1

ε

åd 1

ε
,

and by setting dh(ε)
dε

= 0 we obtain log 1
ε

= d+1
p

which finally yields

ε∗ =
1

e
d+1
p

.

By plugging ε∗ into h(ε), we obtain

h(ε∗) =

Ç
d+ 1

ep

åd+1

,

and consequently, the ‖ · ‖∞-log covering numbers (4.7) satisfy

lnN (Bγ(X), ‖ · ‖∞, ε) ≤ Kd

Ç
d+ 1

ep

åd+1

γ−dε−p =

Ç
a

1
p

ε

åp
,

where a := Kd

(
d+1
ep

)d+1
γ−d. Now, by Lemma 2.19 the bound on entropy number of the

Gaussian RBF kernel is

ei(id : Hγ(X)→ l∞(X)) ≤ (3a)
1
p i−

1
p = (3Kd)

1
p

Ç
d+ 1

ep

å d+1
p

γ−
d
p i−

1
p ,

for all i ≥ 1, γ ∈ (0, 1).

4.1.2 Approximation Error Bounds

Given a loss function Lτ , a distribution P with R∗Lτ ,P < ∞ and the Gaussian RKHS Hγ, we

define for all λ > 0 the approximation error function Aγ : [0,∞)→ [0,∞) by

Aγ(λ) := inf
f∈Hγ

λ‖f‖2
Hγ +RLτ ,P(f)−R∗Lτ ,P , γ > 0, λ ≥ 0 . (4.8)
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For λ > 0 and γ > 0, the approximation error function Aγ(λ) quantifies how well risk of an

infinite sample SVM with RKHS Hγ, that is, λ‖f‖2
Hγ +RLτ ,P(f) approximates the optimal risk

R∗Lτ ,P.

In order to bound Aγ(λ), we first need to know one important feature of the target function

f ∗Lτ ,P, namely, the regularity which, roughly speaking, measures the smoothness of the target

function. Different function spaces norms e.g. Hölder norms, Besov norms or Triebel-Lizorkin

norms can be used to capture this regularity. In this work, following Eberts and Steinwart

(2013) and Meister and Steinwart (2016), we assume that the target function f ∗Lτ ,P is in a

Sobolev or a Besov space. Recall Tartar (2007, Definition 5.1) and Adams and Fournier (2003,

Definition 3.1 and 3.2) that for any integer k ≥ 0, 1 ≤ p ≤ ∞ and a subset Ω ⊂ Rd with

non-empty interior, the Sobolev space W k
p (Ω) of order k is defined by

W k
p (Ω) := {f ∈ Lp(Ω) : D(α)f ∈ Lp(Ω) exists for all α ∈ Nd

0 with |α| ≤ k} ,

with the norm

‖f‖Wk
p (Ω) :=


Å∑

|α|≤k ‖D(α)f‖pLp(Ω)

ã 1
p

, if p ∈ [1,∞) ,

max|α|≤k ‖D(α)f‖L∞(Ω) , if p =∞ ,

where D(α) is the α-th weak partial derivative for the multi-index α = (α1, . . . , αd) ∈ Nd
0 of

modulus |α| = |α1|+ · · ·+ |αd|. In other words, the Sobolev space is the space of functions with

sufficiently many weak derivatives and equipped with a norm that measures both the size and

the regularity of the contained functions. Note that W k
p (Ω) is a Banach space (Tartar, 2007,

Lemma 5.2). Moreover, by Adams and Fournier (2003, Theorem 3.6), W k
p (Ω) is separable if

p ∈ [1,∞), and is uniformly convex and reflexive if p ∈ (1,∞). Furthermore, for p = 2, W k
2 (Ω)

is a separable Hilbert space that we denote by Hk(Ω). Despite the aforementioned advantages,

Sobolev spaces can not be immediately applied when k is non-integral or when p < 1, however,

the smoothness spaces for these extended parameters are also needed when engaging nonlinear

approximation. This shortcoming of Sobolev spaces is covered by Besov spaces which bring

together all functions for which the modulus of smoothness have a common behavior. Let us

first recall DeVore and Sharpley (1993, Section 2) and DeVore and Popov (1988, Section 2) that

for a function f : Ω→ R with f ∈ Lp(Ω) for p ∈ (0,∞] and s ∈ N, the modulus of smoothness

of order s of a function f is defined by

ws,Lp(Ω)(f, t) = sup
‖h‖2≤t

‖4s
h(f, ·)‖Lp(Ω) , t ≥ 0 ,
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where the s-th difference 4s
h(f, ·) given by

4s
h(f, x) :=


∑s
i=0

Ä
s
i

ä
(−1)s−if(x+ ih) if x, x+ h, . . . , x+ sh ∈ Ω ,

0, otherwise ,

for h ∈ Rd is used to measure the smoothness. Note that ws,Lp(Ω)(f, t) → 0 as t → 0, which

means that the faster this convergence to 0 is, the smoother is the function f . For more details

on properties of the modulus of smoothness, we refer the reader to Nikol’skii (2012, Chapter

4.2). Now for 0 < p, q ≤ ∞, α > 0, s := bαc+ 1, the Besov space Bα
p,q(Ω) based on modulus of

smoothness for domain Ω ⊂ Rd, see for instance DeVore (1998, Section 4.5), Nikol’skii (2012,

Chapter 4.3) and DeVore and Sharpley (1993, Section 2), is defined by

Bα
p,q(Ω) := {f ∈ Lp(Ω) : |f |Bαp,q(Ω) <∞} ,

where the semi-norm |·|Bαp,q(Ω) is defined by

|f |Bαp,q(Ω) :=
Å ∫ ∞

0
(t−αws,Lp(Ω)(f, t))

q dt

t

ã 1
q

, q ∈ (0,∞) ,

and for q =∞, the semi-norm is defined by

|f |Bαp,q(Ω) := sup
t>0

(t−αws,Lp(Ω)(f, t)) .

In other words, Besov spaces are collections of functions f with common smoothness. For more

general definition of Besov-like spaces, we refer to Meister and Steinwart (2016, Section 4.1).

Note that ‖f‖Bαp,q(Ω) := ‖f‖Lp(Ω) + |f |Bαp,q(Ω) is a norm of Bα
p,q(Ω), see e.g. DeVore and Sharpley

(1993, Section 2) and DeVore and Popov (1988, Section 2). It is well known (see e.g. Nikol’skii,

2012, Section 4.1), that Wα
p (Ω) ⊂ Bα

p,∞(Ω) for all 1 ≤ p ≤ ∞, p 6= 2, where for p = q = 2 the

Besov space and the Sobolev space are isomorphic.

In the next step, we find a function f0 ∈ Hγ such that both the regularization term λ‖f0‖2
Hγ

and the excess risk RLτ ,P(f0)−R∗Lτ ,P are small. For this, we define the function Kγ : Rd → R

(see Eberts and Steinwart, 2013) by

Kγ(x) :=
r∑
j=1

(
r

j

)
(−1)1−j 1

jd

Å 2

γ2π

ã d
2

exp
Å
− 2‖x‖2

2

j2γ2

ã
,

for all r ∈ N, γ > 0 and x ∈ Rd. Additionally, we assume that there exists a function

f ∗Lτ ,P : Rd → R satisfying f ∗Lτ ,P ∈ L2(Rd) ∩ L∞(Rd) and RLτ ,P(f ∗Lτ ,P) = R∗Lτ ,P. Then f0 is

defined by

f0(x) := Kγ ∗ f ∗Lτ ,P(x) :=
∫
R
Kγ(x− t)f ∗Lτ ,P(t)dt , x ∈ R . (4.9)
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With these preparations, we now establish an upper bound for the approximate error function

Aγ(λ).

Theorem 4.3. Let Lτ : Y × R → [0,∞) be the ALS loss, P be a probability distribution on

Rd × Y , and PX be the marginal distribution of P on Rd such that X := supp PX satisfies

PX(∂X) = 0. Moreover, assume that the conditional τ -expectile f ∗Lτ ,P satisfies f ∗Lτ ,P ∈ L2(Rd)∩

L∞(Rd) as well as f ∗Lτ ,P ∈ Bα
2,∞(PX) for some α ≥ 1. In addition, assume that kγ is the

Gaussian RBF kernel over X with associated RKHS Hγ.Then for f0 ∈ Hγ defined by (4.9), we

have

‖Lτ ◦ f0‖∞ ≤ 4Cτ (M + 2s‖f ∗Lτ ,P‖L∞(Rd))
2 =: B0

Moreover, for all γ ∈ (0, 1] and λ > 0, we have

‖f0‖2
Hγ +RLτ ,P(f0)−R∗Lτ ,P ≤ C1λγ

−d + Cτ,sγ
2α , (4.10)

where the constant C1 > 0 and the constant Cτ,s > 0 depends on s and τ .

Proof of Theorem 4.3. The assumption f ∗Lτ ,P ∈ L2(Rd) and (Eberts and Steinwart, 2013,

Theorem 2.3) immediately yield that f0 := Kγ ∗ f ∗Lτ ,P ∈ Hγ, i.e. f0 is contained in Hγ. Fur-

thermore, the latter theorem together with the assumption f ∗Lτ ,P ∈ L∞(Rd) yields that for all

x ∈ X

|K ∗ f ∗Lτ ,P(x)| ≤ (2s − 1)‖f ∗Lτ ,P‖L∞(Rd) ,

This implies that, for all (x, y) ∈ X × Y , we have

Lτ (y,K ∗ f ∗Lτ ,P(x)) ≤ Cτ (M + ‖K ∗ f ∗Lτ ,P‖∞)2

≤ 4Cτ (M + 2s‖f ∗Lτ ,P‖L∞(Rd))
2 =: B0 .

For the second results, we first obtain the following upper bound of the regularization term by

using (Eberts and Steinwart, 2013, Theorem 2.3)

‖f0‖Hγ = ‖K ∗ f ∗Lτ ,P‖Hγ ≤ (γ
√
π)−

d
2 (2s − 1)‖f ∗Lτ ,P‖L2(Rd).

Since PX has a Lebesgue density g ∈ L2(Rd), by Eberts and Steinwart (2013, Theorem 2.2) the

upper bound for L2-distance between f0 and f ∗Lτ ,P is

‖f0 − f ∗Lτ ,P‖
2
L2(PX) = ‖K ∗ f ∗Lτ ,P − f

∗
Lτ ,P‖

2
L2(PX) ≤ Cs,2 ‖g‖L2(Rd)c

2γ2α , (4.11)
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where Cs,2 :=:=
∑d2se
i=0

Äd2se
i

ä
(2d)

i
2
∏i
j=1(j − 1

2
)
1
2 (see Eberts and Steinwart, 2013, p.27), is the

constant only depending on s. Now by using Theorem 3.3 together with (4.11), we obtain

RLτ ,P(f0)−R∗Lτ ,P ≤ Cτ ‖f0 − f ∗Lτ ,P‖
2
L2(PX) = Cτ,sγ

2α ,

where Cτ,s := c2Cτ Cs,2 ‖g‖L2(Rd). With these results, we finally obtain

inf
f∈Hγ

λ‖f‖2
Hγ +RLτ ,P(f)−R∗Lτ ,P ≤ λ‖f0‖2

Hγ +RLτ ,P(f0)−R∗Lτ ,P ,

≤ C1 λγ
−d + Cτ,s γ

2α ,

where C1 := (
√
π)−d(2r − 1)2‖f ∗Lτ ,P‖

2
L2(Rd).

Clearly, the upper bound of the approximation error function in Theorem 4.3 depends on

the regularization parameter λ, the kernel width γ, and the smoothness parameter α of the

target function f ∗Lτ ,P. In order to shrink the right-hand side of (4.10) we need to let γ → 0.

However, this would let the first term go to infinity unless we simultaneously let λ→ 0 with a

sufficient speed.

4.1.3 Learning Rates for Bounded Regression

In this section, we assume that Y ⊆ [−M,M ]. With this assumption, we have a concentrated

distribution P on X × [−M,M ], that is, P(X × [−M,M ]) = 1. Let us now recall the general

oracle inequality given in Theorem 2.20, see also Steinwart and Christmann (2008, Theorem

7.23), which for ϑ = 1 will be used as the basis for establishing oracle inequalities in the case

of the Lτ -loss. Note that the oracle inequality in Theorem 2.20 has a constant K(p), and from

the proof of (Steinwart and Christmann, 2008, Theorem 7.23)), this constant K(p), for ϑ = 1,

can be chosen to be

K(p) := max
ß

2700 · 22pC2
1(p)|Lτ |2p1,M V 1−p, 90 · (120)pC1+p

2 (p)|Lτ |2p1,M B1−p, 2B
™
, (4.12)

where the constants C1(p) and C2(p) derived from the proof of (Steinwart and Christmann,

2008, Theorem 7.16) are

C1(p) :=
2
√

ln 256Cp
p

(
√

2− 1)(1− p)2p/2
and C2(p) :=

Ñ
8
√

ln 16Cp
p

(
√

2− 1)(1− p)4p

é 2
1+p

, (4.13)

and by Steinwart and Christmann (2008, Lemma 7.15), we have

Cp :=

√
2− 1

√
2− 2

2p−1
2p

· 1− p
p

. (4.14)
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In addition, |Lτ |1,M , B and V are Lipschitz constant, supremum bound and variance bound,

respectively, for the Lτ -loss, see Lemma 3.1 and Lemma 3.4. Although the above given expres-

sion for K(p) looks complicated, the following lemma shows that one can easily obtain a nice

bound of it for all p ∈ (0, 1
2
].

Lemma 4.4. Let M > 0 and τ ∈ (0, 1), then for all p ∈ (0, 1
2
] the constant defined by (4.12) is

bounded by

K ≤ 2 · 109C3
τ c
−1
τ M3 , (4.15)

where Cτ > 0 and cτ > 0 are defined in Lemma 3.1 and Theorem 3.2.

For the proof of Lemma 4.4, we first need the following lemma

Lemma 4.5. The function h : (0, 1
2
]→ R defined by

h(p) :=

( √
2− 1

√
2− 2

2p−1
2p

)p
,

is convex. Moreover, we have supp∈(0, 1
2

] h(p) = 1.

Proof. Let us consider t := 2p. Then it suffices to show that the function g : (0, 1]→ R defined

by

g(t) :=

( √
2− 1

√
2− 21− 1

t

) t
2

,

is convex. To solve the latter, we first compute the first and second derivative of g(t) with

respect to t, that is:

g′(t) =
1

2

( √
2− 1

√
2− 21− 1

t

) t
2

Ñ
log

( √
2− 1

√
2− 21− 1

t

)
+

21− 1
t log 2

t
Ä√

2− 21− 1
t

äé ,

and

g′′(t) =

( √
2− 1

√
2− 21− 1

t

) t
2

Ñ
1

2
log

( √
2− 1

√
2− 21− 1

t

)
+

21− 1
t log 2

2t
Ä√

2− 21− 1
t

äé2

+

( √
2− 1

√
2− 21− 1

t

) t
2

Ñ Ä
21− 1

t

ä2
(log 2)2

2t3
Ä√

2− 21− 1
t

ä2 +
21− 1

t (log 2)2

2t3
Ä√

2− 21− 1
t

äé
Since t ∈ (0, 1], it is not hard to see that all terms in g′′(t) are strictly positive. Thus g′′(t) > 0

and hence g(t) is convex. Furthermore, by convexity of g(t), it is easy to find that

sup
t∈(0,1]

g(t) = max{lim
t→0

g(t), g(1)} = 1.
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Proof of Lemma 4.4. In order to bound (4.12), we first bound the constants C1(p) and C2(p)

defined by (4.13). We start with Cp defined by (4.14) and for p ∈ (0, 1
2
] we obtain the following

bound

Cp
p =

Å √
2− 1

√
2− 2

2p−1
2p

ãpÅ1− p
p

ãp
≤ e max

p∈(0, 1
2

]

Å √
2− 1

√
2− 2

2p−1
2p

ãp
= e ,

where we used
Å

1−p
p

ãp
=
Å

1
p
− 1
ãp
≤ e for all p ∈ (0, 1

2
], and Lemma 4.5. Now the bound for

C1(p) is the following:

C1(p) ≤ max
p∈(0, 1

2
]

2
√

ln 256Cp
p

(
√

2− 1)(1− p)2p/2
≤ 4 e

√
ln 256√

2− 1
max
p∈(0, 1

2
]

1

2p/2
≤ 46 e .

Analogously, the bound for the constant C2(p) is

C1+p
2 (p) ≤ max

p∈(0, 1
2

]

Ñ
8
√

ln 16Cp
p

(
√

2− 1)(1− p)4p

é2

≤ 256 e2 ln(16)

(
√

2− 1)2
max
p∈(0, 1

2
]

1

42p
≤ 1035 e2 .

By plugging C1(p) and C2(p) together with B and V from Lemma 3.4 and |Lτ |1,M = 4Cτ M

from Lemma 3.1 into (4.12), we thus obtain

K ≤ max{4 · 107C3
τ c
−1
τ M3, 2 · 109C2

τM
3, 8Cτ M

2}

≤ 2 · 109C3
τ c
−1
τ M3 ,

Note that in the case of the Gaussian RKHS Hγ, the learning algorithm such as (4.1)

constructs a decision function fD,λ,γ. In the following theorem, we establish oracle inequalities

for fD,λ,γ using Theorem 4.3 together with Lemma 3.4 and the entropy number bound (4.6).

