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Abstract

Sentiment analysis deals with methods to automatically analyze opinions in natural
language texts, e.g., product reviews. Such reviews contain a large number of fine-
grained opinions, but to automatically extract detailed information it is necessary to
handle a wide variety of verbalizations of opinions. The goal of this thesis is to develop
robust structurally informed models for sentiment analysis which address challenges that
arise from structurally complex verbalizations of opinions. In this thesis, we look at two
examples for such verbalizations that benefit from including structural information into
the analysis: negation and comparisons.

Negation directly influences the polarity of sentiment expressions, e.g., while “good”
is positive, “not good” expresses a negative opinion. We propose a machine learning
approach that uses information from dependency parse trees to determine whether a
sentiment word is in the scope of a negation expression.

Comparisons like “X is better than Y” are the main topic of this thesis. We present a
machine learning system for the task of detecting the individual components of compar-
isons: the anchor or predicate of the comparison, the entities that are compared, which
aspect they are compared in, and which entity is preferred. Again, we use structural
context from a dependency parse tree to improve the performance of our system. We
discuss two ways of addressing the issue of limited availability of training data for our
system. First, we create a manually annotated corpus of comparisons in product re-
views, the largest such resource available to date. Second, we use the semi-supervised
method of structural alignment to expand a small seed set of labeled sentences with
similar sentences from a large set of unlabeled sentences.

Finally, we work on the task of producing a ranked list of products that complements
the isolated prediction of ratings and supports the user in a process of decision making.
We demonstrate how we can use the information from comparisons to rank products and

evaluate the result against two conceptually different external gold standard rankings.
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Deutsche Zusammenfassung

Sentimentanalyse befasst sich mit Methoden zur automatischen Analyse von Meinungen
in Texten wie z.B. Produktbewertungen. Solche bewertenden Texte enthalten detaillierte
Meinungsduferungen. Um diese automatisch analysieren zu kénnen miissen wir mit
strukturell komplexen Auferungen umgehen kénnen. In dieser Arbeit prisentieren wir
einen Ansatz fiir die robuste Analyse von komplexen Meinungsdufserungen mit Hilfe
von Informationen aus der Satzstruktur. Wir betrachten zwei Beispiele fiir komplexe
Meinungséuferungen: Negationen und Vergleiche.

Eine Negation hat direkten Einfluss auf die Polaritét einer Meinungséufierung in einem
Satz. Wahrend “gut” eine positive Meinung ausdriickt, ist “nicht gut” negativ. Wir
préisentieren ein System, das auf maschinellem Lernen beruht und Informationen aus
dem Satzstrukturbaum verwendet um fiir ein gegebenes Schliisselwort festzustellen, ob
im Kontext eine Negation vorkommt die die Polaritit beeinflusst.

Als zweites Beispiel fiir komplexe Meinungséufierungen betrachten wir Vergleiche von
Produkten, z.B. “X ist besser als Y”. Wir présentieren ein lernendes System, das die
einzelnen Komponenten von Vergleichen identifiziert: Das Pradikat bzw. das Wort, das
den Vergleich einfiihrt, die beiden Entitaten, die verglichen werden, der Aspekt in dem
sie verglichen werden, und welche Entitét als besser bewertet wird. Auch hier verwenden
wir Satzstrukturinformationen um die Erkennung zu verbessern. Ein Problem fiir die
Anwendung von maschinellen Lernverfahren ist die eingeschrankte Verfiigbarkeit von
Trainingsdaten. Wir gehen dieses Problem auf zwei Arten an. Zum einen durch die
Annotation eines eigenen Datensatzes von Vergleichen in Kamerabewertungen. Zum
anderen indem wir eine halbiiberwachte Methode einsetzen um eine kleine Menge von
manuell annotierten Sétzen durch &hnliche Sétze aus einer grofsen Menge unannotierter
Satze zu ergidnzen.

Abschliefsend bearbeiten wir die Aufgabe, den Auswahlprozess eines Kunden zu un-
terstiitzen indem wir eine Rangfolge von Produkten erstellen. Wir demonstrieren, wie
wir Vergleiche zu diesem Zweck nutzen kénnen und evaluieren unser System gegen zwei

konzeptionell unterschiedliche Rangfolgen aus externen Quellen.






1. Introduction

1.1. Motivation

The opinions of others has always been an important factor in decision making for us
humans. We watch a movie because of the recommendation of a family member, go to the
restaurant our co-worker enjoys, and discuss our life choices with friends. Our objective
in each case is to make the choice that is most appropriate for our individual needs,
and to this end we hope to take advantage of other people’s experience. The emergence
of social media has added a new dimension to the exchange of opinions, as countless
people express their opinions on review sites, blogs, forums, tweets, social networks
and other Web 2.0 pages. While there is obvious benefit in getting opinions on just
about everything via the web, at the same time the large number of available opinions
for popular products, which often have thousands of reviews, makes it impractical for a
human to read them all. Not surprisingly, this development has in recent years generated
considerable interest for sentiment analysis (or opinion mining), the area in Natural
Language Processing that deals with the automatic analysis of opinions in text.

The most straight-forward task in sentiment analysis is document-level polarity clas-
sification (positive, negative), e.g., of product reviews. This task is clear-cut and it is
possible to construct new domain-specific data sets for supervised training from review
collections, in which the review text almost always goes along with some structured
rating, without the need of additional manual annotation. While there is commercial
interest in this task and knowing the overall sentiment polarity for a product may some-
times have uses for supporting the choice process of a user, in most actual situations,
the relevant sentiment information is to be found on a more fine-grained level.

A large amount of such fine-grained information is contained in the unstructured
textual part of a review which usually gives separate judgments on different aspects
of an entity, e.g., a camera’s weight may be evaluated as negative, while at the same
time its picture quality is evaluated as positive. Because not all aspects will be equally
important to every user, aspect-based sentiment analysis captures polarity specific to

these individual aspects, which may then be aggregated individually. This enables the
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users to consider only those aspects that are important for their individual requirements,
which greatly enhances the usefulness of sentiment analysis for a decision process.

To reliably gather this type of detailed information, it is necessary to handle a wide
variety of complex verbalizations of opinions. The goal of this thesis is to develop robust
structurally informed models for sentiment analysis which address challenges that arise
from structurally complex verbalizations of opinions. Our underlying hypothesis is that
there is no one-size-fits-all approach, but that it is necessary to look at the properties of
each of these verbalizations individually and integrate the relevant structural information
into the analysis. We select two examples of complex verbalizations to work on in this
thesis: negation and comparisons.

Our first example of a complex verbalization is negation, or more generally, polarity
reversers. Polarity reversers may be the most intuitively plausible challenge for polarity
classification. Many approaches to sentiment analysis are based on sentiment words or
phrases which have a prior polarity and serve as indicators for the overall sentiment
polarity of a text snippet, e.g., “good” expresses positive prior polarity, “disappointment”
negative polarity. While there are cases where individual words or phrases are sufficient
to determine sentiment polarity, sentiment is highly compositional and context may
influence and even reverse the polarity of individual sentiment words, e.g., “not good”
changes the contextual polarity to negative and conversely “lack of disappointment” is
positive. As already hinted at by these two examples, polarity reversing expressions are
diverse and using a fixed list of polarity reversers is not sufficient to cover all of them.
Additionally, polarity reversers do not function as reversers in every context and they
have a specific scope, e.g., “not only is it good” is still positive because “good” is not
in the scope of the negation. Polarity reversers occur frequently in opinionated text
(influencing about 10% of sentiment words in our data), so any fine-grained sentiment
analysis system will only produce reliable results if some way of treating polarity reversal
is integrated. In this thesis, we propose a structurally informed model to detect whether
a given sentiment word in context is in the scope of a polarity reverser.

As the second example of complex verbalizations of opinions, which is the topic of
the majority of this thesis, we focus on comparisons like “X is better than Y”. For our
purposes we define a comparison to be any statement about the similarity or difference
of two entities. Besides the linguistic category of comparative sentences, this includes
a wide variety of expressions found in user generated texts, such as “X blows away all
others”, “X and Y have the same sensor”, or “X wins over Y”. There tends to be a
substantial proportion of reviews that include explicit textual comparisons. In our data,

about 5%-10% of sentences compare competing products as a whole or in certain aspects.
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Also, comparisons are presumably the most useful kind of expression when it comes to
supporting a process of choice, as they provide explicit comparative judgments. Still,
in standard practice, comparisons are not included among the results of aspect-oriented
sentiment analysis systems that generally assign one polarity to one target entity for one
sentiment expression. Comparisons do not fit into this scheme and need to be treated
differently, as they involve more than one target entity and may assign more than one
polarity, e.g., the statement “X has a better lens than Y” expresses positive sentiment
towards X and less positive or maybe even negative sentiment towards Y. In this thesis
we propose a system that uses structural information to detect the entities involved in
the comparison and their relations.

To summarize, in this thesis we address polarity reversers and comparisons as two
frequent and important examples for complex verbalizations of opinions. Our aim is to
develop methods that use structurally informed models, but at the same time are robust
enough to deal with user generated texts, specifically product reviews, which present

their own set of challenges due to the use of non-standard language.

1.2. Research questions and contributions

The goal of this thesis is to explore how robust structurally informed models for sen-
timent analysis can be developed, addressing challenges that arise from structurally
complex verbalizations of opinions, specifically polarity reversers and comparisons. Our
underlying hypothesis is that there is no one-size-fits-all approach, but that it is neces-
sary to look at the properties of each of these verbalizations individually and integrate
the relevant structural information into the analysis. This section outlines the primary
research questions that we investigate in this thesis.

We think that both our examples of complex verbalizations would benefit from struc-
tural context, but it is unclear which type of context is beneficial and how it can best
be integrated into the analysis. We use a syntactic parser, specifically a dependency
parser, to integrate structural sentence context. A dependency parser represents syntax
as grammatical relations between between words, e.g., A is subject of B. The parser has
been trained on news texts that use standardized language. We are working on product
reviews which present their own set of challenges due to the use of non-standard lan-
guage, noisy spelling and punctuation. It is unclear whether applying a standard parser
to such user generated texts produces results that are robust enough to be of use for the
analysis. If this is not the case, including structural information into the analysis might
be hurtful rather than beneficial.
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The first and main question we are going to consider in this work is the following:

Research Question A: How can structural linguistic context information

be used for the reliable detection of complex verbalizations of opinions?

We investigate the topic of including structural linguistic context for both of our ex-
amples of complex verbalizations. For polarity reversers, we use a machine learning
classifier to distinguish whether a given sentiment word in context is consistent or in-
consistent with its prior polarity, i.e., determine whether a polarity reverser is present
in the context around the sentiment word. We investigate different ways of representing
the relevant sentence context around the sentiment word to see if context from syntactic
parsing is more helpful than context from the surface structure alone. We show that
for our classifier using dependency path-based features for representing sentence context
improves over the window-based context used in previous work (Ikeda et al., 2008).

For comparison detection, we train a machine learning system for the task of detecting
the individual components of comparisons: the anchor or predicate of the comparison,
the entities that are compared, which aspect they are compared in and which entity
is preferred. We experiment with three different types of context: Sentence context,
context from knowledge about the task and the domain, and context from the anno-
tation design of the data used for training our system. Similar to our experiments for
polarity reversers, we use dependency tree information for sentence context and compare
to window-based context used in previous work (Jindal and Liu, 2006b). For compara-
tive predicates, adding both types of context is beneficial, but for arguments structural
context clearly outperforms window-based context. To include context from the task
and domain, we use generalization techniques to overcome sparsity issues, add informa-
tion about possible types of comparisons, and include sentiment polarity information.
While our experiments on task context yield mixed results, we demonstrate that anno-
tation design decisions, especially those concerning the linguistic anchoring of multiword
predicates, have a considerable impact on the overall classification performance and we
present a detailed analysis of the effects of the systematic variation of annotations.

Our main contributions towards research question A are as follows:

e We demonstrate that on our data, structural context in the form of paths through
the dependency tree is more helpful for a machine learning classifier than window-
based context to distinguish whether a given sentiment word in context is consis-
tent or inconsistent with its prior polarity.

e We also find in our experiments that structural context from dependency trees

is more helpful than window-based context information for the identification and
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classification of comparative arguments.

e We present a detailed analysis of the impact of different contexts due to different
decisions taken in the annotation design on the classification performance of our
comparison detection system.

Using our structurally informed models, we can make robust predictions for the do-
main that our system has been trained on, but for different data sets it is advisable to
include domain-specific training data due to differences across domains, most notably
in the specific vocabulary used for sentiment expressions, e.g., while “unpredictable” is
positive for the plot of a movie or book, it is negative when used to describe the steer-
ing behavior of a car. While investing in the quality-controlled manual annotation of a
relatively large amount of training data is the most effective approach to ensure a high-
quality system, it may not always be possible to acquire the necessary human and/or
financial resources. Since the higher-level structure of comparisons as they appear in
reviews is clear-cut, as the syntactic structure of comparisons will be the same across
domains and the same semantic constraints apply for the selection of participants, the
problem setting could respond favorably to semi-supervised training strategies that start
out from a small seed set of manually annotated data which is relatively cheap to create.

The second research question addressed in this thesis is thus:

Research Question B: How can the structure of complex verbalizations
of opinions be exploited in order to automatically annotate training examples

by using semi-supervised methods?

We investigate this question for the task of comparison detection. As our semi-
supervised method, we use structural alignment, proposed for Semantic Role Labeling
by Fiirstenau and Lapata (2009, 2012). This method starts with a small seed set of la-
beled seed sentences, finds sentences in a large corpus of unlabeled data that are similar
to the seed sentences, and projects the labels onto them. By adding the newly annotated
sentences to the training data for our system, the initial small manually annotated seed
set of sentences is expanded to create a set large enough for efficient machine learning
without additional manual annotation effort. Capturing the structure of comparisons is
the key step in this process to ensure that the found sentences are similar enough so that
the projection of labels onto them produces correctly labeled new training examples, but
also that enough include linguistic variation is captured to create unseen information
for the classifier. We propose adaptations to two steps of structural alignment as a way
of tailoring the approach to the structural characteristics of comparisons: the similar-

ity measure and the method of extracting candidates for comparative arguments. Our
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results indicate that training on data expanded with these adaptations improves the per-
formance of a system compared to training on data expanded without the adaptations.

Our main contributions towards research question B are as follows:

e We show that we can exploit the structure of comparison to expand a small seed
set of labeled comparisons by projecting their structure onto unlabeled sentences
using the semi-supervised method of structural alignment.

e We find that the projection can be improved over a generic baseline by using
contextual similarity measures and argument candidate extraction methods that

take into account the syntactic structure of comparisons.

Finally, recall that our motivation for analyzing complex verbalizations of opinions has
been to be able to provide detailed information to support a user in a process of choice,
e.g., a purchase decision among a set of candidate products, say cameras A, B and C. One
step towards reaching such a decision is to rank the products in question according the
product aspects that are relevant for the user’s decision. Textual comparisons provide
explicit comparative assessments between products or aspects of products, which makes
them presumably the most useful kind of expression for this task, as confounding factors
like cultural and personal differences in expressing sentiment are less relevant than in
non-comparative assessments. For example, if we have statements that “A has a better
lens than B and C”, “B has higher resolution that C” and “B is heavier than C”, we can
rank the products according to the user’s preferences as A, B, C if the resolution is more
important than the weight or as A, C, B otherwise.

The final research question we want to investigate in this thesis is thus:

Research Question C: How can information found in textual comparisons

be used to support a process of choice?

We present a method to create a ranking over a set of products by aggregating all
individual comparisons found in the data. Specifically, we calculate a score based on
the number of times a product is mentioned as the preferred or non-preferred entity
in a comparison. We compare these comparison-based rankings to other methods for
ranking that are based on subjective phrases and review meta data. We evaluate on
two external rankings, a sales ranking, which reflects the number of times an item has
been sold in a given time period relative to similar products, and an expert ranking, for
which a domain expert compares different products in some specified aspects and ranks
them by their quality. While our system performs average when compared to the sales

ranking, it achieves the best result for the expert ranking.



1.3. Structure of this thesis 7

Our main contributions towards research question C are as follows:

e We present the task of producing a ranked list of products that complements the
isolated prediction of ratings to support an user’s process of choice.
e We show that our method of creating a ranking from textual comparison expres-

sions outperforms all other methods for predicting an expert ranking.

Accompanying this thesis, a dedicated gold standard of manually annotated com-
parisons has been created and made available to the research community. The corpus
is based on the English camera review data by Branavan et al. (2009) and contains
2200 sentences and 2700 comparisons with detailed annotations, which makes it the
largest such resource currently available to our knowledge. The data is available from
http://hdl.handle.net/11022/1007-0000-0000-8E72-0.

1.3. Structure of this thesis

The remainder of this thesis is structured as follows. In Chapter 2 we provide some
background information. The chapter first introduces basic concepts in sentiment anal-
ysis and approaches for the automatic detection of sentiment that include structural
information. It then describes in more detail the relevant work concerning polarity
reversers and comparisons, our two examples of complex verbalizations of opinions.

Chapter 3 discusses our work on polarity reversers relating to research question A.
The task we are working on is to distinguish whether a given sentiment word in context
is consistent or inconsistent with its prior polarity. We train a machine learning classifier
for this task and compare the representation of context as paths through the dependency
tree to a window-based approach that uses the local context to the left and right of
the sentiment word. Besides evaluating performance directly on sentiment words, we
evaluate on the higher-level task of predicting sentence-level sentiment. We also extract
the specific reversing paths from large amounts of data, evaluate the results on a set of
manually labeled paths and use these paths as features in our machine learning classifier.
To enable a more accessible presentation, the chapter contains only a summary of the
results, the complete tables for all experiments as well as a list of extracted reversing
paths can be found in Appendix A.

The remaining chapters 4-7 of this thesis focus on comparisons, presumably the most
useful kind of expression when it comes to supporting a process of choice, as they provide
explicit comparative assessments of products. Not many manually annotated resources

with such detailed sentiment information exist and those have some limitations.
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Thus, we create our own manually annotated resource of comparisons in the domain
of camera reviews. Chapter 4 describes the procedure and the annotation scheme used
to create the data. We report agreement numbers for our three annotators and compare
our data to other corpora in terms of statistics and annotation guidelines.

In Chapter 5 we address research question A and use our annotated data to train a
system for comparison detection which we call CSRL. Our system is uses a pipeline of
machine learning classifiers and treats the task of detecting comparisons similar to a role-
labeling problem. We present a detailed investigation of the effect on the performance
of CSRL for different types of context: syntactic context from the containing sentence,
context from knowledge about the task and the domain, and annotation design context.
We evaluate on our data introduced in Chapter 4, as well as on three other data sets from
previous work and discuss some general issues we encounter. Appendix B contains the
detailed experimental results.

A way around the problem of insufficient training data is to expand a small labeled
seed data set with unlabeled data, which is relevant to research question B. In Chapter 6
we use the semi-supervised method of structural alignment to find similar sentences in
a large corpus of unlabeled data. Similarity is compared based on the syntactic and
semantic contexts of the predicates. Labels are projected from the seed sentence onto
the most similar unlabeled sentences. We first describe the general outline of structural
alignment and then introduce several modifications which reflect that our arguments
are further away from the predicate and more context is needed to find good expansion
candidates. We directly evaluate a part of the found expansion sentences using a labeled
development set, and also add the found expansion sentences to the training data for
CSRL and compare its performance to training on the non-expanded set. Similar to the
previous chapter, detailed experimental results can be found in Appendix C.

It is a straight-forward idea to exploit textual comparison expressions to form an
aggregated ranking of all products the user is interested in. As the last part of this
thesis, Chapter 7 addresses research question C and presents the task of producing a
ranked list of products that complements the isolated prediction of ratings and supports
the user in a process of decision making. We demonstrate how we can use the information
extracted with CSRL to create a ranking of products by counting the number of times
a product is mentioned as the preferred or non-preferred entity in a comparison. To
evaluate our method, we discuss appropriate external rankings and present experiments
on two different types of rankings, a sales ranking and an expert ranking.

Chapter 8 concludes the thesis, summarizes our findings and contributions and pro-

vides an outlook on future work.
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1.4. Publications
Parts of the research described in this thesis have been published in:

e Kessler, W. and Schiitze, H. (2012). Classification of inconsistent sentiment words using
syntactic constructions. In Proceedings of the 24th International Conference on Compu-
tational Linguistics (COLING ’12), pages 569-578 (relevant to Chapter 3)

e Kessler, W. and Kuhn, J. (2013). Detection of product comparisons — How far does
an out-of-the-box semantic role labeling system take you? In Proceedings of the 2013
Conference on Empirical Methods in Natural Language Processing (EMNLP ’13), pages
1892-1897 (relevant to Chapter 5)

e Kessler, W. and Kuhn, J. (2014a). A corpus of comparisons in product reviews. In
Proceedings of the 9th Language Resources and Evaluation Conference (LREC ’14), pages
2242-2248 (relevant to Chapter 4)

e Kessler, W. (2014). Improving the detection of comparison arguments in product reviews.
In Plédereder, E., Grunske, L., Schneider, E., and Ull, D., editors, Lecture Notes in
Informatics, volume 232, pages 2311-2316. Gesellschaft fiir Informatik, Bonn (relevant
to Chapter 5)

e Kessler, W. and Kuhn, J. (2014b). Detecting comparative sentiment expressions — A case
study in annotation design decisions. In Proceedings of 12. Konferenz zur Verarbeitung
Natiirlicher Sprache (KONVENS °1}), pages 165-170 (relevant to Chapter 5)

e Kessler, W. and Kuhn, J. (2015). Structural alignment for comparison detection. In

Proceedings of the 10th Conference on Recent Advances in Natural Language Processing
(RANLP ’15), pages 275-281 (relevant to Chapter 6)

e Kessler, W., Klinger, R., and Kuhn, J. (2015). Towards opinion mining from reviews for
the prediction of product rankings. In Proceedings of the 6th Workshop on Computational
Approaches to Subjectivity, Sentiment and Social Media Analysis (WASSA ’15), pages 51—
57 (relevant to Chapter 7; joint work with Roman Klinger who contributed his system

JFSA, the review data and the idea for evaluation)






2. Sentiment Analysis

2.1. Introduction

Sentiment analysis or opinion mining' is concerned with the investigation of opinion
expressions in natural language. The area has received considerable attention in recent
years, which is probably in large part due to the increased availability of opinions in
user generated content on review sites, blogs, forums, tweets, social networks and other
Web 2.0 pages. Despite the growing problem of fake reviews, users trust reviews of
products more than descriptions by the sellers or manufacturers. Also reviews are about
actual usage experiences of non-experts that may be similar to the need of the user,
so the information is valuable to enable users to make an informed decision about the
products they are buying. Sentiment has also been used to predict stock market prices,
analyze voter opinions, improve human-computer interaction, and for many other appli-
cations, see Pang and Lee (2008) for an overview. The large amount of available opinions
for popular products, which often have thousands of reviews, makes reading them all
impractical for a human, so automatic systems are desirable.

For whole reviews, document labels can easily be extracted from star ratings, so the
creation of large amounts of training data for supervised machine learning is straight-
forward. The automatic prediction of document polarity (positive, negative) has been
the first task of early sentiment analysis systems (Pang et al., 2002). While document
level information may be interesting in some cases, in most actual situations, the relevant
sentiment information is to be found on a more fine-grained level.

As an illustration, consider Figure 2.1 which shows some of the opinion-related in-
formation found on amazon.com for the digital camera Canon EOS 1D X. Reviews on
the platform are written by users. The text is accompanied by a star rating, where the
user assigns an overall quality rating of between one (very negative) and five stars (very
positive). Figure 2.1b shows the average star rating and the distribution of ratings for

this specific camera. There are way more positive reviews than negative reviews, which

'Like most of the sentiment analysis community, we use the terms ‘sentiment’ and ‘opinion’ inter-
changeably in the following (Liu, 2015).
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is typical for product reviews. The average star rating for this camera is 4.1, which
may seem high, but at the point of taking the screenshot, 794 cameras in the category
“DSLR Cameras” had an average star rating of more than four starts. A total of 185
products even had an exact 5.0 rating. Such high ratings are often based on fewer than
five reviews, so the rating is not representative of a group of users.

Besides the unreliability of star ratings, much more interesting information is given
in the reviews than can be captured in a simple star rating. The comic in Figure 2.1d
makes this point in a humorous way. Based on the star rating alone, a user may think
that the “Tornado Guard” is a useful app. Unfortunately, the five star reviews base their
evaluation on the user interface (UI) and other relatively minor features. The crucial
function of the app, i.e., warning the user about a tornado, is only addressed in the
one negative review. In the real world star ratings will usually not be as useless as the
comic suggests, but there are real-world examples, such as Figure 2.1c, that point to the
same issue. While the review is mostly positive, it also contains a negative statement
about the noise the camera’s shutter makes. This information is lost if we only assign a
polarity on document level, but may of high importance to a user who plans to buy this
camera in order to take pictures in an environment where noise is an issue, e.g., during
a concert. Conversely, if the reviewer would have taken that single point as a reason to
assign one star to the camera, this evaluation may be irrelevant for a different user who
wants to take pictures at a sports event where noise is not an issue.

When we want to extract opinions on a more fine-grained level, we have to deal with
a large range of complex verbalizations of opinions. This thesis addresses two frequent
types of complex verbalizations of opinions. The first is negation, e.g., “not as loud”
in the review. Here the negation word “not” changes or reverses the polarity of the
sentiment expression. To correctly predict the polarity of a sentiment expression, it is
crucial to treat negation in some way. Second, sometimes opinions are expressed by
comparing the entity under review to a different entity, e.g., “My 5d mkIIl is not as loud
as” in the review. So to fully understand a comparative opinion in a review, besides
standard polarity (positive, negative), we need to find out which entities are discussed
and how they are evaluated in relation to each other.

The rest of this chapter first gives an overview about basic concepts in sentiment
analysis (Section 2.2). The other sections focus on related work. Section 2.3 deals with
approaches to automatic sentiment analysis, specifically those that integrate some sort
of sentence structure into their processing. We finally discuss in more detail polarity
reversers (Section 2.4) and comparisons (Section 2.5), the two examples for complex

verbalizations of opinions that this thesis is addressing.
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2.2. Basic concepts in sentiment analysis

This section introduces general concepts in sentiment analysis. Here, we introduce the
concepts which form the basis for our discussion of complex verbalizations of opinions
and related work in the following sections. For more information and more detailed
discussions, we refer to Liu (2015) and Pang and Lee (2008).

2.2.1. Subjectivity and sentiment relevance

Statements can be categorized as being subjective or objective depending on their ver-
ifiability (cf. Liu, 2015, Chapter 2.4). An objective statement expresses some factual
information about the world. The truth of the statement can be verified by people other
than the one making the statement. In contrast, a subjective statement expresses some
inner state of mind of an individual, some personal feelings or beliefs. It is not directly

verifiable. Consider the following examples:

(2.1)  a. “This is the best camera I have ever owned.” (subjective)

b. “I returned the camera yesterday.” (objective)

The classification of sentences into these categories is called subjectivity analysis. Sub-
jectivity analysis is sometimes used as a step before sentiment analysis which is then
only performed on subjective sentences.

Using the categories subjective and objective to distinguish sentences that are interest-
ing and not interesting for sentiment analysis has been criticized, as not every subjective
sentence contains an opinion, and objective sentences can implicitly indicate opinions

(Scheible and Schiitze, 2013):

(2.2) a. “I wanted a camera with good voice resolution.” (subjective)

b. “The earphone broke in two days.” (objective)

The first sentence is a subjective wish of the author, but it contains no opinion.
The second sentence is objective: we can verify that the earphone did indeed break at
the given time. Still, it expresses a negative opinion about the product because the fact
that the earphone broke is undesirable. Such sentences are sometimes called fact-implied
opinions or polar facts, and are difficult to distinguish from actual subjective sentiment,
even for humans (Ruppenhofer and Rehbein, 2012). In practice, usually all opinionated
sentences, i.e., all sentences that contain opinions, are selected for sentiment analysis,
regardless of whether they are subjective or objective (Liu, 2015). Scheible and Schiitze

(2013) introduce the notion of sentiment relevance for the distinction.
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2.2.2. Sentiment polarity and strength

The most salient part of an opinion is the “direction” of the judgment that it expresses,
which is called sentiment polarity or semantic orientation. Sentiment polarity can be
positive (indicating praise) or negative (indicating criticism):

(2.3) a. “The images on my camera were clear.” (positive)

b. “Resolution was not that good.” (negative)

The value in between the poles is usually assumed to be neutral sentiment. Other pos-
sible interpretations of this value include no sentiment (or objective, see Section 2.2.1)

and mixed positive and negative sentiment:

(2.4) a. “I bought camera XY.” (no sentiment)
b. “The camera is mediocre.” (neutral sentiment)

c. “The camera is good overall, but has some faults.” (mixed)
Opinions vary not only in polarity, but also in strength or intensity:

(2.5) a. “I don’t think this is a good camera.” (weakly negative)

b. “This camera is a piece of junk.” (strongly negative)

Sentiment polarity and strength together can be represented by a real number between
the two poles of positive and negative (Polanyi and Zaenen, 2004). Andreevskaia and
Bergler (2006) argue that using only one value does not capture all the nuances of po-
larity. They view sentiment as fuzzy categories, where membership is gradual and some
members are more central than others. A word may be a member in several categories.
Following the same idea, SentiWordNet (Baccianella et al., 2010) assigns three indepen-
dent sentiment scores for each word sense: positivity, negativity, objectivity.

Assigning continuous values manually and using them in systems can be challenging,
so in practice polarity is usually mapped to discrete categories. The most common classi-
fication scheme for sentiment analysis uses only two categories, positive and negative.
Another frequently used category scheme is the star rating of between one (negative)
and five stars (positive) that is used by review platforms. The classification of text

snippets into these categories is then called polarity classification.

2.2.3. Polarity clues and sentiment dictionaries

Keywords and keyphrases that indicate sentiment are called polarity clues. Clues are
often adjectives, but can also be nouns (“rubbish”), verbs (“hate”) or complete phrases
(“cost someone an arm and a leg”). Sentiment dictionaries or polarity lexicons list

such polarity clues with their associated polarity. The polarity of a word may vary



16 2. Sentiment Analysis

for different parts-of-speech and different senses of a word. Several manually compiled
dictionaries have been presented for English, among them the General Inquirer (Stone
et al., 1966) and the MPQA dictionary (Wilson et al., 2005). To avoid the effort necessary
for the manual creation of these resources, several methods for their automatic generation
have been proposed (Hatzivassiloglou and McKeown, 1997; Turney and Littman, 2003;
Andreevskaia and Bergler, 2006).

Polarity clues do not always express sentiment. Conversely it is possible to express
sentiment without words that are obvious sentiment words. Consider the following

examples from Pang and Lee (2008):

(2.6) a. “With great power comes great responsibility.” (no sentiment)
b. “If you are reading this because it is your darling fragrance, please wear it at home

exclusively, and tape the windows shut.” (negative)

Despite two occurrences of the polarity clue “great”, no sentiment is expressed in the
first sentence. The second sentence expresses a strongly negative opinion about some

perfume, even though probably none of its words are contained in a sentiment dictionary.

2.2.4. Prior and contextual polarity

Sentiment is highly compositional and sentence context can influence the polarity of a
clue. The polarity of a clue out of context is called the prior polarity, the polarity in
context is called conteztual polarity (Wilson et al., 2005). Several contextual factors
can influence the polarity of a word. One factor is the domain context, as a word can
have different polarities in different domains. The word “funny” for example is positive
in the movie domain (“funny plot”) and negative in the food domain (“funny taste”).
Another factor is the sentiment target, which is relevant even within the same domain.
The word “long” in the camera domain for example is positive with some targets (“long
battery life”), but negative with others (“takes long time to focus”). Other factors include
cultural differences, personal bias or point of view. For example for a seller “high price”
may be positive, while for a buyer it is negative.

Finally, sentence context influences polarity and can cause it to shift from one direction
to the other or modify the strength. Words that influence the polarity of clues in their
context are called polarity modifiers, valence shifters or contextual sentiment influencers.
Polanyi and Zaenen (2004) give an overview about many of these modifiers.

A prominent polarity modifier is negation, which is also the first complex verbalization
of opinion we are going to address in this thesis. Negation can reverse the polarity of

an expression from positive to negative or vice versa. We discuss negation and related
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work on their treatment in more detail in Section 2.4. A related category are polarity
shifters, also called intensifiers /diminishers, amplifiers/downtoners, or degree modifiers,
which do not influence polarity direction, but weaken or intensify the strength of the
sentiment expression. Some examples are “very” or “deeply” which increase the strength
of a sentiment word and “somewhat” or “slightly” which decrease the strength.

Other sentence-level constructions discussed by Polanyi and Zaenen (2004) that af-
fect polarity direction or strength are modals, which express possibilities, permissions
or desires instead of actual opinions, conditional sentences, which express implications
or hypothetical situations instead of actual opinions, or presuppositional items which
require world knowledge to determine the polarity:

(2.7)  a. “Although you might think the camera is bulky, ...”

b. “If Sony makes good cameras, I will buy one.”

c. “The battery lasts 2_hours.”

A topic that has gained more attention in recent year is sarcasm and irony. Tsur
et al. (2010) define sarcasm as the activity of saying or writing the opposite of what you
mean, or of speaking in a way intended to make someone else feel stupid or show them
that you are angry. Sarcasm is quite frequent in reviews, when people try to be funny

and/or clever. They give the following examples for sarcastic sentences:

(2.8) a. “As much use as a trapdoor on a lifeboat.”

b. “This book was really good — until page 2!”

2.2.5. Sentiment targets and aspect-oriented sentiment analysis

Sentiment does not only have a polarity, but it is also expressed with respect to some
particular entity or object usually called the sentiment target (Hu and Liu, 2004). Tar-
get detection is important because one text may contain opinions on several different
products. Targets are assigned for individual sentiment expressions because several prod-
ucts or several aspects of a product may be discussed in a single sentence. Sentiment
analysis approaches that identify a target along with a sentiment expression are called
fine-grained, target-specific or aspect-oriented. Consider the following part of a review

with assigned sentiment polarities and targets (Liu, 2015):

(2.9) a. “I bought a Canon G12 camera siz months ago.” (no sentiment)
b. “I simply love [it[z.” (positive, Canon G12)

“The [picture quality/ is amazing.” (positive, Canon G12 picture quality)

e

e

“The [battery life/s is also long.” (positive, Canon G12 battery life)
e. “However, my wife thinks it is too [heavy/s for her.” (negative, Canon G12 weight)
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The expressed sentiment is positive for the Sentences 2.9b—2.9d and negative for the
last sentence. In the second sentence, we have a positive sentiment expressed towards
the camera “Canon G12” as a whole, the target entity (also called topic). The following
sentences express sentiment about an aspect? of the same camera: the “picture quality”,
“battery life” and “weight”. The target of a sentiment expression can thus be formalized
as a pair of entity and aspect, both of which may be empty or implied by the context.
The aspect can also be implied by the sentiment expression (implicit aspect), e.g., in
Sentence 2.9e, the sentiment word ‘“heavy” implicitly refers to the aspect “weight”.

The definition of what is considered an aspect is usually made on a pragmatic basis.
Aspects can be anything related to the entity we are interested in. For products, this
usually includes parts or components (e.g., lens, flash, battery of a camera), properties or
attributes of the product (e.g., size, weight, price), actions performed with the product
(e.g., taking pictures in low light), and results of using it (e.g., the pictures).

Aspects can be used for aspect-based summaries of opinions, e.g., to show that while
a camera’s resolution is evaluated as positive, the zoom is evaluated as negative. Most
of the time, the set of all extracted aspect phrases will be too fine-grained to be useful
and some grouping needs to be done. One reason to group aspect phrases together
is that one aspect can be referred to by different phrases, e.g., “image quality”, “photo
quality” and “picture quality” all refer to the same aspect. In the easy cases this is an
issue of identifying synonyms (e.g., “image” and “picture”) or orthographic variations
and abbreviations (e.g., “picture” and “pics”). The second issue for grouping aspects is
the fact that aspects form a hierarchy, e.g., “battery life” and “battery charge time” are
different aspects of battery which in turn is an aspect of a camera. In a summary, these
sub-aspects may be grouped together or not, depending on the interest of the user.

A few additional points can be made with regard to fine-grained sentiment analysis.
Distinguishing the opinion holder may be important for some applications, as not all
of the opinions that are expressed may be from the author of the review, e.g., “my wife
liked the camera”. Similarly, the time when the opinion was expressed may be relevant
as opinions and circumstances may change over time, e.g., a negative opinions about the
price of a camera may not be relevant years later, when the price has become considerably
lower. And finally, as companies, organizations and individuals have recognized the
importance of opinions particularly for selling products, opinion spam has become an
issue. These points will not be further investigated in this thesis. For an overview about

the issues, please refer to (Liu, 2015).

2Early work in sentiment analysis used the term feature instead of aspect, but this may lead to confusion
with the features used for machine learning, so aspect is the preferred terminology.
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2.3. Structurally informed sentiment analysis

This section presents some related work in the area of sentiment analysis that deals
with the integration of structural information into the processing. Automatic sentiment
analysis covers a broad range of tasks and approaches, including sentiment polarity
classification, target identification, opinion holder identification, sentiment summariza-
tion, and emotion classification. Many different methods have been applied and, the
integration of context information has been approached in many different ways.

From the various possible types of context (e.g., sentence structure, discourse infor-
mation, domain knowledge), we put our focus in this section on structural linguistic
context in the form of parse tree information, as this is the type of structural context we
address in this thesis. This section is not an exhaustive survey of works that use parse
tree information. We concentrate mainly on polarity classification and mention some of
the more prominent approaches where sentence structure plays an important role. For

more information, please refer to the survey by Liu (2015).

2.3.1. Structure in rule-based approaches

Rule-based approaches to sentiment analysis are usually based on polarity clues from a
sentiment dictionary (see Section 2.2.3). The sentiment of a text snippet is calculated by
counting the polarity clues with their polarity, if there are more positive words, the over-
all sentiment is positive, if there are more negative words, the sentiment is negative.
This term counting or lexicon-based approach was first introduced by Pang et al. (2002)
and has been widely used as a baseline in sentiment analysis since. Approaches that in-
clude structural information either use this information to calculate contextual polarity
for every found sentiment expression or to calculate sentence polarity by propagating
the polarity from the leaves to the root through a parse tree.

Moilanen and Pulman (2007) present a propagation approach to calculate sentence po-
larity with the help of manually defined compositional patterns on top of a constituency
parse. They use a sentiment dictionary where each entry has one of the tags: non-
polar /neutral, negative, positive and polarity reversers. Patterns are used to propagate
sentiment through the parse tree, so that each phrase is assigned a sentiment polarity.
The patters are dependent on POS tags and include rules for polarity reversers.

Shaikh et al. (2007) present detailed rules to determine sentiment on sentence level
that work on top of a what they call “semantic parse”, i.e., the output of a dependency

parser that yields triplets of subject-verb-object according to each semantic verb frame of
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the input sentence. Calculation rules take into account POS tags, polarity information,
negation and intensifiers/diminishers.

One approach to calculate contextual polarity for individual sentiment expressions
is presented by Choi and Cardie (2008). They use hand-written rules motivated by
compositional semantics that work on syntactic patterns on top of a constituency parse,
e.g., the pattern “VP NP” for “destroyed the terrorism”. A rule specifies how the parts of
the pattern are to be combined in terms of their polarities, e.g., for the above example
as “destroyed” is a negator, it would flip the negative polarity of “terrorism” to result in
positive sentiment. The proposed rules deal with negation and conflicting polarities.

Similarly, Liu and Seneff (2009) present an approach that uses what they call a “parse-
and-paraphrase” paradigm. All sentences are parsed by a lexicalized context free gram-
mar which results in what they call “frames that encode semantic dependencies”. These
parses are used to extract adjective-noun pairs which are then assigned a polarity and
used for the final task, sentiment polarity classification of phrases.

An approach that is not purely rule-based, but makes use of manually defined patterns
is proposed by Kanayama et al. (2004). They view sentiment analysis as translation from
text to “sentiment units” consisting of polarity and target. They use an existing machine
translation system that works on complete dependency parses and performs top-down
pattern matches on the tree structures. They replace the translation patterns with

sentiment patterns and the bilingual lexicon with a sentiment polarity lexicon.

2.3.2. Structural features for machine learning

Machine learning for polarity classification can be approached the same way as other
text classification tasks. Commonly used features include unigrams, bigrams, as well
as polarity clues. In this subsection we look at how parse tree information has been
included into feature sets. Approaches that are directly based on sentence structure are
discussed in the following subsection.

Parse-tree information can be broken down into the individual relation between two
words in a sentence. As one of the first to address the task of polarity classification
with machine learning, Dave et al. (2003) attempt to determine the polarity of product
reviews. They experiment with a wide range of features: WordNet, negation, POS tags,
and parse features based on a dependency parser. Their parse features are triples of a
word, the dependency relation and the head word, e.g., “nice(A):subj:camera(N)”. They
report that including these features hurts their baseline of using unigrams only.

Gamon (2004) uses linguistic features for polarity classification of short customer
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feedback items. His features include POS trigrams, constituency parse tree information
in the form of patterns, grammatical roles, and “logical form” features such as transitivity
of a predicate or tense information. In contrast to Dave et al. (2003), his results indicate
that linguistic features are beneficial for classification.

Ng et al. (2006) incorporate dependency information into a polarity classifier for movie
reviews. In contrast to Dave et al. (2003), they include only specific relations, namely all
subject-verb, verb-object and adjective-noun tuples found in the parse tree, e.g., “(like,
mouvie)”. Using these dependency-based features improves over unigrams, but not over
higher-level n-grams (bigrams and trigrams). In their investigation they hypothesize
that their stemming of the words may be problematic, as it does not allow to distinguish
between “he likes the movie” and “I like the mowvie”.

Based on the mixed results from previous work, Joshi and Penstein-Rosé (2009) in-
vestigate the role of dependency relations as features in more detail, although for the
task of identification of opinionated sentences. They convert dependency relations into
triples of relation-head-dependent and experiment with replacing the lemma of either
the head, the dependent or both by the POS tag, e.g., “amod-NN-great”. They report
the best results by replacing the head word, which they argue yields more generalizable
patterns as most of the time the sentiment words are modifiers and targets are heads.

As an alternative to general parse tree relations, features tailored to the specific task
can be used. One prominent example is presented by Wilson et al. (2005) who do sub-
jectivity and polarity classification of individual sentiment expressions from news data.
Wilson et al. (2009) investigate the effect of the different feature groups in more detail.
They find negation to be the most important feature for polarity classification, but this
feature is based on window context in their implementation. Next in importance are
dependency-based features that model whether a subjectivity clue modifies the current
word or the current word is modifying a subjectivity clue. Less important are their
other dependency features which indicate whether a subject, copula or passive relation
is found on the path from the current word to the root.

Besides individual relations, complete paths through the tree can be used as features
which is especially important if polarity classification is addressed in combination with
the identification of target or opinion holder. J. Kessler and Nicolov (2009) work on the
task of linking already identified sentiment expressions and their targets. They present
an approach with features based on syntactic paths through the dependency tree which
outperforms manually defined patterns.

More recently, Sayeed et al. (2012) extract triples of sentiment expression, target, and

holder in a probabilistic framework. Their features are based on dependency parses and
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include POS tags, dependency relations and features of parent and child nodes. They
conclude that using more linguistic features increases the stability of the results.

An extensive analysis of different features used for the identification of polarity, holder
and target is presented by Johansson and Moschitti (2013). Besides the path between
the expressions in the dependency tree, they use the output of semantic role labeling
and add features for predicate and argument labels. Their detailed analysis shows that
features derived from grammatical and semantic role structure can be used to improve

all three sentiment tasks that they are working on.

2.3.3. Machine learning guided by syntax trees

Feature extraction on syntactic structures is difficult and not all information can be
modeled this way. So instead of adding features based on parse-tree information, syntax
information can be used to guide a machine learning approach, similar to the way rule-
based systems propagate sentiment information through the parse tree.

One way of including complex syntax information is the use of tree kernels which
efficiently compare tree structures without explicitly extracting features. Tu et al. (2012)
work on the task of document-level polarity classification of movie reviews with tree
kernels. They focus on selecting the most relevant substructures to keep the feature
space small and propose to include only structures around polarity clues with their
direct head and the dependents. They investigate different types of kernels and report
the best results with dependency trees, lexical information and their filter.

An example for a more direct modeling of syntactic structure is Nakagawa et al.
(2010) who use conditional random fields and dependency trees for polarity classification
on sentence-level. They introduce hidden random variables that represent the polarity
for every node in the dependency tree. The random variables are connected if the
corresponding nodes in the parse tree have a dependency relation, so the polarity is
propagated through the tree. Their features include the polarities of the subtrees, prior
polarities from a sentiment dictionary, polarity reversal and POS tags. They report
significant improvements over a term counting baseline.

An approach that has received much attention recently is the work of Socher et al.
(2013) who present recursive neural tensor networks for sentence polarity classification.
In this deep-learning framework, words are represented as real-valued vectors of a fixed
dimensionality. The polarity of phrases is calculated based on the structure given by a
constituency tree. Their work also presents the Stanford Sentiment Treebank, a parsed

version of the movie review data set (Pang and Lee, 2005) where every phrase of the con-
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stituency trees has been labeled with sentiment polarity through crowdsourcing. They
report very good classification results on this data and also show with some examples

that their model is able to capture linguistic phenomena such as negation.

2.4. Negation and polarity reversers

Negation (negators, negatives, polarity shifters, polarity reversers, ...) is arguably the
most intuitively understandable challenge for determining the sentiment polarity of a
text snippet. While the word “good” expresses positive sentiment, most people will agree
that “not good” expresses negative (or at least more negative) sentiment. Negation occurs
frequently and is a major source of errors in polarity classification. As a result, it has
received attention in the sentiment community since the early days of the field (Das and
Chen, 2001; Pang et al., 2002; Polanyi and Zaenen, 2004).

For sentiment analysis systems, negation treatment can be split into three steps or
tasks (Li et al., 2010; Benamara et al., 2012):

1. negation identification, the task of finding negation expressions,
2. negation scope detection, the task of identifying the words affected by the negation,

3. negation processing, the task of applying the negation effect to its scope.

Consider the sentence “This camera is not very good, complete rubbish” as an example.
Step one identifies the negation “not”, step two determines the words “very good” as its
scope, and step three reverses the polarity of the sentiment expression from positive
to negative. We discuss approaches for each of these tasks in the following. To our
knowledge, there is no sentiment analysis system that addresses all three tasks in a
systematic way, most use heuristics for at least one step.

The topic of negation is not only relevant to sentiment analysis, it has been widely
studied in linguistics, logic and philosophy (Pullum and Huddleston, 2002). Computa-
tional approaches have been researched in various field, especially information extraction
for diverse application domains such as medicine (Rokach et al., 2008), biomedical texts
(Morante et al., 2008), Wikipedia (Farkas et al., 2010), or soccer (Farkas, 2011). We

concentrate on related work from sentiment analysis in the following.

2.4.1. Negation identification

The first task for negation treatment is to identify whether or not any negation is present.
While in English, negation is most frequently expressed by using “not”, there is a variety

of words from all parts of speech that affect polarity the same way (Wiegand et al.,
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2010). Some examples include (polarity reversers are underlined): “no problem”, “lack

P14 @ ”o

of quality”, “without worrying”, “failed to impress”, “never worked”.

In English, negation is marked by affixes or syntactic markers. To express negation
at the morphological level, words are modified by prefixes (e.g., “un-", “dis-”, “in-") or
suffixes (e.g., “less”). Morphological negation is productive and a relevant topic for
constructing sentiment dictionaries, but has otherwise mostly been ignored in sentiment
analysis. Negation can be intersentential, but sentiment analysis has mostly focused on
negations within a single sentence, which are more frequent (Councill et al., 2010).

Linguistics defines several types of negations: analytic vs. syntactic, verbal vs. non-
verbal, clausal vs. subclausal (Pullum and Huddleston, 2002). Sentiment analysis re-
search has ignored these categorizations. In a few cases it introduced some of its own
categories. Choi and Cardie (2008) distinguish between function word negators (e.g.,
“not”, “never”) and content word negators (words that have negation as part of their
semantics, e.g., “fail”). In their experiments using only function-word negators is worse
than no negation treatment at all. Only by including content-word negators can the
baseline be beaten. Wilson et al. (2005) distinguish between general polarity shifters
that act on sentiment words of both polarities, negative polarity shifters that make any
polarity negative (“lack of X”) and positive polarity shifters, that make any polarity
positive (“abate”). They do not evaluate the influence of this distinction on the results.

