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Abstract

The Fourth Industrial Revolution, also known as Industry 4.0 or Industrial Internet, predicts
that Smart Factories driven by Internet of Things (IoT) and Cyber-Physical Systems, will
reinvent the traditional manufacturing industry into a digitalized, a context-aware, and an
automated manufacturing that will flourish with contemporary Information and Commu-
nication Technology (ICT). As the IoT are being deployed across production cites of the
manufacturing companies, the need of decision making inside a business process based upon
the received contextual data such as employee availability, machine status, etc. from the
execution environment has transpired.

Production processes need to be updated and optimized frequently to stay competitive in the
market. Context-sensitive Adaptive Production Processes is an adept concept that illustrates
how a business process can be context-sensitive keeping itself aligned with the abstract
organizational goals. The notion of Context-sensitive Adaptive Production Processes leads
us to Context-sensitive Execution Step (CES), a logical construct, that encompasses multiple
alternative processes, albeit the best-fitting alternative can only be selected, optimized, and
executed in runtime. Realization of the context-sensitive business processes requires a model-
driven approach. Being Business Process Model and Notation (BPMN) the de-facto standard
for business processes modeling, business experts of manufacturing companies can use
custom CES construct of BPMN to model and execute context-sensitive business processes in
a model-driven approach.

This case study is based upon a scenario where there exists multiple alternatives to achieve
the same goal in production, nevertheless all the alternatives are not suitable at a certain
point of time as changes in business objectives and execution environment makes adaption
tougher. Properties of intelligent production processes are different from traditional processes.
Such properties along with the scrutinized properties of standard BPMN facilitates modeling
CES integrated processes in BPMN. From the requirements inferred from these properties,
standard BPMN is extended with extensions such that context-sensitive business processes
can be modeled and executed seamlessly. Developed extensions include a new type of
process construct and a new type of process definition that are technology agnostic. Thus,
CES approach provides a comprehensive solution that makes production processes context-
sensitive as well as goal-driven in unison.
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1. Introduction

Since manufacturing processes involve the processes to transform raw materials into finished
products exhaustively, economists around the globe assert manufacturing to be a wealth-
producing sector of an economy. Westkämper [Wes06] suggests that the focus of supply
and demand is shifting due to modern innovations in Information and Communication
Technology (ICT). Thus manufacturing industry is experiencing more complicated supply
chains than before. Customers demanding high levels of individualized products are driving
fierce competitions in pricing and compelling manufacturers to endeavor highest levels of
efficiencies. The kind of turbulences a manufacturer can expect to be adapted using automated
intelligent processes are shown in Figure 1.1. Processes should be modeled in such a way that
it can adapt to the changes, e.g., fluctuations in economy, changes in environmental norms,
etc. Furthermore manufacturers can develop effective survival strategies in midst of all these
turbulences, if they are able to continuously adapt their organizational structures, technical
changes and learn from their previous mistakes [Wes06].

Context-
sensitive
Adaptive

Production

Economy

Human 
Resources

Socio-Political 
Factors

Design of 
Products

Environment

Supply-Chain 
&

Logistics

Market
Demand

Production
Technologies

Figure 1.1.: Origins of Turbulences in Manufacturing (Adapted from [Wes06])

According to Graybill [Gra14], adaptive smart manufacturing thrives upon many challenges,
i.e., accessing all available information when it is needed, where it is needed, and how it
is needed to deduce optimal actions and responses. Adaptive manufacturing facilitates
manufacturers to generate and apply data-driven manufacturing intelligence throughout the
life-cycle of design, procurement, planning, production, and logistics [RLG+15, Erl12].
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1. Introduction

The advent of a new wave of technological changes has already started driving a paradigm
shift in manufacturing. Manufacturing sector is at the verge of a new industrial revolution
which assures smarter industrial production process flow, optimized new business mod-
els and highly customized products. The new technological wave builds on the concept
of interaction between the real and virtual worlds which in turn becomes the core of the
manufacturing processes [RLG+15, HPO15].

According to Erlach [Erl12], the ultimate intent of business process is known as the "Holy
Trinity" of cost, quality, and time. Basu [Bas14] refers this trio as "Iron Triangle" whereas
Erlach [Erl12] further adds variability or changeability to the aforementioned three intents.
Achievement of production goals are dependent upon factors such as low production costs,
high quality of products, short lead times in production and order processing, and moreover
the product variety on demand. Products within the lowest price segment can only be
distinguished from competition by innumerable individualized, i.e., customized products.
Erlach [Erl12] further suggests that in a few scenarios improving individual goal can affect
another goal to an extent which is depicted in Figure 1.2. The objective of production
optimization is to counterbalance this four goal dimensions in such an order so that business
goals are achieved efficiently at specific production sites [Erl12].

Changeability Quality

Cost Time

CONFLICTS

Figure 1.2.: Conflicting Goals of Production Processes (Adapted from [Erl12])

The economic aspect can be foreseen from a recent research work carried out by Deutsche
Bank where Heng [Hen14] predicts that Germany has a major long-term opportunity to fortify
itself as the leader in the global marketplace with its favorable market fundamentals. The
forthcoming technological advances will help Germany to hold the grounds in manufacturing
sector even against its fast-growing developing market competitors such as China and India.
Thus Germany can remain an industrial heavyweight in the manufacturing sector being the
undisputed economic powerhouse of the European Union (EU) [Hen14].

Heng [Hen14] appraises automation, optimization, and dynamic adaptability as the most
important requirements in manufacturing sector to increase the efficiencies of the production
processes. Since the dawn of sensors and networking technologies, vital information can be
gathered beforehand to decide the most suitable and optimized process among the set of
available processes. According to the suggestions of Sungur et al. [SBLW16], context-relevant
processes can be chosen in runtime using the available contexts and if multiple variants are
suitable, the most optimal variant will be chosen and executed that fits the best with the
business goals of a company. Similarly Wieland et al. [WKNL07] recommend usage of modern

2



1.1. Problem Statement

world smart-systems to observe situations that will enable the application of well-adopted
business process modeling and execution solutions in the context of manufacturing.

According to Zor et al. [ZGL10], production processes contain both manufacturing and all
associated business processes to finish production on time, whereas manufacturing processes
only focus upon processes that transform raw materials to final products. Wiendahl et al.
[WEN+07] have depicted production process as a macro-level process whereas manufacturing
process as micro-level. Both Production and Manufacturing processes can be modeled using
business process modeling languages [ZSL11], e.g., Business Process Model and Notation
(BPMN) [OMG11]. After modeling, process models are deployed on compliant workflow
engines for an automated execution. But standard BPEL or BPMN do not support adaptive
and flexible execution of business processes in general. Adapting to structural changes in
time can result in substantial profits and market shares, which are the primary goals of each
Manufacturer [SBLW16, WKNL07].

1.1. Problem Statement

Production processes need to be updated and optimized at regular intervals to stay competi-
tive in the market [SBLW16]. With the emergence of new sensor technologies such as Internet
of Things (IoT), the production processes can be made smarter to leverage the next industrial
revolution - commonly referred as Industry 4.0.

Sungur et al. [SBLW16] presented a novel approach to support Context-sensitive Adaptive
Production Process in their research work. They proposed to extend a production process
by a sequence of predefined set of sub-processes, i.e., Context-sensitive Execution Steps (CES).
For each CES, context-relevant sub-processes are chosen and desired processes are elected,
optimized, deployed, and executed in runtime. This approach dictates a way, in which
processes can possibly adapt themselves to the changing context.

In this thesis work, we present the implementations of these concepts in a process language
agnostic way such that it can be seamlessly integrated with any process engine. To create
this implementation, we have analyzed the properties that make context-sensitive processes
unique and also scrutinized relevant business process properties that might be vital during
the design and implementation of the CES. These properties are later on used to derive our
requirements from which we model our implementation. A summary of the thesis work can
be found below in Figure 1.3 that is discussed in the section.

1.2. Methodology and Outline

The remaining master thesis document is structured in the following way as shown in the
Figure 1.3.

• Chapter 2 - Fundamentals: The literature review of this thesis is carried out in three steps as
suggested by Levy et al. [LE06]. We analyze literature related with Industry 4.0, Internet
of Things (IoT), Business Process Model and Notation (BPMN), and Context-sensitive

3



1. Introduction
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Figure 1.3.: Thesis Methodology and Structure

Workflows. Main focus was to understand the current development in Industry 4.0
and its implications in midst of the innovations in IoT technologies. Chapter 2.5 is
focused upon analyzing properties of CES from the point of view of Business Process
Management (BPM), and the efficacies of BPMN. In Chapter 2.6, we analyze literature
related with context and context-sensitive processes.

• Chapter 3 - Context-sensitive Adaptive Production Processes: Properties and operational
semantics of Context-sensitive Execution Step (CES) are discussed in this chapter. After
subsequent description, a pseudo code of our intended approach has been discussed.
In this chapter, we also derive our requirements from the properties that we have found
relevant. By defining our requirements, we conclude the task requirement analysis in
the methodology model Figure 1.3. All the relevant properties and requirements for the
CES have been described in this chapter.

• Chapter 4 - Case Study: Realization of Context-sensitive Execution Step using BPMN: For
the sake of analysis and for applying the conceptual workflow modeling construct, we
have described an application scenario in Chapter 4.1 depicting a real-world production
scenario which is a mix of both manual- and automated tasks. During the implemen-
tation of our conceptual construct, we use the BPMN extension methodology and we
preserve the semantics of the existing BPMN properties. Architecture for the execution
of modeled process is also touched upon in this chapter.

4



1.3. Summary

• Chapter 5 - Related Work: In this chapter, we select and analyze few already existing
extensions of BPMN or any ongoing work in the same direction. We propose our
solution which will satisfy the requirements that we have previously defined to make
sure that our approach caters the best to the manufacturing sector.

• Chapter 6 - Conclusion and Future Work: In the last chapter, we give a summary and
probable future directions.

The thesis document also contains an appendix for the further look-up:

• Appendix A - List of Acronyms: The list containing all the abbreviations or acronyms
which are used in this document is added in this appendix.

1.3. Summary

In this chapter, we have introduced the need of adaptability in manufacturing industry by
discussing the challenges the production and manufacturing companies going to face in next
decades. Then we introduced the problem statement of our research work upon which our
case study is built. Finally, we have highlighted briefly the thesis methodology that we are
going to follow throughout our research work.
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2. Fundamentals

The productivity growth was barely perspicuous for much of the human history and the
living standards improved at a snail’s pace. Then in the late eighteenth century, a disruptive
innovation took place: the Industrial Revolution treated as Industry 1.0, in which the muscle
power of all living beings was replaced by mechanical power which was led by introduction
of steam engines and internal combustion engines to the mechanical production facilities.
From the early part of the twentieth century, electrification and the division of labor led to
the second industrial revolution which is referred as Industry 2.0 now. The third industrial
revolution referred as Industry 3.0, also known as the Digital Revolution, was set in around the
late twentieth century, when Information and Communication Technology (ICT) developed
further the automation of production processes. [EA12, HPO15, RLG+15].

In the next few sections, we discuss how the forthcoming industrial revolution will evolve
in the following years to come with its driving forces, i.e., Internet of Things, Smart Factory,
Cyber-Physical Systems etc. and how it will affect the manufacturing industry and the world
economy.

2.1. Internet of Things (IoT)

The Internet revolution in the twenty-first century led to the interconnection between people
at an exceptional scale and pace. The number of interconnected devices is expected to
reach beyond 24 billion devices by 2020 [GBMP13]. The forthcoming industrial revolution
is leveraging the creation of a smart environment by connecting things with things. Such
things can be anything from living beings to non-living beings; from humans to intelligent
sensors; from robots to mundane machines. The future is thriving upon a new era of ubiquity,
i.e., the era of (IoT), in which human-thing communications and thing-thing communication
themselves will be of prime importance [TW10].

Kevin Ashton [Ash09] had coined the term "Internet of Things (IoT)" in the context of supply
chain management in 1999. Since then, the definition of IoT has covered wide range of
applications, e.g., transport, health-care, utilities, etc. Gubbi et al. [GBMP13] predict that
Sensor–Actuator–Internet framework will be the core technology behind IoT based smart
environment in which Cloud Computing will provide rapid expansion, resource pooling and
flexibility of choosing different service levels [MG11].

2.1.1. Trends of IoT and Its Definitions

Gartner [RvdM15] defines a Hype Cycle as "a way to represent the emergence, adoption,
maturity, and impact on applications of specific technologies." [RvdM15]. IoT has been
identified as one of the emerging technologies in IT as noted in Gartner’s IT Hype-cycle - 2015
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Figure 2.1.: IoT in Gartner Hype-cycle - 2015 (Adapted from [Bro11, RvdM15])

already shown in Figure 2.1. As per its estimation IoT will take five to ten years for market
adoption to reach the plateau of technology. In recent years, IoT has gained much attention
from researchers, academia and industries from all over the globe [RvdM15, XYWV12].

IoT is a very broad vision and the research into the IoT is still in its infancy. Therefore, there
are not any standard definitions of IoT. The following definitions were provided by different
research institutions.

Xia et al. [XYWV12] put forward a general IoT definition in their editorial - "IoT refers to the
networked interconnection of everyday objects, which are often equipped with ubiquitous
intelligence. IoT will increase the ubiquity of the Internet by integrating every object for
interaction via embedded systems, which leads to a highly distributed network of devices
communicating with human beings as well as other devices." [XYWV12].

Gubbi et al. [GBMP13] explain IoT from the point of view of the Cloud applications - "IoT
means interconnection of sensing and actuating devices providing the ability to share infor-
mation across platforms through a unified framework, developing a Common Operating
Picture (COP) for enabling innovative applications, that is achieved by seamless ubiquitous
sensing, data analytics and information representation with Cloud computing as the unifying
framework." [GBMP13].

