Institute of Parallel and Distributed Systems

University of Stuttgart
UniversitatsstraBe 38
D-70569 Stuttgart

Masterarbeit Nr. 87

Caching Concept for Mobile
Engineering Apps

Michael Steffl

Course of Study: Softwaretechnik
Examiner: Prof. Dr.-Ing. habil. Bernhard Mitschang
Supervisor: Dipl.-Inf. Tim Waizenegger,

Dipl.-Inf. Eva Hoos

Commenced: October 1, 2015

Completed: April 1, 2016

CR-Classification: C.24,D.44,D4.8

Abstract

Mobile apps in the engineering domain, have to deal with data coming from Product
Data Management (PDM)-Systems. This data contains details about the products
that are very large. Geometry data like 2D or 3D Computer Aided Design (CAD)
representations are included. To get the data, the apps use wireless mediums like
WiFi or mobile data networks (LTE, 3G, etc.). Transferring large size data over these
mediums take a lot of time and can be aborted through intermittent connectivity. Also
the energy consumption increases through the long-lasting transfers. In this master
thesis a concept is created that overcomes these problems. A cache on the client
is used that stores the relevant data for a fast access. As the disk space on mobile
devices is limited, the data that is cached has to be chosen well. Only the data that is
currently needed should be stored in the cache and provided to the app. To reduce the
waiting times these data should be there before it is explicitly requested. To make this
possible the concept of this thesis provides preemptive caching (hoarding). Thereby,
the data is cached that will probably be needed next. To decide what data is needed,
context is used. The information coming from the environment of the client is used, to
derive situations. With the help of these situations the data is determined that gets
cached. Besides this context-aware strategy, a traditional way of caching where all
requested data gets cached is used in the concept. Furthermore, this thesis addresses
the caching mechanism in its entirety. It determines a policy for the replacement of not
needed data to free space. Also a strategy for invalidating obsolete data in the cache is
determined. Finally, a prototypical implementation of the concept within an existing
mobile engineering app is presented. With the help of this prototype the concept is
evaluated.

Contents

1 Introduction

2 Basic Concepts

2.1 Product Data Management
2.2 Caching

2.3 Mobile Apps in the Engineering Domain
3 Related Work

4 Caching Concept

4.1 Cache Granularity
4.2 Cache Selection Strategy
4.3 Cache Replacement Policy
4.4 Cache Coherence Strategy
4.5 Conclusion

5 Prototype

5.1 TheExistingApp
5.2 Overall Architecture

5.3 Implementation of the Caching Concept
6 Evaluation
7 Conclusion and future prospects

Bibliography

.................

.................

.................

11
11
13
20

27

29
29
31
36
40
42

45
45
48
56

71

79

81

List of Figures

2.1 Example-Product structuret 12
2.2 Virtual Prototype [WPG14], 13
2.3 Overview of caching mechanism 16
2.4 Typesofcache granularity 17
2.5 Simple architecture for mobile apps in the engineering domain 21
2.6 Logicaldatamodel 22
2.7 Mapping from logical to physical datamodel 23
2.8 Basic Context Model for the Engineering Domain [HSM16] 25
4.1 Used cache granularity 30
4.2 Context-aware data provisioning 32
4.3 Context-aware selection - location based selection [HSM16] 33
4.4 Dynamic Context-Aware Caching - most popular 35
4.5 Gain function based replacement strategy 39
4.6 Stateful Invalidation Protocol (SIP) 41
4.7 Overview of the cachingconcept 43
5.1 Architecture of the existingapp 46
5.2 Data model of the protoype 47
5.3 Architecture of the prototype, 49
5.4 Cacheoftheprototype 52
5.5 EER model of thedatabase 54
5.6 Process for showing product components 58
5.7 Protocol - getResource 61
5.8 Protocol - getResourceSet 63
5.9 Replacementpolicy 65
5.10 Initialization atthe server 67
5.11 Protocol - invalidation, 68
6.1 Usecasefortheevaluation. 72

List of Tables

4.1 Prioritization of the resourcesinthecache 37

5.1 Priority list e e e 56

6.1 Measurement of scenario3 74

6.2 Measurement of sCENArio 2 e e e e e e e e e e e 75

6.3 Measurement of scenario 3 e e e e 76
List of Listings

5.1 Manifest file for caching the core data of theapp 52

1 Introduction

Mobile computing and the use of apps running on mobile devices is getting more and
more popular in the engineering domain [HGM15]. In most of the cases the apps need
access to the data of PDM (Product Data Management)-Systems. In these systems
all relevant product and process information across the product life cycle are stored
[HSM16]. These information consist of meta data describing the products and also
geometry data, like 2D and 3D CAD (Computer Aided Design) representations that
can be very large. This is especially true in the automotive sector in which models
consist of hundreds of components.

Dealing with this kind of data in apps running on mobile devices is a challenging task
[HSM16]. Accessing product data of PDM-Systems can lead to long loading times
due to the data size and the low bandwidth of the wireless communication. This also
becomes noticeable in the consumption of energy that is limited on mobile devices.
The transmission of data is expensive. Through intermittent connectivity caused by
interferences or by the lack of wireless coverage, it can happen that the transmission of
the data is aborted. During this offline time, it is not possible to work with the mobile
app. These technology-oriented problems makes it difficult to work with mobile apps
in the engineering domain [Rot15] [PS12].

To overcome these problems, an implementation of a cache on the client is used. A
cache is a component where data is stored that can be retrieved from there later upon
requests [BBFS11]. In this master thesis, a concept for the use of a cache within
mobile apps in the engineering domain is created. The concept describes a caching
mechanism that is used to reduce the waiting time within the app. This is realized
through storing the needed data in the local cache of the client. Accessing data from
here, is much faster than transferring them over the network. Already cached data has
not to be requested from the server again. This also reduces the amount of network
transmissions that affect the consumption of energy. The device spent less time in
receiving data over the network. This saves energy. Through the caching of data, the
problems caused by intermittent connectivity are also reduced. Cached data can be
used, even if the connection to the server is not available. To make this possible, the
concept provides some techniques and strategies. Besides caching all requested data,

1 Introduction

these allow selecting and caching data, before it is explicitly requested. This is called
preemptive caching or hoarding [HSM16].

To decide, what data will be hoarded, context is used. Context is the information that
is used to characterize a situation of an entity [ADB+99]. In the engineering domain
this information come from the users (entity) that interact with the mobile app within
the domain. This information is used to derive the situations that helps to determine
the data that is currently needed. It is provided in the cache, before it is requested by
the users. This represents context-aware caching. The cached data of the app adapts
to the current situation.

The developed concept is designed for a concrete mobile app that is used in the
engineering domain. The app is executed in a web-browser (web app) and allows to
view 3D models of products. However, the concept can be used for any other app in
the engineering domain. Summarized the caching mechanism of the concept provides
the following key features:

Reduced waiting time by use of caching.

Fewer network transmissions by use of caching.

Robustness against intermittent connectivity by use of preemptive caching.

Usage of hoarding to enable an offline mode.

Structure of the thesis

The remainder of this master thesis is structured as follows: Chapter 2 provides basic
knowledge about PDM-Systems, the engineering domain and caching in the large. In
Chapter 3 concepts of other works are explained that address with providing data for
apps on mobile devices. The caching concept that represents the core of this thesis is
described in Chapter 4. The realization of the key features of the caching mechanism
are explained. After this, the implementation of the concept is presented in Chapter
5. This is done within a prototype that is used in the engineering domain. This is
evaluated in Chapter 6, before the thesis is completed through the conclusion and
future prospects in Chapter 7.

10

2 Basic Concepts

In this chapter the basic concepts for the thesis are described. Before going into details
of caching that is used within the data management, the PDM-Systems are explained.
Mobile apps in the engineering domain interacts with such systems. Therefore, it is
essential to understand how they work and how the data look like. After that, basic
information about caching is provided. An overview over the types, the techniques
and the characteristics of a caching mechanism is given. Finally the mobile apps in the
engineering domain are explained. The architecture, the data model and the context
of the engineering domain are considered.

2.1 Product Data Management

The Data that is needed on mobile apps in the engineering domain are basically stored
in Product Data Management (PDM)-Systems. They are used to manage the product
data across the entire product life cycle. A combination of the product specific data
and the corresponding process management allows a complete reconstruction of the
product in arbitrary construction states. The base of the PDM are established by the
product structure which arises during the product life cycle [SI08]. All components of
the product and the relation to other components can be found here. With this structure
it is possible to get an detailed overview over the whole product. An example for such
a product structure is presented in Figure 2.1. This shows a trimmed-down version of
a motorboat in a tree shape that consists of components and sub-components.

11

2 Basic Concepts

Steering
wheel

Sidelight

Figure 2.1: Example-Product structure

The Figure shows three levels of the tree. The first level is composed by the root
node Boat. This node has three child nodes Bow, Hull, Stern that represents the
sub-components of Boat. All of these have child nodes, too. This goes further until all
nodes of the product can be found in the tree.

This product structure composes one of the base modules of the virtual prototype
[WPG14]. A virtual prototype is a virtual representation of the whole product. It is
possible to simulate the whole behavior of the product. On that way it can be used
to do a lot of different analysis and tests virtually. This can save a lot of money and
time, as the first tests and analysis can be done before manufacturing a real touchable
prototype. Thereby the Virtual Prototype consists not only of the product structure.
Figure 2.2 presents all the parts of the it and shows the correlation between them.

12

2.2 Caching

Virtual Prototype

Digital Mock-up (DMU) Modelling and
Shape oriented modelling anaylsis of further
and anaylsis aspects
Components Product structure Kinematic, |
(3D-CAD) (PDM) Dynamic, Stability, ||
etc.

K
o EeRe
3 0 ——WA—

Figure 2.2: Virtual Prototype [WPG14]

The main part of the Virtual Prototype is presented by the Digital Mock-up (DMU). A
DMU is an aggregation of single components to a 3D model of a product [WPG14].
With the help of the product structure and the position and orientation information (3D-
CAD) of the components this aggregation takes place. With this DMU it is also possible
to do some like assembling, kinesic behavior or stability of the product. Through
the integration of further aspects (thermal, shape, etc.) the DMU becomes a virtual
prototype [WPG14].

2.2 Caching

In the following Section basic information about caching is given. It is described
what types of caches exists and when they are used. After that, two different kinds of
caching techniques are explained. It is described how they differ. For the realization
of a cache within an app, a caching mechanism is needed. This is composed out of
different characterizations. The details about this, are explained after the caching
techniques. Thereby, an overview of possible strategies that can be used within the
characteristics is given.

13

2 Basic Concepts

2.2.1 Types of Caches

A cache is a component that stores data that can be retrieved from there later upon
requests [BBFS11]. The aim is to minimize the access times and to reduce the amount
of accesses to a slower background medium. To achieve that a good cache hit ratio is
aspired. That means that as much as possible requests are responded directly from the
cache. If a request is responded from the cache, a cache hit is achieved. The hit ratio
is computed out of the number of requests divided by the amount of cache hits during
the requests [FZJF06] [FCAB98].

There are many ways to realize a cache. This depends strongly on the purpose of it. It
is distinguished between caches that accelerate hardware and caches that accelerate
software. In this thesis only the caches with regard to software are considered. The
three types that are considered are server caches, network caches and client caches.

Server caches are placed in front of a server with the aim to catch the requests and
try to serve the data directly from the cache. When a client requests data that has to
be computed on the server, it gets cached. The next time the same data is requested
again, a new computation is not necessary. The data can be delivered directly from the
cache. This reduces the server load.

Network cache is the second type. The cache is located at a position in the network.
The aim of this approach is to store common requested data in a cache that is near to
the clients. This enables a faster access to the data. The most popular representatives
from this kind of caching are proxy servers and content delivery networks (CDN).
Proxy server store often accessed data within the network and try to deliver all the
data that is requested directly from its store. This will improve the response times, as
the proxy server is located nearer to the clients than a server from a probably far away
server. Content delivery networks use distributed networks of proxy servers with the
aim to additionally reduce the response times in huge networks like the internet.

When there is a need for an individual cache, a client cache can be useful. Individual
cache means that every client has it’s own cache. Only the data that is needed from
the client is stored there. The data is cached directly on the client on the local disk.
Software applications can access the data without requesting it from a server when
they are stored in the cache. Modern browser like Google Chrome, Internet Explorer or
Firefox uses this kind of caching to speed up loading pages from the internet. The first
time a user requests a page, all the needed data from it will be stored in the browser
cache. When requesting the same data again, they can be loaded from the cache on
the storage.

14

2.2 Caching

2.2.2 Caching Techniques

Caching data for mobile apps can be realized differently. There exist several techniques
for doing that. In this thesis it is distinguished between traditional caching and
preemptive caching (hoarding). The key difference between those two techniques is
the selection of the data that should be cached. In traditional caching the data is only
cached, when it is explicitly requested. E.g. this can occur through a user interaction
like clicking on a load button that starts loading an image from a server. When the
image arrive at the client, it gets cached and can later be accessed directly from the
cache.