Theorem 4.6. Consider the assumptions of Theorem 4.3 and additionally assume that Y ⊆

[−M,M ] for M ≥ 1. Then, for all n ≥ 1, % ≥ 1, γ ∈ (0, 1) and λ ∈ (0, e−2], the SVM using the

RKHS Hγ and the ALS loss function Lτ satisfies

λ‖fD,λ,γ‖2
Hγ +RLτ ,P( ÛfD,λ,γ)−R∗Lτ ,P

≤ CM3
Å
λγ−d + γ2α + (log λ−1)d+1 n−1γ−d + n−1%

ã
, (4.16)

with probability P n not less than 1− 3 e−%. Here C > 0 is some constant independent of λ, γ, n

and %.
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Proof of Theorem 4.6. By plugging the results of Theorem 4.3 together with a = (3K)
1
2p

Å
d+1
ep

ã d+1
2p

γ−
d
p

from Theorem 4.2, B = 4CτM
2 and V = 16 c−1

τ C2
τ M

2 from Lemma 3.4 into Theorem 2.20, we

obtain

λ‖fD,λ,γ‖2
Hγ +RLτ ,P( ÛfD,λ,γ)−R∗Lτ ,P

≤ 9C1λγ
−d + 9Cτ,sγ

2α + 3K(p)K
Åd+ 1

e

ãd+1 γ−d

pd+1λpn

+ (3456M2C2
τ c
−1
τ + 60(M + 2s‖f ∗Lτ ,P‖L∞(Rd))

2)
%

n
,

≤ 9C1λγ
−d + 9Cτ,sγ

2α + CdK(p)
γ−d

pd+1λpn
+ C2

%

n
, (4.17)

where C1 and Cτ,s are from Theorem 4.3, K(p) is from Lemma 4.4, C2 := 3456M2C2
τ c
−1
τ +

60(M + 2s‖f ∗Lτ ,P‖L∞(Rd))
2, and Cd := 3K

Å
d+1
e

ãd+1

is a constant only depending on d. Let us

assume that p := 1
log λ−1 . Since λ ≤ e−2 and λp = e−1, the result (4.17) becomes

λ‖fD,λ,γ‖2
H +RLτ ,P( ÛfD,λ,γ)−R∗Lτ ,P

≤ 9C1λγ
−d + 9Cτ,sγ

2α + Cd eK(p) (log λ−1)d+1 γ
−d

n
+ C2

%

n
(4.18)

and by plugging value of K(p) from Lemma 4.4 into (4.18), we finally obtain

λ‖fD,λ,γ‖2
H +RLτ ,P( ÛfD,λ,γ)−R∗Lτ ,P

≤ CM3
Å
λγ−d + γ2α + (log λ−1)d+1γ−dn−1 + % n−1

ã
,

where C is a constant independent of λ, γ, n and %.

It is well known that there exists a relationship between Sobolev spaces and the scale of

Besov spaces, that is, Bα
p,u(Rd) ↪→ Wα

p (Rd) ↪→ Bα
p,v(Rd), whenever 1 ≤ u ≤ min{p, 2} and

max{p, 2} ≤ v ≤ ∞ (see e.g. Edmunds and Triebel, 2008, p.25 and p.44). In particular, for

p = u = v = 2, we have Wα
2 (Rd) = Bα

2,2(Rd) with equivalent norms. In addition, by Eberts and

Steinwart (2013, p.7) we have Wα
p (Rd) ⊂ Bα

p,q(PX). Thus, Theorem 4.6 also holds for decision

functions f ∗Lτ ,P : Rd → R with f ∗Lτ ,P ∈ L2(Rd) ∩ L∞(Rd) and f ∗Lτ ,P ∈ W
α
2 (Rd).

In the following corollary we assume some suitable values for λ and γ that depend on data

size n, the smoothness parameter α, and the dimension d, and establish learning rates for

learning problem (1.7).

Corollary 4.7. Under the assumptions of Theorem 4.6 and with

λn = c1n
−1 ,
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γn = c2n
− 1

2α+d ,

where c1 > 0 and c2 > 0 are user specified constants, we have, for all n ≥ 1 and % ≥ 1,

RLτ ,P( ÛfD,λ,γ)−R∗Lτ ,P ≤ CM3%(log n)d+1n−
2α

2α+d (4.19)

with probability P n not less than 1− 3e−%. Here C > 0 is a constant independent of n and %.

Proof of Corollary 4.7. For all n ≥ 1, Theorem 4.6 yields

λ‖fD,λ,γ‖2
Hγ +RLτ ,P( ÛfD,λ,γ)−R∗Lτ ,P

≤ cM3(log λ−1)d+1
Å
λnγ

−d
n + γ2α

n + n−1γ−dn + n−1%
ã
,

with probability P n not less than 1−3e−% and a constant c > 0. Using the sequences λn = c1n
−1

and γn = c2n
− 1

2α+d , we obtain

λ‖fD,λ,γ‖2
Hγ +RLτ ,P( ÛfD,λ,γ)−R∗Lτ ,P

≤ CM3(log n)d+1
Å

(c1c
−d
2 + c2α

2 + c−d2 )n−
2α

2α+d + n−1%
ã

≤ C̃M3%(log n)d+1n−
2α

2α+d ,

where the positive constant C̃ := C(c1c
−d
2 + c2α

2 + c−d2 + 1) is independent of n and %.

4.1.4 Learning Rates using Data Dependent Parameter Selction

We have seen in Corollary 4.7 that learning rates depend on the choice of λn and γn, where

the kernel width γn requires knowing α which, in practice, is not available. However, Steinwart

and Christmann (2008, Chapter 7.4), Steinwart et al (2009) and Eberts and Steinwart (2013)

showed that one can achieve the same learning rates adaptively, i.e. without knowing α. Let us

recall (Steinwart and Christmann, 2008, Definition 6.28) that describes a method to select λ

and γ in a data-dependent way, which in some sense is a simplification of the cross-validation

method.

Definition 4.8. Let Hγ be a RKHS over X and Λ := (Λn) and Γ := (Γn) be the sequences of

finite subsets Λn,Γn ⊂ (0, 1]. For a data set D := ((x1, y1), . . . , (xn, yn)) ∈ (X × R)n, define

D1 := ((x1, y1), . . . , (xm, ym)) ,

D2 := ((xm+1, ym+1), . . . , (xn, yn)) ,
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where m = bn
2
c + 1 and n ≥ 4. Then use D1 as a training set to compute the SVM decision

function

fD1,λ,γ := arg min
f∈Hγ

λ‖f‖2
Hγ +RLτ ,D1(f), (λ, γ) ∈ (Λn,Γn) ,

and use D2 to determine (λ, γ) by choosing (λD2 , γD2) ∈ (Λn,Γn) such that

RLτ ,D2(
ÛfD1,λD2

,γD2
) = min

(λ,γ)∈(Λn,Γn)
RLτ ,D2(

ÛfD1,λ,γ) .

Then every learning method that produces the resulting decision functions ÛfD1,λD2
,γD2

is called

a training validation SVM with respect to (Λ,Γ).

In the next theorem, we use this training-validation SVM (TV-SVM) approach for suitable

candidate sets Λn := (λ1, . . . , λr) and Γn := (γ1, . . . , γs) with λr = γs = 1, and establish learning

rates similar to (4.19).

Theorem 4.9. With the assumptions of Theorem 4.6, let c ≥ 2 be some constant, Λ := (Λn)

be a sequence of finite subset Λn ∈ (0, e−2] such that 1
c
n−1 ≤ λi ≤ c n−1 for all n ≥ 4 and

Γ := (Γn) be sequences of finite subsets Γn ⊂ (0, 1] such that Γn is an n−
1

2α+d -net of (0, 1]. In

addition we assume that the cardinalities |Λn| and |Γn| are polynomially growing in n. Then

for all % ≥ 1, the TV-SVM produces a fD1,λD2
,γD2

that satisfies

RLτ ,P( ÛfD1,λD2
,γD2

)−R∗Lτ ,P ≤ CM3%(log n)(d+1) n−
2α

2α+d

with probability P n not less than 1− 3e−%, where C > 0 is a constant independent of n and %.

In order to prove Theorem 4.9, we first need the following technical lemma.

Lemma 4.10. Let c ≥ 3, n ≥ 3 be a constant, Λn ⊂ (0, 1] be a finite set such that there exists

a λi ∈ Λn with 1
c
n−1 ≤ λi ≤ cn−1. Moreover assume that δn ≥ 0 and Γn ⊂ (0, 1] is a finite

δn-net of (0, 1]. Then for d > 0 and α > 0 we have

inf
(λ,γ)∈Λn×Γn

(λγ−d + γ2α + (log λ−1)d+1γ−dn−1) ≤ c(log n)d+1
Å
n−

2α
2α+d + δ2α

n

ã
,

where c is a constant independent of n, δn,Λn,Γn.

Proof. Let us assume that Λn = {λ1, . . . , λr} and Γn = {γ1, . . . , γs}, and λi−1 < λi for all

i = 2, . . . , r and γj−1 < γj for all j = 2, . . . , s. We thus obtain

inf
(λ,γ)∈Λn×Γn

Å
λγ−d + γ2α +

(log λ−1)d+1

γdn

ã
≤ inf

γ∈Γn

Å
λiγ
−d + γ2α +

(log λ−1
i )d+1

γdn

ã
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≤ inf
γ∈Γn

Å
cγ−dn−1 + γ2α + (log c+ log n)d+1γ−dn−1

ã
≤
Ä
c+ (2 log c)d+1

ä
(log n)d+1 inf

γ∈Γn

Å
γ−dn−1 + γ2α

ã
≤ c̃ (log n)d+1 inf

γ∈Γn

Å
γ−dn−1 + γ2α

ã
, (4.20)

where c̃ := c+ (2 log c)d+1. It is not hard to see that the function γ 7→ γ−dn−1 + γ2α is optimal

at γ∗ := c1n
− 1

2α+d , where c1 > 0 is a constant which only depends on α and d. Furthermore,

with γ0 = 0, we see that γj − γj−1 ≤ 2δn for all j = 1, . . . , s. In addition, there exits an index

j ∈ {1, . . . , s} such that γj−1 ≤ γ∗n ≤ γj. Consequently, we have γ∗n ≤ γj ≤ γ∗n + 2δn. Using this

result in (4.20), we obtain

inf
(λ,γ)∈Λn×Γn

Å
λγ−d + γ2α +

(log λ−1)d+1

γdn

ã
≤ c̃ (log n)d+1

Å
γ−dj n−1 + γ2α

j

ã
≤ c̃ (log n)d+1

Å
(γ∗n)−dn−1 + (γ∗n + 2δn)2α

ã
≤ c̃ (log n)d+1

Å
(γ∗n)−dn−1 + cα(γ∗n)2α + cαδ

2α
n

ã
≤ c̃α (log n)d+1

Å
(c1n

− 1
2α+d )−dn−1 + (c1n

− 1
2α+d )2α + δ2α

n

ã
≤ c (log n)d+1

Å
n−

2α
2α+d + δ2α

n

ã
,

where c := c̃α(c−d1 + c2α
1 ) is a constant.

Now by using Lemma 4.10, we prove Theorem 4.9 in the following.

Proof of Theorem 4.9. This proof is the repetition of the proof given by Eberts and Steinwart

(2013, Theorem 3.6 ) for the least squares loss. However, for the sake of completeness, we present

here in the case of the Lτ -loss. Let us define m := bn
2
c + 1 ≥ n

2
, then for all (λ, γ) ∈ Λn × Γn,

Theorem 4.6 yields

RLτ ,P( ÛfD1,λ,γ)−R∗Lτ ,P ≤
c1

2

Å
λγ−d + γ2α +

(log λ−1)d+1

γdm
+
%

m

ã
≤ c1

Å
λγ−d + γ2α +

(log λ−1)d+1

γdn
+
%

n

ã
,

with probability Pm not less than 1 − 3|Λn × Γn| e−%. Now define n − m ≥ n
2
− 1 ≥ n

4
and

%n := %+ ln(1 + |Λn×Γn|), then by using (Steinwart and Christmann, 2008, Theorem 7.2) and

Lemma 4.10, we obtain

RLτ ,P( ÛfD1,λD2
,γD2

)−R∗Lτ ,P

≤ 6 inf
(λ,γ)∈Λn,Γn

Å
RLτ ,P( ÛfD1,λ,γ)−R∗Lτ ,P

ã
+ 512M2C2

τ c
−1
τ

%n
n−m
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≤ 6c1 inf
(λ,γ)∈Λn,Γn

Å
λγ−d + γ2α +

(log λ−1)d+1

γdn
+
%

n

ã
+ 2048M2C2

τ c
−1
τ

%n
n

≤ 6c1

Å
c(log n)d+1

Ä
n−

2α
2α+d + δ2α

n

äã
+ 2048M2C2

τ c
−1
τ

%n
n

≤ %M2(log n)d+1(6c1c+ 6cc1δ
2α
n + 6c1 + 2048C2

τ c
−1
τ %n)n−

2α
2α+d

≤ c2M
3%(log n)d+1n−

2α
2α+d ,

with probability P n not less than 1− 3(1 + |Λn × Γn|)e−%.

4.1.5 Learning Rates for Unbounded Noise

So far we have only considered the case of bounded noise with known bounds, that is, Y ⊂

[−M,M ] where M ≥ 1 is known. In practice, M is usually unknown and in this situation,

one can still achieve the same learning rates by simply increasing M slowly. However, more

interesting is the case of unbounded noise. In the following we treat this case for a class of

distributions for which the tails of the response variable Y has sufficiently fast decay. To be

more precise, we assume that for all % > 1, there exist constants c ≥ 1 and l > 0 such that

P ({(x, y) ∈ X × Y : |y| ≤ c%l}) ≥ 1− e−% (4.21)

For instance, if P( · |x) ∼ N(µ(x), 1), the assumption (4.21) is satisfied for l = 1
2
, and for the

case where P( · |x) has the density whose tails decay like e−|t|, the assumption (4.21) holds for

l = 1 (see Eberts and Steinwart, 2013, Example 3.7 and 3.8).

With this additional assumption, we present learning rates for the case of unbounded noise

in the following theorem.

Theorem 4.11. Let Y ⊂ R and P be a probability distribution on Rd × Y such that X :=

supp PX ⊂ Bld2
. Moreover, assume that the τ -expectile f ∗Lτ ,P satisfies f ∗Lτ ,P(x) ∈ [−1, 1] for PX-

almost all x ∈ X, and both f ∗Lτ ,P ∈ L2(Rd) ∩ L∞(Rd) and f ∗Lτ ,P ∈ B
α
2,∞(PX) for some α ≥ 1.

In addition, assume that (4.21) holds for all % ≥ 1. We define

λn = c1n
−1

γn = c2n
− 1

2α+d ,

where c1 > 0 and c2 > 0 are user-specified constants. Moreover, for some fixed %̂ ≥ 1 and n ≥ 3

we define % := %̂+ lnn and Mn := 2c%l, where c is defined in (4.21). Furthermore, we consider

the SVM that clips decision function fD,λn,γn at Mn after training. Then there exists a C > 0

independent of n, p and %̂ such that

λn‖fD,λn,γn‖2
Hγn

+RLτ ,P( ÛfD,λn,γn)−R∗Lτ ,P ≤ C%̂3l+1(log n)3l+d+1n−
2α

2α+d (4.22)



Learning Rates for Kernel-Based Expectile Regression 67

holds with probability P n not less than 1− 2e−%̂.

Proof of Theorem 4.11. By (4.21), we obtain

P n
Åß
D ∈ (X × Y )n : max

i∈{1,...,n}
{|yi|} ≤ c%l

™ã
≥ 1−

n∑
i=1

P (|yi| ≥ c%l)

≥ 1− ne−%

= 1− e−(%−lnn) .

This implies that

P n
Åß
D ∈ (X × Y )n : max

i∈{1,...,n}
{|yi|} ≤ c(%̂+ lnn)l

™ã
≥ 1− e−%̂ .

This leads us to conclude with probability P n not less than 1− e−%̂ that the SVM for ALS loss

with belatedly clipped decision function at Mn is actually a clipped regularized empirical risk

minimization (CR-ERM) in the sense of (Steinwart and Christmann, 2008, Definition 7.18).

Consequently, (Steinwart and Christmann, 2008, Theorem 7.20) holds for Ŷ := [−Mn,Mn]

modulo a set of probability P n not less than 1− e−%̂. From Theorem 4.6, we then obtain

λ‖fD,λ,γ‖2
Hγ +RLτ ,P( ÛfD,λ,γ)−R∗Lτ ,P

≤ CM2
n (log λ−1)d+1

Å
λγ−d + γ2α + n−1γ−d + n−1%̄

ã
.

with probability P n not less than 1− e−%̄− e−%̂. As in the proof of Corollary (4.7) and by using

the inequality (a+ b)c ≤ (2ab)c, for a, b ≥ 1 and c > 0, we finally obtain

λ‖fD,λ,γ‖2
Hγ +RLτ ,P( ÛfD,λ,γ)−R∗Lτ ,P ≤ C%̄M3

n(log n)d+1n−
2α

2α+d

= C%̄
Ä
2c(%̂+ log n)l

ä3
(log n)d+1n−

2α
2α+d

≤ C%̄ 8 c3 (2%̂ log n)3l (log n)d+1n−
2α

2α+d

≤ Ĉ%̄%̂3l(log n)3l+d+1n−
2α

2α+d ,

for all n ≥ 3 with probability P n not less than 1 − e−%̄ − e−%̂. Choosing %̄ = %̂ leads to the

assertion.

Note that the assumption (4.21) on the tail of the distribution does not influence learning

rates achieved in Corollary 4.7. Furthermore, we can also achieve the same rates adaptively

using TV-SVM approach considered in Theorem 4.9 provided that we have an upper bound of

the unknown parameter l which depends on the distribution P.
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4.2 Learning Rates Assuming Generic Kernels

The goal of this section is to establish learning rates of SVM-like algorithm for expectile re-

gression (4.1) in the case of generic kernels. Here we assume that P is a distribution on X × Y

where X ⊂ Rd and Y ⊂ [−M,M ] which implies |P|2 =
Ä ∫

X×Y y
2 dP(x, y)

ä1/2
<∞, H denotes

a seperable RKHS of a bounded measurable kernel k over X, and Lτ is the ALS loss that can

be clipped at [−M,M ] in the sense of Definition 2.7.