Tan and Wang [TW10] define IoT focusing mainly upon its functionality and identifies IoT
as a new dimension that has been added to the world of ICT, i.e., from any Time, any Place
connectivity for anyone to now connectivity for any Thing as shown in Figure 2.2 - "IoTs have
identities and virtual personalities operating in smart spaces using intelligent interfaces to
connect and communicate within social, environment, and user contexts." [TW10].
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Any TIME Connection

Any THING Connection

Any PLACE Connection

 Day-Night
 At the PC

 Indoors

 Outdoors

 On the Move

 Human to Human (H2H)

 Human to Thing (H2T)

 Thing to Thing (T2T)

 Outdoors-Indoors

 On the Move, e.g., in train

Figure 2.2.: IoT Dimensions (Adapted from [TW10])

Similarly, the Cluster of European Research Projects [SGFW10] explains IoT in a more abstract
manner than the aforementioned ones - "In the IoT, Things are active participants in business,
information and social processes where they are enabled to interact and communicate among
themselves and with the environment by exchanging data and information sensed about
the environment, while reacting autonomously to the real / physical world events and
influencing it by running processes that trigger actions and create services with or without
direct human intervention." [SGFW10].

The definition by Xia et al. [XYWV12] captures IoT as a holistic thing-thing communication
where humans can be things too, whereas definition of Tan and Wang [TW10] divides IoT
into different paradigms, i.e., thing-thing, human-thing, and human-human interconnection.
We use the definition provided by Xia et al. [XYWV12] for our research work, because we
believe, this definition encapsulates the broader vision of IoT.

2.1.2. Elements of IoT

IoT is a technological revolution that represents the future of ICT [TW10]. Ubiquitous Comput-
ing (UbiComp) is the method of enhancing computer usage such that it will be omnipresent
in the physical environment, yet mostly invisible to the user [Wei93]. According to Gubbi et
al. [GBMP13], three IoT components enable the scene behind seamless UbiComp: (i) hardware
such as, sensors and actuators (ii) middleware for providing storage and analytics tools, and
(iii) presentation for providing intuitive visualization and interpretation tools which can be
accessible on different platforms. Visualization enables business experts to extract business
knowledge from raw data, which facilitates fast decision making.

Based on the existing ICT infrastructure, there are many ways to connect things, e.g., Radio
Frequency Identification (RFID), Wireless Sensor Network (WSN), WiFi, 4G Long-Term
Evolution (LTE), etc. Here, we discuss two of the enabling technologies, i.e., RFID and
WSN in brief for the sake of our research work as they are the backbone of major industrial
applications of IoT.
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2.1. Internet of Things (IoT)

• Radio Frequency Identification (RFID) is a non-contact technology that identifies objects
attached with tags that help in the automatic identification of anything they are attached
to [MWZ+07, TW10]. In a context-sensitive production environment, the passive RFID
tags without own power source can be used for inventory and warehouse management,
employee tracking, machine tracking, etc. Active RFID readers with own power source
are mostly used in logistics for monitoring cargo shipments [GBMP13, MWZ+07].

• Wireless Sensor Network (WSN) is a dynamic, ad-hoc sensor network that comprises
tiny, low-cost, and low-power sensor nodes communicating between themselves using
only wireless technologies. WSN are used extensively in health, military, and security
domains, e.g., a sensor node in a WSN might check for cracks in the produced glass
bottles while another node picks those defective bottles out from the conveyor belt
before packaging according to the sensed data [SSOK13, ASSC02, GBMP13].

Unique identification of IoT is critical to uniquely identify and control billions of devices
remotely through the Internet. Uniform Resource Identifier (URI) gives the most convenient
approach to uniquely address each and every sensor nodes. Hence, Internet Protocol (IP)
addresses can work as an URI to access the resources uniquely and remotely [GBMP13].

2.1.3. IoT Architecture

Since IoT will consist of billions of nodes connected together, the traffic bandwidth and data
storage demand can’t be fulfilled by a five-layered TCP/IP architecture [TW10]. Gubbi et
al. [GBMP13] view IoT from two perspectives, i.e., internet-centric and thing-centric. The
internet-centric architecture will revolve around internet services while data is contributed
by IoT nodes. In the Thing-centric architecture, smart objects take the center stage [GBMP13].
Tan and Wang [TW10] propose of an Internet-centric approach in their research work.

Application Layer

Middleware Layer

Backbone Network Layer

Coordination Layer

Data Acquisition Layer

Applications

Cloud 
Computing

WSN - 
 Mesh of Sensors 

Figure 2.3.: Conceptual IoT Architecture Stack (Adapted from [TW10, GBMP13])

A simpler conceptual framework shown in Figure 2.3 is inspired from architecture proposed
by Tan and Wang [TW10] that integrates the ubiquitous sensor nodes and the applications.
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2. Fundamentals

The Backbone Network Layer can be thought as the present day Internet, whereas the Coordina-
tion Layer processes the data received from different applications in an unified structure so
that the applications become inter-operable [TW10]. Middleware Layer is a software layer that
provides reusable solutions to applications such that gathered data can be reused seamlessly
[ICG07, TW10], e.g., Nexus by Lucke et al.[LCW09], CoBrA by Chen et al. [CFJ03], Context
Toolkit by Dey et al. [DAS01], etc.

The framework shown in Figure 2.3 also maps to the proposition laid out by Gubbi et al.
[GBMP13], in which applications and IoT thrive upon the full potential of Cloud Computing
at the center. The three layers in the middle of Tan and Wang [TW10] can be integrated and
realized as a single layer of Cloud Computing as proposed by Gubbi et al. [GBMP13].

2.2. Cyber-Physical Systems (CPS)

According to Lee [Lee08], Cyber-Physical Systems (CPS) are integrations of embedded com-
puters and physical processes where physical processes affect computations and vice versa.
CPS are being used almost everywhere, e.g., medical equipments, driver safety systems for
automobiles, industrial automation systems, etc. [Jaz14].

According to Jazdi [Jaz14], a typical CPS consists of a control unit and usually one or more
µController(s). The µController is responsible for controlling the sensors and actuators to
communicate with the physical world and further it processes the data gathered by the
control unit as shown in Figure 2.4. A CPS may need to communicate with other CPS over a
communication interface. Jazdi [Jaz14] goes on to define CPS as an embedded system capable

Cyber -Physica l System

µ-Controller 
Board

The Cloud

Actuator 
1

Actuator 
2

Sensor 1 Sensor 2

Control Unit

Sensor N

Actuator 
N

Cyber -Physica l  

System

Cyber -Physica l  

System

Cyber -Physica l  

System

Figure 2.4.: Conceptual Architecture of a CPS (Adapted from [Jaz14])

of exchanging data over a network. Thus sometimes CPS connected to the Internet and IoT
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are regarded as same. In the context-sensitive process execution, CPS can be used to gather
context from physical processes and act upon accordingly.

Drath et al. [DH14] opine that CPS will ease out the interconnection, integration, testing, and
simulation of components and products in industrial production. This will ascertain CPS as
one of the prime technology drivers of the forthcoming industrial revolution [RLG+15].

2.3. Smart Factory

Production processes and the supply-chain in the manufacturing industry can be further
improvised by CPS and IoT technologies. As suggested by Dais in a conversation with Löffler
and Tschiesner [LT13], innovating truly new technologies and finding competent human
resource for robust algorithm design can together leverage the rise of another industrial
revolution. More and more industries will continue to have separate design and production
processes where supply-chain integration will play a decisive role [LT13].

Lean Production principles discussed by Shah and Ward [SW07] are popular in industries that
are intended for removal of waste out of production processes by continuous improvement
and emphasis on value adding activities. If a plant implements lean manufacturing, CPS
monitor physical processes and make decentralized decisions by communicating and cooper-
ating with each other and human over the IoT. Internet of Services (IoS) provides services
that are utilized by participants of the value chain [HPO15]. As a result, a factory becomes
"Smart Factory" [KZ15, LT13].

Lucke et al. [LCW08] define Smart Factory as a context-sensitive production environment
that can be aware of contextual changes in real-time production environment using decen-
tralized information and communication structures, i.e., CPS and IoT. The department of
Innovative Factory Systems (IFS) at the German Research Center for Artificial Intelligence
(DFKI) identified four enablers as shown in Figure 2.5 for the Smart Factory [KZ15]:

• Smart Operator could administer ongoing activities in ease equipped with smart sophis-
ticated tools, e.g., CPS can auto-detect failures and trigger repair steps.

SMART
Product

SMART
Operator

SMART
Machine

SMART
Planner

Figure 2.5.: Enablers of Smart Factory
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• Smart Product could collect precise process data for the analysis during and after its
production which is less labor-intensive.

• Smart Machine like CPS could be integrated into error-prone production process to make
it modular and flexible.

• Smart Planner could optimize processes in real-time, e.g., CPS can optimize a production
process by different business objectives, like time, cost or efficiency.

As suggested by Derenbach in a conversation with Löffler and Tschiesner [LT13], it’s impossi-
ble to separate the physical world from business processes; hence translation of physical world
to an IT understandable format will require deep insights of mathematical, domain and mar-
ket know-how. Interdependencies among the manufacturing components and manufacturing
environment will be dominated by the usage of ICT [LT13]. In the context of forthcoming
industrial revolution, the combination of industrial automation and Lean Production can be
instrumental and Smart Factory is such a case in point [KZ15].

According to Landherr and Constantinescu [LC12], planning and optimization of manufactur-
ing processes with IoT enabled CPS is of very interdisciplinary nature because manufacturing
experts have very limited interest in ICT and ICT experts do not have adequate knowledge of
the manufacturing processes [LC12].

2.4. Next Generation Smart Industry

Innovations in ICT world sharply accelerated the productivity and economic growth which
is propelling manufacturing industry to the threshold of another technological advancement
where digital intelligence will augment physical machines. Early evidences manifest that this
new wave of innovation is already upon us [EA12, LRS+15].

In Germany, the forthcoming industrial revolution - often referred as “Industry 4.0”, became
publicly familiar in 2011 at Hanover Fair, where Kagermann et al. [KLW11] - a group of
industrialists, politicians, and academicians had advertised “Industrie 4.0” as an approach to
enhance the competitiveness of the German manufacturing industry. The German Federal
Government supported the notion of Industry 4.0 by integrating this to its “High-Tech
Strategy 2020 for Germany1” initiative. A group termed as "Industrie 4.0 Working Group"
was formed later and it developed and published the first draft of recommendations for its
implementation in April 2013 [HPO15].

In North America, General Electric [EA12] has brought similar ideas under the name Industrial
Internet. Though the technical background is very similar to Industry 4.0, but the application
is broader than just industrial production. These different names have caused confusion
rather than increasing transparency [DH14]. Hereafter, Industrie 4.0 or Industrial Internet or
Integrated Industry will be referred interchangeably with Industry 4.0.

Hermann et al. [HPO15] have provided rationale for the fascination behind Industry 4.0.
Firstly, Industry 4.0 is more theoretical [DH14] than empirical like the previous ones which

1http://www.hightech-strategie.de/
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2.4. Next Generation Smart Industry

provides possibilities to the industry and academia to shape the bright future ahead. Secondly,
Industry 4.0 promises substantial increase in operational effectiveness along with revenue as
well as the development of entirely new business process models and products.

2.4.1. Definitions of Industry 4.0

From the literature review of Hermann et al. [HPO15] and Kagermann et al. [KLW11], Indus-
try 4.0 is a collective term for contemporary automation, data exchange, and manufacturing
technologies and concepts of value chain organization which draws together Cyber-Physical
Systems (CPS), Internet of Things (IoT), Smart Factories, and Internet of Services (IoS) to-
gether.

Rüßmann et al. [RLG+15] explain it in a similar way as a new industrial revolution - "Industry
4.0 is a new digital industrial technology that will connect sensors, machines, work-pieces,
and IT systems along the value chain beyond the enterprise which in turn will interact with
another using standard Internet-based protocols and adapt to changes." [RLG+15].

We will use the definition by Herman et al. [HPO15] for our research work as it is clear,
unambiguous and more consistent than the latter. This definition portrays Industry 4.0 as the
facilitator of a Smart Factory.

2.4.2. Enablers of Industry 4.0

According to Rüßmann et al. [RLG+15], with Industry 4.0, modern ICT will transform
relationship among suppliers, producers, and customers - as well as between machine and
human because production processes will no longer remain isolated from each other. Industry
4.0 will change isolated flows into an integrated, optimized, and automated production flow.
Rüßmann et al. [RLG+15], Bechtold et al. [BLKB14], and Hermann et al. [HPO15] have
discussed many major factors shown in Figure 2.6 that propels this next industrial revolution
among which we have listed the most important ones in our opinion.

• Smart Factory is a system that assists people and machines in execution of their tasks.
It is like a Calm-system that keeps on working in the background and it is aware of
its environment, i.e., the system can consider information coming from physical and
virtual world like the position of an object [HPO15].

• CPS are integrated network of computation, networking and physical processes that
monitor and control the physical processes with input coming from physical world and
output going back to physical world, e.g., autonomous automotive systems [HPO15].

• IoT allows sensors to interact with each other with limited intelligence. Decentraliza-
tion of business analytics and decision making is made possible in production by IoT
technology that act reactively to the changes in the environment [RLG+15, HPO15].
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Figure 2.6.: Driving Forces behind Industry 4.0

• Internet of Services (IoS) enables service providers to offer their services over the internet
in order to perform a defined function. Such value-added services provide consumers
temporary access to resources via different channels. In the context of Industry 4.0, IoS
will offer production technologies, information, and other consumables that can be used
in manufacturing processes [OH12, HPO15, TOF+12].

• Big Data and Analytics based on large data sets can be used to optimize production
quality, save energy, and improve Quality of Service (QoS). As per Gartner [BL12],
Big Data is "high volume, high velocity, and/or high variety information assets that
require new forms of processing to enable enhanced decision making, insight discovery
and process optimization." [BL12]. In the context of Industry 4.0, it can facilitate the
collection and comprehensive evaluation of data from production equipments as well
as management information systems which can augment and make enterprise decision
making more robust and consistent [RLG+15, HPO15, BLKB14].