The other technique of caching is to store the data preemptive. Preemptive caching
means that there is no need for an explicit initial request. The data gets cached, before
it is requested [HWMO09]. On this way, the caching can be improved, as the data can
be accessed directly from the local cache, even for the first time. This kind of caching
is also known under the term hoarding as all the data is hoarded in the cache for
later usage [KRO1]. However the challenge with this kind of caching is to identify the
data that will probably be needed in future. This selection of the suitable data is very
important in this approach.

2.2.3 Caching Mechanism

To realize a cache within a mobile app, there is the need to define some rules and
strategies. E.g. it is necessary to define, what kind of data should be cached, and
what to do when the cache is full. These rules and strategies combined constitute the
caching mechanism. Rathore and Prinja [RP07] create a characterization where these
things are treated. They define characteristics that make up the caching mechanism.
These are cache granularity, cache coherence strategy and cache replacement policy. In
this characterization there is missing a single characteristic that gives the information
which data is selected to be cached. This is important to distinguish between the
two caching techniques traditional caching and preemptive caching (hoarding). The
main difference between them are the selection of the data that should be cached.
Therefore the cache selection strategy is added. An overview of the characterization of
the caching mechanism is presented in figure 2.3. This overview includes the different
strategies of the single characteristics. In the following section, the details about the
characterizations and their strategies are described.

15

2 Basic Concepts

Preemptive .
P Traditional
caching cachin;
(hoarding) | g
|
Cache Cache : Cache Cache
Granularity Selection : Replacement || Coherence
I
| ey [[|[mee
. Context- || ;
Object aware | Used Live
I
I Access .
Il Traditional frequency- Che,nt
| Polling
Machine : based
Attribute learning |1 Gain —
|) Invalidation
methods | function rotocols
| based P
I
Caching mechanism

Figure 2.3: Overview of caching mechanism

Cache Granularity

The cache granularity composes the base of a caching mechanism. It determines, what
kind of data is stored in one cache entity. A cache entity is the smallest unit in the
cache. It is the physical form of the data that is cached [Tan07]. Choosing the best
fitting granularity can make the caching mechanism more efficiency. A granularity can
be chosen in this way that the whole information stored in one entity is needed. In
this case, the cache space is used in an optimal way. If too many information within a
cache entity is not needed, space is wasted. That space could be used from other data
[RPO7].

The determination of a granularity depends strongly on the used data model. There is
no general way of determine a granularity. An abstract transferable way that fits to the
most data models, is the use of objects and attributes. A high level view is presented
in figure 2.4. The differences between object and attribute granularity is shown.

16

2.2 Caching

: Object granularity |

| . |

Object w : Object |
|

' |

- Attributel: | - Attributel: |
| . |

- Attribute2: \ | - Attribute2: |
' |

' |

S S S S S

\',\Attribute granularity
|
I Attributel:
|
|

Attribute2:

Figure 2.4: Types of cache granularity

An object consists of multiple attributes that contain different information. When
using the object granularity, the object with all its attributes is stored in on one entity.
The object gets the smallest unit in the cache. This can be helpful in scenarios where
most of the attributes from one object are needed in conjunction. When clients are
only interested in some attributes of the objects, a better way is to use the attribute
granularity. In this granularity an attribute is the smallest unit in the cache. This can
lead to a better utilization of the cache space [RP07].

Cache Selection Strategy

The cache selection strategies determines, which data have to be stored in the cache.
As the space on mobile devices is limited, in most of the cases it is not possible to store
all available data in the cache. Only parts of it can be stored. It is important to select
the data that is relevant and that leads to a good cache hit ratio. For selecting the data
the two different techniques can be used. The data can be selected on a traditional
way, or through preemptive caching. Several strategies exist for the selection:

17

2 Basic Concepts

e Cache all requested [ADB+99]
o Context-aware selection [FZJF06]

e Machine learning based selection [SSAS11]

Cache all requested represents the way of traditional caching. Within this selection
strategy only the data that is explicitly requested by a user is stored in the cache. Once
the data is requested, it gets cached and can be accessed directly from the cache the
next time it is needed. On this way, the frequent used data will be cached [ADB+99].

Context-aware selection means that the selection of the data that is cached, adapts to
the current situation [FZJF06]. This can be used for preemptive caching. Depending
on the current situation, data is requested in the background and stored in the cache.
It is hoarded for a later usage. When the data needed in the situation is requested
by a user, this is still cached. It can be accessed directly from the cache. Which
context is considered, depends on the used context model. E.g. it is possible to use
the situations that are derived from a location. Thereby, the cached data adapts to the
current location. For a smooth running it is necessary that the situations are recognized
early enough. If they are recognized too late, it is possible that some data is still not
cached.

Another way of preemptive caching is the use of machine learning methods. Thereby
Classification and Regression Trees (CART) can be used. CART allows to identify
patterns and relationships that can be used for preemptive caching [SSAS11]. This
can be used like a recommendation for data. The server knows through the access
patterns, which data is requested together. When a client requests certain data x, the
server checks for data that is requested together with x. When it can find some, the
server sends these together with x back to the client.

Cache Replacement Policy

When the limit of the cache is reached and there is no more space left for new incoming
data, a policy is needed that determines which data can be replaced. Without such a
policy a caching mechanism won’t work, as once a cache is full no other data has the
chance to get into the cache. Three possible policies are described:

e Least recently used [JJ99]
e Access frequency-based schemes [L.S97]

e Gain-based function [XHLLO4]

18

2.2 Caching

Least recently used considers the access times of the data in the cache. When the cache
is full and a new data arrives at the client, the access times of the data in the cache are
compared. Depending on the size of the new data, one or multiple data entries that
have the oldest access times are selected. The selected entry get deleted and the new
data can be stored [JJ99].

Access frequency-based schemes can be used for realize a replacement policy. Instead of
considering the access times, different computations on the access frequencies will be
done. E.g. the mean over all access can be computed. In return, every data in the cache
gets a access counter. When the data is accessed, the counter will be incremented. If
the cache is full and a new data should be cached, the mean is computed. The data
entry with a lower access frequency than the mean will be replaced. With this policy
it can happen that the cache is crowded with old items that have a high counter. In
this case it is not possible for new incoming data to stay in the cache after the next
replacement. If this behavior is not desirable, this policy have to be adapted. The mean
have to be computed only over a certain time window instead of the overall time. On
that way old objects that are not used currently do not fall into the weight [LS97].

Gain-based function is also a policy that can be used. For selecting the data that will
be replaced, a gain function with different parameters are defined. The parameters
can be the access probability, the data retrieval delay, the update frequency or the data
size. These can be combined, or can be used separately. For example it is possible
to determine that the data over a certain size and over a defined update frequency
should be replaced [XHLLO4].

Cache Coherence Strategy

When caching data it is necessary to guarantee that it is up-to-date when working with
it. For this reason there is a need for a strategy that allows to identify obsolete data
and guarantee a consistent state in the cache. Thereby, it is distinguished between
weak consistency and strong consistency. The first one means that there is some level
of acceptance where inconsistent data is allowed. For example for a certain time.
Strong consistency instead do not allow this. The consistent state have to be reached
as soon as possible [Aro08]. On mobile devices strong consistency is related to some
constraints. Because of intermittent connectivity it can only be guaranteed during the
online time of the device. The other way would be to block all data when being offline.
To realize consistency three strategies are possible:

e Time-to-Live (TTL) [Aro08]
e Client Polling [Aro08]

19

2 Basic Concepts

e Invalidation protocols [BI94] [JEHA97]

Time-to-Live can be used to guarantee weak consistency. It is realized through a lifetime
that is given to every data that is cached. At the point in time the data is stored in the
cache, the lifetime begins to run down. As long as there is time left, the data can be
accessed from the cache. When it’s over, it gets deleted and has to be requested again
from the server. Weak consistency is given, as it can happen that during the lifetime
of the data an inconsistent state is reached. This occurs through a new version of the
data on the server during this lifetime. Consistency is rehabilitated after the time is
over and the data has to be requested again [Aro08].

Client Polling guarantees strong consistency. Every time the client accesses data from
the cache, a request to the server is initiated. It is checked, if the data is up-to-date
or if a new version exists. Thus it can be guaranteed that the data is the newest one.
Here the constraints of mobile computing take into effect. A consistent state can only
be guaranteed during the online time. Otherwise the data has to be blocked when
there is no connection. That would exclude an offline mode [Aro08].

Invalidation protocols use messages to inform the clients about invalidate data. They
are sent from the server and contain a report about data that have been updated.
Thereby; it is distinguished between stateful and stateless. In stateful approaches the
server knows the clients and its cached data. It is possible to send the invalidation
report selective to the clients. Statelss servers do not know anything about the clients.
Therefore the invalidation reports have to be sent to all clients over a broadcast
channel [RP0O7]. The invalidation reports can consist of different information that is
used to invalidate the data. Barbara et al. uses timestamps [BI94]. Jing et al. instead
bit-sequences [JEHA97].

2.3 Mobile Apps in the Engineering Domain

The cache should be implemented to overcome the technology-oriented challenges
of mobile apps in the engineering domain. For designing a caching concept, it is
important to know how these kind of apps look like. Especially information about
the architecture and the used data model are essential. The architecture is needed to
decide what type of cache should be used. The used data model has strong influence
on the used cache granularity that forms the root of a caching mechanism. Additionally
the context of the engineering domain is considered. With the help of context the
different situations of the domain are derived. This can be used to determine the

20

2.3 Mobile Apps in the Engineering Domain

data that is needed. In the following Section the architecture, the data model and the
context of the engineering domain are described.

2.3.1 Architecture

Mobile engineering apps get the data from back-ends that stores the relevant product
data. The different clients, have to communicate with a server. In figure 2.5 the
high-level architecture of such a system is shown. Thereby, the details are renounced
and only the relevant information is presented.

Seat

£)

Product
data

Server

Figure 2.5: Simple architecture for mobile apps in the engineering domain

The apps are designed for running on any kind of device. So it is possible to have a
short view on small screens (smart phones), but also have a more detailed view on
larger screens (notebooks). The users of the app are interested in product data coming
from PDM-Systems. To get the data, the clients requests it from the server over a WiFi
connection. So the app can be used anywhere within the company (supposed a WiFi
connection exists). Different clients request different components of the product data
(seat, bow, engine). This depends on the task that is executed with the client or other
circumstances that require specific data [HSM16].

21

2 Basic Concepts

2.3.2 Data Model

Mobile engineering apps process product data coming from PDM-Systems [HSM16].
They include information that can be used to reproduce the product. To describe the
data model it is distinguished between the logical and the physical data model. The
logical model describes the structure of the physical data.

Logical Data Model

The logical data model of the product data is represented by a tree [SIO8]. A tree is
composed of inner nodes and leaf nodes. Thereby the inner nodes are used to divide
the product data in its sub components. They build the branches of the product. The
leaf nodes include the information about the components. They always belong to a
branch. In figure 2.6 the logical data model is explained. For this an extract of the
product data of a boat is used. In return, three levels containing the nodes of the tree
are presented.

Steering
wheel

Anchor Sidelight

component component component component

O Leaf node O Inner node

Figure 2.6: Logical data model

22

2.3 Mobile Apps in the Engineering Domain

The extract starts on the first level with the inner node boat. This node represents
the root. It is divided into 3 branches that are located on the second level. They
are induced by the inner nodes bow, hull and stern. On the third level some of the
components of the boat are located. In the case of anchor and sidelight they belong
to the branch that is represented by bow. Hull consists of a further inner node (seat).
This starts a new branch which means that on the fourth level broader nodes will
follow. With this tree structure it is possible to describe the whole product and its
single components. E.g. it can be expressed that the bow of the boat is composed by
anchor and sidelight.

Physical Data Model

To make the different information of the products available for the apps, they have
to be stored physically. For the physical representation of the product data, the term
resources is used. It is distinguished between the structure and the single components.
Both information has to be provided in a resource. How the logical data model is
mapped to the physical is shown in Figure 2.7. This is done by the example of one
product.

Logical data model Physical data model
[o o o al [i 1
		:>	R
Product structure Structure resource			
T e A A A A 1 g 3 3 i % 3 % 3k 3 & 3 '			
I	I		
I	I		
		:>	R
Components Component resources

O Leaf node O Inner node III Resource

Figure 2.7: Mapping from logical to physical data model

23

2 Basic Concepts

One product is represented by a structure and multiple components. The nodes and
the relations from the logical data model compose the structure of the product. To
make this structure available for the mobile app, it is stored in one single resource.
With this structure resource, it is possible to arrange all the components of a product in
the correct order. All references to the single components are included. Additionally
to this structure, all the leaf nodes are stored in resources. These nodes represent the
components of the product. In these component resources all the information about the
components are stored. These include the meta data and the geometry data (CAD).
When talking about the product data, the term resource is used up to now.

2.3.3 Context of the Engineering Domain

Context is any information that can be used to characterize the situation of an entity,
which could be a person, a place or an object that is relevant [ADB+99]. When a user
within the engineering domain interacts with an app, such information is created. E.g.
when the position of a user using the app is tracked, this position information can
be used to describe the current location. This location represents a current situation.
For identifying the context of the engineering domain, context models can be used.
Hoos et al. create such a context model for the engineering domain [HSM16]. This
is presented in Figure 2.8. The context model consists of different dimensions that
describe the context. To refine the dimensions, context elements are used that are
linked together over relations. These elements can get different values that are used to
describe the current situation. Therefore the values of the elements are used, to derive
situations [HSM16].