Since |P|2 <∞, it is trivial to show that RLτ ,P(0) <∞. By convexity and local Lip-schitz

continuity of the Lτ -loss together with (Steinwart and Christmann, 2008, Corollary 5.3), there

exists for all λ > 0 a unique SVM solution fP,λ ∈ H. For fP,λ we then have

λ‖fP,λ‖2
H ≤ λ‖fP,λ‖2

H +RLτ ,P(fP,λ) ≤ RLτ ,P(0) . (4.23)

Let us now recall the approximation error function (2.18) and define it in the case of Lτ -loss

by

A(λ) := inf
f∈H

λ‖f‖2
H +RLτ ,P(f)−R∗Lτ ,P , λ > 0 ,

Our first goal here is to bound A(λ). For this, we assume that the target function f ∗Lτ ,P : X →

[−M,M ] is in a real interpolation space. Recall Edmunds and Triebel (2008, Section 1.3.1)

that this space can be defined by K-functional, see also Cucker and Zhou (2007, Definition

4.15). Given two Banach spaces (A, ‖ · ‖A) and (B, ‖ · ‖B) such that B ⊂ A and id : B → A is

continuous, the K-functional K : A× (0,∞)→ R for a ∈ A and t > 0 is defined by

K(a, t) := inf
b∈B

Ä
‖a− b‖A + t‖b‖B

ä
(4.24)

Now, for 0 < β < 1 and 1 ≤ q ≤ ∞, the interpolation space [A,B]β,q consists of all a ∈ A such

that the norm

‖a‖β,q :=


Ä∫∞

0 t−βK(a, t)q dt
t

ä
if q <∞ ,

supt>0(t−βK(a, t)) if q =∞ ,

is finite. The limiting cases of [A,B]β,q are [A,B]0,∞ := A and [A,B]1,∞ := B. Recall Edmunds

and Triebel (2008, Section 1.3.3, eq(3)) that for all 0 < β < 1 and 1 ≤ q ≤ q′ ≤ ∞, the

interpolation spaces have continuous embedding, that is,

[A,B]β,1 ⊂ [A,B]β,q ⊂ [A,B]β,q′ ⊂ [A,B]β,∞ .

Note that for a fixed a ∈ [A,B]β,q, the K(a, t) is continuous, non-decreasing and bounded by

K(a, t) ≤ c tβ , (4.25)
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see Edmunds and Triebel (2008, Section 1.3.3, eq(2)). Clearly K(a, t) tends to zero as t → 0.

Now using Theorem 3.3 and the idea of interpolation spaces, we bound A(λ) in the following.

Lemma 4.12. Let P be a distribution on X × Y , H be a separable RKHS associated to a

bounded measurable kernel k over X and β ∈ (0, 1). Then there exists a constant c̃ > 0 such

that

A(λ) ≤ c̃ λβ (4.26)

holds for all λ > 0 if and only if f ∗Lτ ,P ∈ [L2(PX), H]β,∞.

Proof of Lemma 4.12. We first assume that f ∗Lτ ,P ∈ [L2(PX), H]β,∞ for some β ∈ (0, 1). By

(4.25), there exists a constant c > 0 such that

K(f ∗Lτ ,P, λ) ≤ cλβ ,

for all λ > 0. This result together with (4.24) and the left hand side of (3.14) yields

A(λ) = inf
f∈H
{λ‖f‖2

H +RLτ ,P(f)−R∗Lτ ,P}

≤ inf
f∈H
{λ‖f‖2

H + ‖f − f ∗Lτ ,P‖
2
L2(PX)}

≤ inf
f∈H

(√
λ‖f‖H + ‖f − f ∗Lτ ,P‖L2(PX)

)2

= K2(f ∗Lτ ,P,
√
λ)

≤ c2λβ .

This shows (4.26). To show the converse implication, we consider the right hand side of (3.14)

and obtain

K(f ∗Lτ ,P, λ) = inf
f∈H
{λ‖f‖H + ‖f − f ∗Lτ ,P‖L2(PX)}

≤
√

2 inf
f∈H

Ä
λ2‖f‖2

H + ‖f − f ∗Lτ ,P‖
2
L2(PX)

ä1/2
=
√

2
Å

inf
f∈H
{λ2‖f‖2

H + ‖f − f ∗Lτ ,P‖
2
L2(PX)}

ã1/2

≤
√

2
Å

inf
f∈H
{λ2‖f‖2

H + c−1
τ

Ä
RLτ ,P(f)−R∗Lτ ,P

ä
}
ã1/2

≤
√

2 c−1/2
τ

Ä
inf
f∈H
{λ2‖f‖2

H +RLτ ,P(f)−R∗Lτ ,P
ä1/2

=
√

2 c−1/2
τ

»
A(λ2)

≤
√

2 c−1/2
τ c̃1/2λβ ,

where in the last step we used (4.26). This implies that f ∗Lτ ,P ∈ [L2(PX), H]β,∞.
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The following lemma gives the the supremum bound of Lτ with respect to fP,λ, that is an

important ingredient for establishing oracle inequalities in Theorem 4.14.

Lemma 4.13. Let Y ⊆ [−M,M ], Lτ : Y ×R→ [0,∞) be the ALS loss for fixed τ ∈ (0, 1) and

H be a separable RKHS of a bounded measurable kernel k over X with ‖k‖∞ ≤ 1. In addition,

assume that there exists a constant C > 0 and s ∈ (0, 1] such that

‖f‖∞ ≤ C‖f‖sH‖f‖1−s
L2(PX). (4.27)

for all f ∈ H. Then for all λ > 0 and τ ∈ (0, 1),

‖Lτ ◦ fP,λ‖∞ ≤ 4CτM
2 + 8CτM

2C2
ÅA(λ)

λ

ãs
=: B(λ) , (4.28)

where Cτ is defined in Lemma 3.1.

Proof of Lemma 4.13. For fixed τ ∈ (0, 1) and fP,λ ∈ H, we have

‖Lτ ◦ fP,λ‖∞ ≤ Cτ sup
y∈[−M,M ]

|y − fP,λ|2 ≤ 2CτM
2 + 2Cτ‖fP,λ‖2

∞ , (4.29)

where Cτ = max{τ, 1− τ}. For ‖fP,λ‖2
∞, we first compute

‖fP,λ‖2
L2(PX) =

∫
|fP,λ(x)|2dPX(x)

≤
∫
τ |fP,λ(x)− y|2 + (1− τ)|fP,λ(x)− y|2 + 2|y|2dP(x, y)

≤ 2RLτ ,P (fP,λ) + 2M2

≤ 4M2 , (4.30)

where we used RLτ ,P(fP,λ) ≤ RLτ ,P(0) = M2 by (4.23). Now the assumption (4.27) after using

(4.30) together with λ‖fP,λ‖2
H ≤ A(λ) yields

‖fP,λ‖∞ ≤ 21−sM1−sC
ÅA(λ)

λ

ã s
2

,

and by plugging this result into (4.29), we finally obtain

‖L ◦ fP,λ‖∞ ≤ 4CτM
2 + 8CτM

2C2
ÅA(λ)

λ

ãs
.

Note that the assumption (4.27) is satisfied if and only if the space [L2(PX), H]β,1 is con-

tinuously embedded in `∞(X), see Bennett and Sharpley (1988, Proposition 2.10). More-

over, it is well known that if H = Wm(X) and PX is the uniform distribution on X, then
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[L2(PX),Wm(X)]β,1 = Bβm
2,1 (X), where Bβm

2,1 (X) is the Besov space and for β = d
2m

it is con-

tinuously embedded in `∞(X), see Adams and Fournier (2003, p. 230).

We now use the results of Lemma 4.12 and Lemma 4.13 in Theorem 2.20, and formulate

the following main oracle inequalities.

Theorem 4.14. Let P be a distribution on X × Y , H be a separable RKHS of a measurable

kernel k over X with ‖k‖∞ < ∞ and Lτ : Y × R → [0,∞), τ ∈ (0, 1) be the ALS loss. In

addition, assume that for fixed n ≥ 1, there exist constants p ∈ (0, 1) and a ≥ Cτ 4M2 such

that

EDX∼PnX ei(id : H → L2(DX)) ≤ a i−
1
2p , i ≥ 1 .

Moreover, assume that f ∗Lτ ,P ∈ [L2(PX), H]β,∞ and (4.27) hold for some β ∈ (0, 1) and s ∈

(0, 1]. Then for all λ > 0 and all % > 0, the SVM using H and Lτ satisfies

λ‖fD,λ‖2
H +RLτ ,P( ÛfD,λ)−R∗Lτ ,P

≤ 9 c̃ λβ +K(p) a2p λ−p n−1 + C1,τ λ
s(β−1) n−1 %+ C2,τ n

−1 % (4.31)

with probability Pn not less than 1− 3 e−%, where

C1,τ := 120M2C2Cτ

C2,τ := (3456 c−1
τ C2

τ + 60Cτ )M
2 ,

and K(p) is defined by (4.12).

Proof of Theorem 4.14. Since Lτ is locally Lipschitz continuous loss, there exists a unique

function f0 = fP,λ ∈ H that minimizes f 7→ λ‖f‖H +RLτ ,P(f). By Lemma 4.12 we then obtain

λ‖fP,λ‖H +RLτ ,P(fP,λ)−R∗Lτ ,P = A(λ) ≤ c̃λβ ,

for all λ > 0. In addition, Lτ satisfies the supremum bound (2.14) with B = 4Cτ M
2 and

variance bound (2.15) with V = 16 c−1
τ C2

τ , see Lemma 3.4. Furthermore, by Lemma 4.13

‖Lτ ◦ fP,λ‖∞ ≤ 4CτM
2 + 8CτM

2C2
ÅA(λ)

λ

ãs
=: B(λ) > B .

Using all the results in Theorem 2.20, we obtain the assertion.

From Theorem 4.14 we immediately obtain the following learning rates, after assuming

appropriate values for λ that depends on β and p.
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Corollary 4.15. Consider s = p in Theorem 4.14 and additionally assume that (4.26) holds

for some β ∈ (0, 1). Define a sequence of λn by

λn := c n−
1

β+p ,

where c > 0 is a user specified constant. Then there exists a constant K ≥ 1 only depending on

M,C, a and p such that for all % ≥ 1 and n ≥ 1, the learning method (4.1) satisfies

RLτ ,P( ÛfD,λn)−R∗Lτ ,P ≤ Kρn−
β
β+p (4.32)

with probability Pn not less than 1− 3e−%n
pβ
β+p

.

Proof of Corollary 4.15. Since s = p, we rewrite (4.31) for λn by

λn‖fD,λn‖2
H +RLτ ,P( ÛfD,λn)−R∗Lτ ,P

≤ 9 c̃ λβn +K(p) a2p λ−pn n−1 + (C1,τ + C2,τ ) λ
p(β−1) n−1 %n .

By using the sequence λn = c n−
1

β+p and considering %n := % n
βp
β+p we obtain

λn‖fD,λn‖2
H +RLτ ,P( ÛfD,λn)−R∗Lτ ,P

≤ 9 c̃ cβ n−
β
β+p +K(p) a2p c−p n−

β
β+p + (C1,τ + C2,τ ) c

p(β−1) % n−
βp−β
β+p

+ βp
β+p

≤
Ä
9 c̃ cβ +K(p) a2p c−p + (C1,τ + C2,τ ) c

p(β−1)
ä
% n−

β
β+p ,

with probability Pn not less than 1− 3e−%n
pβ
β+p

.

Note that the considered choice of λn minimizes the right hand side of (4.31) asymptotically,

and leads to the fastest learning rates that one can expect. However, we see that learning rates

(4.32) depend on p and β, which are unknown in practice. By using TV-SVM for the case

of generic kernels, similar to the one presented in Theorem 4.9 for the Gaussian RBF kernels,

one can obtain learning rates similar to (4.32) adaptively, that is, without knowing p and β

explicitly. Since we have considered Y ⊆ [−M,M ], one can restrict the class of distributions

similar to the idea presented in Section 4.1.5 and obtain the similar learning rates for unbounded

case.

Example 4.16. If we assume that H = Wm(X) for some m > d
2
, then we have

[L2(PX),Wm(X)]β,∞ = Bβm
2,∞

and we obtain learning rates n−
2α

2α+d from (4.32), where α = β m ∈ (d/2,m] and we have

considered p = d/2m. In other words, one can obtain asymptotic optimal learning rates for all

regression functions of learning method for expectile regression (4.1) when using Besov space

Bα
2,∞, α ∈ (d/2,m] as underlying RKHS H.
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4.3 Conclusion

In the first part of this chapter, we established learning rates of SVM-type learning algorithm for

expectile regression considering Gaussian RBF kernels. The key ingredients for these learning

rates were the bound of approximation error function established in Theorem 4.3, the improved

entroy bound of the Gaussian RKHSs derived in Theorem 4.2 and the results that have already

been established in Chapter 3. In addition, we derived in this chapter an explicit bound for

the constant K for all p ∈ (0, 1
2
], whose dependence on p was unknown before. In the second

part of this chapter, we considered generic kernels and established learning rates of SVM-type

learning algorithm. Here, besides the results of Chapter 3, the bound of approximation error

function established in Lemma 4.12 also played a key role.

Let us now compare our results for Gaussian RBF kernels to the oracle inequalities and

learning rates established by Eberts and Steinwart (2013) for least squares SVMs. This com-

parison is justifiable because a) the least squares loss is a special case of Lτ -loss for τ = 0.5, b)

the target function f ∗Lτ ,P is assumed to be in the Sobolev or Besov space similar to Eberts and

Steinwart (2013), and c) the supremum and the variance bounds for Lτ with τ = 0.5 are the

same as the ones used by Eberts and Steinwart (2013). Furthermore, recall that Eberts and

Steinwart (2013) used the entropy number bounds (4.5) to control the capacity of the RKHS

Hγ which contains a constant cp,d(X) depending on p in an unknown manner. As a result, they

obtained a leading constant C in their oracle inequality, (see Eberts and Steinwart, 2013, The-

orem 3.1) for which no upper bound can be determined explicitly. We cope with this problem

by deriving an improved entropy number bound (4.6) which not only provides the upper bound

for cp,d(X) but also helps to determine the value of the constant C in the oracle inequality

(4.16) explicitly. As a consequence we improve their learning rates of the form n−
2α

2α+d
+ξ , where

ξ > 0, by

(log n)d+1 n−
2α

2α+d .

In other words, the nuisance term nξ of learning rates from Eberts and Steinwart (2013) is

replaced by the logarithmic term (log n)d+1. Moreover, our learning rates, up to this logarithmic

term, are minimax optimal, see e.g. Györfi et al (2002, Chapter 1.7). In addition, our statistical

analysis provides learning rates for all asymmetric cases, that is, for τ 6= 1/2, which have not

been established in the literature yet, and also were not possible to induce from the work of

Eberts and Steinwart (2013).

In the case of generic kernels, for τ = 0.5, we compare our established learning rates to
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learning rates obtained by Steinwart et al (2009) for the least squares regression. It turns out

that our achieved rates are equal to the ones obtained by Steinwart et al (2009). However,

unlike Steinwart et al (2009), we have learning rates not only for the least squares case for

which τ = 0.5, but in fact for entire set τ ∈ (0, 1).



Chapter 5

An SVM-like Solver for Expectiles

Regression

In this chapter, we complement the statsitical analysis given in Chapter 4 for SVM-type learning

problem for expectile regression with the empirical results in the case of Gaussian RBF kernels.

As we have seen in the previous chapters that expectiles can be described with the help of

the asymmetric least square loss function, this link therefore makes it possible to estimate

expectiles in a non-parametric framework with a support vector machine (SVM) like approach.

For the underlying optimization problem, the main goal of this chapter is to develop an efficient

sequential-minimal-optimization-based solver and to provide its convergence analysis. With

this aim, we formulate the primal and the dual optimization problem of SVMs for expectile

regression in Section 5.1. In Section 5.2, we propose an SMO-type algorithm to update one

dual coordinate per iteration along with the stopping criterion and initialization methods.

The exact two dimensional optimization problem together with some working set selection

strategies is discussed in Section 5.3. Section 5.4 contains the convergence analysis of the

solver while some experiments and a discussion on the results can be found in Section 5.5.

The detailed experimental results of this chapter can also be found in Appendix. Note that

the work of this chapter has already been published in Farooq and Steinwart (2017b). In

addition, the source code of the proposed solver for expectile regression (ex-svm) is now a

part of liquidSVM: A Fast and Versatile SVM Package, and can be downloaded from http:

//www.isa.uni-stuttgart.de/software/

75
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5.1 Primal and Dual Optimization Problem

Let D := ((x1, y1), (x2, y2), · · · (xn, yn)) ∈ (X × R)n be a training data drawn in an i.i.d. fashion

from some unknown distribution P on X × Y , where X ⊂ Rd and Y ⊂ R. In addition, we

assume that f : X → R is a measurable function. Recall that the empirical Lτ -risk of f is

defined by

RLτ ,D(f) :=
1

n

n∑
i=1

Lτ (yi, f(xi)) . (5.1)

Here, D := 1
n

∑n
i=1 δ(xi,yi) is the empirical measure associated to the data set D and Lτ is defined

by (3.2). Now recall that SVMs construct a predictor fD,λ by solving the convex optimization

problem of the form

fD,λ = arg min
f∈H

λ‖f‖2
H +RLτ ,D(f) , (5.2)

where λ > 0 is a regularization parameter and H is a seperable RKHS of a bounded measurable

kernel k : X × X → R. For input domains X ⊂ Rd, one often uses SVMs that are equipped

with Gaussian RBF kernels. Recall Definition 2.13 that the latter are defined by

kγ(x, x
′) := exp(−γ−2‖x− x′‖2

2) , x, x′ ∈ Rd , (5.3)

where γ > 0 is called the width parameter. For more properties of Gaussian RBF kernels, we

refer to Chapter 2.2. In this chapter, we however, always consider the normalized form of kγ,

that is, for which kγ(x, x) = 1 for all x ∈ Rd. Note that the formulation (5.2) also includes

kernels of the form

k̄γ(x, x
′) :=

1 + kγ(x, x
′)

2
,

and since the RKHS Hγ of kγ does not contain constants (see, Steinwart and Christmann, 2008,

Corollary 4.44 ), the RKHS of k̄γ is given by H̄γ = Hγ⊕R1X , and elements of k̄γ are of the form

(f, b) ∈ Hγ × R with (f, b)(x) = f(x) + b. In other words, (5.2) includes an SVM formulation

with offset b in which the regularized term penalizes b by

λ‖(f, b)‖2
H =

λ

4

Å
‖f‖2

H + b2
ã
.