• Cloud Computing is "a model for enabling ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing resources, e.g., networks, servers,
storage, applications, and services that can be rapidly provisioned and released with
minimal management effort or service provider interaction." as per definition of NIST
[MG11]. In the context of Industry 4.0, it will make increased data sharing among the
devices across various production sites happen such that reaction times to changes
gets reduced. More the machines data and functionality will be deployed to the cloud,
more data-driven services for production systems would be available [RLG+15, HPO15,
BLKB14].

• Augmented Reality is a real or simulated environment in which a perceiver experiences
telepresence [SBL+95]. Manufacturers can use augmented reality to provide real-time
information to workers at production sites to improve decision making and in a few
cases workers can be trained using augmented reality technologies [RLG+15].
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• 3D Printing is a mass-customization technology that builds products employing additive
manufacturing [Ber12]. Manufacturers can perform rapid prototyping and have highly
decentralized processes, e.g., product can be printed nearby customer site and delivered
directly instead of manufacturing, warehousing and logistics [BLKB14].

Industry 4.0 is a-priori industrial revolution [DH14] and therefore manufacturers have to take
empirical measures by their own to introduce its enablers into their production premises to
gain maximum profit [KLW11].

2.4.3. Benefits of Industry 4.0 in Next Generation Manufacturing

Industry 4.0 promises a range of benefits that spans across machines, industries, and societies
which will influence the broader industrial economy. The initial strong impact is likely to be
felt in the area of advanced manufacturing as predicted by General Electric [EA12]. Lorenz et
al. [LRS+15] have analyzed what Industry 4.0 has in its store for the manufacturing industry
by looking at the effects that this will have on Germany’s manufacturing sector, which is one
among the best in the world. The work of Schuh et al. [SRHD15] and Schläpfer et al. [SKM15]
can also be looked to know how enablers of Industry 4.0 facilitate dramatic increase in the
productivity of manufacturers.

• Virtual engineering of complete value chain will enable manufacturers to simulate
the whole production processes to discover possible problems ahead of production
[SRHD15].

• Manufacturers will experience a shorter value chain [SRHD15].

• Smart factories will make manufacturing highly individualized using CPS to adapt
dynamic changes occurring in the market as well as production environment. IoT
enabled networked resources and workers makes maintenance and logging of activities
easier [SKM15].

• Manufacturers will be able to boost up their competitiveness that will ease the expansion
of their workforce as well as the increase in productivity [LRS+15, RLG+15].

• Capital costs can be reduced through value-chain optimization, energy costs can be cut
by smart control of production facilities, and personnel costs can be brought down with
highly automated production processes promised by Industry 4.0, which will make
manufacturing more cost-efficient than before [Hen14].

• Manufacturers won’t need to off-shore the factories to developing countries anymore as
the labor cost advantages of those locations will be certainly nullified [LRS+15].

• Manufacturers will be able to create new jobs to cope up with the higher demand
resulting from the new individualized products and services [RLG+15, EA12, LRS+15].

• The factory workforce will require less training for machine operation and production
since production system will require very little manual intervention which will be
highly automated and will be fitted with augmented reality measures [LRS+15].
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• Manufacturers in developed countries can maintain their productivity despite the aging
workforce by the use of automation to assist workers with manual tasks, e.g., a robot
could lift a car’s interior-finishing elements, such as a roof lining, into the chassis after
manual alignment by an aging worker [LRS+15].

• Technology-assisted predictive maintenance would be enabled by Industry 4.0, e.g.,
a technician can identify defects and order spare parts just by remotely reviewing
real-time sensor data on machine performance. Later, while making repairs, the techni-
cian can be assisted by augmented-reality technology in addition to the automatically
documentation of whole process [LRS+15].

• Rapid prototyping technologies will facilitate manufacturers to produce testable pro-
totypes of the product so that customer’s feedback can be looped back into the sys-
tem immediately, which in turn leads to higher profit and shorter product life-cycle
[SRHD15, SKM15].

• Manufacturers can have robot-assisted production units that will reduce most number
of jobs on the shop floor [LRS+15].

According to Lorenz et al. [LRS+15], Industry 4.0 might become cause for job losses for a few
categories of work, such as assembly and production planning. But categories such as IT and
business analytics will gain as more people from these fields would be required to oversee
the production. To realize the enormous promises of Industry 4.0, the Governments, the
academia, and the early adapters of Industry 4.0 need to support this next wave of revolutions
going forward by guiding late adapters and workforce [EA12]. Next-generation production
processes require sophisticated modeling and simulation tools that will facilitate business
experts to design robust processes with high efficiency and high profit.

2.5. Business Process Model and Notation (BPMN)

Business Process Model and Notation (BPMN) is is a standard visual notation for capturing
business processes in a business process model [DDO08]. Business Process Management
Initiative (BPMI.org) developed BPMN, which has been maintained by the Object Manage-
ment Group (OMG) since both merged their respective Business Process Management (BPM)
activities in June 2005. Version 2.0 of BPMN was released in January 2011 and the name
was adapted to Business Process Model and Notation from Business Process Modeling Notation
as execution semantics were also introduced alongside the notational and diagramming
elements. Hereafter, BPMN 2.0 will be used interchangeably with BPMN [OMG11].

2.5.1. Motivation for Choosing BPMN

Kiper et al. [KAA97] observe that it’s easier for non-programmers, e.g., business experts
to model their business processes in a graphical (pictorial) way. Though Unified Modeling
Language (UML) [OMG15] is an already established standard by OMG and its behavioral
diagrams, i.e., activity diagrams are suitable for visual depiction of software interactions,
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UML is mainly used for describing software systems. Business experts would prefer an
executable model for business process modeling which is not provided by UML. For such
situations BPMN is suitable, because BPMN has its own operational semantics [OMG11].

Web Services - Business Process Execution Language (WS-BPEL) [OAS07] is an executable
language for specifying business processes with web services standardized by Organization
for the Advancement of Structured Information Standards (OASIS). Though BPEL is thought
to have superior execution semantics, BPMN is widely adopted as the standard of business
process modeling language to improve collaboration among stakeholders in the process as
BPMN offers simplistic usual visual notation that is easy to comprehend than the BPEL in
XML [CT12].

Because the business processes reflected in our research work will be executable business
processes on process engines, we opt for BPMN to model such processes. BPMN has the
following characteristics that further motivates us to opt it for the modeling and execution of
business processes.

• BPMN has a well-known visual representation and is commonly used as it inherits
and combines elements from earlier proposed notations for business process modeling
such as XML Process Definition Language (XPDL) [WFM12] and the activity diagrams
component of UML [DDO08].

• BPMN is executable.

• There are many open-source business process engines which support BPMN are avail-
able, e.g., Activiti2, Stardust3, Camunda BPM4, etc.

• BPMN is highly intuitive especially at the level of domain analysis and high-level
systems design from a business expert’s point of view that bridges the gap between
business- and ICT experts as mentioned by Dijkman et al. [DDO08] in their work.

• BPMN can be extended in case it is needed [OMG11].

• Direct mapping from BPMN to BPEL is possible to an extent for which execution
engines and formalizations exist [WvdAD+06, OAS07].

However, an extension to standard BPMN might be needed to address domain specific
properties of CES construct which is going to be discussed in Chapter 2.6.

2.5.2. Properties of BPM and BPMN

BPMN is the de-facto standard for representing business processes in a very expressive
graphical way and most business experts model their business processes using BPMN [CT12].
The current BPMN models are more comprehensible, changeable and extensible than before.
In this section, we will give properties of general BPM concepts and BPMN.

2http://www.activiti.org/
3https://www.eclipse.org/stardust/
4https://camunda.org/

17

http://www.activiti.org/
https://www.eclipse.org/stardust/
https://camunda.org/


2. Fundamentals
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Figure 2.7.: BPM Life-cycle (Adapted from [DLRMR13, LR00])

The life-cycle of a business process can be seen in Figure 2.7. Most business experts start
with the task of identifying the major processes of a specific business, e.g., Manufacturing,
Packing, Shipping, etc. Each process is analyzed from the available audit data of previous
executions of such a model or by improving an existing model iteratively. Finally, technical
experts map the business model to an specific process engine using a definition language and
process model is put into production. The process is executed as per the needs of the business
and continuously monitored for improving and optimizing the process in future [LR00].

2.5.2.1. Dimensions of Business Processes (BP1)

Hollingsowrth [Hol95] defines Workflow as "the computerized facilitation or automation of a
business process, in whole or part." [Hol95]. The BPMN users can orchestrate their processes
as the new version 2.0 of OMG standard BPMN has its operational semantics and can be
executed on its own process engine [Ley10]. In general, we need three dimensions to define
business process items of any process [LR00]:

• "What": What is the work item?, e.g., ’Check Sensor Status’.

• "With": With what should this work item be accomplished?, e.g., ’a Web Service’.

• "Who": Who will work upon this work item?, e.g., ’A Machine or Human’.

2.5.2.2. Hierarchies of BPMN Modeling (BP2)

Conceptually BPMN has 3 levels of modeling, i.e., Descriptive Modeling (L1), Analytical Model-
ing (L2), and Executable Modeling (L3). L1 documents the processes within a process model
using basic BPMN shapes by describing the order of activities and the role or organization
performing them. L2 documents the process in an unambiguous manner following BPMN
semantics and validation rules. In L1, there can be errors in the model whereas in the L2
there is expected to be no errors. L3 targets the developers by adding language based exe-
cution details in the meta-model underlying the scheme. The generated BPMN serialized
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file is executed on a business process engine and it orchestrates defined set of activities
[Sil11, OMG11].

2.5.2.3. Flexibility of BPMN Models (BP3)

Weske [Wes12] views business process models as the representations of internal business
processes which can be executed by automated execution engines. Such business models
need to be refined and optimized after each execution. BPMN provides ways to modify the
business models effortlessly for a business expert [OMG11].

2.5.2.4. Extensibility Mechanism of BPMN (BP4)

For certain domain specific applications, modeling elements of BPMN might not be sufficient.
In these circumstances, domain experts prefer to extend standard BPMN meta-model to
manifest their own application domains in best possible way [SSOK13, OMG11]. Generally,
it can be achieved in two ways, i.e.,

• BPMN extensions are done by adding new elements and attributes to existing BPMN
elements such that they do not contradict with already existing elements and attributes.
This approach guarantees interchangeability of existing BPMN constructs. It’s often
done by defining desired properties in an external schema and referencing this schema
from the internal schema [OMG11, AtAC15].

• There are a few BPMN open-source vendors, e.g., Activiti, Stardust, etc. who have their
own business process engines. Such BPMN vendors provide certain extensions points
that they think will be useful in most of the business scenarios [AtAC15, Com15].

2.5.2.5. Cognitive Potency of BPMN (BP5)

The cognitive efficacy of any visual notation is most important for a better common under-
standing. Genon et al. [GHA11] analyzed BPMN using principles of the ’Physics of Notation’
theory of Moody [Moo09] and how BPMN provides cognitive effectiveness is explained
including its drawbacks. BPMN constructs are evaluated to have a one-to-one relation with
its semantic description which satisfies the property of ’Semiotic Clarity’, one of the prime
factors that make a notation more intuitive [Moo09, GHA11].

2.6. Context-sensitive Processes

Business processes can be defined, managed and executed through a diversity of software-
integrated systems by employing Process Management Systems that is driven by a business
logic [Hol95]. Industrial production processes communicate with physical world with IoT
nodes so that they can adapt to their environmental changes. Such dynamic processes will
facilitate manufacturing to be more intelligent which can adapt to changing situations in
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runtime [WKNL07]. We will define few terms here which will be used throughout research
work.

2.6.1. Definitions of Context and Context-sensitivity

Business processes should be able to handle information about the physical world, referred
as "Context" [WKNL07]. The most general definitions that is provided by Abowd et al.
[ADB+99] can be relevant for our further research work - "Context is any information that can
be used to characterize the situation of an entity. An entity is a person, place, or object that is
considered relevant to the interaction between an user and an application, including the user
and applications themselves." [ADB+99].

A process that considers context is called "Context-sensitive". Wieland et al. [WKNL07]
refer such processes as "Context-aware" processes. Hereafter, Context-aware will be referred
interchangeably with Context-sensitive. Abowd et al. [ADB+99] refer a system as Context-
sensitive "if it uses context to provide relevant information and/or services to the user, where
relevancy depends on the user’s task." [ADB+99].

Henricksen [Hen03] defines "Context Attribute" as an element of the context model that
describes the context. A context attribute has an identifier, a type and a value, and optionally
a collection of properties that can be treated as the building block of a meaningful context,
e.g., <sensor-name, sensed-value> key-value pair can be a context attribute for a sensor node.
[PZCG14]. The basis for context-sensitive business process is context information such as
the location of workers and components, the state of all factory objects, etc. Context data is
sensed via sensor modules mounted to the components [WKNL07].

2.6.2. Context Management Life-cycle

A context life-cycle shows how context move from phase to phase in a context-sensitive
software system or business process engine. In this section we discuss about the movement
of context in Context-sensitive systems. In simplest terms, Perera et al. [PZCG14] describe
the context life-cycle in four phases as shown in Figure 2.8.

• Context Acquisition: Context needs to be acquired from various sources that can be
varied based on responsibility, frequency, context source, sensor type, and acquisition
process. Following five factors need to be taken care of when developing context-
sensitive solutions in the IoT paradigm.

– Based on Responsibility: Context acquisition can be primarily realized using two
methods, i.e., either the sensors can push data to the software component which
is responsible for acquiring sensor data or the software component can pull the
sensor data by making a request to the sensor over a medium [PZCG14].