For systems that address the task of identifying negations, the most common approach
is to use a fixed list of negation words or phrases (Pang et al., 2002; Councill et al., 2010;
Taboada et al., 2011; Zhu et al., 2014). Most of the lists are not very long, e.g., Zhu
et al. (2014) use a list with only four entries: “not”, “no”, “never”, “n’t”.

Using a fixed list of phrases has several limitations (Wiegand et al., 2010). The first
limitation is coverage, as negation expressions are diverse. The second is ambiguity,
as some expressions do not function as a negation in every context. In the following
example from Wiegand et al. (2010), the phrase “not only” does not reverse the polarity
of the negative sentiment words, despite the presence of the negation “not”, the overall

sentiment of the sentence is still negative:
(2.10) “/Not only] is this phone expensivencs but it is also heavynes and difficult,cs to use.”

The alternative to manually created lists is the automatic extraction of negation ex-
pressions, but work in this area is limited. The first somewhat automatic extraction,
albeit from manually created resources, is the work of Choi and Cardie (2008) who use
words from the categories “NotLW” and “Decreas” of the General Inquirer dictionary
(Stone et al., 1966) and add synonyms of the extracted words from WordNet.
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A corpus-based approach is presented by Liu and Seneff (2009) who automatically
assign a shifting value to every adverb in their data. This shifting value is calculated as
the difference between the polarity scores of an adjective alone and the combination of
this adjective with the adverb. Polarity scores in turn are calculated as the average rating
of all reviews that contain the adjective or the combination. Examples of adverbs that are
assigned strongly negative shifting values are “not”, “a little”, and “a bit”. They use the
extracted shifting values to calculate polarity in their system, but do not independently
evaluate this part of their work. Only adverbs are considered as shifters.

A conceptually different approach to the task of negation identification is presented by
Ikeda et al. (2008). Instead of identifying negations and then deciding which sentiment
words are in the scope of each detected negation, they use sentiment words as their
starting point and determine for each sentiment word whether a negation occurs in its
context. The context they use includes the three words to the left and right of the target
sentiment word. They evaluate on sentence-level polarity classification and present two
ways to include the information of reversing contexts into the classification: either word-
wise for each sentiment word, or with one feature vector for each sentence that is the
sum of all word-wise information. Li et al. (2010) extend that method to document-
level polarity classification by stacking two classifiers that are trained on automatically

extracted reversed and non-reversed sentences respectively.

2.4.2. Negation scope detection

After a negation has been found, the next step for a sentiment analysis system is to
determine its scope. Scope refers to the part of the meaning that is affected by the

negation (Pullum and Huddleston, 2002). Consider the following example sentence.
(2.11) “It is not that bigneg, it comfortablyy.s fits in my pocket.”

Even though “not” acts as a reverser for “big”, it does not reverse the positive polarity
of “comfortably” which is outside the scope of the negation. Besides scope, negation
expressions also have a focus, the element of the scope that is most prominently or
explicitly negated. Focus is even more difficult to detect than scope, and is usually
ignored in sentiment analysis. Scope and focus are primarily semantic, but syntax helps
in detecting them (Blanco and Moldovan, 2011).

Most approaches in sentiment analysis that do some negation treatment use rather
simple heuristics to detect scope. A popular approach assumes the scope to be from the
negation expression until the next punctuation mark (Pang et al., 2002). Variations on

this approach use the complete sentence (Hogenboom et al., 2011) or a window of fixed
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token size around the negation (Hu and Liu, 2004). Prollochs et al. (2015) use POS tags
to further limit the scope to include only matching words from inside one of the above
heuristic scopes, e.g., only adjectives are negated.

Some scope detection approaches include syntax information, e.g., Liu and Seneff
(2009) use the remainder of the containing clause as scope. Other rule-based approaches
use manually defined compositional patterns on top of a dependency parse (Shaikh et al.,
2007) or constituency parse (Kennedy and Inkpen, 2006; Moilanen and Pulman, 2007;
Choi and Cardie, 2008). Jia et al. (2009) present a system of detailed rules based on
dependency parse tree information and linguistic knowledge. Their scope always starts
at the negation expression and the rules are used to find a right delimiter, e.g., scope
ranges until the next sentiment noun in the direct object of the negated verb. A simplified
version of their rules is to take the next sentiment word as the delimiter. Results for all
of these heuristics are mixed, but generally more involved methods of determining scope
do not yield a significant improvement over using a window of fixed size.

The first machine learning approach for scope detection in sentiment analysis is Coun-
cill et al. (2010). Their system uses dependency parses and a first-order linear-chain
conditional random field to learn the scope of negation in reviews and biomedical texts.
Their features include tokens, POS, distance from the closest negation in both token
distance and in the dependency tree, and information from the dependency head. They
report significant improvement on sentence-level polarity classification compared to using
no negation detection at all, but do not compare to other approaches for scope detection.
In similar experiments on financial news by Prollochs et al. (2015), a Hidden-Markov-
Model prediction system does not perform well at all compared to different rule-based
techniques including next-sentiment-word and window-based scopes.

Outside of sentiment analysis, the task of negation scope detection has received at-
tention in information extraction, especially for the biomedical community as evidenced
by shared tasks on the topic, e.g., “Learning to detect hedges and their scope in natural
language text” at CoNLL 2010 (Farkas et al., 2010), or “Resolving the scope and focus
of negation” at *SEM 2012 (Morante and Blanco, 2012).

2.4.3. Negation processing

The final step for the treatment of negation expressions after they have been identified
and their scope has been determined, is negation processing or applying whatever effect
negation has to the words in the scope of the negation. In the following, we discuss typical

approaches for negation processing first for rule-based and second for machine learning-
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based systems. We use the following example sentences and assume that the scope of
the negation “not” is the word “like” in Sentence 2.12a and “horrible” in Sentence 2.12b:
(2.12)  a. “T do not likeyos this new Nokia model.”

b. “it’s not that horrible,eg.”

Rule-based systems generally use polarity clues and their polarity scores from a senti-
ment dictionary as a starting point. To determine the polarity of a sentence, the number
of positive and negative clues is counted and the majority class assigned. Applying a
negation corresponds to reversing or shifting the polarity scores of the clues in the scope
of the negation. For the sake of example, assume polarity values for sentiment words
on a scale of [—3,43] and that the sentiment score of “like” is a fairly positive +2, the
score of “horrible” a very negative —3. As there is only one polarity clue in each example
sentence, the overall sentence polarity values without considering the negation would be
+2 (fairly positive) and —3 (very negative) respectively.

Most commonly, negation is treated as causing polarity reversal (flip negation), i.e.,
a negation changes the polarity from positive to negative or vice versa (Polanyi and
Zaenen, 2004; Choi and Cardie, 2008). For continuous values of polarity, flip negation
amounts to changing the sign from — to + or vice versa. In the example, this will give a
fairly negative polarity of 2 - (—1) = —2 for Sentence 2.12a and a very positive polarity
of (=3) - (—1) = +3 for Sentence 2.12b.

While for two classes flip negation works nicely, flip negation in combination with po-
larity strength leads to undesired effects. The negated expression has the same strength
as the non-negated expression, e.g., “not horrible” is strongly positive, which arguably
does not fit the interpretation of a human reader. To rectify this situation, later works
(Liu and Seneff, 2009; Taboada et al., 2011) propose a shift negation, i.e., a negation
shifts the value to the opposite polarity by a certain factor. While the polarity will
still be reversed (at least in all but the most extreme cases), the resulting strength of
the negated expression is closer to a neutral value. In the example, let us assume a
shifter value of —3 for “not”. Sentence 2.12a would receive a slightly negative polarity of
2+ (—3) = —1. While the resulting sentence polarity is still negative just like it was with
flip negation, it is much less strong. Sentence 2.12b receives a polarity of (—3)—(—3) = 0,
i.e., neutral, which arguably fits a human understanding of “not horrible” better than
the very positive polarity that results from applying a flip negation.

Shift negation allows for different negation expressions to have different shifter values.
While Taboada et al. (2011) use the same shifting value for all negation expressions,
Liu and Seneff (2009) calculate an individual value for each of the adverbs they con-

sider. Neither work evaluates the effect the different shifting values have on the results.
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Taboada et al. (2011) compare to using flip negation, but find no significant difference.
They also perform an empirical study where humans are asked to evaluate whether a
negated positive word is more or less strongly negative than a negative word. The results
are not conclusive to decide between shift and flip negation. More recently, Zhu et al.
(2014) present an empirical study in which they analyze differences in manually anno-
tated polarity values between a phrase and that same phrase combined with a negation
expression. They find significant differences in the shifting effect of negators, some of
these effects are also depending on the argument polarity.

Negations do not only occur in isolation, multiple negations can be used together.
The usual approach for treating multiple negations is to treat each one separately. So
if negation reverses the polarity of a statement, two negations would cancel each other
out. If negation shifts the polarity score, two negations shift twice, in opposite directions.
Choi and Cardie (2008) use the following examples as a justification of this approach:

(2.13) “I doubt,cg it.” (negative)

ISR

“I did not have any doubt,es about it.” (positive)

o

“The report eliminated my doubt,es.” (positive)
d. “The report could not eliminate my doubt,e,.” (negative)

While this may cover the majority of cases, multiple negations are not always inde-
pendent of each other. Consider these examples from Blanco and Moldovan (2011):
(2.14)  a. “She is not unhappynes.”

b. “She hasn’t eaten nothing.”

The first example does not state that the person is happy, but that she is somewhere
in between the negated and non-negated state, between happy and unhappy, not fully
unhappy but not fully happy either (Blutner, 2004). In Sentence 2.14b, while there
are two negations, the sentence is interpreted as being negated only once (negative
concord). The effect in this case is an intensification of the negation. Negative concord
is widespread across many English varieties.

Automatically determining which effect a given negation in a given context has is
difficult and to our knowledge no system that includes this type of processing has been
proposed yet. What has been done is to use a binary model of negation on a global level,
i.e., polarity is reversed once, no matter how many negations are found. Choi and Cardie
(2008) report no significant difference between the two approaches in their experiments.
Conversely, Prollochs et al. (2015) do report significant improvements when treating
each negation individually as compared to a binary negation.

For systems that are based on machine learning, the most common way to incorporate

polarity modifiers into a bag of words representation is to represent a token z in the
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scope of a negation as the feature NOT 1z (Das and Chen, 2001; Pang et al., 2002). If
in Sentence 2.12a we assume the scope of the negation to be “like”, the resulting bag
of features for the sentence is {I, do, NOT like, this, new, Nokia, model}. With this
modification, a negated occurrence of a sentiment word does not confuse the classifier,
as they are two different features. The disadvantage with this approach is that there is
no connection for the classifier between the original word and the modified feature, even
though they represent the same word. The method has been used only in combination
with heuristic scope detection, e.g., until the end of the sentence, resulting in {1, do,
NOT like, NOT this, NOT new, NOT Nokia, NOT model}. The wide scope intro-
duces a lot of noise, so the classification improvement that can be obtained with this
method has been reported as being limited (Wiegand et al., 2010). Somewhat similarly,
Xia et al. (2016) replace a negated word by a different word that has the same absolute
feature weight in the classifier, but for the opposite class. In their experiments, this
approach gives approximately the same results as the usual processing.

An implicit way of modeling negation that has proven to be effective in sentiment
analysis is via higher order word n-grams, e.g., bigrams (“not like”) or trigrams (‘“not
that horrid”). Such approaches can achieve good performance, not only because of the
included modeling of negation, but also because n-grams implicitly cover other polarity-
influencing phenomena (Pang et al., 2002; Wang and Manning, 2012).

More explicit negation modeling for machine learning has been proposed in the form
of special features to indicate the existence of negations in the context of a polarity
clue. Wilson et al. (2005, 2009) report significant classification improvement when they
include features to model negation in a window around the phrase to be classified.
Choi and Cardie (2008) report improved results when they include the result of term
counting with and without including negation in addition to features that include the
presence of negators. Nakagawa et al. (2010) integrate polarity reversers into a depen-
dency tree-based method for polarity classification by using features that indicate for
each dependent whether it is a reverser, but do not evaluate the influence of this specific

feature on their results.

2.4.4. Related phenomena

Some other phenomena have influences on polarity that are similar to negation. Consider

the following examples adapted from (Wiegand et al., 2010):

(2.15)  a. ‘I find the functionality of the new phone [less| practical,os.”
b. “Perhaps it is a great,os phone, [but| I thought it was horribleyes.”
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c. “It [should| have workedyos even under water.”

2”@

Sentence 2.15a contains a diminisher (e.g., “less”, “hardly”, “slightly”, also sometimes
called polarity shifters, intensifiers, approximate negators or downtoners). Diminishers
shift the sentiment polarity of the affected polarity clue towards the opposite polarity like
negation does, but the influence is usually considered to be not as strong. In sentiment
analysis systems, diminishers are most often ignored entirely. If they are considered,
they are treated as decreasing the polarity value of a following sentiment word by a
small amount (Polanyi and Zaenen, 2004; Taboada et al., 2011), or the same way as
negation (Kennedy and Inkpen, 2006; Liu and Seneff, 2009). The distinction between
diminishers and negations is not clear-cut. In their empirical analysis of negations and
their effect on sentiment, Zhu et al. (2014) find three diminishers that have an effect of
the same magnitude as negations: “barely”, “unlikely”, “superficial”.

Sentence 2.15b is an example of a sentence contrast or discourse connectors (e.g., “but”,
“although”). These have not been researched in much detail, but some very different
approaches of incorporating them into the analysis have been proposed. The earliest
work, Polanyi and Zaenen (2004), considers a contrasting discourse connector to basically
eliminate the sentiment contribution of one clause, so in the example in Sentence 2.15b
the word “great” would be ignored and only the second clause is used to calculate sentence
polarity. Taboada et al. (2011) treat “but”like an intensifier for the following clause, so in
the example the score of “horrible” would be multiplied by an intensification factor. This
treatment is empirically validated by Socher et al. (2013), who show that their neural
network learns that the polarity of the clause following “but” dominates the polarity
of the complete sentence. Zirn et al. (2011) treat contrasting discourse connectors as
reversing the polarity of the preceding clause, in the example that would mean that both
sentence parts count as negative.

Modal verbs (e.g., “should”, “might”, “would”) like in Sentence 2.15¢ express possi-
bilities or set up a context where opinions are expressed that do not reflect the actual

2

opinion of the author. Similarly, conditional sentences (e.g., “if”, “unless”) describe
implications or hypothetical situations and their consequences. As a result, the most
common treatment is to set the sentiment value to neutral if a sentiment word occurs
in the same clause as a modal verb, a conditional marker and other irrealis markers
(Polanyi and Zaenen, 2004; Taboada et al., 2011). Narayanan et al. (2009) validate this
approach with their analysis of conditional sentences where they find that conditional
clauses contain few opinions. Benamara et al. (2012) report in their analysis that modals
influence the strength of opinions. Modal verbs can also be used as indicators to detect

customer wishes (Goldberg et al., 2009; Ramanand et al., 2010).
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2.5. Comparisons in product reviews

Comparisons are the second example of complex verbalizations of opinions that we focus
on. Comparisons are the topic of the majority of this thesis. Consider the following

examples of opinion expressions about the camera “D200”:

(2.16)  a. “T was impressed by the fast shutter speed of [D200]g.”
b. “[The D200Jg can shoot much faster than [my old camerafg ..."

Sentence 2.16a expresses direct positive sentiment about the camera’s shutter speed, so
generally an aspect-oriented sentiment analysis systems will assign the polarity positive
to the target entity “D200” or, more precisely, to the aspect “shutter speed” of that entity.
Sentence 2.16b is also a statement about that same camera’s shutter speed, but there
are two entities involved in the sentence. Generally, aspect-oriented sentiment analysis
systems assign one polarity to one target entity, so what they may do is to ignore the
information about the second entity and just give the same result as for the first sentence.
This misses important information about the second entity, so one might think to remedy
this situation by assigning negative polarity to this entity. But it is questionable whether
a comparison expresses this type of sentiment towards the two entities. The fact that X
is better than Y does not entail that X is good, nor that Y is bad (Huddleston, 2002;

Liu, 2015). As an illustration, consider two possible continuations of Sentence 2.16b:

(2.17) a. “ .. but still not fast enough to capture my daughter on her skateboard.”

b. “. .. but really both are just amazing!”

To assign positive polarity to “D200” would be incorrect in Sentence 2.17a, just as
it would be incorrect to assign negative polarity to the second entity “my old camera”
in the Sentence 2.17b. So instead of assigning sentiment to the two entities, we need
to extract the relation of the two entities to each other. Thus, comparisons cannot be
treated the same way as other sentiment expressions.

Comparisons are relatively frequent in product reviews (5%-10% of sentences in our
data). Some comparisons are among competing products as a whole, most compare
a certain aspect of the two products. Comparisons are of interest for companies that
do not only want to know what aspects of their product users like or dislike, but also
where they stand in relation to their competitors. Also, comparisons are presumably
the most useful kind of expression when it comes to supporting a process of choice,
as they provide explicit comparative judgments which may enable the user to make a
decision between several products. Comparisons are also less influenced by confounding

factors like cultural and personal differences in expressing sentiment than other sentiment



32 2. Sentiment Analysis

expressions. In some cultures “not bad” may be the highest praise, and in some other
culture the expression “awesome” may indicate rather average performance. But when
two entities are compared, an explicit ranking is given that cannot be misinterpreted.

The treatment of comparisons can be split into at least three tasks:

1. comparison sentence identification or the task of detecting if a given sentence
contains a comparison,

2. comparison component detection or the task of identifying the entities and other
parts that are involved in the comparison, and

3. comparison type identification or the task of deciding what type of comparison it

is and what ordering of entities is introduced.

Unlike negation, only few approaches treat comparisons in a sentiment analysis con-
text. We describe these approaches in the following subsections, structured by the task

or tasks that they are designed to perform.

2.5.1. Comparison sentence identification

Comparisons and their syntax and semantics have been widely studied in linguistics
(Heine, 1997; Huddleston, 2002; Cuzzolin and Lehmann, 2004; Kennedy, 2010; Stassen,
2013). Comparisons are used to position two entities relative to each other, i.e., to ex-
press their similarity or dissimilarity. Like many other languages, English grammar has
specialized morphology and syntax for such expressions, most prominently the compara-
tive and superlative form of adjectives and adverbs, e.g., “big”, “bigger”, “biggest”. Classic
examples of comparative sentences as investigated by linguists are those that contain

such a word form and some other constructions used specifically to express comparisons:

(2.18)  a. “X is bigger than Y”
b. “X is the biggest”

c. “Xis as good as Y”

There are a few constructions that look similar and contain comparative keywords, but
do not involve a comparison of two objects. Consider these examples from (Huddleston,
2002; Scheible, 2010; Bakhshandeh and Allen, 2015):

(2.19)  a. “Ed is [more old] than middle-aged”
b. “The [older| he gets, the [more cynical] he becomes.”

“I’d rather live in an [outer| suburb.”

g

e

“I’ll phone you [as soon as| the meeting is over.”

e. “my [biggest| complaint is the battery life or lack there of.”
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Sentence 2.19a is a metalinguistic comparison, instead of comparing “Fd” to another
entity, the relative applicability of the two expressions “old” and “midlde-aged” with
regard to the entity is discussed. Sentence 2.19b is a correlative comparison which
indicates a parallel or proportional increase along the two scales “old” and “cynical”.
The suffix “er”in Sentence 2.19c¢ is a derivational suffix (instead of an inflectional one)
which converts the preposition “out” into the adjective “outer” which can be used in
an attributive position. Finally, in Sentence 2.19d the phrase “as soon as” is an idiom
meaning “/mmediately”. For a more in-depth discussion of these types, please refer
to (Huddleston, 2002). Scheible (2010) provides Sentence 2.19¢ as an example where a
superlative form acts as an opinion word, or more concretely in this case as an intensifier
to the opinion word, but not in a comparative context.

Conversely, sometimes comparisons are expressed without using what linguists would

consider comparative words. Consider these examples from (Jindal and Liu, 2006b):

(2.20) a. “The M7500 earned a score of 85, whereas Asus A3V posted a mark of 89.”
b. “Nokia, Samsung, both cell phones perform badly on heat dissipation index.”

c. “In market capital, Intel is way ahead of Amd.”

Sentence 2.20a is a juztaposition, where two complementary statements are placed next
to each other without comparison markers and the comparison is implied (Cuzzolin and
Lehmann, 2004). Sentence 2.20b contains the universal determiner “both” which makes
this a comparison of equality about the bad performance of the two phones. Finally,
Sentence 2.20c is an idiomatic way of stating that “Intel” is better than “Amd”.

For the purpose of automatically identifying comparisons in sentiment analysis, any
statement about the similarity or difference of two entities is considered a comparison
(Jindal and Liu, 2006a; Liu, 2015). This includes a wide variety of expressions that in
some way compare two objects (cf. Examples 2.20). It excludes constructions that look
like comparisons but do not compare two products (cf. Examples 2.19).

Compared to other topics in sentiment analysis, there is little work on comparisons.
Jindal and Liu (2006a) are the first to specifically identify comparison sentences in
product reviews. They first filter sentences that contain a comparison keyword, e.g.,
“more”, “favor”. From the resulting potential comparison sentences, they learn class
sequential rules comprised of these keywords and the POS tags of words in a window
around the keyword. They use the extracted patterns as features for a Naive Bayes
classifier to distinguish comparison sentences from non-comparison sentences. Similar
approaches have been successfully applied to the identification of comparison sentences
in Korean (Yang and Ko, 2009, 2011a,b) and Chinese (Huang et al., 2008).
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When the performance of comparison sentence detection is not the focus of the work,
lists of keywords and POS have been used to find comparisons (Zhang et al., 2009,
2010). Other approaches assume every sentence with two or more entities to contain a
comparison (Feldman et al., 2007; Kurashima et al., 2008; Tkachenko and Lauw, 2014,
2015). In the review domain, often even the mention of any entity other than the

currently reviewed product is enough to identify comparisons (Zhang et al., 2013).

2.5.2. Comparison component detection

After sentences that contain comparisons have been identified, the next task is to decide
what the relevant components of a comparison are and how to extract these components.
This is the part we are going to focus on in this thesis.

One sentence may contain multiple comparisons that are independent of each other.
Comparisons involve at least three components: two entities that are compared and a

scale that the entities are placed on. Consider the following example:
(2.21) “[The D200]comparce is bigger [than]pivor the [D80]standard-”

Of the two entities, the item that is compared is sometimes called the comparee. In
Sentence 2.21, the comparee is the camera “D200”. The object the comparee is compared
to is the standard of comparison (Heine, 1997; Cuzzolin and Lehmann, 2004; Stassen,
2013). In the example this corresponds to “D80”. Comparisons can omit the standard
or even both entities in context for pragmatic reasons (Staab and Hahn, 1997). Com-
parisons are introduced by a linguistic marker called comparative governor (Huddleston,
2002) or predicate (Heine, 1997; Cuzzolin and Lehmann, 2004; Stassen, 2013). The pred-

»ow

icate contains a degree marker, e.g., “more”, “~er”, (Heine, 1997). Finally, there is a pivot,
the word that introduces the standard of the comparison, e.g., “than”, “as” (Heine, 1997,
Cuzzolin and Lehmann, 2004). Sentence 2.21 contains the predicate “bigger”, the degree

4

marker suffix ““er”, and the pivot “than”.
Research in sentiment analysis on comparisons has mainly focused on comparisons
of products in reviews. Most of these comparisons do not compare the items in their

entirety, but in some aspect (see Section 2.2.5). Consider the following example:
(2.22) “[The D200g1 has a bigger [LCD|x than the [D80]gs.”

From this sentence, typical systems extract the predicate “bigger”, the two entities
“D200” and “D807, and the aspect “LCD”. Most approaches distinguish two types of
entities, usually numbered according to the order in which they appear in the sentence.

There are two sentiment analysis approaches that attempt to extract as much detailed

information as possible about comparisons. The first is presented by Jindal and Liu
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(2006b) as follow-up to their work on comparison sentence identification. They use a
list of manually compiled keywords to find comparative predicates. To identify entities
and aspects, they use an involved pattern mining process to obtain label sequential rules
containing POS tags and word forms. A very similar approach for Korean is presented
by Yang and Ko (2011a). The other approach, presented for Chinese web data by Hou
and Li (2008), casts the problem of extracting predicates, entities and aspects as a role-
labeling task. They use a SRL system based on a CRF with features based on POS
tags, the syntactic category of constituency phrases, position relative to the predicate,
lemma of the comparative predicate. In their experiments they report good results on
gold parse trees, but observe a large drop in performance when they use their method
on automatically parsed sentences. They split the predicate into two separate parts, the
particle that expresses the comparison and what they call ‘sentiment word’, the word
that distinguishes the two entities, generally an adjective or adverb.

Besides these two approaches that attempt to extract all components of a comparison,
others focus solely on the relation that exists between any two found entities. The
actual identification of entities and aspects is more of a preprocessing step and simple
heuristics are used. The most common approach to identify entities is to use lists of
product names, brands and other common terms from the domain (Feldman et al., 2007,
Kurashima et al., 2008; Zhang et al., 2009, 2010; Xu et al., 2009, 2011; Zhang et al.,
2013; Tkachenko and Lauw, 2014, 2015). The same approach based on a list of common
terms can be used to identify aspects (Feldman et al., 2007; Xu et al., 2009, 2011; Zhang
et al., 2010). An alternative is to define a few high-level aspects of interest (e.g., design,
functionality) and determine for each sentence whether it relates to the specific high-
level aspect. This determination can be done with classification (Tkachenko and Lauw,
2014) or clustering (Li et al., 2011). Finally, some approaches simply ignore aspects
(Kurashima et al., 2008; Zhang et al., 2009, 2013).

2.5.3. Identification of comparison type and direction

A comparison expresses a relation between two entities and this relation can be of
different types. Linguistics distinguishes between scalar and non-scalar comparisons.
Non-scalar comparisons are concerned with whether the compared objects are identi-
cal. There are two possible outcomes, the compared objects can either be the same

(comparison of equality) or different (comparison of inequality):

(2.23)  a. “X is the same as Y” (equality)
b. “X is different from Y” (inequality)
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Alternatively, a comparison can place the two objects on a scale relative to each other
(scalar comparison). Scalar comparisons are usually expressed by a gradable adjective
or adverb, e.g., “big”. Adjectives or adverbs that denote absolutes, e.g., “dead”, or
those that already designate the highest grade, e.g., “excellent”, cannot be used in scalar
comparisons. Like in non-scalar comparisons, objects in scalar comparisons can also be
either identical or different. When the compared objects are not identical, we can look
at their relative placements on the scale, the comparison can either be one of superiority
or inferiority®. There is also a special case when the object in question is not compared
only to another object (term comparison), but deemed to be the best out of a whole set
(set comparison). In English, the forms of adjectives and adverbs are constructed by

1

using the inflectional morphological suffixes “~er” (comparative) and “est” (superlative)
or the analytic markers “more”, “less” (comparative) and “most”, “least” (superlative).
As a results, we have the following possible types for scalar comparisons, given here for

the examples of “big” and “powerful”, adapted from (Huddleston, 2002):

(2.24) . “X is as big as Y7, “X is as powerful as Y” (equality)

a
b. “X is bigger than Y”, “X is more powerful than Y” (inequality, superiority, terms)

o

“X is less big than Y7, “X is less powerful than Y” (inequality, inferiority, terms)
“X is the biggest (of all Z)”, “X is the most powerful (of all Z)”

(inequality, superiority, set comparison)

e. “X is the least big (of all Z)”, “X is the least powerful (of all Z)”

(inequality, inferiority, set comparison)

e

For automatic processing in sentiment analysis, most work follows the comparison
types proposed by Jindal and Liu (2006b) and further clarified in (Liu, 2015). Instead of
scalar and non-scalar comparisons, they use the categories of gradable and non-gradable
comparisons as the major distinction. Gradable comparisons are those that place the
two entities on a scale and introduce a ranking between them. They come in three types.
The first type is what they call non-equal gradable comparisons, which includes term
comparisons of both superiority and inferiority. The second type includes superlatives,
i.e., set comparison of superiority or inferiority. The third type refers to comparisons of
equality called equatives. The first two relations also have two subtypes that clarify the
direction of the relation which they call increasing and decreasing comparatives. Liu

(2015) provides the following examples:

(2.25)  a. “Coke tastes better than Pepsi.” (non-equal gradable, increasing)

3 Also called comparisons of majority and minority (Cuzzolin and Lehmann, 2004). Sometimes in the
class of comparisons is included the elative “X is very big”, the excessive “X is too big” (Heine, 1997),
or the assetive “X is big enough” (Bakhshandeh and Allen, 2015).
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b. “Coke tastes the best among all soft drinks.” (superlative)
c. “Coke and Pepsi taste the same.” (equative)

Non-gradable comparisons express a difference between two entities, but do not rank
the entities. Again, there are three types. The first type compares two entities in a
shared aspect. The second type states that entity X has aspect A and entity Y has a
similar aspect B. The third type states that entity X has aspect A and entity Y does
not have aspect A. Liu (2015) provides the following examples:

(2.26)  a. “Coke tastes differently from Pepsi.” (shared aspect “taste”)
b. “Desktop PCs use external speakers but laptops use internal speakers.”
(similar aspects “external speakers” and “internal speakers”)

c. “Nokia phones come with earphones, but iPhones do not.” (aspect “earphones”)

In sentiment analysis research, the automatic classification of comparison types and
direction has received more attention than the previous two tasks. Most work on the
topic has focused on gradable comparisons only.

Jindal and Liu (2006b) introduce the system of comparison types and are the first
to present a system that assigns each gradable comparison a type out of non-equal
gradable, equative, and superlative. They use a Naive Bayes classifier with com-
parison keywords as features. The classification of the direction of the comparison is
presented in follow-up work by Ganapathibhotla and Liu (2008). They use hand-crafted
rules based on the polarity of the predicate to determine which entity is preferred in non-
equal gradable and superlative sentences. Yang and Ko (2011a) adapt the same method
for Korean, but they add the labels similarity, pseudo-comparison (i.e., metalinguis-
tic comparison), and implicit (i.e., juxtaposition), for a total of seven classes. They
do not determine the direction of the comparison.

In their work on Chinese, Hou and Li (2008) do not assign comparison types, but
distinguish five possible relation types between entity 1 and entity 2 which roughly
correspond to Jindal and Liu (2006b)’s comparison types: better, worse, same, best,
and worst. The assignment of a type is based on the tokens extracted for their two-part
predicates (predicate and ‘sentiment word’). They do not elaborate, but the processing
seems to use manual categories assigned to the extracted words.

The above approaches assign the type and/or direction of a comparison as part of
collecting detailed information about comparisons. Other research has been done in a
slightly different framework where pairs of entities are extracted and the focus is on
determining which of the entities is the preferred one. In this framework, there will
always be two entities, whereas in the above approaches one or more of the entities

may be implicit. For example the sentence “It is the best”, where the second entity is
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implicit, will be considered to be a comparison for the above approaches, but not for the
approaches that assume two entities.

A baseline method for direction identification looks up the comparison word in a sen-
timent dictionary (Kurashima et al., 2008; Zhang et al., 2009, 2010). If the word has
positive polarity, the first entity is preferred, otherwise the second. To capture contextual
influences, a polarity classifier can be used on the sentence (Zhang et al., 2013). Alter-
natively, if labeled data is available, a classifier can be trained to distinguish comparison
directions into the classes similar, different, and neither (Feldman et al., 2007).
None of these works directly evaluate the performance of their direction classification.

Xu et al. (2009, 2011) classify the comparative relation between two entities into
four classes: three types of relations between two entities (better, worse, same), plus
no_comparison which can be assigned if there is no relation between the entities. Xu
et al. (2009) use a multiclass SVM and a maximum entropy model. Their features include
manually defined comparison keywords, POS tags, the entity tokens and entity types.
Xu et al. (2011) improve on their previous work by using a CRF and additional features
from token form (capitalization, numbers, prefixes and suffixes) and dependency parses
(syntactic paths between the entities, grammatical roles).

Tkachenko and Lauw (2014) identify which of the two entities in a relation is preferred.
They use a generative model based on Gibbs sampling, their features are based on
the position of words around the entities plus some negation treatment. In follow-up
work, Tkachenko and Lauw (2015) only classify whether a relation exists or not, not
the direction of the relation. They propose a dependency tree kernel for SVM that
allow ‘skip-nodes’ where a node in the tree may be removed or replaced with a general
placeholder which makes the approach better suited to capture similarities between
dependency trees. They compare their approach to Jindal and Liu (2006a)’s system and

report considerable improvements.

2.6. Summary

In this chapter, we have given an introduction to the area of sentiment analysis and
presented related work. The chapter introduced basic concepts in sentiment analysis
and described some approaches for the automatic detection of sentiment with a focus on
those approaches that use structural context. We then covered in more detail relevant
work concerning the two examples of complex verbalizations of opinions we investigate

in this thesis: negation and comparisons.
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The general approach presented in this chapter and the sentence-level polarity classifica-

tion experiments have been published in (Kessler and Schiitze, 2012).

3.1. Introduction

This chapter discusses work on our first example of a complex verbalization of opin-
ions: negation or more generally polarity reversers. Polarity reverses are arguably the
most intuitively plausible and most frequently addressed challenge for determining the
sentiment polarity of a text snippet.

Many approaches to sentiment analysis are based on sentiment words which are col-
lected in a sentiment dictionary together with their prior polarity (positive, negative),
e.g., “good” has positive polarity, “disappointment” negative polarity. These words are
then used to determine the polarity of a text snippet by looking up the polarities in
the dictionary and assigning the majority polarity. In some sense even machine learning
classifiers that use unigram features implicitly rely on sentiment words, the prior polarity
is assigned by the features weights for one class or the other (Pang et al., 2002).

While there are cases where individual words are sufficient to determine sentiment
polarity, sentiment is highly compositional and context may influence and even reverse
the polarity of individual sentiment words. Consider the following sentences about a
digital camera from our data (the sentiment word is marked in bold with its prior

polarity as subscript, the sentence polarity is given in parenthesis after the sentence):

(3.1)  a. “goodyes for wide angle or medium telephoto.” (positive)

b. “not so goodyes for wide angle or medium telephoto.” (negative)

While the sentiment word “good” has a positive prior polarity, in the phrase “not so
good” the contextual polarity is negative due to the presence of the negation “not”. This
effect is not limited to sentiment words of one polarity, a negation usually works in both
directions, e.g., the phrase “not bad” is positive although the sentiment word “bad” itself

has negative prior polarity.
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Negation has received attention in the sentiment community since the early days of
the field (Das and Chen, 2001; Polanyi and Zaenen, 2004), see also our more in-depth
discussion of related work in Section 2.4. The majority of approaches has treated nega-
tion as polarity reversal, a negation changes the polarity from positive to negative or
vice versa (Polanyi and Zaenen, 2004; Choi and Cardie, 2008). If polarity is given as
values on a continuous scale, it is not reasonable to assume that the polarity strength of
an expression is the same when it is negated, e.g., while “fantastic” expressed strong pos-
itive sentiment, “not fantastic” does not express particularly strong negative sentiment.
This is why some later approaches introduce a shift negation, where a negation does not
reverse polarity, but only shifts the value it to the opposite polarity by a certain factor
(Taboada et al., 2011; Liu and Seneff, 2009). In this thesis, we work with only two dis-
crete polarity values, so we treat negation as having the effect of reversing the polarity.
We refer to the word or phrase that is causing the change as a polarity reverser. An
additional point to consider is the effect of a double negation. While it can in some cases
emphasize or weaken the effect of the negation (Blanco and Moldovan, 2011), we follow
the standard approach in sentiment analysis and consider each negation separately, i.e.,
two negations cancel each other out (Choi and Cardie, 2008).

The vast majority of approaches that use sentiment words and include some treatment
of polarity reversers, simply reverse a word’s polarity if it is preceded by a keyword out of
a fixed list of polarity reversers (Polanyi and Zaenen, 2004; Taboada et al., 2011). Using
such manually constructed fixed word lists for treating polarity reversers has several
limitations, one of them being coverage, as polarity reversing expressions are diverse
and can be of nearly all parts of speech (Wiegand et al., 2010). As an illustration, these
are some examples from our data (polarity reversers are underlined):

(3.2)  a. “tve had no problems,.; at all so far.” (positive)
b. ‘i find the lack of entertainingyos games on this phone quite disturbing.” (negative)
c. “the standard battery will allow me to take pictures all day without worryingneg
about charging.” (positive)
d. “however, it has failed to deliver,os on quality,.s.” (negative)

Additionally, polarity reversal is a syntactic phenomenon which cannot be addressed
solely at the word level (Wiegand et al., 2010). For efficiently using polarity reversers
knowing its scope is necessary. Consider the following example:

(3.3) ‘it is not that bigneg, it comfortably,.s fits in my pocket , ...” (positive)

Even though “not” acts as a reverser for “big”, it does not reverse the positive sentiment

of “comfortably”. The word “comfortably” is outside the scope of the negation, even

though the surface token distance is small.
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Considering the limitations of using a manually constructed list of polarity reversing
words and the importance of scope modeling, we regard polarity reversers as our first
example of a complex verbalization of opinions. Specifically, our approach starts by
looking at sentiment words in context and attempts to determine whether the word in
question is in the scope of a polarity reverser (Ikeda et al., 2008). We call such a sentiment
word’s contextual polarity inconsistent with its prior polarity!. As an example consider
Sentence 3.1a. The contextual polarity of the sentiment word “good” is consistent with
its prior polarity: the word “good” is positive and the sentence it is contained in also
expresses a positive sentiment. In the second example, Sentence 3.1b, the sentiment
word “good” is inconsistent with its positive prior polarity, because the negation “not”
reverses the polarity of “good” so that the final sentiment expressed in the sentence is
negative, not positive as the prior polarity of the word would indicate.

Our task is then a problem of consistency classification, i.e., for a given sentiment word
in context we want to determine whether it is consistent or inconsistent with its prior
polarity. In the following polarity classification of a text based on the found sentiment
words, the inconsistent words can then be treated differently from consistent sentiment
words to get a more reliable result. Previous work has addressed the task of consistency
classification with features on the word level, using a window-based context around the
sentiment word (Ikeda et al., 2008). As polarity reversal is a syntactic phenomenon,
we hypothesize that structural linguistic context information from syntax, specifically
information from a dependency parse tree, is helpful for distinguishing consistent from
inconsistent sentiment words. The main research question we are going to address in

this chapter is thus an adapted version of research question A:

Research Question Al: How can structural linguistic context informa-
tion based on paths through a dependency parse tree be used for the reliable

detection of inconsistent sentiment words in context?

In this chapter we present a supervised machine learning approach to the problem of
inconsistency classification. We compare the previously used window-based context with
structural context features that represent paths through the dependency tree (which we
call syntactic constructions). Our syntactic constructions explicitly include the scope
of the reverser. Besides using all linguistic contexts for the detection of inconsistent

words, we attempt to specifically identify the contexts that reverse polarity (polarity

Note that our terminology follows Ikeda et al. (2008) and differs from that used by Dragut et al.
(2012) who use the term “inconsistent” to refer to a word that has conflicting polarity information
in a sentiment dictionary or across dictionaries.
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reversing constructions, PRCs). We present first steps towards automatically extracting
PRCs from sentences annotated with polarity. In contrast to a domain-specific classifier,
such constructions are more universal and can be used as a resource for consistency
classification in all domains. Besides using PRCs instead of sentiment words to determine
directly whether a word is consistent or inconsistent, we can also use them as features
in a consistency classifier.

To summarize, this chapter presents the following points related to polarity reversal,

our first example of complex verbalizations of opinions:

e We present a supervised machine learning approach to the problem of consistency
classification (determining whether a sentiment word is consistent or inconsistent
with its prior polarity in a given context).

e We use syntactic constructions which are paths based on a dependency tree as
features for consistency classification.

e We present first steps towards automatically extracting the actual polarity revers-
ing constructions (PRCs) from sentences annotated with polarity.

e We use PRCs directly in rule-based consistency classification.

e We use PRCs in consistency classification as features for a machine learning clas-

sifier for consistency classification.

3.2. Methods

In this section, we first discuss how to use the (in)consistency of sentiment words with
their prior polarity for sentence-level polarity classification, which is the final task we
want to improve (Section 3.2.1). Following this, we introduce syntactic constructions
which we use to represent the scope and the syntactic context of a word based on a
dependency tree (Section 3.2.2). To determine whether a word is consistent or inconsis-
tent, we use a consistency classifier. The training of our consistency classifier requires
training examples for consistent and inconsistent words. As we do not always have man-
ually annotated data, Section 3.2.3 discusses the automatic creation of training examples
from sentences annotated with polarity.

In the second part of this section, we turn to the extraction of Polarity Reversing Con-
structions (PRCs). From the set of all syntactic constructions, we want to identify those
constructions that reverse polarities. We present our general approach of automatically
extracting PRCs (see Section 3.2.4) and finally present several filtering methods that

can be used to improve the extraction (Section 3.2.5).
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3.2.1. Polarity and consistency classification

The final task we want to improve is sentence-level polarity classification. To determine
sentence polarity, we follow the standard term counting approach that was first intro-
duced by Pang et al. (2002) and has been widely used as a baseline in sentiment analysis
since. This STANDARD voting approach determines the polarity of a sentence S by a
“vote” from the words in the sentence. Meaning, we count the number of positive and
negative words in the sentence and assign the polarity that gets the majority. In case of
a tie, we default to the polarity that is more frequent in the data (usually positive for
reviews). More formally, we calculate a positivity score s,05(S) for the given sentence S

using a dictionary of positive and negative sentiment words (p and n) as follows:

Spos(5) = {w € p}| — {w € n} (3.1)

for all w € S. The sentence is labeled as positive if it contains as many or more

positive words than negative words (sp0s(S) > 0), otherwise it is labeled as negative.

Standard voting counts every occurrence of a sentiment word with its prior polarity as
specified in the dictionary, regardless of the context. As polarity reversal is a common
phenomenon, this is clearly not sufficient for reliable polarity classification. To improve
upon the standard approach, we need to determine for every found sentiment word,
whether the word’s contextual polarity is the same as the prior polarity or whether it has
been reversed by the context. We call this step consistency classification. Consistency
classification assigns a score Scons(w) to each sentiment word w in context. Based on
the resulting score, we consider w to be consistent (Scons(w) > 0) or inconsistent
(Scons(w) < 0) with its dictionary polarity. The absolute value |Scons(w)| indicates the

classification confidence.

We integrate consistency classification into polarity classification by counting a word
not simply with its prior polarity, but with its contextual polarity as given by its prior
polarity (w € p or w € n) in combination with its consistency score seons(w). Thus, we
define s,05(5) as follows (Ikeda et al., 2008):

SPOS<S) = Z SCOHS(w> - Z Scons(w) (32)

wep wen

for all w € S. Words expressing positive sentiment (consistent positive sentiment words
as well as inconsistent negative sentiment words where S..,s < 0) add a positive value

to the score, while words expressing negative sentiment (inconsistent positive sentiment
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words as well as consistent negative sentiment words) add a negative value to the score.
The question we are addressing in the following is how best to determine Scous(w).
There are two different approaches, a rule-based approach (negation voting) and an
approach based on machine learning (classifier voting). Rule-based negation voting uses
negation cues to determine seons(w). The basic method sets the score Seons(w) = —
(inconsistent) iff an odd number of negation cues occurs in the context of w. Otherwise
Scons(w) = 1 (consistent). In classifier voting, a statistical classifier is used to determine
Seons(w) and we use its classification confidence as score. In both cases, we show that
representations that include sentence context as given by a dependency tree improve

performance for both consistency and polarity classification.

3.2.2. Representation of context as syntactic constructions

This section presents our representation of syntactic context which we call syntactic
constructions. The simplest representation uses only the LEMMA and part of speech
(POS) tag of a word. This is a baseline to compare with previous work that ignores
syntax information.

To integrate syntactic information, we parse all training examples with a dependency
parser. In our representations of syntactic constructions, the POS produced by the parser
are generalized to the categories N (noun), V (verb), ADJ (adjective), ADV (adverb),
PR (preposition), DT (determiner), and O (other, everything else). These categories
correspond to universal POS (Petrov et al., 2012) with conjunctions, pronouns, number,
particles and punctuation mapped to “other”.

Figure 3.1a shows the dependency parse of an example sentence. We extract syntactic
constructions from the parses that describe the syntactic context of a sentiment word w.
A syntactic construction always starts at the sentiment word w and ends at another word
x in the sentence. The sentiment word is represented by its POS tag. The word itself
is not included, as we are interested in constructions that are independent of specific
sentiment words. The word z is represented by lemma and POS tag. We experiment
with different representations for the path between the sentiment word and x.

The SIMPLE PATHS representation looks at the position of the candidate word in the
dependency tree in relation to the sentiment word. There are three possible positions.
The candidate word can be a child (>>) of the sentiment word, either a direct dependent
or a dependent of other words that depend on the sentiment word. Alternatively, the
candidate can be a parent (<<), a word on the path from the sentiment word to the

root of the dependency tree. As the third possibility, the word can be a sibling (=), a
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ROOT
AV ( ’ o NMOD \“, ~— PMOD
/ I SBJ \/ Ve~ f/ / /~NMOD W\‘,V ~ NMOD - // / NMOD \!
Additionally I ~ have had absolutely no problems,, with battery life
RB PRP VBP VBN RB DT NNS IN NN NN
ADV O \Y \Y ADV DT N PR N N

(a) Dependency parse. The negative sentiment word “problems” is marked in bold. The first
row below the tokens shows the POS tags assigned by the MATE parser, the second row
shows the generalized POS tags we use for the syntactic constructions.

path length k =1 k=2 k=3
0 absolutely_ADV life_N battery_N
; no_DT have_V additionally_ADV
Z  with_PR i_0
= have_V

N>>absolutely_ADV N>>life_N N>>battery_N

)
= £ N>>_no_DT N<<_have_V  N=additionally_ADV
=% N>>with_PR N=i_0
wn
N<<have_V

5 N>absolutely_ADV  N>PR>1ife_N N>PR>N>battery_N

=% N>no_DT N<V<have_V  N<V<V>additionally_ADV
& E N>with_PR N<V<V>i_0

2 N<have_V

(b) Extracted syntactic constructions for the sentiment word “problems” in the different repre-
sentations and different path lengths k.

Figure 3.1.: Dependency parse and extracted syntactic constructions for the example
sentence “Additionally I have had absolutely no problems with battery life.”
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dependent of an ancestor of the word, i.e., the sentiment word and the candidate share
an ancestor (not necessarily the direct parent). In the example, “battery” is a child,
“have” is a parent and “additionally” is a sibling. A simple path includes the POS of the
sentiment word, the position, and the lemma and POS of the reverser candidate. The
full representation of the word “additionally” from the example sentence with SIMPLE
PATHS is NN=additionally_ADV.

Instead of reducing the relation of a candidate word and the sentiment word to one
position, we can look at the complete path between the two words. The ABSTRACT
PATHS representation uses all nodes on the path through the dependency tree from
the sentiment word to the candidate. The words on the path are represented by their
POS and the representation also contains the direction in the parse tree that needs to be
traveled to come from one word to the next (up < or down >). Alternative representations
could include the actual words on the path instead or in addition to the POS tags, but
this would increase the sparsity of the data. For the same reason, though the label of the
dependency relation could be included in the representation, we currently ignore it. Also
there is some correlation between POS and dependency labels, so that it is questionable
whether the additional sparsity merits the potential gain in useful information. The full
representation of “additionally” with ABSTRACT PATHS is N<V<V>additionally_ADV.

Syntactic constructions have a parse tree distance k to the sentiment word w at the
start of the construction, which is defined in number of nodes on the path. PRCs for the

example sentence for distances up to k = 3 in all representations are given in Figure 3.1b.

3.2.3. Generation of training examples

For training our consistency classifier we need a set of training examples annotated for
(in)consistency. To be independent of manually annotated data which is hard to get in
large amounts, we only assume that we have a corpus of polarity annotated sentences
and a dictionary of positive and negative sentiment words at our disposal. This is a
reasonable assumption as several such resources have been published for English (Hu
and Liu, 2004; Ding et al., 2008; Pang and Lee, 2005).

We follow Ikeda et al. (2008) and extract training examples automatically from the
corpus. Given a sentiment word w with dictionary polarity p,, that appears in a sentence
s with polarity ps, we label w consistent iff p, = p,, and inconsistent otherwise.
We ignore words and sentences with any label other than positive and negative. We
also require the POS of the word to match the one in the dictionary.