24

2.3 Mobile Apps in the Engineering Domain

Activity

has a executes a-_ is executed at _is located in
Y Y Y N

User

Role

Task

|

Station

Buildung

J

Actor

Figure 2.8: Basic Context Model for the Engineering Domain [HSM16]

1
is executed

using

Device

-
Device

.

~
Location

The context model consists of six context elements that are represented by the rect-
angles. Each of these elements has a relation to another one. The task for instance is
related to the station over is executed at. The elements and the relations are the result
of the refinement of dimensions that are identified as important for the engineering
domain. That way the dimension actor consists of the two elements user and role that
are related through has a. Another relation executes a creates a link to the dimension
activity. So things User A that has the Role B executes Task C at station D can be
captured. With the help of this context model, it is possible to derive the different
situations of the engineering domain. This situations can be used to adapt the app and
its resources to the current needs [FZJF06].

25

3 Related Work

This chapter presents several works that address providing data on mobile devices. It
is examined if the approaches of the other works can be used for the caching concept
within the mobile engineering app.

In [GAAU15] they create a reliable, consistent and efficient data synchronization
for mobile apps with Simba. Simba is a data-sync service which provides a SDK
for developer to manage the data within an mobile app. Simba consists of a client
(sClient) and a server (sServer). Within the client the local storage is located. The
storage consists of a table storage (SQLite) and an object storage (LevelDB) where
the documents are stored as key-value pairs. Therefore it is possible to store any
kind of data. The sClient acts as a proxy on a mobile device. All apps using the SDK
communicates over the sClient with the sServer. The communication between the
sClient and the app is realized with local RPC, in Android with AIDL. It also gets all
the messages from the server and notifies the app when new data arrive or when a
conflict exists. For synchronization and conflict detection flags in the rows of the data
tables are used [GAAU15]. As the sClient is currently only implemented on Android it
is not suitable as there is a need for a platform independent caching mechanism that
can be used within web browsers.

Another approach where the data on the client is stored in a local database which is
synchronized with the server, is presented in [PBHS11]. Here they implemented a
new client centric protocol for database replication in mobile environments. For the
synchronization and communication with the server REST services are used. They are
implemented as a web app acting as a middleware between the client and the database
located on the server. With the help of last-update timestamps the client requests all the
data from the server that were updated since the last synchronization. As it is possible
to change data on the client and push it to the server when online (write-any approach),
an app specific conflict resolution is implemented, supporting eventual consistency
[PBHS11]. This approach uses a replication of data that refers to the whole database.
This is not feasible for caching mechanism within the engineering domain. The data is
too large and the disk space on the mobile clients too small. A similar approach is used
in [SMC+14]. They create an algorithm for mobile replicated database management

27

3 Related Work

synchronization (MRDMS). The difference is, that the synchronization is cell based.
That means that every cell in the database have a timestamp. For this purpose every
table gets a corresponding timestamp table. To identify updated resources, the cells
and the timestamps are transformed in a specific format matrix. At synchronization
time JSON over HTTP is used for exchanging the data between the clients and the
server. As all the data is replicated, this is also not feasible.

To avoid the replication of the whole database, Gollmick et al. introduced a service
using replication views in [Gol03]. Replication views are client defined subsets of
server databases the client want to store locally. After the synchronization with the
server, the client can work with the data in the subset offline. When the client has
updated the data locally, they have to be synchronized with the server when being
online again. For this they use the capabilities of the used client and server Database
Management System. This service is designed for the use with relational databases. The
implementation is based on a three-tier architecture where a replication proxy server
(RPS) is placed between the client and the server. The RPS contains an additionally
replica with the intention for scalability, security and reliability. As this service is
designed for relational database that approach do not fit. The data that is considered
within the caching concept contain the product data that includes geometry data
(CAD). These data is not appropriate for storing it in relational databases.

Hoepfner et al. create a flexible framework (extension to MyMIDP) for caching data by
the means of SQL queries [HWMO09]. The requests to the server are realized directly
as SQL statements. Before it is sent to the server, the query is splitted after a certain
scheme with the goal to get a key that can be used for searching still cached data on
the client. When the data can’t be found, the query is prepared to comply with the
used strategy and is sent to the server. Possible strategies are for example semantic or
preemptive caching. When the server delivers the answer in form of a record set to the
client, it is stored in the cache and is tracked by a cache handler. The cache handler
is responsible for delivering the resources when they can be found by the key. This
approach has also the problem that it is deigned for SQL queries.

The use case of the caching concept that is developed for mobile apps in the engineering
domain is very particular. A common approach can not be applied to it. Therefore, it
is necessary to develop a new concept.

28

4 Caching Concept

In the following chapter, the developed concept for realizing the caching mechanism
within a mobile engineering app is described. The used type of the cache is a client side
cache. As the mobile apps communicates over wireless connections with the back-end,
this is the most feasible. The resources are stored directly on the device and are
accessed from here. Once cached, the resources can be used without requesting it
from the server.

For the development of the concept, the different characterizations of a caching
mechanism are used. In Section 4.1 - Cache Granularity, it is explained, what kind
of data is stored in the cache. The selection of the resources that have to be cached
is described in Section 4.2 - Cache Selection. Thereby, context-aware and traditional
selection strategies are used. When the limit of the cache space is reached, a policy
is needed that decide, if a resource in the cache should be replaced to free space. It
is also essential to select the most meaningful resource to replace. The used policy
within the concept is explained in Section 4.3 - Replacement Policy. To guarantee that
the resources in the cache are up-to-date, a strategy is needed that invalidates obsolete
resources in the caches of the clients. This strategy is described in Section 4.4 - Cache
Coherence Strategy. At the end of this chapter, a summary of the used strategies within
the mechanism is given in Section 4.5 - Conclusion.

4.1 Cache Granularity

For the determination of the cache granularity, the data model from Section 2.3 -
Mobile Apps in the Engineering Domain is used. The resources that have to be provided
by the cache, is the product data. Physically it consists of the both structure and
component resources. Each of these resources can be seen as an object with different
attributes. A structure resource contains other attributes than a component resource.

When working with the product data within the app, it should be achieved that the
overall structure of a product is available. Also the single components of it should
be visualized completely with regard to the geometry data. For this reasons every

29

4 Caching Concept

resource has to be provided by the cache completely. That means that a resource is
the smallest unit that is stored in the cache. As a resource can be seen as an object,
the granularity of the caching mechanism is object. An abstract view of the cache
granularity is shown in Figure 4.1 by the example of the boat. It can be seen, what
kind of objects are stored in the local storage of a client.

Client

Local storage

Boat Steering wheel

Y

Fuel tank Anchor

Sidelight

‘ :l Component resource Structure resource

Figure 4.1: Used cache granularity

Each client has its own cache that is located in the local storage. When there is the
need to cache resources, always the whole resource is stored. In this view, the cache
includes the structure information of the boat that is included in the structure resource
boat. Additionally to this resource all the components (fuel tank, sidelight, steering
wheal, anchor) of the boat are stored as separate component resource containing the
meta data and geometry data.

30

4.2 Cache Selection Strategy

4.2 Cache Selection Strategy

For the selection of the resources that are cached, preemptive caching in combination
with traditional caching is used. Preemptive caching is realized by context-aware
selection. With context it is possible to determine the individual needs of a client that
is used by a user. The cached resources adapts to the current situations. If the current
need for resources are covered in the cache, the cache hit ratio increases. The aim of
machine learning methods like CART instead, is to reflect the common needs. It uses
history data to cluster resources and give common recommendations. They do not
adapt to the current individual needs as fast as the context-aware selection do. For
this reason context-aware selection is used in the caching mechanism.

To additionally increase the amount of cache hits, traditional caching is used in parallel.
All user requested resources are also stored in the cache. On that way the unused
cache space is used to store frequent accessed resources. When the different strategies
conflict cause of missing cache space, it is the job of the replacement policy to decide,
which resources are kept in the cache. For all the strategies it is prerequisite that
during the caching of a resource a connection to the server exist. Without a connection
it is not possible to request resources and therefore they can’t be cached. After caching
it is also possible to use them offline.

In the following Section, context-aware and traditional selection are described.
Thereby, different strategies that considers different context elements are used for
context-aware selection.

4.2.1 Context-Aware Selection Strategy

Context consist of several elements within the engineering domain. To create a context-
aware caching within an app, it is necessary to identify the elements that are used
to determine the selection. For this purpose, the context model from Section 2.3.3
is used. As not all dimension of the model are useful for a caching mechanism, only
the relevant are used. These are actor, activity and location. Within these dimensions,
the context elements role, task, station and building are used. Also the relations are
not considered. The context elements are considered separately. If multiple situations
occur at one moment (more than one context element has a value), then multiple
active situations exist. E.g. is is possible that a specific task is executed near a station.
Now, both the context elements have a value.

To make it possible that the cached resources adapt to the current situation, the
corresponding resources has to be defined. For this purpose, individual resource sets

31

4 Caching Concept

for the different situations of the context elements are created. In these resource sets,
all the resources that are needed in the situation are included. Therefore it is necessary
to create links between the resources and the situation. How this is realized, can be
seen in figure 4.2. Thereby the process and the involved components of the client and
the server are shown.

Client Server
Situation . Resources
Context] (context value) E Links >
T \L

s)

L E RS2 <—

RS2 S w53

~

’ Resource set Local storage (cache)

Figure 4.2: Context-aware data provisioning

On the server side the information about the links are stored. These include the
information about the situation and the corresponding resources that are available
on the server. To make them available for the clients, resource sets are created out of
the links. One resource set includes thereby all the resources that are linked to the
situation. When a new situation is recognized by the client, it is sent to the server.
Thereby, the situation can be a value of any kind of context. The server knows the
corresponding resource set and sent this with all its included resources back to the client.
This kind of providing and getting resources is called context-aware data provisioning
[HSM16]. This makes it possible to cache only the resources that are needed in the
current situation. When there are multiple active situations, all the resource sets will
be loaded. On that way, the probability for a cache hit increases.

Based on this context-aware data provisioning it is possible to create selection strategies.
These can be grouped in two different categories. The first category is static context-

32

4.2 Cache Selection Strategy

aware caching where the resource sets depending on the context are fixed. The second
is dynamic context-aware caching. Thereby, the content of the resource sets can change
depending on computations on the server side.

Static Context-Aware Selection (SCAS) provides fixed resources sets. The included
resources get defined and to not change until there is a conscious change by a user.
When a situation derived by the value of a context element is recognized, the value
corresponding resource set is loaded and cached by the client. For this purpose
the server has multiple resource sets that include the defined resources. Creating a
resource set that have information about a location, enables location based selection
(CAS,). Thereby a location can be a station or a building. This is explained with the
help of the extract of the boat example and its logical data model. In figure 4.3 this
extract is presented.

Station A
Sidelight

O Leaf node O Inner node |:J Linked to Station A

Steering
wheel

Figure 4.3: Context-aware selection - location based selection [HSM16]

The tree represents the product data of the boat. The components of the branch
that is induced by bow are needed at station A. E.g. it is imaginable that the bow is
produced at station A and information about the two components sidelight and anchor
is needed. This information is included in the physical resources. On the server there
exists a previously defined resource set that includes these resources. This is linked to
station A. When the situation station changed to station A is recognized by the client, a
message containing this location is sent to the server. As response, the server sends the

33

4 Caching Concept

corresponding resource set. The resources get cached and can be accessed from the
local storage the next time they are needed.

Role based selection is proceeded on the same way. Thereby, situations derived from the
context element role are considered. A user can have different roles that are dedicated
to its profile. On authentication the server check the roles of the user. If the server can
found a resource set for the role, it sends it to the client where the user is logged in.
This includes the resources that are linked to the role. This is useful because users
with same roles often need to access the same resources. When the user changes the
project or the responsibilities, the role can be adapted and the new linked resources
will be cached.

Task based selection is also realized in this way. The situations that are derived from
the context element task can occur on different ways. It is possible that the task is
recognized by the movements of the user that executes a task. Another opportunity is
that a user select a task from the task list in the client. Independent from the source
which generates the situation, the server knows the corresponding resource set and
sends the resources to the client where the resources will be cached.

Dynamic Context-Aware Caching (DCAC) reduces the time and effort spent on
defining the resource sets. The resources that are linked to the context elements
are determined automatically and can change over time. To make this possible, the
context model from Hoos et al. [Ho0s2006] is extended with an additional dimension
time. Thereby time is an information, to which point in time a resource is requested
from the server. This dimension can be combined with any other. It is possible to
combine the location and the time to get the information which resource is requested
at which station to which time. Therefore this dimension is related to each other. This
information that relates the different dimensions with time, can be used to generate
strategies depending on dynamic context-aware caching.

Most popular selection (CAS,4) based on a certain role is one of these dynamic context-
aware strategies. The time is linked to the role and the accessed resource. On the basis
of this data the most popular resources within a certain time interval "I’ is determined.
For this purpose, all accesses to the resources from users owning a role are counted on
the server. The resource set is determined with the following formula. Thereby, r is the
role, t the time where the computation is executed, m the total numbers of resources
and the absolute values the number of accesses to the resource.