– Based on Frequency: Context can be gathered based on two different event types,
i.e., instant events which do not span across certain amount of time, e.g., switching
a light, and interval events that span a certain interval of time, e.g., sensing a wire
after every 20 seconds [PZCG14].
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Figure 2.8.: Context Life-cycle (Adapted from [PZCG14])

– Based on Source: Context can be acquired directly from sensor by communicating with
the sensor hardware and related device drivers. IoT applications can acquire sensor
data by middleware solutions such as Nexus [LCW09] where heterogeneous sensors
are deployed. Context can also be acquired from several other context storages, e.g.,
databases via different mechanisms such as web-service calls [PZCG14].

– Based on Sensor Types: Different types of sensors can be employed to acquire
context. Physical sensors sense and gather data by their own. Virtual sensors retrieve
data from others and publish it as context, e.g., social media events. Logical
sensors combine both the aforementioned approaches to produce more meaningful
information, e.g., a web service dedicated to provide stock quotes [PZCG14].

– Based on Acquistion Process: There can be three ways to acquire context: sense, derive
data by computing already sensed data, and manually provided data by predefined
configurations [PZCG14].

• Context Modeling: The acquired data needs to be modeled and represented in terms
of previously specified context, QoC attributes and the queries for context requests.
After the validation of initial data, the context data can be pushed to an existing context
repository. Perera et al. [PZCG14] have listed existing methods to model context data,
e.g., Key-Value Scheme, Markup Scheme (e.g., Extended Markup Language (XML)), Graphical
(e.g., databases), Object-based, Logic-based, Ontology-based, etc.

• Context Analysis: This phase is primarily meant for the cleaning and consolidation of
multiple sensor data and inferring preliminary high level information from lower-level
context such that any remaining uncertainty and imperfection gets removed using
different algorithms, e.g., Markov Models, Neural Networks, Ontology-based, etc [PZCG14].

• Context Distribution: Finally, the context data needs to be delivered to the context
consuming software agents. Context can be distributed either by a query (request) from
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consumer or consumers can subscribe for a specific sensor or to an event, that will make
the process real-time [PZCG14].

2.6.3. Definitions of Context- Query, Event, Condition, and Decision

Now we have reached the stage where we can define few more definitions proposed by
Wieland et al. [WKNL07] which will be used across this research work.

• Context Query is a synchronous query designed in a specific query language, e.g., XPath,
which supports object selection based on spatial predicates and filtering of the results,
to access context data from context repository or database [WKNL07].

• Context Event is an asynchronous event triggered by change in context being moni-
tored. The listening for this special environment state is done in parallel to the normal
workflow [WKNL07].

• Context Condition is a predicate in a specific language, e.g., XML Path Language (XPath)
[CD+15] upon which context-decisions are evaluated [WKNL07].

• Context Decision is used to switch process control flows depending upon context data
using context conditions [WKNL07].

2.7. Summary

In this chapter, we have provided background on Industry 4.0, Internet of Things, Business
Process Model and Notation, and general Context-sensitive processes. Even though a few sec-
tions discussed here are not relevant for our main goals, they are relevant for future reference
and we need to keep them in our minds during the realization of our implementation.

• Internet of Things is an interconnection of day-to-day objects with ubiquitous intelli-
gence such that they can sense and share from the physical world and can actuate upon
it if required.

• Cyber-Physical Systems are integrations of embedded computers and physical pro-
cesses where physical processes affect computations and vice versa.

• Smart Factory is a context-sensitive production environment that can handle changes
in real-time using technologies like Internet of Things and Cyber-Physical Systems.

• Industry 4.0 is the forthcoming industrial revolution which draws together Cyber-
Physical Systems, Internet of Things, Smart Factories and Internet of Services together.

• Business Process Model and Notation is the de-facto standard for representing a busi-
ness processes in a very expressive graphical way.

• Context-sensitive Process is a processing unit that performs processing depending on
the available context.
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According to Perera et al. [PZCG14], IoT envisions a generation where billions of sensor nodes
would be deployed throughout manufacturing facilities connected over Internet and context-
sensitive applications will thrive upon it. This enthralled many researchers and engineers
across various disciplines to design prototypes, methods, and systems using Context-sensitive
techniques. Likewise, Sungur et al. [SBLW16] propose Context-sensitive Adaptive Production
Process approach by which manufacturing companies can remain competent in the ever
changing global market.

Context-sensitive Adaptive Production Process are intelligent production processes that can adapt
to the changing business objectives as well as to changes in the production environment.
Context-sensitive Adaptive Production Processes need innovative modeling of production
activities and production know-how which will be discussed in next few sections.

3.1. Definitions and Facets of Context-sensitive Execution Step

The approach introduced by Sungur at al. [SBLW16] presents the capability of capturing
context and adapting to it taking care of the business objectives of the company. Before diving
into any more conceptual details, we will define the basic terms that governs this approach.

Sungur et al. [SBLW16] propose a new process modeling construct named "Context-sensitive
Execution Step (CES)". CES constructs are envisioned as a sub-process like structure of
BPMN. Primarily a CES construct contains its own input data and output variable to hold
its generated output. A meta-model proposed by Sungur at al. [SBLW16] is adapted to our
requirements can be seen in Figure 3.1.

Selection Strategy

Optimization Strategy

Intention

Process Definition
(Realization Process)

Context-sensitive
Execution Step (CES)

Context Definition

sub-Intention
10..*

1..n

1

1..n
0..1

main-Intention
1..n 1

satisf ies 
1 1..n

target-Intention

1..n

1

requires

1..n

1

real izes 

1

1

Figure 3.1.: Meta-model of a CES (Adapted from [SBLW16])
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As depicted in Figure 3.1, a CES can be associated with following two facets related to
Context-sensitive modeling, i.e.,

• Context Definition (ConDe f ) specifies the required Contexts and related Context Condi-
tions (ConRule) that will validate an underlying process definition in a certain scenario
and thus makes CES adaptive, e.g., repairing a machine if its sensor senses so [SBLW16].

• Intention contains goals or objectives of the process, e.g., performing a specific task
which is very specific in nature [SBLW16]. As it has reflexive relationship, an intention
can contain multiple intentions inside it.

The set of all required contexts for the activation of a CES entity is denoted as ReqCon in our
pseudo-code. Similarly, the main-intention of a CES entity that contains other sub-intentions
is denoted by ReqIntent. Sub-Intentions are the refined intentions that will be associated
with a main-intention to model a certain business requirement, e.g., high automation, high
maintenance activity, etc. [SBLW16].

Likewise, Process Definitions (ProDe f s) are the available realization processes to achieve the
main-intention of a CES entity. Process definitions contain target-intentions (Intents) that
they conform to. If the process definition has the same target-intention as the main-intention
of CES, it’s called main realization process, otherwise it’s termed as Complementary Realization
Processes (ComplePro). Context definition of a CES entity might satisfy multiple process
definitions at a certain time, e.g., there can be two process definitions for doing a job at a
certain context. Selection Strategy (SelectStrat) is used for choosing between such multiple
processes with same intentions and same context definitions that are generally contained by
main-intention, e.g., choosing a process based upon its probabilistic weight [SBLW16].

Furthermore, Process definitions might contain Optimization Strategy (OptStrat) that provides
means of an automated optimization of the process to be run, e.g., an activity of optimizing
resources before the main business process starts [SBLW16]. Strategies such as Keep-Alive
Strategy can be used to optimize resource usage across the business processes [VHGSH+15].

One of the important activity of BPM life-cycle is process identification. After the identification
and analysis of production processes the variable parts of any production process can be
defined as CES along with its input data, main-intention, etc. Realization processes are added
to a central repository so that CES can look for these processes in it and deploy one of them
[SBLW16]. Table 3.1 summarizes all the shorthands introduced in this section.

Entity Name Entity Shorthands
Context Definition ConDe f
Context Condition ConRule
Required Contexts ReqCon
Main Intention ReqIntent
Target Intention Intents
Process Definition ProDe f s
Selection Strategy SelectStrat
Optimization Strategy OptStrat

Table 3.1.: Shorthands introduced in Definition of CES
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3.2. Operational Semantics

The activation of a CES construct occurs as soon as its predecessor activity finishes its execu-
tion and the control gets transferred to CES construct. After the activation of a CES construct,
the execution goes along with the flow shown in Figure 3.2. If any initial input exists, a CES
can wait for it (S1.1), otherwise it can directly reach the step where it gathers Contexts from a
source (S1.2). CES must avoid any non-existing data usage as that might not be available in
runtime.

If no context definition exists, the process behaves as if all the underlying process alternatives
satisfy the cause and execution proceeds to the intention matching step (S3). Otherwise, the
available context definitions are evaluated based on gathered contexts (S2) and the context-
satisfying set of processes (Pcon) are sent for intention matching (S3). After the matching
process of intentions, a set of processes (Pintent) are generated whose target-intention is
same to the main-intention of CES, and the processes that are present in both Pcon and
Pintent are sent for redundancy check (S4). If there are more than one process definitions

(S1.1) 

Wait for Input 

Data

(S1.2) 

Wait for Context

Data

Inputs ExistNo Input

(S5) Optimize 

Selected Process

(S2) Select Process 

Models by Matching 
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(S4) Eliminate 

Duplicates

(S6)

Execute Selected 

Process

(S3) Select Process 

Models by Matching 
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Context Available

No Contexts

Optimizations Exist

No Optimizations Exist

Figure 3.2.: Operational Semantics of a CES (Adapted from [SBLW16])
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for reaching a Main-intention is available, elimination is carried out based upon a selection
strategy. If selection strategy is not available and optimization strategy is available, execution
goes to optimization phase (S5). Otherwise, selected process definition goes for execution
and deployment in the final step without any intermediate optimization (S6). After the
completion of a main realization process, complementary realization processes are enacted
by the workflow engine. If the main realization process has succeeded and associated
complementary process terminates unexpectedly, the execution is termed successful with a
warning [SBLW16].

Prior to designing of our algorithm, we will define Process Definitions Repository (ProcRepo) that
contains multiple process definitions (ProcDe f ). Each process definition can be visualized as
a 6-tuple, i,e., process definition descriptor (Id), context conditions (ConRule), target-intention
(Intents), complementary realization processes (ComplePro), selection strategy (SelectStrat)
and optimization strategy (OptStrat). Context Store (CS) will store contexts as key(k)-value(v)
pairs, i.e., CS = ({Ci})i∈[1,n] = {(k, v)}. Explicit input data set and output variable set will be
denoted as IN and OUT respectively. OUT will contain final result to be returned to the callee
or workflow engine. Table 3.2 summarizes all the shorthands introduced in this section.

Entity Name Entity Shorthands
Process Definitions Repository ProcRepo
Process Definition Descriptor Id
Context Store CS
Process Definitions that satisfy Main-intention Pintent
Process Definitions that satisfy Context-condition Pcon

Table 3.2.: Shorthands introduced in Operational Semantics of CES

In our proposed implementation, we would like to have a selection strategy based upon
Weights (SelectStratW) (statistical probabilities) associated with each of the process alternatives.
These weights can be assigned to a process heuristically or by auditing the past logs of
processes in execution and thus arriving at a value statistically. Sometimes it’s better to have
a CES system with a naive selection strategy shown in Algorithm 3.1 than nothing at all.
Algorithm 3.1 has a linear worst-case complexity of O(n).

Algorithm 3.1 Pseudo-code for a Naive Selection Strategy based on Weights

Input/Precondition:
ProcRepo = ({ProDe fi})i∈[1,n] . Process Repository contains Process Definitions
ProDe f = {(Id, ConRule, Goals, ComplePro, OptStrat, SelectStrat)} . It’s a 6-tuple
ProcRepo 6= null and Pintent = 6= null . These should not be empty

Output/Postcondition: processId . Process descriptor of the selected process definition
1: procedure WEIGHTSTRATEGYSELECT (Pintent, ProcRepo) . These are the input data
2: maxWeight← 0
3: for all id ∈ Pintent ∧ ∃ProDe fi | id = ProDe fi.Id do . Process Selection Step
4: if ProDe fi.SelectStratW ≥ maxWeight then
5: maxWeight← ProDe fi.SelectStratW . Change Maximum Weight
6: processId← ProDe fi.Id . Assign Process Descriptor
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We propose here a pseudo-code for the whole operational semantics in the form of an
algorithm for better understanding as shown in Algorithm 3.2 that has a linear worst-case
complexity of O(n).

Algorithm 3.2 Pseudo-code for Operational Semantics of a CES

Input/Precondition:
ProcRepo = ({ProDe fi})i∈[1,n] = {(Id, ConRule, Intents, ComplePro, OptStrat, SelectStrat)}
ProcRepo 6= null, ReqGoal 6= null, ReqIntent 6= null . These should not be empty
and IN = ProcessInput. . This holds the inputs to CES

Output/Postcondition: OUT . This holds the output of CES
1: procedure EXECUTECES (ReqGoal, ReqIntent, IN, ProcRepo) . Input Parameters
2: OUT ← null . Initializations
3: Pintent ← null, Pcon ← null
4: initialContext← true, processDe f ← null
5: for all context ∈ ReqCon do . Get value of each Required Context
6: value← GETCONTEXT(context) . This will query Middleware
7: if value 6= null then
8: CSi.k← context.name . Store fetched Data in CS
9: CSi.v← value

10: else
11: initialContext← f alse . No Context Available
12: for all condition ∈ ProDe fi.ConRule ∧ initialContext = true do . Match Context
13: conVal ← EVALUATE(condition) . Evaluate Conditions
14: if conVal = true then . Store Descriptors
15: Pcon ← Pcon ∪ ProDe fi.Id
16: for all goal ∈ ReqIntent ∧ ∃ProDe fi | goal ∈ ProDe fi.Intents do . Match Intention
17: Pintent ← Pintent ∪ ProDe fi.Id . Store Descriptors
18: Pintent ← Pintent ∩ Pcon . Filter Mutually-exclusive Processes
19: for all id ∈ Pintent ∧ ∃ProDe fi | id = ProDe fi.Id do . Select Process
20: if ProDe fi.SelectStrat 6= null then
21: processDe f ← STRATEGYSELECT(Pintent, ProcRepo) . Select based on Strategy
22: else
23: processDe f ← RANDOMSELECT(Pintent) . Select randomly
24: if processDe f .OptStrat 6= null then . Check Optimization Strategy Existence
25: OPTIMIZE(processDe f ) . Execute Optimization Process
26: OUT ← RUN(processDe f , IN) . Execute Realization Process
27: RUN(processDe f .ComplePro) . Execute Complementary Realization Process

3.3. Drivers and Properties of Production Processes

To appraise the properties of a CES construct, we need to consider the driving forces behind
production processes that are important during BPMN modeling. Such drivers become
relevant property if and only if it’s critical for the realization of CES construct.
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3.3.1. Support for Industry 4.0 and IoT (DP1)

IoT introduced technologies that revolutionized the manufacturing industry by pushing
it to the brink of Industry 4.0. Manufacturing industry is now facing a global trend to
manufacture customer-oriented products in an efficient and intelligent way such that any
change to the production environment is adapted by CPS operating inside a smart factory
[SKM15, WKNL07, DH14].