Figure 3.2 illustrates the generation of training examples for an example sentence
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as part of the whole process. Consider this example sentence from our data (original

sentence from a user review including all errors in spelling and grammar):
(3.4) “The phone isn’t hardyegs to use so its greatyos” (positive)

This sentence is labeled as positive and contains two sentiment words, “hard” and
“great”. We extract one training example per word, so the negative sentiment word
“hard” is extracted as an inconsistent training example and the positive sentiment
word “great” as a consistent training example. The syntactic context around the

training examples is represented as described in Section 3.2.2.

3.2.4. Extraction of polarity reversing constructions

As a second task besides polarity classification, we turn to the extraction of polarity
reversing constructions (PRCs). We define a PRC as a syntactic construction that
reverses the polarity of the sentiment word in its scope, i.e., the word at the start of
the construction. Our goal is the automatic extraction of PRCs. We work on the
assumption that in the syntactic context of inconsistent words there is always a PRC
present. Syntactic constructions that appear often in the context of inconsistent words
are likely to be PRCs. There are other reasons that may create the impression of
inconsistent sentiment words, e.g., sarcasm or cases where the word does not carry any
sentiment, but we trust that polarity reversal accounts for the majority of cases.

We start with a set of training examples for consistent and inconsistent words (manu-
ally labeled or extracted by the process described in the previous section). All training
examples are parsed with a dependency parser. Syntactic constructions are extracted
from the contexts, all of them are considered candidates for PRCs. After all candidates
for PRCs have been extracted, they are scored and the top n candidates are extracted
as PRCs. Figure 3.2 shows the outline of our approach and an example.

The scoring of PRCs is based on comparing the number of occurrences of a candidate
in the contexts of consistent and inconsistent words. If the candidate occurs with the
same frequency in both contexts, the probability is low that this candidate is responsible
for the polarity reversal. On the other hand, a candidate that only occurs in inconsistent
contexts and never in consistent contexts is very likely to be a polarity reverser. The
most straight-forward way of scoring PRCs is relative frequency fre(x) which divides the
number of occurrences of candidate x in inconsistent examples fincons() by number of
occurrences in consistent examples feons(z). Thus, fie(x) is calculated as

fincons(l‘)

frei(z) = log, m (3.3)
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N e e e e =~

-8.26 ADJ>0>use_V

3 ROOT - OBJ
| P PRD N | p AMOD |
| NMOD -SBJ- || ADV \ | AMOD I | NMOD |
LY \/ \V/ \ U/ WA y / \
Text i the phone is n’t hard,, to use so its great,.
3 DT NN VBZ RB JJ TO VB RB PRPS$ JJ
J . DT N V ADV ADJ O V ADV O ADJ
Extraction . “The phone isn’t hard,e, to use so its great,.s” (positive)
of training .
examples
i hard,., — inconsistent
Training | ADJ<be_V, ADJ<V>n’t_ADV, ADJ>to_0, ADJ>0>use_V, ...
examples . great,,s — consistent
! ADJ<use_V, ADJ<V<to_0, ADJ>its_Q, ...
Extraction
of syntactic
constructions
. ADJ<be_V ADJ<V<to_0
PRC . ADJ<V>n’t_ADV ADJ>its_0
didat ' ADJ>to_0 ADJ>not_ADV
candicates | ADJ>0>use_V N>no_DT
' ADJ<use_V
Scoring of
syntactic
constructions PROS forn — 3 ’\:
| 4.38 | ADJ>not_ADV 0.0 ADJ<use_V
_ ' 3.25 | ADJ<V>not_ADV |  -0.02 ADJ<be_V
List of | w ‘
PRC ' 2.60 _N>no DT = _ ’
> | 1.92  ADJ<V<could_0 -7.23  ADJ>to_0

Figure 3.2.: Steps for PRC extraction (left) and the results of each step (right) for the
positive example sentence “The phone isn’t hard to use so its great” with the
sentiment words “hard,.,” and “great,.”.
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A more sophisticated method that follows the same idea is mutual information (MI).
MI measures how much information the presence or absence of a candidate x contributes
to making the correct classification decision for a sentiment word. MI(z,C) between

candidate x and the classes C' = {consistent,inconsistent} is defined as

P(x P(z,c
ZP (z,c)log, (xg P)( ] +C€ZCP z,c logQW (3.4)
where P(x) is the probability that the candidate z occurred, and P(z) the probability
that x did not occur.

While MI extracts candidates that serve as a good indicator for one of the classes, these
candidates are not necessarily good indicators for the class inconsistent. To get only
indicators for the class inconsistent, we place the candidates that are indicators for
the other class at the end of the list when we sort by MI. We call this measure extended

mutual information, MI+. As MI is always a positive number, MI+ is calculated as

—MI(z,C)  if P(z,consistent) > P(z, inconsistent),

MI(z,C)  else. (3:5)

MIH(z,C) = {
In cases where we have more candidates than the number of PRCs we want to extract,
the above is equivalent to removing candidates with negative association, i.e., candidates

where log(P(z,inconsistent)/P(z, consistent)) < 0, from the final set of extracted
PRCs (Dunning, 1993).

3.2.5. Filtering of generated training examples

The set of automatically extracted PRCs is rather noisy. Part of the reason is that the
training examples for (in)consistent words are automatically extracted and contain a
considerable amount of noise. We experiment with different filtering methods to create
a cleaner set of training examples and resulting PRCs. These filters are based on an
analysis of wrongly extracted examples, but address general issues that are common in
the area of sentiment analysis. Our filters are designed for high precision on filtering out
incorrect examples rather than recall.

The first and most important issue affecting the extraction of training examples is
subjectivity (cf. Section 2.2.1). Sentiment words do not express sentiment in every given
context. In a preliminary study on a subset of sentiment words extracted as training

examples, we found that about 50% of words extracted as inconsistent training examples
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did in fact not express sentiment in the sentence context. Consider the following example

with the marked sentiment words:
(3.5) “easypos to hold steady when using sloweryeg shutter speeds.” (positive)

The word “slower” does not express sentiment in this context, rather it describes a
setting. Identifying and discarding non-subjective phrases like these would improve the
classification results as well as the quality of the extracted polarity reversing construc-
tions. We implement several filters to tackle this issue.

Different words have different degrees of subjective usages?. In one of the dictionaries
we are using, two categories of sentiment words were distinguished and manually anno-
tated: weakly and strongly subjective words. Strongly subjective words are subjective in
most contexts, whereas weakly subjective words only have certain subjective usages but
may have other non-subjective uses (Wilson et al., 2005). To get a higher percentage of
actually subjective usages in the training examples, we use only strongly subjective sen-
timent words from the dictionary. Some examples of strongly subjective words include
“excellent”, “great”, “disappointment”. Examples for weakly subjective words are “slow”,
“easy”, “lose”. We call this filter SUBJSTRENGTH.

Some sentiment words from the dictionary can occur with a POS that never expresses
sentiment such as interjection. Consider these examples of extracted training examples

for the positive sentiment word “okay”™

(3.6) a. “pictures are okaypes,yy but not great.” (negative)

b. “Okayyos,un, now to the cons: The battery life could definitely be better.” (negative)

In the first example, the word occurs as an adjective (JJ) and expresses an opinion.
In the second example in occurs as an interjection (UH) to introduce a new part of the
review and does not express any opinion, so no training example should be extracted.
There are several such POS that never express sentiment which we ignore: interjection
(UH), preposition (IN), determiner (DT) or cardinal number (CD). Note that we are
not removing the words from the dictionary, we only ignore occurrences in the data with
these specific POS. We call this filter POSIGNORE.

Another reason that a sentiment word may not express an opinion is that sometimes
sentiment words occur in an objective context as part of aspects or environment descrip-

tions. A few examples from our data:

”

(3.7)  a. “Very minor chromatic distortion with widepos angle ...” (negative)

b. “in lowyeg lightyos conditions images tend to get blurred.” (negative)

Zpeliability” in Wilson et al. (2005)
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POSy POS; POS; Example aspects

NN NN “battery life”, “picture quality”
(CD) JJ NN “optical zoom”, “mega pixel”
) JJ NN “sound quality”, “wide angle”
(IN) JJ NN “bright sunlight”, “low light”

Figure 3.3.: Patterns used for aspect bigram extraction. The token matching POS, is
not extracted as part of the bigram.

c. “The compact flashyeg card is easy to use and seems more durable to me that the

smart,.s media card.” (positive)

While a camera having a “wide angle” expresses positive sentiment about the camera,
in this case the “wide angle” only refers to a setting for the camera. Other similar cases
are environment descriptions (“in bright light”) or names of camera parts or accessories
(“flash card”, “smart media card”).

This can be viewed as sentiment words occurring as part of a product aspect® which
should be ignored. As we do not have a list of aspects from our domain, we extract
aspects automatically. Following Glaser and Schiitze (2012), aspects are most often
nouns or contain a noun. Single noun aspects are a problem of the dictionary, at this
point we are interested in bigram aspects. To extract these, we define a list of extraction
patterns on POS as shown in Figure 3.3. In trigram patters only the last two tokens
are extracted as a bigram, but the POS of the word before the extracted bigram has to
match the first POS of the pattern. We extract the most frequent bigrams as aspects for
our domain. A manual inspection of the extracted bigrams confirms the claim of Glaser
and Schiitze (2012) that nearly all frequent bigrams in a domain corpus are aspects, so
no further processing is performed. Once created the list of aspects, we ignore sentiment
words that occur as part of an aspect in the text. We call this filter ASPECTS.

Finally, another reason that a sentiment word does not express sentiment is that it is

acting as an intensifier for another sentiment word. Consider the following examples:

(3.8) a. “Itis ridiculouslynes easypos to use.” (positive)
b. “digital zoom is prettyyos useless,e, because of quality.” (negative)

c. “The sound quality is vastly,es itmproved,s.” (positive)

Even though “ridiculous” on its own is a negative sentiment word, in the example

it only serves to intensify the positive sentiment of “easy” and should not be extracted

3While settings and parts certainly qualify as product aspects, environment descriptions would proba-
bly not qualify, but as they follow the same patters, we include them with aspects for our purposes.
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as a reversed training example. For our filter, we ignore adverbs that modify another
sentiment word (of all POS tags, these will be adjectives or verbs). Adjectives can
also intensify nouns, but the situation is less clear, so we currently restrict ourselves to
adverbs. We call this filter INTENSIFIER.

Besides words that do not express sentiment, we have a second issue that produces
errors in the extraction of training examples: words that express a different polarity
than the one contained in the dictionary. The domain-specificity of sentiment words is
well-recognized in sentiment analysis (Pang and Lee, 2008). The sentiment dictionary
we are using has been created for the domain of news texts, but we are analyzing product

reviews. Consider the following examples:

(3.9)  a. “photos are sharppes with acurate color.” (positive)
b. “technical support,es for both samsungsprint pcs are in the dark.” (negative)
c. “you have the options of taking black,eg and white photographs and there are some

color filters available as well.” (positive)

The word “sharp” is contained in the dictionary as a negative sentiment word, but
the usage in our domain in the context of pictures is always positive. Another example
is “support” which the dictionary assumes to be a positive sentiment word, but most
occurrences in our data are neutral, e.g., “technical support” or “customer support”.

We want to remove words that are not sentiment words in our domain or mostly
express a different polarity, but we do not have a domain-specific list and do not want to
invest the manual annotation effort. As we have lots of annotated data with sentiment
on the document-level, we can train a classifier with unigram features in the domain.
The unigram features with high weight for a class are good indicators for the class in
the domain. But not all features are sentiment words, e.g. “pda” has high weight for the
positive class in our domain, because it is something special and good for a phone to be
usable as a PDA (personal digital assistant)?. Using the classifier features directly as
sentiment words would not give very good results. We therefor use the classifier features
only to filter the manually created sentiment dictionary. Words from the subjectivity
clues list are only included in our list of sentiment words if they are among the ¢ features
with highest weight for the class. We call this filter DOMAIN.

Finally, instead of filtering the training examples or the dictionary, we can also filter
the resulting set of PRCs. One case that creates false positive PRCs is a fixed word
combination where one of the word is a sentiment word and the combination often

occurs in the combination in sentences with the opposite polarity. An example is the

4The reviews in our data are from the years 2006-2008 where this was a thing.
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construction ADJ<drive_N which is extracted as a PRC, because “hard” is a negative

sentiment word and the combination “hard drive” often occurs in positive contexts:

(3.10)  a. “The main reasons I purchased this device were [. .. | hardyeg drive, [...[” (positive)

b. “It acts like a small hardyes drive!” (positive)

All instances of the construction ADJ<drive_N are in the context of mentioning ‘“hard
drive” in a positive context, there is no other adjective that is used in this combination
with “drive”in our data. To avoid PRCs that do not generalize to other sentiment words,
we exclude candidate paths that are always extracted from the same sentiment word in
the corpus. We call this filter SINGLETONS.

To summarize, our filters address

e subjectivity (filtering training examples for non-sentiment uses of sentiment words:
SUBJSTRENGTH, POSIGNORE, ASPECTS);

e intensifiers (filtering training examples for uses as sentiment INTENSIFIER);

e domain-specificity (filtering the dictionary for systematic polarity differences in
the DOMAIN); and

e spurious PRCs (filtering the resulting PRCs for SINGLETONS).

3.3. Automatic polarity annotation of sentences

Our approach for extracting PRCs requires a large number of labeled sentences to get
enough training examples for a reliable extraction. The sentence-level annotated cus-
tomer review data sets (Hu and Liu, 2004; Ding et al., 2008) that we use for evaluation
only contain about 2000 sentences each and thus are too small for our purposes. Another
sentence-annotated corpus is the sentence polarity movie review data set (Pang and Lee,
2005) of about 10000 sentences. This data set is not the result of manual annotation of
sentences, but labels have been automatically assigned to snippets that are used to rep-
resent the reviews on rottentomatoes.com. Snippets may not be sentences. Also, this
data comes from the movie domain, which is a very different domain from the electronics
reviews we are working on. This is why we decide against using this data set.

To avoid the manual annotation effort of annotating a large number of sentences, we
make use of semi-structured reviews to automatically extract labeled sentences. We
use the sentences only for the automatic extraction of PRCs, not to evaluate polarity
classification. We call this data set PROSCONS.

Figure 3.4 shows an example of a semi-structured review. In addition to the written

text of the review and a star rating, the users provide “pros” and “cons”. The “pros” refer
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LLE VH n
Nice camera, worth the money

Yk on February 23, 2009 by jmost

Pros

Easy to use, very good outdoor pics, battery life is very good.

Cons

Indoor flash pics tend to be too bright for close objects.

Summatry

This is my 5 digital camera and my first DSLR. Overall | am very pleased with the photo quality
and easy of use. Color balance has been right on for most pics. Battery life has been
excptlional. Having two manual control knobs rather than having to use the menus has been
very positive and fast.

Reply to this review | Was this review helpful? 0 <& 7 0 % ™ A

Figure 3.4.: Example of a semi-structured review from epinions.com (screenshot taken
on June 13th, 2012).

to aspects of the product the user evaluates as especially positive, the “cons” to aspects
the user evaluates as especially negative. We refer to both collectively as keyphrases. Our
goal is to align the aspects discussed in the keyphrases with the review text. Assuming
that one aspect is evaluated consistently as positive or negative in one review, we can
then extract sentences referring to the aspects. If the aspect was mentioned in a “pro”,
the corresponding sentence receives the label positive, if the sentence was extracted
because of an aspect mentioned in a “con”, it receives the label negative.

For our extraction, we distinguish three different types of keyphrases as illustrated by

these examples:
(3.11)  a. “Indoor flash pics tend to be too bright for close objects”

b. “HD wvideo”
c. “Fasy to use”
Keyphrase 3.11a is a complete sentence and can be extracted as-is. We use all

keyphrases longer than 3 tokens directly as a sentence with the corresponding label.
Keyphrase 3.11b only states an aspect of the product. We take the complete keyphrase
to be an aspect and check for every sentence in the review text whether it contains the
aspect. If so, we extract complete sentence with the corresponding label. Keyphrase
3.11c names an aspect, but also contains a sentiment word. In this case we remove all
sentiment words using a sentiment dictionary, and then proceed the same way as with

keyphrases containing a single aspect.
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Cameras Cellphones

Number of reviews 12586 4856
Avg. review length (words) 1014.2 1056.9
Avg. number of keyphrases 4.84 4.91
No. annotated sentences extracted, keyphrases 19995 5987
No. annotated sentences extracted, text 22143 10378
No. annotated sentences extracted, total 42138 16365

Table 3.1.: Statistics of automatically annotated PROSCONS data set.

#Sentences Agreement Kk

Cameras, keyphrases 312 0.88 0.77
Cameras, text 324 0.70 0.32
Cameras, total 636 0.79 0.61
Cellphones, keyphrases 305 0.89 0.77
Cellphones, text 330 0.71 0.37
Cellphones, total 635 0.80 0.62
Total 1271 0.79 0.61

Table 3.2.: Agreement and s between the manual and automatic annotation of a random
subset of sentences from PROSCONS extracted by our method.

Our process is not intended to provide a label for every sentence in every review, but
instead to extract a few sentences where we can be reasonably sure about the label.
Branavan et al. (2009) have researched the relation of keyphrases with the review text
and note two characteristics they call incompleteness and inconsistency. Incompleteness
refers to the fact that not every aspect mentioned in the keyphrases will be mentioned in
the text and not every aspect mentioned in the text will have an associated keyphrase.
In the subset of reviews Branavan et al. (2009) investigated, they found more than 40%
of reviews to be incomplete. Inconsistency refers to the issue of using different words
to refer to the same aspect, e.g., a user might use “user-friendly” instead of “easy to
use” or users might talk about “photo quality”, “picture quality”, “image quality”, “quality
of images” and so on. This is not only a cross-review problem, but happens even in
the same review. In the domain of restaurants, Branavan et al. (2009) count 15-27
different phrases for each of the six most common properties of the domain where the
most frequent phrase was used to describe the aspect in only 33% of cases on average.

Due to incompleteness, labeling every sentence in a review by using keyphrases will

not be feasible, even by a perfect method. But more sophisticated methods may be
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able to address sentences that our system misses because of inconsistency. We also miss
aspects that are listed in a complete sentence in the keyphrases, we do not check for this
aspect in the review text, though it may still appear in a sentence in the review text.

Still, even with our basic method we manage to get a sufficient number of annotated
sentences for our purposes. We apply our extraction method to an existing corpus of
semi-structured reviews from epinions.com containing camera and cellphone reviews®
(Branavan et al., 2009). The different aspects in pros and cons are already separated.
Table 3.1 contains statistics about the data. Our extraction methods results in about
58000 annotated sentences.

To judge the quality of the extraction method, we have manually checked the labels
of a random subset of the automatically annotated sentences. We had one annotator, a
graduate student of computational linguistics, who annotated a total of 1271 sentences.
Half of the sentences were from the cameras part and half from the cellphones part.
For each part the sentences were distributed roughly so that half of the sentences were
labeled keyphrases and the other half sentences extracted from the review text. Table 3.2
shows some details about the agreement numbers. The agreement of the automatic and
manual annotation on the complete set is rather high with 0.79. Cohen’s & is 0.61 which
is considered substantial agreement.

The following reflects some sentences where the annotator disagreed with the system

on keyphrases that were extracted as complete sentences:

(3.12) a. “NONE this is one of the best” (con vs. positive)
b. “slightly more costly than others but worth it” (con vs. positive)

c. “produces pseudo shutter sound” (pro vs. neutral)

Sometimes users do not have anything to list for a pro or con and instead of just
leaving the field empty, they write something that does not really refer to any aspect of
the product (Sentence 3.12a). Also, they might want to hedge a con for a very positive
review or play down a pro for a very negative review, like in Sentence 3.12b where the
keyphrase contains more than one polarity. The annotation was done on the sentence
alone, without the context of the review, so it is sometimes difficult to decide what
sentiment is expressed and what it is expressed on. Also some judgments are subjective,
presumably the reviewer writing Sentence 3.12c¢ likes that the camera makes a sound
while other users may disagree about that.

Agreement on sentences that are extracted from the review text based on aspects
mentioned in the keyphrases is lower than for complete keyphrases, as there are more

possibilities for errors. Consider the following sentences:

Shttp://groups.csail.mit.edu/rbg/code/precis/ (camera and cellphone data sets)
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(3.13)  a. “Because they’re rather inexpensive compare to other memory options, for example,
a 64MB Memory Stick would cost double the price of a 64MB CF.”
(con “cost” vs. neutral)
b. “Canon S60 - nice wide angle, but extremely slow camera and mediocre battery life.”
(pro “good battery life” vs. negative)
c. “The button is small and hard to push, and the camera beeps with each push.”

(pro “small” vs. negative)

Sometimes an aspect may occur in a neutral sentence that says something general
about some aspect (Sentence 3.13a), as the name of a setting or in a description. Longer
reviews frequently compare a product to others, so an aspect that is positive for the
given product may be mentioned as negative for a different product (Sentence 3.13b).
Also, a more generic aspect may be matched to a different context that actually talks
about a different aspect of the product (Sentence 3.13c) .

There are many directions to improve the automatic polarity annotation of sentences
from semi-structured reviews, both in terms of precision and in terms of recall. Still,
agreement numbers are not bad and we expect the advantage of having a large amount

of data to outweigh the noise introduced by incorrect labels.

3.4. Experiments on PRC extraction

The first set of experiments evaluates the approach for automatically extracting Polarity
Reversing Constructions (PRCs) as presented in Section 3.2.4 and explores the use of
the filters introduced in Section 3.2.5.

3.4.1. Data and experimental setup

For our approach we need a dictionary of sentiment words, a large amount of sentences

labeled with polarity and a set of manually labeled PRCs for evaluation.

Sentiment dictionary. As our sentiment dictionary we use the MPQA subjectivity
clues® (Wilson et al., 2005). An entry in the dictionary consists of a word, its POS
tag (one of 'noun’, 'verb’, ’adj’, 'adverb’ or ’anypos’ which are mapped our generalized
POS tags N, V, ADJ, ADV and O), its polarity and a subjectivity strength (strongly
or weakly subjective). The same word may have two or more entries with different

polarities, with one exception (“boast” as a verb) these are for different POS tags. If

Shttp://mpga.cs.pitt.edu/lexicons/subj_lexicon/
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Annotation of Polarity Reversers - | o

Candidate to be annotated:

ADV<AD]<*<small ADJ

Select label — | Annotate
Next candidate More usage

Ocurrences in Corpus:

1

It 's small enough to carry around comfortably , but not too  small to the point where
I feel like I might lose it .  (POS)

small but not _too  small  (PDS)

For a summary of the features , check out the vendor 's website : http :

//www . lginfocomm.com / home / TM-510 phone.asp Pros : - Tri-mode { PCS , COMA , Analog )
- Small but not _ too  small like the Vader phone .  (POS)
" The keypad is quite difficult to use -- the keys are too small and _too  close

together .  (POS)
Unlike other companies which attempt to achieve a very expensive feel to the phone ,
Motorola has actually managed to do this and when using the phone you feel that it is not

too light or too heavy , not to small and not _ too  big , it is just right .  (POS)
Full Review The Nokia 918 is a good looking phone and is nice in size , not too small and
nnt +rn hin pngy i

Figure 3.5.: Screenshot of the annotation tool for PRC annotation. The candidate PRC
is marked in red on yellow background, the sentiment word it modifies is
enclosed in __ and marked in blue.

there are several polarities for a given word in a given context, it is always treated as
consistent (majority class). The dictionary contains 6456 words; 2304 of them positive
(2718 entries) and 4152 of them negative (4911 entries). We refer to this dictionary with
MPQA in the following.

Labeled sentences. As data for the extraction of PRCs we use the PROSCONS sen-
tences created as described in Section 3.3. The sentences from the camera and cellphone
parts are used together, as the evaluation data is also from a mixed domain. In total,
we have 58504 sentences. With the MPQA dictionary, we find a total of 83269 senti-
ment words in 42949 of the sentences. 24303 of the found sentiment words have a prior

polarity inconsistent with the sentence polarity (29%).

Gold PRCs. To directly evaluate the extracted PRCs against a set of gold-standard
PRCs, we had our annotator label some syntactic constructions as PRCs or non-PRCs.
For the annotation, the annotator was presented the syntactic construction in the form
of ABSTRACT PATHS along with a number of usage examples. In these examples the
candidate word of the PRC and the sentiment word at the end of the path were marked.

The annotator had to chose between the labels reverser, nonreverser and uncertain.
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Uncertain examples were decided in discussion with the author. Figure 3.5 contains a
screenshot of the annotation tool.

The resulting set of 70 gold PRCs can be found in Figure A.1. Note that we did
not attempt to create an exhaustive list of all existing PRCs. Rather we annotated the
constructions extracted as PRCs by different versions of our system to see which of them
are truly PRCs.

Experimental setup. We run our PRC extraction approach presented in Section 3.2.4
for all three representations for syntactic constructions (LEMMAS, SIMPLE PATHS and
ABSTRACTED PATHS) and test the three different scorings of PRCs (relative frequency
fre1, Mutual Information MI, extended Mutual Information MI+) with path lengths be-
tween k = 1 and k = 6. Corresponding to the number of manually annotated construc-
tions in the gold PRCs set, we extract the top 70 constructions. To exclude infrequent
outliers, we set a minimum threshold of 10 occurrences for a construction in all exper-
iments. As we do not have an exhaustive list of all existing PRCs, we do not evaluate
the recall of our approach. Rather we present results for the percentage of the top n

extracted constructions that are actual PRCs, i.e., precision.

3.4.2. Results and discussion
Basic results

Figure 3.6 shows some results in terms of the percentage of the extracted constructions
that are actual PRCs contained in our list of gold PRCs (the complete results are in
Table A.2). For LEMMAS, adding more context by increasing k leads to less actual
reversing words that are found with f,q and MI+. This is understandable as most re-
versing words occur close to the sentiment word. Adding more words from the context
without position information only adds noise. As an example consider the word “with-
out”. At k =1, it occurs more often in reversing contexts, e.g., “without worrying,e, .
Using k = 2 adds a large number of occurrences in non-reversing contexts, e.g., “great,os
pictures without flash”. The difference in number of occurrences is still large enough that
“without” receives a high MI score, but it gets discarded with MI+ as it occurs more
often in non-reversing contexts.

SIMPLE PATHS profits from the introduction of siblings at k& = 2 which is a very

frequent construction for polarity reversal in predicative sentences:

(3.14) “However, the battery is not very goody.s” (negative)
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2 4 6 2 4 6
(a) LEMMAS (b) SIMPLE PATHS (c) ABSTRACT PATHS

Figure 3.6.: Percentage of correctly extracted PRCs at n = 70 for different representa-
tions (LEMMAS, SIMPLE PATHS and ABSTRACTED PATHS), path length k
between 1 and 6 and scoring with —e— f., -+- Ml and = MI+.

Both “not” and “good” are dependents of “is”. With bigger k, occurrences further away
cannot be distinguished from close occurrences and add noise, just like with LEMMAS.

For ABSTRACT PATHS increasing k has a positive effect until about & = 4. This makes
sense as ABSTRACT PATHS explicitly includes the distance k& and uses it to distinguish
different constructions. After £ = 4 the results do not change much, as only very few
longer constructions occur sufficiently often to make it into the top of the list.

The highest number of actual PRCs are found when representing syntactic context
with ABSTRACT PATHS, but in general, numbers are rather low. Of the top 70 AB-
STRACT PATHS extracted as PRCs at k = 4 with MI, only 13 are correct (19%). For
the same setting, but using f.e only 14 are correct (20%). Results for MI+ are better,
but still noisy: 20 out of 70 constructions are correct (29%).

Not only the numbers, but also the syntactic constructions extracted with the different
scoring methods are very different. Figure 3.7 shows the top ten constructions extracted
for ABSTRACT PATHS with each of the three scoring methods.

Out of the top 10 constructions extracted with f.,, none is an actual PRC. The
top construction for scoring with f,, ADJ<V<0>N>battery_N, comes from sentences like
“battery life could be better” which express a negative sentiment. The related construction
ADJ<V<0>life_N is on position 11. Although “could/would/should be ADJ” (ADJ<V<0)
is used in combination with other aspects as well (“led quality could be a bit better”,
“10x zoom would be nice”, ...), the phrase “battery life” is the one most mentioned in
this construction (39 times compared to 14 times for the second-most frequent word
“quality”). The second-ranked construction, N<cards_N, is an example of a construction

extracted because of the occurrence of sentiment words in aspects like “flash cards”.
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ADJ<V<O>N>battery_N X ADJ>0>use_V X ADJ>not_ADV
N<cards_N X ADJ>to_0 X ADJ<V>not_ADV
ADV<ADJ<0<small_ADJ X ADJ>not_ADV v N>no_DT
PR<V>ADJ>quite_ADV X ADJ<V>not_ADV ADJ<V<could_0 v
ADV<N<V<that_PR X ADJ<V>N>the_DT X N>low_ADJ
PR>V>and_0 X N>no_DT v N<N>low_ADJ X
PR<V>ADJ>0>use_V X ADJ<V<could_0 v N<in_PR X
PR<V>feature_N X ADJ>very_ADV X ADJ<N>not_ADV
ADJ<0<ADJ>bit_N X N>low_ADJ PR<be_V X
ADV<ADJ<but_0 X ADJ<V>and_0 X V<V>not_ADV v«
(a) frel (b) MI (c) MI+

Figure 3.7.: Top 10 extracted PRCs for ABSTRACT PATHS at k = 4 with different scoring
methods. Correct PRCs are marked with «, extracted non-PRCs with X .

With MI, some actual PRCs are found in the top 10 constructions. The two top con-
structions for MI, ADJ>0>use_V and ADJ>to_0, are both indicators for the non-reversed
class as it is often used in constructions like “easy to use” in positive contexts. The
negated version, “not easy to use”, appears to be less frequent.

In the results for scoring with MI+, the top two constructions of MI are are filtered
out, as they are indicators for the non-reversed class. All actual PRCs extracted by MI
are kept. The first errors for MI+, N<N>low_ADJ at position 6 and N<in_PR at position

7, are examples for a description of the environment or settings, e.g., “low light shooting’

or “in low light” which we have already discussed in context with filters.

Results with filters

After finding the best settings for the basic parameters, we now apply the different filters
discussed in Section 3.2.5. We use the best performing system to test the filters, i.e.,
ABSTRACT PATHS with MI+ scoring, which is included in the plots as BL. Figure 3.8
shows some results split into two plots for better readability.

We can see that the SUBJSTRENGTH filter performs worst of all, introducing errors
instead of removing them. When we apply this filter, the number of found sentiment
words drops drastically from about 83000 to only about 30000. This is expected, but
the expectation was that the remaining training examples are of better quality because
non-subjective uses of words where there is no real reverser present are excluded. A
manual inspection of the filtered words confirms that this is not always the case. Even

if there is overall a slightly better quality of training examples, this cannot compensate
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for the smaller amount of training examples overall.

For the DOMAIN filter, we train the Stanford MaxEnt classifier” (Manning and Klein,
2003) with unigram features and default settings on the PROSCONS data to distinguish
positive from negative sentences. We use the c features with the highest weights for
each class to filter the dictionary. We exclude non-word features, which leaves about
10500 features. For illustration, the top 10 positive features from the classifier are “ca-

o PrE1 P2 Pr A1

pable”, “amazing”, “wonderful”, “convenience”, “tons”, “inexpensive”, “telephone”, “pros”,
2 14

“excellent”, “solid”. The top 10 negative features are “lacks”, “worst”, “heats”, “poor”,

“horrible”, “scratches”, “dislike”, “U” (from “I’ll”), “fragile”, “concern”.

The plot shows the result for 1000 features, but the results are very similar for all cases
where we filter for the up to 7000 top features. For the top 1000 features, the resulting
filtered MPQA dictionary contains only 131 positive and 145 negative words. As we can
see, performance drops sharply, nearly as much as for SUBJSTRENGTH. Only after using
the top 8000 features, the numbers rise again to the baseline, but never improve upon
it. At this point the dictionary contains about 600 words of each polarity and 75000
sentiment words are found — nearly all that are contained in the data. The reason for
the low performance is that many bad sentiment words are not filtered out, because even
though they do not occur as sentiment words, they still occur in a context that fits their
dictionary polarity. For example while the word “brightness” is not a positive sentiment
word in our domain, it is often mentioned in positive contexts such as “you can adjust

the brightness”, so it still gets a high weight for the class positive from the classifier.

Using the filter INTENSIFIER does not have a significant influence on the results. This
filter only affects the extraction of PRCs that have adverbs in their scope. Constructions
of length one which end at a sentiment word, like ADV<useless_ADJ or ADV<bad_ADJ, are
dropped completely. Most other constructions just change position a few places up or
down, because intensifying uses are found with roughly the same percentage in reversing
and non-reversing contexts. As a result, the final extraction performance stays roughly

the same with the filter as without using the filter.

The difference to the baseline when filtering for ASPECTS is even smaller than for
INTENSIFIER. Aspects are extracted from the PROSCONS corpus. There are a total
of 17484 bigram phrases, 32 occur 100 times or more, but only 200 occur more than
20 times. The plot contains the results for using the top 100 aspects. Varying the
number of aspects in the list to ignore between 0 and 150 does not make a big difference

in the result, afterwards results drop slightly. When we look at the two constructions

"https://nlp.stanford.edu/software/classifier.html
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(a) Subjectivity filters (b) Other filters

Figure 3.8.: Percentage of correctly extracted PRCs at n = 70 for different path lengths
k with filters. BL refers to the best system of the base settings, i.e., AB-
STRACT PATHS scored with MI+-.

discussed as examples in Section 3.2.5, N<N>low_ADJ disappears completely from the list
and N<in_PR is relegated to position 2106. Unfortunately, they are replaced with equally
bad alternatives: PR>be_V, PR<V>N>the_DT (mainly because of “although the X is” with

“although” as a sentiment word) and ADJ<at_PR (from “at least” or “at best”).

The filter SINGLETONS is the first to improve upon the baseline, although only slightly.
The first change is to (correctly) remove ADJ<0>at_PR at position 29 which only occurs in
combination with the sentiment word ‘“least” when used like “at least 130k pizels” where
“‘least” is not a sentiment word at all. Next are ADJ>0>white_ADJ (“black and white”)
and some constructions with the sentiment word “although™ PR>V>it_0, PR>V>i_0 and
PR>V>not_ADV. The example that prompted the filter, ADJ<drive_N is still in the list,
because the data contains several modifiers for the word “drive”, some examples are “free
[zip] drive”; “powerful [high-speed lens| drive”, or “portable [hard] drive”.

The biggest improvement over the baseline comes from using the filter POSIGNORE,
although it still only improves precision from 29% to 31% for k = 4. POSIGNORE
allows us to get rid of PR>be_V, PR<V>N>the_DT and many other constructions that are
based on occurrences of very questionable sentiment words like “although”, “at least” or
“above” which are almost all in non-sentiment contexts. We have tried the combination
of POSIGNORE with the other filters, but got no or only marginal improvement. In all

cases correctly excluded constructions were replaced with equally bad alternatives, so



64 3. Polarity reversing constructions

that the overall performance change was minimal.

Our final set of PRCs that we use in the following experiments is the set extracted
with the following settings: ABSTRACT PATHS, MI+ scoring, path length k£ = 4 and
POSIGNORE filter. While even our highest result does not look very promising (only
31% of extracted constructions are really PRCs), as we will see, we can still use noisy

PRCs successfully in polarity classification.

3.5. Experiments on consistency and polarity

classification

The second set of experiments evaluates our system on the tasks of word-level consistency

classification and sentence-level polarity classification as described in Section 3.2.1.

3.5.1. Data and experimental setup

Sentiment dictionary. As our sentiment dictionary we use the MPQA subjectivity
clues described in the previous section (Wilson et al., 2005).

To investigate the influence the sentiment dictionary has on the results, we repeat
the experiments with the General Inquirer dictionary (Stone et al., 1966) which contains
3518 words; 1775 words or 2083 entries positive and 1743 words or 2074 entries negative®.
The entries consist of a word, its POS tag and its polarity. The dictionary contains the
POS tags 'noun’, 'modif’, ’supv’ which are mapped to our generalized POS tags N, ADJ,
V respectively. If nothing is found O is assigned. We refer to this dictionary by GI in
the following. There are 23 cases where the word with the same POS tag can have both
polarities. If there are several polarities for a given word in a given context, it is always

treated as consistent (majority class).

Sets of PRCs. Our final set of PRCs that we refer to as PRC-SYSTEM in the following
experiments is the best set of 70 extracted PRCs from the previous set of experiments,
i.e., the set represented as ABSTRACT PATHS and created with MI+ scoring, path length
k = 4 and POSIGNORE filter. We additionally use the manually annotated list of gold
PRCs (PRC-GOLD) described in the previous section extraction as an upper bound of

the performance we can expect with automatically extracted PRCs.

8using the categories from Choi and Cardie (2008); for positive words: "pos’, 'pstv’, 'posaff’, "pleasur’,
'virtue’, 'increas’; for negative words: 'negativ’, 'ngtv’, ‘negaff’; 'pain’, 'vice’, "hostile’ , 'fail’, ’enlloss’,
"wlbloss’, ’tran-loss’ (see http://www.wjh.harvard.edu/~inquirer/homecat.htm).
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Evaluation data. As evaluation data we use the two customer review data sets, one
with 5 products? which we call HL (Hu and Liu, 2004) and one with 9 products'® which
we call DL (Ding et al., 2008). The products are mostly electronics (cameras, cellphones,
DVD and mp3 players), but some reviews also discuss other less related products, e.g.,
a garbage bin or anti-virus software.

The original data is annotated with polarity at the aspect level. To create sentence
polarity annotations, we take the aspect label as sentence label if there is only one aspect
or all aspect labels have the same polarity. If a “but” separates two aspects of conflicting
polarity, the two parts of the sentence are split and separately annotated. If no splitting
is possible or there is no annotated aspect, the sentence is ignored.

To be able to more directly evaluate the consistency classification part of our system,
we have annotated both data sets on the level of all found sentiment words from the
MPQA dictionary. The annotation was done by our graduate student of computational
linguistics. The annotator had to chose one of the labels consistent, inconsistent or
non-sentiment. Unclear cases were decided in discussion with the author.

Consider an example sentence with all sentiment words identified and numbered:

(3.15) “The reception is goody and I had no problems(;) with the handset pressedp; against,

my ear.”

Th annotator chose consistent for word [0] “good”, inconsistent for word [1| “prob-
lems”, and non-sentiment for [2]| “pressed” and [3] “against”.

Some statistics about the data can be found in Table 3.3. The second row contains
the number of sentences that contain at least one sentiment word, as these are the only
ones we can only compute a useful polarity score. Sentences without sentiment words
are ignored for the evaluation. The numbers for found (in)consistent sentiment words
refer to the words automatically extracted with the method presented in Section 3.2.3,
the numbers for annotated (in)consistent sentiment words to our annotation. For the
evaluation of word-level consistency classification, words annotated with non-sentiment

are mapped to consistent (majority class).

Experimental setup. We evaluate on two different tasks corresponding to the two lev-
els of annotation in our data. The task for word-level consistency classification on our
word-level annotated data is to classify sentiment words in context as either consistent
or inconsistent. For sentence-level polarity classification, the task is to classify sen-

tences as either positive or negative.

Yhttp://www.cs.uic.edu/~1liub/FBS/CustomerReviewData.zip
Onttp://www.cs.uic.edu/~1iub/FBS/Reviews-9-products.rar
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HL DL
Mpra GI  MpQA GiI
polar sentences 1726 2100
polar sentences with sentiment words 1446 1492 1734 1809
... positive sentences 948 947 1142 1164
. negative sentences 498 545 592 645
found sentiment words 2930 3438 3475 4423
. consistent words 2109 2337 2459 2875
. inconsistent words 821 1101 1016 1548
annotated sentiment words 2930 - 3475 -
. consistent words 1716 - 1884 -
. inconsistent words 257 - 323 -
. non-sentiment words 957 - 1268 -

Table 3.3.: Statistics of customer review data sets of 5 products (HL) and 9 products
(DL) using the sentiment words from MPQA and GI.

We evaluate on each data set separately. We report accuracy (A), precision (P),
recall (R), Fy scores (F) for each class and macro F scores (F,,) over the two classes.
Accuracy is a less suitable performance measure for this task as the data set is skewed
(about two thirds of sentences are positive and about 90% of words are consistent), so
we mainly focus on macro Fj scores.

Statistical significance is measured with the approximate randomization test (Noreen,
1989). We use 10000 iterations and measure whether the difference in macro F; score
to negation voting with PRC-GOLD resp. classifier voting with BOC is statistically
significant at p < .05.

Sentences have been parsed with the MATE dependency parser (Bohnet, 2010). For
classification, we use the Stanford MaxEnt classifier'’ (Manning and Klein, 2003) with
default settings. We use 10-fold cross-validation, folds are created randomly and numbers
are averaged over 10 runs.

We present results for the rule-based negation voting approach and the machine learn-
ing classifier voting approach separately and compare to different simpler systems based
on previous work. In both settings, we use the most simple BASELINE of all, standard
voting, which assumes every word to be consistent, i.e., we set Scons(w) = 1 for all words.
Polarity classification is then done by counting words only with their prior polarity (cf.

also Equation 3.1).

Hnttps://nlp.stanford.edu/software/classifier.html
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3.5.2. Results and discussion
Results for negation voting

We first look at rule-based negation voting where we consider a word to be inconsistent
when we find an odd number of negation cues in its context.

Besides the simple standard voting BASELINE, we use the common approach that uses
only WORDS as negation cues. We follow previous work (Ikeda et al., 2008) and define
context as the three words to the left and right of the sentiment word and use nine
negation cue words: “no”, “not”, “yet”, “never”, “none”; “nobody”, “‘nowhere”, “nothing”,
“neither”. We compare this to our system that uses either manually annotated PRCs
(PRC-GoLD) or extracted PRCs (PRC-SYSTEM) as negation cues. The system checks
a syntactic context of up to path-tree distance k.

Figure 3.9a contains some results for macro F} score on both tasks and both data sets
(the complete results are in Table A.3 for consistency classification resp. Table A.5 for
polarity classification). The two leftmost column blocks are on the task of word-level
consistency classification with the MPQA subjectivity clues on the two data sets (we do
not have word-level annotations for the GI sentiment words). The other four columns
represent results for the task of sentence-level sentiment polarity classification, first using
the MPQA, then the GI sentiment words.

The standard voting BASELINE that classifies every word as consistent and every
sentence by counting words only with their prior polarity is outperformed by all other
systems. Even using only a few negation words (WORDS) improves the classification
performance significantly over the baseline, both on word and on sentence level. The
results are given for using three words to the left and right as context. We have varied the
number of context words to use, but this setting yields the best performance, confirming
the results of previous work by Ikeda et al. (2008).

When we use syntactic context and check for the presence of gold PRCs (PRC-GOLD),
all results improve even further. The plot contains the result for using a path-tree
distance of £ = 3, which is the best result, but differences to using £k = 2 or k > 4 are
minimal. The noisy PRCs extracted with our system (PRC-SYSTEM) achieve a similar
performance as WORDS (the difference is never significant). For such a noisy set (only
30% of the extracted constructions actually are PRCs!), this is a promising result. The
patterns are the same for both sentiment dictionaries, but using the MPQA subjectivity
clues generally gives better results.

Some examples where PRC-GOLD correctly identifies words as (in)consistent where

WORDS fails to do so:
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(b) Machine learning based classifier voting

Figure 3.9.: Results results (macro Fj score) on the customer review data sets (HL, DL)
with MPQA and GI sentiment words on the tasks of word-level consistency
and sentence-level polarity classification.
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(3.16)  a. “I month, no problems,cs, great,os phone i’'m very pleased,.s with my 6610
phone.” (positive)
b. “also, the player sometimes freezes, not a very big problemyes, but can also be
annoyingye,.” (negative)
c. “1) a spare battery would have been great,os.” (negative)

In Sentence 3.16a, the word “problems” is correctly identified as inconsistent by both
systems, but if we only look at WORDS, the word “great” is also identified as inconsis-
tent, while our system recognizes that only the noun “problems” is in the scope of “no”.
The sentence classification is not affected, it is positive in both cases. Conversely, in
Sentence 3.16b, the word “problems” is not identified as inconsistent by WORDS, be-
cause the “not” is too far away. In the parse tree, it is a direct dependent of the noun
and correctly identified by the construction N>not_ADJ. In Sentence 3.16¢, using PRCs
picks up the construction “would have been” (ADJ<V<V<would_0) as a polarity reversing
construction for the sentiment word “great” in its scope.

We did some additional experiments with the PRCs extracted with f,o and MI (not
shown). Many of PRC extracted with MI are not actually PRCs, but words that indi-
cate consistent context, so as expected performance drops sharply, for word-level to the
baseline, for sentence-level even below (to a macro Fj score of about 50 to 55). When
we use the PRCs extracted with f.q, results do not drop as sharply, but are still below
using the PRCs extracted with MI+ or using WORDS. For consistency classification,

F7 score is about 63 and for sentence classification about 1 to 2.5 points above baseline.

Results for classifier voting

The second approach is machine learning based classifier voting, where a statistical
classifier is used to determine sqons(w) and we use its classification confidence as score.
Besides the standard voting BASELINE, we use a bag-of-words classifier baseline (BOW)
which determines Scons(w) with the left and right context words of the sentiment word
as features. This is a reimplementation of “word-wise learning” from (Ikeda et al., 2008).

We first compare BOW to using syntactic context in the form of syntactic construc-
tions (bag-of-constructions, BOC). This classifier uses all syntactic constructions (de-
scribed in Section 3.2.2) that can be extracted from the sentiment word up to parse-tree
distance k as features for the consistency classification of a given sentiment word.

As a final system, instead of using all constructions as features, we use only those that
are PRCs (bag-of-PRCs, BOPRC). Our intuition for this system is that as only polarity
reversal is marked, PRCs should be all that is needed to identify inconsistent words. All

other constructions may occur in consistent or inconsistent context and their occurrence
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does not carry any meaningful information to distinguish the two. Similar to the setup
for negation voting, we compare our noisy system PRCs (BOPRC-SYSTEM) to an upper
bound on performance with gold PRCs (BOPRC-GOLD).

Figure 3.9b contains results for macro F; score for the two tasks on both data sets
in the same format as for negation voting (the complete results are in Table A.3 resp.
Table A.5). We show results for a context of k = 3, the best performing setting.

Ikeda et al. (2008) report accuracy for sentiment-level polarity classification on the
HL data with the GI sentiment words. They give an accuracy of 71.6 for polarity
classification with the standard voting baseline, 73.3 for negation voting with words and
78.3 for “word-wise learning”. Our corresponding accuracies are 70.8 for the baseline,
72.9 for negation voting WORDs and 72.9 for classifier voting BOW (cf. Table A.5, the
numbers shown in Figure 3.9b are F; scores). There are slight differences to our work
in the dictionary setup and preprocessing (they report about 600 more negative words,
but find 200 sentiment words less than we do), but these should not account for such a
big difference in the results, so the reason for the discrepancy is unknown.

All versions of classifier voting improve upon the standard voting BASELINE that
classifies every word as consistent and every sentence by counting words with their prior
polarity. The BOW classifier is always outperformed by the BOC classifier, but the
difference is not always significant. The reasons for the improvements are similar to
those for negation voting. But because of the real-valued consistency scores, the impact
of a changed label on word-level may be smaller on sentence-level than in negation
voting, so the performance difference between systems is not as pronounced.

Telling the BOW classifier which features are important (BOPRC-GOLD) improves
performance significantly by a large margin on word-level classification, but this im-
provement does not carry over to the sentence polarity classification. On sentence level,
there is only a slight improvement for the HL data and MPQA sentiment words (not
significant), for the other settings the results drop to somewhere in the middle between
BoW and BOC. The main difference to BOC is that BOPRC-GOLD classifies less words
as inconsistent, BOC assigns the label inconsistent to about 370 to 390 words, while
BOPRC only to about 210 to 230 words. Another difference is that BOPRC-GOLD picks
up some more infrequent constructions, as seen in this example:

(3.17) “this phone won me over, and a big seller was the size; it fits nicelyyos into any pocket
without fallingyey out.” (positive)

The sentiment word “falling” is reversed by the construction V<without_PR. This
construction occurs only three times in the training data, so BOC is not able to pick

it up as a relevant feature for polarity reversal and “falling” is classified as consistent.
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But the construction is contained in the gold PRC list, so BOPRC-GOLD manages to
classify the word as inconsistent. On sentence level, for both systems the sentence is
classified as positive with a score of 0.31 (BOC) resp. 1.26 (BOPRC-GOLD).