(4.1) RS, (t) = max{|Ry|,..,|Rnl|}

34

4.2 Cache Selection Strategy

In Figure 4.4 an example of this determination is shown. It is visualized, which
resources that are stored on the server are accessed from users owning different roles
in a specific interval.

| |
L s s 4 s 6 s s o om om om o
| [
T computation

@ Accessed resource by role x @ Accessed resource by other

Figure 4.4: Dynamic Context-Aware Caching - most popular

The resources within the server can be accessed by a certain role x or by any other role.
The time interval T the server goes back to count all the access done by role x is set to
10. It should be determined, which are the top 3 of this role. The result is computed
as follows:

RS, (11) = max{|Ry|, | Ra|, | R3|, | R4l, | Rs5|, | R¢|} = maz{6,2,4,3,1,0}
= {67473} = {R17R3a R4}

At time t = 11 where the computation is executed the most popular from role x are
R1, R; and R,4. This means that all users with role x get this resources from the server
on authentication and cache these. When a new computation to another time is
executed and new most popular arrive, the server will send these to the client too.
It is also practicable to ignore the roles and determine the most popular in general.
All clients independent from the logged in user will thereby get the most popular
computed over all resource accesses in the time interval. In the example in Figure 4.4
the resources that will be sent to all clients are determined as follows:

RS(11) = maz{|Ral, |Ral, | Bs|, [Ral. |Rs|, | Bs|} = maz{9,4,6,3,2,1}
= {97476} = {RlyRQa R3}

35

4 Caching Concept

4.2.2 Traditional Selection Strategy

In context-aware caching, the point in time may be reached, where all situations are
processed on the client and the linked resources are cached. After this point in time it
can happen that resources that are not linked to the processed situations are requested.
They can’t be found in the cache. As traditional selection (TRS) runs in parallel, these
requested resources get also cached. This process is triggered by an explicit request of
the user. If the resources are requested again, they can be accessed directly from the
cache. On that way, frequently accessed resources get cached. When the maximum
of the cache space is reached, it is the job of the replacement policy to decide, which
resources get replaced.

4.3 Cache Replacement Policy

For the replacement policy a gain based function with priority (GBFP) is used. The
priority is the parameter of the function. Through the different kind of selection
strategies, the single resources in the cache come from different contexts. E.g. they can
be part of a resource set that depends on a task, or they can be cached on traditional
way. It is possible that at one moment, multiple situations are active (multiple context
elements have a value). In this case, multiple resource sets are stored in the cache.

When the cache space limit is reached, the policy has to decide if resources in the
cache should be replaced by new incoming resources. For this decision, the priority is
used. The resource with the lowest priority in the cache gets replaced. For this reason
every resource in the cache gets a priority on inserting. The priority of the resource
starts always on inserting with the corresponding priority level. How the priority level
of a single resource is set, depends on the use case of the app.

If the user of the app wants to be actively involved in the replacement process, it makes
the most sense to give traditional selected resources the highest priority level. On
that way, the last viewed resources are cached and won’t get overwritten by context-
aware selected resources. So the user can use the last viewed resources offline. If the
user is only passively involved, context-aware selected resources should get a higher
priority level. Thereby, the focus is more on a supporting functionality than on storing
resources for an offline usage. The resources that will be needed in the context have a
higher priority than the last viewed.

A recommended prioritization can be seen on table 4.1. The focus is on a supporting
functionality. To give the users the opportunity to protect specific resources for

36

4.3 Cache Replacement Policy

replacement, an offline snapshot is introduced. Thereby, all the resources that are
currently visible for the user, get the highest priority when this function is executed.
On that way the users can manage the resources they want to use offline.

Strategy Priority level
Offline snapshot 60
Task based selection 50
Location based selection 40
Role based selection 30
Time based selection 20
Traditional selection 10

Table 4.1: Prioritization of the resources in the cache

With this values the gain function is set up. All the resources are marked with its
priority level. When a resource set linked to a situation that is derived from task arrive
at the client, all its resources get the priority '50’. If the cache space limit is reached
the priority levels are used to replace resources. All resources in the cache that have
a lower priority level than the new arriving, can be replaced. E.g. when location
based resources arrive, all resources with priority level less than 40’ are replacement
candidates. Resources that arrive with the lowest priority level make an exception.
As there is no lower level, resources with the same level can be replaced (instead of
resources with a lower priority level). To select the resource within a priority level that
should be replaced, an access frequency counter for each resource is introduced. This
counter is incremented every point in time a resource is accessed. If the lowest priority
level is ’10’ and the lowest access frequency of all resources with level ’10’ is ’1’, this
resource will be replaced.

To prevent the overflow of the access frequency counter and to avoid that long staying
resources will never be replaced (within a priority level), the counters will be reset
when re-initializing the cache at the server. This occurs after a certain time the cache
was last initialized. The priority level of still cached resources can be changed through
a new situation. E.g. every context element on the client can get an empty value.
This leads to the decrease of all the resources to the lowest priority level. Another
possibility is that a resource gets a member of a resource set with higher priority. In
this case, the priority level is increased.

37

4 Caching Concept

The following formula describes the priority P of a resource, whereupon pl is the
priority level, f the access frequency and x the resource identifier. The multiplier 1000
is used to give the priority level a higher weight.

(4.2) P(x) = (pl, * 1000 + f,)

The gain based function is composed as follows, whereupon ¢ is the time the function
is executed. This time is when a new resource should be inserted in the cache and no
space is left.

(4.3) GBFP(t) = min{P(1), P(2), ..., P(x)}

With this function the resource with the lowest priority is determined. The priority
level of this resource is compared with the priority level of the new resource that
should be inserted in the cache. Only if the priority level of the resource is smaller
(when new resource has lowest priority level smaller or equal) than the level of the
new one, it gets replaced. May it is necessary to execute the function multiple times
at one moment. E.g. when the size of the replaced resource is smaller than the size
of the new one. In this case it has to be repeated until there is enough space left. To
prevent that a too high access frequency will change the priority level, the maximum
of a the counter is set to 9999.

An example of the replacement policy is described in figure 4.5. Thereby the cache of
a client, the resources from the different context elements and the accesses to them
are shown over time.

38

4.3 Cache Replacement Policy

High
priority
7R3 |
TR2]
low | TR1|
priority
-
1
[client cache [Location based resource [EZ] offline context based resource

<> Resource access (=7 Traditional based resource O Access frequency
[ZZ1 Removed resource

Figure 4.5: Gain function based replacement strategy

The resources in the client cache are ordered descending after the priority. The resource
with the highest priority is located on the top and the one with the lowest on the
bottom. At time t = 1 the cache of the client includes the resources TR;, TR, and TR;.
Later a resource set that contains the location based resources LR, and LR; arrive at the
client. As there is enough space left in the cache, the two resources can be inserted
without replacing other resources in the cache. All the resources start with an access
frequency counter of '1’ after inserting. At time t = 3 more resources arrive, but at
this time there is not enough space left and the client have to replace resources. To
compute the resource that will be replaced the gain function is used. At this moment
two different priority levels are in the cache. As the traditional based resources have
a lower priority level, a resources from these will be replaced. This is computed as
follows:

39

4 Caching Concept

The result of the function at time t = 3 is that resource TR; with a value of ’100001’
should be replaced. This represents the lowest priority. TRy, and TR3 have the same
priority, but in this case the first occurring resource of those are chosen. As the priority
level of the new incoming resource is higher (40) than from TR; (10), the replacement
is executed. After that, LR; can be stored in the cache. By accessing a resource from
the cache, the access frequency counter will be incremented. This can be seen at time
t = 4. Here the resources TR, and LR, are accessed, which increments the counter.
This changes the priorities within the cache. Now resource TR; has the lowest priority.
At time t = 5 this resource is replaced by TRs.

Through a resource set from task that is marked as offline context, the whole cache
will be needed. This occurs at time t = 6. Here two different situations are active at
the same time (location and task marked as offline context. As the offline context based
resources have a higher priority than all others, all the resources in the cache will be
replaced. Some of the arriving resources are still in the cache. These won’t be replaced.
Instead, only the priority level changes and the counter is incremented. As the whole
cache is filled with resources with the highest priority, no one will be replaced by an
other arriving resource. That is important to guarantee that all the needed resources
are still there when being offline. Only when the priority level of the resources change
through a changing situation (e.g., offline mode is finished) other resources can be
cached.

4.4 Cache Coherence Strategy

To invalidate obsolete resources in the cache of the client, an invalidation protocol
called Stateful Invalidation Protocol (SIP) is used in the caching mechanism of the
concept. On mobile devices there is a need for strategies that do not produce too
much traffic. Client Polling is therefore not suitable. Every time a resource is accessed,
the server is asked if the resource is up-to-date. This will lead to a lot of unnecessary
requests. In this regard Time-to-Live would perform better. A longer lifetime of the
resources in the cache would produce less traffic. The problem here is that under
certain circumstances the clients have to work with obsolete resources for the whole
lifetime. This is not preferable in the engineering domain. If resources are accessed
when being online, it is expected that they are up-to-date. Otherwise, the users can
never be sure, if they use the newest version of a resource. Therefore, there is a need
for strong consistency during the online time.

For this reasons a stateful strategy that allows sending selective invalidation reports to
the clients is the most suitable. The server remembers all the resources a client has

40

4.4 Cache Coherence Strategy

cached. When there is a new version for a resource, the server checks which clients
have cached this resource. When there is found a client and it is also connected, the
server sends the invalidation report that includes the obsolete resource. On this way no
unnecessary messages are sent and the clients are informed about obsolete resources
as soon as possible. It is possible to guarantee strong consistency when being online.
A detailed process of this invalidation protocol is presented in figure 4.6. Thereby, the
client cache and the remembered cached resources from this client on the server are
shown over time.

P_4
A s
| R3 |l R3 | [R3 | [R9 |
R2 R2 R2 [RS | R8 |
R1 R1 R1 R1
} AN } } AN } 1 VN t 1 }
| BE offline ﬁ'l o
| | R2
L IEE ! 6]
v v v v v N v v
| RS |
| R4
[R3 | | R3 | | R3 M R3 I R4 |
R2 | R2 |l R2 [FR2V R3 |
| Rl WERTEE R1 | R1 ERESE SR ERIOE R1 i R1 J R1 (SR |
2 2 2
| |
| I I I I I I I I I I /l I |
1 2 3 4 5 6 7 8 9 10 woo—s
t
Inconsistent R Obsolete n Up-to-date | Ackn.o.wledge
resource resource resource s receiving
New version of Replaced Invalidation Resource
LR] resource Ix:l resource report ? request

Figure 4.6: Stateful Invalidation Protocol (SIP)

The first step the client has to do, is the initialization at the server. At this point in
time the client sends its cached resources (R1,R2) and the timestamps of them to the
server. The server stores these information. At time t = 2 a new version of R1 arrive at
the server. So the client has an obsolete resource. The server knows that the client has
cached this resource and with the help of the timestamp it is identified as inconsistent.
The server also knows that the client is connected an sends the invalidation report

41

4 Caching Concept

with resource R1 to the client. When the client receives this report, it deletes the old
version of the resource, gets the new and acknowledges the receiving. So the server
knows at time t = 3 that the cache is in a consistent state again. After that, the client
requests the resource R3 from the server. This is remembered by the server. After time t
= 4 the client gets offline until time t = 7. During this time, new versions of resource
R1 and R2 arrive at the server. As the server knows that the client is not connected,
no invalidation report is sent. When the client gets online, the server knows that and
sends the invalidation report with R1 und R2 to the client. At time t = 8 the consistent
state is reached.

When the cache space limit is reached and new resources are requested, it may happen
that resources get replaced. This occurs at time t = 9, as the client has request resource
R4 and R5. There is not enough space left to store both in the cache. As it is the task
of the replacement policy that runs on the client, the server does not know which
resource will be replaced. It would produce too much traffic informing the server
about every replacement. Therefore, this is not performed. The server will still keep
this resource remembered and send invalidation reports, if the resources is affected
by an update. Like at time t = 10 the client responds on a falsely sent report, with
an acknowledge that contains the information that the resource is not in the cache.
So the server can forget the resource. Now it can happen that a lot of resources get
replaced on the client. At the same time, no updates are performed. So the list on the
server gets bigger and bigger. To avoid that it gets too big, after a certain time window
'w’, the client has to initialize again. After that, the client and the server are back in
sync. How 'w’ is chosen depends on the hardware of the server and the number of
clients. If the server has a lot of power and a manageable amount of clients, the 'w’
can be chosen to be multiple weeks.

4.5 Conclusion

The described strategies compose the caching mechanism of the concept. For summa-
rizing the used strategies Figure 4.7 is used. It is presented, which strategies are used
in the single categories of the caching mechanism.