3.3.2. Regularly Changing Business Goals (DP2)

Production processes are tightly coupled with the business world. We have already discussed
the turbulences the manufacturing world can face in Chapter 1 [Wes06]. Such disturbances
lead to the change of business objectives that are tailor-made for specific scenarios, e.g., if a
factory wants to reduce energy consumption, it should utilize its HR extensively for doing
tasks manually than automated machines, since the objective of business shifts here from
High Automation to High HR Utilization which is pretty straightforward to apprehend.

3.3.3. Contextual Changes in Execution Environment (DP3)

Process context changes due to changes occurring in production environment. Existing IoT
elements are capable of monitoring the execution context in real-time which assists processes
to become context aware. As real-world production systems are prone to more and more
runtime instabilities, processes must be robust enough to adapt such changes [WKNL07],
e.g., if a machine fails, manual alternative must be looked for until machine is repaired or
replaced.

3.3.4. Optimal Process Execution (DP4)

Production processes focus primarily upon error-free execution, customizable product port-
folio and high profitability. The optimization of each alternative path is significant for the
overall efficiency of the process, e.g., if chances are high enough that a certain sub-process is
needed again and again, it need not be de-provisioned [SBLW16, VHGSH+15].

3.3.5. Parallel Execution of Business Logic (DP5)

Parallel execution of the same manufacturing process is a common thing in standard business
processes, e.g., multiple machines sealing packets at the same time to gain higher productivity.
Concurrent manufacturing processes must remain independent of each-other and shared
resources must be provisioned in a consistent and fail-safe manner [SSOK13].
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3.4. Requirements for Context-sensitive Execution Step

In this section, we will derive our requirements from the relevant properties discussed in the
previous section. We will also consider the properties of BPMN discussed in Chapter 2.5.2 to
preserve semantics of BPMN standard.There are a few properties that need to be conformed
to during BPMN modeling keeping critical properties of CES intact.

3.4.1. IoT Incorporated Process Modeling (R1)

As an outcome of property DP1, process definitions inside the process repository should
contain context informations, such as, required context names, context validation rules,
etc. This requirement is an abstract requirement to make business process engines context-
sensitive.

3.4.2. Goal-driven Production Process Execution (R2)

As a consequence of property DP2, a CES construct must look for satisfying business ob-
jectives, i.e., intentions of a process definitions so that the processes can be aligned with
high-level business goals of the company.

3.4.3. Context-sensitive Production Process Execution (R3)

As a consequence of property DP3, a CES must be able to sense the environment context
whenever required and execute accordingly. It should be able to perform simultaneous
execution of CES tasks too for context-driven adaptability by gathering contexts in runtime
[SBLW16].

3.4.4. Optimizable Production Processes (R4)

As a consequence of property DP4, a CES construct should be able to incorporate process
optimization strategies to provide an edge to the company’s business process management.

3.4.5. Prioritization of Goals (R5)

In a business model, there may be situation specific conflicting business goals, e.g., high
automation and lower energy consumption simultaneously. To accommodate property DP2
during process modeling, we should have a mechanism to prioritize business goals such
that the corresponding operations get aligned with the performance goals defined, e.g., in a
scenario, where energy costs are higher than normal, process model with the lower energy
consumption should get the priority instead of highly automated one.
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3.4.6. Resilience to Minor Changes (R6)

CES construct should be flexible as standard BPMN subprocesses. Changes in the deployment
of a particular process model such as switching to different process engine, optimizing process
or data paths inside a process model, etc. should not affect the model itself. Thus, CES
construct preserves the property BP3 of standard BPMN.

3.5. Summary

In this chapter, we have introduced the concepts of Context-sensitive Execution Step along
with its various components to the reader. The operational semantics of a Context-sensitive
Execution Step is also discussed briefly in the form of a diagram and a formal algorithm. We
have also defined the core of our research work Context-sensitive Adaptive Production Process.

• Context-sensitive Adaptive Production Process are smart production processes that
can adapt to the changing business objectives as well as to changes in the production
environment.

• Context-sensitive Execution Step which is a logical construct comparable to subprocess
construct of standard BPMN that encompasses multiple alternative processes which
can be selected, optimized, and executed based on context data.

Furthermore, we investigated the properties of production processes and created our require-
ments using the relevant properties. A table of relationships between relevant properties and
requirements is shown in Table 3.3. In this table, we have shown which property has been a
basis for which requirement.

Requirement Name Mapped Properties
IoT Incorporated Process Modeling (R1) DP1
Goal-driven Production Process Execution (R2) DP2
Context-sensitive Production Process Execution (R3) DP3, BP4
Optimizable Production Processes (R4) DP4
Prioritization of Goals (R5) DP2, DP5
Resilience to Minor Changes (R6) BP3

Table 3.3.: Mapping of Requirements to Properties of Production Processes and BPMN
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4. Case Study: Realization of Context-sensitive Execution
Step using BPMN

As we have chosen BPMN as our implementation and modeling standard, we need to describe
a CES construct graphically using standard BPMN notation. Moody [Moo09] suggests the
importance of an icon that quickens cognizance and improve comprehensibility of diagrams
to both naive and novice users. Unlike most Software Engineering notations that are visually
one-dimensional and less appealing, we wanted to realize more than one of the eight available
visual communication channels defined by Moody [Moo09]. Furthermore, we need an icon
that will be easy to draw by hand for drawing a BPMN task shown in Figure 4.1 over non-
digital medium. Hence, we came up with the icon shown in Figure 4.1 which is a Data Object
with "C" written inside that signifies reception of Contexts from IoT devices. Our icon can be
categorized as Hybrid Symbol by Moody [Moo09] where the text inside the object expands the
meaning and such an amalgamation of textual and graphical representations makes the CES
icon more appealing.

Produce Blankets

Figure 4.1.: Icon for a CES Construct and a BPMN Sub-process with a CES Icon

Using the designed icon, we will model our application scenario in the next section.

4.1. Application Scenario

To reinforce our concept, we set the stage for our application scenario that is based on the
case studies introduced by Erlach [Erl12]. The scenario describes a production process that
produces electric blankets for the European market. These blankets under observations
are primarily meant for Southern European countries where houses with heating are not
common [Erl12]. Customers may order blanket of different variations, e.g., for single-bed, for
doubled-bed, foot warmers, etc.

The production process starts with the receipt of the order from the customer and inventory
status is inquired so that a manufacturing decision can be taken. Each blanket may have a
RFID tag attached so that the exact location and count of the blankets can be tracked.
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Figure 4.2.: Overall Blanket Production Process in BPMN with CES Tasks
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If number of units order can be served from inventory directly, blankets are shipped directly
via the Shipping task, otherwise manufacturing process begins with the activity of getting
required raw-materials from the supplier considering other factors such as warehouse status,
order amount and future order forecast. Subsequently the production process shown in
Figure 4.2 revolves around six distinct subprocesses, namely, Lining and Welding, Skinning
and Connecting, Insert Molding, Interlocking and Bordering, Quality Assurance, and Packing and
Palletizng.

Among all these subprocesses / tasks, only few of them can be modeled using CES task as
those processes are dependent on the production environment, e.g., Lining and Welding,
Skinning and Connecting, Interlocking and Bordering, Packaging, Shipping, etc. In our
research work, we will simulate a CES construct that consists of both manual and automated
activities such that the paradigm of CES can be validated for both manual and automated
tasks. Packing and Palletizng sub-process is well-suited for our purpose and in the following
discussion we will analyze it in detail.
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Sealing 
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Figure 4.3.: Packing and Palletization of Blankets in Standard BPMN

4.1.1. Process Variants of Application Scenario

Packaging of blankets involves three activities: (i) packing blankets manually or using
machine by placing a blanket with an instruction leaflet into a cardboard box, (ii) sealing
cardboard boxes and wrapping them as per safety rules, and (iii) sorting blankets on pallets
and transferring them to the staging area for shipping. The whole Packaging and Palletizing
process of blankets is shown in Figure 4.3 which has a Control-flow Complexity (CFC) of
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10. CFC is a psychological design-time metric that can be used to evaluate the difficulty of
process modeling before execution [Car08].

The packaging process also contains two optional activities as shown in Figure 4.3: (i) main-
tenance activity that only runs if the sealing is carried out by machine, and (ii) resource
optimization activity that is a supplementary task carried out (if required) to ensure the
best operational environment for the production systems. The depicted scenario where IoT
elements like RFID takes center stage of production is inspired from the research of Scholz-
Reiter et al. [SRTÖS09] where logistics processes of jeans manufacturers are governed by
Smart-labels, i.e., RFID.

4.1.1.1. Main Realization Process Models

The process model with the same target-intention as the main-intention of CES entity is treated
as main realization model. Our application scenario starts when the product passes the quality
check and packaging process begins. The process ends when the blankets are palletized for
shipping. Depending on the context, i.e., sensor statuses, availability of resources and business
forecasts, four different process variants of packing and palletizing can be assumed out of the
consolidated process shown in Figure 4.3.

The process of remodeling process variants out of a composite process model can’t be thought
as process fragmentation introduced by Schumm et al. [SKK+11] because process fragments
are extracted from a process analogous to extraction of sub-graph out of a graph where the
objective of fragment and parent process differ in most cases.

• Manual Variant (P1) shown in Figure 4.4 assumes the unit of blankets ordered by
customers, or forecasted to be produced to be too low, i.e., less than 1000 units per day.
It also assumes abundance of workforce in the factory premises during the production,
i.e., more than 10 workers. For keeping the whole workforce occupied in production,
every task is carried out manually without the usage of any automation or machine.
Manual variant has an assumed frequency of execution of 20% and CFC of 0 in our
scenario.

Figure 4.4.: Manual Packing and Palletization of Blankets in BPMN

• Semi-manual Variant (P2) shown in Figure 4.5 assumes the unit of blankets to be sealed
to be very high, i.e., greater than 1000 units per day. It also assumes that all the machines
required for the sealing task are functioning properly, i.e., attached IoT nodes have
not signaled any malfunction. Thus, sealing can be carried out both manually (by
10 workers) and automatically using the machines, which lead to higher throughput
compared to P1. This semi-manual variant has an assumed frequency of execution of
74% and CFC of 2 in our scenario.
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Figure 4.5.: Semi-manual Packing and Palletization of Blankets in BPMN

• Semi-manual Adaptive Variant with Repairing Activity (P3) shown in Figure 4.6 is
the extension of aforementioned process P2, where the malfunctioned sealing machine
is repaired automatically by adaptive monitoring and maintenance nodes, and semi-
automatic sealing is restored back to the normalcy. Such an adaptive semi-manual
variant has an assumed frequency of execution of 5% and CFC of 2 in our scenario.

Figure 4.6.: Packing and Palletization of Blankets in BPMN with Repair Activity

• Semi-manual Adaptive Variant with Re-installation Activity (P4) shown in Figure 4.7
is the extension of aforementioned process P3, where the malfunctioned sealing machine
can’t be repaired anymore due to an irreversible damage occurred during the production.
Therefore a new machine has to be installed and commissioned as soon as possible. Such
a variant has an assumed frequency of execution of 1% and CFC of 2 in our scenario.

Figure 4.7.: Packing and Palletization of Blankets in BPMN with Re-installation Activity
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4.1.1.2. Complementary Realization Process Model

Any realization process defined in the execution environment that supports the main business
process, i.e., the process definition that has different target-intention than the main-intention
of CES entity, are referred as complementary process. In our scenario, the maintenance of
machines shown in Figure 4.8 can be thought as a naive complementary process (P5) which is
executed whenever we choose one of the semi-manual process variants, i.e., P2, P3, or P4 as
our main business process so that the machines can be taken care of after the execution has
been finished.

Figure 4.8.: Complementary Realization Process of Maintenance in BPMN

4.1.1.3. Optimizing Process Model

To remain competitive in market, processes need to be improved regularly to adapt new
challenges, e.g., a naive optimization task (P6) shown in Figure 4.9 would improve resource
utilization and deallocate extra workers from one production facility to another that requires
more workers. Though we offer the choice of optimization to the CES modeler, the ways
to optimize process models are beyond the scope of our work. Generally, processes can be
remodeled by discovering the pitfalls in the earlier model in the final step of BPM life-cycle,
i.e., process monitoring and auditing.

Figure 4.9.: A Naive Optimization of Resources in BPMN

4.1.2. Process Modeling Considerations and Assumptions

Manufacturing processes thrive upon the execution context collected from the physical world
for the successful completion of the process. In this section, we have briefly explained
the context gathering techniques used for our application scenario along with relevant
assumptions and constraints considered throughout the context modeling.