The results for BOPRC-SYSTEM are not shown in Figure 3.9b, as the difference to
BOPRC-GOLD is always only 0.5 points F; score or less. Still, for such a noisy set, this is
actually surprisingly good. We have also again repeated the experiments with the PRCs
extracted with MI and f,.;. MI results in a sentence-level performance similar to M1+,
occasionally even better, while f.. gives results comparable to the BOW classifier.

In summary, we see improvements over the baseline with all types of context informa-
tion. In rule-based negation voting, the best results overall are achieved by using gold
PRCs. Using automatically extracted PRCs is most of the time worse than using a very
small number of keywords. For machine learning based classifier voting, on word-level
consistency classification using PRCs whether gold or automatically extracted beats ev-
ery other method by a large margin. This does not carry over to sentence-level polarity

classification though, where the best result is achieved by using all constructions (BoC).

3.6. Summary

This chapter addressed negation or polarity reversal which is our first example of a
complex verbalization of opinions. We presented a supervised machine learning based
approach to detect whether a sentiment word is consistent or inconsistent with its prior
dictionary polarity in a specific sentence context. As our first contribution, we have
shown that the use of paths through the dependency parse as features for the classifier
can improve performance on word-level consistency classification and on sentence-level
polarity classification. As a second contribution, we presented first steps towards auto-
matically extracting polarity reversing constructions (PRCs) from sentences annotated
with polarity. Even though the set of extracted PRCs is noisy, we can successfully use

them as features for our classifier to improve classification performance.






4. A corpus of comparisons in

product reviews

The content of this chapter has been published in (Kessler and Kuhn, 2014a).

4.1. Introduction

We have addressed the topic of negation as our first example for a complex verbalization
in the last chapter, Chapter 3. Starting from this chapter, the remainder of this thesis
focuses on comparisons, our second example of a complex verbalization. The analysis of
comparisons is of interest because they are relatively frequent in reviews (5-10% of sen-
tences in our data). Also, comparisons are presumably the most useful kind of expression
when it comes to supporting a process of choice, as they provide explicit comparative
assessments which can provide arguments to enable a user to make a decision between
several products. This chapter presents a corpus of manually annotated comparisons
that we have created as a basis for our work.

Sentiment analysis has attracted a lot of research in recent years and there is a wealth
of resources that are annotated with sentiment information on different levels of detail,
but comparisons have not received a lot of attention (see Section 2.5 for an overview).
Consequently, while there is a large number of annotated resources available for senti-
ment analysis, most annotations are based on the standard approach for aspect-based
sentiment analysis that presumes one target for each sentiment expression. This type
of annotation is insufficient to model the information contained in comparisons. To our
knowledge, to date there are only two popular English sentiment corpora in the domain
of reviews which include detailed annotations for comparisons and are publicly available
(J. Kessler et al., 2010; Jindal and Liu, 2006b). In these existing corpora many decisions
were left to the annotator, which leads to considerable variety in the data. Additionally,
each data set is a relatively small source of training examples for machine learning and
combining the two leads to a high degree of heterogeneity, since not only the domains

but also the annotations schemes vary.
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To overcome these limitations, we have decided to create our own data set of annotated
comparisons. We have chosen to annotate sentences from English reviews about digital
cameras taken from the data provided by Branavan et al. (2009). A comparison consists
of several parts that must be annotated in order to get meaningful information. Consider
the following examples:

(4.1)  a. “[It}g1 had a better [lens[a than [the D60gs.”
b. “[Itlz1 had a more [durable/s [lens|a than [the D60)gs.”

The main anchor for a comparison is the comparative predicate, the word or phrase
that expresses the comparison. In the example, the predicate “better” resp. “more” is
marked in bold. A comparison involves two entities that are set into a relation, “It”
and “the D60” in the examples, marked in brackets with a subscript E1 and E2. In our
data, most of the entities are products, specifically digital cameras. Two entities are
not usually compared in their entirety, but in some aspect, the component “lens” in the
example, marked with a subscript A. In the special case of multiword predicates like
“more durable”, a fourth argument type named scale is added to contain the modified
adjective or adverb, “durable” in the second example, marked with a subscript S.

A sentence may contain none, one or several comparisons. For our purposes we define
a comparison to be any statement about the similarity or difference of two entities
(Jindal and Liu, 2006b). Comparative sentences in the linguistic sense (“X is better than
Y” or “X is the best”) are included in this definition and indeed many comparisons are
of this form. But comparisons in user generated texts also contain many more diverse
statements that we also include in our definition, e.g., “X blows away all others”, “X and
Y have the same B”, “X wins over Y.

In the following, we first give a short overview of the existing data sets and their
annotations. Next, we present the process and the annotation scheme used to create our
corpus of comparisons in camera reviews. We then report the results of an agreement
study, give some statistics about our data as compared to the other existing data and
finally discuss some open issues and questions. To our knowledge, our corpus is the
largest source of comparison sentences in reviews to date. The data and the annotation

guidelines are publicly available on our website!.

4.2. Existing data sets

To our knowledge, to date there are two popular sentiment corpora in the domain of

reviews which include detailed annotations for comparisons and are publicly available.

http://hdl.handle.net/11022/1007-0000-0000-8E72-0
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Both corpora identify a comparative predicate as the anchor of a comparison, and for
each predicate two entities and an aspect, but they differ in many details. Also, some

decisions were left to the annotator, which leads to considerable variety in the data.

Jindal and Liu data set (J&L). Jindal and Liu (2006b) created the first data set
specifically for the task of identifying comparisons?. The data set contains approximately
650 comparison sentences from reviews, blog posts and forum discussions about various
topics ranging from digital cameras over processors to soccer and soft drinks.

In the J&L data, a comparison is represented as a tuple (relationWord, features,
entityS1, entityS2, type). Each part of the tuple can be empty or occur multiple times.
A sentence can contain several comparisons. There are no restrictions on the part of
speech tags or possible comparison expressions. Arguments are only annotated inside
the sentence. The relation word is the “keyword used to express a comparative relation
in a sentence”, i.e., corresponding to what we call the comparative predicate. The
part features corresponds to what later publications call the aspect. Entities in the J&L
corpus are annotated as entity S1 or S2 based on the order of appearance in the sentence,
the preferred entity is not marked. Every comparison is assigned one out of four types
of comparisons (1=equative, 2=non-equal gradable, 3=superlative and 4=non-gradable,
see also Section 4.4). Predicates are mostly single tokens, but there are some multiword
predicates annotated in the data, e.g., “as good as” or “one of the few”. One comparison
may have several predicates.

The following shows some example sentences from the data and their annotations

(sentences are provided in tokenized form in the original data):

(4.2)  a. “t’s because the [256 playerfentitys1 uses [flash memoryfeatures ( Saller / lighter )
and the [30gbfentitys2 uses a hard drive .” (non-equal gradable)
b. “the [flash card memoryjentitys1 is MoTe [expensivefteatures but is very light and com-
pact .” (non-equal gradable)
c. “to my ears , a [160 kbps wma filefentitys1 [Soundsfieatures just as good as the
[source cdfentitys2 , -- - (equative)
d. “[this[entitys1 phone is one of the few phones that have an [fm radio tunerfeatures

built in .” (superlative)

JDPA corpus (J-A, J-C). The JDPA (J.D. Power and Associates Sentiment Corpus)
corpus® by J. Kessler et al. (2010) consists of blog posts about cameras (about 500

2http://www.cs.uic.edu/"1iub/FBS/data.tar.gz
3http://verbs.colorado.edu/jdpacorpus/
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comparison sentences, abbreviated J-C in the following) and cars (about 1100 comparison
sentences, abbreviated J-A in the following). The corpus contains detailed information
about entities and sentiment expressions. Comparisons are annotated (annotation class
“Comparison”), but were not the focus of the annotation.

The anchor of the comparison is a comparison word, corresponding to our comparative
predicate. According to the annotation guidelines, only comparative adjectives and
adverbs (called “quantifiers” in the guidelines) are regarded as comparisons. In practice,
many more diverse expressions are annotated, especially in the later batches of the data.
A sentence can contain several comparisons. Comparison annotations have five slots
corresponding to the two entities (Less, More), the aspect (Dimension) and a basic
indicator for the comparison type (Same). Not all slots have to be filled, but each slot
can have only one value. Arguments may be outside the current sentence, but need
to be in the same review. Entities are annotated explicitly as the preferred (More)
or non-preferred entity (Less). The Same slot is a Boolean value that is set to true
if “two Entity Mentions are equal in the trait in question”, i.e., there is no ranking
introduced. The assignment of entities to the slots for the preferred and non-preferred
entity has to be made even if the comparison does not introduce an ordering, the order
of assignment into the two slots is not defined by the guidelines in this case. In some
cases, the comparison word is also marked as the aspect, e.g., in the phrase “higher
seating positions” the word “higher” should be annotated as both predicate and aspect.
The phrase “seating positions” is the target of the sentiment expression annotated at
the same point. Predicates can be multiword, but are mostly split into predicate and
aspect. A phrase like “more modest looking station wagon” would have “more” as the
predicate and “modest” as the aspect, the phrase “as good as” would have the first “as”
as the predicate and “good” would be the aspect.

The following shows some example sentences from the J-C camera data and their
original annotations (J-A sentences and annotations are similar):

(4.3)  a. “/350D]ore is actually even [smaller|piy then [300D]ess.” (same=false)
b. “[Ithiore 's more [ezpensive[pim than the budget-priced [L11]ess, but it’s still one of
the most affordable cameras available with manual exposure controls.” (same=false)

c. “Often, [they|rLess are as [cheap[pim as [anything/yore found online.” (same=true)

4.3. Data sources and annotation procedure

For our own annotated corpus, we have chosen to annotate camera reviews in order to

get data from the same domain as the existing corpora. In this way the JDPA camera



4.3. Data sources and annotation procedure 7

data set and the camera part of the J&L data could be added to our new data set to
form a larger (albeit noisier) training set for machine learning.

As most sentences in a typical review do not contain a comparison, we use a two-
stage annotation process. First, we use crowdsourcing to identify sentences that with
high probability contain a comparison. Only these sentences were then passed on to the

second stage and annotated in more detail by a trained annotator.

Data sources and preprocessing. We base our corpus of comparison sentences on the
camera data set provided in XML format by Branavan et al. (2009)*. They downloaded
a set of camera reviews from epinions.com and separated the review text from the
other information. Reviews that were duplicates, off-topic or not English were manually
removed when the annotators detected them (48 reviews in total). We removed HTML
tags from the review texts and used Stanford CoreNLP® (Manning et al., 2014) to
automatically do sentence segmentation and tokenization.

The first part of the data which we have published at LREC 2014 covers the reviews
from the top of the file until the review with id 649 (the listing of reviews is not always
according to the id). The second part covers part from the next review with id 694 until
the review with id 959. Not counting the ignored reviews, in total we have processed

930 reviews with over 17.000 sentences.

Identifying sentences that contain a comparison. We decided to use crowdsourcing
for the task of deciding whether a sentence contains a comparison. We designed a HIT
(Human Intelligence Task) and uploaded it on Amazon Mechanical Turk (AMT)®. The
workers were given short instructions about their task and a few examples of comparisons
and non-comparisons. Every sentence was annotated by two AMT workers. Possible
labels were “comparison”, “no comparison” or “not sure”. To discourage the use of “not
sure”, workers were asked to provide feedback on why they chose this value. Figure 4.1
shows a screenshot of the interface for the annotation task.

A batch of 500 sentences was annotated on AMT in about one hour. The results imply
that the task is difficult for AMT workers. The workers agreed on ‘no comparison” for
about 40% of sentences and on “comparison” for about 20% of sentences. Compared to

the 5-10% of comparison sentences we would expect to find, this corresponds to high

recall. If both AMT workers chose “comparison”, the sentence was passed on to the

‘http://groups.csail.mit.edu/rbg/code/precis/
Shttp://nlp.stanford.edu/software/corenlp.shtml
Shttp://www.mturk.com
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Find comparison sentences

Your task is to decide for every one of the 5 sentences given below if the sentence contains at least one
comparison.

Examples for sentences that contain a comparison: Examples for sentences that do not contain a
« Slower than a lot of other lenses, because it ~ ¢OMParison:
. I%?lissr?sogﬁeggaesssf camera ever! e This is my first digital camera, and i am very
¢« BTW the A100 uses the same battery as the Slzmnsn Al .
R1 e [ am more than Wllllng to help you.
) e The finish is more mirror than silver.
¢ [ bought this camera as a replacement for the
sd700.

« The biggest difference is the quality of the
Jjpegs.
e Canon's IS and Nikon's VR cant match this.

You must select one value for each sentence. Select

+ "Comparison" if the sentence contains a comparison, it compares the product with something else
even if the other object is not explicitly mentioned.

» "No comparison" if there is no comparison.

» "Not sure" if the sentence is not complete, incomprehensible or you find it very hard to decide (you
can write the reason into the feedback field below). You are not allowed to chose this value for every
sentence.

Does this sentence contain a comparison?

1. Using the Sony name will probably give it an " entry level " status .

Comparison No comparison Not sure
2. It 's a great toy for people who will buy their first DSLR .

Comparison No comparison Not sure
3. But dont expect the camera to attract Canon or Nikon enthusiasts .

Comparison No comparison Not sure
4. Canon 's IS and Nikon 's VR cant match this .

Comparison No comparison Not sure
5. I definately recommend this camera .

Comparison No comparison Not sure

Provide feedback (if you want):

Submit

Figure 4.1.: Screenshot of the AMT annotation interface for the first stage of annotation
that finds sentences containing comparisons (taken on February 2nd, 2014).
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second stage, if both chose “no comparison” the sentence was discarded. In the rest of
the cases (about 40% of sentences), the AMT workers did not agree or both workers
chose “unsure”. These sentences were roughly checked for obvious non-comparisons and

then passed on to the second stage.

Fine-grained comparison annotation. The more fine-grained annotation was carried
out by three annotators hired and trained specifically for the task. One was a graduate
student of computational linguistics, one an undergraduate student of media and the
last one a graduate student of computer science. All had an advanced level of English,
but none was a native speaker.

The annotators were given annotation guidelines with detailed instructions. We chose
30 sentences from our data as a training set. This set contained all types of comparisons
and was annotated by the author as well. Each annotator had to first annotate this
training set and any disagreements with the author were discussed.

After training, the actual annotation was carried out by the annotators independently.
The annotators only saw the sentence they were currently annotating, without the con-
text of the review. Annotators had the possibility to decide that the sentence is not
a comparative sentence. This is necessary as the first stage was designed to give high
recall, not precision. Figure 4.2 shows the annotation of a comparison sentence with
our tool. Apart from the annotations, annotators were encouraged to provide additional
feedback in hard cases. These cases were discussed with the author and the feedback

was used to refine the annotation guidelines.

4.4. Annotation scheme

The data to be annotated consists of sentences from user generated content, namely
reviews of digital cameras. The goal of the annotation is to provide fine-grained infor-
mation on comparisons. We did not annotate any other information besides comparisons.

Recall that we define a comparison as any statement about the similarity or difference
of two entities. A sentence may contain none, one or several comparisons.

The main anchor for a comparison is the comparative predicate. It has the following
arguments (relations): The two entities that are being compared (E1, E2), and the aspect
they are compared in (A). In some special cases a fourth argument scale for modified
adjectives/adverbs (S) is added. Predicates and arguments are annotated as token spans
in the same sentence, we do not annotate parts of tokens or cross-sentence relations. In

addition to the arguments, for each predicate we annotate the type of the comparison
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==== Sentence to be labeled (nr. 74) ====

1_The 2_Canon 3_EOS 4_40D 5_Digital 6_SLR 7_ultimately 8_delivers 9_better
10_photo 11_quality 12_than 13_it 14_s 15_competitors 16_.

Please identify the comparative predicate in the sentence. Write the word as it
occurs in the sentence (with ID). If there is no further predicate, leave empty.
Use ’q’ to quit.

Comparative predicate: 9_better

Please label the scale part (if existing). Write the word as it occurs in
the sentence (with ID). Use ’q’ to quit.
Scale:

Please identify the arguments of the predicate you just labeled in the sentence.
Write the word(s) as it occurs in the sentence. If the argument does not occur,
leave empty. Separate several arguments with ’> | 2.

Please also label the entity type. Use ’p’ for product(s), ’g’ for a set/group
of products, ’f’ for feature/aspect(s), ’c’ for company, ’s’ for some standard,
>0’ for other (specify in notes). Use ’q’ to quit.

Entity 1: 1_The 2_Canon 3_EO0OS 4_40D 5_Digital 6_SLR

Type Entity 1: p

Entity 2: 13_it 14_s 15_competitors

Type Entity 2: g

Aspect: 10_photo 11_quality

Please label the relationship of the entities to one another. Use ’r’ if one
entity is ranked as better than the other, ’s’ if one entity is set above all
others, ’e’ if both entities are rated as equal, ’d’ if a non-graded difference
is expressed. Use ’q’ to quit.

Comparative Type: r

Please label which entity is evaluated as better. Use ’1’ if El1 is rated better
than E2, ’2’ if E2 is rated better than El, ’x’ else. Use ’q’ to quit.
Fine-grained Type: 1

1_The 2_Canon 3_EOS 4_40D 5_Digital 6_SLR 7_ultimately 8_delivers 9_better
10_photo 11_quality 12_than 13_it 14_s 15_competitors 16_.

Please identify the comparative predicate in the sentence. Write the word as it
occurs in the sentence (with ID). If there is no further predicate, leave empty.
Use ’q’ to quit.

Comparative predicate:

Please tell me if there is a problem with the sentence (splitting, tokenization,
incomplete, ...). If there is none, leave empty. Use ’q’ to quit.
Annotation note:

Figure 4.2.: Example for the fine-grained annotation of comparisons in a sentence with
our command-line based annotation tool.
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and the types of the involved entities. The parts of comparison to be annotated are

discussed in more detail in the following subsections.

Comparative predicate. The central part of any comparison is the comparative pred-
wcate. The comparative predicate is the syntactic marker that introduces a comparison.
As an illustration, consider the following example sentences from our data (all examples

are presented with original spelling and punctuation):

(4.4) a. “But [this new XT[g1 compared to [the old rebellgs has MUCH better [picture
quality[a.”

b. “/The XT[g1 beat [the 300D[g2 in the [file writing]a department as well ...”
c. “The biggest difference is the [quality of the jpegs/a.”
d. “By the way, [Nikonjg1 is at the top of the line in [flashes|s.”

e. “[It[g1 shared the same [sensor|a as [Nikon D200[g2, and [the latest D80[ga.”

“In fact I think [the D80[g1 is better at [handling noise[s and [suppressing banding
artifacts[p at higher ISO’s.”

g. “I couldn’t be happier!”

—

Predicates can be of any part of speech, e.g., adjectives (Sentence 4.4a), verbs (Sen-
tence 4.4b), nouns (Sentence 4.4c). A sentence may contain more than one comparative
predicate. We allow annotators to annotate multiword expressions. This mainly con-
cerns expressions such as “top of the line” in Sentence 4.4d.

Comparisons can express some personal opinion or belief (subjective, Sentence 4.4a),
or state verifiable facts (objective, Sentence 4.4e). We annotate both subjective and
objective comparisons. We do not include expressions that on the surface look like
comparisons, but are used as descriptions of environments or states, i.e., “at higher

ISOs” in Sentence 4.4f or “happier” in Sentence 4.4g.

Scale (S). There is a limited number of predicates that are function words and do not
by themselves contain the information about what distinguishes the entities. Consider

these sentences from our data:

(4.5)  a. “Only [the S3[g1 has a potentially better [movie record mode[s.”
b. “..[the SD800Jg1 has a more [powerfulls and overall flexible [movie capture mode .
c. “That’s a pretty [good[s [price[n compared to [everything else that 've seenfgs ... "

d. “[itfg1’s just as as [capablels as [the D200[gs.”

The annotation for the predicate “better” in Sentence 4.5a is straightforward and does
not require an additional argument. We would like to have the annotations for the

comparison “more powerful”in Sentence 4.5b parallel the annotations for the comparison
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“better”. One possible way to go would be to annotate “more powerful” as a multiword
predicate. A second possible way is to split the predicate into two parts, annotate
the function word “more” as the predicate and the modified adjective “powerful” as an
argument which we call scale (S). We chose to split the predicate as this allows us to also
capture cases where the two parts are not adjacent (Sentence 4.5¢). There is a limited
number of predicates that allow the annotation of a scale argument. Besides ranked
comparisons with ‘less” and “more”, another frequent predicate is “as” when used to

introduce an equative comparison (Sentence 4.5d).

Entities (E1, E2). A comparison involves two entities that are compared with each

other. Consider the following example sentences:

(4.6) “I350D]g1 is actually even smaller then [300D.[gy”

“By the way, [Nikon]g1 is at the top of the line in [flashes[s.”

“Best [battery life[n.”

d. “/It|g1 shared the same [sensor|s as [Nikon D200|ga, and [the latest D80[gs.”

e. “[[All three models|g [r2 are extremely close in terms of [price/s and [features[n.”

ISR

o

Most often the entities in our data are products, e.g., the two cameras “350D” and
“300D” in Sentence 4.6a. We decided to annotate entities based on the order of appear-
ance in the sentence. The first entity is annotated as entity 1, the second as entity 2. The
information which entity is preferred if the comparison introduces a ranking between the
entities is included in the comparison type. This style of annotation is much easier for
annotators, as they are not forced to chose a “better” and “worse” entity if there is no
obvious ranking introduced by the expression.

One or both of the entities may be implicit (entity 2 in Sentence 4.6b, both entities in
Sentence 4.6¢). An entity can consist of a group of products that are listed individually.
As an example consider Sentence 4.6d, where entity 1 “it” (presumably the camera under
review) is compared to two other cameras, “Nikon D200”, and “the latest D80”. Both
cameras together make up entity 2, and each listed item is annotated individually.

If all compared entities are ranked as being on the same level, they are sometimes ref-
erenced together, e.g., using “all” or “both”. In this case, the plural reference is annotated
as both entity 1 and entity 2 (Sentence 4.6e¢).

Aspects (A). In most sentences one attribute or part of a product is being compared.
We follow the terminology of aspect-oriented sentiment analysis and call this the aspect”

(cf. Section 2.2.5). The notion of an aspect includes everything relevant to the product,

"Other terms are “feature”, “attribute” or “dimension”.
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i.e., parts, properties or attributes of the product, results of using the product, and

actions performed with it. Consider the following examples:

(4.7)  a. “Best [battery life[s.”
b. “[The GI9[r1 is much easier to [shoot|s with.”
“[350D[g1 is actually even smaller then [300D.[rs”

“Many digital SLRs have [sensors/g1 whose [size[a is smaller than [that of a 35mm

e

e

film frame[gs.”
e. “In fact I think [the D80[g1 is better at [handling noise[p and [suppressing banding
artifacts/s at higher 1SO’s.”

Like with entities, there can be more than one aspect compared at the same time,
e.g., “handling noise” and “suppressing banding artifacts” in Sentence 4.7e. Aspects may
not always be explicit, e.g., “small” implies the aspect size. We only annotate explicit

aspects (Sentence 4.7c vs. Sentence 4.7d).

Entity type. For each entity in a comparison we annotate the entity type. Most of the
entities are products (cameras in our case), but we distinguish whether an entity is a
single product (E1 in Sentence 4.8a) or a set of products (E2 in Sentence 4.8a). Entities
can also be a reference to a company (E1 in Sentence 4.8b) or a reference to a general
standard (E2 in Sentence 4.8b).

(4.8) a. “[Itjm1 shared the same [sensor[a as [Nikon D200|g2, and [the latest D80[gs.”
b. “By the way, [Nikon/g1 is at the top of the line in [flashes|s.”

Entities can also be of the type “aspect”. While this may sound confusing at first, this
occurs because aspects form a hierarchy. It is possible to talk about an aspect of an

aspect of the product. Consider the following sentences:

(4.9)  a. “Performance: [The D80Jg1—product uses essentially the same [sensor[s as
/the DQOO/EQ—product T
b. “[This full-sized framed sensor[gi—aspect contains the exact same [megapizel density/a
as [the one in the Rebel XT and the 20D[r2_aspect - - -~

In Sentence 4.9a, “sensor” is the aspect that is compared in a comparison between
two cameras. In Sentence 4.9b, two sensors are compared in their aspect “megapizel
density”. The two entities should get the type “aspect” in this sentence. The distinction
between entity and aspect for the purpose of our annotation is not only dependent
on semantic class (e.g., camera or camera part), but also involves the function in the
sentence. Distinguishing between the two may be very relevant for a system that lists

all differences between two products A and B. For sentences like Sentence 4.9b we would
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want to list the comparison of an aspect of A under the product A itself. Whenever
an entity has the type “aspect”, it would serve as an indicator that some linking of the
aspect back to the product it belongs to has to be done.

In total, we distinguish six possible types for entities: product, set of products, stan-
dard, company, aspect or other. This list of types is tailored to our domain of product

reviews and will need adaptation for other domains.

Comparison type. As discussed in more detail in Section 2.5.3, comparisons have
two main types, gradable and non-gradable (Jindal and Liu, 2006b; Liu, 2015). A
gradable comparison expresses an ordering relationship of the entities being compared.
This ordering relationship can have three forms, it can set one entity over the other
(non-equal gradable or ranked comparison, Sentence 4.10a), one entity above/below all
others (superlative comparison, Sentence 4.10b), or declare all entities as being equal
(equative comparison, Sentence 4.10c). The first two relations also have two subtypes
that clarify the direction of the relation (E1 is superior/inferior to E2), i.e., the order of
preference for the entities.

Non-gradable comparisons express a difference between two entities, but do not rank
the entities. We annotate non-gradable comparisons only if there is a direct comparison
between two entities in an aspect they share (aspect difference, Sentence 4.10d). We do
not annotate statements that list existing or missing aspects, even if two entities occur
in the sentence, e.g. “X has A, but Y not” or “X has A, but Y has B”.

As a result, like in the J&L corpus, we distinguish four types of comparisons: ranked,
superlative, equative comparisons, and non-graded differences. In addition to the J&L
annotation of comparison types, we annotate the direction (superior /inferior) for ranked

and superlative comparisons.

(4.10)  a. “In fact I think [the D80|g; is better at [handling noise/s and [suppressing banding

artifacts[n at higher ISO’s.” (ranked, E1 superior to E2)

b. “Best [battery life[n.” (superlative, El superior to E2)

c. “[It}g1 comes with the same [stabilizer technology/a that [the Nikon D200Jg2 has.”
(equative)

d. “The biggest difference is the [quality of the jpegs/a.” (aspect difference)

e. “The ‘SX1’ is basically an SX10, but adds a CMOS sensor instead of CCD, and a
full 1080 HD wvideo mode.” (existence difference)

The type of comparison cannot be determined solely on the basis of the predicate.

Syntactic context, especially negation, changes the type of comparison. As an example
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take Sentence 4.5d which is an equative comparison. If we use “not as capable” instead
of “as capable”, the result would be a ranked comparison where entity 2 is preferred.
Sometimes the direction of a ranked comparison is unclear, especially with predicates
where the direction depends on the aspect, like “smaller” or “higher”. In such cases, the
annotators are asked to rely on their world knowledge (e.g., high resolution is good, high

price is bad) or any context available in the sentence.

4.5. Analysis of the data

4.5.1. Inter-annotator agreement

All annotators had to annotate a set of 100 sentences for the purpose of calculating
agreement between annotators as a measure of consistency. These sentences do not
include the annotator training set. All of the 100 sentences were judged by the AMT
workers to contain a comparison in the first annotation stage.

For the annotation of text spans where each annotator individually picks some words
from the sentence instead of assigning a label from a predefined set, we follow J. Kessler
et al. (2010) and use text span agreement. For sets of annotations X and Y by annotators

x and y, the agreement of x to y is calculated as

| X matches Y|
X

agr(e]ly) = (4.1)

We consider two varieties of matching. In the strict version agr,, two spans are
considered to match only if they are exactly the same. In the lenient version agr;, two
spans are considered to match if they have at least one overlapping token. Only matches
of non-empty text spans are counted. Text span agreement is calculated for each pair of
annotators, we report the average over all pairs of annotators. We only compare spans of
the same type, if one annotator annotates some span as an entity and another annotates
the same span as an aspect, this is not a match.

For categorical label assignments we measure observed agreement A and chance-

corrected agreement with Cohen’s x (Cohen, 1960) for each pair of annotators as

_ P(4) - P(E)

TP (4.2)

We report the averages of pairwise A and k. All metrics are calculated only on

items that have been annotated by both annotators, i.e., for the comparison type the
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Categorical: A K # agreed

Sentence level 0.8800 0.4448 82
# comparisons 0.8327 0.6314 58
Comparison type 0.7872 0.6065 o7
Type entity 1 0.8442 0.6512 45
Type entity 2 0.8102 0.6478 29

Text spans: agr, agr;  # agreed
Predicate 0.7987 0.8303  80/84
Scale 0.8943 0.8943 14/14
Entity 1 0.7551 0.8555  48/58
Entity 2 0.7280 0.8254  33/40
Aspect 0.5587 0.7547  22/31

Table 4.1.: Inter-annotator agreement on the set of 100 sentences annotated by all three
annotators. All agreement numbers are averages over pairwise measures. We
report observed agreement A, Cohen’s k, strict text span agreement agr,
and lenient text span agreement agr;,. # agreed gives the number of items
on which all annotators agreed (lenient match /strict match).

predicates, for entity types the entity spans have to match (lenient match). For the
number of comparisons in a sentence, we put all values over 4 into the same bucket, as
this is very rare.

Table 4.1 shows the results of the agreement study. The last column shows the number
of items on which all annotators agreed (lenient match/strict match).

Overall, agreement is in the range of values reported for other sentiment annotation
tasks. To our knowledge, there are no values reported for the annotation of comparisons
in previous work. J. Kessler et al. (2010) report text span agreement for some annota-
tions, but not for comparisons. For the task of identifying sentiment text spans which
might be comparable to identifying predicates, they report a lenient agreement of 0.75.
For the identification of the sentiment-target relation which may roughly be comparable
to identifying the entities in a comparison, they report 0.66. The values are not directly
comparable across corpora and annotation schemes, but may give a general idea about
the range of expected agreement values.

On sentence-level, the task is to decide whether a sentence contains at least one
comparison or none at all. In our data, agreement on sentence-level is close to 90%, but
k is relatively low at 0.45. A value between 0.4 and 0.6 is considered moderate agreement
(Landis and Koch, 1977). One reason for the low x is the very skewed distribution, as all

of the sentences were selected as containing comparisons in the first annotation stage.
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Of the 82 sentences that all annotators agreed on the label, 77 had the label “contains
a comparison”. But the rather low agreement also confirms the results we got from the
AMT experiments, namely that the decision whether a sentence contains a comparison
is sometimes not as easy as it may seem. Further discussion of this point can be found
at the end of this chapter in Section 4.5.3.

For the assignment of comparison type, we have an agreement value of 79% and
k = 0.61, k values between 0.6 and 0.8 are considered substantial agreement (Landis
and Koch, 1977). The main source of disagreements about the type of comparison in
our data is that one annotator tended to annotate comparisons as type difference if they
were ranked but the direction was not clear to the annotator.

Once it is established that there is a comparison, text span agreements are high.
Disagreements mainly come from determining the exact boundary, e.g., one annotator
annotated “RAW photo quality” as the aspect, another “photo quality”. Entities are easier
to identify than aspects, probably because aspects require more domain knowledge.

For the assignment of entity types we again have substantial agreement. Disagree-
ments about the entity type come mainly from two sources. The main source of dis-
agreements is missing domain knowledge or missing context. Often entities are referred
to by a model number only. When an annotator was lacking domain knowledge, such
occurrences were mislabeled as ‘other’. It is also common to refer to a product by the
company name only, leading to erroneous ‘company’ labels. Most of these errors can be
spotted by comparing the types assigned to the two compared entities, as they should
usually have the same type. Missing context or domain knowledge is responsible for
almost all the cases where entities 1 and 2 have different types. In a few cases the an-
notation of different types reflects an error on the part of the sentence author, e.g., in
Sentence 4.11a the correct reference would actually be “the one on the 600”.

The second source of disagreements is when entity spans match leniently, but this

changes the type of the entity. Consider the annotations for the following sentence:

(4.11) a. “..[the 630[g1’s [lcd[s seemed less [sharp]s compared to [the 600}g2.” (ann. 1)
b. “..[the 630’s lcd[g1 seemed less [sharpls compared to [the 600[g2.” (ann. 2)

The text spans of entity 1 overlap, so entity types are compared. But “the 6307 refers
to a product and “the 630’s lcd” to an aspect, so the types do not match. This example
also illustrates that the differentiation between entity and aspect is sometimes not that
clear-cut (further discussed in Section 4.5.3).

We have used the results from this agreement study to refine the annotation guidelines.

Most importantly, we have explicitly excluded some categories of sentences that are not
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comparisons, and added the possibility to leave the direction of ranked comparisons

unspecified. Annotators have been asked to review their annotations for these errors.

4.5.2. Statistics and comparison to other data sets

Statistics about the IMS data. Statistics about our complete corpus can be found
in Table 4.2 in the column marked “IMS”. These numbers do not include the annotator
training set or the agreement set. In total we collected nearly 2200 sentences that contain
at least one comparison. This is about 13% of all sentences extracted from the reviews.

The average number of comparisons per sentence is 1.27. The overwhelming majority
of sentences (just over 80%) contains only one comparison, nearly all of the remainder
contain 2 or 3 comparisons. The maximum number of comparisons is 17 (!), this is a
sentence that consists of an enumeration of basically every aspect of a camera®. If we
exclude this sentence, there is one other sentence with 7 comparisons and then several
sentences with 4 or 5 comparisons.

There are many possible ways of expressing comparisons, therefore we observe a large
heterogeneity of constructions in our data. This particularly affects verb and noun
predicates, where many colloquial expressions are used (‘hammers”, “pwns”, “go head
to head with”, “put X to the sword”, ...). Only about 45% of comparisons have an
adjective or adverb in the comparative or superlative form as a predicate. The most
frequent predicates in ranked comparisons are “better”, “more”, “as” (in sentences with
“Xis not as A as Y”) and “less”. The most frequent predicates for equative comparisons
are “same”, “as”, “similar” and “like”. Statements of difference often have “difference”,
“compared” and “different” as predicate. Nearly all superlative comparisons contain an
adjective in superlative form, the rest are statements like “nothing beats X”.

The overwhelming majority of comparisons is ranked (67%). There are far more ranked
and superlative comparisons with direction superior than inferior (80% to 20% for those
where a direction is given). This is consistent with the bias on positive statements
repeatedly reported in sentiment analysis. Most of the comparisons have one entity
1 and one entity 2, but is also common to drop entity 2, especially for superlatives.
Usually at least one aspect is present in a comparison as well, except for superlatives
and differences where more than half of the instances do not contain any aspect. About
70% of the compared entities are products (one product or a set of products). The next

largest type (15%) is the type “aspect”. Entities with type “aspect” mainly includes parts

8An excerpt: “...is easter to [navigate[s, has more [features[n, more [auto-focus points[a (9 vs 7),
better [quality/s and faster [auto-focus|a, ...”



4.5. Analysis of the data 89

IMS J-A  J-C J&L

documents 978 425 180 -
all sentences 17074 13965 4972 7981
sentences containing comparisons 2193 1094 505 651
% of all sentences 12.8 7.8 102 8.1
sentences with 1 comparison 1762 910 406 607
... with 2 comparisons 333 146 75 41

. with 3 comparisons 67 30 14 3

. with 4 comparisons 20 5) 6 0

. with > 5 comparisons 11 3 4 0
% of sentences with 1 comparison 80.3 83.2 80.4 93.2
... with 2 comparisons 15.2 13.3 149 6.3
... with 3 comparisons 3.1 2.7 2.8 0.5
... with 4 comparisons 0.9 0.5 1.2 0

. with > 5 comparisons 0.5 0.3 0.8 0
comparisons with type ranked 1861 849 453 367

. superlative 204 - - 169

. equative 457 478 189 162
... difference 256 - - -
% of comparisons with type ranked 67.0  64.0 70.6 52.6

. superlative 7.3 — - 24.2

. equative 16.5 36.0 294 23.2
... difference 9.2 - - -
annotated predicates 2778 1327 642 698
... scale arguments 482 130 72 36
... entity E1/E+ arguments 2384 1100 519 661
... entity E2/E- arguments 1775 1070 511 334

. aspect arguments 1851 977 551 505

Table 4.2.: Statistics about our data (IMS), the Jindal and Liu data set (J&L) and the
camera (J-C) and car (J-A) parts of the JDPA corpus. The other corpora
have been converted to our annotation scheme.
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of cameras like the flash or the sensor, or alternatively the pictures produced with the
compared cameras.

There are nearly 500 annotations for the argument scale for various predicates. Apart
from the expected predicates “more”, “less”, “as”, we have several occurrences of ex-
pressions like “compared”. There are a few instances where the argument contains a
multiword predicate that had to be split up, e.g., in the sentence “it puts the others to
shame” the annotator wanted to chose “put to shame” as the predicate. As we do not
allow gaps in predicates and she did not want to include the entity into the predicate,

she chose “put” as the predicate and annotated “to shame” as the modified “adjective”.

Converting other data sets to our annotation scheme. As described in Section 4.2,
there are other data sets that have been annotated with comparisons. To compare our
data set to them and to be able to use them in our experiments later, we convert these
data sets to our annotation scheme.

The J&L data is already split into sentences and tokenized, so we do not need to do
further preprocessing. We extract the annotations and map entitySI! to El, entityS2
to E2, and features to aspect. Comparison type 1 becomes our type ranked, type 2
becomes equative and type 3 becomes superlative. Non-gradable comparisons do
not have predicates or arguments annotated, so they are ignored for our purposes.

For the JDPA data (J-A and J-C), we do sentence segmentation and tokenization with
Stanford CoreNLP? (Manning et al., 2014). Annotations are mapped to the extracted
tokens, we ignore annotations that do not correspond to complete tokens. We map
the preferred entity More to E+, the non-preferred entity Less to E-, and Dimension
to aspect. We assign the type ranked to all comparisons where Same is set to false,
otherwise we assign equative. For equative comparisons, we assign E+4/E- to the
entities according to their sentence order. We ignore cars batch 009 where no arguments
of comparative predicates are annotated. An annotated argument may be outside the
current sentence, but coreference information for entities has also been annotated. We
follow the coreference chain to find a coreferent annotation in the same sentence. If this
is not successful, the argument is ignored.

To have a uniform and comparable representation of multiword predicates, we do some
heuristic splitting of the annotations found in the other data sets into predicate and scale.
In both data sets the function word is annotated as the comparative predicate and the
content word as the aspect. For every annotated predicate that matches our function

word keywords, we check if the token directly following the predicate is annotated as

http://nlp.stanford.edu/software/corenlp.shtml
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the aspect. If the predicate is “as”, we change the annotation from aspect to scale. For
the other function words we change the annotation only if the word in question is an
adjective (as determined by the Stanford POS Tagger). This serves to distinguish ‘“less
sturdy” which is a comparative form of “sturdy” and thus a multiword predicate, from
“less noise” where the noun “noise” should be the aspect, not part of the predicate. In
the J&L data the complete phrase “as X as” is annotated as the predicate. We check
if the first and last word of a predicate is “as”, and take the words in between as scale.
The resulting annotations for JDPA and J&L are a bit noisy, but manual inspection
shows that nearly all of the scale annotations are correct. We miss some occurrences of
multiword predicates in cases where some other aspect is present and has been annotated

instead of the content word.

Comparison to other data sets. Table 4.2 contains statistics about the other data
sets in the corresponding columns. In the IMS data the percentage of sentences that
contain an annotated comparison is higher than in the other data sets: 13% of sentences
are annotated as containing at least one comparison, compared to between 8% and 10%
of sentences in the other data sets. In all data sets, most sentences contain only one
comparison (up to 93% in the J&L data, about 80% in the other data sets). On average,
a sentence contains between 1.07 (J&L) and 1.27 (IMS, J-C) comparisons. In all data
sets, the majority (50-70%) of comparisons is ranked. In general, annotations for an
aspect and an entity are present. Entity 2 is dropped rather frequently in the J&L data.

In total, our corpus contains more than twice as many sentences as the J-A data and
roughly three times as many as the J&L and J-C data. This makes it the largest resource

dedicated to comparisons in user generated content currently available.

4.5.3. Discussion

During the annotation of our data and while analyzing the other corpora, we have
encountered some more general issues and open questions, which we shortly highlight
in the following. We focus on the following issues for this discussion: The definition of
what is a comparison and what is not (in three different flavors), aspects versus entities,

and discontinuous arguments.

Definition of a comparison. Looking at our experiments on Amazon Mechanical Turk
and our agreement study, we can confirm what previous work has already discussed:

that the decision of what is a comparison and what is not is difficult even for humans.
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There are of course many sentences that are very obviously comparisons (e.g., those
from the introductory examples) or non-comparisons (e.g., “I bought A last week”, “B is
fantastic”). Some other categories of sentences that look like comparisons but are not
(e.g., idioms, correlatives, see also Sentence 2.19 in Section 2.5.1) may confuse annotators
at first, but can be excluded with clear annotation guidelines. But even after this, there

are still some questionable items:

(4.12)  a. “this is my first digital camera.”
b. “The 2008 Subaru Impreza WRX STI is based on the Impreza WRX hatchback ...”
c. “The images were great both indoors and out.”
d. “..athough I would like to see it a little faster.”

e. “It mirror flip doesn’t sound like a mechanical camera ...”
f. “I had to compare this camera with the Nikon D80.”

Sentence 4.12a is from the J&L data and many similar sentences with the predicate
“first” have been annotated in this data set. Sentence 4.12b from batch 5 of the JDPA
cars data set has the word “based” annotated as the comparative predicate. In each
case, the other data set does not annotate similar sentences, nor do we in our data.
Sentences 4.12¢ to 4.12f are from the set we used to calculate annotator agreement,
which we did after training our annotators and after they had already gained some
annotation experience. Sentence 4.12c is a comparison between different usages of the
same product, Sentence 4.12d is a wish, Sentence 4.12e is a description of the sound the
camera makes. Sentence 4.12f states that there is going to be a comparison, but this is
not (yet) it. None of these sentences compare two entities and none should be annotated
as a comparison. We have updated the annotation guidelines to explicitly give examples
of these categories of sentences to be excluded, but there are probably more such cases
that need to be specified.

Limitations of the annotation scheme. Now let’s turn to the other side of the coin,
statements that are comparisons, but cannot be annotated in the current scheme. Our
working definition of a comparison has been “any statement about the similarity or

difference of two entities”, which would include the following examples from our data:

(4.13)  a. “..it simulates iso 100 whereas my D70s only did iso 200.”
b. “Although it yields nearly the same image quality as the D200, it’s unfortunately
twice as expensive, lacks environmental seals, ...”
c. “It looks closer to film than any digital camera I've owned.”
d. “Pricewise, the H2 slots in between Canon S8 IS and .”

e. “The 300D and XT are still cheaply made, whatever you say.”
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As two examples that do not fit the current model, Jindal and Liu (2006b) have already
discussed juxtapositions (Sentence 4.13a) and non-gradable comparisons of an aspect
(here: “environmental seals”) that one entity has and the other does not (Sentence 4.13b).
In order to annotate these examples, we would need two different aspect slots. Entities

¢

can be problematic as well. Sentence 4.13c does compare two entities (“it”, “any digital
camera”), but there is third entity (“film”) involved as well. Sentence 4.13d even more
clearly describes a relation between three entities (“H2”, “Canon S8 IS”, [missing token)).
This type of relation cannot be put into our current two-entity model and we would
need additional comparison types to describe the relations as well. Finally, sometimes
the problem is the choice of predicate. Sentence 4.13e expresses an equative comparison
between the two cameras in the aspect “cheaply made” and would be easy to annotate
if it contained the word “both”. As it is, there is no good choice for a predicate. It is
unclear which of the above examples should be included and in what way. For now,
we can only note that the current annotation scheme is not able to capture all possible

statements of similarity or difference of two entities.

Implied comparisons and sentiments. It has been noted that every value statement
about an entity contains an implicit comparison to some sort of internal standard (Hud-
dleston, 2002). People only note that something is “good” or “bad” because they compare
it against some sort of general standard or expectation about how things should be. This
implicit comparison is more overtly present when an adjective is used, e.g., in construc-
tions like the elative “X s very good”, the excessive “X is too good”, or the assetive “X
15 good enough”. While we certainly would not want to treat every sentiment expression

as an implicit comparison, in some cases it may be warranted:
(4.14) “[D70/g1 beats [EOS 300D[ga in almost [every categoryls, EXCEPT ONE.”

While the comparison at the predicate “beats”is annotated, one might argue that there
is another comparison implied in the second part of the sentence, namely that the “£0OS
300D” is at least as good or maybe even better than the “D70” in one category (which
presumably is further elaborated on in the following sentences of the review). While
this is certainly an interesting point for future work, it seems hard to formulate clear
guidelines of when such implicit comparisons should be considered and how exactly they

should be annotated.

Aspect versus entity. Conceptually, a comparison contains two entities that are com-
pared either in their totality or in some shared aspect. In practice, the distinction

between entity and aspect is sometimes hard to make, because aspects form a hierarchy



94 4. A corpus of comparisons in product reviews

and aspects of aspects are compared in arbitrarily deep nestings. Consider the following
example sentences (annotations from the JDPA camera data):

(4.15)  a. “[This camerafg ... its [screen/s is much bigger than the [{00D]g.”

b. “..its [screeng is [smaller|s than the [ones)y on some competing models ...”

The two sentences are very similar, but the annotators took different stands on whether
“screen” is an entity or an aspect. The annotation of “this camera” as an entity allows us
to connect it back to some product and list the comparison under its aspect “screen”. The
annotation of “screen” as an entity on the other hand defines what is syntactically com-
pared (the camera’s screen, not only the camera) and allows us to annotate comparisons
of aspects of aspects in a parallel way:

)

(4.16) “...its [screen|s has smaller [resolution|s than the [ones|s on ...’

)

In our data, we instructed annotators to annotate syntactic entities, i.e., “its screen’
for the example sentence, and additionally annotate the type of entity as “aspect”. This
allows us to treat arbitrarily deep aspect hierarchies and still retain the information that
what is syntactically the compared entity in this sentence, is conceptually an aspect of the
product we are interested in. Still, even with these guidelines the decision is sometimes
hard to make in practice, especially if no other aspect is present in the sentence, and
we have discussed many of these cases during annotation. Additionally, the annotation
scheme does not capture information about the internal structure of “its screen”, where
“its” refers to the product and “screen” to the aspect of the product.

While for training a system and detecting the components, ultimately the exact an-
notations may not matter so much, the question is very relevant when the detected
comparisons are used for aspect-based summaries that group sentiment analysis results
for every entity by the recognized aspects. Linking back every annotated entity to some
predefined hierarchy of products and their aspects could solve the problem of unambigu-
ously identifying what aspect is talked about, but introduces other problems, namely
that we need to create such a resource and that we limit the annotators to the aspects
that are contained in this resource. Alternatively, post-processing is necessary in order

to be able to generate usable aspect-based summaries from the annotations we have.

Discontinuous arguments. We have discussed multiword predicates and introduced
the argument type “scale” for the purpose of modeling them, but arguments can also
consist of multiple words that do not always have to be adjacent. Consider the following
example from our data:

(4.17) “Realistically [Micro-cam batteries[g1 (since they must be very small) can’t [store[ar as

[muchls [power[as as [larger batteries|gs.”
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In the example, “power” has been annotated as the aspect, but in reality the discussed
aspect is “store power”, as in contrast to “needs power”, “provides power” or any other
possible aspect of “power”. In our annotation scheme it would have been possible for
the annotators to annotate two aspects for one comparisons, but they correctly did not
do that as conceptually the annotation of two aspects is intended to denote that the
entities are compared in two different, independent aspects, such as in this example:

2

(4.18) “However [itJg1 is better in so many ways such as [image quality/a and [handling/a . ..

It remains an open question how frequent such discontinuous aspects are and whether
it is worth the effort of defining more complex and more flexible representations of

comparisons to deal with them.

4.6. Summary

In this chapter, we presented a dedicated gold standard corpus of comparison sentences
from English camera reviews. For our purposes we define a comparison as any statement
about the similarity or difference or two entities which covers a wide variety of expres-
sions. For each sentence we have annotated detailed information about the comparisons
it contains: The comparative predicate as the anchor that introduces the comparison,
the type of the comparison, the two entities that are being compared with their entity
type, and the aspect they are compared in. We have described our annotation process
and given an overview of our annotation guidelines. The results of our agreement study
showed that the decision whether a sentence contains a comparison is difficult to make
even for trained human annotators. Once that decision is made, we can achieve consis-
tent results for detailed annotations. In total, we have annotated 2700 comparisons in
nearly 2200 sentences from camera reviews which makes our data the largest resource of
comparisons in English reviews currently available. The annotations and guidelines are

publicly available on our website!°.