42

4.5 Conclusion

Preemptive .
I.D Traditional
caching .
. caching
(hoarding)
I
Cache Cache : Cache Cache

Granularity Selection : Replacement || Coherence

I
Context- : Traditional Gain-based Invalidation

aware | function protocols
I
Static :

. Context-aware
Object selection : All requested Priority Stateful
(06) (scac) | (TSR) st
| (GBFP) imestamp
Dynamic | (5T5)
Context-aware ||
selcetion :
(DCAC) |
Caching mechanism

Figure 4.7: Overview of the caching concept

The chosen Cache Granularity is objects. Theses are represented by the single resources.
That means that the smallest unit in the cache is a resource. Within the concept
both traditional caching and preemptive caching (hoarding) techniques are used. For
preemptive caching (hoarding) the context-aware selection strategies are used. It is
distinguished between static context-aware selection where the resource sets are fixed
and the dynamic context-aware selection where the resource sets can change over time.
Within the strategies different context elements are supported by the concept (task,
location, role, time). Traditional caching is realized through the traditional selection,
where all the requested resources are cached on the device. The different selection
strategies can be used in parallel. This is possible through the use of the gain-based
function that uses priorities to replace resources. On that way resources that are
needed in the current situation are not overwritten by others. The relevant resources
get cached that leads to a good utilization of the available cache space that increases
the cache hit ratio. To invalidate obsolete resources in the cache an invalidation

43

4 Caching Concept

protocol is used. The Stateful Invalidation Protocol allows to selective sending the
invalidation reports without producing too much overhead.

44

5> Prototype

In the following chapter, the realization of the created caching concept within a
prototype is described. It is explained, how the architecture of the existing app is
changed, to enable a caching mechanism. The different software components of the
new architecture are described by detail. Also the used technologies are presented.
At the end of this chapter, the protocols and processes that are needed to realize the
different strategies of the caching mechanism are explained.

5.1 The Existing App

For the implementation of the caching concept a mobile app that is used in the
engineering domain exists. Azevedo et al. create a portable and platform independent
viewer that allows to visualize and examine 3D models of products [AKL]. These 3D
models come from PDM systems. It is optimized for the usage on mobile devices. It
allows to use gestures like panning, swiping and zooming for interaction. To get a
better overview, the model is transformed into a tree. This can be used for navigating
through the model and for selecting specific components. For the integration of the
caching mechanism it is important to know which architecture is used and which data
model has to be considered.

5.1.1 Existing Architecture and Used Technologies

As the app should run platform independent, web technologies are used. HTML in
combination with CSS and Javascript makes it possible to run the app with ordinary
web browsers on nearly any device. For showing the 3D model, the JavaScript library
Three.js ! is used. This uses WebGL for rendering. The tree viewer which serves as an
overview over the model, is based on a SVG file. SVG can easily be manipulated with

Thttp://threejs.org/

45

http://threejs.org/

5 Prototype

JavaScript and enables interactions on this way. For the creation of the SVG D3.js 2 is
used. The architecture is shown in figure 5.1.

(CIie nt)
/Web browser \
N Y

o T /

HTTP.
/Web server \

Figure 5.1: Architecture of the existing app

The app is executed in a web browser on the client. The core files of the app (HTML,
CSS, JavaScript) that are needed to run the app are located on the file system of the web
server. These files compose the two software components of the app. The User Interface
enables the interaction with the model and dispatch the commands from the user to
the Business Logic. The product data that is also stored on the file system of the web
server are needed from the Business Logic. They are used to process and visualize the
model of the product in the viewer. These have to be requested over HTTP every time
a model is accessed by a user (if they are not temporary cached by the browser).

2https://d3js.org/

46

https://d3js.org/

5.1 The Existing App

5.1.2 Data model

The data model that is used in the existing app, is also used for the prototype. It
consists of the product data that is needed for rendering the model. Logical it is
represented by a tree, where the single components of the product are the different
leaf nodes of the tree. Physically the nodes are mapped to JSON files. The visual
presentation of this is shown in figure 5.2. Here the mapping of the logical to the
physical data model is presented.

Logical data model Physical data model

| |
| |
| |
: :> : JSON
| |
| |
|

2
a

Components

O Leaf node O Inner node JSON file

Figure 5.2: Data model of the protoype

Every component of the product that is represented by a leaf node, has its own JSON
file. The file contains different information that is structured in form of attributes.
They contain meta data like the name and the version of the component. Besides these
meta data, attributes containing the geometry data are included. These are important
for rendering the model within the viewer. For the structure of the tree of one product,
a separate file exists. This is also in JSON format. In this file all the other JSON files
are referenced by the name in a nested structure. This allows to reproduce the tree.

The base of these JSON files is composed of PLMXML. PLMXML is a common industry
standard that is used for a product specific data exchange [ComO05]. Thereby, infor-
mation about the product structure, shape information and process information are
included in a PLMXML file [DBM+07]. To extract the information (meta data and
geometry data) that is needed to visualize the 3D models in the viewer, a convert is

47

5 Prototype

used. Azevedo et al. provides a converter, that uses PLMXML files and convert them to
JSON [AKL].

5.2 Overall Architecture

In the existing architecture, there is missing a communication mechanism that allows
to get the different product data dynamically from a server. It is only possible to take
all the JSON files of the product data and put them directly on the file system of the
web server. Here they can be accessed from the app. This is not very practicable. It is
better to have a back-end component that allows the app to manage the product data
that come from the PDM-Systems. On that way it is possible to provide all available
models to the clients. Also different versions of models and their components can be
managed.

For this reason a back-end component on an application server is implemented. It
provides some basic interfaces that can be used for getting the product data. These
interfaces are also used to fill the cache on the client side with the specific resources. For
using the interfaces and for enabling a caching, some additional software components
and protocols are needed. The extended architecture can be seen in figure 5.3. Within
the architecture, the old and new components can be distinguished. It is also shown,
where the cache is integrated into the app.

48

5.2 Overall Architecture

4 @ N\)
Web browser
/Cache 3
- ! '
S \ ' (—\
= | Product | N
o GdexedDB ej‘ >
i i Data
E : Management
i [Application \‘ o
i | Cache j‘ g
“\ ______________ A . v _ J
- J
HTTP WebSocket HTTP/JSON
~ ~ -)
/ ! Application Server v v N
C Controller)
S
v
E —
3 Database @
Data Data
Management Access Product N N
data
- - J

. Existing software components O New software components

Figure 5.3: Architecture of the prototype

The two tiers of the app are the client and the server tier. The client tier contains the
old software components that are necessary for rendering and interacting with the
model(User Interface and Business Logic). These are still executed within a browser
on the client. The cache that consists of two different local storage’s is located on the
client side. Thereby, the Application Cache includes all the core files of the app that are
needed to run the app (JavaScript, HTML, CSS). These files are requested from the
web server when the client opens the app for the first time. After that, these files get
cached and the app can be executed without connection to the web server.

The second storage is the IndexedDB. Here the resources are cached and hoarded
(product data). The data management forms together with the old software components
(User Interface and Business Logic) the core of the app. It is responsible for getting

49

5 Prototype

the resources that are needed for rendering the model and generating the tree. The
component can communicate with the IndexedDB and with the server. When the
resources that are needed can’t be found in the IndexedDB, they are requested from
the server (if a connection exists). When there is a need to cache resources, the Data
Management component inserts them into the IndexedDB.

For the communication between the client and the application server two different
protocols are used. The first protocol is for requesting and transferring the resources.
Therefore HTTP requests that are realized over a REST API are used. The media
type for the resource exchange is JSON. The second protocol uses a WebSocket for
communication. This is needed for the invalidation of the obsolete resources in the
cache (IndexedDB). On the server side the Controller component is responsible for
receiving, transferring and dispatching the messages that are sent over the protocols.
The Data Management component of the server, has the task to get the resource sets
that depend on the context. It has to provide the resources and has to determine the
invalidation reports that have to be sent to the clients. For these purposes it has to
communicate with the Data Access component that includes all queries needed for
getting the resources. The database contains the links to the JSON files on the server
that includes the product data.

5.2.1 Used Technologies

For implementing the new software components that are needed for the caching
mechanism, different technologies are used. On the client side, web technologies
are used (HTML, CSS, JavaScript). For the back-end component Java is used. In
the following Section a short overview of the used technologies within the prototype
is presented. The details of the usage of these components are explained after this
overview.

e Client components
For the implementation of the new software components of the client mostly
jQuery 3 is used. It makes it possible to use AJAX for requesting the data from
a server. With the JavaScript library STOMP.js # it is possible to establish a
WebSocket connection. This enables a bidirectional connection between the
server and the client. Both client and server can send messages.

3https://jquery.com/
*hhttps://github.com/jmesnil/stomp-websocket

50

https://jquery.com/
hhttps://github.com/jmesnil/stomp-websocket

5.2 Overall Architecture

e Application Cache

The Application Cache is part of the HTML5 Offline Storage’s. The intend of
this cache is to store a copy of the web app. All the core files of an app can be
stored there and accessed without an internet connection. The files that should
be cached are defined in a manifest file. The manifest file is located on the web
server and linked within the HTML-tag of the start page. All other sub pages of
the app must also have the reference to the manifest file in their HTML-tags. A
manifest file on the server must be from type ".appcache’ [KHOS8].

e IndexedDB
Also a component of the HTMLS5 Offline Storage. The data is stored in a key-value
format. It is possible to create different stores within a IndexedDB that act like
tables in relational databases. Each store has it’s own key that is used for the
access to the data. Besides the keys, different indexes can be created to locate
the data. The communication with the IndexedDB is realized over the HTML5
Offline API [MSG+15].

e Server components
The server components are created with the Java framework Spring Boot °.
With this framework it is possible to create a REST API with minimal effort. It
provides also a WebSocket that can be used for the bidirectional connection. For
converting to JSON the framework uses Jackson. As a Tomcat application server
is integrated, it is possible to create a single jar file that can be executed as a
simple Java Application. There is no need for an external application server.

e Database (SQLite) For the database SQlite ° is used. It is an embedded SQL
database engine that need no separate server process. The reads and writes are
executed directly to an ordinary file on the disk. It is possible to set up a database
with minimal effort.

5.2.2 The Cache

In this subsection the cache is explained by detail. It is composed of the IndexedDB
and the Application Cache. Within the cache, it is distinguished between the core files
of the app and the resources (product data). The core files are needed to run the app.
The resources instead are needed from the business logic to process and view the 3D
models. For both a separate storage is used. How the two storage’s are used within the

Shttp://projects.spring.io/spring-boot/
Shttps://www.sqlite.org/

51

http://projects.spring.io/spring-boot/
https://www.sqlite.org/

5 Prototype

prototype is shown in Figure 5.4. With the help of this Figure, both the storage’s are
explained by detail. It is described, which resources are cached and how they work.

Shared pool

IndexedDB Application Cache

MobilePdm B B

Key ('name’) Value
Location_L2 [Referenced resources]
Task_T1 [Referenced resources]

MobilePdmResources B B

Key ('resNo') Value
24 [geometry, meta data])))
60 [Structure data] jquery.js || stomp.js

index.html logic.js d3.js

Figure 5.4: Cache of the prototype

Application Cache

The Application Cache is used to store the core files of the app on the device. This
includes all the files that are part of the user interface, the business logic and the data
management. To enable the caching, a manifest file containing all these files is created.
This file is stored in the root folder of the app on the web server and linked within the
HTML-tag of the start page (index.html). An excerpt of this manifest file can be seen
in listing 5.1

Listing 5.1 Manifest file for caching the core data of the app
CACHE MANIFEST

vl

CACHE:

index.html

js/custom/custom.js

NETWORK:

*

52

5.2 Overall Architecture

The manifest file starts with CACHE MANIFEST. Lines with # are interpreted as
comments. This is used as a version number of the app. When there is a new version
of the app, the number is incremented and all the clients will request the new version
with all its files. Changes to the file lead to a renew of the cache at the client. Under
the header CACHE: all the files are listed that have to be cached. Therefore the paths
to the file on the server are used. The NETWORK: header is used to define resources
that have to be explicitly requested from the server. The wild card * means that all
files that are not listed under CACHE are affected.

When the client requests the start page (index.html) for the first time from the server,
all the referenced files will be loaded. On receiving the files are stored in the Application
Cache from the client. Now they can directly be accessed from the device. There is
no need to communicate with the server. On this way the core files of the app can be
used offline.

IndexedDB

The second component of the cache is composed by the IndexedDB. Here all the
resources are stored that are selected by the different selection strategies of the
caching mechanism. Besides the resources, the resource sets from the active situations
are stored. This is necessary to set the priorities of the resources within the cache
correctly. As both of them are identified by different keys, there is a need to split them
in two separate stores within the IndexedDB.

The first store is for saving the resources that represents the components of the product
and the product structure (MobilePdmStoreResources). Thereby, the key of the store is
the resource number (resNo). The value contains the data of the corresponding JSON
file (geometry data, meta data, structure).

In the second store (MobilePdm), the resource sets from the active context are cached.
Here the name (‘name’) is used as the key. To distinguish between the different kind
of context elements the name of the resource sets includes a prefix (task _, location_,
role). This is important for setting the priorities. Within the values of the resource
sets, the references to the resources in the cache are stored. They are referenced with
the resource number (resNo.

53

5 Prototype

5.2.3 Database

In the database all the data that is needed for the caching mechanism is stored in
a single file that represents the database (MobilePdm.db). The enhanced entity -
relationship (EER) model can be seen in figure 5.5. In the following Section, the usage
of the single tables of the database will be explained.