4.1.2.1. Context Acquisition

In our application scenario, we will model our business process depending upon four simple
contexts mentioned below that are gathered from different sources.
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• Amount of Blankets to be produced or forecasted to be produced will be referred
as unitsOrdered henceforth. If unitsOrdered is too small beyond a threshold, it’s
advisable to deploy manual workforce which will be economic for the company up to
some extent rather than deploying high-end machines with lots of surveillance and
maintenance measures. If unitsOrdered is large, deploying both machines and manual
workforce seems logical to gain edge in market. unitsOrdered is a primary context
received from the customer.

• Availability of Workers will be referred as availableWorkers henceforth. By tracking
the locations of the factory workers, workers of a certain capability can be allotted to
a specific task whoc are best-fit for it. Each machine unit equipped with a RFID chip
inside can be aware of its location and find the nearest worker who can oversee it. For
simplicity we will use 3 worker profiles, namely, (i) supervisors, (ii) machine operators,
and (iii) manual workers. availableWorkers is a secondary context calculated from the
primary contexts like the current location coordinates of workers.

• Sensor Statuses: Various sensors in conjugation with the machines will form a WSN
discussed in Chapter 2.1.2. In our scenario, packet sealing machines augmented with
passive infrared sensors can track the movement of objects, i.e., unsealed cardboard
boxes. Shock detectors embedded in the sealing machine ensure that the blanket and its
packet do not get ruptured due to any malfunction in sealing machine. infraredSen-
sorStatus and shockDetectorStatus will be referred as sensorStatus for simplicity.

In the end, we define the corresponding context conditions for each context such that it can
be validated to realize a satisfying process variant.

Variant Context Condition
P1 unitsOrdered ≤ 1000 AND availableWorkers ≥ 10

P2 sensorStatus = "Okay" AND

(unitsOrdered > 1000 OR availableWorkers < 10)

P3 sensorStatus 6= "Okay" AND

(unitsOrdered > 1000 OR availableWorkers < 10)

P4 sensorStatus 6= "Okay" AND

(unitsOrdered > 1000 OR availableWorkers < 10)

Table 4.1.: Process Variants with Context Conditions

4.1.2.2. Context Modeling

All context data related to our application scenario can be modeled and represented as a
database schema which can be seen in Figure 4.10. Such a schema can be validated later
through context conditions. Database storage makes the context retrieval moderately easier
and large volume of context can be stored persistently this way by the middleware or the
context data manager. We have assumed sensorStatus can have 3 statuses as shown in
Figure 4.10, i.e., Stopped, Malfunctioned, or Okay.
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-timestamp: Timestamp

infraredSensorStatus

shockDetectorStatus

Figure 4.10.: A Schema of Context Data for a Database System

4.1.2.3. Types of Intentions (Goals)

Manufacturing industry now captures cross-functional interdependencies and proposes
objectives that will improve the business both in quality and cost. In our packing and
palletizing of blankets scenario, we try to find such business objectives that will impact
the modeling process, e.g., High Throughput, High Human-Resource (HR) Utilization, High
Automation, Low Maintenance, etc. Table 4.2 lists the intentions we have assumed for the
variants of our process model.

Variant Main-Intention Sub-Intention (Part of Main-Intention)
P1 Pack & Palletize High HR Utilization
P2 Pack & Palletize High Automation, High HR Utilization,

High Throughput
P3 Pack & Palletize High Automation, Low Maintenance,

High Throughput
P4 Pack & Palletize High Automation, Low Maintenance,

High Throughput
P5 Maintenance -
P6 Optimal Resource Usage -

Table 4.2.: Process Variants with their Intentions

4.1.3. Abstract View of Application Scenario

Finally, our application scenario can be recapitulated using a visual graph shown in Fig-
ure 4.11. The assumed context conditions for each context-set are shown in shaded boxes.
This chapter will allow us to rethink and analyze the requirements of our CES construct.
As shown in Figure 4.11, our scenario of packaging of blankets can have different process
variants with different objectives. Quality assurance task is a non context-sensitive task that
is carried out before the control gets transferred to our context-sensitive packaging task.
Furthermore, we explained all our assumptions, i.e., context gathering techniques, context
modeling, etc. that will be required during the implementation of our concepts later.
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Figure 4.11.: Comprehensive Visual Graph of Application Scenario

4.2. Implementation Proposal

This case study is based upon the concepts of CES construct using which we integrate manual
and automated processes during modeling time and deploy the model to a compliant process
engine for execution. Semantically BPMN tasks can not be broken down to a finer level
whereas, subprocesses can be further detailed [OMG11]. Though CES constructs are visioned
as sub-process structures of BPMN, we visualize it as BPMN task structures that are activated
when the incoming flows are activated upon a condition. We implemented CES construct as
a task because the business expert need not to be worried about the finer details of the CES
entity, which will be decided dynamically during execution.
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Figure 4.12.: Class Diagram of Proposed CES Task Extension

To satisfy the requirements presented in Chapter 3.4, we propose extensions to the standard
BPMN task and a generic Process Definition entity to contain process variants defined in
different definition languages, e.g., BPEL, BPMN, etc. In the following subsections, we will
give details about the archetypal implementation of the scenario using the extensions that we
proposed. We will also describe the architecture of our proposed solution and how we placed
our extensions inside a BPMN engine along with the brief details of our implementation.

A CES task corresponds to a task executed inside a compliant BPMN process engine instance.
A class diagram of a CES task is depicted in Figure 4.12. The instances of process definition
are materialized by the CES task using the matching target intentions and initial contexts
specified in the process definition. Each element of this class diagram is discussed in detail in
the following subsections.

4.2.1. CES Task

tCESTask extends standard BPMN task to be able to perform required analysis as an ac-
tivity. The instance based on tIntention satisfies the requirement R2 which is used to
describe business goals or objectives. The instance tContexts stands for the set of required
contexts that needs to be gathered in runtime for an intelligent and efficient context-based
decision making, thus satisfies requirement R3. The tDataList instances are used to define
the inputs and outputs of the tCESTask that preserves the property of data prorogation of
standard BPMN task. tCESTask also introduces a 4-tuple, i.e., isOptimizationRequired,
domainKnowHowRepositoryType, isEventDriven, domainKnowHowRepositoryLocation.
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The isEventDriven attribute can be used to make tCESTask either periodic or event-driven.
To satisfy requirement R4, isOptimizationRequired attribute plays a vital role by activating
or skipping optimizer as per the requirement. domainKnowHowRepositoryLocation stores the
location of process definitions whereas domainKnowHowRepositoryType checks the type of
storage used, i.e., XML, Database based, etc. Listing 4.1 shows the XML Schema Definition
(XSD) of a CES task. Generally speaking, CES task also satisfies the requirement of R1 and R6
as it makes the BPMN task pluggable to IoT based applications. we meet requirements R4
and R6.

Listing 4.1: XSD Definition of CES Task Definition

<complexType name="tBaseType" abstract="true">

<sequence>

<element name="Documentation" type="string"></element>

</sequence>

<attribute name="name" type="string"></attribute>

<attribute name="targetNamespace" type="anyURI"></attribute>

</complexType>

<complexType name="tCESTask">

<complexContent><extension base="tBaseType">

<sequence>

<element name="MainIntention" type="tIntention" maxOccurs="1"

minOccurs="1">

</element>

<element name="RequiredContexts" type="tContexts" maxOccurs="1"

minOccurs="1">

</element>

<element name="InputData" type="tDataList" maxOccurs="1" minOccurs="0">

</element>

<element name="OutputVariable" type="tDataList" maxOccurs="1"

minOccurs="0">

</element>

<element name="OptimizationRequired" type="boolean" maxOccurs="1"

minOccurs="0">

</element>

<element name="DomainKnowHowRepositoryType" type="anyURI">

</element>

<element name="DomainKnowHowRepositoryLocation" type="anyURI">

</element>

</sequence>

<attribute name="isEventDriven" type="boolean"></attribute>

<attribute name="isCommandAction" type="boolean"></attribute>

</extension></complexContent>

</complexType>

4.2.2. Intention

The tIntention type is used to bind a CES task to business goals of the organization. The
corresponding CES task is expected to match the goals of process definitions during the
execution. To define the type of definition language and definition content, we have used
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definitionLanguage attribute and DefinitionContent element respectively. An intention el-
ement can contain itself as tSubIntentions. Listing 4.2 shows the XSD definition of Intention.
This element satisfies the requirement R2 straightforward as it captures the business goals or
objectives. tSubIntentions contains SelectionStrategy that can be used during the execu-
tion to choose a process among multiple processes satisfying the same business objectives.
Therefore, it also satisfies the requirement R5 of prioritizing processes in runtime.

Listing 4.2: XSD Definition of Intention

<complexType name="tIntention">

<complexContent><extension base="tBaseType">

<sequence>

<element name="DefinitionContent" type="tContent" maxOccurs="1"

minOccurs="0"></element>

<element name="SubIntentions" type="tSubIntentions"

maxOccurs="unbounded" minOccurs="0">

</element>

</sequence>

<attribute name="definitionLanguage" type="anyURI"></attribute>

</extension></complexContent>

</complexType>

<complexType name="tContent">

<sequence><any></any></sequence>

</complexType>

<complexType name="tSubIntentions">

<sequence>

<element name="SelectionStrategy" type="anyURI"

minOccurs="1" maxOccurs="1"></element>

<element name="SubIntention" type="tIntention" maxOccurs="unbounded"

minOccurs="1"></element>

</sequence>

</complexType>

4.2.3. Context Expression

The tContextExpression type is used to specify context validation rules in a certain query
language, e.g., XPath, so that the CES task will be able to find the most eligible process model
at a certain scenario. Listing 4.3 contains the XSD definition of Context Expression.

Listing 4.3: XSD Definition of Context Expression

<complexType name="tContextExpression">

<sequence>

<element name="Expression" type="string" maxOccurs="1" minOccurs="0">

</element>

</sequence>

<attribute name="language" type="anyURI"></attribute>

</complexType>
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4.2.4. Contexts

The tContexts type is used to bind a CES task to context data received from the IoT present
in the execution environment. The corresponding CES task is expected to search for the
specified contexts by the help of a context managing middleware. Listing 4.4 shows the
XSD definition of contexts. This element satisfies the requirement R1 and R3 as contexts
are gathered from IoT nodes to make decision-making adaptable to changing situations in
execution environment. tContext contains an instance of tContextExpression to evaluate
the context data based on a criterion and take business decision dynamically during the
runtime.

Listing 4.4: XSD Definition of Context

<complexType name="tContext">

<complexContent><extension base="tBaseType">

<sequence>

<element name="ContextDefinition" type="tContextExpression"

maxOccurs="unbounded" minOccurs="1"></element>

<element name="ContainedContexts" type="tContexts" maxOccurs="1"

minOccurs="0"></element>

</sequence>

</extension></complexContent>

</complexType>

<complexType name="tContexts">

<sequence>

<element name="Context" type="tContext" maxOccurs="unbounded"

minOccurs="1"></element>

</sequence>

</complexType>

Listing 4.5: XSD Definition of Input/Output Data

<complexType name="tData">

<attribute name="name" type="string"></attribute>

<attribute name="value" type="string"></attribute>

</complexType>

<complexType name="tDataList">

<sequence>

<element name="data" type="tData" maxOccurs="unbounded" minOccurs="1">

</element>

</sequence>

</complexType>

4.2.5. Input and Output Data

The tDataList type is used to bind input and output data to the CES task. The corresponding
CES task is expected to store the final output in OutputVariable element. Listing 4.5 shows
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the XSD definition of data. Key-Value scheme defined in tData makes it analogous to the
data format being used in WS-BPEL processes which makes its usage seamless between
BPMN and BPEL. Though standard BPMN provides data objects for input and output, some
proprietary BPMN engines, e.g., Activiti1, Camunda BPM2, etc. do not provide data objects at
all or provide with partial functionalities at the time this research was carried out. Hence, the
idea of having an own inter-operable data definition will facilitate limiting the aforementioned
problem.

4.2.6. Process Content

tProcessContent is a 3-tuple, i.e., ModelPath, OptimizerDefinition, CorrelationCoeffi-

cient. Listing 4.6 shows the XSD definition of process content. ModelPath and OptimizerDef-

inition persists the location of process model and it’s optimizing process model respectively.
OptimizerDefinition can be used to optimize a process model in runtime such that an
optimal process gets executed. Thus, R4 is addressed by tProcessContent. CorrelationCo-
efficient can be used to assign priority to any process model so that in case of any ambiguity
during the execution, higher priory process gets dispatched, which satisfies the requirement
R5.

Listing 4.6: XSD Definition of Manufacturing Content

<complexType name="tProcessContent">

<sequence>

<element name="ModelPath" type="anyURI" maxOccurs="1"

minOccurs="0">

</element>

<element name="OptimizerDefinition" type="anyURI" maxOccurs="1"

minOccurs="0"></element>

<element name="CorrelationCoefficient" type="decimal" maxOccurs="1"

minOccurs="0">

</element>

</sequence>

</complexType>

4.2.7. Process Definition

tProcessDefinition realizes a process structure of BPMN to make itself backward compati-
ble with standard processes. The instance based on tIntention is used to describe the target
business objectives that a business process conforms to. Each process can contain initial
contexts defined as tContexts which generally contains the tContextExpression to look for
the most eligible process model in runtime. Listing 4.7 shows the XSD definition of Process
Definition. tProcessDefinition is augmented with instances of tManufacturingContent
to specify the model repository paths and process specific attributes during the modeling
time.