Ohttp://hdl.handle.net/11022/1007-0000-0000-8E72-0
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5. Detecting comparisons In

product reviews

The general approach presented in this chapter has been published in (Kessler and Kuhn,
2013), the sentence and task context experiments in (Kessler, 2014) and the design
context experiments in (Kessler and Kuhn, 2014b).

5.1. Introduction

Now that we have a corpus of annotated product comparisons at our disposal, as de-
scribed in the previous chapter (Chapter 4), this chapter addresses the automatic de-
tection of comparisons and their components with machine learning methods. We need
methods that differ from standard aspect-oriented sentiment analysis methods, because
most standard approaches in sentiment analysis address sentiment expressions assign
one polarity to one target entity. This is insufficient for comparisons which involve more
than one target entity and may involve the assignment of more than one polarity. It is
thus necessary to analyze comparisons separately, but the analysis of such comparisons
has not received a lot of attention in the sentiment analysis community (see Section 2.5
for an overview).

Comparisons are relatively frequent in product reviews (5%-10% of sentences in our
data). Some comparisons are among competing products as a whole, most compare
a certain aspect of the two products. Comparisons are of interest for companies that
do not only want to know what aspects of their product users like or dislike, but also
where they stand in relation to their competitors. Also, comparisons are presumably
the most useful kind of expression when it comes to supporting a process of choice,
as they provide explicit comparative judgments which may enable the user to make a
decision between several products. Comparisons are also less influenced by confounding
factors like cultural and personal differences in expressing sentiment than other sentiment

expressions. In some cultures “not bad” may be the highest praise, and in some other
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culture the expression “awesome” may indicate rather average performance. But when
two entities are compared, an explicit ranking is given that cannot be misinterpreted.
A comparison contains several components that must be identified in order to get

meaningful information (cf. Chapter 4). Consider the following example:
(5.1) “/ItJg1 had a better [lens[a than [my old camerafgs.”

In this example, the anchor for the comparison (the comparative predicate) is the word
“better”. The sentence compares two entities, in this case two cameras referenced by “It”
and “my old camera”, and they are compared in the aspect “lens”. A ranking between
the entities is introduced, where the first entity is preferred over the second. The taks
of comparison detection is to identify all these components in order to capture the full
relation between the two entities.

Given a sentence that contains a comparison, we train a machine learning system on
our data to detect the relevant components. We follow the work of Hou and Li (2008) on
Chinese comparisons and use a methodology inspired by semantic role labeling (SRL).
Semantic roles describe the relation of participants to an event (e.g., agent, patient,
topic), abstracting over the different possible surface realizations of the same semantic
structure (Fillmore, 1968). An event is expressed by a predicate and the participants
are expressed by arguments of the predicate that fill the different semantic roles that
are defined for the given predicate. SRL predicates are often verbs, but the framework
is more general and allows predicates of other parts-of-speech as well.

Adapted to the task of comparison detection, the “events” we are interested in are
comparative predicates that introduce a comparison, and the “participants” are the two
entities and the aspect that is being compared. The following example shows the SRL
annotation from PropBank for an example sentence with the predicate “gave” (frame 01
of “give”) and its three arguments (A0, Al, A2) and contrasts it with the annotation of

a comparison sentence with the predicate “better” and its three arguments (E1, E2, A):

(5.2)  a. “/[He[ao gavegive01 [her|as [the book[ay.”
b. “[It[z1 had a better [lens/s than [my old camerafgs.”

The annotations for the two tasks are very similar, so it seems reasonable that sim-
ilar methods can be successful. In putting ourselves inside the framework of SRL, we
can take advantage of the existing methods and systems that have been developed and
tested for this task since its introduction by Gildea and Jurafsky (2002). The detection
of comparisons is in many aspects similar to SRL in the challenges we expect to en-
counter, e.g., SRL has dealt with multiword predicates, implicit arguments and sparsity

of training data for individual predicates. On the other hand, we also expect to find
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some differences. For SRL, the possible predicates, the variety of frames they can express
and the arguments they can take are standardized in large resources such as PropBank
(Palmer et al., 2005) or FrameNet (Baker et al., 1998). Such resources do not (yet) exist
for comparisons and due to the diversity of possible ways of expressing comparisons and
the large number of possible entities to be compared, we expect the predicates and argu-
ments in our task to be more heterogeneous categories than in standard SRL. As such,
lexicalized features that have worked well in SRL may not be as helpful for our task.
As an additional, orthogonal challenge, we work on user generated data, while most of
the work on SRL has been done on news data. The non-standard grammar and spelling
which is often used in user generated content makes tasks such as part of speech tagging
or parsing more difficult on this type of data than on news data.

Transferring an SRL-inspired method to another task is not uncommon. SRL-like
approaches have been used for event graphs (Glavas and énajder, 2015) where events
consist of an predicate anchor (e.g., a verb like “kill”) and the participants or circum-
stances (agent, time, location) are the arguments; or recipes (Malmaud et al., 2014)
where events are actions that affect state transformation (e.g., “stir”) and arguments are
the ingredients and other information (e.g. “add water”, “stir for 5 minutes”).

SRL systems have also previously been applied to sentiment analysis. Kim and Hovy
(2006) use a semantic role labeler that associates opinion words with semantic frames
from FrameNet and then use manually defined mappings from the identified frame ele-
ments to identify the target and holder of the sentiment expression. Later, Ruppenhofer
et al. (2008) discuss semantic role labeling in the context of sentiment analysis. While
they present examples for cases that require knowledge beyond semantic role labeling,
they argue that SRL can still make an important contribution to the recognition of
targets and holders of opinions. In follow-up work, Ruppenhofer and Rehbein (2012)
propose SentiFrameNet, constructed on top of FrameNet, which adds opinion frames
to sentiment predicates with slots for the opinion holder, target, polarity and inten-
sity of the sentiment expression. Finally, closest to our approach, Hou and Li (2008)
have worked on comparison detection for Chinese with an SRL system, but without
investigating the role of context in detail.

This chapter presents our system CSRL (Comparison Semantic Role Labeler) for the
automatic detection of comparative predicates and their arguments. We build on the
SRL system by Bjorkelund et al. (2009) and re-train it for our task on the comparison
data presented in Chapter 4. Like semantic roles, comparisons are realized in a structural
way, so we expect methods that look only at isolated words to have a poor performance

and anticipate that context is needed to reliably identify predicates and arguments.
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Context can be added in many different forms, on different levels and in different ways,
out of which we only look at the part that seemed the most promising. Specifically, we
look at three types of context: sentence context, context from knowledge about the task
and the domain, and context from the annotation design of the data used for training
our machine learning system. These are not the only possible forms of context, other
possibilities include discourse context or context about the products that are reviewed,
which may provide interesting future work.

For the experiments on sentence context, similar to what we did for polarity reversers
in Chapter 3, we use dependency tree information for sentence context and compare to
a window-based context used in previous work (Jindal and Liu, 2006b). We hypothesize
that structural information from a dependency tree is more helpful than window-based
context information, even if the parses on our user generated data are noisy. To include
context from the task and domain, we use generalization techniques to overcome sparsity
issues, add information about possible types of comparisons, and include sentiment
polarity information of words in the analysis. Context from the annotation design refers
to the decisions taken at annotation time about the linguistic anchoring of comparisons
and the possible argument types to chose from, specifically we focus on the annotation
of multiword predicates and on the labels of arguments. We systematically change those
annotations in our data and analyze the influence of the changes on the classification
performance of our system.

The main research question we are going to address in this chapter is thus an adapted

version of research question A:

Research Question A2: How can structural linguistic context informa-
tion based on a dependency parse tree be used for the reliable detection of

comparisons and their components?

Specifically, this chapter explores the following questions:

e Can comparison detection be successfully performed by our system CSRL, an SRL
system re-trained for the new task on our comparison data?

e Are features based on structural context information from a dependency parse
more helpful than those from window-based context information?

e [s it beneficial to include context information from the task and domain?

e How do annotation design decisions influence the performance of our system?
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5.2. Approach

The task we want to solve for a given comparison sentence is to detect the comparative
predicate, the entities that are involved and the aspect that is being compared. We
borrow our methodology from semantic role labeling (SRL) an employ a similar pipeline
approach. The input to our system which we call CSRL (Comparison Semantic Role
Labeler) is a sentence that we assume to contain at least one comparison. The result of
our processing are one or more comparative predicates per sentence and their arguments.

In the following we describe our system in more detail and discuss the different forms

of context that we investigate.

5.2.1. Using an SRL approach to detect comparisons

To detect comparisons, we use a standard pipeline approach from SRL shown in Fig-
ure 5.1. As a first step, the comparative predicate is identified. This is a binary clas-
sification decision for each token of whether or not it is a predicate. In our case, the
predicates we are looking for are not predicates in the sense of semantic role labeling,
but comparative predicates, e.g., “better”, “superior”. The next step in SRL would be
predicate disambiguation to identify the different frames this predicate can express. As
we do not have such frame information, no predicate disambiguation performed.

After we have identified the predicates, the next step in the pipeline is to identify for
each predicate the arguments. The identification step is a again a binary classification
of whether a word in the sentence is an argument of the given predicate. Arguments are
always related to a specific predicate, so if a sentence contains more than one predicate,
the identification of arguments is done for each of the predicates separately. As a final
step in the pipeline, the role or type of each found argument is classified. In our case
of comparisons, we distinguish the two entities, the aspect and, in case of multiword
predicate, the scale (for details see also the description of our data in Chapter 4).

We use an existing SRL system (Bjorkelund et al., 2009)! that is part of the MATE
toolkit and re-train it on our data for the new task. For all classification steps, the
system uses regularized linear logistic regression from the LIBLINEAR package (Fan
et al., 2008). We set the SRL system to train separate classifiers for predicates of different
parts of speech (POS), but consider all possible POS. In preliminary experiments, we
have found this to perform slightly better than training one classifier for all kinds of

predicates, although the difference is not significant. We do not use the reranker. In

'http://code.google.com/p/mate-tools/
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D70 beats EOS 300D in almost every category

~U/ Predicate identification

D70 EOS 300D in almost every category

\U« Argument identification

D70 EOS 300D in almost every category
'X // \\ .- Argument ) /4\

Argument Argument

~U/ Argument classification

[D?O] {beats} {EOS BOOD} in almost |every -category
A 1\ - 4
\-Entity 1 : /

Aspect

Figure 5.1.: Steps of the comparison detection pipeline for an example sentence.

general, our approach is not tied to this particular SRL system or a particular parser.
The features of the system are based on the output of the MATE dependency parser
(Bohnet, 2010). On a basic level, for every token we can extract word features such
as the surface form, lemma and POS. As arguments are always extracted for a specific
predicate, for argument candidates, the word features can also be extracted for the cur-
rent predicate. Another basic feature is the relative position of the candidate argument
with respect to the predicate (before, after, same). Features that model context will be

introduced in the following subsections.

5.2.2. Sentence context

The first type of context we investigate is context from the sentence containing the
comparison. As comparisons are a complex verbalization, we think that context is
necessary for the reliable identification of predicates and arguments. We compare adding
sentence context in two different ways that are commonly used in NLP: with a window-
based approach, and structural linguistic context from a dependency parser. Figure 5.2
shows the added context information for an example argument candidate.

The most simple way to add sentence information is to include the context words
before and after the candidate predicate or argument. We add word features for each of

the context words in a symmetric window to both sides (left and right) of the candidate
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The | battery life of the SD800 is slightly better

(a) WINDOW context of 3 tokens

ROOT
SBJ
4 N
- NMOD S | ——PMOD \| - PRD N
I NMOD ~| | NMOD | NMOD \ 1 AMOD \
J A [ \ I/ [ Y

The | battery life of the SD800 |is slightly @ better
(b) SYNTAX context (parent, children, siblings)

Figure 5.2.: Sentence context around the argument candidate ‘“life” for the predicate
“better”. Word features are added for the words in frames.

word. We call this WINDOW context.

Alternatively, we can parse the sentence and use information from the syntactic struc-
ture as features. We use the MATE dependency parser (Bohnet, 2010) to parse a sen-
tence which returns the structure as a set of parent-child relations between the words in
the sentence. The parser is trained on news texts, but applied to texts from blogs and
reviews. These texts contain errors in spelling, grammar and punctuation, so the parses
may not always be correct. Incorrect parses might lead to confusing information for the
classifier. It remains to be seen whether these parse features are helpful even in these
circumstances. The SYNTAX context adds word features from the parents and children
of the predicate candidate. For arguments, in addition to the features from the predi-
cate, children and siblings of the argument and the dependency path from argument to

predicate are added to the feature set.

5.2.3. Context from knowledge about the task

There are several other ways of including context in the form of background knowledge
about the task and the domain. In a second set of experiments we investigate the effect
of different types of context which use this sort of information.

First, we investigate the use of generalization techniques to overcome sparsity issues.
Taking advantage of our knowledge about the entities in the domain (cameras), we
add a preprocessing step that replaces typical camera model references (number-letter
combinations like “COS 200D”) with a placecholder to generalize over the multitude of
different camera models. This preprocessing step may also help to improve the parse

trees of sentences, as product names are not treated well by the parser. We call these
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configuration NER. A more universal generalization feature over word classes uses Brown
clusters (Brown et al., 1992) as features to the enhance detection of rare predicates or
aspects. We call this configuration CLUSTER. We expect both generalization methods
to have a positive influence on all steps of the pipeline.

The types of comparisons differ in their typical usage of arguments. For example,
superlatives often drop the second entity for pragmatic reasons, but ranked comparisons
usually take two explicit entities. We implement a feature TYPE that models the com-
parison type with four values: ranked, superlative, equative and non-graded difference
(cf. Section 4.4). This feature is applicable to argument identification and classification.
We use gold information for our initial experiments to see whether the performance gain
is worth investing time in the automatic classification of comparison types.

Lastly, we see that the distinction between the preferred and non-preferred entity is

dependent on the sentiment expressed by the predicate:

(5.3)  a. It} is positive-JIR than the [XYZJs_.”
b. “[It[s— is negative-JJR than the [XYZ[g:.”

We add the feature POLARITY to model the prior polarity from a sentiment dictionary
(positive, negative or neutral) of the predicate. This feature can be added to all steps
of the pipeline, but we expect it to be useful especially in argument classification when

a distinction is made between entities according to their ranking.

5.2.4. Context from annotation design

Context from annotation design refers to the annotation design decisions we have made
in creating our corpus as described in Chapter 4. We focus on three specific questions,
the first two concern the annotation of multiword predicates like ‘less good” or “as good
as”, the third concerns the annotation of entities. In our data (and to a certain degree
also for the other existing resources) we can systematically change the annotations to
reflect a different outcome for each decision and investigate the effect these changes have

on the classification performance of our system.

Anchoring of multiword predicates. Most comparative predicates are single words
like “better” or “best”, but multiword predicates account for about 10-20% of comparative
predicates in our data. Some are expressions like “X has the edge over Y7 or “X is on
par with Y” which we will not discuss in this work. But the majority of multiword
predicates in our data are systematically introduce by English grammar rules. Consider

the following variations of a sentence:
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(5.4)  a. “[Itlg1 had a sturdier [feells than [X[ga.”
b. “[It}g1 had a less sturdy [feells than [X[gs.”

Sentence 5.4a compares the aspect “feel” of a camera to some other camera with the
comparative predicate “sturdier”. If we change the direction of the comparison, we get a
multiword predicate with the modifier ‘less” added to the adverb (Sentence 5.4b). In the
following we refer to such a modifier as function word and to the modified adjective or
adverb as content word. Besides the modifiers “less” and “more” for comparative forms,
and “most” and “least” for the superlative, the list of function words includes “as” which
is used to introduce an equative comparison like “X is as good as Y”.2

Our system, like the majority of systems to date, uses a single-token-based approach
for the automatic detection of comparative predicates which raises the question of which
word to select as an anchor for multiword predicates. A strong argument can be made
to select the function word as the token anchor for the comparative predicate. There
will be more training instances to use in machine learning for a given function word than
for the individual content words, so sparsity is reduced. On the other hand, choosing
the content word may be more informative for end users.

The first question we want to investigate in this study is whether the different anno-
tation decisions translate into a difference in classification performance. In our first ex-
periment we identify all occurrences of multiword predicates. In one setting (FUNCTION
predicates), we annotate the modifying function word as the comparative predicate. In
the second setting (CONTENT predicates), we annotate the modified content word. The

following illustrates the different annotations for an example sentence:

(5.5) a. “...had a less [sturdy|s [feells...” (FUNCTION predicates)
b. “...had a less [sturdy[s [feells ...” (CONTENT predicates)

In both cases we have the same number of comparative predicates, only the annota-
tions differ. Argument annotations are identical, even if it causes one token to have a

predicate and an argument annotation at the same time.

Annotation of aspects and scale. The second question deals with the annotation of
the content word when we use function predicates for multiword predicates. Most exist-
ing corpora annotate the content word as an aspect. We will illustrate some problems

with this approach with the following examples:

(5.6) a. “..a sturdier [feellp ...”

2Note that not all occurrences of the keywords indicate multiword predicates, e.g., in “X has less noise”
the word “noise” is not part of the predicate but the compared aspect.
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b. “...a less [sturdy[s [feells ...”

c. “..aless [sturdy[n feel ...”
d. “...aless sturdy [feells ...”
e. “...aless flimsy [feells ...”

If we compare the annotations of Sentence 5.6a and Sentence 5.6b we see that chang-
ing the direction of the comparison introduces a new aspect. This is counter-intuitive
because what is compared (i.e., the aspect) should not depend on the introduced rank-
ing. Additionally, if there is only one slot for the aspect, as is the case in one of the
corpora we use, annotators will need to decide between annotations 5.6¢ and 5.6d. An-
notation 5.6c¢ is inconsistent when compared to annotation 5.6a as only the direction of
the comparison has changed, but as a result we have different annotations for the aspect.
With annotation 5.6d we lose information about the actual sentiment polarity that is
expressed, as we are not able to distinguish it from the annotation in Sentence 5.6e.

To solve these issues, we have proposed to introduce a separate argument called scale
with the sole purpose of modeling the content word in a multiword predicate (cf Sec-
tion 4.4). In our second design context experiment, we use function words as predicates
and change the label of the content word from aspect (ASPECT) to scale (SCALE). This

results in the following annotations being compared:

(5.7) a. “...had a less [sturdy/s [feelln ...” (function predicates with ASPECT argument)
b. “...had a less [sturdy[s [feel[s ...” (function predicates with SCALE argument)

The tasks of predicate and argument identification are independent of argument labels,
so the only change is in argument classification. We expect a drop in classification
performance due to the increased number of classes. We hope that the drop is not
significant, as the new argument class is well-defined and should be relatively easy to

distinguish from real aspects.

Annotation of entities. Our third question deals with the annotation of entities.
Usually, two entities participate in a comparison. It is conceivable to treat both entities
as one type of argument and to not differentiate between them (UNIFIED entities). When
two different types of entities are distinguished, there are two possibilities. Entities can
be annotated according to surface position as entity 1 and entity 2 (SURFACE entities),
or by preference as a preferred and a non-preferred entity (PREFERENCE entities). Thus,

the following setups are compared:

(5.8) a. “[It}g had a less [sturdy/a [feella than [the other onefg.” (UNIFIED entities)
b. “[Itlg1 had a less [sturdy[a [feells than [the other onelgs.” (SURFACE entities)
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c. “[Itfg— had a less [sturdy/a [feel[s than [the other one[g+.” (PREFERENCE entities)

For entities where there is no ranking introduced (equative comparisons), we use
surface order also in case of PREFERENCE entities. Like for the previous question, the

different annotations only affect the argument classification step.

5.3. Experiments

5.3.1. Data and experimental setup

Data. The main data for our experiments is the set of camera reviews described in
Chapter 4, referenced with IMS. We also compare to the two other published resources
described in more detail in Section 4.2: the camera (J-C) and car (J-A) parts of the
JDPA corpus (J. Kessler et al., 2010) and the J&L data (Jindal and Liu, 2006b)3. The
data is converted to our annotation scheme as described in section Section 4.5.2. For the
experiments that do not involve annotation design decisions, we map the annotations of
all entities to one argument type entity (i.e., UNIFIED entities) and we map the scale
argument that exists only in our data to aspect (i.e., ASPECT configuration).
Dependency parses are produced by the MATE dependency parser (Bohnet, 2010)%.
Prior polarity for the POLARITY feature is taken from the MPQA list of subjectivity
clues® (Wilson et al., 2005). CLUSTER features are based on 500 clusters created on

news data over all words that occur at least 25 times.

Evaluation. We evaluate on each data set separately using 10-fold cross-validation.
Folds are created through rotation by putting sentence ¢ in the ith fold. We report
precision (P), recall (R) and F} score (F). For argument classification, scores are micro-
averaged over all argument types (P,, R,, F),). For argument identification and clas-
sification, we report results on gold predicates, to exclude the propagation of errors in
predicate identification.

Statistical significance is measured with the approximate randomization test (Noreen,
1989). We use 10000 iterations and consider a difference in F} score statistically signif-
icant at p < .05. In cases where we cannot calculate significance because annotations

change between experiments, we report the absolute differences in F; score (AF).

3In their publication, Jindal and Liu (2006b) work on some unknown subset of the J&L data, so our
results are not directly comparable to the results reported there

‘http://code.google.com/p/mate-tools/

Shttp://www.cs.pitt.edu/mpga/subj_lexicon.html
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Baselines. We have implemented two baselines for predicate identification based on
previous work. The simplest baseline, POs, classifies all tokens with a comparative part
of speech as predicates (comparative and superlative adjectives and adverbs, i.e., the
POS tags "JJR’, 7JJS’, '/RBR’, '/RBS’). A more sophisticated keywords BASELINE, uses a
list of about 80 manually compiled comparative keywords and keyphrases from (Jindal
and Liu, 2006a) in addition to the words identified by Pos.

No previous work has presented a baseline for arguments. Our BASELINE for argument
identification and classification, uses some heuristics based on the characteristics of our
data. Most entities are nouns or pronouns, so we mark the first noun or pronoun before
and after the predicate as entities. If different types of entities are distinguished, we mark
the entity before the predicate as entity 1 or E+, the entity after the predicate entity
2 or E-, as most predicates have positive sentiment. If the predicate is a comparative
adjective, we classify the predicate itself as aspect, because this type of annotation is very
frequent in the JDPA data. For other predicates except nouns and verbs, we annotate

the direct head of the predicate in the dependency tree as aspect.

SRL system. We use the MATE Semantic Role Labeling system (Bjorkelund et al.,
2009)° with default settings and without the reranker. We re-train the system on our
data sets to identify comparative predicates and arguments. We perform three classifica-
tion steps: predicate identification, argument identification and argument classification.
We vary feature sets for the experiments, but always add the same type of feature to all
steps and use the same feature sets for both steps involving arguments.

As a starting point for our context experiments, we use a MINIMAL feature set that
includes only word features of the predicate candidate and argument candidates. For the
tasks of argument identification and classification, it additionally contains the relative

position of the candidate with respect to the predicate (before, after, same).

5.3.2. Results

To remove the influence of errors introduced by the relatively low performance of all
systems on predicate identification, we use annotated predicates (gold predicates) for
the argument experiments. All results drop about 10% when system predicates are
used, but the differences between the systems stay the same. In the following discussion
we mainly use the numbers for our own IMS data, but the results for all data sets are

shown in the figures. More detailed results can be found in Appendix B.

Shttp://code.google.com/p/mate-tools/
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Results for the baseline and minimal system

First, we compare CSRL with MINIMAL features to the baselines POS and BASELINE.
The first three bars of each plot group in Figure 5.3 show the F} scores of these systems
for the different data sets and tasks (detailed results can be found in Table B.1).

The keyword BASELINE for predicates significantly outperforms POs with the huge
margin of 68.2 vs. 60.7 on the IMS data. This shows that an important percentage of our
predicates are not comparative words in the linguistic sense. For predicate identifica-
tion, the MINIMAL system already gives a significant improvement over both baselines,
achieving an F} score of 79.6 on the IMS data. The performance increase is the result of
words that are missing in the list that are learned to be predicates (e.g., “improvement”,
“compare”), as well as cases where the POS tag is enough to distinguish between the use
of a word as predicate (“like” as an adverb) and not a predicate (‘like” as a verb). Here
are some example sentences with recognized predicates marked in bold and the signs

v/ X indicating whether this decision was correct or wrong;:

(5.9) a. “It feels just like X the Rebel.” (POS)
b. “It feels just like v the Rebel.” (BASELINE, MINIMAL)
c. “Image quality is an improvement X over the D70.” (POs, BASELINE)
d. “Image quality is an improvement v over the D70.” (MINIMAL)

e. “Overall I like X the SD600 camera.” (POS, BASELINE)
f. “Overall I like v the SD600 camera.” (MINIMAL)

For argument identification, the MINIMAL system gives results clearly below the base-
line (F} score of 33.6 compared to 45.3). If we look at precision and recall, we see that
MINIMAL suffers mainly in recall due to a very heterogeneous set of different arguments.
Numbers in general are not very high and both systems miss many arguments. Consider
the following examples where both systems get the basic sentence right, but fail on slight

changes of that same sentence:

(5.10)  a. “The [D200Jg v is still faster than this [cameralg v".” (BASELINE, MINIMAL)
b. “..than [mylg X camera X .” (BASELINE)
c. “..than my v [camerals v".” (MINIMAL)
d. “...than the D70 X .” (BASELINE)
e. “...than the D70 X .” (MINIMAL)

While for argument classification the BASELINE still outperforms the MINIMAL sys-
tem, the performance differences get smaller (32.2 vs. 34.5, only a difference of 2 points
compared to a difference of 12 points in argument identification). The low recall of

argument identification is partly responsible for the generally low numbers in argument
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Figure 5.3.: F score results of the experiments on sentence context for the three tasks
and the four data sets (IMS, J-A, J-C, J&L).
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classification. The following is an example where the system has learned that “image

quality” is a typical aspect rather than an entity:

(5.11)  a. “/Image quality/g X is an improvement over the D70.” (BASELINE)
b. “[Image quality/a v is an improvement over the D70.” (MINIMAL)

Results for sentence context

The other bars in Figure 5.3 show some results of adding sentence context to our sys-
tem (detailed results can be found in Table B.1). WINDOW is the best window-based
approach which uses a symmetric window of 2 tokens for predicates and a symmet-
ric window of 3 tokens for arguments. SYNTAX uses all available syntactic information,
which we found in our experiments to perform better or comparable to using any subset.

Adding any type of sentence context improves the recognition of predicates (F} score
of 81.9 for WINDOW and 81.7 for SYNTAX compared to 79.6 for the MINIMAL system).

As an example for improved recognition consider these sentences:

(5.12)  a. “The auto white balance is not as v good as X my D80 was.” (BASELINE)
b. “The auto white balance is not as X good as v my D8O was.” (MINIMAL)
c. “The auto white balance is not as v good as v my D80 was.” (WINDOW, SYNTAX)

For each comparison there are two instances of “as”, the first one a predicate, the
second not. Without context, they are either both marked as predicates (BASELINE,
the word is in the list of keywords) or neither of them (MINIMAL, the evidence that this
is a predicate is at most 50%). Only with context can the system learn to distinguish
between the two. There are a few long dependencies where adding SYNTAX is better
than WINDOW, e.g., “as much power as”, but not enough to impact overall performance.
In most data sets the window-based approach is slightly better than SYNTAX, but the
differences are not significant.

For argument identification, WINDOW (F}; score of 56.2) outperforms the baseline
(Fy score of 45.3) significantly by a considerable margin and is in turn significantly
outperformed by SYNTAX (F} score of 68.1) on the IMS data. Argument classification
results show the same order of systems (F} scores of 34.5 for the BASELINE vs. 52.4 for
WINDOW vs. 63.8 for SYNTAX). Consider the following sentences as illustration:

(5.13) a. “The [G7[g v is much easier to hold X .” (MINIMAL)
b. “The [GTJg v is much easier to [hold[x v".” (WINDOW, SYNTAX)
“The battery life X of the [SD800]g is slightly better.” (WINDOW)

“The [battery life|]s v of the [SD800Jg is slightly better.” (SYNTAX)

e

e
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In the first sentence, “hold” is a rather unusual aspect, so only with the context
information that “JJR to” usually introduces an aspect, the system is able to decide that
the word should be an aspect. Similar patterns are found for unusual product names
that occur in a clear position for entities. In Sentence 5.13c the distance between the
argument and the predicate is very large, so the predicate falls outside of the considered
context words for WINDOW. Only with syntax information we can detect that “battery
life”, a sibling of the predicate, needs to be an argument. In the JDPA data, the result
with respect to the baseline for argument identification and classification is different.
WINDOW does not manage to outperform the baseline and SYNTAX manages only by
a small (but still significant) margin. Part of the reason may be, that we developed
our heuristic baseline using the statistics of the JDPA camera data. Still, differences
between SYNTAX and WINDOW are clear.

Using both types of context together (WINDOW-+SYNTAX) does not lead to a better
performance on any task, which indicates that the system learns the same information
with both types of context. It is an encouraging result that even in our noisy data

structural context from syntax outperforms a window-based approach for arguments.

Results for context from knowledge about the task

Figure 5.4 shows results for adding different types of task and domain context to the
system (detailed results can be found in Table B.4). We add the features individually
to SYNTAX, best sentence-context system, to judge their impact.

Generalization with CLUSTER and NER gives mixed results. For predicate identifica-
tion, we would have expected Brown clusters to be helpful to generalize over different
expressions of the same semantic content, but the effect is slight if at all present. Argu-
ment identification and classification benefit slightly. A possible reason for the small of
impact of the cluster features may be our use of general, non-domain specific clusters.
Counter-intuitively, the setting NER, designed to help with argument identification,
slightly improves predicate identification as well in the IMS data. This is mainly an
effect of the better parse trees produced by the parser when we replace long product
names by a placeholder before parsing, as the parser is often confused by such product
names, e.g., “Canon FEOS 5D Digital SLR”. Argument identification and classification
benefit from NER. Still, overall performance differences are small, so that we did not
pursue the issue further.

Adding information about the type of the comparison (TYPE) can be done only after

the identification of the predicate. For our experiments, we use gold predicate type
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Figure 5.4.: Fj score results of the experiments on context from task and domain for the

three tasks and the four data set (IMS, J-A, J-C, J&L).
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J&L J-C J-A  IMS

all predicates 668 642 1327 2778

multiword predicates 36 71 127 338
— more 13 26 68 163
— less 4 6 12 31
- most 2 1 4 14
— least 0 0 1 2
- as 17 38 42 128

Table 5.1.: Statistics about the multiword predicates in the data.

information, but learning to distinguish different comparison types automatically would
be feasible. For both argument tasks, adding type information gives a small improvement
due to increased recall. The small boost to know that some comparison types usually
take an argument is enough to detect more infrequent arguments. The performance
differences are significant for both tasks (except argument classification on J-C data), so
the automatic detection of comparison types may be a worthwhile task for future work.

Adding sentiment polarity information (POLARITY) is designed to help with argument
classification. It can be added to every step of the pipeline, but as expected there are
no substantial improvements on predicate and argument identification. The changes in
argument classification are also very slight, because the feature is designed to distinguish-
ing the preferred from the non-preferred entity and for this set of experiments we are
mapping both entities to the same label. We have used this feature on the PREFERENCE
entities setting (not shown), but even there POLARITY gives only slight improvements.
There are two possible reasons that come to mind. First, the limited coverage of the
sentiment dictionary, and second the fact that our feature does not take into account the
contextual polarity of the predicate, e.g., modification by negation. The connection of

comparisons and sentiment polarity is an interesting question for possible future work.

Results for annotation design context of multiword predicates

We now turn to the experiments involving annotation design decision. The first exper-
iment concern the annotations of multiword predicates. Table 5.1 give some statistics
about the number of multiword predicates in our data. We always use the best system
for the classification, i.e., SYNTAX. As annotations change between settings, we can-
not calculate statistical significance, instead we give the absolute differences in F} score
(AF). For the J&L and the JDPA data, the splitting of multiword predicates has been

done automatically, so results are a bit noisy.
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Figure 5.5.: Results of the experiments of changing annotation design decisions for mul-
tiword predicate annotations. The number above the bar shows the F} score
for the FUNCTION predicates setting in the four data sets (IMS, J-A, J-C,
J&L). The bars show the difference AF to the CONTENT predicates setting.

Figure 5.5 shows some results of the experiments involving annotation design context
(detailed results can be found in Table B.6). When we compare the annotation of
FUNCTION predicates with CONTENT predicates, we see that annotating the content
word decreases performance on predicate identification. This fits our expectation as
lexical features have large weight in the learned model and by choosing many different
adjectives over few function words we make the data more sparse. The decrease is quite
large compared to the relatively small number of changes we are making.

Performance for argument identification and classification also suffers on the IMS data
and the J&L data. But the JDPA data sets are not as much affected or even gain in
performance (J-A gains 0.3 points on argument classification). Part of this is due to the
fact that the content predicate setting over-generates aspects that are the same token as
the predicate even for single word predicates like “faster”. Such annotations are common
in the JDPA data sets, but never occur in the other data sets. The increased recall for

aspects then balances the loss on the other arguments.

Results for annotation design context of argument labels

The next experiments concerns only the task of argument classification, so Figure 5.6
shows only the results for this task. For the first setting, SCALE, we use function
predicates and change the annotation of the content word from aspect to scale. Entities
are unchanged. If we train a model to detect three types of arguments instead of two,
we expect a drop in performance simply due to the increased number of classes. But as

the new argument class is well-defined and should be relatively easy to distinguish from
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Figure 5.6.: Argument classification results of the experiments with different annota-
tions for arguments. The number above the bar shows the Fj score for the
UNIFIED arguments setting in the four data sets (IMS, J-A, J-C, J&L). The
bars show the difference AF' to each other setting.

real aspects, we hope that the drop is small. Indeed, micro-averaged F} score drops by
only about 0.3 to 0.5 points. Recall that for the J&L and the JDPA data, the splitting
of multiword predicates has been done automatically, so results are a bit noisy.

When we look at the confusion matrices for all data sets, we see that there are nearly no
confusions of the scale with an entity. We have analyzed some cases where the scale has
been confused with the aspect in the IMS data. Confusions occur mostly with untypical
scale arguments like “more feature rich” or “more pro”, where the system predicts an
aspect because the content word is tagged as a noun. We also found a few annotation
errors where annotators mistakenly annotated an aspect instead of a scale.

For the last two experiments, we map the scale annotations back to aspects, but split
the entities into two types: first (E1) and second (E2) entity for SURFACE entities,
and preferred (E+) and non-preferred (E-) for PREFERENCE entities. The J&L data
contains no information about the ranking of entities, so the PREFERENCE setting cannot
be applied. Splitting the entities into two different types, no matter which, results in
a drop in performance. As expected, it is much easier to distinguish entities by their
position with regard to the predicate than by preference. But both settings have a larger
influence on performance than the SCALE setting.

It is a bit surprising that the seemingly easy distinction of entities by position should
make such a large difference in terms of performance (-4.2 points on the IMS data).
From the confusion matrix it is clear that the difference actually comes from confusing
the two entities, the number of wrong decisions between entities and aspects stays the
same. There are two reasons for mistakes. One is, that the features for the classification

include the position relative to the predicate, but they do not include information about
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the other arguments. And while in most of the cases the first entity is before the
predicate and the second entity after, this is not always the case. Additionally, even
knowing about the other arguments would not completely solve the issue, as both entity

roles can appear multiple times. Consider the following examples as illustration:

(5.14)  a. “Like [the SD550[g1, [the SD800Jg2 also have a 2.5 inch display at 7.1 megapizels.”
b. “Whereas [the 630[g1 is a little larger than [the 710[gy or [570[k2.”

Determining which entity is preferred is more difficult than distinguishing two po-
sitions, and performance suffers even more (-8.8 points on the IMS data) Making the
decision is often hard even for humans and sometimes impossible without more context
or knowledge about the domain. Here are some hard examples:

(5.15)  a. “/The unitg? is slightly larger then [the D50[g2.”
b. “Unlike [the D200]g?, [the D80[g? can not [use non-CPU manual lenses|s.”

To judge which entity is preferred, one needs to know whether being “large” or being
able to “use non-CPU manual lenses” is something good or bad for the product. Whether
“large” is good or bad does not only depend on the domain, but also on the target. A
large memory is good for a camera, but a large file size is bad. The decision may even
be subjective, some people like large cameras while others do not. Including this type

of world knowledge into a system will be rather difficult if not impossible.

5.3.3. Discussion

The previous section presented experiments about the influence of different types of con-
text on the performance of our comparison detection system CSRL. We have presented
the detailed results of each experiment in the previous section, but during the analysis
of the results we discovered some larger, more general issues which we discuss in this
section. We focus on three topics: Linguistic anchoring of predicates and arguments,

sentiment relevance and data sparsity.

Linguistic anchoring. The task of comparison detection in reviews is a relatively new
task and many decisions about the exact formalization in terms of annotation guidelines
and desired end results have yet to be taken. We have explored some of these decisions
as they relate to multiword predicate in our experiments, but this is not the only difficult
decision with regard to linguistic anchoring.

We have defined a comparison in our annotation scheme to have only one predicate,
but there are cases where two words are used to express the same comparison. Consider

these example annotations from the JDPA cameras data set:
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(5.16)  a. “/Lighter[s in weight compared to the [others|g.”
b. “...[its]g [better|sn and faster compared vs the [SB800 flashfg as well.”

While the sentences are similar in structure, the annotated predicates are very dif-
ferent. For our data, we have specified that the content word should be annotated, if
possible, but this can still lead to situations where similar sentences may end up with
different choices for the predicate. These are two examples of from our data where each

annotation is correct and consistent on its own:

(5.17)  a. “Compared to [my previous powershot S50[g1 the [battery life/a is much better.”
b. “Compared to [my previous powershot S50]g1 the [battery lifels is [good]s.”

The anchoring of a comparison at a predicate is not the only issue, there is some
variety of annotations on arguments as well. Part of the problem is the sometimes
difficult distinction between entity and argument, which has been discussed already in
the annotation guidelines for our data (see Section 4.5.3). On a more technical note, we
introduce some variation by mapping all annotations to single words for our classification
system. We chose the head of the subtree that contains the annotation for this purpose,
which usually works well, but for variations of a long product name it can lead to
different anchorings for very similar arguments. For example the product “Canon Rebel
XT” appears in our data as “the Canon Rebel XT model” (head “model”), “The new
Rebel” (head “Rebel”), “the Canon Rebel XT” (head “XT”) and more. In combination
with spelling errors and applying a parser trained on news data to the noisy product
reviews, there is a considerable variety of annotated tokens that confuse the system.

Another anchoring issue are implicit aspects, i.e., aspect contained in the predicate as

exemplified in the following sentences:

(5.18) a. “[itfg is close in [weight[s to [other cameras|s of this type and quality.”

b. “The magnesium alloy frame does add weight so [its|g heavier.”

Both sentences compare the same attribute of the cameras (the weight) but only one
of the sentences contains an overt realization of that aspect. In the other sentence, the
aspect is implied in the predicate “heavier”. This is often the case for attributes like
weight, speed, price or quality. In the JDPA data, the comparative adjective is often
annotated as aspect in many such cases. We have decided not to duplicate annotations
this way, as it leads to more confusing annotations in other cases. But this means that
if the results of comparison detection are to be used for aspect-based summarization,

some post-processing would need to be done to map implicit aspects.
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IMS J-A J-C J&L
predicate annotations 2778 1327 642 698
distinct predicates 294 252 148 122

predicates with only one occurrence 146 (50%) 146 (58%) 89 (60%) 60 (49%)
predicates with > 10 occurrences 48 (16%) 25 (10%) 12 (8%) 18 (15%)

Table 5.2.: Statistics about the number of predicate annotations in the data.

Sentiment Relevance. When we look at the false positives our system produces, we
see a pattern that is familiar from other sentiment tasks where opinionated content
has to be distinguished from non-opinionated context. In our case, often comparison
words appear in non-comparative contexts, which are very hard to distinguish from

comparative contexts. Consider the following example sentence:
(5.19) “Relatively lower [noise[s at higher ISO, but higher then [Sony[g.”

Although “higher” is often a predicate, and indeed is a predicate in the second part of
the sentence, it is not always a predicate. In the example sentence, the phrase “higher
ISO” only describes a camera setting and “higher” should not be marked as a comparative
predicate. This type of usage is relatively common in our domain for descriptions of
settings, features or environments. Applying techniques from subjectivity classification

could help to find and exclude such occurrences (see also Section 2.2.1).

Data sparsity. There are many ways to express a comparison and the size of the
available training data is relatively small. This strongly influences the recall of our
system, as many predicates and arguments occur only once.

Table 5.2 shows some numbers, where we can see that about 50-60% of predicates
occur only once, while only 8-16% occur ten times or more. Learning from such a
sparse set is hard for any machine learning system. One reason for the large variety of
different predicates is the widespread use of colloquial expressions in our user-generated
data. This particularly affects verbs and nouns as predicates. These are some example
sentences from the JDPA data:

(5.20)  a. “In our store we routinely sold Nikon SLRs with [Tamron lenses|s because they
hammer the [Gslg.”
b. “> [Nikon[s pwns most other [companies|g here .

”

c. “For users of prosumer cameras who want to upgrade to a higher hardware level ,
the [EOS 40D]g has the edge over the [400D]g if budget is not a concern.”
d. “A quick search on Google will show the magnificent [Oly 50mm Macrolg putting

the equivalent [Leicalg to the sword at a quarter the price.”
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For arguments, percentages of occurrences are similar. For entities, apart from the fact
that different reviews discuss different models, a lot of the sparsity comes from the large
variety of ways to refer to one and the same product, e.g., the camera “Canon FOS 5D
Digital SLR” is referred to as “FOS 5D”, “5D7, “Canon 5D”, “the Canon”. Abstracting
over the many model numbers is one way to go as seen in the improvement gained
from NER. A large variety of different aspects are discussed in a lot of detail, because
cameras are complex products. These aspect form a hierarchy and while Brown clusters
can capture some of the similarities, the issue is more complex (see also Section 2.2.5).

One way to deal with sparse data is to enlarge size of the available training data. The
most effective approach to do that is of course to invest in quality-controlled manual
annotation of a relatively large amount of training data, however, this may not always be
possible. The next chapter (Chapter 6) deals with the question of whether we can expand
a small training set of labeled seed data by exploiting the structure of comparisons with

a semi-supervised expansion algorithm.

5.4. Summary

In this chapter, we have presented work on comparisons, our second example of a complex
verbalization of opinions. We introduced our system CSRL (Comparison Semantic Role
Labeler) for the automatic detection of comparative predicates and their arguments. We
have investigated the influence of different types of context information on our system.
For argument identification and classification, we were able to validate our hypothesis
that structural linguistic context from a dependency parse is more helpful than window-
based context information. Different forms of task and domain context (Brown clusters,
rule-based detection of product names, comparison type and predicate polarity) yielded
mixed results. Finally, we have investigated the context created by decisions taken in
annotation design and presented a detailed analysis of the different linguistic anchorings

of multiword comparative predicates (“more powerful”, “as good as”, ...) and entities.



6. Semi-supervised training set
expansion with structural

alignment

The approach presented in this chapter and the test set experiments except those including

predicate similarities have been published in (Kessler and Kuhn, 2015).

6.1. Introduction

In the two previous chapters we have discussed our corpus of annotated product compar-
isons (Chapter 4) and CSRL, our machine learning system for the automatic detection of
comparisons and their components (Chapter 5). We have argued that comparisons are
presumably the most useful kind of expression when it comes to supporting a process of
choice: there tends to be a substantial proportion of reviews (about 5-10% of sentences)
that include explicit textual comparisons, and the reviewer’s reason for the comparative
assessment can be captured and fed into the choice process. To the extent that such
subjective comparisons can be captured reliably by automatic means, they can provide
an extremely helpful basis for coming up with a decision.

One insight from both, the annotations of our data and the training of our system, is
that there is a large variety of comparison expressions and despite our data being the
largest resource of comparisons currently available, sparsity is still an issue. Moreover,
vocabulary differences across product categories make it advisable to use domain-specific
training data. For example, while “unpredictable” is a positive description for the plot of
a movie or book, it is negative when used to describe the steering behavior of a car. If
enough (human and/or financial) resources are available, the most effective approach is
of course to invest in quality-controlled manual annotation of a relatively large amount
of training data, however, this may not always be possible. Fortunately, while there

is a high variability in vocabulary of the actual textual realization of comparisons, the
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higher-level structure of comparisons follows the pattern outlined in Chapter 4 indepen-
dent of the domain: besides some comparative predicate that serves as indicator that a
comparison is made, two entities are involved and usually one specific aspect of these
entities is compared. While the actual vocabulary may differ, there are semantic con-
straints on the words that can be used as predicates, entities, and aspects and there is a
limited number of valid syntactic variations. As an illustration, consider the similarities
in the annotation of these examples taken from the data by Jindal and Liu (2006b):
(6.1) a. “first and foremost, [itlg; will take better [pic’s[a than [most film camera’s|gs.”
b. “as for [arsenallg1, i think they have a better [team|s than [chelsealrs.”

7

c. “Here is my feeling: [Pepsifg1 is the lighter [taste/a, where as [Coke[ra . ..

Since the higher-level structure of comparisons as they appear in reviews is clear-cut,
the problem setting could respond favorably to semi-supervised training strategies that
start out from a small seed set of manually annotated data which is relatively cheap
to create. As we have found the approach from Semantic Role Labeling (SRL) to be
successful for the detection of comparisons, we look again to SRL for methods to expand
a small seed set for our task. Several such methods have been proposed and successfully
applied to SRL in the past years (Gildea and Jurafsky, 2002; Swier and Stevenson, 2004;
Fiirstenau and Lapata, 2009; Franco-Penya and Emms, 2012).

The method we have selected is structural alignment, proposed by Fiirstenau and
Lapata (2009, 2012). This approach covers all steps of the SRL pipeline and does not
depend on SRL-specific resources or corpora. Structural alignment is a label projection
algorithm. Starting from a small set of labeled seed sentences, the algorithm attempts
to find sentences that are similar to these seed sentences. Similarity is compared based
on the syntactic and semantic contexts of the predicates. The basic hypothesis is that
predicates that appear in a similar syntactic and semantic context will behave similarly
with respect to their arguments. For the most similar sentences that have been found in
this way, the labels from the seed sentences are projected onto the unlabeled sentences.
The newly annotated sentences are then added to the training data for the original task,
in our case comparison detection. In this way, a small manually annotated seed set of
sentences can be expanded to create a set large enough for efficient machine learning
without additional manual annotation effort.

There are several challenges that make our task different from the typical setting in
which SRL operates. First, our data is not news text, but user-generated data (prod-
uct reviews), which is much more noisy, containing unknown words as well as errors in
grammar, spelling and punctuation. This contributes to the sparsity of our data, as well

to a larger amount of unreliability in the NLP tools we are using, such as part of speech
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tagging or parsing. Second, we have a smaller, more fixed set of roles for the arguments
than in traditional SRL (two entities that are compared in one aspect), but these argu-
ments are generally further away from the predicates and there is a greater variety of
syntactic expressions. This makes it necessary to extend the search space for argument
candidates and to include more context into our similarity measures. Finally, like all
sentiment-related task, we have to deal with sentiment relevance (cf. Section 2.2.1). Not
every occurrence of a word that looks like a comparative predicate actually introduces
a comparison.

In the following, we investigate whether, despite these differences, structural alignment
can be used successfully for getting additional training data for the task of comparison
detection. Capturing the structure of comparisons is the key step in this process to ensure
that the found sentences are similar enough so that the projection of labels onto them
produces correctly labeled new training examples, but also different enough to include
linguistic variations that enable the classifier to learn new information. We present some
adaptations of structural alignment to our task, tailoring the approach to the structural
characteristics of comparisons. To evaluate our approach, we directly determine whether
the projected labels correspond to manually assigned labels in a small development set,
and we also compare the performance of CSRL when trained on the original seed data
and when trained on the expanded data set, experimenting with varying numbers of
seed sentences and gathered expansion sentences.

In summary, this chapter deals with research question B:

Research Question B: How can the structure of complex verbalizations
of opinions be exploited in order to automatically annotate training examples

by using semi-supervised methods?