In the following, we always consider regularized problem (5.2), that is without offset form.

Note that the SVM-algorithms without offset have been considered in last 15 years because

the offset term does in general not promise any theoretical and empirical advantages if a large

RKHSs such as Gaussian RKHSs are used, see for instance Vogt (2002), Steinwart (2003),

Keerthi et al (2006), Steinwart et al (2011) and references theirin. On the other hand, the



An SVM-like Solver for Expectiles Regression 77

offset term leads to an additional equality constraint in the dual problem (see Cristianini and

Shawe-Taylor, 2000, Chapter 6.2), and as a consequence, SMO-type solvers can only update

certain pairs of dual variables. In addition, the offset makes it relatively expensive to calculate

the duality gap (see Cristianini and Shawe-Taylor, 2000, Chapter 5.3), which may serve as a

stopping criterion for these solvers.

To deal with (5.2) algorithmically, we fix a feature space H0 and a feature map Φ : X → H0

of R. Then for all x ∈ X, one can represent f ∈ H in terms of w ∈ H0 via

f(x) = 〈w, φ(x)〉H0 ,

see Steinwart and Christmann (2008, Theorem 4.21) for further details. Note that the latter

theorem also shows that

‖f‖H = inf{‖w‖H0 : w ∈ H0 with f = 〈w, φ(· )〉H0} , (5.4)

Using (5.1) and (5.4) in the objective function (5.2), we obtain the standard regularized problem

for SVMs without offset

arg min
w∈H0

λ‖w‖2
H0

+
1

n

n∑
i=1

Lτ (yi, f(xi)) . (5.5)

By reformulating (5.5) we obtain the following primal optimization problem

arg min
(w,ξ+,ξ−)

w∈H

PC(w, ξ+, ξ−) :=
1

2
‖w‖2 + Cτ

n∑
i=1

ξ2
i,+ + C(1− τ)

n∑
i=1

ξ2
i,− ,

such that ξi,+ ≥ yi − 〈w, φ(xi)〉 ,

ξi,− ≥ 〈w, φ(xi)〉 − yi ,

ξi,+ , ξi,− ≥ 0 , ∀ i = 1, . . . , n ,

(5.6)

where C := 1
2nλ

> 0. Using standard Lagrangian techniques, see e.g. Cristianini and Shawe-

Taylor (2000, Chapter 6), one can easily obtain the dual optimization problem

arg max
(α,β)

D(α, β) := 〈α− β,y〉 − 1

2
〈α− β,K(α− β)〉 − 1

4Cτ
〈α, α〉 − 1

4C(1− τ)
〈β, β〉 ,

(5.7)

αi ≥ 0, βi ≥ 0 , ∀ i = 1, . . . , n .

Here y is the n×1 vector of labels and K is the n×n matrix with entries Ki,j := k(xi, xj), i, j =

1, . . . , n. Note that (5.6) is a convex function as the loss function (3.2) is convex. Analogously,

it is not hard to see that the dual optimization problem (5.7) is concave. This ensures the

fulfillment of the strong duality assumptions (Cristianini and Shawe-Taylor, 2000, Chapter 5)
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and consequently, the primal optimal solution can be obtained from a dual optimal solution

using a simple transformation. To be more precise, if (α∗, β∗) is an optimal solution of the dual

problem (5.7), then the optimal solution of the corresponding primal problem (5.6) is

w∗ :=
n∑
i=1

(α∗i − β∗i )φ(xi) ,

ξ∗i,+ := max
ß

0, yi − 〈w∗, φ(xi)〉
™
,

ξ∗i,− := max
ß

0, 〈w∗, φ(xi)〉 − yi
™
,

(5.8)

and by (Steinwart and Christmann, 2008, Lemma 5.1), this primal solution is unique. Further-

more, we obtain for D∗ := D(α∗, β∗) and P∗ := P∗C(w∗, ξ∗+, ξ
∗
−) that D∗ = P∗.

The quadratic nature of (5.7) makes it possible to solve it using quadratic programming

(QP) techniques. However, many QP techniques that are used to solve the dual optimiza-

tion problems, for example, interior point methods (see Wright and Nocedal, 1999; Schölkopf

and Smola, 2002) are impractical for large scale problems. Decomposition methods, such as

chunking (see Vapnik, 2000) have been designed to overcome this problem by breaking the

optimization problem into smaller subproblems and solving them iteratively. The limiting case

of decomposition methods is the Sequential Minimal Optimization (SMO) methods that opti-

mize two coordinates at each iteration (Platt, 1999) for SVMs with offset and hence, does not

require storage of the entire kernel matrix. Section 4 presents this idea in more detail in view

of expectile regression without offset. It is also worth noting that SVMs without offset enable

us to develop an SMO-type algorithm that updates one coordinate per iteration as a starting

point. In the following section, we introduce this algorithm in details.

5.2 Working Set of Size One

Our goal in this section is to develop an SMO-type algorithm that updates a single coordinate

in each iteration. For this, we first compute one working set solution from the optimization

problem (5.7). Then we establish a rule to select a direction in which the update should be

performed as well as a criterion to stop the algorithm. In the end, we present two procedures

to initialize the coordinates.

Let us first compute the gradients for αi and βi from (5.7) which we will use throughout

this section and subsequent sections. By taking partial derivatives of (5.7) w.r.t. αi and βi we
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obtain

.
∇Dαi(α, β) = 〈ei,y〉 − 〈ei, K(α− β)〉 − 〈ei, α〉

2Cτ
,

∇Dβi(α, β) = −〈ei,y〉+ 〈ei, K(α− β)〉 − 〈ei, β〉
2C(1− τ)

.
(5.9)

Let us now reformulate (5.7) for one working set solution. For α, β ∈ Rn and an index i ∈

{1, . . . , n}, we write α\i := α− αiei and β\i := β − βiei where ei is the i-th vector of standard

basis of Rn. Then, basic calculations together with assuming Ki,i = 1 for normalized kernels

leads to the following dual objective function for 1D-problem

D(α\i + αiei, β
\i + βiei) := D(α\i, β\i) + (αi − βi)〈ei,y〉 −

1

2
(αi − βi)2

− (αi − βi)〈ei, K(α\i − β\i)〉 − α2
i

4Cτ
− β2

i

4C(1− τ)
.

(5.10)

Taking partial derivatives of (5.10) w.r.t. αi and βi and setting them to zero yield the system

of equations

b1αi − βi = ci ,

αi − b2βi = ci ,
(5.11)

where

b1 =
2Cτ + 1

2Cτ
,

b2 =
2C(1− τ) + 1

2C(1− τ)
,

ci = 〈ei,y〉 − 〈ei, K(α\i − β\i)〉 = ∇Dαi(α, β) + b1〈ei, α〉 − 〈ei, β〉 .

(5.12)

After solving (5.11), we obtain the global solution

α∗i =
b2 − 1

b1b2 − 1
ci , β∗i =

1− b1

b1b2 − 1
ci . (5.13)

Note that b1, b2 ∈ (1,∞) for all C > 0 and τ ∈ (0, 1). It is not hard to see from (5.13) that

α∗i = β∗i = 0 if and only if ci = 0. On the other hand, for all ci ∈ R \ {0}, (5.13) leads to the

relation

α∗i = − τ

1− τ
β∗i , (5.14)

which implies that the global solution (α∗i , β
∗
i ) violates the constraints of the dual problem (5.7).

In other words, the global maximum of (5.7) does not lie in the set of feasible vectors. The

following general theorem describes the way to find the solution in this situation.

Theorem 5.1. Let D : Rm → R be a concave and twice continuous differentiable function and

A ⊂ Rm be a closed convex set. Assume that there is exactly one α∗ ∈ Rm with D′(α∗) = 0.

Then the following statements hold:

i) For all α 6= α∗ we have D(α∗) > D(α).
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ii) If α∗ /∈ A, then there exists an α? ∈ ∂A such that D(α?) ≥ D(α) for all α ∈ A.

Proof of Theorem 5.1. i) We first show that D has a global maximum at α∗. To do this, we

proceed by contradiction, that is, we assume that there exists an α ∈ Rm with

D(α∗) < D(α) . (5.15)

By concavity of D, we conclude that for t ∈ [0, 1]

D((1− t)α∗ + tα) ≥ (1− t)D(α∗) + tD(α) . (5.16)

On the other hand, h := t(α − α∗) ∈ Rm and Taylor’s theorem in the multiple dimensional

version yields

D((1− t)α∗ + tα) = D(α∗ + h) ,

= D(α∗) + 〈D′(α∗), h〉+
1

2
〈h,D′′(α∗)h〉+O(‖ h2 ‖) ,

= D(α∗) +
t2

2
〈α− α∗,D′′(α∗)(α− α∗)〉+O(t2) .

Using this in (5.16) we obtain

D(α∗) + t
Ä
D(α)−D(α∗)

ä
≤ D(α∗) +

t2

2
〈α− α∗, (α− α∗)D′′(α∗)〉+O(t2) , (5.17)

and thus

c1t ≤
c2

2
t2 +O(t2) ,

where c1 := D(α)−D(α∗) and c2 := 〈α−α∗,D′′(α∗)(α−α∗)〉. Furthermore, we have c2 ≤ 0 since

D is concave and c1 > 0 by (5.15). For sufficiently small t > 0, (5.17) is therefore impossible

and hence (5.15) can not be true. Let us now show that D has no other global maximum. For

this, we assume the converse, that is, D has a global maximum at some α∗∗ 6= α∗. Then we

obtain D′(α∗∗) = 0 by usual calculus, and hence our assumptions are violated. Consequently,

D has its only global maximum at α∗.

ii) If α∗ /∈ A then we also have α∗ /∈ Å, where Å denotes the interior of A, and for all α ∈ Å

we thus have α 6= α∗. Let us now show that for all α ∈ Å there exists an α? ∈ ∂A with

D(α?) > D(α). (5.18)

To this end, we fix an α ∈ Å and consider the function

γ : [0, 1]→ Rm

t 7→ (1− t)α∗ + tα .
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Furthermore, we set

h := D ◦ γ .

Then it is easy to see that h is concave. Moreover, since α 6= α∗, we find γ(t) 6= α∗ for all

t ∈ (0, 1] and thus h(t) < h(0) for all t ∈ (0, 1]. By the concavity of h we conclude that h is

strictly decreasing. We now show that there exists t? ∈ (0, 1] with γ(t?) ∈ ∂A. Let us assume

the converse, that is, Γ∩∂A = ∅, where Γ := γ([0, 1]). Considering the partition Å, ∂A, Rm\Ā,

where Ā denotes the closure of A, we then find by the assumed A = Ā and Γ ∩ ∂A = ∅ that

B1 := Γ ∩ Å

B2 := Γ ∩ Rm\Ā = Γ ∩ (Rm\A),

is a partition of Γ. Since α ∈ Å and α∗ /∈ A, we further find B1 6= ∅ and B2 6= ∅. Moreover,

since Rm\A is open, the sets B1 and B2 are relatively open in Γ and Γ. However, the continuous

image of a connected set, is connected and thus Γ is connected. This leads to a contradiction,

and hence there exists a t? ∈ [0, 1] with γ(t?) ∈ ∂A. Clearly, we have t? < 1 since α /∈ ∂A. For

α? := γ(t?), the already established strict monotonicity of h then shows

D(α?) = h(t?) > h(1) = D(α) .

Consequently we have shown (5.18) and thus

sup
α∈∂A
D(α) = sup

α∈A
D(α).

In other words, it suffices to show that the supremum over ∂A is attained at some α? ∈ ∂A.

To this end, we first show that {D ≥ ρ} is bounded for all ρ < D∗ := D(α∗). For α ∈ S, where

S ⊂ Rm denotes the Euclidean unit sphere, we define

hα : [0,∞) → Rm

t 7→ D(α∗ + tα) .

Then hα is concave and continuously differentiable, and has a global maximum at t = 0.

Moreover, hα is strictly decreasing with lim
t→∞

hα(t) = −∞. We define

tα := max{t ≥ 0 : hα(t) ≥ ρ},

where we note that the maximum is indeed attained by the continuity of hα and tα <∞. Our

next intermediate goal is to show that α 7→ tα is continuous. To this end, we fix an α0 ∈ S, and

an ε > 0 with
√
ε < −h′α0

(tα0), where we note that h′α0
(tα0) < 0 since hα0 is strictly decreasing
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and D∗ > ρ. Since D is continuous differentiable, then there exist a δ > 0 such that for all

α ∈ S with ‖α0 − α‖ ≤ δ we have

|h′α0
(tα0)− h′α(tα0)| ≤ ε .

For tα ≥ tα0 , the concavity, or more precisely, the subdifferential inequality of −h′α(tα0), then

gives

hα(tα) ≤ hα(tα0) + h′α(tα0)(tα − tα0) ,

≤ hα0(tα0) + ε+ (h′α0
(tα0) + ε)(tα − tα0) ,

≤ hα0(tα0) + ε+
1

2
h′α0

(tα0)(tα − tα0) .

Now recall that hα(tα) = ρ = hα0(tα0). Thus we obtain

0 ≤ ε+
1

2
h′α0

(tα0)(tα − tα0) ,

and since h′α0
(tα0) < 0, we conclude that

−2ε

h′α0
(tα0)

≥ tα − tα0 ,

and thus

tα ≤ tα0 +
−2ε

h′α0
(tα0)

≤ 2
√
ε .

Since an analogous bound can be established in the case t ≤ tα0 , we conclude that α 7→ tα

is continuous. Consequently, there exist an α0 ∈ S with tα0 = sup
α∈S

tα, and thus {D ≥ ρ} is

bounded. Now we show that there exist α? ∈ A with

D? := sup
α∈A
D(α) = D(α?) .

Clearly there is an (αn) ⊂ A with

D(αn)→ D? ,

and since {D ≥ ρ} is bounded, the sequence αn is also bounded. Then there is a subsequence

αnk and an α? with αnk → α? and the continuity of D yields D(αnk)→ D(α?). Consequently,

we have shown D(α?) = D(α). Finally α? = limαnk ∈ A follows from A = Ā.

Recall (5.13) that there exits exactly one pair of (α∗i , β
∗
i ) at which the derivative vanishes

but (5.14) shows that (α∗i , β
∗
i ) is not feasible. In this situation, by Theorem 5.1, the optimal

feasible solution can be found on the boundary

{(0, βi) : βi ≥ 0} ∪ {(αi, 0) : αi ≥ 0} ,
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for all i ∈ {1, . . . , n}. To this end, we split the problem into two cases. In the first case, we

plug αi = 0 in (5.10) and then differentiate w.r.t. βi, which provides

∂D(α\i, β\i + βiei)

∂βi
= −〈ei,y〉+ 〈ei, K(α\i − β\i)〉 − b2〈ei, β〉 .

Setting it to zero gives

α+
i = 0 , β+

i = − ci
b2

. (5.19)

Analogously, for the second case, plugging βi = 0 in (5.10) and differentiating w.r.t. αi yields

∂D(α\i + αiei, β
\i)

∂αi
= 〈ei,y〉 − 〈ei, K(α\i − β\i)〉 − b1〈ei, α〉 .

Equating it to zero provides

β+
i = 0 , α+

i =
ci
b1

. (5.20)

Since b1, b2 ∈ (1,∞) are constants for a fixed τ ∈ (0, 1), the solution (5.19) and (5.20) solely

depend on ci. If ci 6= 0, then we show in the following theorem that either (5.19) or (5.20) gives

the feasible optimal solution.

Theorem 5.2. For i ∈ {1, . . . , n}, let ci ∈ R and b1, b2 ∈ (1,∞) be defined by (5.12). Then

the following implications holds:

i) If ci < 0, then (5.19) is the feasible solution.

ii) If ci = 0, then (5.19) and (5.20) are the same feasible solution.

iii) If ci > 0, then (5.20) is the feasible solution.

In particular, exactly one of the two cases (i) and (iii) produces a feasible solution (α+
i , β

+
i ),

obtained by

α+
i = max

Å
0,
ci
b1

ã
, β+

i = max
Å

0,− ci
b2

ã
.

Proof of Theorem 5.2. If ci = 0, it is trivial to prove that (5.20) and (5.20) lead to the same

feasible solution. For the case when ci 6= 0, we first assume that ci > 0. Since b1, b2 ∈ (1,∞),

only (5.20) provides a feasible solution because β+
i < 0 in (5.19) for ci > 0. Similarly, if we

assume that ci < 0, then α+
i < 0 in (5.20) while β+

i > 0 in (5.19) which makes it feasible

solution.

After computing the feasible optimal solution, the next task is to determine the coordinate i

in which the update should be performed. Many approaches have been discussed so far for this

purpose. A simple approach (see Cristianini and Shawe-Taylor, 2000, p. 132-133) is to update
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each coordinate i = 1, . . . , n iteratively. Another method (see, e.g. Vogt, 2002) is to choose the

coordinate that violates the Karush-Kuhn-Tucker (KKT) conditions of optimality the most.