] Tasks v

_] TaskResources ¥ ResourceID INT
TaskID INT - ModelID INT
ResourcelD INT ! ModelID INT
Name VARCHAR(100) L,—H_ Name VARCHAR(50)

| Resources v | Models v

o ! TaskID INT [Name VARCHAR(100) >
Description VARCHAR(200)
> > FolderPath VARCHAR(100)
Version VARCHAR(30)
ResourceNumber INT _J LocationResources ¥
_] users v lCEeiReee ! ! R ID INT
esource
? ResourcelD INT IsStructure BOOL
UserID INT > ! LocationID INT
! UserID INT
Name VARCHAR(100) ‘ >

54

> Version VARCHAR(30) T
: i

_] UserRoles ¥ "] Roles v _] RoleResources ¥ "] Locations V¥

! UserID INT RoleID INT ! RoleID INT LocationID INT

! RoleID INT %‘_“' Name VARCHAR(50) F_K ! ResourceID INT Name VARCHAR(100)
> > > >

Figure 5.5: EER model of the database

e Resources

A resource that is represented by this table, can either be a component, or the
structure of a model. With the flag IsStructure it is distinguished between them.
The FolderPath determines the path, where the corresponding JSON file can
be found on the server. With Name and ResourceNumber the resource can be
identified. With the help of the field Version it can be determined, which version
of the resource is stored on the server. This is important for the invalidation
process of obsolete resources. By means of the foreign key ModellD it is possible
to assign a resource to a model. As the geometry data of a component resource
includes the exact coordinates of the position within a model, it is unlikely that
it is used in multiple models. Therefore this 1:n relation is chosen.

Models

With this table it is possible to group all the resources to a product model. It is
recommended that a model has always an assigned structure resource. Otherwise
it won’t be possible to navigate through the model within the app.

5.2 Overall Architecture

e Tasks/TaskResources, Locations/LocationResources, Roles/RoleResources
These tables are formed on the same way. They include information about the
context elements and the the resource sets. The context element tables (Tasks,
Locations, Roles) includes the name of the particular situation. Hence, Name
represents the value of the context elements. To distinguish on the client between
the different context elements, the values starts with a prefix ('task ’, "location ’,
'role ”). The linking tables (TaskResources, LocationResources, RoleResources)
includes the links between the situations (context element values) and the
corresponding resources. They represents the resource sets. Within a resource
set, it makes sense to link always the structure resource that corresponds to the

model of the resources. They are needed in conjunction.

e User
In this table all the registered users are stored with name. The identification of
the clients is realized over the user. If a client subscribe by the server, a user
authentication is required. On this way it is possible to trace back the session to
the client.

e UserRoles
A user can have different roles. This is realized over this linking table. On the
basis of the assigned roles, it is possible to identify the single corresponding
resource sets. When a user authenticate at the server with role x and there exists
a resources set (there are linked resources to x), it is sent to the client where the
user is logged in.

e UserResources

In this table all the resources are stored that a client has requested (mapping
to client is realized over the user). With the help of it, the server knows all the
resources, a client had cached (stateful). On initialization of a client cache at
the server, all client corresponding resources are deleted from here. Afterward,
all the resources in the cache from the initializing client are stored. Every time
new resources are requested from the client, the table will be updated. Thereby,
the version of the resources that is sent is stored. This table is used to create the
invalidation reports for the clients.

5.2.4 Priority List

Within the data management component of the client, there is an important list that
is needed for the realization of the replacement policy. This list includes different
objects that contain the information about the priorities of the single resources within

55

5 Prototype

the cache. Therefore it is called priority list. With the help of this list, the gain based
function with priorities (GBFP) is realized. It is much easier and faster to manage the
priorities in a list, instead of iterating directly through all resources in the cache. This
would take a lot of more time to determine the resource with the lowest priority. In
table ?? an example of the used priority list is presented. It is shown, how the objects
in the list are structured.

resourceNumber | size priority
0 2000 KB | 99999
3 500 KB | 200052
16 1250 KB | 10035
29 250 KB | 20001

Table 5.1: Priority list

Every object in the list has three attributes. The resourceNumber is for identifying the
resource. The second attribute includes the size of the object. This is necessary to
calculate the free space in the cache. The priority of a resource is stored in the third
attribute. It is calculated with the equation 4.2 that includes the priority level and the
access frequency. Within this list it is possible to add new entries and update existing.
E.g. updating is necessary when a resource is accessed and the access frequency
increments (priority changes). Also if the membership to a resource set changes, it
may be necessary to adapt the priority When there is a need to replace resources, the
list is sorted descending after the priority. Before the last entry of the list is deleted, its
resourceNumber is used to delete the resource in the cache. The first entry in the list
has a special function. It includes the total size of all the resources in the cache. It can
be identified by means of ’0’ as resourceNumber. As this entry should not be replaced,
it has the highest possible priority. To prevent that the list gets lost through shutting
down the app, the list is stored in the cache (MobilePdm store in the IndexedDB).

5.3 Implementation of the Caching Concept

In the following Section the implementation of the caching mechanism within the
prototype is described. A caching mechanism is only needed for the resources (product
data). For the core files of the app, there is no need. They are fix and only changes
when the app gets updated. The files are small enough, so it is possible to store all of
them in the Application Cache. So it is not necessary to define several strategies. For
this reason the caching mechanism only considers the resources (product data).

56

5.3 Implementation of the Caching Concept

Besides the software components and the storage’s (cache and database) provided by
the architecture, there is a need for logic and communication protocols to realize the
mechanism. To make it clear, at which position the logic and the protocols are used,
first the process of showing specific components of a product within the prototype is
illustrated in figure 5.6. Thereby, it can also be seen, on which way an offline mode
is possible. The focus of this illustration is on proceedings needed for the caching
mechanism. So not all processes needed for showing the components within the
prototype are included. For a clearer view, only the references to the protocols are
given. These are explained later in detail.

57

5 Prototype

1

requests models
available models — — — —

open app

initialize J

[user]

load all models

< — — -show all available models— — —

select model

Load model
(structure resource)

getResource J

[resourceNumber,
priorityLevel]

l
|
|
|
|
|

select components

Load components

(component resources)

loop J

[1,noOfComponents]

getResource J

[resourceNumber,
priorityLevel]

————— Show components — — — —

‘ E] not necessarily required server instance

Figure 5.6: Process for showing product components

The process starts with opening the app. The then following block is optional (opt).
This means that this part is not mandatory needed to work with the app. Through
the initialize protocol, the client authenticates at the server and create a WebSocket
connection. This is essential for the invalidation process. As it should be possible to
work offline with the app, this is an optional step. Also the loading of all models from

58

5.3 Implementation of the Caching Concept

the server is not necessary. If there are still models in the cache (structure resources),
these can be used. Only if the user want to access a model that is not cached, this step
has to be executed.

The first needed step after opening the app is the selection of a model. After this
selection, the client has to load the structure resource of the model. This is realized over
the getResource protocol that needs the resourceNumber and priorityLevel as parameter.
The resourceNumber is needed for identifying the resources and the priortiyLevel for
caching and replacing them. This protocol can also be executed offline. The server is
not mandatory needed. If the resources that are needed can be found in the cache, it
is possible to get them directly from here. There are two ways (techniques) of caching
resources supported by the implemented mechanism. Traditional and preemptive
caching through static context-aware caching. These are realized through two other
protocols that will later be explained in this Section.

When the structure of the product model is available for the client, the user can select
components that he want to see. Loading the component resources is also realized over
the getResource protocol. When the resources can’t be found in the cache, they are
requested from the server. After requesting the resources they may have to be cached.
Therefore, the replacement policy is triggered every time a resource is received from
the server.

5.3.1 Cache Granularity

The data model of the existing app consists of product data that includes the structure
of the product model (tree) and the components. Both are represented as JSON files.
Within the JSON file of a structure, all the sub components of the model and the
arrangement of them are stored. Therefore this file is needed as a whole. The JSON
files of the components contains the geometry data that consists of different attributes
needed for rendering (vertices, colors, faces, etc.). They are also needed in conjunction.
If there is missing one attribute, the component can’t be visualized correctly. For this
reason the resources that are cached, includes the data from the JSON files. One
resource represents one JSON file. Thereby it is distinguished between structure
resources and component resources. Both contain different kind of information. But
in the cache, both are treated identical.

59

5 Prototype

5.3.2 Cache Selection Strategy

Both traditional and preemptive selection strategies are implemented in the prototype.
For preemptive selection, static context-aware strategies are used (task, location and
role). All are processed on the same way. Besides this preemptive selection, all
requested resources will also be cached. When caching resources on this traditional
way, they get the lowest priority in the cache. That means that when the cache is full
with resources that are included in the resource sets from the context-aware strategies,
the traditional selected will not be cached. This is managed by the replacement
policy. To enable traditional and preemptive selection strategies, different protocols
are used.

Traditional selection strategy Traditional selection is always active. When a re-
source is requested that presumes that it is not already cached, it gets cached by the
client. Therefore, the protocol getResource is used. Traditional selection is triggered
from users, when they want to see a model or specific parts of it. In figure 5.7 this
protocol is presented. A sequence diagram that shows the interaction between the
client and the server is used.

60

5.3 Implementation of the Caching Concept

getResource)

[resourceNumber,
priorityLevel]
[

alt J
[resouce in cache]

[resource not in cache]

getresoure from cache &

set priority

request resourc

getresource information
from DB

getresource data
from file

- 1
update UserResources

table

replacement policy J

[resource]

-]

[space available]

[no space]

setpriority

l

I
|
|
|
|
I
cache resource & |
I
|
|
|
I
|

Figure 5.7: Protocol - getResource

The protocol needs two parameter as input. The resourceNumber is used to identify the
resources on the server. The client has the resourceNumber information from the model
and the corresponding structure resource. To set the correct priorityLevel of a resource
that will be cached the second parameter is used. In the case of traditional selection,
all the resources get the lowest priority level ("10’). As the getResource protocol is
also used in the context-aware selection, the priorityLevel has to be a parameter. For

determining the priortiy level,

used.

the table 4.1 from Section 4.3 of the caching concept is

61

5 Prototype

When the resource is requested, there are two alternatives (alt). The first is that the
resources can be found in the cache. In this case, only the priority is set (if necessary)
and the resource can be delivered. The priority is set on this way that either the access
frequency raised, or the priorityLevel changed. This depends on the selection strategy
that executes the protocol.

If the resource is not in the cache, it has to be requested from the server. Therefore,
the resourceNumber is sent to the server. The server uses the resourceNumber to get
all the resource information from the database (name, version, folderPath, etc.). Then
the folderPath is used to get the resource data from the JSON file (geometry and meta
data). An entry in the UserResource table is created that the client has cached this
resource. Before the client can cache the resource on receiving, the replacement policy
is executed. The resource with the priority as attribute, is sent as parameter. Only if
the replacement policy can guarantee space for the new resource (depends on size
limit and priority), the resource can be cached. When caching the resource the priority
is set. With this protocol, all the resources that are requested will be cached. This
represents the traditional selection strategy that enables traditional caching.

Context-aware selection strategy To enable a context-aware selection of resources,
a mechanism for the recognition of new situations is necessary. A new situation is
a changing value of the context elements that are considered. Within the prototype
these are task, location and role. As the prototype is not connected to any sensors of
the mobile device, the situations are simulated. When connecting to the server, the app
will get all available situations. They are listed in the app and can be activated. On
activation, the resource set is requested with the situation as parameter. The process
of requesting a resource set can be seen in figure 5.8. The interactions between the
client and the server is shown.

62

5.3 Implementation of the Caching Concept

getResourceSet)

[context value]

———request resourceSetgﬂ
alt J
< ————— resourceSet — — — — —

[resourceSet available]

loop J

|

I

|

|
[1, resourceSet.length] 1

getResource J

[resourceNumber,
priorityLevel]

[no resourceSet available]

Figure 5.8: Protocol - getResourceSet

To request a resource set from the server, a connection is necessary. To perform the
request, the client sends the context value of the simulated situation to the server.
The server searches in the corresponding tables for an entry. E.g. when the context
value has a prefix ’task ’, the server searches in the Tasks table of the database. If
the server can found an entry, it will create the resource set with its linked resources
(linked in table TasksResources), and send it back to the client. Every resource in the
set is represented by its resourceNumber that is used to identify it. If no resource set is
found, the client will get an empty response. On receiving a resource set, the client
will process it. For each linked resource in it, the protocol getResource is executed. On
this way, the resource will only be requested from the server, if it is not already cached.
The priortiyLevel parameter depends on the kind of context element the resource set
corresponds to. E.g if the resource set corresponds to location, the resource gets the
priorityLevel from location. When a resource is still cached, but gets a member of a
resource set that is from a context element with higher priorityLevel, the priortiyLevel

63

5 Prototype

is set to the higher one. On the same way it can happen that the value of a context
element gets empty (undefined situation). In this case the priorityLevel has to be
adapted too. On that way context-aware selection is also realized by a combination
of requesting a resource set and the getResource protocol. The main difference to
traditional selection is that getResource is not triggered by a user interaction. It is
triggered from the situation that occurs before the user explicitly request a model
or the specific parts of it. The resources are hoarded for later usage. On this way
preemptive caching is realized.