More specifically, we explore the following questions:

e Can structural alignment, a semi-supervised method that has been successfully
used for projecting SRL annotations to unlabeled sentences, be adapted to the
task of detecting comparisons?

e How can we adapt the argument candidate creation step to reflect that our ar-
guments are further away from the predicate, while at the same time keeping the
number of candidates manageable?

e What is the best way to include sentence context into the similarity measures for
arguments to improve the created alignments?

e Does including information about the predicate into the alignment similarity mea-

sure help to filter out false positive matches?
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6.2. Semi-supervised learning and related work

In supervised machine learning (classification), we assume the existence of some train-
ing data, a set of examples X with assigned classes or labels Y, from which we can
learn a function f : X — Y (a model) that maps the examples to the correct labels.
Conversely, in unsupervised machine learning, we do not have label information Y for
the examples. Instead of learning a mapping from X to Y, we can only group the ex-
amples into categories according to the internal structure of the data. Semi-supervised
or weakly supervised learning lies in between supervised and unsupervised learning. In
this setting, while we have some information about the labels on the training data, other
information may be missing. Semi-supervised learning attempts to leverage unlabeled
data in combination with the labeled data to find the missing information. The basic
case of semi-supervised learning has labels for only part of the training data, but there
are other forms of semi-supervised learning that for example only have partial or noisy
label information or use a set of constraints as basis for labels. For a discussion of
semi-supervised learning in computational linguistics see Abney (2007).

A frequently used method of semi-supervised learning is self-training or bootstrapping.
Typically, self-training starts with a small set of labeled training examples on which a
supervised classifier (the base learner) is trained. This classifier is then applied to a
larger set of unlabeled examples and assigns a label and a confidence score to each
example. The examples where the classifier is most confident are then added to the
training data. A new classifier is trained on the expanded training data, applied to the
unlabeled data and again the most confident examples are added to the training data.
The process is iterated until some stopping criterion is reached, for example be a fixed
number of iterations or until convergence, i.e., the classifier or the labels of the data do
not change from one iteration to the next. One well-known example of a bootstrapping
approach used in NLP is the Yarowsky algorithm (Yarowsky, 1995). There are many
variants of this basic method depending on the exact implementation of each step.

Semi-supervised approaches have been used in many fields and Semantic Role Labeling
is no exception. Already Gildea and Jurafsky (2002), the first work to tackle SRL as an
independent task, use bootstrapping to enlarge their training data. Their final expanded
training data is about six times the size of the originally annotated training data and they
report a small improvement for training their system on the expanded versus training
on the non-expanded training data.

Other approaches use the extensive resources with information about predicates and

possible arguments that exist for SRL as a basis for bootstrapping. The work of Swier
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and Stevenson (2004, 2005) leverages VerbNet as the basis for a bootstrapping approach
to classify argument roles. VerbNet lists possible argument structures allowable for each
predicate. For a given argument, they determine the set of possible roles from VerbNet.
After initially making all unambiguous role assignments, their system learns from these
assignments and iteratively proceeds to label all arguments.

Apart from bootstrapping, label projection is another common method to assign labels
to unlabeled data. Label projection starts with an individual labeled seed example, looks
for similar examples, and then projects the labels over some alignment between the two
examples. Label projection has been used in multilingual contexts for various tasks,
from projecting parts-of-speech and chunks (Yarowsky et al., 2001) to Named Entities
(Ehrmann et al., 2011) and also to project SRL information from one language to another
(Padé and Lapata, 2009). In multilingual contexts, the alignments that are used for the
projection are derived from the translation alignment between the words of the original
sentence and its translation. For monolingual contexts a different sort of alignment with
different measures of similarity is necessary. Such monolingual alignments are studied for
in textual entailment recognition or paraphrase identification, although for these tasks
there is usually no transfer of labels along the alignments (Yao et al., 2013).

The approach we are adopting for our work in this chapter is structural alignment
proposed by Fiirstenau and Lapata (2009, 2012). While they also use a bootstrapping
approach in their evaluation, their proposed method is a label projection algorithm over
sentences. The process is based on the assumption that sentences which are similar in
syntactic structure and semantics of the arguments also have similar predicate-argument
relations. For each labeled seed sentence, the k most similar sentences are extracted
from a large set of unlabeled sentences and the labels of the seed sentence are projected.
Structural alignment is explained in detail in the following section together with our
adaptations. Fiirstenau and Lapata (2009, 2012) address the complete pipeline of SRL
steps, from predicate identification until argument classification.

A similar approach is presented also by Franco-Penya and Emms (2012), but their
approach relies on already identified predicates and arguments and is thus not applicable
to our task, where we do not have such information. For an unlabeled sentence, they
project the labels for all arguments from the labeled sentence with the smallest tree
edit distance and experiment with different cost measures. In contrast to the above
approaches, they do not use their method to expand a training set for classification, but
directly classify the unlabeled sentences (similar to 1-Nearest-Neighbor classification).

Some completely unsupervised approaches have also been proposed for tasks in the

SRL pipeline. Abend et al. (2009) do unsupervised argument identification by using
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pointwise mutual information to determine which constituents are the most probable
arguments. Initially, all constituents are regarded as argument candidates, this set is
then filtered (by using minimal clauses, pruning and pointwise mutual information) to
include only the most probable candidates. Their work is limited to argument identifi-
cation and they use gold predicates as a starting point. In contrast to their work, we
cannot start from given predicates in the test set, as we have no annotations at all for
our unlabeled sentences.

For comparison detection we do not have extensive resources like PropBank or VerbNet
at our disposal. We do however think that a small seed set of comparison sentences can
be annotated in reasonable time for any new domain or language. This set may not be
sufficiently large for bootstrapping, but it can be used as an initial seed set for a label

projection approach like structural alignment.

6.3. Structural alighment approach

The goal of our work is to get more training data for our task of comparison detection
by expanding a small set of labeled seed sentences. We have implemented structural
alignment proposed by Fiirstenau and Lapata (2009, 2012), a semi-supervised label pro-
jection method for finding unlabeled sentences that are similar to labeled seed sentences.
The basic hypothesis is that predicates that appear in a similar syntactic and semantic
context will behave similarly with respect to their arguments. Based on this, the labels
from the seed sentences can be projected to the unlabeled sentences. The newly labeled
sentences can then be used as additional training data for the original task.

We first give the general outline of structural alignment in the next subsection and
then give more specific details for each of the separate steps in the later subsections.
Our adaptations to the new task of comparison detection mainly focus on argument
candidate creation and alignment scoring, as we assume these two steps to have the
biggest effect on overall performance. For the other steps, we have made only minor

changes to the original approach.

6.3.1. Outline of structural alignment

The pseudo-code for structural alignment is given in Figure 6.1. This section presents a
rough outline of the process of label projection with references to the following sections
where we discuss each step of the expansion algorithm in detail. Figures 6.2 and 6.3

illustrate each step for a pair of example sentences from our data.
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1: for seed sentence s € S do
2: for predicate p € s do
3: L+ 0 > list of expansion sentences
4: for u e U do > process all unlabeled sentences
5: o(p) < getCompatiblePredicate(p, u)
6: if o(p) # € then
7: M <+ getCandidatesLabeled(s)
8: N « getCandidatesUnlabeled ()
9: (0, scoreg) < getBestAlignment (M, N)
10: if at least one role-bearing node is covered in o then
11: add (o, scores, u) to L
12: end if
13: end if
14: end for
15: sort L by descending alignment similarity scores
16: fori=1 to k do > project labels for the best k sentences
17: projectLabels(s,L(i))
18: end for
19: end for
20: end for

Figure 6.1.: Outline of structural alignment in pseudo-code.

We are provided with a small set of labeled sentences S (seed data) and a large set
of unlabeled sentences U (expansion data). We collect expansion sentences individually
for every predicate of every labeled sentence from the seed corpus. If a sentence has two
or more predicates, the process is repeated for each predicate independent of the others.
As compatible predicates and extracted argument candidates will differ for different
predicates, the final expansion sentences will usually not be the same for predicates
from the same sentence.

We start with a given predicate p of seed sentence s, for example the predicate “higher”
from the following sentence (the second predicate of the sentence, “same”, would be
considered in a separate step):

(6.2) “[This camerafg1 has just a bit higher [learning curve[s than [the Canon SLRs I've
usedfge but about the same with the Nikons.”

The following steps are performed for for every unlabeled sentence u € U. First, we
check whether u contains a predicate which is compatible with p (cf. Section 6.3.2). We
denote the predicate candidate in u with o(p), the word in the unlabeled sentence which
is aligned with p. We filter by predicate, because the possible variations of comparison

expressions are depending on the predicate, so similar sentences will always have the
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same or at least a very similar predicate. If we take compatible predicate to mean a
word with the same part of speech, we might find the following unlabeled sentence for

our example seed sentence where o(p) has been marked in bold:

(6.3) “The camera has a somewhat larger body than many digital cameras but it’s still easy to
hold onto.”

For sentences where there is a compatible predicate, we proceed to get all argument
candidates M from the labeled seed sentence s and all argument candidates N from the
unlabeled sentence u (cf. Section 6.3.3). The method of obtaining the candidate sets
may be different for the labeled and the unlabeled sentence, e.g., we can take the actual
arguments on labeled side and syntactically related word of o(p) on unlabeled side. From
the two example sentences, we could for example extract the following candidates:

e Candidates M from s: “camera”, “curve”, “SLRs”

»o, 0 i o«

e Candidates N from u: “camera”, “has”, “a”, “somewhat”, “body”, “cameras”

We then score every possible alignment between the two argument candidate sets M
and N, to find the best possible correspondence between the argument candidates in
the two sentences. Scoring is done by summing up the similarities of all aligned words
(cf. Section 6.3.4-6.3.6). We select the best-scoring alignment o for sentence u and
store it together with the corresponding score,(s, u) iff at least one role-bearing node is

covered. For our example sentence u we store the following best alignment:

e Alignment score: scoreg(s,u) = 0.75

e Alignment: o(camera) = camera, o(curve) = body, o(SLRs) = cameras

When all unlabeled sentences have been processed, we choose the k sentences with
the highest alignment similarity scores as expansion sentences for the seed predicate p of
sentence s. These are the sentences with the most similar arguments, so they presumably
can be labeled in the same way as our original sentence. For example, from the following

three sentences with their scores, for £k = 1 we chose the only the first sentence:

(6.4) a. “The camera has a somewhat larger body than many digital cameras but it’s still
easy to hold onto.” (scores(s,u) = 0.75)
b. “DSC-H2 seemed to drain batteries at a higher rate than what specifications stated
it would.” (scoreg(s,u) = 0.54)
c. “You should stick to ISO 50, there is no need for higher ISO or using flash (unless

pitch black) as long as you turn on stabilization.” (scores(s,u) = 0.39)

For the chosen sentences, we project the labels of the arguments in the seed sentence
onto their aligned words in the unlabeled sentence (cf. Section 6.3.7) and add the newly

labeled sentences to the training data. Our example processing results in this:
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(6.5) “The [camerafm1 has a somewhat larger [body[s than many digital [cameras|ga but it’s

still easy to hold onto.”

The following sections talk in more detail about our specific processing for sentence
selection (Section 6.3.2), argument candidate creation (Section 6.3.3), similarity scor-
ing for arguments (Section 6.3.4) and predicates (Section 6.3.5), word alignments (Sec-
tion 6.3.6), and label projection (Section 6.3.7).

6.3.2. Sentence selection

Generally, following Fiirstenau and Lapata (2009, 2012), we consider all unlabeled sen-
tences to be possible expansion sentences that contain a word with the exact same lemma
as the labeled predicate. Additionally, in contrast to the original approach, we use the
part of speech (POS) tag instead of the lemma for all adjectives and adverbs in compar-
ative or superlative form (see the example in Figure 6.2), as exchanging the exact word
in this case is without any influence on the syntactic structure or the arguments of the

comparison. Like the original approach, we only consider single-word predicates.

6.3.3. Creation of argument candidates

The basis for extracting argument candidates is the dependency parse of the sentence.
A dependency parse models the relations between pairs of words in the sentence. Fig-
ure 6.2 shows the dependency parse trees for an example seed sentence and an example
unlabeled sentence. Each word is a node in the tree. There is one root node, usually
the main verb. In the example it is the word “has” in both sentences. A relation be-
tween two words is called a dependency and has a type that gives information about
the grammatical function, e.g., SUBJ for subject, AMOD for adjectival modifier. The
dependency is directed from the dependent (the governed word, the child node) to the
head (the governing word, the parent node).

For the extraction of argument candidates, the anchor in the sentence is the predicate
and we use the following terms and notation to describe the relationship of a candidate
with the predicate. We refer to the dependents of the predicate and all their dependents
as descendants, i.e., this includes all nodes that are reached when going “down” in the tree
from the predicate (symbolized by |). Similarily, ancestors refers to all words reached
when going “up” in the parse tree from the predicate until the root node (symbolized
by 1). When a word can be reached by taking only one step “up” respectively “down”,

we call it a direct descendant, respectively the direct ancestor. When a word is a direct
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ROOT
OBJ
NMOD
NMOD
/ PMOD
NMOD [ NMOD \
NMOD . - SBJ AMOD NMOD-|| NMOD f NMODQ
/ (VAR / / \ J

has just a bit {higher”learning curve} than {the Canon SLRS}

(Entity 1) Entity 2

(a) Labeled seed sentence with predicate “higher/JJR”.

ROOT
OBJ

PMOD

NMOD NMOD
JNVOD, ~SBI-| [ - AMOoD - NMOD\ /NMODxf / /- NNOD :&

This camera has a somewhat body than many digital cameras

(b) Unlabeled expansion sentence with compatible predicate “larger/JJR”.

LABELED “camera”; “curve”, “SLRs”
Descendants: -
FL for “camera’ “Dbit” (1), “curve” (11), “has” (1171), “camera” (T114)
for “curve”: “Dit” (1), “curve” (11)
for “SRLs™: “Dit” (1), “curve” (11), “SRLs” (1114)
Descendants: -
KK Ancestors: “Dit” (1), “curve” (11), “has” (1171)

Siblings of “bat” Just” (1), “a” (1)), “learning” (111)
Siblings of “curve”  “SRLs” (17)J, prep. collapsed), “camera” (111))

(c) Argument candidates on labeled side with different methods (LABELED, FL, KK).

Descendants: “somewhat” (])
FL for “camera” path (tAMOD tNMOD 1OBJ |SBJ) not found
for “curve”: path (tAMOD tNMOD) not found
for “SRLs”: path (tAMOD tNMOD |[NMOD |PMOD) not found
Descendants: “somewhat” ({)
KK Ancestors: “body” (1), “has” (11)
Siblings of “larger”.  “a” (11), “cameras” (1], prep. collapsed)
Siblings of “body”: “camera” (T11)

(d) Argument candidates on unlabeled side with different methods (FL, KK).

Figure 6.2.: Argument candidate extraction with different methods for an example la-
beled seed sentence and an unlabeled expansion sentence.
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descendant of the same word as the predicate, i.e., reached by going one word “up” and
one word “down” (symbolized by 1)), we call it a direct sibling. Similarly, sibilings in

general are all descendants of direct siblings.

Fiirstenau-Lapata path-based method (FL). Fiirstenau and Lapata (2009) use all
direct descendants and direct siblings of the predicate as argument candidates (on labeled
side this includes both SRL arguments and non-arguments). Their main assumption is
that “we expect all roles in the graph to be instantiated by syntactic dependents of [the
predicate| p” (Fiirstenau and Lapata, 2009). When we extract direct descendants and
direct siblings of all predicates in our labeled data, we find that only 17% of the actual
labeled arguments are contained in this set (5% of arguments are direct children, 12%
direct siblings of a predicate). For example, for the labeled sentence in Figure 6.2 the
candidate set created with this method would not include any argument of the predicate,
as no direct descendants and direct siblings of the predicate exist.

In their follow-up work (Fiirstenau and Lapata, 2012), the authors additionally extract
the dependency paths from the predicate to each argument in the labeled sentence. Paths
include all the dependency relations between the predicate and the argument and their
direction in the tree (1 or |). For the labeled seed sentence in Figure 6.2, we would
for example extract the path (fAMOD tNMOD 1tOBJ |SBJ) for the argument “This
camera”. They search for these exact same paths in the unlabeled sentence, and extract
all nodes on these paths as argument candidates. We use FL to refer to this Fiirstenau
and Lapata’s method which includes the direct descendants and the exact paths
to the arguments in the argument candidate set.

In contrast to the news data Fiirstenau and Lapata (2009, 2012) work on, we have to
deal with noisy user-generated data, where parses are less reliable (cf. the example seed
sentence, where “a bit” should modify “higher”, instead “higher” is wrongly attached to
“bit”). Additionally, comparative arguments tend to be further away from their predi-
cates than SRL arguments, e.g., often one of the entities is the subject in a sentence. As
a result, the paths to the labeled arguments are diverse and sometimes very long. When
we extract all paths from predicates to arguments from our labeled data, many paths
are found only once, so we expect this method to fail often in finding any candidates. As
a case in point, in the example unlabeled sentence, none of the paths extracted from the
labeled sentence is found, so no candidates can be extracted from this sentence (there
are of course other sentences in the data where the paths will be found). On the other
hand, when an exact path is found, we expect the match to be very precise and give a

well-matching candidate for the argument.
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Kessler-Kuhn dependency-based method (KK). The challenge is to enlarge the set
of argument candidates in order to increase the chances of finding correct alignments,
while keeping the number of candidates manageable so that alignments can be calculated
in reasonable time. In keeping with the original idea, we extract candidates based on
their dependency relations with the predicate. But instead of using only the direct
descendants, ancestors and siblings, we experiment with adding to the candidate set all
descendants, all ancestors up until the root of the dependency tree, and all descendants
of the siblings. For the labeled example sentence, this approach would add the actual
argument “curve” to the candidate set (parent of the parent of the predicate, 11). If
we look at statistics of the labeled data, 22% of arguments are children of a predicate
(only 5% are direct children), 24% are ancestors (18% direct ancestors), and 15% are
siblings (12% direct siblings). Adding all of these, we find 61% of real candidates, and
the extracted sets contain between 1 and 25 items with an average size of 7.

Still, nearly 40% of candidates are not included when we extract candidates based
on the above dependency relations. Lluis et al. (2013) observe that nearly all of their
SRL arguments are either direct descendants of the predicate or direct descendants of
an ancestor of the predicate. Accordingly, our method which we call KK (referring to
Kessler and Kuhn) uses all ancestors of the predicate until the root and their
direct descendants, plus all descendants of the predicate itself. With this, the
candidate set for the example labeled sentence includes the first entity, “camera”, in
addition to the still-included aspect “curve”. In the complete labeled set, we find about

86% of all arguments with an average candidate set size of 10.

Filtering and (a)symmetric extraction. To reduce the number of candidates that
are very unlikely to be arguments, we impose a distance limit for candidates and ex-
clude numbers and punctuation. We also remove prepositions (Fiirstenau and Lapata,
2009) and conjunctions (Fiirstenau and Lapata, 2012), as they can never be arguments
themselves. We follow Fiirstenau and Lapata (2012) and add their direct children to the
candidate set. In the example labeled sentence, this would remove the preposition “than”
and instead add the direct child “SLRs”, which finally leads to the example candidate
set containing all actual arguments.

Fiirstenau and Lapata (2012) include the predicate itself in the candidate set. As the
predicate is the pivot for selecting the unlabeled sentence and will always be aligned
with the word found there, we do not include these words into the candidate set, instead

we consider predicates separately for alignment similarity calculation (see Section 6.3.5).

The original approach extracts candidates in a symmetric way, i.e., using the same
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candidate extraction method on both the labeled and the unlabeled sentence. This
means that the candidate set for the labeled side includes non-arguments as well. As
our interest is solely in finding good alignments for the projection of the real arguments,
and our candidate sets are relatively noisy, we use an asymmetric method for candidate
extraction. On the labeled side, we use only the actual labeled arguments of the compar-
ison. On the unlabeled side, we use the set extracted with the methods described above.
We refer to the symmetric candidate extraction by FL-syMM and KK-symM and the
asymmetric candidate extraction by FL and KK.! Figure 6.2 shows the candidate sets
for the labeled and unlabeled example sentences extracted with all methods described

in this section.

6.3.4. Argument similarity scores

The similarity of an alignment between two sentences s and wu is the averaged sum of
all word alignment similarities. Word alignment similarities are themselves the averaged

sum of different word similarity measures:

|M|

scoreg (s, u) |M] Z Zaj sim; (w;, o (w;)) (6.1)

]EJ

where M is the set of candidates on labeled side, w; € M one of these candidates, o(w;)
the candidate on unlabeled side aligned with w;, and J is the set of word similarities to
calculate. The parameters «; regulate the relative importance of each word similarity

measure. Unaligned w; receive a word similarity of zero.

This definition of alignment similarity follows the original approach proposed for SRL,
but adds the possibility of including arbitrary similarity measures, each with an individ-
ual weight?. The original approach uses only the weighted sum of syntactic (syn) and
lexical /semantic (sem) similarity as word similarity measure. Chosing these two similar-
ity measures follows the intuition that both complement each other and that sentences
need to have both a similar syntactic structure and semantically similar arguments in

order to be able to project the labels. Fiirstenau and Lapata (2009) give this formulation

Tn (Kessler and Kuhn, 2015) the terms PATH-FILTERED and DEPENDENCY-FILTERED candidate cre-
ation are used, but we decided to switch terminology to avoid the confusion of these names with the
PATH and DEPENDENCY similarity measures discussed in the following section.

2There are countless possibilities for word similarity measures, we discuss those that we use later in
this section and test their effects on the development set in the experiments.
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for their sentence similarity measure (adapted to our naming conventions):

| M|

scoreprog (s, u) = Z(a -syn(w;, o(w;)) + sem(w;, o(w;)) — B) (6.2)

which compared to Equation 6.1 contains the additional parameter B. This parameter is
needed to allow for unaligned words in their ILP setup. Unaligned nodes are covered in
our setup by setting their similarity value to zero. Fiirstenau and Lapata (2009) do not
normalize by number of arguments a predicate has. This is not necessary in their setup
as similarity values are only compared with scores for the same seed sentence which has
always the same number of arguments.

Fiirstenau and Lapata (2012) use a formulation over dependency edges:

scorepr1a(s, u) = é a- (wi,zgezE(M) syn(w;, o(w;)) + w;/[ sem(w;, o(w;)) | (6.3)
(o(wi),0(z2))EE(N) o(w;)7e
where E(M) and E(N) are the set of edges between nodes in labeled-side candidates M
and unlabeled-side candidates N respectively. Now, C' is introduced as a normalization
factor to make scores comparable across sentences. They have also changed their setup
to remove the need for the parameter B.

Semantic similarity is calculated as the cosine similarity of the co-occurrence vectors of
the two words, co-occurrences are extracted from news texts. We use the same measure
as our vector space similarity (Vs) with context vectors extracted on texts from our
domain. As a measure for syntactic similarity, they compare the dependency relation of
the candidates (1 if they are the same, 0 if they are different). For our flat syntactic
similarity (DEP) we take into account that our sentences are more noisy and parses
are not as reliable. To the comparison of dependency relations (0.5 same, 0 different)
we add a comparison of the parts of speech, as these are more reliable (0.5 same, 0.25
same universal part-of-speech tag, 0 different).

A similarity measure that looks only at words without context works in a situation
where there are relatively few candidates to chose from. But with a larger and noisier
pool of candidates, there are too many similar candidates and the best match cannot
be found without taking into account sentence structure and context. We have experi-
mented with several possibilities to replace the flat syntactic similarity that only looks
at the current candidate with a more context-aware similarity measure.

From the surface form of the sentence we can get a “flat” context for the argument
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candidates. Window similarity (WINDOW) averages over the vector space similarity

Vs of the neighboring words to the left and right of a given argument candidate w;:
: L . .
simw ivpow (Wi, o(w;)) = §(Slm\/s(wi—1, o(w;) 1) + simyg(wiy1, o(w;) 1)) (6.4)

We can also compare the token position similarity (POSITION) of the argument
candidate with respect to the predicate p. Specifically, we calculate the distance between

argument and predicate in number of tokens di.x, and compare the two distances:

1
" Jdvox (wi, p) — dior(0(w;), o (p))] + 1

Simposirion (Wi, 0 (W;)) (6.5)

WINDOW and POSITION are easy to implement as they work on the surface level, but
to get more accurate information about the sentence structure, we can transform them
to include information from the dependency parse tree of the sentence. Instead of “flat”
window context for the candidate which uses the words directly besides the candidate, we
can use the window context around the subtree that includes all children of the current
candidate. As an example, take the candidate “camera” in the phrase “bigger than my
old camera”, WINDOW would use “old” as context, while subtree neighbors would use
“than”, because the other two words are dependents of the candidate. Subtree window
similarity (TREEWINDOW) thus compares the vector space similarity VS of the word
to the left of the leftmost token in the subtree and the word to the right of the rightmost
token in the subtree below the argument candidate.

When comparing position in the parse tree, as a basic measure we can compare level
similarity (LEVEL), i.e., the number of “up”s (d;) and “down”s (d;) on the dependency
path from argument to predicate. Roughly this corresponds to comparing the difference
in level in the parse tree relative to the predicate and is achieved by replacing the token

distance from TOKENS with the “up” and “down” distance:

1
|di(wi, p) = di(a (wi), o (p))| +1

' 1
SlmLevel(wi7 0(11]1)) = 5 Z

le{t}

(6.6)

The full path similarity (PATH) measures the similarity of the words on the depen-
dency path from argument candidate to the predicate. For each pair of words, the word
similarity is calculated and the final path similarity is the average over all word similar-
ities. We have experimented with different measures of similarity for the words on the
path and found DEP to perform best. The “up” and “down” parts are counted separately
and if paths have different length, every left-over word is added with similarity 0.
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name level arg pred compares ... of the two words
Vs flat v Vv cosine similarity
GE) WINDOW surface v Vv VS of left /right neighbors
' TREEWINDOW dependency + VS of left/right neighbors of subtree
DEpP flat vV dependency relation and POS
>< . .
& PosiTION surface vio— token distance to predicate
£ LEVEL dependency v~ — ups and downs on dependency path to predicate
“ Parn dependency v~ — DEP of all words on dependency path to predicate

Table 6.1.: Overview of syntactic and semantic word similarity measures that can be
applied to arguments (arg) and predicates (pred).

Table 6.1 contains an overview of all word similarity measures. In summary, we have
two flat similarity measures (VS, DEP), two measures that include surface sentence con-
text (WINDOW, POSITION) and three measures that include dependency parse context
(TREEWINDOW, LEVEL, PATH). We test the effects of all these similarity measures on

expansion accuracy in our experiments.

6.3.5. Predicate similarity scores

The originally proposed alignment similarity discussed in the previous chapter depends
only on the arguments and does not directly consider the predicate itself. In SRL,
every occurrence of a predicate word also functions as a predicate, the only question is
whether it is an instance of the frame we are currently interested in or a different one.
In our case though, we have many instances where occurrences of words that look like
comparative predicates do not introduce a comparison. To this end, we propose to add a
predicate similarity score to the alignment score, where information about the predicate
candidate can be considered. We add the predicate similarity with the same weight as

one argument, i.e., the alignment similarity between s and v now becomes:

| M|

scoreg(s,u) = ]M| 1 Z WA Za] simy; (w;, o (w;)) |J | Zﬁ] sim; (p, o(p))

Jj€Ja j€Jp

(6.7)
where J, and J, are the sets of similarities used for argument and predicate similarities
respectively. Similar to «; for the arguments, the parameters 3; regulate the relative
importance of each predicate similarity measure.

Those argument similarity measures that are not dependent on the predicate can

directly be used to measure similarity of predicates (VS, WINDOW, TREEWINDOW,
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DEP). A v symbol in the column ‘pred’ in Table 6.1 indicates that we use the measure
for predicates. We would expect the context similarities WINDOW and TREEWINDOW

to be especially useful.

6.3.6. Alignments between candidate sets

Input to the alignment step are two sets of argument candidates: the set on labeled side
M with m elements and the set on unlabeled side N with n elements. Our goal is to
find for each argument candidate w; on labeled side one aligned candidate o(w;) so that
the overall alignment similarity is maximized. Any labeled candidate w; can also stay
unaligned, i.e., aligned to nothing. Unlabeled candidates can also stay unaligned. This
will occur relatively frequently if the source side set contains only the real arguments
(between 1 and 4 usually), as there will usually be more candidates on unlabeled side.

This setting is an instance of the assignment problem, originally formulated by Koop-
mans and Beckmann (1957) as finding the best assignment of m workers to n tasks,
where each worker has a rating for the tasks that indicates some measure of cost. In our
case we need to find an assignment between the two sets of candidates given a measure
of similarity between every pair of words. More formally, the assignment problem can be
formulated as follows. Let G be a (complete) weighted bipartite graph with V' = M UN
with MNN = @ and E C M x N. Every edge v € E is assigned a weight which
represents the “cost” of assigning the worker m to the task n. A matching is a subset
A C F such that Vv € V' at most one edge in A is incident upon v (i.e., every node has
at most one edge that connects it to the other partition of the graph). The assignment
problem is to find a minimum weight matching in G.

We use the Hungarian Algorithm (Kuhn, 1955) to solve the problem which has a
time complexity of O(n?). To apply the Hungarian Algorithm, we calculate the word-
similarity for every pair of words (w;, o(w;)) from our two candidate sets where w; € M
and o(w;) € N. This results in a m X n matrix with similarity values in the range of
[0,1]. The Hungarian algorithm works to find minimum costs, not maximum similarity,
so we use 1 — similarity as entries for the final matrix.

The Hungarian Algorithm now performs the following steps on the input matrix®:

1. Subtract the smallest entry in each row from all the entries of its row.
2. Subtract the smallest entry in each column from all the entries of its column.
3. Cover all zeroes with the smallest possible amount of vertical and horizontal lines,

i.e., lines that cover either one row or one column of the matrix.

3See a step-by-step explanation and solve cost matrices at http://www.hungarianalgorithm.com.


http://www.hungarianalgorithm.com

138 6. Semi-supervised training set expansion with structural alignment

curve camera SRLs
somewhat body a cameras has camera

(a) Argument candidates on labeled side (upper line, real arguments) and unlabeled side (lower
line, extracted with KK) with all possible alignments between them (dotted lines) and one
selected alignment (solid lines).

sim value w; value o(w;) sim;j (w;, o(w;))
Vs U(slrs) U(cameras) 0.91
WINDOW ¥(canon), U(i) v(digital), ¥(but) 0.61
TREEWINDOW  ¥(than), ¢(i) ¥(than), ¥(but) 0.78
DEep PMOD, NNP PMOD, NNS 0.75
PosiTion 6 S 0.50
LEVEL 12012 1112 0.75
PATH 1 bit | curve, than | body, than 0.70
scorey, (“SLRs”, “cameras”) 0.71

(b) Word similarities for “SLRs” as w; and “cameras” as o(w;).

“camera”  “has”  “a”  “somewhat” ‘“body” “cameras”
“camera” 0.82 0.38 0.32 0.34 0.44 0.34
“curve” 0.46 0.33 0.31 0.24 0.70 0.35
“SLRs” 0.38 0.28 0.31 0.25 0.37 0.71

scoreg(s,u) =1/3-(0.82+0.70 4+ 0.71) = 0.75

(c) Similarity matrix with all word alignment scores (best alignment marked in bold) and the
alignment similarity for best alignment.

ROOT
OBJ
( PMOD
/ NMOD Q‘ f ~ NMOD N
NMOD SBJ | AMOD NMOD || NMOD | NMOD —||
JTMOP SBIA JAMOD~ NMOD{| NMOD, | s |

This M has a somewhat than many digital
Entity 1 Entity 2

(d) Resulting labeled sentence

Figure 6.3.: Alignments and similarities for the example from Figure 6.2.
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4. If the number of lines is equal to the dimension of the matrix, stop. Otherwise go
on with the next step.
5. Determine the smallest entry not covered by any line. Subtract this entry from

each uncovered row, and then add it to each covered column. Return to step 3.

The zeros cover an optimal assignment over the original cost matrix.
Figure 6.3 contains an example matrix and the resulting optimal alignment for the

two example sentences from Figure 6.2.

6.3.7. Label projection

Input to this step is a labeled sentence s, an unlabeled sentence u and the best alignment
between them. First, we assign the predicate of the unlabeled sentence as the anchor
of the comparison. Then, for every source side argument candidate w;, we project its
label along the alignment onto the aligned candidate on target side o(w;). If a word w;
is aligned to nothing or has no argument label, nothing is projected.

In the example from Figure 6.3, the word “larger” is marked as the predicate and three
arguments are added. The label ‘Enitity 1’ is projected from the seed sentence argument
“camera” to the aligned word “camera” in the unlabeled sentence. Similarly, ‘Entity 2’

is projected from “SRLs” to “camera”, and ‘Aspect’ from “curve” to “body”.

6.4. Analysis of expansion on development set

In this section, we evaluate the structural alignment approach with our adaptations on
our task of comparison detection. The first set of experiments is a direct evaluation of

the projected labels created by the system on a manually annotated development set.

6.4.1. Data and experimental setup

Seed and test data. As our core labeled seed data set we use our corpus of comparison
sentences from English camera reviews (described in Chapter 4). We divide the data
into five folds and use one fold as seed data. The rest of the folds is used as test data in

the second set of experiments (see Section 6.5).

Expansion data (development set). We want the development set to contain sen-
tences that are possible candidates for the expansion of the seed data, so we cannot just

randomly annotate data. Rather, we run a version of the expansion algorithm and take
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the expansion sentences proposed by the system to be annotated by a human. We used
a relatively small amount of about 50000 camera reviews from amazon.com as the ex-
pansion data to create the development set (different from the actual expansion set used
in the experiments afterwards). We ran the expansion with asymmetric KK candidate
creation and used VS+TREEWINDOW+DEP+POSITION+LEVEL+PATH as argument
similarity. Starting with the first seed sentence, we took the top 3 found expansion
sentences per seed until we had 151 different sentences (from 61 seed sentences).

In total we had five annotators who were all graduate students of Computational
Linguistics. Each sentence was annotated by three different annotators. The annotators
were given a ten-minute introduction to the task. In annotation interface they were
given the sentence with the identified predicate marked and had to decide whether the
marked word introduces a comparison. If so, they were asked to identify the parts of the
comparison. We also asked for a simplified version of the comparison type, annotators
had to chose whether the first entity was better (i.e., type ranked or superlative,
direction superior), worse (i.e., type ranked or superlative, direction inferior), equal
to (i.e., type equative) or different from (i.e., type difference) the second entity.

The whole annotation process took about one hour. Table 6.2 shows some agreement
results. For our final development set, we take sentences to be comparative if at least
two annotators agree on the decision, otherwise they are non-comparative (even if one
annotator disagreed). Out of the 151 predicates marked, 85 were agreed to be introducing
a comparison by at least 2 annotators. For arguments, we use lenient text span agreement
agr;, where two spans are considered to match if they have at least one overlapping
token. We extract all annotation parts where at least two annotators agree, otherwise
no annotation of the type is extracted. In case annotators do not agree on a complete
span, only the overlapping part is extracted.

As an example consider the following sentence from the data:

(6.6) “it’s slightly bigger than the XTi and the size of the rear screen means buttons have been

moved around so it took a little getting used to, but the image quality is very good.”

All three annotators agree that the marked predicate “bigger” introduces a comparison.
The annotations for the first entity are “it” (twice) and empty (once), so “it”is annotated.
For the second entity, annotators chose “the XTi” and “XTi” (twice), so the overlap of all
annotators, “X7T4”, is used. There is disagreement about the aspect, the first annotator
left it empty, the second annotator chose “the size”, the third “bigger than”, so no aspect

is annotated. The resulting annotation of the sentence is thus:

(6.7) “[itfg1’s slightly bigger than the [XTifps ..."


amazon.com
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Categorical: 3 agree 2 agree no agreement A Az
Comparison yes/no 91 56 4 0.97 0.60
Comparison type 39 39 7 0.92 0.46
Text spans: 3 agree 2 agree no agreement agr, agrs
Scale 29 48 8 091 0.34
Entity 1 44 40 1 0.99 0.52
Entity 2 59 24 2 0.98 0.69
Aspect 39 40 6 0.93 0.46

Table 6.2.: Inter-annotator agreement on the set of 151 annotated sentences in the de-
velopment set. Every sentence is annotated by three annotators, we report
observed agreement (A) and lenient text span agreement (agr,) for two (3)
and three (3) annotators.

Co-occurrence vectors for vector space similarity. To calculate vector space similar-
ities that are relevant for our domain, we use co-occurrence vectors extracted from a large
set of reviews with a total of 40 million tokens. This set includes the above expansion cor-
pus, the electronics part of the HUGE corpus (Jindal and Liu, 2008) and camera reviews
from amazon.com. Sentence splitting and tokenization is done with Stanford CoreNLP*
(Manning et al., 2014). We restrict ourselves to sentence-internal co-occurrence and use
a symmetric window of 2 words. Tokens are normalized by lower-casing and non-words
are excluded (e.g., numbers, punctuation, URLs, hashtags, emoticons). For the final

vectors, we retain the 2000 most frequent dimensions.

Experimental setup and evaluation. To test the various similarity measures and
methods for candidate extraction, we simulate the expansion process on the development
set. Structural alignment is run for the seed sentences for which we have annotated
sentences in the development set (i.e., the first 61 seed sentences) and labels are projected
for the top k expansion sentences. If the value of k is such that there are several sentences
with the same similarity value and only some of them can be annotated, the selection is
done at random, so there will always be exactly k£ sentences with projected labels.

We compare the projected annotations to the gold standard annotation of the sen-
tences. We report precision, recall and F} score on three tasks: predicate identification,
argument identification and argument classification. For argument classification scores
are micro-averaged over all argument types (P,, R,, F},). For recall, we only compute

the recall on predicates that are compatible with the predicate we are currently expand-

“http://nlp.stanford.edu/software/corenlp.shtml
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ing. This serves to exclude predicates that we have no possibility of finding with our
approach. So, if a sentence contains an additional predicate that is not compatible with
the currently expanded predicate, it and its arguments are ignored. For example if we
are looking for expansion sentences for the predicate “higher”, the predicate “superior”
would be ignored in the evaluation of this sentence:

(6.8) “The D5100 has a far superior screen with much higher resolution.”

We compare the different methods of candidate creation (LABELED arguments, FL-
syMM, KK-symMm, FL, KK, see Section 6.3.3) and different similarity measures for
arguments and predicates (Table 6.1, see Sections 6.3.4 and 6.3.5) We compare to a
simple baseline that just assumes the similarity of 1 for every word pair. This will
usually result in the arguments being aligned by the order in which they are put into

the candidate list, which is by surface position.

6.4.2. Results and discussion
Results using labeled arguments

As a first experiment we use the actual LABELED arguments as argument candidates
on both sides. When the predicate candidate on the unlabeled side is not actually a
predicate, no argument candidates are extracted on the unlabeled side, which means
the unlabeled sentence is ignored. Therefor, all predicates found in the expansion are
annotated predicates, so precision on predicates is always 100.

The next decision concerns the number of sentences k to annotate per seed sentence.
In our development set, we can set k£ to the number of expansion sentences there actually
are for each seed sentence, i.e., no fixed value of k, but the optimal value for each sentence.
When we run this experiment, we get near-perfect recall® and F; score. With perfect
predicate identification, argument identification on labeled arguments will produce errors
only if there is a different number of arguments in source and target sentence. The scores
vary slightly for the different similarity measures, but overall we get F scores of about
87. Scores for argument classification depend on argument identification and on the
chosen similarity measure and F} scores range from 34 to 49.

These scores are a theoretical maximum, as in reality we will not know how many “real”
expansion sentences there are. When we fix k£ to some value that, recall on predicates
drops, and this affects all following steps of the pipeline. As an example, for £k = 1,
recall drops to 6.1, with £ = 10 we are at 46.1. The related drop in recall for argument

5Actual recall is 98.2, because one sentence in the development set has no annotated arguments, so its
alignments are discarded because of our rule that at least one role-bearing node must be covered.
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Figure 6.4.: Results (F} score for the task of argument classification) on development set
for different similarity measures using LABELED arguments on both sides

when extracting £ = 1,2, ... expansion sentences.
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identification is in the same range. Again, there are minor differences, but overall the
values are the same, independent of the similarity measure that has been used.

In this first set set of experiments, we compare results on argument classification for
the different argument similarities one at a time. The Fj scores for different values
of k can be found in Figure 6.4 (the complete tables can be found in Table C.1 and
Table C.1). We can see that the simple baseline of always assuming a similarity of 1
beats the semantic similarities for £ > 3. Flat and surface syntactic similarities are
mostly identical to the baseline. The best results are achieved with PATH similarity.

When we run all possible combinations of similarities, few manage to improve over
the result by PATH alone. The best performing combination for the optimal number of
candidates is TREEWINDOW +DEP-+POSITION+LEVEL+PATH with F} of 51.36. The
combination from the original paper (VS+DEP) is always slightly above DEP alone.

Results using different candidate extraction methods

In a realistic setting, the arguments on unlabeled side are unknown, so we need to use
our strategies FL or KK for argument candidate creation (see Section 6.3.3). We fix the
number of extracted expansion sentences to £k = 10 and compare both the symmetric
candidate creation (i.e., use the method on both sides), and asymmetric candidate cre-
ation (i.e., use real arguments on labeled side and the method only on unlabeled side).
Symmetric extraction is marked with the suffix -SYM.

The results of the experiments can be found in Figure 6.5 (the complete tables are in
Table C.3, FL is omitted for better readability, as it is very similar to FL-syMm). Not
surprisingly we observe a drop in overall numbers compared to using only the actual
arguments. Also, differences between the settings are more pronounced due to the
possibility of choosing candidates that are not actually predicates or arguments.

The FL-sYM method searches for the exact same path between predicate and argu-
ment in both sentences. As we find many such paths only once in our labeled data, we
expected the method to suffer from low recall. This is not the case, recall for FL-syMm
is the same or even a bit higher as for KK-SYM candidate creation. This is mainly due
to the fact that the direct dependents of the predicate are always argument candidates.
Out of 4500 checked paths, only 376 are found, but still the candidate set is empty for
only 1016 sentences. In total, 850 expansion sentences are extracted and the average size
of the non-empty candidate sets is 1.8. For comparison, with KK-syM candidate cre-
ation, the candidate set is never empty, the average size is 9.7 items and 955 expansion

sentences are extracted.
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Figure 6.5.: Results (F; score) on development set for different similarity measures and
different candidate extraction methods (symmetric FL-symM, KK-symm
or asymmetric FL, KK) when extracting k = 10 expansion sentences.
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Performance differences between the individual similarity measures are largest in ar-
gument classification. Despite errors being propagated through the pipeline, it is not
necessarily the highest performing similarity in predicate identification that has the best
argument classification scores. On the contrary, for FL-SYM candidate creation, on
predicates the BASELINE outperforms every other similarity measure, but is in turn
always outperformed on argument classification. On predicates, FL-SYM easily outper-
forms KK-syM, but the scores on argument classification are similar. On arguments,
the PATH similarity outperforms every other similarity measure, similar to the results
on the labeled arguments. The difference is more pronounced for KK-syM candidate
creation, where we have larger candidate sets and context is more important to pick out
the correct candidate. When using asymmetric candidate creation, all numbers improve
(for better readability FL is not shown, but is very similar to FL-SYM, numbers are
included in Table C.3). The patterns of differences between the similarities stay the
same. The overall improvement is mainly due to increased recall.

When we run all 127 possible combinations of similarities, there is no one best combi-
nation for all tasks, but different combinations are very close together. For FL-SYM the
combination from the original SRL work (VS+DEP) scores best on predicate and argu-
ment identification. For argument classification it is somewhere in the middle, but with
only 1.2 points difference in Fj score to the top result. For asymmetric candidate cre-
ation, VS+DEP is still among the top scoring combinations in predicate and argument
identification and in the middle for argument classification. The top scoring combina-
tions for FL are VS+WINDOW+DEP for predicate identification (F; score of 46.01),
Vs+TREEWINDOW+DEP+LEVEL and VS+DEP+LEVEL for argument identification
(F score of 21.95), and DEP+POSITION (F} score of 14.34) for argument classification.
Many other combinations of similarities are very close to these scores.

The situation is similar for KK-syM and KK candidate creation. Asymmetric candi-
date creation is better than symmetric creation and different combinations of similarities
perform best on all tasks for both cases with little performance differences. The top
scoring combinations for KK are VS+TREEWINDOW+DEP+LEVEL for predicate iden-
tification (F} score of 41.21), VS+WINDOW-+TREEWINDOW-+DEP-+LEVEL-+PATH and
Vs+WINDOW+TREEWINDOW-+DEP+POSITION+LEVEL+PATH for argument identi-
fication (F score of 22.38), and VS+TREEWINDOW+DEP+POSITION+PATH (F} score
of 16.7) for argument classification. VS+DEP is always somewhere in the middle.

In summary, the asymmetric method of candidate creation is better than the symmet-
ric method. There is no one combination of similarity measures that clearly outperforms

all others for argument candidate selection. The ‘flat’ list of similarities VS+DEP, is
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Figure 6.6.: Results (F7 score) on development set for different predicate similarity mea-
sures and candidate extraction methods (symmetric FL-symMm, KK-symm
or asymmetric FL, KK) when extracting k£ = 10 expansion sentences.
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not a bad choice when the candidate sets are small. When the sets get larger, as is the
case with our KK candidate extraction, some combination of more similarity measures is
needed. It is generally necessary for a good combination to include at least one semantic
and one syntactic similarity measure, but the exact combination of measures may not

make a relevant difference.

Results using predicate similarities

Our last experiment on the development set concerns the influence of predicate similari-
ties. Like in the previous experiment, we fix the number of extracted expansion sentences
to k = 10 and compare both the symmetric and asymmetric candidate creation. For
this experiment we use the argument similarity measure that combines all individual
measures: VS+WINDOW+TREEWINDOW+DEP+POSITION+LEVEL-+PATH.

The results of the experiments can be found in Figure 6.6 (complete results in Ta-
ble C.4). There are no major differences between the candidate creation approaches
or symmetric and asymmetric methods. In general, the effect any predicate similarity
measure has is at best marginally positive and sometimes slightly harmful. Among all

possible combinations none beats the baseline by more than a very small margin.

6.5. Experiments on training set expansion

The second set of experiments is an indirect evaluation. We add sentences extracted
with structural alignment to the training data of our system CSRL and evaluate the

effect on test set performance.

6.5.1. Data and experimental setup

Seed, test and expansion data. As our core labeled data set we use our corpus of
comparison sentences from English camera reviews (described in Chapter 4). We divide
the data into five folds and use one fold as seed data and the rest as test data. The full
seed data contains 342 sentences with 415 predicates. The test data contains 1365
sentences with 1693 predicates.

As the unlabeled expansion data, we use a set of 280000 camera review sentences
from epinions.com. This is the remainder of the data from (Branavan et al., 2009)°

that has not been annotated in our corpus. The reviews are split into sentences and

Shttp://groups.csail.mit.edu/rbg/code/precis/
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tokenized with Stanford CoreNLP” (Manning et al., 2014), and parsed with the MATE
parser (Bohnet, 2010). Note that expansion sentences are never used in testing, we
always only test on human-annotated data. We use the same co-occurrence vectors

for vector space similarity as in the previous set of experiments.

Experimental setup. This set of experiments is an indirect evaluation that does not
look at the projected labels themselves, but only at the influence the added training data
has on the classification performance of our comparison detection system. We use our
system CSRL described in Chapter 5 to detect comparisons. We use the same settings
and same features for all experiments, namely the SYNTAX setting, which performed
best in our experiments in that chapter.

As a baseline, we train CSRL on the seed data only. To evaluate whether the found
expansion sentences are useful, we add the k best expansion sentences per seed predicate
to the training data and train on this expanded corpus. We use the test data for
evaluation and compare classification performance of training on the expanded seed data
to the baseline. We report precision (P), recall (R), and F; score (F) on three tasks:
predicate identification, argument identification and argument classification. Argument

classification scores are micro-averaged over all argument types (P,, R, F),).

Compared versions of structural alignment. We have three main decision points
in the setup of structural alignment: argument candidate creation (see Section 6.3.3),
argument similarities (see Section 6.3.4), and predicate similarities (see Section 6.3.5).
For argument candidate creation, we compare the two methods FL. and KK. We restrict
ourselves to the asymmetric extraction, i.e., we use real arguments on labeled side and
the method only on unlabeled side. In the development set experiments, this always
outperformed symmetric creation.