The latter approach is implemented in SVM packages, SVMlight (Joachims, 1999) and LIBSVM

(Chang and Lin, 2011). Another idea, see Steinwart et al (2011), which is followed in this work,

is to choose the coordinate i∗ whose update achieves the largest improvement for the value of

the dual objective function D. In other words, it performs the update in the direction

i∗ ∈ arg max
i=1,...,n

D(α + δei, β + ηei)−D(α, β) , (5.21)

where δ = α+
i −αi and η = β+

i −βi denote the difference between the new and the old values of

αi and βi respectively. Based on this idea, the following lemma establishes a rule to compute

the gain in the value of D.

Lemma 5.3. Let i ∈ {1, . . . , n}, α, β ∈ Rn, and δ, η ∈ R. Moreover let b1, b2 ∈ (1,∞) be

defined by (5.12), then we have

G(δ, η) := D(α + δei, β + ηei)−D(α, β)

= δ

Ç
∇Dαi(α, β)− b1δ

2

å
+ η

Ç
∇Dβi(α, β)− b2η

2

å
+ δη .

(5.22)

Proof of Lemma 5.3. Rewriting the dual objective function (5.7)

D(α, β) =〈α,y〉 − 〈β,y〉 − 1

2
〈α,Kα〉+ 〈α,Kβ〉 − 1

2
〈β,Kβ〉

− 1

4Cτ
〈α, α〉 − 1

4C(1− τ)
〈β, β〉.

and assuming δ, η ∈ R, the update in D in the direction i is

D(α + δei, β + ηei) = I− II− III, (5.23)

where

I := 〈α + δei,y〉 − 〈β + ηei,y〉 ,

= 〈α− β,y〉+ δ〈ei,y〉 − η〈ei,y〉 ,

II :=
1

2
〈α + δei, K(α + δei)〉 − 〈α + δei, K(β + ηei)〉+

1

2
〈β + ηei, K(β + ηei)〉 ,

=
1

2
〈α− β,K(α− β)〉+ δ〈α− β,Kei〉 − η〈α− β,Kei〉+

δ2

2
+
η2

2
− δη ,

III :=
1

4Cτ
〈α + δei, α + δei〉+

1

4C(1− τ)
〈β + ηei, β + ηei〉 ,

=
1

4Cτ
〈α, α〉+

1

4C(1− τ)
〈β, β〉+

δ

2Cτ
〈α, ei〉+

η

2C(1− τ)
〈β, ei〉

+
δ2

4Cτ
+

η2

4C(1− τ)
.
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By using b1, b2 defined in (5.12) together with I, II and III in (5.23) we obtain

D(α + δei, β + ηei)−D(α, β) =δ
Å
〈ei,y〉 − 〈α− β,Kei〉 −

〈ei, α〉
2Cτ

− b1

2
δ
ã

+ η
Å
〈ei,y〉+ 〈α− β,Kei〉 −

〈ei, β〉
2Cτ

− b2

2
η
ã

+ δη ,

which yields assertion by using (5.9).

In the following, we present Procedure 1 that searches for the best direction using Lemma

5.3 and the feasible solution from Theorem 5.2.

Procedure 1 Calculate i∗ ∈ arg maxi=1,...n

(
D(α+ δei, β + ηei)−D(α, β)

)
bestgain ← −1

for i = 1 to n do

δi ← max
(
0, cib1

)
− αi

ηi ← max
(
0,− ci

b2

)
− βi

gain← G(δi, ηi)

if gain > bestgain then

bestgain← gain

i∗ ← i

δi∗ ← δi

ηi∗ ← ηi

end if

return i∗, δi∗ , ηi∗

end for

5.2.1 Stopping Criteria

It is well-known that solving the problem like (5.7) in an iterative manner requires an appro-

priate stopping criterion. In the context of SVMs with offset, several stopping criteria have

been suggested so far. One method is to stop training when the KKT conditions are satisfied

up to some predefined tolerance ε > 0. Another method is to use the duality gap as a stopping

criterion (see, Cristianini and Shawe-Taylor, 2000, p. 109 and 128). The latter method has been

used by Steinwart et al (2011) to formulate the duality gap for SVM without offset. Following

this idea, we define for dual variables α ∈ R+ and β ∈ R+ the set

Hpre :=
ß n∑
i=1

(αi − βi)k( · , xi) : n ∈ N, αi, βi ∈ R+, xi ∈ X, i = 1, . . . , n
™



86 5.2. Working Set of Size One

which is dense in H (see Steinwart and Christmann, 2008, Theorem 4.21) and for

fα,β :=
n∑
i=1

(αi − βi)k( · , xi) ∈ Hpre , (5.24)

we have ‖fα,β‖2
H = 〈α−β,K(α−β)〉. Note that fα,β is the dual representation of fD,λ defined by

(5.2). Using the dual approximate solution (5.24), we obtain the value of the primal objective

function (5.6)

PC(fα,β, ξi,+, ξi,−) =
1

2
〈α− β,K(α− β)〉+ Cτ

n∑
i=1

ξ2
i,+ + C(1− τ)

n∑
i=1

ξ2
i,− ,

and thus the duality gap of PC(fα,β, ξi,+, ξi,−) and D(α, β) is obtained by

S(α, β) := PC(fα,β, ξi,+, ξi,−)−D(α, β) . (5.25)

For some predefined tolerance ε > 0, duality gap (5.25) tells us to stop the iteration method of

solving the problem (5.7) when S(α, β) < ε. As a result we obtain the ε-approximate solution

f ∗α,β of the true decision function fD,λ. In order to compute S(α, β) efficiently, we split it into

T (α, β) =
1

2
〈(α− β), K(α− β)〉 − D(α, β) ,

E(α, β) = τ
n∑
i=1

ξ2
i,+ + (1− τ)

n∑
i=1

ξ2
i,− ,

(5.26)

such that we have S(α, β) = T (α, β) + C · E(α, β). The value of T (α, β) can be obtained at

each iteration by updating it in the chosen direction i, such as

T (α + δei, β + ηei) = T (α, β)− U(αi, βi, δ, η) ,

where

U(αi, βi, δ, η) := δ

Ç
2∇Dαi(α, β) + 〈y, ei〉+

〈α, ei〉
2Cτ

− (b1 + 1)δ

2

å
+ η

Ç
∇Dβi(α, β) + 〈y, ei〉+

〈β, ei〉
2C(1− τ)

− (b2 + 1)η

2
η

å
+ 2δη .

(5.27)

Unlike T (α, β), the value of E(α, β) can not be updated but needs to be computed from scratch

for each iteration. To find an efficient formula we combine (5.6) with (5.24) and obtain

ξi,+ = max
¶
0, 〈y, ei〉 − 〈α− β,Kei〉

©
= max

ß
0,∇Dαi(α, β) +

〈α, ei〉
2Cτ

™
,

and

ξi,− = max
¶
0, 〈α− β,Kei〉 − 〈y, ei〉

©
= max

ß
0,−∇Dαi(α, β)− 〈α, ei〉

2Cτ

™
.

With these formulas, the computation of E(α, β) is an O(n) operations.
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Let us now consider a little more involved stopping criterion that looks for the f ∗α,β ∈ Hpre

for which

λ‖f ∗α,β‖2
H +RL,D( Ûf ∗α,β) ≤ min

f∈H
λ ‖f‖2

H +RL,D(f) + ε , (5.28)

see Steinwart and Christmann (2008, Definition 7.18), whereas Ûfα,β is clipped at ±M ∈ R in

the sense of Definition 2.7. To be more precise, we write the clipped value of fα,β : X → R at

±M by

Ûfα,β =


−M if fα,β < −M ,

fα,β if fα,β ∈ [−M,M ] ,

−M if fα,β > −M .

Based on this idea, the clipped version of (5.24) isÛfα,β(xi) =
ï
〈ei,y〉 − ∇Dαi(α, β)− 〈α, ei〉

2Cτ

òM
−M

, (5.29)

which leads to the clipped version of ξi,+ and ξi.−Ûξi,+ = max

®
0, 〈y, ei〉 −

ï
〈ei,y〉 − ∇Dαi(α, β)− 〈α, ei〉

2Cτ

òM
−M

´
,Ûξi,− = max

®
0,
ï
〈ei,y〉 − ∇Dαi(α, β)− 〈α, ei〉

2Cτ

òM
−M
− 〈y, ei〉

´
.

(5.30)

As a result, we obtain ÙE(α, β) := τ
n∑
i=1

Ûξ2
i,+ + (1− τ)

n∑
i=1

Ûξ2
i,− .

Then we see that (5.28) is satisfied ifÙS(α, β) := T (α, β) + C · ÙE(α, β) ≤ ε

2λ
. (5.31)

Indeed, the use of (5.30) in the stopping criterion (5.31) may provide a substantial decrease in

duality gap in each iteration compared to the use of unclipped slack variables, and consequently

the learning algorithm may require less number of iterations. Note that one can set S(α, β) ≤ ε
2λ

as in (5.31), where ε has the same value as in (5.25) (see Steinwart et al, 2007). Furthermore,

it is worth noting that, unlike the duality gap stopping criterion for SVM with offset given by

Cristianini and Shawe-Taylor (2000, p. 109f), both (5.25) and (5.31) are directly computable

since they do not require the offset term. In the following, we present an O(n) procedure to

update ∇Dα(α, β), ∇Dβ(α, β) and to calculate S(α, β). The one for ÙS(α, β) is an obvious

modification and therefore omitted.
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Procedure 2 Update ∇Dαi(α, β) and ∇Dβi(α, β) in direction i∗ and calculate S(α, β)

T (α, β)← T (α, β)− U(αi, βi, δ, η)

E(α, β)← 0

for k = 1 to n do

∇Dαk
(α, β)← ∇Dαk

(α, β)− (δ − η)Kik − δ∗

2Cτ δik

∇Dβk
(α, β)← ∇Dβk

(α, β) + (δ − η)Kik − η∗

2C(1−τ)δik

ξk,+ ← max{0,∇Dαk
(α, β) + αk

2Cτ }

ξk,− ← max{0,−∇Dαk
(α, β)− αk

2Cτ }

E(α, β)← E(α, β) +
(
τξ2k,+ + (1− τ)ξ2k,−

)
end for

S(α, β) = T (α, β) + C · E(α, β)

With all the above calculations, we now summarize the basic idea of the 1D-SVM in Al-

gorithm 1. This algorithm suggests to look repeatedly for the best direction i∗ and performs

update in that direction until the predefined stopping criterion is satisfied.

Algorithm 1 1D-SVM solver

initialize α, β,∇Dα(α, β),∇Dβ(α, β) and T (α, β)

while S(α, β) > ε
2λ do

(i∗, δi∗ , ηi∗)← Procedure 1

αi∗ ← αi∗ + δi∗

βi∗ ← βi∗ + ηi∗

use Procedure 2 to update∇Dα(α, β),∇Dβ(α, β) in direction i∗ by δi∗ and ηi∗ and calculate

S(α, β)

end while

Clearly, the Algorithm 1 still requires some procedures in order to initialize α and β, and

the corresponding gradients. Few procedures for this purpose are given in the following section.

5.2.2 Initialization

Various approaches are available to initialize α and β, and their corresponding gradients. We

here briefly describe two approaches, namely, cold start and warm start that we will use during

the implementation of the solver.

W0: Cold Start With Zeros. In this approach, we take α← 0 and β ← 0 to initialize them.

The initialization of corresponding gradients and duality gap is given in Procedure 3.



An SVM-like Solver for Expectiles Regression 89

Procedure 3 Initialize by α← 0, β ← 0, compute gradients and dual gap

E(α, β)← 0

for i = 1 to n do

αi ← 0

βi ← 0

∇Dαi(α, β)← ∇Dαi(α
∗, β∗) + yi

∇Dβi
(α, β)← ∇Dβi

(α∗, β∗)− yi

ξi,+ ← max (0, yi)

ξi,− ← max (0,−yi)

E(α, β)← E(α, β) +
(
τξ2i,+ + (1− τ)ξ2i,−

)
end for

T (α, β)← 0

S(α, β)← Cnew · E(α, β)

W1: Warm Start by Recycling Old Solution. Typically, the hyper-parameter λ is chosen by

a search over a grid Λ = {λ1, . . . , λm} of candidates values. If these values are ordered in the

form λ1 > . . . > λm and the SVM is trained in this order, then the resulting C(1), . . . , C(m)

satisfy the property that C(j) < C(j+1) for all j = 1, . . . ,m− 1. For C(1) we initialize the solver

with the above mentioned cold start and for j ≥ 2, we initialize it with a warm start, that is,

by taking α ← α∗ and β ← β∗ where α∗, β∗ is the approximate solution obtained by training

Procedure 4 Initialize by α← α∗, β ← β∗, compute gradients and dual gap

E(α, β)← 0

for i = 1 to n do

αi ← α∗
i

βi ← β∗
i

∇Dαi
(α, β)← ∇Dαi

(α∗, β∗) +
α∗

i

2τ

(
1

Cold − 1
Cnew

)
∇Dβi(α, β)← ∇Dβi(α

∗, β∗) +
β∗
i

2(1−τ)
(

1
Cold − 1

Cnew

)
ξi,+ ← max

(
0,∇Dαi(α, β) + αi

2τCnew

)
ξi,− ← max

(
0,−∇Dαi

(α, β)− αi

2τCnew

)
E(α, β)← E(α, β) +

(
τξ2i,+ + (1− τ)ξ2i,−

)
end for

T (α, β)← T (α, β)− 1
4

(
1

Cold − 1
Cnew

)∑n
i=1

(
α2

i

τ +
β2
i

1−τ

)
S(α, β)← T (α, β) + Cnew · E(α, β)
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with Cold = Cj−1. Obviously, in this case, we can also recycle parts of ∇Dα(α, β), ∇Dβ(α, β)

and S(α, β). This is described in in Procedure 4.

5.3 Working Set of Size Two

In this section, we extend the idea presented in the previous section and develop an algorithm

to perform an update for two coordinates per iteration. For this, we first solve the 2D-problem

exactly in Section 5.3. Then we formulate a low cost working set selection strategy in Section

5.3.2 using both the 1D-solution and the 2D-solution. In the end of this section, we establish

a stopping criterion for the 2D-problem.

5.3.1 Exact Solution of Two Dimensional Problem

Let us fix two coordinates i, j ∈ {1, . . . , n} with i 6= j. We further assume that ei and ej

are the i-th and j-th vectors of standard basis of Rn, and write α\i,j := α − αiei − αjej and

β\i,j := β − βiei − βjej. By this and using Kii = Kjj = 1 for normalized kernels, the dual

objective function for 2D-problem is

D̃ := D(α\i,j + αiei + αjej, β
\i,j + βiei + βjej)

= D(α\i,j, β\i,j) +D(αi, βi) +D(αj, βj)− (αi − βi)(αj − βj)Kij ,
(5.32)

where

D(αi, βi) := (αi − βi)〈ei,y〉 − (αi − βi)〈ei, K(α\i,j − β\i,j)〉 − 1

2
(αi − βi)2

− 1

4Cτ(1− τ)
((1− τ)α2

i + τβ2
i ) ,

D(αj, βj) := (αj − βj)〈ej,y〉 − (αj − βj)〈ej, K(α\i,j − β\i,j)〉 − 1

2
(αj − βj)2

− 1

4Cτ(1− τ)
((1− τ)α2

j + τβ2
j ) .

Taking partial derivatives of (5.32) w.r.t. αi, αj, βi and βj, we obtain the gradients

∇D̃αi = 〈ei,y〉 − 〈ei, K(α\i,j − β\i,j)〉 − b1αi + βi − (αj − βj)Ki,j ,

∇D̃βi = −〈ei,y〉+ 〈ei, K(α\i,j − β\i,j)〉+ αi − b2βi + (αj − βj)Ki,j ,

∇D̃αj = 〈ej,y〉 − 〈ej, K(α\i,j − β\i,j)〉 − b1αj + βj − (αi − βi)Ki,j ,

∇D̃βj = −〈ej,y〉+ 〈ej, K(α\i,j − β\i,j)〉+ αj − b2βj + (αi − βi)Ki,j ,

(5.33)
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where b1, b2 are defined in (5.12). By setting partial derivatives (5.33) to zero, we obtain the

following system of equations

b1αi − βi + kαj − kβj = ci ,

αi − b2βi + kαj − kβj = ci ,

kαi − kβi + b1αj − βj = cj ,

kαi − kβi + αj − b2βj = cj ,

(5.34)

where

k := Kij ,

ci := 〈ei,y〉 − 〈ei, K(α\i,j − β\i,j)〉 ,

= ∇Dαi(α, β) + b1〈α, ei〉 − 〈β, ei〉+ 〈α− β, ej〉k ,

cj := 〈ej,y〉 − 〈ej, K(α\i,j − β\i,j)〉

= ∇Dαj(α, β) + b1〈α, ej〉 − 〈β, ej〉+ 〈α− β, ei〉k .

Let α∗i , α
∗
j , β

∗
i and β∗j be the solution of (5.34). Then solving (5.34) by matrix operations leads

to the following global solution

|M |α∗i = (b2 − 1)(b1b2 − 1)ci + (1− b2)(b1 + b2 − 2)kcj ,

|M |β∗i = (1− b1)(b1b2 − 1)ci + (b1 − 1)(b1 + b2 − 2)kcj ,

|M |α∗j = (b2 − 1)(b1b2 − 1)cj + (1− b2)(b1 + b2 − 2)kci ,

|M |β∗j = (1− b1)(b1b2 − 1)cj + (b1 − 1)(b1 + b2 − 2)kci .

(5.35)

Here

|M | := b2
1(b2

2 − k2)− 2b1(b2k
2 + b2− 2k2)− (b2 − 2)2k2 + 1 ,

is always positive. This is shown in the following lemma

Lemma 5.4. For b1, b2 ∈ (1,∞) and |k| ≤ 1, we have |M | > 0.

Proof of Lemma 5.4. After simplification, we write

|M | = (b1b2 − 1)2 − (b1 + b2 − 2)2k2 ,

and by plugging b1 = 2Cτ+1
2Cτ

and b2 = 2C(1−τ)+1
2C(1−τ)

we obtain

|M | =
Ç

1

2Cτ(1− τ)

å2ÇÅ2C + 1

2C

ã2

− k2

å
.