5.3.3 Cache Replacement Policy

The gain based function with priority as parameter (GBFP) is used for the replacement
policy. In the prototype it is realized with the help of the priority list. With the list it
is possible to determine, which resource in the cache will be replaced (or not). The
policy is always executed, before inserting a resource in the cache. It is checked, if the
resource can be cached, or not due to insufficient cache space and a low priority. How
the policy is realized, can be seen in figure 5.9. As the policy is only executed on the
client and has no interaction with the server, a flowchart is used.

64

5.3 Implementation of the Caching Concept

Replacement
policy

determine sizes &
no—p» priorities of cached ———| create priorityList
resources

priorityList
exists?

yes

enough space? yes space available

sort priorityList

Delete last from
yes—| priorityList and from
cache

priorityLevel res =
lowest priotiyLevel?

priorityLevel res >=
prioriyLevel last

A

no
no

priorityLevel res >

prioriyLevel last no space available

yes

res: resource that should be cached
last: last object in priorityList

Figure 5.9: Replacement policy

65

5 Prototype

When the policy is executed, it is checked if a priority list already exists. If not, a new
one is created. Therefore, the identifier of all the resources in the cache are used to
create objects that are added to list. During creating an object, the size and priority
of the resource is determined. These are added to the object. For the determination
of the priorities, the active situations are considered. If there is a resource set from
an active situation on the client, all its corresponding resources get the priority level
from the situation. If not the priority level is set to the one from traditional selection.
When the priority list exists, it is checked if there is enough space in the cache, to store
the resource. To calculate the free space, the first entry in the priority list is used. It
includes the total size of the all the resources in the cache. If there is enough, the policy
finishes with returning space available. If not, the priority list is sorted descending after
the priority. Here also the access frequency is considered. A high access frequency can
lead to a higher priority. On this way the resource with the lowest priority is located
on the bottom of the list.

Now it depends on the priority level what is executed next. It can be extracted out of
the priority. The first two numbers of the priority represent the priority level. (e.g.,
priority 20124’ has priority level ’20). If the level from the resource that should be
cached equals to the lowest (10°), it is checked if its level is equal or greater than the
level from the last object. There is no lower priority level. So when checking only for
greater than (like it is done for all other priority levels), once the cache is full, no other
resource with the lowest level can be inserted any more. If the last object in the list
is suitable (has lower or same priority level) the resource identifier from the priority
list is used to delete the resource from the cache. After that the object form the list is
deleted too, and it is checked again, if there is enough space. If the last object is not
suitable (has a higher priority level) the policy will return no space available. With
this implementation of the replacement policy it is possible to manage the cache and
protect specific resources for replacement. This depends on strategy that is used to
select the resources that should be cached.

5.3.4 Cache Coherence Strategy

The Stateful Invalidation Protocol (SIP) is used for the coherence strategy. It is
implemented over a WebSocket connection that is used to send the invalidation reports
that includes the obsolete resources. This kind of connection is bidirectional that
means the client and the server can send messages. When the server recognize that
a client has obsolete resources in its cache, it sends the invalidation report to the
client. To make this possible the server store all the resources that are requested by the
client in the UserResource table. The server also knows the clients that are connected

66

5.3 Implementation of the Caching Concept

over the WebSocket. On this way the invalidation reports are sent selective. Before
this can be processed, the client has to initialize at the server. Figure 5.10 shows this
initialization. The interaction between the client and the server is shown in a sequence
diagram.

initialize]
[user] .

authenticate

1
get lastCachelnit
from Users table

initialize cache
(send ressourceNumber and version
of all cached resources)

.

[lastCachelnit > 24h]

update lastCachelnit
in Users table

delete all entries
in UserRessources

insert cache entries
in UserRessources

[lastInit <= 24h]

invalidation J

Figure 5.10: Initialization at the server

To create a WebSocket connection the client has to authenticate with the user credentials
at the server. After establishing the connection, the server searches for the lastCachelnit
of the user in the Users table of the database. This is the time when the cache of the

67

5 Prototype

client was last initialized at the server. In the prototype the time window 'w’ after that
a client have to initialize again is set to 24 hours. So when the lastCachelnit is more
than 24 hours ago, the client has to initialize its cache. Therefore, the client has to
send all resource numbers and its corresponding versions from the cache, to the server.
When the server receives that, the lastCachelnit is updated to the current date and time
and all entries in the UserResource table that corresponds to the user are deleted. After
that, the sent resource numbers and versions are inserted in the table.

When the initialization is done, the invalidation is started. This process is excluded to
an extra diagram. It is presented in figure 5.11.

invalidation I
Client Server
1
M Check for obsolete resources

] . in UserResources table
[clientOnline]

alt

@ invalidationReport

[obsolete resources]

loop J
Update resource

[invalidationReport.length] in cache

Acknowledge updated resourceﬁ

Update UserResources
table

[no obsolete resources]

Figure 5.11: Protocol - invalidation

The invalidation protocol for a client is executed as long as the client is online. With the
help of the version within the UserResource table obsolete resources can be identified.
If a server can find some, an invalidation report that includes the resource number is
sent to the client. On receiving, the clients iterate through all resources in the report. If
the resource can be found in the cache, it gets deleted and the protocol getResource
is used to get the new version. Thereby, the UserResource table is also updated. The

68

5.3 Implementation of the Caching Concept

server gets informed that the client has the new version. If none resource is found
(means that the resource was replaced), the client acknowledge the receiving with the
information that the resource is not cached.

69

6 Evaluation

In this chapter, the results of this thesis are evaluated. The created caching concept
is completely realized in the implemented prototype. Therefore, it is used for the
evaluation of the concept. The only exception represents the dynamic context-aware
selection strategy. This part is not implemented, as it is not necessary for the evaluation
of the concept. It is enough to use static context-aware caching for the evaluation of
preemptive caching (hoarding).

To give meaningful results, the evaluation was proceeded in a use case scenario of the
app. The app is used to view different 3D models of the products within a web browser.
Thereby, different actions were executed in the same order within the old app (the new
architecture is not included) and the new app (includes the new architecture). Within
the new app the steps were once executed with traditional selection only and once with
location based selection. When using location based selection, the traditional selection
runs also at the same time. Location based selection was chosen as the representative
of the context-aware selection strategies. All the strategies perform on the same way.
The difference is only the situation that comes from different contexts.

In the use case scenario an existing model was used, to perform the measurements. In
figure 6.1 this model is presented by means of its logical data model. This contains the
different branches of the product. Thereby it is marked, which resources are included
in the resource set of the station where the app was used.

71

6 Evaluation

Station A

1
@ branch Q root

Figure 6.1: Use case for the evaluation

The product model consisted of 6 main branches. Each of the branches had a different
amount of nodes. Also the size differed. Station A was the location. At this station,
the components of branch 6 were needed. This branch is divided into the branches
6.1, 6.2 and 6.3. Therefore all the resources of these branches were included in the
resource set of station A. For the measurements the branches 1, 2, 6.1, 6.2 and 6.3
were considered. Thereby, branch 1 and 2 were not part of the resource set of station
A. This means, when using location based selection, three of five branches are cached
preemptive.

The different actions that were executed within the app were viewing a branch and
closing the app. A total amount of 10 actions were executed successively in each mode
of the app (old app, new app with traditional, new app with location based). The
actions from the different steps were chosen with an random function. The first step
represented an exception. This step was always necessary as it loaded the structure
resource from the back-end. In each of the app mode the same order was used. This
was repeated for three times to get a different order of the actions. This leaded to a
different behavior of the different modes. During the execution of the different actions,
the time for loading the resources from the back-end was measured. Also the size of
the transferred resources were recorded. At the end of the measurements the total
waiting time and the total size of the transferred resources were was computed. An
assumption that was made is that there was enough space in the cache on the device.

72

Also the situations are recognized early enough, so that the resources are still hoarded
when they are needed. Furthermore, the connection was stable and no connection
abort occurred.

To conduct the measurements, a machine running the Windows 8 operating system
with 8 GB of RAM and an Intel(R) Core(TM) i5-4300U CPU @ 1,90GHz 2,49GHz
processor was used. The app and the back-end were executed in two different processes.
The app was deployed on an Apache web server and executed within a Google Chrome
web browser. In this web browser all the HTML5 Offline Storage’s (included Application
Cache and IndexedDB) were supported. The back-end was deployed and executed
within a Tomcat application server. To simulate the same speed for all app modes
and measurements, the the DevTools! of Google Chrome were used. The speed was
throttled to 30MB/s (equates a WiFi connection within Chrome). This tool was also
used to measure the amount of transferred Megabyte over the network (size in MB)
and the loading times of the resources (time in seconds). The measurement of scenario
1 is presented in Table 6.1:

Thttps://developer.chrome.com/devtools/docs/network

73

https://developer.chrome.com/devtools/docs/network

6 Evaluation

. New app New app
Speed: 30MB/s Old app (location based) | (traditional)
. Time in s / Timeins/ Timeins/
Step Action o o .
(Size in MB) (Size in MB) (Size in MB)
Before first action
0) (not considered in total 0 (0) 5,7 (4,62) 0 (0)
waiting time)
1) Get structure 0 (0) 0,1 (0,03) 0,1 (0,03)
2) View branch 6.1 8,2 (17,7) 0,15 (0) 2,4 (1,9)
3) View branch 6.2 0 (0) 0,2 (0) 2,8 (2,3)
4) Close app - - -
5) View branch 6.3 8,2 (17,7) 0,05 (0) 0,5 (0,42)
6) View branch 6.1 0 (0) 0,15 (0) 0,15 (0)
7) View branch 6.3 0 (0) 0,05 (0) 0,05 (0)
8) View branch 1 0 (0) 0,2 (0) 0,2 (0)
9) View branch 6.2 0 (0) 0,15 (0) 0,15 (0)
10) | View branch 6.1 0 (0) 0,15 (0) 0,15 (0)
Total waiting time in s /
(Total size in MB) 16,4 (35,4) 3,65 (9,75) | 8,95 (9,75)

Table 6.1: Measurement of scenario 3

Step 0 is the time, before the first action was performed. During this time, the new app
with location based selection got active. The resources from branches 6.1, 6.2 and 6.3
that were included in the resource set from station A were requested and cached. The
time that is needed for this step was not considered in the total waiting time. This did
not affect the effective waiting time when performing the different actions. The first
action that was performed was get structure. In the old app this was not executed. The
complete product model (structure and components) was requested from the back-end
when performing the first action. There is no option to request only specific parts of
the model. In the location based and traditional app mode, this step was necessary.

The action from step 2 is executed in each app mode. In the old app, the complete
model is requested. Within the location based app mode the resources were still cached.
Therefore, they were loaded from the cache. As in the traditional app mode these
resources are loaded for the first time, they have to be requested from the back-end.
In step 3 the old app mode had the complete model from step 2. There was no need to
load branch 6.2. The location based app mode got the resource from the cache and

74

the traditional app mode had to request the resources for the first time from the server
again. At step 4 the app was closed in all modes. When it woke up at step 5, in the
old app the whole model had to be requested again from the back-end. All resources
got lost. In the new app, both modes were not influenced through the closing. The
already cached resources were still in the cache. This went further until the scenario
ended with step 10.

The results of this measurement showed that the location based selection performs
best in this scenario. It was possible to achieve the best cache hit ratio that results
in a short waiting time and a reduced amount of transferred MB over the network.
As no resources were hoarded in in the traditional app mode, the hit ratio was lower.
However, this performed better than the old app.

To confirm the results, two further scenarios were created. The actions of the steps
were also randomly chosen. In Table 6.2 the results of scenario 2 are presented. Table

6.3 shows the results of scenario 3.

. New app New app
Speed: 30MB/s Old app (location based) | (traditional)
. Time ins / Time ins / Time ins /
Step Action
(Size in MB) (Size in MB) (Size in MB)
Before first view (not
0) considered in total 0 (0) 5,7 (4,62) 0 (0)
waiting time)
1) Get structure 0 (0) 0,1 (0,03) 0,1 (0,03)
2) View branch 2 8,2 (17,7) 1,95 (3) 1,95 (3)
3) Close app - - -
4) View branch 1 8,2 (17,7) 2,6 (5,1) 2,6 (5,1)
5) View branch 6.1 0 (0) 0,15 (0) 1,9 (2,4)
6) View branch 1 0 (0) 0,35 (0) 0,35 (0)
7) Close app - - -
8) View branch 1 8,2 (17,7) 0,35 (0) 0,35 (0)
9) View branch 6.3 0 (0) 0,05 (0) 0,5 (0,42)
10) | View branch 6.3 0 (0) 0,05 (0) 0,05 (0)
Total waiting time ins /|, o 54 5,55 (12,72) | 8,3 (10,45)
(Total size in MB)

Table 6.2: Measurement of scenario 2

75

6 Evaluation

In this scenario the app was closed two times. This leaded to a bad result for the
old app. The model had to be requested again for three times. The app that used
location based selection requested more resources than needed. In the result set the
resources from branch 6.2 are included, but not viewed. In this case the app using
traditional selection requested less resources. However, with regard to time, location
based selection performed better.