As there is a huge number of possible combinations of argument similarity measures
which we cannot possibly investigate, we restrict ourselves to two combinations. The first
combination combines FLAT similarities which do not consider any context (VS+DEP).
This corresponds to the similarity used by Fiirstenau and Lapata (2009, 2012). CON-
TEXT similarities is the best combination of similarities from our development set experi-
ments which includes surface and dependency context information, i.e., the combination
of all similarities (VS+TREEWINDOW+DEP+POSITION+LEVEL+PATH). For predi-
cate similarities, we first follow the original setup and use no predicate similarity. In the
last experiments, we use VS+WINDOW-+DEP as predicate similarity (PREDS setting).

"http://nlp.stanford.edu/software/corenlp.shtml
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To summarize, we test the following versions of the expansion:

e FL-FLAT: asymmetric F'L argument candidate creation, flat argument similarity,
no predicate similarity (the setting closest to the original setup for SRL).

o KK-FLAT: asymmetric KK argument candidate creation, flat argument similarity,
no predicate similarity.

e FL-CONTEXT: asymmetric FIL argument candidate creation, context similarities,
no predicate similarity.

o KK-CONTEXT: asymmetric KK argument candidate creation, context similarities,
no predicate similarity.

e FL-CONTEXT-PREDS: asymmetric FIL argument candidate creation, context ar-
gument similarities and predicate similarities.

o KK-CONTEXT-PREDS: asymmetric KK argument candidate creation, context ar-

gument similarities and predicate similarities.

Research questions. There are two main questions we investigate:

1. How many seed sentences should be used (varying d)?

2. How many expansion sentences should be used per seed (varying k)?

We expect that the training data expansion is helpful in low-resource and high-
precision settings (i.e., d and k are small). This corresponds to a scenario where only
a limited amount of sentences has been annotated for a new application domain or a
new language. We consider this to be a more realistic scenario for our task than the one
used in Firstenau and Lapata (2012), where a fixed number of training examples per
frame is used. In contrast to SRL, we do not expect to know predicates or frames for

comparisons in advance.

6.5.2. Results

It is impossible to present all results from all experiments as we have three tasks, six
systems plus baseline and many values for & and d. We limit the following discussion to
argument identification, but the results for the other tasks are similar.

Figure 6.7 shows some results for argument identification on the test set in terms of
F} score. The different curves represent expanding and training on different percentages
d of the seed set, from 10% (only 34 seed sentences) to 100% (full set). The x-axis shows
k, the number of expansion sentences added per seed sentence. The value 0 corresponds
to the baseline, i.e., training on the seed sentences only. Results for a selected number
of settings for d and k can be found in Tables C.5 to C.10.
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Figure 6.7.: F; score for argument identification on test set varying the number of ex-
pansion sentences k and the different percentages d of the seed data (curves
from top to bottom: 100%, 50%, 25%, 10%).



152 6. Semi-supervised training set expansion with structural alignment

We see that FL-FLAT, the setting from the original SRL approach, does not manage
to find useful expansion sentences. No setting of £ manages to improve over the non-
expanded baseline, every added expansion sentence only decreases performance. When
we use our dependency-based candidate selection method (KK-FLAT), results get worse.
This is expected as our method creates many more argument candidates, so more in-
correct assignments can be made when not enough context information is available to
distinguish between them. In line with the results reported for SRL, for most cases as k
gets larger, performance drops, because the amount of introduced noise outweighs the
benefits of additional training data.

When we use contextual argument similarities, results improve over using flat simi-
larities. With FL-CONTEXT, the difference in performance over using flat similarities
is not very big. Adding expansion sentences still give results below the non-expanded
baseline. A possible explanation is that the created argument candidates are already
very precise and the paths-based creation method includes the similar information to
what contextual similarity provides. With KK-CONTEXT, the improvement compared
to using flat similarities is considerable. Especially for low values of d, we manage to get
a small improvement over the non-expanded baseline. After £k = 10 (shown with dotted
lines) the curves flatten.

To illustrate the sentences selected by the different systems, consider this example:
(6.9) a. “I felt more [comfortables with [XTifg1” (seed)

b. “I bought this because my wife didn’t feel [comfortable|s with all the features/functions
of the more complex [C5050Z]z;.” (KK-FLAT)
c. “I was much more [comfortablels with the [DSC-S75[g1” (KK-CONTEXT)

Sentence 6.9a is the seed sentence, Sentence 6.9b is the sentence selected as first
expansion sentence by KK-FLAT, Sentence 6.9c¢ is the one proposed by KK-CONTEXT.
While aligning “comfortable” in Sentence 6.9b with the labeled aspect seems like a perfect
match in isolation, Sentence 6.9¢ is a much better choice in context.

When we add predicate similarities, FL-CONTEXT-PRED manages to improve a bit
over FL-CONTEXT, but results are still below the non-expanded baseline. The perfor-
mance of KK-CONTEXT-PRED for £ between 1 and 10 is similar to KK-CONTEXT.
Looking at the expansion sentences, both systems often select the same sentences with
the same alignments as expansion sentences. Interestingly, for values of £ > 10, per-
formance improves over £ = 10 to values above the non-expanded baseline. Figure 6.8
contains more detailed curves for KK-CONTEXT-PRED with & between 0 and 30. Scores
continue to rise, although the curves get flatter when k increases. Looking at the newly

extracted expansion sentences, there is no big decrease in the quality of these sentences
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Figure 6.8.: F} score for argument identification on test set for KK-CONTEXT-PREDS

varying the number of expansion sentences k and the different percentages
d of the seed data (curves from top to bottom: 100%, 50%, 25%, 10%).

compared to the first 10 expansion sentences. Often, the alignment scores are close to-
gether. It is understandable that performance does not suffer when more equally good
sentences are added to the training data. Why performance increases and not only

stabilizes remains unclear.

Figure 6.9 shows learning curves for argument identification for each system with
the best setting for £ (usually 1, 10 for KK-CONTEXT, 10 and 30 for KK-CONTEXT-
PREDS). All systems except KK-CONTEXT and KK-CONTEXT-PRED are below the
baseline. The best value of k for KK-CONTEXT in our experiments is 10, which is
shown in the graph. The results are very similar for all k& > 5, for lower values of
k, the results drop below the baseline. The best setting manages to improve over the
non-expanded baseline in low resource settings (small d), but the curves get closer to
each other when more seed data is added and the effect disappears at the end. The
best value of k£ for KK-CONTEXT-PRED in our experiments is 30, for comparison to
KK-CONTEXT, we also show the results for £ = 10. For £ = 10, KK-CONTEXT-PRED
performs mostly worse than KK-CONTEXT and comparable to the baseline. For k = 30,
there is quite a large improvement over the baseline for small values of d, but the gap

gets smaller as d gets larger and the effect nearly disappears at the end.
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As a summary, with the FL candidate creation, no setting produces useful expansion
sentences that improve the performance of a system trained on the expanded data over
a the baseline of a system trained on non-expanded data. With our KK candidate
creation and contextual similarities, we manage to improve over the baseline. The best
result of our experiments is obtained by the system KK-CONTEXT-PREDS using k = 30
neighbors. The improvement is particularity noticeable for small values of d. Comparing
our results to out expectations, we were able to validate that training data expansion is
helpful in low-resource settings. However, the context-aware systems do not perform as
well in a high-precision setting (small k) as expected, but it seems the addition of many

expansion sentences is beneficial.

6.5.3. Discussion

While manually inspecting the extracted sentences, we see very good matches, but also
many label assignments that are very wrong. We can identify two main issues with the
extracted sentences, that we discuss in this section.

The first issue that affects all sentiment-related tasks is subjectivity. Often sentiment
words (or in our case comparison words) appear in non-sentiment (non-comparative)
contexts, but these contexts are very hard to distinguish from sentiment contexts. Con-

sider these example sentences:

(6.10)  a. “This is largely a function of the much smaller [SD mediafg;.” (seed)
b. “... [ can take anywhere from 90 (High Resolution Images) to hundreds of differing

lower resolution [images/g;.” (KK-CONTEXT)

Sentence 6.10a is the seed sentence, Sentence 6.10b is the best sentence selected by the
context-aware system KK-CONTEXT. Though the two phrases “smaller SD media” and
“lower resolution images” are a good match, the word “lower” in sentence Sentence 6.10b
does not introduce a product comparison. Instead, it describes a type of picture that you
can take with the camera. Such uses are relatively frequent and often mistakenly chosen
as expansion sentences. Such “false positives” mainly affect predicate identification, but
errors in this first step are propagated through the pipeline.

We have attempted to improve predicate identification by adding predicate similarity
to our approach. Indeed Sentence 6.10b is not among the top expansion sentences
anymore when we use KK-CONTEXT-PRED. There are cases, like this example, where
such a selection works, but many of the distinctions cannot be picked up this way as

they depend on world knowledge or very subtle cues. One way to further address this
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Figure 6.9.: Learning curves (F) score for argument identification) with different per-
centages d of the seed data for the best value of k for each system.
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challenge would be to include a separate subjectivity analysis step into the processing
to filter out such non-comparative usages.

A second type of error is caused by the non-aligned part of the chosen expansion
sentences. Expansion sentences may contain other predicates besides the expanded

predicate. Consider this (short) example:

(6.11)  a. “That said, the larger LCD [screen]a is really an improvement.” (seed)
b. “The smaller 2-inch [screen|a has higher resolution of 118,000 pizels!”
(KK-CONTEXT)

Sentence 6.11b is selected as an expansion sentence for seed sentence Sentence 6.11a
by KK-CONTEXT, and the first part it is not a bad fit. Unfortunately, the additional
predicate “higher” in the expansion sentence can not be detected, thereby creating a
“false negative” example for predicate identification. This happens quite frequently, as
the sentences in our expansion data are often very long. This issue could be addressed
in several ways, e.g., by cutting out only the relevant part of the sentence that contains
the projected arguments, by simplifying expansion sentences or by a filtering step where

only “simple” sentences are kept as possible expansion sentences.

6.6. Summary

In this chapter we have investigated whether structural alignment can be adapted to
the task of detecting comparisons. Structural alignment is a semi-supervised method
that has been successfully used for projecting SRL annotations from a small seed set
of labeled sentences onto a large set of unlabeled sentences. Capturing the structure
of comparisons is the key step in this process to ensure that the found sentences are
similar enough so that the projection of labels onto them produces correctly labeled
new training examples, but also different enough to include linguistic variations. We
have presented some adaptations of the method to our task of comparison detection
thereby tailoring the approach to the structural characteristic of comparisons. We have
evaluated the projected labels directly on a development set. Additionally, we evaluated
the success of the method by comparing the performance of a system trained on the
original data with the performance of a system trained on the expanded data. We have
found that our adapted structural alignment can successfully be applied and improves
over a non-expanded baseline in low-resource settings, e.g., when only a very small

amount of training data in the desired domain or language is available.



7. Towards the prediction of
product rankings based on

comparisons

Most of the work presented in this chapter has been published in (Kessler et al., 2015).
This is joint work with Roman Klinger who contributed his system JFSA, the review data

used for the evaluation, and the idea of evaluating against the Amazon sales ranking.

7.1. Introduction

In the preceding chapters we have discussed comparisons and methods to address them
computationally. Our system CSRL, presented in Chapter 5, detects comparisons and
their relevant components, i.e., what products are compared, in what aspect and which
of the products is rated as better. The application of this system to a large amount
of product reviews will result in a large number of individual comparisons. While this
information by itself may be interesting for someone who is doing a thorough analysis of
all expressed opinions, e.g., a social media analyst, it is not suitable for typical situations
where users turn to sentiment information to support a process of choice. In this scenario,
out of a range of potentially suitable items, the user needs to make an informed decision
about which product to select. One step towards reaching a decision is to rank the
products in question according the product aspects that are relevant for the user. Textual
comparisons provide explicit comparative assessments between products, which makes
them presumably the most useful kind of expression for this task.

In this chapter, we work on the task of producing a ranked list of products that
complements the isolated prediction of ratings. While the isolated prediction of ratings
for a product or different aspects of a product helps the user to find a selection of
suitable products, the number of different aspects to consider for a complex product

will usually make it difficult to make a final choice for the product that best meets the
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specific needs of the user. Also, while measurable aspect such as price or weight may
be compared based on the technical data provided by the manufacturers, reviews are
more suitable to compare “soft” aspects such as usability or the behavior of a product
in special circumstances. In this situation, a ranked list of products that is based on
the experiences and evaluations of previous users as they are expressed in reviews may
be a valuable resource to support the user in this process of choice, especially if it is
transparent what textual data has been used to produce the rating. Unfortunately a
popular product will have a large amount of reviews so that reading them all may be
impractical for a human. Using comparisons as a basis for the ranking has the advantage
that the reviewer’s basis for coming up with a comparative assessment is explicitly stated
and can directly be shown to the user.

To properly define the task of producing a ranked list of products, we need to address
two fundamental issues: The selection of a gold ranking used for evaluation and meth-
ods that can be used to create such rankings. For the first issue, the selection of a gold
ranking, we describe three possible sources for external gold standard rankings: a sales
ranking, which reflects the number of times an item has been sold in a given time period
relative to similar products, an expert ranking, for which a domain expert compares dif-
ferent products and ranks them by their quality, and a crowdsourcing-based annotation
of rankings, where quality rankings are made by different users. These rankings differ
in the criteria used to create the ranking, their availability and the usefulness for an
end user. For our experiments we use two external gold rankings for cameras, the sales
ranking from amazon.com and the expert ranking from the website snapsort.com, a
service that collects detailed information about cameras and provides comparisons be-
tween them. As these two rankings are conceptually very different, it is interesting to
see how these differences are reflected in the experimental results.

The second issue concerns the methods used to automatically create product rank-
ings based on review data. It is a straight-forward idea to exploit textual comparison
expressions which occur frequently in reviews and are sometimes easier to provide than
absolute judgments about an entity. Also, comparative rankings can be interpreted
more consistently, e.g., “A is better than B” is explicit about the ordering of the entities,
whereas it depends on many cultural and personal factors whether “amazing” or “not
bad” is chosen to describe a good product. We use our comparison detection system
CSRL to detect comparisons. The individual comparisons from different reviews are
then aggregated to create a ranking over all products. Specifically, the ranking system
we present in this chapter calculates a score for each product based on the number of

times a product is mentioned as the preferred or non-preferred entity in a comparison.
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We evaluate the performance of comparison-based ranking compared to other ranking
methods based on subjective phrases or review meta data.

As an additional point, we investigate aspect-specific rankings. While overall rankings
of products may have some uses, most of the time the user will be interested in rankings
that place particular importance on a few specific aspects of a product and ignore other
aspects. For example, if we have statements that “A has a better lens than B and C”,
“B has higher resolution that C” and “B is heavier than C”, we can rank the products
according to the user’s preferences as A, B, C if the resolution is more important than the
weight or A, C, B in the reverse case. CSRL extracts information about which aspect
is being compared together with the compared entities. We can use this information
to create aspect-specific rankings which consider only those expressions that refer to a
specific aspect of the product to produce the rankings. A ranking from a combination of
selected aspects can be used to create specific, personalized rankings and aspect-specific
rankings can also be used to determine the influence of an aspect on the overall ranking.
We present some preliminary experiments to investigate the impact of different aspects
on the produced rankings.

To summarize, this chapter addresses the last of our research questions, research

question C, which has been the motivation for our work on comparisons:

Research Question C: How can information found in textual comparisons

be used to support a process of choice?

More specifically, this chapter explores the following questions:
e What are possible sources for a external gold standard ranking of products?
e How can methods for comparison-based opinion mining be used to predict product
rankings?
e How do comparison-based methods perform on external rankings compared to
methods that use subjective phrases or review meta data?
e Can we produce aspect-specific rankings that allow for an understanding of the

impact of each aspect on the global ranking?

7.2. Related work

Previous work on ranking products by exploiting sentiment information is comparatively
limited, although the task is of interest also in the areas of e-commerce and information
retrieval. Especially in e-commerce the importance of reviews and other user-generated

content on sales has been widely discussed (Zhang et al., 2013).
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One example for an information retrieval approach is Ganesan and Zhai (2012), who
cast the task of entity ranking as the problem of retrieving the best-fitting opinion
document for a query about a product. Each opinion document is a concatenation of
all reviews about a product. They enhance their IR models by splitting the query into
separate parts for the product’s aspects and use dictionary-based query expansion of
opinion words. They evaluate on hotel and car reviews from epinions.com within an
information retrieval framework, where they collect typical user queries, use the star
ratings from reviews to generate relevance judgments, and evaluate whether the relevant
entities for each query are found by their system. While such approaches are interesting,
they are conceptually very different from sentiment analysis.

Kurashima et al. (2008) work on the task of ranking products in a way that is closer
to the sentiment analysis paradigm. For a Japanese query about one product, they
retrieve competitor products and a ranking between them. Their approach is based on
textual comparisons and link analysis motivated by the idea of modeling a potential
customer that moves through a graph of products searching for the best product. The
rank of a product can be interpreted as the likelihood that a potential customer will buy
this product. The ranking of products is based on a product graph constructed from
the identified comparisons. Each entity is a node in the product graph and there is a
directed edge between two nodes if a comparative relation is found between the entities.
The direction of the edge is from the non-preferred product to the preferred product
in the comparison, if both types of comparisons are found, two edges are introduced.
Each edge is assigned a weight that represents the percentage of comparisons between
source and target entity in which the target entity is evaluated as better. The ranking
of entities is done by computing “graph centrality” with a link analysis algorithm similar
to PageRank (Page et al., 1999) with special consideration for the edge weights. They
perform some experiments on blog posts about movies and visualize the ranking results,
but do not evaluate ranking performance.

Zhang et al. (2009, 2010) present a similar approach that uses both subjective sen-
tences and comparative sentences. Like Kurashima et al. (2008), they construct a prod-
uct graph with products as nodes and relations as edges based on the results of compar-
ison detection. Product nodes are assigned a weight according to the ratio of positive
to negative sentences. The weight of an edge is the ratio of positive versus negative
comparisons between the two products. For ranking they use some variant of Page-
Rank that takes into account node and edge weights. Zhang et al. (2009) work on data
from amazon.com in the domain of digital cameras and TVs, and evaluate their rankings

against expert rankings from smartratings.com. As measure of success they report the


epinions.com
amazon.com
smartratings.com

7.2. Related work 161

overlap between their 10% top-ranked products and the products in the expert ranking,
distinguishing buckets for different price ranges. They find an overlap of about 60%.
The motivation for this measure is unclear, they reason that only very few products are
reviewed by the experts, but it is not clear why the products reviewed by experts should
correspond to the top ranked products. They also compare their rankings to the sales
rank from amazon.com, but find no correlation. In their follow-up work, Zhang et al.
(2010) introduce aspect-specific rankings and compare them to the general ranking by
measuring the overlap between the 10% of highest ranked products when using all data
and the top 10% when considering only one aspect. Overlaps are high, meaning that
aspect-specific rankings do not differ much from the general rankings. Still, different
aspects are of varying importance for the overall rating. For the digital camera domain
they report that the aspects “lens” and “resolution” are those with the highest influence?.
They do not compare the aspect-specific rankings to an external ranking.

Li et al. (2011) also present an approach that uses comparisons and subjective sen-
tences with link analysis. They build a product graph, edges are directed towards the
entity that more users prefer in compisons, the weight of an edge incorporates polarity
information and comparison information. Graphs are created separately for each of four
different high-level aspects (design, feature, performance, ease of use). The mapping
of individual subjective sentences and comparisons to these high-level aspects seems to
use k-means clustering. They do not create an overall ranking for all aspects. Like
Kurashima et al. (2008), they use an algorithm similar to PageRank to assign a score to
each product. They work on reviews about phones and mp3 players and evaluate their
system against the results of product comparisons offered by two review websites. They
present all rankings to domain experts and ask them to judge which one they prefer. In
most cases, the ranking produced by their system is preferred. They report that adding
information from community-based question-answer pairs further improves results.

Zhang et al. (2013) also propose an approach that uses comparisons and product
graphs. They experiment with different ways of creating edges between the nodes: One
link that represents the direction of the preference of most users, one link each for
positive and negative, one for each found comparison. To calculate ranking scores, they
compare PageRank and a similar link-based algorithm. The data they work on is from
camera reviews and they evaluate against the sales rank from amazon.com. Spearman’s
rank coefficients for their systems are in the range of 0.1 — 0.33, the worst result being

the baseline that uses average star rating, the best result coming from the baseline that

lthe aspect resolution is mapped to the words “resolution”, “pizel”, “megapizel”, the aspect lens to

“lens”, “wide angle”, “normal range”.
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uses the number of reviews. Their methods are somewhere in the middle, the differences
between the different methods for link creation are not very big. In terms of the used
gold ranking and evaluation methodology, this is the approach most related to our work.

Most recently, Tkachenko and Lauw (2014) propose an integrated approach that
jointly works on two levels, the sentence-level where an individual comparison is found,
and the entity-level which aggregates the sentence-level comparisons to relations be-
tween entities. The intuition is that both levels help each other: knowing that an entity
is evaluated as better as than another one due to transitivity helps the detection of
individual comparisons. They create separate rankings for four high-level aspects (func-
tionality, form factor, image quality, price). They work on camera reviews and perform
two types of evaluations. As an internal evaluation, they compare their system out-
put to the ranking that results from aggregation over gold standard comparisons which
have been annotated by crowdsourcing. As external evaluation, they generate measure-
ments of product quality for specific predefined characteristics that can be extracted
from structured data (e.g., that smaller is better for cameras). Among other baselines,
they compare to the one proposed by Kurashima et al. (2008) and report a substantial
improvement over the baselines.

In contrast to the above approaches, we do not use graph-based methods for ranking,
but directly aggregate subjective phrases and comparisons to produce ranking scores.
While most of the previous systems use comparisons for their approach, they address
the detection of these comparisons in a rather ad hoc way with word lists and heuristics.
Our system for comparison detection is much more sophisticated and our method is not
limited to sentences that contain two entities or to comparisons that involve a specific
aspect. We evaluate against two external gold standard rankings and use established

evaluation measures from the NLP community in our experiments.

7.3. Gold-standard rankings of products

The first challenge when considering the task of ranking products is the question of what
conceptual ranking it is that we want to approximate with our generated ranking. Ideally,
we would like to have a ranking that reflects how typical users would judge and rank the
different products based on their quality. Different users may have different rankings
reflecting different uses and preferences, but there should be some sort of consensus
ranking. The question is whether such a ranking exists and where we could get it from.

When we look at what has been used in previous work, we can see that in many

cases rankings are calculated from the same data that is used for the automatic ranking
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methods. For example, Tkachenko and Lauw (2014) create a gold standard of individual
textual comparisons that have been manually annotated by crowdsourcing, determine for
every pair of products which one is preferred taking into account all comparisons between
them and evaluate against this information. Similarly, Ganesan and Zhai (2012) use the
average star rating of products in their data. Such “internal” rankings are helpful to see
whether the information that is contained in the data can be extracted by automatic
methods, but they do not answer the question of whether we can predict a real-world
ranking from an external source.

Instead of doing only an intrinsic evaluation, we choose to evaluate against an external
gold standard ranking as a more realistic setting of what would be helpful for a user.
There are several possibilities that differ in their criteria for ranking products, their
availability and their usefulness for different end users. In the following we discuss three
possible sources for external gold standards: a sales ranking, an expert ranking, and a
crowdsourcing-based annotation of rankings. We mainly discuss them with regard to

the following questions (see also Table 7.1 for an overview):

e What are the criteria used for ranking?

e Who can profit from the ranking?

Is the ranking based on subjective value judgments or objective numbers?

e Who creates the ranking, one person, a group or the crowd?

Is the user aware of the factors influencing the ranking?

How hard is it to obtain a ranking for a large number of products?

Sales ranking. One instance of a ranking is the sales ranking of a category of products
from an online shop. Figure 7.1 shows a screenshot of the top “Amazon Best Sellers”
of the category “DSRL cameras” and Figure 7.2 of the detailed product information
from amazon.com. The product information contains the sales rank of the product for
the relevant product categories (in this case “DSRL cameras” and “Camera & Photo”).
The sales rank measures the number of times an item has been sold in a given time
period relative to similar products. We could consider this a ranking of products by
their economic success. The sales ranking is easy to obtain from a web shop, as it is
directly available from structured meta data, and it has been used as an external gold
standard ranking in previous work (Zhang et al., 2009, 2013).

The sales ranking can be used by a sales manager or CEO to evaluate the success of a
product. As it is based on factual numbers, it is a relatively objective measure of success

for a given product, but it does not give an indication about why people buy the product.
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Amazon Best Sellers

Cur most popular products based on sales. Updated hourly.

Any Department
Camera & Photo

'?amera & Photo
Accessories
Binoculars & Scopes
Camcaorders
Bags & Cases
Digital Picture Frames
DSLR Cameras
Lenses
Eoint & Shoot Digital
Cameras
Surveillance Cameras

Best Sellers in DSLR Cameras

Mikon D3300 24.2 MP
CMOS Digital SLR...

Y v vir vir yir (800)
$396.95

91 used & new from $327 .25

Mikon D750 Fx-format
Digital SLR Came...

Wrir vyl (354)
51,996.95

47 used & new from $1,519.00

Canon EOS 50 Mark 1l 22.3
MF Full Fr..

e drsfe sy (632
$2,493.00

79 used & new from $1,374.00

Mikon D3300 Dix-format
DSLR Kitwi 18-

Y v vir vir yir (800)
$496.95

44 used & new from $430.48

Canon EOS Rebel T6i
Digital SLR with...

i drdedlr 81
$655.00

36 used & new from $629.00

Mikon D3300 24.2 MP
CMOS Digital SLR...

i v v vir iy (800)
$396.95

28 used & new from $345.00

Canon EOS Rehel TS EF-5
18-55mm IS II..
vyl (582)
$395.00

108 used & new from $283.00

Canon EOS 6D 20.2 MP
CMOS Digital SLR...
Wrrvrvryy (715
$1,399.00

93 used & new from §1,149.00

Canon EOS Rehel TS
Digital SLR Camera...
Wyl (582)
$445.00

49 used & new from $356.72

Figure 7.1.: Screenshot of the top products in the category “DSRL cameras” from
amazon. com (taken on September 17th, 2015).
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n Canon EOS-1D X 18.1MP Full Frame CMOS Digital SLR Camera
$4 599.00 & FREE Shipping. Details In Stock. Ships from and sold by Amazon.com. Gift-wrap available.

Product Details

Package Type: Standard Packaging

Product Dimensions: 6.2 x 3.3 x 6.5 inches ; 3 pounds

Shipping Weight: 7.2 pounds (View shipping rates and policies)

Domestic Shipping: Item can be shipped within U.S.

International Shipping: This item is not eligible for international shipping. Learn Maore
ASIM: BOOEY3T1AL

Item model number: 5253002

. WA )
Average Customer Review: YO0 ¥ (45 customer reviews)

Amazon Best Sellers Rank: #2,123 in Camera & Photo (See Top 100 in Camera & Photo)
#106 in Camera & Photo > DSLR Cameras

Manufacturer's warranty can be requested from customer service, Click here to make a request to customer service,
Date first available at Amazon.com: October 18, 2011

Would you like to update product info, give feedback on images, or tell us about a lower price?

Figure 7.2.: Screenshot of the product details for Canon EOS 1D X from amazon.com
which contains the sales rank as “Amazon Best Sellers Rank” in the lower
part (taken on September 17th, 2015).

This ranking is created by the crowd, the people who buy the product or a competitor
product. Apart from the aspects discussed in the reviews, we would also expect the
sales rank to be influenced by external factors like advertisements, recommendations of
friends, available reviews and even the prices of the same products at competitor shops.
The user is typically not fully aware of all factors influencing the rank. If we are able
to predict the sales rank from product reviews and extract aspect-specific information,
an interesting question is to analyze the impact of the different aspects on the ranking.
This information can be used by managers or designers to find out which aspects are the

most important for the buying decision of a customer and thus worth investing effort.

Expert ranking. The sales rank measures economic success, which we would assume
to be connected to quality, but the connection is not explicit. One source of explicit
quality judgments is an expert ranking, which is usually intended to compare different
products according to guidelines that reflect typical usages. A common source for such
rankings are domain specific magazines or websites with the aim of providing users with
a condensed source of information supporting their purchase decision. This ranking is
typically created by an individual or a small group of domain experts who use both
objectively measurable data (where they determine which value is good or bad) and
subjective value judgments. Typically, different aspects are taken into account and

evaluated separately. Those aspects might or might not be disclosed, and they may
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CANON EOS

t
Eam 1D X

Full frame 18.1 MP 8.1cm

Retailer amazonde = hd

Canon

-~

Style Body only 2.100,00€

2-100,00 € IN STOCK

Overview Competitors Bestprices Specs Videos

DSLRs announced in the last 4 years

RANK  OUT OF SCORE
#1 45 100

SCORE WEIGHT
DHO MARK SCORES
Low light performance 2786150 850 = 1000 = B5.0
Color depth 238 bits 950 & 250 = 237
Dynamic range 11.8EV 600 = 250 = 150
MISC
Cross type focus points 41 650 = 375 = 44
Shutter lag 6ms 1000 = 375 = 375
Viewfinder size 0.76x 1000 = 375 = 375
Popularity 3976 = 5O x 200 = 1.0
SCREEN
Screenresolution 1,040k dots 850 = 250 = 213
Screensize 8.1cm 1000 250 = 250
Touchscreen No 00 = 125 = 0.0
ADVANCED
Image stabilization MNeone 00 = 250 = 0.0
Continuous shooting 14 fps 1000 = 125 = 125
FORM FACTOR
Viewfinder Pentaprism 1000 = 250 = 25.0
Lens availability 165 lenses 700 = 50 = 3.5
MOVIES
Movie format 1080p @ 30fps e 250 = 250 = 6.2
TOTAL 317.6
BEST TOTAL 3176
SCORE 100

Figure 7.3.: Screenshot of the scores including the expert rank for Canon EOS 1D X
from snapsort.com (taken on September 17th, 2015).
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have different weights on the final score. The list of aspects is usually fixed. Figure 7.3
shows a screenshot of the scores for the different aspects taken into account for a camera
at the web page snapsort.com, a page dedicated to provide detailed information about
cameras and other electronics products. While expert rankings are intuitively the most
useful rankings for end users, they are rather costly to produce and so often do not
contain as large a number of products as sales rankings.

Expert rankings have been used for evaluation in previous work. Zhang et al. (2009)
use a ranking from smartratings.com, but only measure the number of products in
their top 10% contained in the expert ranking. Tkachenko and Lauw (2014) automati-
cally create a partial expert ranking for three predefined objectively measurable product
characteristics. They define good and bad values (e.g., that smaller is better for cameras)
and evaluate their system against these aspect-specific expert rankings. In our experi-
ments, we are using a manually created expert ranking that considers many aspects and

evaluate against the complete ranking.

Crowdsourced ranking. As only a small group of people is involved in creating an
expert rating, the result might be highly subjective, both in the judgments for the indi-
vidual aspects that are evaluated, and in the selection of these aspects in the first place.
The sales ranking attempts to combine opinions from a set of users, but does so in a
rather covert way, as the only “opinion” that can be expressed is the decision to buy the
product at the specific store. Therefore, we propose that the ideal gold standard product
ranking should be based on crowdsourcing without predefining the aspects taken into
account. Such a ranking should essentially capture the same information as an expert
ranking, with some advantages: (1) the ranking is the work of the crowd instead of a sin-
gle person or group, so it is more representative of the quality as seen by different people
and less likely to be biased towards a specific use, (2) it includes not only measurable
criteria, but also subjective judgments, (3) it is not restricted to a fixed set of aspects
determined to be important at a given point by an expert, but can include aspects that
may only be interesting to a small set of people or very new aspects.

Requesting a full ranking of a list of products from annotators is a cumbersome chal-
lenge. Therefore, we propose that such crowdsourcing task should be set up in a learning-
to-rank setting, in which annotators are asked to define a preference for a pair of prod-
ucts. The pairwise annotations can then later be used for compiling an inter-subjective
ranking as well as a personalized ranking. From such rankings, a personalized preference
function can be learned which weights different aspects against each other, even if the

user is not aware of these factors. Alternatively, we could ask users to provide reasons
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sales ranking expert ranking  crowdsourced ranking
Rank criterion? economic success product quality product quality
Target group? managers buyers buyers
Subjective/objective? objective both both
Who? crowd experts crowd
Aware of factors? no yes partly
Availability? easy to obtain  moderately easy hard
Size? large small large
Example source? amazon.com snapsort.com -

Table 7.1.: Comparison of the characteristics of different external gold rankings.

for their selections that correspond to the aspects of the product. While it initially
requires some effort to set up the crowdsourcing experiment, once that has been done,
large amounts of data for different domains could be collected easily. This approach is
not performed here, but constitutes relevant future work as we would expect the crowd’s
judgments to be the best reflection of actual users’ needs.

Table 7.1 shows an overview of the different possible external gold rankings discussed
in this section. While a crowdsourcing ranking would correspond best to our ideal
ranking, we currently do not have such a resource. The the sales ranking and the expert
ranking present two conceptually very different choices of rankings, which is why we use

one example of each for the evaluation of our methods.

7.4. Prediction of product rankings

Our goal is to create a ranked list of products based on review information. We present
a method for ranking products according to the information extracted from textual
comparisons. We compare this method to two approaches based on subjective phrases
and two baselines that take only the review meta data into account.

There are several other possibilities for ranking products that could be explored. Be-
sides the link analysis methods based on product graphs used in previous work, it is
conceivable to use a learning-to-rank machine learning framework. In this framework,
one training data instance consist of a pair of products represented with some features
with the ranking order as the label. The machine learning algorithm will then learn to
rank a pair of products that is presented. As for all supervised machine learning tasks,
there is a large array of possible feature representations and learning algorithms that

could be explored. While these are interesting directions for possible future work, we
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concentrate for now on the more straight-forward score-based methods that are presented

in the following which are easier to understand and analyze.

7.4.1. Ranking methods

Ranking based on comparisons. As our goal is to ultimately generate a ranked list

of products, it is a straight-forward idea to exploit textual comparison expressions:
(7.1) “[It}g+ has a better [lens[s than [the t3i[g_"

To extract such comparisons, we employ CSRL (Comparison Semantic Role Labeler,
as described in Chapter 5). For each comparison, the system identifies the comparative
predicate (“better”), the two entities that are involved (“It” and “the t3:”), which one is
preferred (“It”), and the compared aspect (“lens”).

The entities our system identifies are textual references to products, but they may not
always contain the complete product name, so we need to map each mentioned entity
to the actual product it refers to. In our mapping process, we associate a mentioned
entity to the product name (or names) with the highest cosine similarity on token level.
In the example, “the t3i” would be associated with the camera “Canon EOS Rebel T5i”.
If there are several names found, the occurrence is counted for all of them, we do not
attempt any disambiguation. Occurrences of the pronoun “t” and the expressions “this”
and “camera” are mapped to the product that is the subject of the current review. We
treat every entity of the comparison individually, so matches are counted even if only
one of the two entities can be mapped to a product.

The final score for a product p is calculated based on the number of times the product
occurs as a preferred entity (pref) minus the number of times it occurs as a non-preferred

entity (npref) in a comparison:

scorecgn(p) = pref(p) — npref(p) (7.1)

The ranking of products is created by sorting according to these scores, where the
product with the highest score is at the top of the list. We refer to this method as CSRL.

An illustration of the process for some example products can be seen in Figure 7.4.

Ranking based on subjective phrases. The two approaches that we compare to are
based on counting words or phrases with a positive and negative polarity.
The first method is a standard term counting approach that is commonly used in

sentiment analysis. This approach assigns polarities to words based on a dictionary in
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Canon EOS Rebel T3i
scorecg = 280 — 88
=192

cheaper ﬂ

— -

S

better zoom Fujifilm X-T1
scorecg = 153 — 40

=113

ry life faster

Nikon D3200
scorege = 141 — 36
=105

Figure 7.4.: Illustration of ranking based on comparisons.

which the corresponding polarity is explicitly stated. The polarity score for a product p
is then calculated as the number of all positive words (pos) in all reviews for this product

minus the number of all negative words (neg):

scorepic (p) = pos(p) — neg(p) (7.2)

To account for the impact of longer reviews, we normalize the score by the number of

tokens in all reviews for the specific product (all):

os(p) —ne
SCOTeDict-Norm () = L (péill(]?) =

(7.3)

The ranked list of products is then created by sorting according to this score. We
refer to the two variations of this method as DicT and DicT-NORM.

This dictionary-based method is easy to implement and to use. However, it might
not take into account context specific polarity expressions, e.g., negation. As a second
method, we therefore opt for machine learning detection of subjective phrases with their
polarities in context. Specifically we use Roman Klinger’s tool JFSA? (Joint Fine-Grained
Sentiment Analysis Tool, Klinger and Cimiano (2013)). JFSA uses Conditional Random
Fields to jointly detect subjective phrases and their targets. Calculating the product
score scorejpga (p) is performed analogous to the dictionary-based approach by counting
all positive (pos) and negative (neg) subjective phrases identified by the system in all
reviews for this product. Ranking and normalization are the same as for D1CT. We refer

to the two variations of this method as JFSA and JFSA-NORM.

’https://bitbucket.org/rklinger/jfsa
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Baselines. We use two baselines that do not take the textual information of a review
into account. The first method, STARS, sorts products by their average star rating
(from one to five stars, as assigned by the author of a review). The average star rating is
calculated from all reviews of a product. The second baseline, NUMREVIEWS, sorts the
products by the number of reviews a product has received (from none to many). The
intuition is that products which are sold more often gather more reviews, so we expect

this to be a strong baseline for predicting the sales rank.

7.4.2. Aspect-specific rankings

Two of our methods, JFSA and CSRL, recognize aspects of products together with a
subjective phrase or comparison, respectively. Besides creating one ranking that is a
combined measure of all aspects of the product, we have the option of using only evalu-
ations regarding specific aspects to calculate the scores for the products. This results in
an aspect-specific ranking. In the aspect-specific version of a method, subjective phrases
or entity mentions are only counted towards the score of a product if there is a token
overlap between the mentioned aspect and a textual variation of the target aspect.

For CSRL, we can directly use the aspect (or aspects) the system associated with a
comparative predicate. For JFSA, aspects and subjective phrases are identified separately
and the relation detection has low performance. Thus, we associate each subjective
phrase with the identified aspect that is closest. One aspect can be the closest aspect
for several subjective phrases and is counted for each of them.

One challenge of aspect-specific rankings is the large number of different aspect phrases
that are used. It is quite common to use different words or phrases to refer to the same
aspect. To illustrate the scope of the problem, in our comparison data the 1800 aspect
annotations correspond to over 800 different phrases. Consider the phrases “/mage”,
“picture” and “pics”. In the camera domain, all of them are used to refer to the same
aspect picture. For our aspect-specific rankings, we would like to group the different
phrases together into one aspect. In some cases, grouping is an issue of identifying syn-
onyms (e.g., ““mage” and “picture”), orthographic variations and abbreviations (“picture”
and “pics”). But additionally, aspects form a fine-grained hierarchy, for example “battery
life” and “battery charge time” are different aspects of the aspect battery. Most of the
time, the set of all extracted aspects will be too fine-grained to be useful for an end-user,
S0 it is necessary to group them on some level of the hierarchy.

Aspect grouping is a difficult problem and, as far as we know no grouping or hierarchy

of aspects is publicly available for the camera domain. Thus, for our initial experiments
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aspect name

matching phrases

pictures images, image, photos, photo, pictures, picture, shots,
shot, shooting, image quality, pics, picture quality, results

lens lens, lenses, lense

price price, cost, costs, $, cheap, expensive

battery battery, batteries, charger, charge, battery life

flash flash

features features, feature, settings, options, functions

size size, weight

video video, videos, film, films, movie, movies, record, records,
recording

zoom zoom

performance work, works, worked, performance, perform, performs,
performed, speed

shutter shutter

screen screen, led, led screen

autofocus autofocus, af

Table 7.2.: List of aspect phrases used for aspect-specific rankings.

on aspect-specific rankings, we use short manually compiled lists of textual variations
for the most frequent aspects in our data set. These lists are shown in Table 7.2. The
lists have been created by looking at the most frequent aspect phrases found by the the
two systems on our data and grouping them. We then chose the groups that seemed the
most relevant as aspects to consider for our initial experiments. As the more infrequent
phrases have not been considered, the lists include only a tiny percentage of the aspect

phrases actually found in the data.

7.5. Experiments

7.5.1. Data and experimental setup

For our evaluation, we use camera reviews retrieved from amazon.com®. As our first gold
ranking, we extract the Amazon sales rank from the product descriptions (“Amazon Best
Sellers Rank” in the “Camera & Photo” category) as retrieved between April 14th and
18th, 2015. We include only products for which a rank is provided in our final data

3The reviews were crawled by Roman Klinger with the search term “camera” and “camera” in con-
bR A4S A1) PR A3 L,

junction with “fuji”, “fujifilm”, “canon”, “panasonic”, “olympus”, “nikon”, “sigma”; “hasselblad”, “leica”,

“pentax”, “rollei”, “samsung”, “sony”, “olympus”.
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set. The resulting list contains 920 products with a total of 71,409 reviews. Product
names are extracted from the title of the description page and shortened to the first six
tokens to remove additional descriptions of the product like “with 28z Optical Zoom and
3.0-Inch LCD (black)”.

As a second external gold ranking, we use the expert ranking from snapsort.com.
Snapsort is a service that collects detailed information about cameras and offers com-
parisons between them. Their product score incorporates aspects from technical specifi-
cations (e.g., shutter, viewfinder size, whether image stabilization is available), as well as
popularity (e.g., how often the camera has been viewed on the website, number of lenses
available for the camera). From the top 150 products in the Amazon sales ranking, 56
are found on Snapsort. We use the rank in the category “best overall” of “all digital
cameras announced in the last 48 month” as retrieved on June 12th, 2015.4

The JFSA system is trained on the polarity annotations in the camera data set by
J. Kessler et al. (2010). CSRL is trained on our IMS camera data described in Chapter 4.
As we are only interested in comparisons where there is a ranking between the entities,
we train only on comparisons annotated as types “ranked” and “superlative”. To reduce
confusions of the preferred and non-preferred entity, we also exclude all comparisons
where the second entity is preferred over the first (i.e., direction is “negative”). The final
training data consists of 1019 sentences with 1248 predicates.

For the methods DicT and DicT-NORM, we test two different sources of opinion
words, the General Inquirer dictionary GI (Stone et al., 1966)° and the MPQA subjec-
tivity clues (Wilson et al., 2005)S.

To measure the correlation of the rankings generated by our different methods with the
gold ranking, we calculate Spearman’s rank correlation coefficient p (Spearman, 1904)
and test for significance with the Steiger test (Steiger, 1980). A correlation coefficient of
0 indicates no correlation, with a value of 1 the rankings would be the same, and when

one ranking is the inverse of the other the correlation would be —1.

7.5.2. Results and discussion

As described above, we use two different rankings for evaluation: The amazon.com sales
ranking, which contains 920 products, and the expert ranking from snapsort. com, which

contains 56 products. These two rankings are conceptually different, with economic

4The full list of products with their names and ranks is available from http://aclweb.org/
anthology/attachments/W/W15/W15-2908. Attachment. tgz.

53518 entries; 1775 positive, 1743 negative using the categories from (Choi and Cardie, 2008).

66456 entries; 2304 positive, 4152 negative.
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Method Amazon Snapsort
STARS -0.027 0.436*
NUMREVIEWS 0.331*  0.095
DicT-NOrM (GI) 0.125*  -0.148
DicT (GI) 0.219%  0.426*
Dicr-NorMm (MPQA)  0.142*  -0.145
Dict (MPQA) 0.222%  0.441%
JFSA-NORM 0.151*%  -0.230
JFSA 0.234* 0.404*
CSRL 0.183*  0.511%*

Table 7.3.: Results (Spearman’s p) of all methods for predicting the Amazon sales rank-
ing and the Snapsort quality ranking. Significance over random is marked
with * (p < 0.05). The best baseline and the best text-based method are
marked in bold.

success as the main factor for the sales ranking and product quality for the expert
ranking. This conceptual difference is reflected in the fact that there is no correlation

between the two rankings (p = —0.04).

Results with all aspects. Table 7.3 shows the results for the baselines and the text-
based methods on both gold rankings when using all aspects. For all systems, there is a
pronounced difference between the results for the two gold rankings.

The best result on Amazon (significantly outperforming all other methods) is achieved
by counting the reviews (p = 0.33, NUMREVIEWS). For Snapsort, however, NUMRE-
VIEWS leads to a correlation of only p = 0.1. One factor that explains this difference
in performance is the fact that in case of Amazon the reviews and the ranking come
from the same source. While it is unclear whether the popularity of a product leads to
many reviews or a high number of reviews leads to higher sales, there is a good chance
that the two things are correlated. Though “popularity” is one aspect that influences
the Snapsort rating, it is not as prominent.

The performance of the STARS baseline is not significantly different from random for
Amazon. This is partly due to unreliable ratings when products have only very few
reviews (less than 10) which happens for many products with a 5.0 star rating. Having
few reviews is less of a problem for the products in the Snapsort ranking. On the Snapsort
data, the STARS baseline achieves the second-best result. It is understandable that star
ratings are more closely aligned with a ranking by product quality than with a sales

ranking. The sales ranking may be influenced by many factors that may not be discussed
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Aspect +# p o

performance 637 0.301 0.009
video 600 0.278 0.013
size 513 0.218 0.017
pictures 790 0.213 0.003
battery 541 0.208 0.012
price 625 0.198 0.008
70O 514 0.196 0.013
shutter 410 0.191 0.016
features 629 0.190 0.009
autofocus 403 0.175 0.013
screen 501 0.136 0.012
lens 457 0.099 0.012
flash 591 0.093 0.011

Table 7.4.: Results (Spearman’s p and standard deviation o) of JFSA for predicting the
aspect-specific Amazon sales ranking. The number of products for which at
least one evaluation of the target aspect is found is shown in column #.

in reviews nor reflected in the star rating, e.g., advertisements, recommendations from
friends, or competitor’s prices. Both our baseline’s results are similar to the results
reported by Zhang et al. (2013) who use the same baselines on a presumably similar
data set of Amazon reviews of digital cameras evaluated against the Amazon sales rank
(they report a correlation of 0.109 for STARS, 0.331 for NUMREVIEWS).

The results for all non-normalized ranking-methods based on subjective phrases (DICT
(MpQA), DicT (Gr), JFSA) are similar to each other. When we compare the resulting
rankings of the systems among each other, all of the correlation scores are above 0.95
(not shown in the table). JFSA achieves the best performance on the Amazon data,
while DicT (MPQA) is best on the Snapsort data. In all cases, normalization of the
polarity scores hurts performance. The non-normalized rankings are not correlated with
the normalized rankings of the same system (p is between —0.19 and 0.02, not shown in
the table). In general, correlations are much higher on the Snapsort data.

On the Amazon data, the ranking achieved with CSRL is mediocre in comparison to
the other methods. On the Snapsort ranking however, CSRL leads to the best result
of all experiments with p = 0.51, which is very encouraging. CSRL suffers more from
data sparsity than the other methods. The highest number of subjective phrases for
a product found by JFSA is over 9000, while the highest number of comparisons that
mention a given product is 662 for CSRL. For 105 products no mention at all is found

by CSRL, while this happens only to 6 products for JFSA.
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Aspect-specific results. In comparison to using all information extracted from reviews
to generate a ranking, the aspect-specific results allow for an understanding of the impact
of each aspect on the gold ranking. Aspect-specific rankings for important aspects are
highly correlated with the gold ranking, while those for completely irrelevant aspects
have a correlation near zero. Due to data sparsity, for a substantial amount of products
no mentions of a specific aspect are found, so they receive a final ranking score of zero.
To eliminate the resulting artificial inflation of p while enabling a comparison between
methods with different numbers of scored products, we add the zero-scoring products to
our ranking in random order and average over 100 random rankings for the zero-scoring
products. The results for JFSA on the Amazon sales ranking are shown in Table 7.4.
We omit the results for CSRL and the results on Snapsort which are all close to random.

From our small selection of aspects, the aspect performance contributes most to ap-
proximating the sales ranking (p = 0.30) followed by wvideo (p = 0.28). Both results
outperform the target-agnostic ranking of JFSA (the difference is significant for perfor-

mance). performance is the second most frequent aspect, after pictures.