Since C > 0, we have 2C+1
2C

> 1. From latter together with |k| ≤ 1 and τ ∈ (0, 1), we obtain

the assertion.
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Note that, in the case of ci = cj = 0, we have α∗i = β∗i = α∗j = β∗j = 0. On the other hand,

if ci 6= 0 and/or cj 6= 0, then (5.35) together with Lemma 5.4, after some calculations, leads to

the following equations

α∗i = − τ

1− τ
β∗i , α∗j = − τ

1− τ
β∗j .

Since τ ∈ (0, 1), the global solution (5.35) thus violates the constraints of (5.7) if and only if

ci 6= 0 and/or cj 6= 0, that is, the solution is not feasible. To obtain a feasible solution, we know

by Theorem 5.1 that we need to look at the boundaries of the feasible region. In our case, this

means that we need to set some of the dual variables to zero. Note that this is an extension

of the idea that is presented in the 1D-problem. Let us begin by setting one dual variable to

zero, say αi = 0. The resultant expressions of gradients w.r.t. the remaining variables can be

deduced from the last three expressions of (5.33) after setting αi = 0. By setting these gradients

to zero, we obtain the following system of equations

−b2βi + kαj − kβj = ci ,

−kβi + b1αj − βj = cj ,

−kβi + αj − b2βj = cj ,

(5.36)

where k, ci, cj, b1 and b2 are the same as in (5.34). Let us write α+
j , β

+
i and β+

j be the solution

of (5.36). Then, by subtracting the last two equations of (5.36), we obtain

α+
j = − τ

1− τ
β+
j , (5.37)

and hence this solution is again not feasible. In a similar way, setting βi = 0 provides the

following system of equations

b1αi + kαj − kβj = ci ,

kαi + b1αj − βj = cj ,

kαi + αj − b2βj = cj ,

which again leads to (5.37) and thus the same conclusion. The remaining two cases where

αj = 0 and βj = 0 can be treated analogously. Let us now consider the scenario where two

variables are set to be zero. For this, we split the problem into six subcases. First we consider

the subcase where we set αi = 0 and βi = 0 in (5.32). Taking derivatives w.r.t. αj and βj, we

have

∇Dαj(α\i, β\i) = 〈ej,y〉 − 〈ej, K(α\i,j − β\i,j)〉+ βj − b1αj ,

∇Dβj(α\i, β\i) = −〈ej,y〉+ 〈ej, K(α\i,j − β\i,j)〉+ αj − b2βj .
(5.38)
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Setting (5.38) to zero, we obtain the system of equations

b1αj − βj = cj ,

αj − b2βj = cj .
(5.39)

Let α+
j and β+

j be the solution of (5.39). Then subtracting equations of (5.39) leads to

α+
j = − τ

1− τ
β+
j , (5.40)

which shows that the solution is not feasible. Analogously, the second subcase where αj = 0

and βj = 0 leads to the same conclusion. In the third subcase, we set αi = 0 and αj = 0 in

(5.32) and differentiate w.r.t. βi and βj which gives

∇Dβi(α\i,j, β) = −〈ei,y〉+ 〈ei, K(α\i,j − β\i,j)〉 − βjKij − b2βi ,

∇Dβj(α\i,j, β) = −〈ej,y〉+ 〈ej, K(α\i,j − β\i,j)〉 − βiKij − b2βj .
(5.41)

Setting (5.41) to zero, we obtain a system of equations which, after some calculations, provides

the solution

α+
i = 0 , α+

j = 0 , β+
i = |B1|−1(kcj − b2ci) , β+

j = |B1|−1(kci − b2cj), (5.42)

where |B1| := b2
2− k2 > 0. Considering the forth subcase, we set βi = 0 and βj = 0. Analogous

to third subcase, the gradients are

∇Dαi(α, β\i,j) = 〈ei,y〉 − 〈ei, K(α\i,j − β\i,j)〉 − αjKij − b1αi ,

∇Dαj(α, β\i,j) = 〈ej,y〉 − 〈ej, K(α\i,j − β\i,j)〉 − αiKij − b1αj ,

which leads to the solution

β+
i = 0 , β+

j = 0 , α+
i = |B2|−1(b1ci − kcj) , α+

j = |B2|−1(b1cj − kci) , (5.43)

where |B2| := b2
1− k2 > 0. For fifth subcase, we set αi = 0 and βj = 0 and obtain the following

solution

α+
i = 0 , β+

j = 0 , β+
i = |B3|−1(b1ci − kcj) , α+

j = |B3|−1(kci − b2cj) , (5.44)

where |B3| := k2− b1b2 < 0. Finally, for the last subcase where αj = 0 and βi = 0, the solution

can be obtained by interchanging i with j in the solution of fifth subcase, which is

β+
i = 0 , α+

j = 0 , α+
i = |B3|−1(kcj − b2ci) , β+

j = |B3|−1(b1cj − kci) . (5.45)

It is interesting to note that the solutions (5.42), (5.43), (5.44) and (5.45) have the following

common expressions

T1 := kcj − b2ci , (5.46)
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T2 := kci − b2cj , (5.47)

T3 := b1ci − kcj , (5.48)

T4 := b1cj − kci . (5.49)

The following lemma investigates the behavior of the above four expressions.

Lemma 5.5. Assume that ci 6= 0 or cj 6= 0. Then the following implications hold:

i) If T1 ≥ 0 and T2 ≥ 0 then we have ci < 0 and cj < 0.

ii) If T3 ≥ 0 and T4 ≥ 0 then we have ci > 0 and cj > 0.

In particular, the expressions T1, T2, T3 and T4 are not simultaneously positive or negative.

Proof of Lemma 5.5. i) Since T1 ≥ 0 and T2 ≥ 0, we have b2
k
ci ≤ cj ≤ k

b2
ci. Since we assumed

that ci 6= 0 or cj 6= 0, we conclude from the latter and b2, k ≥ 0 that we actually have ci 6= 0

and cj 6= 0. Moreover, b2 > 1 and k ≤ 1 shows that ci < 0 and cj < 0.

ii) Since T3 ≥ 0 and T4 ≥ 0, we have k
b1
ci ≤ cj ≤ b1

k
ci. Since we assumed that ci 6= 0 or

cj 6= 0, we conclude from the latter and b1, k ≥ 0 that we actually have ci 6= 0 and cj 6= 0.

Moreover, b1 > 1 and k ≤ 1 shows that ci > 0 and cj > 0.

Finally, this leads to conclude that T1, T2, T3 and T4 are not simultaneously positive. By

similar arguments, it can be shown that these expressions are not simultaneously negative.

The Lemma 5.5 leads to the following theorem which shows that only one case from (5.42),

(5.43), (5.44) and (5.45) provides the feasible optimal solution.

Theorem 5.6. Assume that ci 6= 0 or cj 6= 0, then exactly one of the four cases (5.42), (5.43),

(5.44) and (5.45) produces a feasible solution. Moreover, the following implications hold:

i) If T1 ≥ 0 and T2 ≥ 0, then (5.42) is the feasible solution.

ii) If T3 ≥ 0 and T4 ≥ 0, then (5.43) is the feasible solution.

iii) If T2 ≤ 0 and T3 ≤ 0, then (5.44) is the feasible solution.

iv) If T1 ≤ 0 and T4 ≤ 0, then (5.45) is the feasible solution.

Proof of Theorem 5.6. Our first goal is to show that at most one of the four cases (5.42),

(5.43), (5.44) and (5.45) leads to a feasible solution. To this end we note that (5.42) is feasible

if and only if T1 and T2 are non-negative. Similar consideration from (5.43) to (5.45) leads to

the Table 5.1.
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Optimal Solution T1 T2 T3 T4

(5.42) feasible ≥ 0 ≥ 0 – –

(5.43) feasible – – ≥ 0 ≥ 0

(5.44) feasible – ≤ 0 ≤ 0 –

(5.45) feasible ≤ 0 – – ≤ 0

Table 5.1: Behavior of expressions T1, T2, T3 and T4 when any optimal solution is feasible

Let us assume that (5.42) is feasible. By Lemma 5.5 we then see that (5.43) is not feasible.

Since T1 and T2 are nonnegative, it is clear by Table 5.1 that (5.44) and (5.45) are not feasible.

Hence, we have shown that if (5.42) is feasible, the remaining cases (5.43) to (5.45) are not

feasible. Since analogous arguments can be repeated using Table 5.1 when one of the remaining

cases (5.43) to (5.45) is considered feasible, we finally conclude that at most one of the four

cases is feasible, that is, we have shown our intermediate result.

Let us now assume that none of the four cases yield a feasible solution. Then we obtain

Table 5.2, where in each row, at least one of the inequalities needs to be true. Let us assume

Optimal Solution T1 T2 T3 T4

(5.42) not feasible < 0 < 0 – –

(5.43) not feasible – – < 0 < 0

(5.44) not feasible – > 0 > 0 –

(5.45) not feasible > 0 – – > 0

Table 5.2: Behavior of expressions T1, T2, T3 and T4 when none of the optimal solutions is

feasible

that T1 < 0, then by Table 5.2, we conclude that we have following set of inequalities

kcj < b2ci , (5.50)

kci > b2cj , (5.51)

b1ci < kcj , (5.52)

b1cj > kci . (5.53)

Combining (5.50) and (5.52) as well as (5.51) and (5.53), we obtain

b1ci < b2ci , (5.54)
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b2cj < b1cj . (5.55)

Now if ci < 0, we find cj < 0 by (5.50). Moreover (5.54) together with ci < 0 implies b2 < b1,

while (5.55) together with cj < 0 implies b1 < b2, that is, we have found a contradiction.

Analogously, we obtain a contradiction in the case T1 ≥ 0. As a consequence exactly one of

the four cases produces a feasible solution. Finally, the implications are a direct consequence of

the form of the solutions in (5.42) to (5.45) and the fact that only one case provides a feasible

solution.

Theorem 5.6 also suggests to impose if conditions based on expressions (5.46), (5.47), (5.48)

Procedure 5 Compute feasible optimal 2D-solution

choose direction i and direction j

compute T1, T2, T3 and T4

if T1 ≥ 0 and T2 ≥ 0 then

αi = 0

βi = T1/|B1|

αj = 0

βj = T2/|B1|

else if T3 ≥ 0 and T4 ≥ 0 then

αi = T3/|B2|

βi = 0

αj = T4/|B2|

βj = 0

else if T2 < 0 and T3 < 0 then

αi = 0

βi = T3/|B3|

αj = T4/|B3|

βj = 0

else

αi = T1/|B3|

βi = 0

αj = 0

βj = T4/|B3|

end if
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and (5.49) in the implementation of the algorithm for 2D-SVM solver, which is described in

Procedure 5. This helps to reach directly to the feasible optimum solution.

5.3.2 Working Set Selection Strategies

From Procedure 5, we note that we need to choose the directions i∗ and j∗ in which the 2D-SVM

solver performs an update. Several possibilities are available for this task. A straightforward

approach is to consider all pairs of directions (i, j) and choose the one for which the 2D-gain of

D is maximum. Note that the 2D-gain is simply an extension of the idea presented in Lemma

5.3. To be more precise, for α, β ∈ Rn and δ, η ∈ R2, the 2D-gain is

D(α+δiei+δjej, β+ηiei+ηjej)−D(α, β) = G(δi, ηi)+G(δj, ηj)−(δi−ηi)(δj−ηj)Ki,j , (5.56)

where G(δk, ηk) for k = i, j is the 1D-gain defined in Lemma 5.3.

It is worth noting that above described working set selection strategy is not a suitable choice

because the search is O(n2). However it may be considered as an ”optimal” two dimensional

strategy and can be taken as a baseline to all other low-cost approximations to this approach.

In the following, we describe two low-cost working set selection strategies following Steinwart

et al (2011).

WSS 1: Two 1D-direction With Maximal Gain From Separate Subsets. In this approach,

we preserve the low-cost search from 1D-solver. For this, we split the index set {1, . . . , n} into

two parts {1, . . . , n
2
} and {n

2
+ 1, . . . , n} and search for 1D directions with maximum gain over

these two parts separately. In other words, we can choose the directions i∗ and j∗ by

i∗ ∈ arg max
i≤n/2
D(α + δei, β + ηei)−D(α, β) ,

j∗ ∈ arg max
i>n/2
D(α + δei, β + ηei)−D(α, β) ,

(5.57)

where δ and η are defined in the 1D-solution. These chosen directions are used for the first

iteration. For the subsequent iterations, we first search for two new 1D directions, i∗new and

j∗new, using again by (5.57). Then we compute the 2D-gain of D for all pairs of old and new

choosen directions of the previous and the current iterations, respectively, and choose the pair

for which the 2D-gain is maximum.

WSS 2: 1D-direction With Maximal Gain And A Direction Of A Nearby Sample. This

strategy is simply an extension of WSS 1. After determining (i∗, j∗) by WSS 1, we fix i∗ and

then search for another direction j∗ from k-nearest neighbors of xi∗ with respect to the metric

d(x, x′) := ‖x− x′‖2 ,
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for which 2D-gain is maximum as compared to the j∗ chosen by WSS 1.

5.3.3 Stopping Criteria

To formulate the stopping criterion for the 2D-problem, we follow the idea that is presented in

Section 3.1. Let us first consider the component T (α, β) from (5.26) and by using (5.56), we

find the following update of T (α, β) in the directions of i and j

T (α + δei + δej, β + ηei + ηej) = T (α, β)− U(αi, βi, δi, ηi)− U(αj, βj, δj, ηj)

+ 2(δi − ηi)(δj − ηj)Ki,j ,

where U(αk, βk, δk, ηk) for k = i, j is defined in (5.27). To compute E(α, β), we first obtain

the updated gradients in the directions of i and j, and then subsequently compute ξl,+, ξl,−.

Moreover, ÙE(α, β) can also be computed for the 2D-problem similar to the 1D-problem by using

(5.30). With all above computations, we summarize 2D-SVM solver in Algorithm 2.

Algorithm 2 2D-SVM Solver

initialize α, β,∇Dα(α, β),∇Dβ(α, β) and T (α, β)

while S(α, γ) > ε
2α do

select directions i∗ and j∗

use procedure 5 to obtain the optimum solution for direction i∗ and j∗

update α and β in the direction i∗ and j∗

update ∇Dα(α, β),∇Dβ(α, β) in the directions (i∗, j∗) and calculate S(α, β)

end while

5.4 Convergence Analysis

In this section, we show that the 1D-SVM and the 2D-SVM converge to the optimal solution.

We start by following lemma.

Lemma 5.7. For all ρ ∈ (−∞, D∗), the set {(α, β) : D(α, β) ≥ ρ} is compact.

Proof of Lemma 5.7. Since the kernel matrix K in (5.7) is positive definite, we find

D(α, β) ≤ 〈α− β, y〉 − 1

4Cτ
〈α, α〉 − 1

4C(1− τ)
〈β, β〉

≤ ‖α− β‖‖y‖ − 1

4Cτ
‖α‖2 − 1

4C(1− τ)
‖β‖2

≤ ‖α− β‖‖y‖ − 1

4C
‖α‖2 − 1

4C
‖β‖2
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=
1

4C

Å
C̃‖α− β‖ − ‖α‖2 − ‖β‖2

ã
,

where C̃ := 4C‖y‖. For α ≥ 0 and β ≥ 0 with D(α, β) ≥ ρ we thus have

C̃‖α− β‖ − ‖α‖2 − ‖β‖2 ≥ 4Cρ ,

which implies that

‖α‖2 + ‖β‖2 ≤ C̃‖α− β‖ − 4Cρ ≤ C̃
Å
‖α‖+ ‖β‖

ã
− 4Cρ . (5.58)

From (5.58), we easily conclude that the set {(α, β) : D(α, β) ≥ ρ} is bounded. Furthermore,

the set {(α, β) : D(α, β) ≥ ρ} is also closed, since D(α, β) is continuous. Thus, the set is

compact.

Lemma 5.7 implies that for k ∈ N the sequences {αk} and {βk} produced by algorithm

lie in {(α, β) : D(α, β) ≥ ρ} and are bounded. In other words, α ∈ [0, A]n and β ∈ [0, B]n,

where A ≥ 0 and B ≥ 0. Let us define sigma functional for vectors α and β for an index

set I ⊂ {1, . . . , n}, which represents first-order approximation of the maximal distance (with

regard to the value of the dual objective function) between a given solution and any other

feasible solution.

σ(α, β|I) : = sup
α̃∈[0,A],β̃∈[0,B]
α̃i=αi,β̃i=βi∀i 6=I

Å
〈∇Dα(α, β), α̃− α〉+ 〈∇Dβ(α, β), β̃ − β〉

ã
.

(5.59)

Since our algorithms are based on gain optimization, we further define the γ-functional

γ(α, β|I) := sup
α̃∈[0,∞),β̃∈[0,∞)
α̃i=αi,β̃i=βi∀i 6=I

D(α̃, β̃)−D(α, β) , (5.60)

which is the gain in dual objective function resulting from an optimization over the directions

contained in I. To simplify notations, we write σ(α, β|i) := σ(α, β|{i}) and γ(α, β|i) :=

γ(α, β|{i}), that is

σ(α, β|i) = sup
α̃i∈[0,A],β̃i∈[0,B]

Å
(α̃i − αi)∇Dαi(α, β) + (β̃i − βi)∇Dβi(α, β)

ã
,

and the gain of the 1D-update in the direction i is

γ(α, β|i) = sup
α̃i∈[0,∞),β̃i∈[0,∞)

D(α + δi, βi + ηi))−D(α, β) ,

where δi := αnew
i − αi and ηi := βnew

i − βi. Moreover, for I = {1, , . . . , n}, we write σ(α, β) :=

σ(α, β|I) and γ(α, β) := γ(α, β|I) respectively. Note that both σ and γ are monotonic in I,

that is, for I ⊂ J , we have σ(α, β|I) ≤ σ(α, β|J) and γ(α, β|I) ≤ γ(α, β|J).