) New app New app
Speed: 30MB/s Old app (location based) | (traditional)
. Timeins / Time ins / Time ins /
Step Action
(Size in MB) (Size in MB) (Size in MB)

Before first view (not
0) considered in total 0 (0) 5,7 (4,62) 0 (0)

waiting time)
1) Get structure 0 (0) 0,1 (0,03) 0,1 (0,03)
2) View branch 2 8,2 (17,7) 1,95 (3) 1,95 (3)
3) View branch 3.3 0 (0) 0,05(0) 0,5(0,42)
4) View branch 2 0 (0) 0,25 (0) 0,25 (0)
5) View branch 1 0 (0) 2,6 (5,1) 2,6 (5,1)
6) View branch 3.2 0 (0) 0,2 (0) 2,8 (2,3)
7) View branch 3.3 0 (0) 0,05 (0) 0,05 (0)
8) View branch 3.3 0 (0) 0,05 (0) 0,05 (0)
9) View branch 2 0 (0) 0,25 (0) 0,25 (0)
10) | View branch 3.1 0 (0) 0,15 (0) 2,4 (1,9)
Total waiting time in s /

(Total size in MB) 8,2 (17,7) 5,65 (12,75) | 10,95 (12,75)

Table 6.3: Measurement of scenario 3

In this scenario, the app was never closed. However, the app using location based
selection performed better anyway. The traditional selection instead, needed more
time for loading all the resources. This means, when working with the same model
over a longer time without closing the app the old app performs better. But this seems
to be an unrealistic scenario.

These results of the measurement are used to evaluate the single key features of the
caching concept:

76

e Reduced waiting time by use of caching.
In all scenarios location based caching performed best with regard to the waiting
times. Through the combination of preemptive caching through location based
selection (context-aware selection) and traditional caching more cache hits
are achieved. This results in a reduced waiting time. Also traditional caching
achieved in two of three cases a reduced waiting time compared with the old
app that do not cache anything.

e Fewer network transmissions by use of caching.
The size of the transferred resources were reduced in all scenarios by caching.
Once cached, the resources can be accessed from the cache. The app spent less
time in requesting and receiving resources. That saves a lot of energy.

e Robustness against intermittent connectivity by use of preemptive caching.
To simulate an abort of the connection the DevTools from Google Chrome were
used. In scenario 6.1 the connection aborted at step 2. After the disconnect the
loading of the model failed in the old app. With the usage of location based
selection it was still possible to view the branch. As all the resources were cached
before viewing the branches at the station, the aborting connection did not affect
the loading of the branch.

e Usage of hoarding to enable an offline mode. Loading the old app without a
connection was not possible. A connection was needed to start the app. Through
the Application Cache of the new architecture, it was possible to start the app
without a connection. All the core files of the app were stored on the device.
Also the components of branches 6.1, 6.2 and 6.3 could be viewed, as they were
stored in the cache before the devices went offline. On this way hoarding enables
an offline mode.

77

7 Conclusion and future prospects

In this master thesis a concept for a caching mechanism within a mobile app in the
engineering domain is presented. The concept is designed for a concrete app that
allows to view 3D models of products in a web app. However, the concept can also
be used for other apps. With this concept, it is possible to compensate the technology
oriented problems from apps in the engineering domain. It leads to a reduced waiting
time, the amount of transmission are reduced and the problems with intermittent
connectivity are compensated. Also an offline mode is provided by the concept.

In the thesis, different strategies are considered that can be used for a caching mech-
anism. These strategies are grouped into four characterizations. Cache Granularity,
Cache Selection Strategy, Cache Replacement Policy and Cache Coherence Strategy.
Within the concept, for each characteristic, one strategy comes to use. The cached
resources are Objects (Cache Granularity). With a gain based function that uses
priorities (GFBP) the replaced resources are determined (Cache Replacement Policy).
A stateful invalidation protocol (SIP) is used to invalidate obsolete resources in the
cache of the clients (Cache Coherence Strategy). The Selection Strategy constitutes
an exception. Thereby, multiple strategies are used. To select the resources that have
to be cached, traditional and preemptive selection strategies are used. Within the
preemptive approach, context-aware selection strategies come to use. On the basis
of context, the resources that are needed in the current situations are determined
and cached. In contrast to traditional selection, the resources are provided to the app
without an explicit request. Hence, when the resources are needed, a fast loading
directly from the device is possible. Through this hoarding of resources, it is possible
to use the app offline.

With a concrete implementation of the concept, it was possible to evaluate the results.
For that purpose, an existing app was used and adapted. The single steps of the
implementation are described by detail in this thesis. It is described, how the architec-
ture is changed and which protocols and functions are needed to realize the concept.
Through the evaluation it was possible to confirm all the provided key features by the
concept.

79

7 Conclusion and future prospects

In the large, the caching concept can be used in overall solutions for mobile apps in the
engineering domain that use context-awareness to enable smart access to product data.
Hoos et al. create an architecture for mobile context-aware product data management
(MoCa-PDM) that make such a smart access possible [HSM16]. Thereby caching and
hoarding plays an important role. Together with context-aware data provisioning
that is supported by the concept, they build the data management components of the
architecture [HSM16].

As future work, the realization of the recognition of the situations within the concept
should take place. The thesis engages only with the providing of the resources by
means of the situations. How the values of the context elements come about is not
considered. Real sensors of mobile devices like GPS or the camera should be used to
get the different values.

80

Bibliography

[ADB+99]

[AKL]

[Aro08]

[BBFS11]

[BI94]

[ComO5]

[DBM+07]

[FCAB98]

[FZJF06]

G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, and P. Steggles.
“Towards a better understanding of context and context-awareness.” In:
Handheld and ubiquitous computing. Springer, 1999, pp. 304-307 (cit. on
pp. 10, 18, 24).

D. S. Azevedo, G. Karaman, and D. Lehmann. “Concept of Mobile Product
Data Interaction.” In: () (cit. on pp. 45, 48).

J. Arokiamary. Mobile Computing. Technical Publications Pune, 2008
(cit. on pp. 19, 20).

M. Berekovic, U. Brinkschulte, W. Fornaciari, and C. Silvano. Architecture
of Computing Systems - ARCS 2011. Springer, 2011 (cit. on pp. 9, 14).

D. Barbara and T. Imielinski. “Sleepers and workaholics: caching strate-
gies in mobile environments.” In: ACM Sigmod Record. Vol. 23. 2. ACM.
1994, pp. 1-12 (cit. on p. 20).

P. Components. UGS, Open product lifecycle data sharing using XML, Write
paper: PLM XML. 2005 (cit. on p. 47).

L. Ding, A. Ball, J. Matthews, C. A. McMahon, and M. Patel. “Product
representation in lightweight formats for product lifecycle management
(PLM).” In: 4th International Conference on Digital Enterprise Technology
(2007) (cit. on p. 47).

L. Fan, P. Cao, J. Almeida, and A. Z. Broder. “Summary cache: A scalable
wide-area web cache sharing protocol.” In: ACM SIGCOMM Computer
Communication Review. Vol. 28. 4. ACM. 1998, pp. 254-265 (cit. on
p- 14).

W. Feng, L. Zhang, B. Jin, and Z. Fan. “Context-aware caching for wireless
internet applications.” In: e-Business Engineering, 2006. ICEBE’06. IEEE
International Conference on. IEEE. 2006, pp. 450-455 (cit. on pp. 14, 18,
25).

81

Bibliography

[GAAU15]

[Gol03]

[HGM15]

[HSM16]

[HWMO09]

[JEHA97]

[JJ99]

[KHO8]

[KRO1]

[LS97]

[MSG+15]

[PBHS11]

82

Y. Go, N. Agrawal, A. Aranya, and C. Ungureanu. “Reliable, consistent,
and efficient data sync for mobile apps.” In: Proceedings of the USENIX
Conference on File and Storage Technologies (FAST) (2015) (cit. on p. 27).

C. Gollmick. “Replication in mobile database environments: a client-
oriented approach.” In: null. IEEE. 2003, p. 980 (cit. on p. 28).

E. Hoos, C. Groger, and B. Mitschang. “Mobile apps in engineering: a
process-driven analysis of business potentials and technical challenges.”
In: Procedia CIRP 33 (2015), pp. 17-22 (cit. on p. 9).

E. Hoos, C. Stach, and B. Mitschang. “Mobile Context-Aware Product
Data Management (MoCa-PDM): Towards Smart Processing of Big Engi-
neering Data on Mobile Devices.” In: (2016) (cit. on pp. 9, 10, 21, 22,
24, 25, 32, 33, 80).

H. Hopfner, S. Wendland, and E. Mansour. “Data caching on mobile
devices.” In: ICSOFT 2009-4th International Conference on Software and
Data Technologies. 2009 (cit. on pp. 15, 28).

J. Jing, A. Elmagarmid, A. S. Helal, and R. Alonso. “Bit-sequences: an
adaptive cache invalidation method in mobile client/server environ-
ments.” In: Mobile Networks and applications 2.2 (1997), pp. 115-127
(cit. on p. 20).

J. Jing and A. Joshi. Mobile Data Management and Applications. Springer
Science & Business Media, 1999 (cit. on pp. 18, 19).

A. van Kesteren and I. Hickson. Offline Web Applications. Tech. rep. W3C,
2008. URL: http://www.w3.0rg/TR/offline-webapps/ (cit. on p. 51).

U. Kubach and K. Rothermel. “Exploiting location information for
infostation-based hoarding.” In: Proceedings of the 7th annual inter-
national conference on Mobile computing and networking. ACM. 2001,
pp. 15-27 (cit. on p. 15).

H. V. Leong and A. Si. “On adaptive caching in mobile databases.” In:
Proceedings of the 1997 ACM symposium on Applied computing. ACM.
1997, pp. 302-309 (cit. on pp. 18, 19).

N. Mehta, J. Sicking, E. Graff, A. Popescu, J. Orlow, and J. Bell. Indexed
Database API. Tech. rep. W3C, 2015. URL: https://www.w3.0rg/TR/
IndexedDB/ (cit. on p. 51).

M. Peters, C. Brink, M. Hirsch, and S. Sachweh. “A client centric repli-
cation model for mobile environments based on RESTful resources.” In:
Proceedings of the Workshop on Posters and Demos Track. ACM. 2011,
p. 22 (cit. on p. 27).

http://www.w3.org/TR/offline-webapps/
https://www.w3.org/TR/IndexedDB/
https://www.w3.org/TR/IndexedDB/

[PS12] E. Pitoura and G. Samaras. Data management for mobile computing.
Vol. 10. Springer Science & Business Media, 2012 (cit. on p. 9).

[Rot15] K. Rothermel. “Mobile Computing.” In: University of Stuttgart (2015)

(cit. on p. 9).

[RPO7] R. Rathore and R. Prinja. “An Overview of Mobile Database Caching.” In:
CiteSeerX, doi 10.1.100 (2007), p. 9481 (cit. on pp. 15-17, 20).

[S108] A. Saaksvuori and A. Immonen. Product lifecycle management. Springer

Science & Business Media, 2008 (cit. on pp. 11, 22).

[SMC+14] D. Sethia, S. Mehta, A. Chowdhary, K. Bhatt, and S. Bhatnagar. “MRDMS-
mobile replicated database management synchronization.” In: Signal
Processing and Integrated Networks (SPIN), 2014 International Conference
on. IEEE. 2014, pp. 624-631 (cit. on p. 27).

[SSAS11] S. Sulaiman, S. M. Shamsuddin, A. Abraham, and S. Sulaiman. “Intelli-
gent web caching using machine learning methods.” In: Neural Network
World 21.5 (2011), p. 429 (cit. on p. 18).

[Tan07] D. Taniar. Encyclopedia of mobile computing and commerce. IGI Global,
2007 (cit. on p. 16).

[WPG14] C. Wenzelmann, C. Plass, and J. Gausemeier. Zukunftsorientierte un-
ternehmensgestaltung: Strategien, geschdftsprozesse und it-systeme fiir die
produktion von morgen. Carl Hanser Verlag GmbH Co KG, 2014 (cit. on
pp. 12, 13).

[XHLLO4] J. Xu, Q. Hu, W.-C. Lee, and D. L. Lee. “Performance evaluation of
an optimal cache replacement policy for wireless data dissemination.”
In: Knowledge and Data Engineering, IEEE Transactions on 16.1 (2004),
pp. 125-139 (cit. on pp. 18, 19).

All links were last followed on April 01, 2016.

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources
and references than the listed ones. I have marked all
direct or indirect statements from other sources con-
tained therein as quotations. Neither this work nor
significant parts of it were part of another examination
procedure. I have not published this work in whole or
in part before. The electronic copy is consistent with all
submitted copies.

place, date, signature

	1 Introduction
	2 Basic Concepts
	2.1 Product Data Management
	2.2 Caching
	2.3 Mobile Apps in the Engineering Domain

	3 Related Work
	4 Caching Concept
	4.1 Cache Granularity
	4.2 Cache Selection Strategy
	4.3 Cache Replacement Policy
	4.4 Cache Coherence Strategy
	4.5 Conclusion

	5 Prototype
	5.1 The Existing App
	5.2 Overall Architecture
	5.3 Implementation of the Caching Concept

	6 Evaluation
	7 Conclusion and future prospects
	Bibliography