1http://www.activiti.org/
2https://camunda.org/
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Listing 4.7: XSD Definition of Process Definition

<complexType name="tProcessDefinition">

<complexContent><extension base="tBaseType">

<sequence>

<element name="ProcessContent" type="tProcessContent" maxOccurs="1"

minOccurs="0"></element>

<element name="TargetIntention" type="tIntention" maxOccurs="1"

minOccurs="1"></element>

<element name="Definition" type="tDefinition" maxOccurs="unbounded"

minOccurs="1"></element>

<element name="InitialContexts" type="tContexts" maxOccurs="1"

minOccurs="0"></element>

</sequence>

<attribute name="processType" type="anyURI"></attribute>

<attribute name="id" type="ID"></attribute>

</extension>

</complexContent>

</complexType>

4.3. Architecture of Realization

The conceptualized architecture of context-sensitive execution of a goal-driven CES task
designed by us can be found in Figure 4.13. Our architecture consists of three distinct layers,
namely, Sensors and Annotation Layer (SAL), Distribution and Acquisition Layer (DAL), and
Modeling and Analysis Layer (MAL), which are detailed in the following subsections. Our work
focuses upon the development of components in MAL. A deployment model of the CES task
can be found in Figure 4.14. The process repository contains process models, i.e., BPMN or
BPEL files along with their corresponding model meta-data. The location of the repository
defined in the tCESTask used during the run time. The extension, CESExecutor, as we know
it, will be realized following up with the architecture of MAL.

4.3.1. Sensors and Annotation Layer (SAL)

SAL refers to physical smart environments in manufacturing facilities with a massive de-
ployment of sensors and actuators along with the Internet framework. The communication
channel between the layers of SAL and DAL must facilitate infrastructure scaling, effective
monitoring, cost reduction, and horizontal integration of the existing enterprise model. In our
work, development, and integration of SAL is beyond the scope. For further investigation,
works on sensor frameworks by others, e.g., Baek et al. [BCHP07], Firner et al. [FMH+11],
etc. can be looked upon.

4.3.2. Distribution and Acquisition Layer (DAL)

Context Manager Middleware is a middleware that provides reusable solutions to application
layer, i.e., MAL, such that persisting data can be reused seamlessly. Whenever anything
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Figure 4.13.: Conceptual Architecture of Execution of a CES Task

anomalous happens in the production environment, an event is triggered by the sensor with
all the meta-data and the event is logged to a middleware. The middleware can also be an
silent observer without subscribing to the underlying sensor service provider. In such a case,
middleware can pull the status of progress of the production, the status of machines, and
cross-disciplinary side effects of a assembly line delay due to shop-floor level disturbances,
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Figure 4.14.: Deployment Diagram of CES Task Extentsion to Process Engine

e.g., machine malfunctions, demand changes, changes in business goals, etc.

Generally, a Context Manager Middleware is augmented with a persistent storage medium
- "Sensor Context Repository", as we perceive it. All relevant data received from or sent are
logged in this repository. In our work, the development of SAL along with middleware
solutions is beyond the scope. Therefore, we have implemented our solution using a database
solution provider which is capable of consuming context queries and producing contexts for
the MAL.

4.3.3. Modeling and Analysis Layer (MAL)

MAL predominantly consists of components of three categories, i.e., Process Modeler, Process
Engine, and Process Engine Extension.

Business processes with the CES tasks are modeled using a custom Context-sensitive Production
Process Modeling Tool component which can edit and add CES tasks. Context-sensitive Production
Process Execution Engine can execute standard processes along with the CES tasks developed
by us with the help of extension components. Figure 4.15 shows the possible state transition
between the sub-components defined inside the CESExecutor extension. The transition
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Figure 4.15.: State Machine Diagram Depicting States during Execution of CES Task

events along with the detailed behavior each sub-component is explained in the following
subsections.

4.3.3.1. Process Repository

Every process execution requires domain knowledge, i.e., domain-specific process models
and associated meta-data. We have used a centralized XML based knowledge base - "Process
Repository", as we call it, which will hold all the related process models specific to the
business scenario. Listing 4.8 shows an excerpt of tProcessDefinition stored inside it.

4.3.3.2. Query Manager

Query Manager prepares context query and pushes the query to the for the underlying senso-
based context middleware. The implementation will look for the Sensor Context Repository of
DAL layer where the required contexts can be found. Context-query can be designed in any
querying language, e.g., XPath, Augmented World Query Language (AWQL) [BDG+04] used
by Wieland et al. [WKNL07], etc. As shown in Figure 4.15, if no context-data is available, the
forthcoming analysis is suspended and the control shifts directly to the Intention Analyzer.
During the query handling, CES task remains in the state of "Acquisition".

4.3.3.3. Context Analyzer

Upon activation, Context Analyzer receives the serialized context-data from the underlying
Context Manager Middleware. In the next step, it fetches the available process definition
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inside Process Repository to nominate the suitable definitions valid for the received contexts.
It filters out the initial pool of process definitions by a set of context conditions defined for
each process definition. Finally, it forwards the list of process definitions that satisfied the
conditions and thought to be the best for the certain scenario to the Intention Analyzer as
shown in Figure 4.13. CES task remains in the current state of "Analysis".

Listing 4.8: An Excerpt of Process Definition for a Manual Sealing Task and Associated Tasks

<ProcessDefinitions xmlns="http://www.uni-stuttgart.de/iaas/ipsm/v0.2/"

xmlns:ns2="http://docs.oasis-open.org/tosca/ns/2011/12">

<ProcessDefinition processType="http://www.omg.org/spec/BPMN/2.0/" id="PMX001"

name="ManualPacking"

targetNamespace="http://www.activiti.org/">

<Documentation>This is a dummy Manual Model.</Documentation>

<ProcessContent>

<ModelPath>\\domain-know-how\\PMX001.bpmn</ModelPath>

<OptimizerDefinition>POPT01</OptimizerDefinition>

<CorrelationCoefficient>0.20</CorrelationCoefficient>

</ProcessContent>

<TargetIntention name="PackAndPalletize" targetNamespace="http://././packaging">

<SubIntentions>

<SubIntention name="highHRUtilization"

targetNamespace="http://././packaging">

</SubIntention>

</SubIntentions>

</TargetIntention>

<InitialContexts>

<Context name="CON1" targetNamespace="http://././packaging">

<ContextDefinition language="http://www.w3.org/TR/xpath">

<ContextExpression>

//Context[@name='availableWorkers']/ContextDefinition/

ManufacturingContext[SenseValue&gt;=10]/SenseValue/

text() |

//Context[@name='unitsOrdered']/ContextDefinition/

ManufacturingContext[SenseValue&lt;=1000]/SenseValue/

text()

</ContextExpression>

</ContextDefinition>

</Context>

</InitialContexts>

</ProcessDefinition>

</ProcessDefinitions>

4.3.3.4. Intention Analyzer

Upon activation, Intention Analyzer analyzes the received process definitions by filtering them
with required main-intention and sub-intentions defined for the specific business scenario.
If it receives the control directly from the Query Manager when context is not available, it
fetches the available process definition inside Process Repository like Context Analyzer to
find the processes that satisfy the business objectives specified. Finally, it delivers the list of
process definitions to the Process Selector, i.e., "Selection" state, as shown in Figure 4.15.
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4.3.3.5. Process Selector

Upon activation, Process Selector filters the received process definitions from Intention Analyzer
with a predefined selection strategy. The quality of the selection strategy is not a concern of
ours as it requires further analysis and design which is beyond the scope of our work. In
such a case where no selection strategy is available, a process definition is chosen randomly.
Upon the completion of process selection, the state of extension leaves "Selection" state. The
selected process is forwarded to the Process Optimizer, i.e., "Optimization" state, if isOptimiza-
tionRequired is true, otherwise switches directly to the Process Dispatcher, i.e., "Deployment"
state.

4.3.3.6. Process Optimizer

Process Optimizer executes the optimization process related to the chosen main business
process by the Process Selector. This sub-component looks for the process descriptor of
any defined optimization model for the process, deploys, and executes the optimization
model with the required process engine instance. After the execution, it returns its run
status to the callee. Finally, it forwards the chosen process definition to the Process Dispatcher,
i.e., "Deployment" state, for the execution of main and complementary business processes.
Providing dynamic flexibility or optimization during the execution of a BPMN model is out of
the scope of our research work and possible noble optimization approaches are investigated
in the work of Vukojevic-Haupt et al. [VHGSH+15].

4.3.3.7. Process Dispatcher

Process Dispatcher deploys the main business process chosen by Process Selector to an un-
derlying process engine defined in the process definition itself. This sub-component is also
responsible for executing the complementary business processes based on the context defini-
tion of CES task and its main-intention. The success status of the execution of complementary
process is not critical for the CES task and if it fails, process ends successfully with a warning.
The output and run status of the main-realization process is logged for the forthcoming
processes and future monitoring.

4.4. Implementation

To implement our proposals, we firstly created our XSD files for the proposed extensions, e.g.,
tCESTask, tIntention, etc. and then converted them to Java classes using the JAXB reference
implementation3. The JAXB classes are used for marshaling and unmarshaling between Java
objects and BPMN files, process definitions, and CES definition, etc. As per the analysis done
by Cloc4, there are 3713 lines of code (LOC) including automatically generated JAXB classes

3http://jaxb.java.net/
4http://cloc.sourceforge.net/
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and XSD files. Excluding JAXB classes and XSD files, 2235 LOC are used for developing a
prototype of our case study. Furthermore, our implementation contains 852 lines of comments
for enhanced readability. The utility projects to support the demonstration of our case study
contains 835 lines of code excluding comments. A preliminary static code analysis of our
code is also performed using Sonar5. In the following subsections, we will describe briefly
about our implementation in more detailed manner.
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Figure 4.16.: An Overview of the Technology Stack of the Implementation

4.4.1. Technology Stack

For incorporating the extensions of ours into a process engine, we chose Activiti6 as our base
engine. Activiti is an Open-source BPMN engine that also provides modeling tools to design
and execute business processes [AtAC15]. Activiti can run in any Java7 runtime environment
which is evident in Figure 4.16. Among many available process engines, we chose Activiti
since it supports rapid prototyping, easy extension mechanism, and BPMN serialized process
definition. Another well-documented process engine such as Stardust [Com15] is not consid-
ered for our case as Stardust is proposes development of eclipse plug-ins for extending its

5http://www.sonarqube.org/
6http://www.activiti.org/
7https://www.oracle.com/java/
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default engine whereas Activiti extensions can be lightweight Java implementations. Further-
more, since Stardust does not provide the BPMN extension mechanism natively, we chose
Activiti over it. Due to time constraint, we could not explore other engines, e.g., Camunda
BPM 8.

Figure 4.17.: A Sample Process Model with CES Designed in Custom Activiti Designer

Both the back-end, i.e., CES Task Delegate, and the front-end, i.e., graphical user interface
(GUI) for defining a custom CES task for Activiti Engine are developed in Java. A mock-up
business process model for the application scenario is designed using the extended Activiti
Designer which is shown in Figure 4.17. The developed GUI for modeling the CES definition
can be seen in Figure 4.18. A context-sensitive process with CES Tasks can be modeled using
the Custom Activiti Modeler, which is extended by us with the required semantics of CES
task along with the required look and feel.

For simulating the underlying middleware and IoT based sensor networks of DAL and SAL
layers respectively, we have used a sensor data repository realized using MongoDB9, a non-

Figure 4.18.: Custom GUI of Configuration Palette of CES Task in Activiti Modeler

8https://camunda.org/
9https://www.mongodb.org/
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relational context model. Process definitions of different possible process variants are stored
as XML files inside process repository, which is evident from Figure 4.16.

Through Web Services, business logic can be made accessible over standard Internet proto-
cols, e.g., Hypertext Transfer Protocol (HTTP), irrespective of programming languages and
platforms, i.e., technology agnostic. Web Services Description Language (WSDL) [CCM+01],
a XML-based language is used to define the endpoints, ports, and other binding details
required for a web service. The delegate class of ours forwards the CES definition to the
underlying web service deployed inside an instance of Apache Tomcat10. The Tomcat instance
also contains instances of other available business process engines so that process definitions
dependent on other engines can be executed seamlessly, which makes it independent of
Activiti Engine.

SOAP [GHM+03] based message exchange mechanism is preferred between the Java delegate
and the web service capable of executing a CES task. All core analyzers, filters, and dispatchers
residing inside CES Analyzer help the called web service in execution of the CES task.
Companion web services are also called upon during the execution to get the task completed.
Finally, it’s worth mentioning that Spring11 framework is used for performing dependency
injection inside the dispatcher unit. The implementation focused upon our application
scenario is available publicly in GitLab12 repository [KS16].
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Figure 4.19.: Use Case Diagram of our CESExecutor Extension

10http://tomcat.apache.org/
11https://spring.io/
12https://about.gitlab.com/
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4.4.2. Process Modeling

An use case captures the goal of an developed software system from the perspective of users
and their interaction with other actors or agents which is evident in Figure 4.19. Business
experts can model production processes with CES tasks with the help of our customized
Activiti Designer. Correspondingly, technical experts can model the technical processes and
update the process repository with the latest process variants that CES task can refer to. Last
but not the least, process dispatcher can execute the developed processes by communicating
with underlying native process engine instance, i.e., Activiti Engine or any other available
process engine.

4.4.3. Message Based Application Integration

For the integration of our sub-components, we have used message-based application integra-
tion patterns [HW03]. Before the detailed implementation overview, we will introduce few
key terms for the understanding of message based integration.
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Figure 4.20.: Filtering Process among Components of CESExecutor Extension
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• Content Filter can be used to filter the message by removing data out of it based on some
predefined constraints.

• Content Enricher can be used in scenarios where a message needs to contain more data
elements for better understandability.

• Service Activator can be used to invoke a service indicated by a message.

• Poling Consumer can be used as a synchronous receiver which blocks until a message is
received.