In the following lemma we establishes a relationship between the sigma functional and the

gamma functional for I = {1, . . . , n}.
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Lemma 5.8. For all α ∈ [0, A]n and β ∈ [0, B]n, we have

n∑
i=1

σ(α, β|i) = σ(α, β) ≥ γ(α, β) .

In particular, there exists an index i? ∈ {1, . . . , n} such that

σ(α, β|i?) ≥ n−1σ(α, β) . (5.61)

Proof of Lemma 5.8. For i ∈ {1, . . . , n}, we define

ᾱi :=

 A if ∇Dαi(α, β) ≥ 0

0 if ∇Dαi(α, β) < 0
and β̄i :=

 B if ∇Dβi(α, β) ≥ 0

0 if ∇Dβi(α, β) < 0 .
(5.62)

Then the vectors ᾱ := (ᾱ1, . . . , ᾱn) ∈ [0, A]n and β̄ := (β̄1, . . . , β̄n) ∈ [0, B]n realize the supre-

mum defining σ(α, β), and hence we obtain

n∑
i=1

σ(α, β|i) =
n∑
i=1

Å
〈∇Dα(α, β), (ᾱi − αi)ei〉+ 〈∇Dβ(α, β), (β̄i − βi)ei〉

ã
= 〈∇Dα(α, β), (ᾱ− α)〉+ 〈∇Dβ(α, β), (β̄ − β)〉

= σ(α, β) .

To show the inequality σ(α, β) ≥ γ(α, β), we fix an α̃ ∈ [0, A]n and a β̃ ∈ [0, B]n for I =

{1, . . . , n}. Additionally, we write b3 := 1
4Cτ

and b4 := 1
4C(1−τ)

. Then we find

D(α̃, β̃)−D(α, β)

= 〈α̃− β̃, y〉 − 1

2
〈α̃− β̃, K(α̃− β̃)〉 − b3〈α̃, α̃〉 − b4〈β̃, β̃〉

− 〈α− β, y〉+
1

2
〈α− β,K(α− β)〉+ b3〈α, α〉+ b4〈β, β〉

= 〈α̃− α, y〉 − 〈α̃− α,K(α− β)〉 − 2b3〈α̃− α, α〉 − 〈β̃ − β, y〉+ 〈β̃ − β,K(α− β)〉

− 2b4〈β̃ − β, β〉+ 〈α̃− α,K(α− β)〉 − 〈β̃ − β,K(α− β)〉 − 1

2
〈α̃− β̃, K(α̃− β̃)〉

+
1

2
〈α− β,K(α− β)〉+ 2b3〈α̃− α, α〉 − b3〈α̃, α̃〉+ b3〈α, α〉+ 2b4〈β̃ − β, β〉

− b4〈β̃, β̃〉+ b4〈β, β〉 .

A simple calculations shows that

〈α̃− α,K(α− β)〉 − 〈β̃ − β,K(α− β)〉 − 1

2
〈α̃− β̃, K(α̃− β̃)〉+

1

2
〈α− β,K(α− β)〉

= 〈α̃,Kα〉 − 〈α̃,Kβ〉 − 〈α,Kα〉+ 〈α,Kβ〉 − 〈β̃, Kα〉+ 〈β̃, Kβ〉+ 〈β,Kα〉 − 〈β,Kβ〉

− 1

2
〈α̃,Kα̃〉+ 〈α̃,Kβ̃〉 − 1

2
〈β̃, Kβ̃〉+

1

2
〈α,Kα〉 − 〈α,Kβ〉+

1

2
〈β,Kβ〉
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=
Å
〈α̃,Kα〉 − 1

2
〈α,Kα〉 − 1

2
〈α̃,Kα̃〉

ã
+
Å
〈β̃, Kβ〉 − 1

2
〈β,Kβ〉 − 1

2
〈β̃, Kβ̃〉

ã
+
Å
〈α,Kβ〉 − 〈α̃,Kβ〉 − 〈β̃, Kα〉+ 〈α̃,Kβ̃〉

ã
= −1

2
〈α̃− α,K(α̃− α)〉 − 1

2
〈β̃ − β,K(β̃ − β)〉+ 〈α̃− α,K(β̃ − β)〉

= −1

2
〈α̃− α− β̃ + β,K(α̃− α− β̃ + β)〉 .

Thus, by using the gradients of α and β for I = {1, . . . , n}, see (5.9), we obtain

D(α̃, β̃)−D(α, β)

= 〈∇Dα(α, β), α̃− α〉+ 〈∇Dβ(α, β), β̃ − β〉 − 1

2
〈α̃− α− β̃ + β,K(α̃− α− β̃ + β)〉

− b3〈α̃− α, α̃− α〉 − b4〈β̃ − β, β̃ − β〉

≤ 〈∇Dα(α, β), α̃− α〉+ 〈∇Dβ(α, β), β̃ − β〉 ,

and maximizing on both sides of this inequality, we find γ(α, β) ≤ σ(α, β). Finally, the last

assertion is a trivial consequence of the first assertion.

Now we present the lemma that relates the sigma functional σ(α, β|i) to the gain, i.e.

gamma functional γ(α, β|i) for direction i ∈ {1, . . . , n}.

Lemma 5.9. For all α ∈ [0, A]n, β ∈ [0, B]n and i ∈ {1, . . . , n}, we have

γ(α, β|i) ≥ σ(α, β|i)
2

min

®
1,

σ(α, β|i)
M

´
,

where b1 and b2 are defined in (5.12), and M := b1A
2 + b2B

2.

Proof of Lemma 5.9. Let ᾱi and β̄i be defined by (5.62), and d1 := ᾱi−αi and d2 := β̄i−βi.

Then for λ ∈ [0, 1], we have α + λd1 ∈ [0, A] and β + λd2 ∈ [0, B] respectively. Furthermore,

we define δ := λd1 and η := λd2. Then by using the 1D gain of the dual objective function, see

(5.22), together with (5.59) for i ∈ {1, , . . . , n}, we obtain

D(α + δei, β + ηei)−D(α, β)

= λd1

Å
∇Dαi(α, β)− λb1d1

2

ã
+ λd2

Å
∇Dβi(α, β)− λb2d2

2

ã
+ λ2d1d2

= λ
Å
d1∇Dαi(α, β) + d2∇Dβi(α, β)

ã
− λ2

2

Å
b1d

2
1 − 2d1d2 + b2d

2
2

ã
≥ λσ(α, β|i)− λ2

2

Å
b1A

2 + b2B
2
ã
. (5.63)

In order to maximize the right hand side of (5.63), we consider

h(λ) := λσ(α, β|i)− λ2

2
M ,
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where M := b1A
2 + b2B

2. Simple calculations show that h(λ) attains maximum value at

λ∗ :=

 1 if σ(α, β|i) > M

σ(α,β|i)
M

if σ(α, β|i) ≤M .

In the case σ(α, β|i) > M , we then find

h(λ∗) = σ(α, β|i)− M

2
≥ σ(α, β|i)

2
,

while in the other case σ(α, β|i) ≤M , we obtain

γ(α, β|I) ≥ σ2(α, β|i)
2M

.

By combining the above two estimates, we achieve

h(λ∗) ≥ σ(α, β|i)
2

min

®
1,

σ(α, β|i)
M

´
.

Finally, by the definition of the gamma functional (5.60), we have

γ(α, β|i) ≥ D(α + λ∗d1, β + λ∗d2)−D(α, β) ≥ σ(α, β|i)
2

min

®
1,

σ(α, β|i)
M

´
.

With these preparations we now establish the result that leads to the convergence of both

the 1D and the 2D solvers for SVMs.

Theorem 5.10. Let (α(0), β(0)), (α(1), β(1)), · · · ∈ [0, A]n×[0, B]n be a sequence of feasible vectors

that satisfies

D(α(`+1), β(`+1))−D(α(`), β(`)) ≥ γ(α(`), β(`)|i?`) , ` ≥ 0 , (5.64)

where for each `, the index i?` ∈ {1, . . . , n} satisfies (5.61). Then for ` → ∞, we have

D(α(`), β(`))→ D∗, where D∗ is the optimal value of D(α, β).

Proof of Theorem 5.10. Since γ(α(`), β(`)|i?`) ≥ 0, the sequence D(α(`), β(`)) is monotonically

increasing and since it is bounded by D∗, we see D(α(`), β(`)) is a Cauchy sequence and thus

D(α(`+1), β(`+1)) − D(α(`), β(`)) → 0 when ` → ∞. This implies that γ(α(`), β(`)|i?`) → 0 by

(5.64). By Lemma 5.9, this implies that σ(α(`), β(`)|i?`) → 0, which, by Lemma 5.8, leads to

σ(α`, β`)→ 0. This further implies that D∗ −D(α`, β`) = γ(α`, β`)→ 0 by Lemma 5.8.

Note that the working set selection strategies WSS 1 and WSS 2 satisfy the assumption

(5.64), since they both achieve a gain that is at least as large as the best 1D-gain. Furthermore,

Theorem 5.10 leads to the following corollary showing that the duality gap vanishes for `→∞.
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Corollary 5.11. Under the assumptions of Theorem 5.10, for `→∞, we have

w(`) :=
n∑
i=1

(α
(`)
i , β

(`)
i )φ(xi)→ w∗ , ` ≥ 0 ,

where w∗ is defined by (5.8) . In particular, S(α(`), β(`)) → 0, where S(α, β) is a duality

gap defined by (5.25), and hence Algorithm 1 and Algorithm 2 terminate after finitely many

iterations.

Proof of Corollary 5.11. Let (α(`), β(`)) be a sequence satisfying (5.64). Then by Theorem

5.10, we see that

D(α(`), β(`))→ D∗ . (5.65)

Since (α(`), β(`)) is contained in the set A := {(α, β) : D(α, β) ≥ D(α(0), β(0))}, which is

bounded by Lemma 5.7, there thus exists an (α∗, β∗) and a subsequence (α(`k), β(`k)) with

(α(`k), β(`k)) → (α∗, β∗). From (5.65) we conclude that D(α∗, β∗) = D∗. Let us now consider

w(`) and w∗. Since (α∗, β∗) is a solution of the dual problem, (w∗, ξ∗+, ξ
∗
−) is the solution of

corresponding primal problem and by (Steinwart and Christmann, 2008, Lemma 5.1), this

primal solution is unique. Moreover (α(`k), β(`k))→ (α∗, β∗) shows that

w(`k) → w∗ .

It remains to show that this convergence holds for the sequence w(`), too. Let us assume the

converse, that is, there exists a subsequence w(`′k) and an ε > 0 with

‖w(`′k) −w∗‖H ≥ ε . (5.66)

By the compactness of setA, this subsequence yields a sub-subsequence (α(`′′k), β(`′′k)) of (α(`′k), β(`′k))

and (α(`∗∗k ), β(`∗∗k )) with

(α(`′′k), β(`′′k))→ (α(`∗∗k ), β(`∗∗k )) .

Repeating aforementioned arguments for

w∗∗ :=
n∑
i=1

(α∗∗i − β∗∗i )K(xi, ·) ,

we find w(`′′k) → w∗∗. However, since w∗∗ together with its corresponding optional slack vari-

ables ξ∗∗+ , ξ
∗∗
− form a solution of primal problem, we have w∗∗ = w∗ by the uniqueness of the

primal solution. We have found a contradiction to (5.66), and consequently, we have

w(`) → w∗ .
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In other words

ξ
(`)
i,+ := max

ß
0, yi −w(`)(xi)

™
→ ξ∗i,+

ξ
(`)
i,− := max

ß
0,−yi + w(`)(xi)

™
→ ξ∗i,− ,

and thus we find

PC(w(`), ξ
(`)
i,+, ξ

(`)
i,−)→ PC(w∗, ξ∗+, ξ

∗
−) .

Since PC(w∗, ξ∗i,+, ξ
∗
i,−) = D∗, we finally have S(α(`), β(`))→ 0 and thus the stopping criteria of

Algorithm 1 and Algorithm 2 are satisfied after finitely many iterations.

5.5 Experiments

To evaluate the performance of the proposed solver for expectile regression, we perform several

experiments to address the following questions:

1. Which subset selection strategy leads to the smallest number of iterations or shortest run

time?

2. What is the number of nearest neighbors that leads to the smallest number of iterations

and shortest run time?

3. Is there advantage of warm start initialization when the parameter search is performed

over a grid?

4. Does the clipping provide a significant reduction in the training time and iterations?

5. How well does the 2D-SVM-solver work as compared to ER-Boost that is proposed by

Yang and Zou (2015)?

6. Does expectile regression give a computational advantage over qunatile regression?

To answer these questions, we implemented the 2D-SVM-solver in C++, where the source

code (ex-svm) is now a part of the larger package liquidSVM: A Fast and Versatile SVM Pack-

age, and can be downloaded from http://www.isa.uni-stuttgart.de/software/, see also

Steinwart and Thomann (2017). The algorithm was compiled by LINUX’s gcc version 4.7.2

with various software and hardware optimization flags enabled. All experiments were conducted

on a computer with INTEL CORE i7-4770 (3.40 GHz) and 16GB RAM under 64bit version

http://www.isa.uni-stuttgart.de/software/
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of Debian 3.16.0-4-amd64. During all experiments that incorporated the measurement of run

time, one core was used solely for the experiments, and the number of other processes running

on the system were minimized.

In order to perform the experiments, we considered nine data sets that were downloaded

from different sources. These data sets comprises various number of features and vary in

sample sizes from 630 to 20639. The data sets concrete-comp, updrs-motor, cycle-pp,

airfoil-noise and hour were downloaded from UCI repository. The two data sets nc-crime

and head-circum are available and documented in R packages Ecdat and AGD respectively.

The remaining two data sets cal-housing and munich-rent were downloaded from StatLib

and the data archive of the Institute of Statistics, Ludwig-Maximilians-University of Munich

respectively. We scaled the data sets componentwise such that all the samples including labels

lie in [−1, 1]d+1, where d represents dimensions of the input data. In addition to that, we

generated a random split for all data sets that contained approximately 70% training and 30%

test samples. The characteristics of the considered data sets are described in Table 5.3.

In all our experiments with SVM solver, we used the Gaussian kernel (5.3). To determine

the hyper-parameters, we considered a geometrically spaced 10 by 10 grid for λ and γ over the

interval [c1n
−1, 1] and [c2n

−1/d, c3] respectively, where n is the number of training samples, d is

the input dimension, and c1 := 0.001, c2 := 0.1 and c3 := 0.2. Here, the values of the constants

were chosen with the help of our experience, see also Chapter 4. To choose the best values

data sample sizes training size test size dimension

nc-crime 630 441 189 19

concrete-comp 1030 721 309 8

airfoil-noise 1503 1052 451 5

munich-rent 2053 1437 616 12

updrs-motor 5875 4112 1763 19

head-circum 7020 4914 2106 4

cycle-pp 9568 6697 2871 5

hour 17379 12165 5214 12

cal-housing 20639 14447 6192 8

Table 5.3: Characteristics of data sets together with the training sizes and the test sizes that

refer to the splits used in the run time experiments.
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of these hyper-parameters, we used k-fold cross validation with randomly generated folds. In

our case, we considered k = 5. During the k-fold cross validation, the hyper-parameter γ was

internally converted to γ̃ := (k−1)nγ
k

and λ to C := k
2(k−1)nλ

, where (k− 1)n/k is approximately

the actual training set size for k-fold cross validation. Finally, we have performed the experi-

ments for each τ = 0.25, 0.50, 0.75 to investigate the performance of the solver based on all the

aforementioned questions.

Let us now explore the answers of the above stated questions one by one. To address the

first question, we performed experiments with warm start initialization method and clipped

duality gap. In addition, we considered N = 15 nearest neighbors for WSS 2. The results are

presented in Figure A.1 and A.2 (see, Appendix A for all figures A.x), which depict that WSS

2 needs substantially less iterations as well as training time than WSS 1 on all data sets. For

larger data sets such as updrs-motor, head-circum, cycle-pp, hours and cal-housing,

the run time and iterations with WSS 2 is at least 50% less than WSS 1. Moreover, a closer

analysis, see Figure A.3 and A.4, shows that the savings are obtained at the hyper-parameters

pairs for which training is particularly expensive, that is, for small λ and medium to small γ.

Note that we have fixed N = 15 for WSS 2 to address the previous question. To investigate

how the computational requirements change with the number of nearest neighbors, we per-

formed the experiments for N -nearest neighbors with N = 5, 10, 15, 20, 25, 30, 35, 40. Again we

used the warm start initialization and the clipped duality gap. Here, it was observed that the

number of iterations tends to decrease with increasing N . However, for N ≥ 25, only a slight

improvement in the number of iterations was found whereas the required run time tended to

increase compared to smaller N . We therefore plotted the results for N = 5, 10, 15, 20 only.

Figure A.5 shows that the solver attains the minimum training time for N = 15 on almost all

data sets. Moreover, Figure A.6 shows that the number of iterations decreases with increas-

ing N . However, this decrease becomes negligible when N ≥ 15. All this together leads us

to conclude that N = 15 is the best choice for our ex-svm solver. Finally, Figure A.7 and

A.8 illustrate the computational requirements for different hyper-parameters pairs. Again the

largest savings for N = 15 were obtained for small λ.

To answer the third question regarding the initialization methods, we trained with N = 15

and the clipped duality gap. The results, which are presented in Figure A.9 and A.10 show that

using of the warm start initialization saves between 20% and 40% of both training time and

iterations. The detailed behavior for different hyper-parameter pairs is illustrated in Figure

A.11 and A.12. Again the savings are more pronounced for smaller λ.
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To answer the forth question, we considered the stopping criterion with clipped and with

unclipped duality gap. Here, we used the warm start initialization and WSS 2 with N = 15

nearest neighbors. The corresponding results are shown in Figures A.13 and A.14. In the

case of the hinge loss function, Steinwart et al (2011) showed that using the clipped duality

gap yields significant reduction, both in run time and the number of iterations. In our case,

however, we get only a small reduction in iterations, that is, 1% on almost all data sets. On

the other hand, this stopping criterion causes 2% to 17% increase in run times on the data sets.