In our implementation, Context Analyzer, Intention Analyzer, and Process Selector compo-
nents are treated as content filters where as Process Optimizer is treated as content enricher
which can be seen in Figure 4.20. To design the whole scenario using a well-structured
messaging mechanism led us to use Content-based Router pattern [HW03]. During the ex-
ecution of CES task, Content-based Router acts like a configurable engine that computes
the recipient component based on a set of reconfigured rules. Furthermore, the component
Process Dispatcher consumes process definition from a channel and distributes them to an
underlying engine as specified. CES Analyzer and CES task Delegate can be assumed as
service activator and polling consumer respectively.

We have used Apache Camel13 to define routing rules in conjugation with RabbitMQ14 as the
transport broker among the components.

:ProcessEngine :CESAnalyzer:CESExecutorService:CESTaskDelegate:Callee

WSDL Based CES Task Execution

startExecution()

returnFinalOutput()

executeModel()

sendCESOutput()

waitForOutput()

executeCESTask()

prepareCESDefinition()

sendCESDefinition()

executeModel()

sendCESInputs()

sendProcessModel()

Figure 4.21.: Sequence Diagram of WSDL based CES Task Execution

13http://camel.apache.org/
14https://www.rabbitmq.com/
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4.4.4. Execution Flow

Figure 4.21 depicts the overall interaction among the components in runtime. When a process
is deployed to a process engine, it starts executing the process. Upon reaching a CES task, it
forwards the control to the CES task delegate which performs the rest of the task and returns
the output to the process engine to resume from where it was left blocked. The message call
between the delegate and web service is asynchronous, as delegates keeps on polling the
result queue for the completion of execution. A certain time-out interval can be set such that
the delegate does not get blocked forever and after the elapsed interval, a failure message can
be sent to the executor and process engine.

As shown in Figure 4.16, CES Analyzer contains all the archetypal subcomponents we have
discussed in MAL layer. CES Analyzer triggers the filtering process of process definitions
by different filters available to find out the most optimal process definition for the purpose.
Overall behavior of the CES Analyzer is summed up in the interaction diagram shown in
Figure 4.22. Upon activation, Query Manager, Context Analyzer, Intention Analyzer, and
Process Selector are called up in order by piping the output of each to the next. Finally,
Process Optimizer optimizes the process definition and activates the Process Dispatcher to
take control and deploy the business process to a compatible process engine.

Execution of CES Analyzer
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Figure 4.22.: Sequence Diagram of a CES Analyzer
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Figure 4.23.: Execution Time Comparison

4.4.5. Execution Performance

Sub-component Name Average Execution Time (WSDL Based Approach)
Query Manager 1.19 ms (6.12%)
Context Analyzer 2.91 ms (14.89%)
Intention Analyzer 2.71 ms (13.86%)
Process Selector 1.48 ms (15.53%)
Process Optimizer 1.31 ms (6.72%)
Process Dispatcher 3.73 ms (19.10%)

Table 4.3.: Performance of Sub-components of CESExecutor Extension

As mentioned earlier in previous sections, to keep our implementation independent of any
platform and technology, we have implemented it based on WS-*15 standards using Apache
CXF16. We compared the results of a pure Java based tightly coupled approach without
using WSDL, i.e., web services, to the results of executions with web service. We find out
the performance is significantly better in the tightly coupled approach which can be seen in
Figure 4.23. The unit testing is carried out using the JUnit17 framework of Java. Table 4.3
shows the average execution time (in percentages with respect to average total execution
time of 19.56 ms) required by each sub-component to finish the processing for our application
scenario. Approximately 68% of total time is spent on execution of the sub-components,
whereas remaining time is taken by the process engines to optimize and execute process
models. After few similar runs, WSDL approach performs better compared to the tightly-
coupled one due to caching.

15http://docs.oasis-open.org/
16https://cxf.apache.org/
17http://junit.org/
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4.5. Summary

At first, we introduced an icon for the Context-sensitive Execution Step construct to distin-
guish it from other Business Process Model and Notation elements. In the next step, we
introduced the case study scenario of ours upon which the prototypical implementation is
focused. The application scenario is chosen in such a way that the business process consists
of both manual and automated processes. After defining the context conditions and main-
intentions of the case study scenario, we presented our initial implementation solutions for
the problem statement. Table 4.4 shows how the solution proposals satisfy the presented
requirements by us in Chapter 3.4.

Requirement Name Mapped Proposal
IoT Incorporated Process Modeling (R1) tCESTask

Goal-driven Production Process Execution (R2) tCESTask, tIntention
Context-sensitive Production Process Execution (R3) tCESTask, tContexts,

tContextExpression

Optimizable Production Processes (R4) tCESTask, tProcessContent
Prioritization of Goals (R5) tIntention, tProcessContent
Resilience to Minor Changes (R6) tCESTask

Table 4.4.: Mapping of Requirements to Implementation Proposals

We presented the conceptual architecture in Figure 4.3 of ours which has three distinct layers,
i.e., Sensors and Annotation Layer, Distribution and Acquisition Layer, and Modeling and
Analysis Layer. The focus of our research work is in developing the six components of
Modeling and Analysis Layer, i.e., Query Manager, Context Analyzer, Intention Analyzer,
Process Selector, Process Optimizer, and Process Dispatcher.

Finally, we provided information about the modeling tool on which we implemented our ex-
tensions. The extensions are implemented on Java based Activiti BPMN Suite. We integrated
our sub-components using message based application pattern to increase scalability and
reduce coupling among them. We implemented the solution both using and not using web
services. A preliminary performance comparison is also given for further improvement.
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5. Related Work

In this chapter, we discuss related work that are relevant to our research work whilst using the
foundation and implementation we have discussed in Chapter 2 and Chapter 4 respectively.
Brief comparison among the approaches towards the design and implementation of context-
sensitive processes for the manufacturing industries is the main concern of this section.

Standard BPMN has a construct called "Ad-Hoc Sub-Process" that can embed multiple inner
activities inside it. Such a construct provides flexible ordering compared to ordinary flow
of processes [OMG11]. Thus, few modelers tend to use it as a container for a context-
sensitive process modeling. Furthermore, Wolf et al. [WHR09] present extensions for process
modeling language to gather relevant context data from the local environment using sensors,
mobile devices, etc. Pfeffer et al. [PLS08] have presented the modifiability of abstract service
composition plans using genetic programming techniques which attempts to address business
goals and gains. Reichert et al. [RRHB09] and Hallerbach et al. [HBR09] present an extension
to a BPMN based business modeling framework that supports process variants for a base
process associated with adjustment points - which refers to a specific model fragment by few
well-defined change patterns.

Similarly, Andrikopoulos et al. [ABS+13], Adams et al. [ATHRvdA09] and Bucchiarone et al.
[BMPR12] in their respective works have proposed to define ’What’ dimension of the process
without explicitly defining the ’With’ and ’Who’ dimensions. The actual process models are
chosen during the execution based upon context data. Likewise van der Aalst et al. [vDAPS09]
have presented a constraint-based declarative framework that attempts to make process
models more flexible during runtime with more support to context-sensitivity. Proposal of
Marconi et al. [MPS+09] includes conditional branches within flows with context conditions
as guard conditions. Each flow consists of context handling activities and error handlers
to manage all possibilities arising out of a execution scenario. Wieland et al. [WKNL07]
presented concepts for modeling context-sensitive workflows by deploying smart machines
and collecting context information for the execution of business processes. Moreover, Hirmer
et al. [HWS+15] proposes a concept to model context-data using into situation specific
templates which can later be executed inside a compliant process engine.

5.1. Evaluation With Respect To Requirements

The integration of IoT enabled smart factories and middleware by our proposed approach
confirms to the requirement R1. Similarly, the approaches of Wieland et al. [WKNL07],
Wolf et al. [WHR09], Hirmer et al. [HWS+15], Andrikopoulos et al. [ABS+13], Adams et al.
[ATHRvdA09] and Bucchiarone et al. [BMPR12] include context acquisition from the physical
devices similarly. The other described works do not address R1.
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By supplementing each intention with a selection strategy, we satisfy the requirement R2. The
approaches presented by solutions presented by Andrikopoulos et al. [ABS+13], Pfeffer et al.
[PLS08], Adams et al. [ATHRvdA09], Wolf et al. [WHR09] and Bucchiarone et al. [BMPR12]
partially conform this requirement, as they haven’t considered the possibility of selecting one
among different process in a case where all of them have same goals.

The context definition of a CES task satisfies the requirement R3 clearly as our approach
is context-driven upon enactment. Except Wieland et al.[WKNL07], Wolf et al. [WHR09],
Marconi et al. [MPS+09], Andrikopoulos et al. [ABS+13], Hirmer et al. [HWS+15], Adams et
al. [ATHRvdA09] and Bucchiarone et al. [BMPR12], no other work address R3 completely.

By including optimization strategy with each process definition, each variant of a process
model can be optimized during execution. Such an optimization functionality is not consid-
ered by anyone so only our work conforms to requirement R4. Thus, the requirement R5 is
met only by us as none of the related work tried to chose one of the best among multiple
suitable process alternatives at a certain point of time. Prioritization of goals dynamically is
not addressed by any of the related work. Similarly, the requirement R6 is supported more or
less by all the related work except Wolf et al. [WHR09] and Pfeffer et al. [PLS08].

Dynamic adaptability on the basis of the current execution environment and business objec-
tives are the prime focus of our research work. Most of the earlier approaches have a limited
scope without focusing upon global business objective [ATHRvdA09, PLS08, RRHB09].

5.2. Summary

In this chapter, we briefly compared our extension with few extensions of standard BPMN
and BPEL which might be relevant to model context-sensitive production processes. We also
mentioned the conformance to requirements of ours by each of these earlier research works.
In Table 5.1, we have shown which related work conforms to the requirements led out by us.

Related Work R1 R2 R3 R4 R5 R6
Ad-hoc Subprocesses of BPMN [OMG11] - ~ ~ - - -
Adams et al. [ATHRvdA09] X X X - - X
Andrikopoulos et al. [ABS+13] X X X - - X
Bucchiarone et al. [BMPR12] X X X - - X
Hallerbach et al. [HBR09] X - - - - X
Hirmer et al. [HWS+15] X - X - - X
Marconi et al. [MPS+09] X - X - - X
Pfeffer et al. [PLS08] X X - - - -
Reichert et al. [RRHB09] X - - - - X
van Der Aalst et al. [vDAPS09] X - - - - X
Wieland et al. [WKNL07] X - X - - X
Wolf et al. [WHR09] X - X - - -

Table 5.1.: Mapping of Requirements to Related Works
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6. Conclusion and Future Work

In this chapter, we will provide a comprehensive summary and related future work.

6.1. Conclusion

Smart factories require Context-sensitive Adaptive Production Processes which lead us to a
new process modeling and execution construct, i.e., the Context-sensitive Execution Step. It
is a logical construct that contains multiple process definitions integrating both automated
and manual processes. During the execution of a Context-sensitive Execution Step, suitable
process definition is chosen as per a predefined strategy. This thesis work presents a case
study based on this concept, in which we have proposed an abstract system architecture
which can be extended or implemented by other researchers or companies based on their
preferences for designing Context-sensitive Adaptive Production Processes. Our approach is
not only context-sensitive, it also considers the organizational goals of an organization.

6.2. Future Work

This thesis work is focused on the modeling and execution of Context-sensitive Execution
Steps using Business Process Model and Notation. As our implementation is generic and
pluggable in nature, solution based upon same architecture can be developed in other plat-
forms such as Business Process Execution Language. The extension of ours can be validated
against more complex process models. We have demonstrated a very naive optimization
strategy in our case study. As optimization of business process in runtime is beyond the scope
of our research focus, later dynamic process optimization feature can be integrated into our
solution for an efficient and optimal process execution inside a process engine.

In our case study, we have used a markup language based process repository for storing
process definitions persistently. Such a storage needs a graphical user interface based tool to
facilitate process definition modeling for the technical expert without any error and tedious
work. Furthermore, other ways of storing process definitions such as XML based database
systems can be explored in future. Similarly, a stencil-set for modeling context-sensitive
tasks can be designed for rapid modeling. Due to the time-constraint, our solution is focused
upon only event-driven execution of Context-sensitive Execution Steps. In future, periodic
Context-sensitive Execution Steps can be designed which can be useful in certain scenarios.
Similarly current intention analysis assumes one-stage goal or business objective matching
process, which can be upgraded to a recursive goal-matching one without much effort. Finally,
communication overhead among the modules inside an application server can further be
optimized so that the response time and turn-around time of the execution of Context-sensitive
Execution Steps improve.
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Appendix A.

List of Acronyms

The following list contains all the acronyms which are used in this document.

AWQL Augmented World Query Language

BPEL Business Process Execution Language

WS-BPEL Web Services - Business Process Execution Language

BPM Business Process Management

BPMI Business Process Management Initiative

BPMN Business Process Model and Notation

CES Context-sensitive Execution Steps

CFC Control-flow Complexity

COP Common Operating Picture

CES Context-sensitive Execution Step

CPS Cyber-Physical Systems

DAL Distribution and Acquisition Layer

DFKI Deutsches Forschungszentrum für Künstliche Intelligenz

EU European Union

GUI Graphical User Interface

HR Human Resource

ICT Information and Communication Technology

IFS Innovative Factory Systems

IoS Internet of Services

IoT Internet of Things

IP Internet Protocol

IT Information Technology

JAXB Java Architecture for XML Binding

LOC Lines of Code
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LTE Long-Term Evolution

MAL Modeling and Analysis Layer

NIST National Institute of Standards and Technology

OASIS Organization for the Advancement of Structured Information Standards

OMG Object Management Group

QoC Quality of Context

QoS Quality of Services

RFID Radio Frequency Identification

SAL Sensors and Annotation Layer

SOAP Simple Object Access Protocol

TCP Transmission Control Protocol

UbiComp Ubiquitous Computing

UML Unified Modeling Language

URI Uniform Resource Identifier

WSDL Web Services Description Language

WSN Wireless Sensor Network

XML Extended Markup Language

XSD XML Schema Definition

XPath XML Path Language

XPDL XML Process Definition Language
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