This indicates that the unclipped duality gap is the better choice in our case. The per grid plot

of hyper-parameters for data set cal-housing, as presented in Figure A.15 and A.16, shows

that clipping reduces the run time only for few pairs of hyper-parameter when λ is small and

γ is large. For rest of the pairs, unclipped duality gap leads to smaller run time.

Finally, to answer the last two questions, we compare the preformance of our SVM solver

with a) er-boost on the basis of test error and b) with both er-boost and a similarly

implemented SVM solver for quantile regression on the basis of training time, see Steinwart

and Thomann (2017) for the source code.

For this, we considered the 2D-SVM solver with unclipped duality gap for expectile (ex-

svm) and quantile (q-svm), the 2D-SVM solver with clipped duality gap for expectile (ex-svm∗)

and quantile (q-svm∗), and er-boost, see (Yang and Zou, 2015). Since the experiments using

large data sets entail long run times, we splitted the data sets into three categories, namely,

small (n < 5000), medium (5000 ≤ n < 10000) and large (n ≥ 10000). We then conducted

experiments for ex-svm, ex-svm∗, q-svm, q-svm∗ and er-boost by repeating 5-fold cross

validation 25, 10 and 5 times for the small, medium and large data sets respectively. For 2D-

SVM solvers, we used the 10 by 10 default grid of hyper-parameters as described above. For

er-boost, we used the default value of boosting steps (M = 100) and performed 5-fold cross

validation to choose the best value of the interaction level (L) between variables, as described

by the er-boost manual. The resulting, average test errors (standard deviation) and training

times are shown in Table 5.4 and Table 5.5 respectively. It turns out that both SVM solvers

exhibit a better test performance than er-boost on all data sets, but all reported errors are

relatively small. Examining the achieved training times for each data set, we observe that

SVM solvers, both for expectile and quantile, are more sensitive to the training set size and

less sensitive to the dimensions of data set, whereas, er-boost behaves the other way around.

In addition to that, the test performance of ex-svm∗ is slightly better than ex-svm at the cost

of almost 10% longer training times. In addition, we see that the expectile solver is, depending
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Figure 5.1: True (solid) and estimated (dashed) expectiles (left) and corresponding quantiles (right)

for τ = 0.05, 0.25, 0.5, 0.75, 0.95 from an artificial data set.
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Figure 5.2: Estimated expectiles for τ = 0.01, 0.03, 0.05, 0.10, 0.30, 0.50, 0.70, 0.90, 0.95, 0.97, 0.99 for

height against age of head-circum. The graphs comprise of expectile curves for original

data set (left) and data set with transformed age (right).

on the data set size, between 2 and 10 times faster than the solver for quantile regression. Here

we note, that since both solvers are part of the same software package mentioned above, the

run time comparison is very fair. Indeed both solvers were implemented with the same amount

of care and rely on the same framework for e.g. computing the kernel matrices and validation

errors. Consequently, if quantile or expectile regression is used as a tool to know the condi-

tional distribution, then kernel-based expectile regression has a clear computational advantage
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over quantile regression. In this respect, we like to point to Figure 5.1, in which conditional

distributions of an artificial dataset are described by expectiles and quantiles, respectively. We

clearly see that the true expectiles do not coincide with the true quantiles, but both the col-

lection of conditional expectiles and of conditional quantiles provide a good overview of the

conditional distributions. In addition, both solvers estimate the true expectiles or quantiles

with high accuracy, so that at least in this example the computational advantage of expectile

regression does not come for the price of reduced accuracy. Finally, as a further illustration,

Figure 5.2 presents the expectile curves for different τ considering height against age from data

set head-circum. On the left we see some crossing and wiggling problems. Following Schnabel

and Eilers (2009b), the use of square root transformation on age resolves these issues as the

right figure shows. This indicates expectiles may be considered as an alternative method to

construct different well-known growth charts.
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5.5.

E
x
p

erim
en

ts

data
τ = 0.25 τ = 0.50 τ = 0.75

ex-svm ex-svm∗ er-boost ex-svm ex-svm∗ er-boost ex-svm ex-svm∗ er-boost

nc-crime 0.00616 0.00555 0.00948 0.00669 0.00605 0.01367 0.00536 0.00509 0.01459

(0.00182) (0.00169) (0.00177) (0.00194) (0.00161) (0.00305) (0.00172) (0.00157) (0.00405)

concrete-comp 0.00901 0.00893 0.03961 0.01021 0.01013 0.05038 0.00889 0.00879 0.04556

(0.00130) (0.00128) (0.00365) (0.00122) (0.00117) (0.00417) (0.00112) (0.00101) (0.00339)

airfoil-noise 0.00814 0.00806 0.04223 0.00947 0.00939 0.04817 0.00855 0.00850 0.03832

(0.00121) (0.00119) (0.00211) (0.00134) (0.00115) (0.00256) (0.00092) (0.00087) (0.00218)

munich-rent 0.00131 0.00126 0.01569 0.00122 0.00121 0.01812 0.00101 0.00101 0.01598

(0.00033) (0.00030) (0.00087) (0.00029) (0.00029) (0.00113) (0.00018) (0.00016) (0.00103)

updrs-motor 0.02518 0.02502 0.05345 0.02844 0.02828 0.06257 0.02585 0.02569 0.015229

(0.00152) (0.00152) (0.00069) (0.00159) (0.00152) (0.00150) (0.00166) (0.00169) (0.00179)

head-circum 0.00323 0.00323 0.02419 0.00390 0.00390 0.02482 0.00333 0.00333 0.01855

(0.00008) (0.00008) (0.00047) (0.00011) (0.00011) (0.00057) (0.00009) (0.00096) (0.00045)

cycle-pp 0.00420 0.00421 0.03588 0.00516 0.00516 0.04536 0.00479 0.00477 0.03930

(0.00009) (0.00011) (0.00079) (0.00019) (0.00019) (0.00097) (0.00027) (0.00029) (0.00076)

hour 0.01575 0.01543 0.02888 0.01664 0.01627 0.04021 0.01285 0.01259 0.03821

(0.00029) (0.00034) (0.00077) (0.00046) (0.00043) (0.00110) (0.00031) (0.00035) (0.00103)

cal-housing 0.02426 0.02415 0.05406 0.02546 0.02518 0.07473 0.01919 0.01912 0.07337

(0.00126) (0.00117) (0.00135) (0.00123) (0.00119) (0.00158) (0.00071) (0.00064) (0.00144)

Table 5.4: Average test error (standard deviation) for 2D-SVM with unclipped duality gap stopping criterion (ex-svm), 2D-SVM with clipped duality

gap stopping criterion (ex-svm∗) and er-boost. The average test error (standard deviation) was computed on 25 random splits for small

data sets, 10 random splits for medium size data sets and 5 random splits for larger size data sets.
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data τ ex-svm ex-svm∗ q-svm q-svm∗ er-boost

nc-crime

0.25 0.136 0.139 0.501 0.530 11.897

0.50 0.147 0.176 0.562 0.599 11.753

0.75 0.143 0.147 0.492 0.535 11.828

concrete-comp

0.25 0.354 0.355 1.394 1.538 1.196

0.50 0.357 0.379 1.430 1.556 1.138

0.75 0.339 0.355 1.353 1.506 1.108

airfoil-noise

0.25 0.679 0.759 3.141 3.612 0.422

0.50 0.726 0.779 3.332 3.774 0.438

0.75 0.666 0.703 3.111 3.492 0.414

munich-rent

0.25 0.559 0.586 5.878 6.351 6.178

0.50 0.577 0.603 5.338 5.919 6.199

0.75 0.606 0.612 5.398 6.061 6.170

updrs-motor

0.25 13.422 14.665 34.791 37.971 65.566

0.50 15.196 16.779 36.355 39.290 67.372

0.75 13.800 15.251 33.914 37.158 66.268

head-circum

0.25 9.226 9.902 57.973 66.068 0.982

0.50 9.874 10.713 49.679 56.460 0.983

0.75 8.862 9.671 58.271 66.785 0.993

cycle-pp

0.25 20.800 22.516 117.756 131.512 1.546

0.50 22.765 25.365 105.001 116.965 1.544

0.75 20.547 22.603 119.277 133.156 1.511

hour

0.25 79.635 79.435 375.984 359.189 48.031

0.50 94.416 94.566 328.593 318.889 47.559

0.75 92.486 94.019 317.514 337.308 48.138

cal-housing

0.25 142.244 147.692 614.082 652.405 22.527

0.50 169.433 174.212 527.763 542.678 22.551

0.75 162.605 168.445 549.389 546.775 21.939

Table 5.5: Training time (in seconds) for 2D-SVM with unclipped duality gap stopping criterion

for expectile (ex-svm) and quantile (q-svm), 2D-SVM with clipped duality gap

stopping criterion for expectile (ex-svm∗) and quantile (q-svm∗), and er-boost.
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Appendix A

In Chapter 5 we have discussed some experimental findings achieved by implementing the pro-

posed solver for the expectile regression under different initialization strategies, working set

selection strategies, clipping options, and with different numbers of nearest neighbors. This ap-

pendix gives the pictorial representation of the performance of the solver under different choices

of aforementioned parameters. This helps to see the impact of these choices by comparing the

total and (average) per-grid training time (in seconds) and total and (average) per-grid number

of iterations. This further leads us to choose the best combination of these parameters that we

finally use to compare our solver to the existing package ER-Boost for the expectile regression

(see, Chapter 5) in terms of training time and test error and also to the similarly implemented

SVM solver for quantile regression in terms of training time.
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Figure A.1: Training time (top) in seconds and corresponding ratios (bottom) for the two work-

ing set selection methods on different data sets. In these experiments, the warm

start initialization was chosen and the stopping criterion was based on the clipped

duality gap. The graphs show the results for τ = 0.25 (left), τ = 0.50 (middle)

and τ = 0.75 (right).
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Figure A.2: Training iterations (top) and corresponding ratios (bottom) for the two working

set selection methods on different data sets. In these experiments, the warm start

initialization was chosen and the stopping criterion was based on the clipped duality

gap. The graphs show the results for τ = 0.25 (left), τ = 0.50 (middle) and τ = 0.75

(right).
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Figure A.3: Average training time in seconds (left) and corresponding ratios (right) per grid

point for the two working set selection strategies using the clipped duality gap

criterion and the warm start for the cal-housing data set. For WSS 2, 15 nearest

neighbors are considered. The graphs show the results for τ = 0.25 (top), τ = 0.50

(middle) and τ = 0.75 (bottom).
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Figure A.4: Average number of iterations (left) and corresponding ratios (right) per grid point

for two working set selection strategies using the clipped duality gap criterion and

the warm start for the cal-housing data set. For WSS 2, 15 nearest neighbors

are considered. The graphs show the results for τ = 0.25 (top), τ = 0.50 (middle)

and τ = 0.75(bottom).
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Figure A.5: Training time in seconds (top) and corresponding ratios (bottom) for different

numbers of nearest neighbors on different data sets. In these experiments, the

warm start initialization was chosen and the stopping criterion was based on the

clipped duality gap. The ../plots/chapter5 show the results for τ = 0.25 (left),

τ = 0.50 (middle) and τ = 0.75 (right).
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Figure A.6: Training iterations (top) and corresponding ratios (bottom) for different numbers

of nearest neighbors on different data sets. In these experiments, the warm start

initialization was chosen and the stopping criterion was based on the clipped duality

gap. The graphs show the results for τ = 0.25 (left), τ = 0.50 (middle) and τ = 0.75

(right).
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Figure A.7: Average training time in seconds (left) and corresponding ratios (right) per grid

point for different numbers of nearest neighbors on the cal-housing data set.

In these experiments, the warm start initialization was chosen and the stopping

criterion was based on the clipped duality gap. The graphs show the results for

τ = 0.25 (top), τ = 0.50 (middle) and τ = 0.75 (bottom).
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Figure A.8: Average number of iterations (left) and corresponding ratios (right) per grid point

for different numbers of nearest neighbors on the cal-housing data set. In these

experiments, the warm start initialization was chosen and the stopping criterion

was based on the clipped duality gap. The graphs show the results for τ = 0.25

(top), τ = 0.50 (middle) and τ = 0.75 (bottom).
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Figure A.9: Training time in seconds (top) and corresponding ratios (bottom) for different

initialization methods on different data sets. In these experiments the stopping

criterion with clipped duality gap and NN = 15 were chosen. The graphs show

the results for τ = 0.25 (left), τ = 0.50 (middle) and τ = 0.75 (right).
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Figure A.10: Training iterations (top) and corresponding ratios (bottom) for different initializa-

tion methods on different data sets. In these experiments the stopping criterion

with clipped duality gap and WSS 2 with NN = 15 were chosen. The graphs

show the results for τ = 0.25 (left), τ = 0.50 (middle) and τ = 0.75 (right).
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Figure A.11: Average training time in seconds (left) and corresponding ratios (right) per grid

point for different initialization methods for the cal-housing data set. In these

experiments the stopping criterion with clipped duality gap and WSS 2 with

NN = 15 were chosen. The graphs show the results for τ = 0.25 (top), τ = 0.50

(middle) and τ = 0.75 (bottom).
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Figure A.12: Average train iterations (left) and corresponding ratios (right) per grid point for

different initialization methods for the cal-housing data set. In these experi-

ments the stopping criterion with clipped duality gap and WSS 2 with NN = 15

were chosen. The graphs show the results for τ = 0.25 (top), τ = 0.50 (middle)

and τ = 0.75 (bottom).
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Figure A.13: Training time in seconds (top) and corresponding ratios (bottom) for the two

stopping criteria on different data sets. In these experiments the warm start

initialization and WSS 2 with NN = 15 were chosen. The graphs show the

results for τ = 0.25 (left), τ = 0.50 (middle) and τ = 0.75 (right).
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Figure A.14: Training iterations (top) and corresponding ratios (bottom) for the two stopping

criteria on different data sets. In these experiments the warm start initialization

and WSS 2 with NN = 15 were chosen. The graphs show the results for τ = 0.25

(left), τ = 0.50 (middle) and τ = 0.75 (right).
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Figure A.15: Average training time in seconds (left) and corresponding ratios (right) per grid

point for the two stopping criterion on the cal-housing data set. In these

experiments the warm start initialization and WSS 2 with NN = 15 were chosen.

The graphs show the results for τ = 0.25 (top), τ = 0.50 (middle) and τ = 0.75

(bottom).
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Figure A.16: Average number of training iterations (left) and corresponding ratios (right) per

grid point for the two stopping criterion on the cal-housing data set. In these

experiments the warm start initialization and WSS 2 with NN = 15 were chosen.

The graphs show the results for τ = 0.25 (top), τ = 0.50 (middle) and τ = 0.75

(bottom).
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Nomenclature

R set of real numbers

N set of natural numbers

Ac, Å, Ā complement, interior and closure of a set A

∂A boundary of a set A, i.e., ∂A = Ā \ Å

X space of input values, usually a subset of Rd

Y space of output values, usually a subset of R

d dimensions of input space

n sample size

ntrain, ntest sample size of training and test data set

M a positive constant

D data set consisting of the samples (x1, y1), . . . , (xn, yn)

D empirical distribution w.r.t. the data set D

D dual objective function

Lα asymmetric Least absolute deviation (ALAD) loss function for α ∈ (0, 1)

Lτ asymmetric least square (ALS) loss function for τ ∈ (0, 1)

Lτ ◦ f loss Lτ combined with f , i.e. Lτ ◦ f(x, y) = Lτ (y, f(x))Ût clipping operation

|Lτ |1,M local Lipschitz constant of the loss Lτ for some M > 0

P primal objective function

P, Q probability distribution

PX marginal distribution

P(·|x) regular conditional distribution

CLτ ,Q(·) inner Lτ -risk w.r.t. distribution Q

C?Lτ ,Q minimal inner Lτ -risk w.r.t. distribution Q

RLτ ,P(·) Lτ -risk w.r.t. distribution P

R∗Lτ ,P minimal Lτ -risk w.r.t. distribution P

RL,D(·) empirical Lτ -risk w.r.t. the data set D

Lp(µ) space of equivalence class of p-integrable functions w.r.t. µ
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138 Nomenclature

Wα
p (µ) Sobolev space of order α

Bα
p,q(µ) Besov space of smoothness α

H reproducing kernel Hilbert space (RKHS)

Hγ Gaussian RKHS

k kernel

K Gram matrix

kγ Gaussian RBF kernel

‖ · ‖2 Euclidean norm

‖ · ‖∞ supremum norm

‖ · ‖H norm of RKHS H

‖ · ‖Hγ norm of Gaussian RKHS Hγ

| · |Bαp,q(µ) semi-norm of the Besov spaces Bα
p,q(µ)

‖ · ‖Bαp,q(µ) norm of the Besov spaces Bα
p,q(µ)

‖ · ‖Wpα
(µ) norm of the Sobolev space Wpα(µ)

〈·, ·〉H inner product in the Hilbert space H

α smoothing parameter of the target function/first dual variable

β second dual variable

λ regularization parameter

γ width of the Gaussian RBF kernel

δ difference between new and old value of dual variable α

η difference between new and old value of dual variable β

fD decision function produced by a leaning method

fD,λ empirical SVM decision function w.r.t. the data set D

fD,λ,γ empirical SVM decision function w.r.t. the data set D in Gaussian RKHSÛf clip decision function

fP,λ general SVM decision function w.r.t P

f∗Lτ ,P, µ
?
τ conditional τ -expectile function

A(λ) approximation error function for λ > 0

id identity map
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