7.6. Summary

In this chapter we have presented the task of producing a ranked list of products and
discussed several real-world products rankings. We demonstrated how we can use the
information extracted from textual comparison expressions to create a ranking of prod-
ucts. We compared our method to baselines that use review meta data and methods
on the basis of subjective phrases. We evaluated against two conceptually different ex-
ternal gold rankings, the sales ranking from amazon.com and an expert ranking from
snapsort.com. For the expert ranking, our comparison-based method outperformed all
other methods and showed the highest performance of all experiments. We also pre-
sented experiments on how aspect-specific rankings can be used to measure the impact
of one specific aspect on the overall ranking. While in general the performance of all
systems in terms of correlation scores is rather low, the task of approximating a real

world ranking looks promising and encouraging for further research.
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8. Conclusions and outlook

8.1. Summary of contributions

The objective of this thesis was to explore how robust structurally informed models
for sentiment analysis can be developed, addressing challenges that arise from polar-
ity reversers and comparisons, two examples of structurally complex verbalizations of

opinions. The contribution made to this end are summarized in the following.

Research Question A: How can structural linguistic context information

be used for the reliable detection of complex verbalizations of opinions?

In Chapter 3 we presented a machine learning classifier to distinguish whether a given
sentiment word in context is consistent or inconsistent with its prior polarity from a
sentiment dictionary, i.e., determine whether a polarity reverser is present in the context
around the sentiment word. We investigated different ways of representing relevant
sentence context around the sentiment word. We demonstrated that for our classifier
using dependency path-based features for representing sentence context improves over
the window-based context used in previous work (Ikeda et al., 2008).

In Chapter 5 we presented CSRL (Comparison Semantic Role Labeler), a machine
learning system trained for the task of detecting the individual components of compar-
isons: the anchor or predicate of the comparison, the entities that are compared, which
aspect they are compared in, and which entity is preferred. We experimented with three
different types of context: Sentence context, context from knowledge about the task and
the domain, and context from the annotation design of the data used for training our
machine learning system. Similar to our experiments for polarity reversers, we used de-
pendency tree information for sentence context and compared to a window-based context
used in previous work (Jindal and Liu, 2006b). For comparative predicates, adding both
types of context proved to be beneficial, but for arguments structured context clearly
outperformed window-based context. To include context from the task and domain,

we used generalization techniques to overcome sparsity issues, added information about
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possible types of comparisons, and included sentiment polarity information. These ex-
periments yielded mixed results. We demonstrated that annotation design decisions,
especially those concerning the linguistic anchoring of multiword predicates, have a con-
siderable impact on the overall classification performance and present a detailed analysis

of the results of systematically varying these annotations.

Research Question B: How can the structure of complex verbalizations
of opinions be exploited in order to automatically annotate training examples

by using semi-supervised methods?

In Chapter 6 we showed that we can exploit the structure of comparison to expand
a small seed set of labeled comparisons with the semi-supervised method of structural
alignment, proposed for Semantic Role Labeling by Fiirstenau and Lapata (2009, 2012).
This method starts with a small seed set of labeled seed sentences, finds sentences in a
large corpus of unlabeled data that are similar to the seed sentences, and projects the
labels onto them. By adding the newly annotated sentences to the training data for our
system, the initial small manually annotated seed set of sentences is expanded to create
a set large enough for efficient machine learning without additional manual annotation
effort. Capturing the structure of comparisons is the key step in this process to ensure
that the found sentences are similar enough so that the projection of labels onto them
produces correctly labeled new training examples, but also different enough to include
linguistic variations that enable the classifier to learn new information. We proposed
adaptations to two steps of structural alignment as a way of tailoring the approach to
the structural characteristic of comparisons: the similarity measure and the method of
extracting candidates for comparative arguments. Our experiments showed that these
adaptations improve the overall performance of CSRL trained on the expanded data

compared to a system without these adaptations.

Research Question C: How can information found in textual comparisons

be used to support a process of choice?

In Chapter 7 we worked on the task of producing a ranked list of products that
complements the isolated prediction of ratings to support the user’s process of choice.
We presented a method to create a ranking over a set of products by aggregating all
individual comparisons found in the data. Specifically, we calculate a score based on
the number of times a product is mentioned as the preferred or non-preferred entity

in a comparison. We compared these comparison-based rankings to other methods of
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creating a ranking that are based on subjective phrases and review meta data. We
evaluated on two external rankings, a sales ranking, which reflects the number of times
an item has been sold in a given time period relative to similar products, and an expert
ranking, for which a domain expert compares different products and ranks them by their
quality. While our system performed average when compared to the sales ranking, it
achieved the best result for the expert ranking.

Accompanying this thesis, a dedicated gold standard of manually annotated com-
parisons has been created and made available to the research community. The corpus
is based on the English camera review data by Branavan et al. (2009) and contains
2200 sentences and 2700 comparisons with detailed annotations, which makes it the
largest such resource currently available to our knowledge. The resource is described in
more detail in Chapter 4. The data is available from http://hdl.handle.net/11022/
1007-0000-0000-8E72-0. Other resources that have been created and made available to
the community include a list of manually annotated polarity reversing constructions, po-
larity consistency annotations on word-level, review sentences automatically annotated
with polarity (all Chapter 3), and product rankings for cameras from the amazon.com

sales ranking and the snapsort.com expert ranking (Chapter 7).

8.2. Possible directions for future work

Polarity reversers. Our approach for polarity classification in Chapter 3 is based on
a dictionary of sentiment words. The approach detects many words that do not express
sentiment in a given context. Identifying and discarding such non-subjective uses of
sentiment words would improve the overall classification results. Also, as not all senti-
ment expressions contain sentiment words, the performance that can be achieved with
a dictionary-based approach in general is limited, so alternative approaches should be
considered. We have presented first steps towards automatically extracting polarity re-
versing constructions (PRCs) from sentences annotated with polarity. The results of
this extraction are rather noisy and can be improved in many ways by filtering the re-
sults, e.g., to filter out short candidates where longer candidates are already identified
as good reversers. To get sufficient training data for the extraction of PRCs, we have
automatically assigned polarity annotations to sentences extracted from semi-structured
reviews which are easily available in large quantities. The quality and coverage of this
automatic annotation could be improved in many ways, e.g., by addressing the issue of
different words that are used to refer to the same aspect of a product. We could also

use clustering methods on the reviews instead of the direct matching of keywords.


http://hdl.handle.net/11022/1007-0000-0000-8E72-0
http://hdl.handle.net/11022/1007-0000-0000-8E72-0
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Comparison detection. In Chapter 5 we have worked on the task of comparison de-
tection and investigated structural features based on the output of a dependency parser.
As we work on user generated content (product reviews) and use a parser that was
trained on standard news texts, the resulting parse trees are rather noisy. Improvements
in POS tagging and parsing this type of data could improve our results as well. Possible
future work that builds more directly on our experiments consists of including more
sophisticated features to model context, addressing the issue of sentiment relevance, and
addressing annotation design issues besides systematically introduced multiword predi-
cates. We have addressed three types of context in this work, but there are many more
forms of context that could be investigated, e.g., discourse context or context about the

products that are reviewed.

Training data expansion. In Chapter 6 we have presented two main adaptations of
structural alignment for our task of comparison detection, but many others are conceiv-
able. Two main issues are false positive and false negative predicates found by the ex-
pansion False positive predicates are introduced by not detecting non-subjective usage of
comparative words. This issue could be addressed with methods from subjectivity analy-
sis to filter out non-comparative usages. False negative predicates are generated through
other predicates besides the identified one being present in an expansion sentence. The
issue could be addressed by simplifying sentences, extracting only the relevant sentence
parts or preselecting only short and simple sentences for expansion. On a related note,
not all annotated predicates may be ideally suited to be seeds for the expansion process.
We could select only “typical” predicates as seeds for the expansion, i.e., predicates that
are similar to a number of other predicates already in the training data. Similarly, we
could try to discard sentences of bad quality from the set of seed or expansion sentences,
e.g., sentences that are very long, have non-standard punctuation, or parse-trees with a
very low confidence score. Finally, we assume a fixed value of k sentences to be extracted
for each seed sentence. It may be beneficial to use a variable value for k that depends

on the seed sentence and the found possible expansion sentences.

Ranking. In Chapter 7 we have presented a method to create a ranking over a set of
products by aggregating all individual product comparisons found in the data. As there
has not been a lot of research in this area, there are a lot of open issues that can be
addressed. We have touched on the discussion of how to set up a crowdsourcing-based
annotation of rankings that may better approximate an ideal ranking that could be used

as a reliable gold standard for evaluation. Possible future work on the methods side
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includes the formulation of the problem as a learning-to-rank task. This would allow us
to combine the different measures discussed in the chapter. For aspect-specific rankings,
an automatic way to group the large number of different aspect phrases that are used

in reviews would be desirable, potentially by using hierarchical clustering.

General Remarks. The area of sentiment analysis is a rather new field of research
and as such many basic challenges still need to be addressed. In our opinion, the most
important open issue is subjectivity or rather sentiment relevance, which we have found
to impact our results on many occasions. Principled solutions on this topic could po-

tentially have a large benefit for the sentiment analysis community.
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ADV<not_ADV
ADV<V<V>not_ADV
ADJ<V>not_ADV
ADV<V<would_0
ADV<0>not_ADV
ADV<ADJ>not_ADV
N>no_DT
N>low_ADJ
ADJ>not_ADV
ADJ<N>not_ADV
ADJ<N>no_DT
ADV<V>not_ADV
ADJ<N<without_PR
ADV<ADJ<V>not_ADV
ADJ<V<V>not_ADV
ADJ>only_ADV
ADJ<not_ADV
ADJ>less_ADV
ADJ<V<would_0
V<V>not_ADV
ADJ<V<could_O
ADJ<V<V<would_0O
V<would_0O
ADJ<N<V>not_ADV

Table A.1.: List of manually annotated polarity reversing constructions. This list is also
available from http://hdl.handle.net/11022/1007-0000-0000-8E6F-5.

ADJ<V<if_PR
ADJ<N<V<would_0O
ADJ<V<0>not_ADV
N<PR<ADJ>not_ADV
N<without_PR
N>not_ADV
N<V<would_0
ADJ>no_DT
ADJ<N<PR<lack_N
N<V>never_ADV
V>not_ADV
ADJ<N<PR<less_ADJ
N<PR<lack_N
V<0<hard_ADJ
V<without_PR
V>never_ADV
V<0<leave_V
N<V>bad_ADJ
V<V<0<leave_V
N<PR<problem_N
N<PR<N>bad_ADJ
N<slow_ADJ
V<0<0<leave_V
N<N<V>bad_ADJ

N<break_V
N<slow_V
ADV<V<V>poor_ADJ
N<O<N>bad_ADJ
N<problem_N
ADV<PR>N>poor_ADJ
N<ADV<problem_N
ADV<N>poor_ADJ
V<PR<delay_V
ADV<PR<N>poor_ADJ
N<PR<slow_ADJ
N<N<problem_N
ADV<N<V>poor_ADJ
N<PR<V<problem_N
V<PR<delay_N
ADV<PR>V>poor_ADJ
N<N>N>slow_ADJ
N<V>bad_N
V<delay_N
N<O<break_V
ADV<too_ADV
V<0>not_ADV


http://hdl.handle.net/11022/1007-0000-0000-8E6F-5
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Representation Scoring method 1 2 3 4 ) 6
frel 0.10 0.06 0.06 0.00 0.00 0.00
LEMMAS MI 0.10 0.13 0.14 0.13 0.11 0.13
MI 0.10 0.10 0.06 0.01 0.00 0.00
Jrel 0.16 0.11 0.07 0.06 0.01 0.01
SIMPLE PATHS MI 0.13 0.16 0.16 0.14 0.14 0.13
MI+ 0.17 0.21 0.19 0.14 0.13 0.13
Jrel 0.14 0.17 0.19 020 0.20 0.20
ABSTRACTED PATHS MI 0.13 020 0.19 0.19 0.19 0.19
MI+ 0.17 0.24 0.27 0.29 0.29 0.29

(a) Basic results varying representation and scoring method.

Filter 1 2 3 4 5 6
BL / ABSTRACT PaTHs, MI+ 0.17 0.24 0.27 0.29 029 0.29
SUBJSTRENGTH 0.09 0.17 023 0.21 0.21 0.21
POSIGNORE 0.17 0.29 0.29 0.31 0.31 0.31
INTENSIFIER 0.16 023 026 029 0.29 0.29
SINGLETONS 0.17 0.27 027 030 0.30 0.30
50 0.16 024 0.26 029 0.29 0.29
70 0.16 024 026 029 0.29 0.29
AspPECTS 100 0.16 024 0.26 029 0.29 0.29
150 0.16 026 0.26 029 0.29 0.29
200 0.16 0.26 0.26 027 0.27 0.27
500 0.09 0.17 0.20 023 0.23 0.23
1000 0.11 020 024 024 024 0.24
2000 0.14 023 0.21 023 0.23 0.23
3000 0.14 024 023 024 024 0.24
4000 0.16 020 023 024 024 0.24
DoMAIN 5000 0.14 0.19 0.20 0.21 0.21 0.21
6000 0.16 020 0.20 0.21 0.21 0.21
7000 0.16 021 023 024 024 0.24
8000 0.17 0.23 0.27 027 0.27 0.27
9000 0.17 024 027 029 0.29 0.29
10000 0.17 024 027 029 0.29 0.29

POSIGNORE+ INTENSIFIER 0.16 027 0.29 030 0.30 0.30
POSIGNORE + SINGLETONS 0.17 0.29 0.30 0.31 0.31 0.31
POSIGNORE + DomaIN 1000 0.11  0.26 0.26 0.29 0.29 0.29
POSIGNORE + AsPECTS 100 0.16 0.27v 0.30 0.31 0.31 0.31

(b) Results with different filters on top of the best basic method (ABSTRACT PATHS, MI+).

Table A.2.: Detailed results of PRC extraction with path lengths between k£ = 1 and
k = 6 (Precision). Bold numbers denote the best result for each k and
scoring method.
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class inconsistent

class consistent

A P R F P R F Fn
E standard vot. BASELINE 91.2 0.0 0.0 0.0 91.2 100.0 954 47.7*
B negation vot. WORDS 92.2 56.8 455 50.5 949 96.7 958 73.1*
< negation vot. PRC-GoOLD 93.5 64.2 58.0 60.9 96.0 969 96.4 78.7
= negation vot. PRC-SYSTEM 91.1 493 52.1 50.7 954 948 951 72.9*
S standard vot. BASELINE 90.7 0.0 0.0 0.0 90.7 100.0 95.1 47.6*
B negation vot. WORDS 91.3 544 406 465 941 965 953 70.9*
g negation vot. PRC-GOLD 91.8 56.4 50.5 53.3 95.0 96.0 95.5 74.4
= negation vot. PRC-SYSTEM 90.0 46.0 46.7 464 945 94.4 94.5 70.4*
, standard vot. BASELINE 91.2 0.0 0.0 0.0 91.2 100.0 954 47.7*
T classifier vot. BOW 82.1 259 556 353 952 847 89.6 62.5
é: classifier vot. BoC 86.2 30.3 448 36.2 944 90.1 922 64.2
& classifier vot. BOPRC-GoOLD 92.6 59.7 50.6 54.2 953 96.6 96.0 75.2*
= classifier vot. BOPRC-sysTEM 91.8 534 51.8 525 95.4 956 955 74.0*
, standard vot. BASELINE 90.7 0.0 0.0 0.0 90.7 100.0 95.1 47.6*
A classifier vot. BOW 80.3 24.0 51.5 327 944 833 884 60.6*
é: classifier vot. BoC 86.7 345 475 400 944 90.8 925 66.3
& classifier vot. BOPRC-GoOLD 92.8 67.0 44.1 53.1 945 97.8 96.1 74.6*
= classifier vot. BOPRC-sYysTEM 92.8 64.9 488 55.6 94.9 973 96.1 75.9*

Table A.3.: Detailed results of word-level consistency classification (Accuracy, Precision,

Recall, F; score, macro F; (Fy,). The best result for each data set is bolded.
F,, results are marked with * if the difference to negation vot. PRC-GOLD
resp. classifier vot. BOC is statistically significant at p < .05.

WORDS PRC PRC WORDS PRC PRC
GOLD  SYSTEM GOLD  SYSTEM
BASELINE 0.0000 0.0000 0.0000 BASELINE 0.0000 0.0000 0.0000
WORDS 0.0004 0.4472 WORDS 0.0097 0.3913
PRC-GcoLD 0.0000 PRC-GcoLD 0.0007

(a) Negation vot., MPQA, HL

(b) Negation vot., MPQA, DL

BoWw BoC BoPRC BoPRC BoW BoC BoPRC BoPRC

GOLD SYSTEM GOLD SYSTEM

BASELINE 0.0000 0.0000 0.0000 0.0000 BASELINE 0.0000 0.0000 0.0000 0.0000
Bow 0.1544 0.0000 0.0000 BoW 0.0000 0.0000 0.0000
BoC 0.0000 0.0000 BoC 0.0000 0.0000
BoPRC-GcoLD 0.1469 BoPRC-GoLD 0.1509

(c) Classifier vot., MPQA, HL

(d) Classifier vot., MPQA, DL

Table A.4.: Statistical significances (p-values) for word-level consistency classification.
Values are marked in bold if p < 0.05.
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A class positive class negative o
P R F P R F m
E standard vot. BASELINE 76.1 76.5 91.7 834 745 464 57.2 70.3*
& negation vot. WORDS 79.0 784 93.7 854 80.9 51.0 62.6 74.0*
g negation vot. PRC-GoLD 80.2 79.6 93.8 86.1 82.1 54.2 65.3 75.7
= negation vot. PRC-SYSTEM 788 784 932 8.2 799 512 624 73.8*
S standard vot. BASELINE 73.0 753 &87.7 81.0 652 446 53.0 67.0*
< negation vot. WORDS 75.0 77.1 882 823 685 495 575 69.9*
o negation vot. PRC-GoLD 76.4 783 888 83.2 70.8 52.5 60.3 71.8
= negation vot. PRC-SYSTEM 75.1 766 89.6 826 70.2 473 56.5 69.6*
g standard vot. BASELINE 70.8 726 86.8 79.0 652 429 51.8 654*
I negation vot. WORDS 729 742 879 80.5 69.0 47.0 559 682
6" negation vot. PRC-GOLD 74.2 74.8 89.5 81.5 72.3 47.5 57.4 694
negation vot. PRC-SYSTEM 72.7 739 88.3 804 692 457 55.0 67.7*
g standard vot. BASELINE 67.1 709 826 76.3 554 389 457 61.0*
A negation vot. WORDS 69.0 723 838 T77.7 59.1 422 492 63.5*
6" negation vot. PRC-GOLD 70.8 73.7 84.9 789 62.5 454 52.6 65.8
negation vot. PRC-SYSTEM 69.1 721 84.7 779 59.6 40.8 48.4 63.2*
, standard vot. BASELINE 76.1 76.5 91.7 834 745 464 57.2 70.3*
T classifier vot. BOW 780 804 87.8 84.0 719 593 650 74.5*
é: classifier vot. BoC 80.5 81.8 905 8.9 773 61.5 685 77.2
& classifier vot. BOPRC-GOLD 80.9 816 91.6 863 79.1 605 686 774
= classifier vot. BOPRC-sysTEM 81.3 &81.5 92.5 86.7 80.9 60.0 68.9 77.8
, standard vot. BASELINE 73.0 753 877 810 652 446 53.0 67.0*
A classifier vot. BOW 745 783 849 815 652 545 594 704*
<o§: classifier vot. BoC 775 T79.8 88.1 83.8 71.3 57.0 63.4 73.6
& classifier vot. BOPRC-GOLD 76.6 794 87.0 83.0 69.2 56.5 622 726
= classifier vot. BOPRC-SYSTEM 77.2 79.2 88.6 83.6 71.4 552 623 729
standard vot. BASELINE 70.8 726 86.8 79.0 652 429 51.8 654*
3 classifier vot. BOW 729 754 849 799 66.5 520 584 69.1
E classifier vot. BoC 4.5 T7.2 84.7 80.8 681 56.6 61.8 71.3
O classifier vot. BOPRC-GOLD 744 757 878 81.3 70.7 51.1 59.3 70.3
classifier vot. BOPRC-sYysTEM 74.1 754 88.1 81.2 70.7 498 584 69.8
standard vot. BASELINE 67.1 709 82.6 76.3 554 389 457 61.0*
= classifier vot. BOW 69.2 727 833 777 592 435 50.1 63.8*
Eﬁ classifier vot. BoC 72.2 76.5 821 79.2 62.8 54.5 58.3 68.8
O  classifier vot. BOPRC-GOLD 70.0 734 83.8 783 60.8 451 51.8 65.0*
classifier vot. BOPRC-system 704 73.3 84.8 78.7 61.8 443 516 65.1*

Table A.5.: Detailed results of sentence-level polarity classification (Accuracy, Precision,
Recall, F; score, macro F; (Fy,). Averaged over 10 random runs of 10-fold

cross-validation.

Bold numbers denote the best result for each data set

and sentiment word list. F), results are marked with * if the difference to
negation vot. with PRC-GOLD resp. classifier vot. with BOC is statistically
significant at p < .05.
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‘3 =
= LA oY=
Q ~mo =
= oo A
BASELINE 0.0000 0.0000 0.0002
WORDS 0.0128 0.4251
PRC-GcoLD 0.0079

(a) Negation vot., MPQA, HL

‘3 =
= 0A oY=
o S ~ 2
= o A
BASELINE 0.0004 0.0000 0.0073
WORDS 0.0596  0.2797
PRC-GoLD 0.0155

(c) Negation vot., GI, HL

Q Os
PN (oS}
= O LS ae
o o) 05 on
an) [an} Mo sl

8 =
= ot oY=
Q [=13) =4S
= oo A
BASELINE 0.0001 0.0000 0.0033
WORDS 0.0094 0.3700
PRC-GcoLD 0.0055

(b) Negation vot., MpQA, DL

8 =
= 0A &
o ~o ~ 2
= o A
BASELINE 0.0004 0.0000 0.0164
WORDS 0.0030 0.3799
PRC-GcoLD 0.0012

(d) Negation vot., GI, DL

Q OF]
A [aegs
= & S Ao
o) o) 05 on
an) an) Mo M

BASELINE 0.0027 0.0000 0.0000 0.0000

Bow 0.0375 0.0209 0.0118
BoC 0.3349 0.2665
BoPRC-GcoLD 0.2690

(e) Classifier vot., MPQA, HL

BASELINE 0.0059 0.0000 0.0000 0.0000

BoW 0.0097 0.0434 0.0289
BoC 0.1877 0.2734
BoPRC-GoLD 0.2937

(f) Classifier vot., MpQa, DL

Q Q=

& [aal S

= O A ae

fe) o) o0 oL

an} M Mo M n
BASELINE 0.0122 0.0000 0.0000 0.0000
BoW 0.0955 0.2208 0.2812
BoC 0.2140 0.1180
BoPRC-coLD 0.2300

(g) Classifier vot., G1, HL

Q O=

aet A i

= ® LS Ao

o o o5 oZ

[aa)] an} Mo M
BASELINE 0.0298 0.0000 0.0000 0.0000
BowW 0.0021 0.2211 0.2045
BoC 0.0037 0.0054
BoPRC-GoLD 0.2617

(h) Classifier vot., G1, DL

Table A.6.: Statistical significances (p-values) for sentence-level polarity classification.
Values are marked in bold if p < 0.05.






B. Detailed results for Chapter 5

Predicate ident. Argument ident. Argument class.

P R F P R F P, R, E,

BL Pos 84.4 474 60.7* - - - - - -
BASELINE 67.8 68.7 682" | 440 46.8 45.3" | 334 35.6 34.5"

(é) MINIMAL 83.9 75.7 79.6* | 57.4 23.7 33.6" | 55.1 228 32.2*
— WiNDOW 87.0 773 81.9 | 684 477 56.2* | 63.7 445 52.4*
SYNTAX 85.7 78.1 81.7 |80.0 59.3 68.1 |74.9 555 63.8
WINDOW+SYNTAX | 87.2 76.2 81.3 | 649 499 56.4* | 60.3 46.4 52.4*
BL Pos 62.5 34.7 44.6* - - - - - -
BASELINE 51.8 56.5 54.1* | 50.0 49.8 49.9* | 43.7 43.5 43.6*

< MINIMAL 69.3 60.1 64.4* | 53.1 9.6 16.2* | 52.6 9.5 16.0*
~  WiNnpow 75.2 575 652 | 61.5 281 38.6" | 585 26.7 36.7*
SYNTAX 746 59.5 66.2 | 70.7 42.1 52.8 | 66.4 39.5 49.5
WINDOW+SYNTAX | 75.2 56.1 64.3* | 59.0 31.8 41.3* | 55.8 30.1 39.1%
BL Pos 66.6 38.2 48.5* - - - - - -
BASELINE 53.1 62.8 57.5% | 49.7 47.2 48.4 44.0 41.8 42.9*

o MINIMAL 71.2 576 63.7* | 58.3 14.0 225" | 57.3 13.7 22.2*
' Winbow 77.0 583 66.3 | 63.3 276 385" | 60.8 26.6 37.0*
SYNTAX 74.2  59.2 65.9 66.9 37.3 47.9 | 63.7 35.5 45.6
WINDOW-+SYNTAX | 76.7 57.9 66.0* | 58.1 29.9 39.5* | 56.2 29.0 38.2*
BL Pos 74.1 530 61.8* - - - - - -
BASELINE 61.3 80.1 694 | 40.1 45.7 42.7* | 28.7 32.7 30.6"

5’3 MINIMAL 73.7 683 70.9 |57.5 133 21.6* |52.7 122 19.8*
~  WINDOW 786 67.9 729 | 659 335 445" | 604 30.7 40.7*
SYNTAX 76.4 66.8 T7T1.3 69.5 46.4 55.7 | 63.1 42.1 50.5
WINDOW-+SYNTAX | 78.7 66.3 72.0 | 62.8 37.0 46.6* | 57.2 33.7 42.4*

Table B.1.: Detailed results of the experiments on sentence context (Precision, Recall,
F, score, for argument classification P,, R,, F), are micro-averaged over all
classes). Numbers for arguments are on gold predicates. The best result in
each experiment group, data set and task is marked in bold. F) score results
are marked with * if the difference to SYNTAX is significant at p < .05.
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»n
> z Z Z +
2 Z &
m = = & =
Pos 0.0000 0.0000 0.0000 0.0000 0.0000
KEYWORDS 0.0000 0.0000 0.0000 0.0000
MINIMAL 0.0000 0.0000 0.0002
WINDOW 0.3777 0.0254
SYNTAX 0.1253
(a) Predicate identification, IMS
>~ Z. Z. . ﬁ
) = =
i = = A =
Pos 0.0000 0.0000 0.0000 0.0000 0.0000
KEYWORDS 0.0000 0.0000 0.0000 0.0000
MINIMAL 0.1765 0.0160 0.4687
WINDOW 0.1265 0.0618
SYNTAX 0.0053
(b) Predicate identification, J-A
> Z, Z ﬁ
Z.
) = =
i = = A =
Pos 0.0000 0.0000 0.0000 0.0000 0.0000
KEYWORDS 0.0000 0.0000 0.0000 0.0000
MINIMAL 0.0326 0.0485 0.0566
WINDOW 0.3728 0.3810
SYNTAX 0.4533
(c) Predicate identification, J-C
> Z, Z Cﬁ
Z.
) = =
i = = A =
Pos 0.0000 0.0000 0.0000 0.0000 0.0000
KEYWORDS 0.0952 0.0063 0.0983 0.0341
MINIMAL 0.0342 (0.3843 0.1845
WINDOW 0.0570 0.1200
SYNTAX 0.2017

(d) Predicate identification, J&L

Table B.2.: Statistical significances (p-values) for experiments on sentence context for
predicate identification. Values are marked in bold if p < 0.05.
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= 2 ] =

Z S % < 2 <

= A ﬁ n = A ﬁ w0

Z Z z + z 2 Z +

= = N = = = n =
BL 0.0000 0.0000 0.0000 0.0000 BL 0.0019 0.0000 0.0000 0.0000
MIN 0.0000 0.0000 0.0000 MiN 0.0000 0.0000 0.0000
Win 0.0000 0.2573 WIN 0.0000 0.4622
SYN 0.0000 SYN 0.0000

(a) Argument identification, IMS

(b) Argument classification, IMS

= = 2 z

S S % < 2 <

= a & 29 = a & )

Z Z z + z & Z +

= = N = = = n =
BL 0.0000 0.0000 0.0014 0.0000 BL 0.0000 0.0000 0.0000 0.0000
MIN 0.0000 0.0000 0.0000 MIN 0.0000 0.0000 0.0000
WiN 0.0000 0.0000 WIN 0.0000 0.0000
SYN 0.0000 SYN 0.0000

(¢) Argument identification, J-A

(d) Argument classification, J-A

= = = =

S S % < 2 <

= a s n = o & 0

Z Z z + z 2 z -+

= = n = = = n =
BL 0.0000 0.0000 0.3523 0.0000 BL 0.0000 0.0001 0.0104 0.0005
MiN 0.0000 0.0000 0.0000 MiIN 0.0000 0.0000 0.0000
WiN 0.0000 0.0688 WinN 0.0000 0.0301
SYN 0.0000 SYN 0.0000

(e) Argument identification, J-C

(f) Argument classification, J-C

= 2

2 a & n
Z Z z +
b= = & =

2 B
Z a & n
z = z +
= = & =

BL 0.0000 0.1114 0.0045 0.0000

MIN 0.0000 0.0000 0.0000
WIN 0.0000 0.0055
SYN 0.0000

BL 0.0000 0.0000 0.0000 0.0000

MIN 0.0000 0.0000 0.0000
WIN 0.0000 0.0331
SYN 0.0000

(g) Argument identification, J&L

(h) Argument classification, J&L

Table B.3.: Statistical significances (p-values) for experiments on sentence context for
argument identification and classification. Values are marked in bold if p <

0.05.
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Predicate ident. Argument ident. Argument class.

P R F P R F P, R, E,

SYNTAX 85.7 781 81.7 80.0 59.3 68.1 749 555 63.8
o NER 85.6 T78.5 81.9 | 79.6 60.4 68.7 74.8 56.7 64.5
= CLUSTER | 85.8 78.0 81.7 79.5 59.9 68.3 744 56.0 63.9
~ TYPE - - ~ | 750 64.1 69.1* | 70.1 59.9 64.6*
PorLariTY | 85.8 78.1 81.8 | 80.5 59.1 68.1 75.4 553 63.8
SYNTAX 746 59.5 66.2 | 70.7 42.1 528 66.4 39.5 49.5
NER 74.3 594 66.0 70.7 432 53.6 | 66.6 40.7 50.6
;F CLUSTER | 74.8 58.8 65.8 69.5 43.0 53.1 65.2 40.3 49.8
TYPE - - - 68.8 43.4 53.2* | 64.4 40.6 49.8
PorArITY | 745 59.2 66.0 | 70.8 41.9 52.6 66.4 39.3 49.3
SYNTAX 74.2 59.2 65.9 66.9 373 47.9 63.7 355 45.6
NER 743 59.8 66.3 | 67.2 41.0 51.0 | 64.6 39.4 49.0
(;_).) CLUSTER | 75.0 59.3 66.3 | 64.8 38.7 485 62.1 371 464
TYPE — - - 64.8 40.4 49.7* | 61.7 384 47.3*
PoLARITY | 74.4 584 654 |68.8 373 484 |65.3 355 46.0
SYNTAX 76.4 66.8 7T1.3 69.5 46.4 55.7 63.1 42.1 50.5

B NER 76.5 67.3 71.6 |70.3 488 57.6 |64.4 447 528
& CLUSTER | 77.2 67.3 T71.9 | 68.4 47.0 557 62.5 43.0 50.9
~ TYPE - - - 64.7 53.7 58.7° | 585 48.6 53.1*
PoLARITY | 76.4 67.2 715 69.8 46.1 55.5 63.5 419 50.5

Table B.4.: Detailed results of the experiments with task and domain context (Precision,
Recall, F; score, for argument classification P,, R,, F), are micro-averaged
over all classes). Numbers for arguments are on gold predicates. The best
result in each experiment group, data set and task is marked in bold. F}
score results are marked with * if the difference to SYNTAX is significant at
p < .05.

CLUSTER TYPE POLARITY
Pred. A-ident. A-class. | A-ident. A-class. | Pred. A-ident. A-class.

IMS | 0.5012  0.1364 0.2580 | 0.0000 0.0001 | 0.3512  0.3149 0.2087
J-A 0.1521  0.2071 0.2906 | 0.0424 0.2012 | 0.1510 0.1710 0.1426
J-C 0.2818  0.1452 0.0647 | 0.0000 0.0000 | 0.1164  0.0445 0.0818
J&L | 0.1332  0.4680 0.2663 | 0.0000 0.0000 | 0.2984  0.3032 0.4942

Table B.5.: Statistical significances (p-values) relative to SYNTAX for experiments on
context from task and domain. Values are marked in bold if p < 0.05.
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Predicate ident. Argument ident. Argument class.

P R F AF| P R F AF | P, R, F, AF,
v FuncriON | 85.7 78.1 81.7 80.0 59.3 68.1 74.9 55.5 63.8
Z CONTENT | 85.5 752 800 -1.7| 794 588 67.6 -0.5| 740 548 629 -0.9
< FUNCTION | 7T4.6 59.5 66.2 70.7 42.1 52.8 66.4 395 49.5
= CONTENT | 74.6 532 621 -4.1| 70.3 420 526 -0.2|66.6 39.8 49.8 +0.3
o FuncrtioN | 74.2  59.2 65.9 66.9 373 47.9 63.7 35.5 45.6
— CONTENT | 75.7 548 63.6 -23|66.7 37.4 47.9 -0.0| 63.0 353 452 -04
— FUNCTION | 76.4 66.8 71.3 69.5 46.4 55.7 63.1 42.1 50.5
;*3 CONTENT | 75.2 60.9 67.3 -4.0|69.7 453 549 -0.8| 624 406 492 -1.3

(a) Results for FUNCTION predicates vs. CONTENT predicates.

(b) Argument classification results for changing argument labels.

Argument classification
P, R, F, AF,
UNIFIED 74.9 55.5 63.8
2 SCALE 74.4 55.1 63.3 -0.5
2 SURFACE 701 519 59.6 -4.2
PREFERENCE | 64.7 479 55.0 -8.8
UNIFIED 66.4 39.5 49.5
« SCALE 65.9 39.2 492 -0.3
= SURFACE 60.9 36.3 454 -4.1
PREFERENCE | 585 34.8 43.6 -5.9
UNIFIED 63.7 35.5 45.6
O SCALE 63.2 353 453 -0.3
~  SURFACE 57.8 322 414 -4.2
PREFERENCE | 56.4 31.5 404 -5.2
UNIFIED 63.1 42.1 50.5
—  SCALE 62.4 41.7 50.0 -0.5
2 SURFACE 60.0 40.1 481 -2.4
PREFERENCE — — —

identification are not affected by these changes.

Predicate and argument

Table B.6.: Detailed results of the experiments on annotation design context (Precision,
Recall, F; score, for argument classification P,, R,, F}, are micro-averaged
over all classes). Numbers for arguments are on gold predicates. Bold num-
bers denote the best result in each data set and task. AF denotes the abso-
lute differences in F; score to the FUNCTION / UNIFIED setting (equivalent
to SYNTAX in Table B.1), as we cannot calculate statistical significance.






C. Detailed results for Chapter 6

Predicate ident. Argument ident. Argument class.

P R F P R F P, R, E,

BASELINE 100.0 6.1 11.5|100.0 5.6 10.6| 524 2.9 5.6
VS 100.0 6.1 11.5 | 96.7 53 10.1 | 55.7 3.1 5.8
WINDOW 100.0 6.1 11.5]100.0 5.5 10.5 | 61.8 34 6.5
— TrReeWINDOW | 100.0 6.1 11.5| 96.8 5.4 10.2 | 62.1 3.9 6.6
l DEpP 100.0 6.1 11.5|100.0 5.5 104 | 51.6 2.8 5.4
PosIiTiON 100.0 6.1 11.5 | 99.2 5.5 104 | 642 3.6 6.7
LEVEL 100.0 6.1 115 | 984 9.9 104 | 66.9 3.7 7.1
PATH 100.0 6.1 11.5 | 100.0 5.5 10.3 | 64.5 3.5 6.7
BASELINE 100.0 11.7 21.0| 98.8 10.7 19.3 | 49.6 5.4 9.7
VS 100.0 11.7 21.0| 979 104 188 | 52.1 5.5 10.0
WINDOW 100.0 11.7 21.0| 99.6 10.7 19.3 | 57.6 6.2 11.2
cﬁ' TrReeWIiNDOW | 100.0 11.7 21.0| 983 105 189 | 60.2 64 11.6
<« DEP 100.0 11.7 21.0| 99.1 105 189 | 556 59 10.6
PosiTionN 100.0 11.7 21.0 | 99.2 10.6  19.1 | 60.8 6.5 11.7
LEVEL 100.0 11.7 21.0| 988 10.7 19.3 654 7.1 128
PATH 100.0 11.7 21.0 | 98.7 10.5 19.0 | 65.3 6.9 12.6
BASELINE 100.0 16.8 28.7 | 98.8 152 264 | 56.4 87 15.1
VS 100.0 16.8 28.7 | 97.6 148 25.7 | 479 7.3 126
WiNDOW 100.0 16.8 28.7 | 99.4 15.3 26.6 | 520 8.0 139
‘”HD TREgWINDOW | 100.0 16.8 28.7 | 985 149 259 | 603 9.1 158
<« DEP 100.0 16.8 28.7 | 985 148 258 | 57.8 87 15.1
PosITION 100.0 16.8 28.7 | 99.1 150 26.0 | 60.3 9.1 158
LEVEL 100.0 16.8 28.7 | 98.2 15.1  26.3 | 64.0 9.9 17.1
PATH 100.0 16.8 28.7 | 98.8 14.8 25.8 | 66.7 10.0 17.4

Table C.1.: Detailed results on development set for LABELED arguments on both sides
with different argument similarities and different k& (Precision, Recall, F,
score, for argument classification P,, R,, F) are micro-averaged over all
classes). Bold numbers denote the best result for each setting and task
(predicate identification, argument identification, argument classification).
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Predicate ident. Argument ident. Argument class.

P R F P R F P, R, E,

BASELINE 100.0 26.4 41.8|199.0 23.4 37.9| 55,5 13.1 21.2
VS 100.0 26.4 41.8 | 984 229 372 | 488 114 184
WINDOW 100.0 26.4 41.8 | 989 233 37.7 | 50.0 11.8 19.1

> TREeWINDOW | 100.0 26.4 41.8 | 98.2 22.7 36.8 | 59.2 13.7 222
l DEp 100.0 26.4 41.8 | 984 228 37.0 | 56.9 132 214
PosIiTION 100.0 26.4 41.8 | 98.6 228 37.0 | 61.1 14.1 229
LEVEL 100.0 26.4 41.8 | 98.7 23.3 37.7 | 64.5 15.2 24.7
PATH 100.0 26.4 41.8| 984 224 36.5 | 66.3 151 24.6
BASELINE 100.0 46.1 63.1 | 99.0 40.8 57.8 | 53.1 219 31.0
VS 100.0 46.1 63.1 | 98.6 40.0 56.9 | 45.9 18.7 26.5
WINDOW 100.0 46.1 63.1 | 98.9 40.3 57.2 | 46.5 189 26.9

= TrReeWINDOW | 100.0 46.1 63.1 | 98.8 39.6 56.5 | 547 21.9 31.3
l DEp 100.0 46.1 63.1 ]| 99.0 39.2 56.2 | 54.0 214 30.7
PosITION 100.0 46.1 63.1 | 99.0 393 56.3 | 583 232 332
LEVEL 100.0 46.1 63.1 | 98.7 404 57.3 | 56.7 23.2 329
PATH 100.0 46.1 63.1 |99.1 387 55.7 |63.3 24.8 35.6
BASELINE 100.0 98.2 99.1 ] 99.1 770 86.6 | 50.6 39.3 44.3
VS 100.0 98.2 99.1 | 99.0 769 86.6 | 38.9 30.2 34.0

g WINDOW 100.0 98.2 99.1 | 99.1 77.0 86.6 | 43.8 34.0 38.3
;a TREEWINDOW | 100.0 98.2 99.1 | 99.0 76.9 86.5 | 50.0 38.8 43.7
S Dep 100.0 98.2 99.1 | 99.3 77.1 86.8 | 50.4 39.2 44.1
l PosITION 100.0 98.2 99.1 | 99.0 769 86.6 | 50.7 394 44.3
LEVEL 100.0 98.2 99.1 | 99.1 77.0 86.6 | 49.3 38.3 43.1
PATH 100.0 98.2 99.1 |99.4 77.2 86.9 | 55.6 43.2 48.6

Table C.2.: Detailed results on development set for LABELED arguments on both sides
with different argument similarities and different k& (Precision, Recall, F4
score, for argument classification P,, R,, F), are micro-averaged over all
classes). Bold numbers denote the best result for each setting and task
(predicate identification, argument identification, argument classification).
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Predicate ident. Argument ident. Argument class.

P R F P R F P, R, FE,

BASELINE 69.3 34.5 46.0 | 34.6 9.2 14.5 9.8 2.6 4.1
VS 68.2 339 453 | 405 114 177 | 143 4.0 6.3
WINDOW 68.0 338 451 | 376 95 151 | 16.8 4.2 6.8
.1 TREgWINDOW | 674 33.5 448 | 385 11.2 173 | 214 6.2 9.6
~  Degp 67.8 33.7 45.0 | 43.1 11.4 18.0 | 239 6.3 10.0
PosiTiON 66.9 332 444 | 412 11.0 174 | 244 6.5 10.3
LEVEL 66.7 33.2 443 | 359 10.8 16.6 | 18.7 5.6 8.7
PATH 64.6 32.1 429 | 419 11.3 178 |27.2 7.3 11.5
BASELINE 45.5 251 323 | 11.9 5.5 7.5 6.0 2.7 3.8
VS 48.1 26.5 34.2 | 21.5 10.1 13.7 | 10.8 5.1 6.9
WINDOW 451 249 321|168 7.7 106 | 97 45 6.1
~ TREEWINDOW | 54.2 29.9 38.5 | 22.0 103 14.0 | 13.7 64 8.7
<  DEp 51.5 284 366 | 21.9 102 139 | 136 6.3 8.7
PosiTioN 45.5 251 323 | 1.7 7.3 10.0 | 114 5.3 7.3
LEVEL 472 260 336 | 194 9.0 123 | 129 6.0 8.2
PAaTH 50.6 279 36.0 | 28.2 13.1 17.9|19.9 9.2 12.6
BASELINE 67.8 33.7 45.0| 36.0 129 19.0 | 13.7 4.9 7.2
VS 66.7 33.2 443 | 383 13.8 203 | 146 5.3 7.8
WINDOW 66.7 33.2 443 | 35.5 12.7 187 | 129 4.6 6.8

% TREEWINDOW | 65.5 32.5 43.5 | 347 123 182 | 184 6.5 9.6
4 Dep 67.4 33.5 44.8 | 40.6 14.0 20.8 | 22.7 7.8 11.6
= PosiTION 66.3 33.0 44.1 | 375 129 192|223 77 114
LEVEL 66.3 33.0 44.1 | 33.0 12.1 17.7 | 16.8 6.2 9.0
PATH 64.6 321 429 | 380 13.0 194 |25.2 8.7 12.9
BASELINE 473 260 336 | 11.1 5.8 7.6 6.3 3.3 4.3
VS 52.8 29.1 376 | 244 129 16.8 | 13.9 7.3 9.6

g WINDOW 494 272 351 | 201 10.6 13.9 | 12.1 6.4 8.4
= TREEWINDOW | 54.2 29.9 38.5| 21.7 11.5 15.0 | 14.6 7.7 10.1
¢ DEP 49.8 275 354 | 235 124 163 | 147 1.8 10.2
» PosiTioN 472 260 336 | 17.7 94 12.3 | 12.1 6.4 8.4
LEVEL 53.0 293 377|216 114 150 | 147 78 10.2
PATH 53.2 294 379 |29.7 15.7 20.6 |20.9 11.0 144

Table C.3.: Detailed results on development set for argument candidate extraction with
different argument similarities for & = 10 (Precision, Recall, F; score, for
argument classification P,, R,,, F,, are micro-averaged over all classes). Bold
numbers denote the best result for each argument creation method (sym-
metric FL, KK, and asymmetric FL-sym, KK-syMm) and task (predicate
identification, argument identification, argument classification).
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Predicate ident. Argument ident. Argument class.

P R F P R F P, R, F,

BASELINE 69.7 34.7 46.3 |44.4 128 199 | 282 8.2 12.7
VS 68.2 339 453 | 455 13.1 20.4 | 283 82 12.7
é WINDOW 68.2 339 453 | 434 126 195 | 283 8.2 12.7
TREEWINDOW | 65.5 32,5 43.5 | 42.1 12.0 18.7 | 27.0 7.7 12.0
Dep 66.5 33.1 442 | 428 12.1 189 | 28.7 81 126
BASELINE 50.4 27.8 358 | 27.2 129 17.5 | 19.8 9.4 12.7
VS 504 278 358 | 274 130 176 | 194 92 125
E WINDOW 50.8 28.0 36.1 | 279 13.2 18.0 | 20.2 9.6 13.0
TREEWINDOW | 48.7 269 34.6 | 27.8 132 179 | 20.7 9.8 13.3
DEp 50.2 277 35.7 | 28.2 13.4 18.1 | 19.9 9.5 12.8
BASELINE 67.8 33.7 45.0 | 40.1 145 21.3 | 258 9.3 13.7

g VS 67.4 335 44.8 | 41.1 14.7 21.6 | 260 9.3 13.7
(? WINDOW 66.7 332 443 | 389 139 205 | 257 92 135
E TREEWINDOW | 63.4 31.5 42.1 | 37.1 13.1 19.3 | 23.9 8.4 12.5
DEp 659 328 438 | 39.3 13.8 204 | 26.2 9.2 13.6
BASELINE 549 303 39.1 | 324 171 224 |23.9 12.6 16.5

i VS 57.0 31.5 40.5|32.5 17.2 22.5|23.9 12.6 16.5
®  WINDOW 54.2 299 385 | 319 168 22.0|23.9 12.6 16.5
§ TrREEWINDOW | 51.7 286 36.8 | 30.3 16.0 21.0 | 226 11.9 15.6
DEp 52,5 29.0 373 | 314 166 21.7 | 233 123 16.1

Table C.4.: Detailed results on development set for different predicate similarities for
k = 10 (Precision, Recall, F; score, for argument classification P,, R, F),
are micro-averaged over all classes). Bold numbers denote the best result for
each argument creation method (symmetric FL, KK, and asymmetric FL-
syM, KK-syM) and task (predicate identification, argument identification,
argument classification).

Explanation for all following tables:

Detailed results on test set for all versions of structural alignment (FL-Frar, KK-
FrAT, FL-CONTEXT, KK-CONTEXT, FL-CONTEXT-PREDS, KK-CONTEXT-PREDS).
The system is trained on data with different number of k& expansion sentences added per
seed sentence. Results are given for different percentages of seed data d that are used
(10%, 25%, 50%, 100%). For predicate and argument identification, Precision, Recall,
and F; score are given, for argument classification P,, R,, I, are micro-averaged over
all classes.
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Predicate ident.

Argument ident.

Argument class.

System, k ¢ ' p R F|P R F|P R, E
10 | 834 41.6 555|550 135 21.7]399 98 157

BASELINE 25 | 841 515 639|621 200 302|506 163 246
50 | 854 59.0 69.8|67.6 26.6 381|582 229 328

100 | 85.0 632 725|682 317 433|600 279 381

10 | 853 34.9 496 |66.6 109 187|412 6.7 11.6

FLFiar h—1 20 | 854 454 593|705 172 277|576 140 226
=1 50 | 8.7 523 650|705 23.0 347|605 197 298

100 | 86.6 58.0 694 | 72.2 283 40.7 | 625 245 352

10 | 870 384 533|688 118 202|375 65 11.0

.25 | 861 423 56.7 | 719 156 25.6 | 58.9 127 21.0
FL-FLATE =2 o | 973 486 624 | 728 213 33.0 | 598 17.5 271
100 | 85.8 54.0 66.3 | 727 267 39.1 | 61.9 22.8 33.3

10 | 869 381 530|711 119 204|394 66 11.3

PLFiarh—g 25 | 867 412 559 | 715 151 249|570 120 193
=9 50 | 882 498 636|727 219 337|586 17.7 27.1

100 | 86.9 53.9 665 | 73.1 263 387 | 61.8 222 327

10 | 86.9 380 529|693 11.6 198|372 6.2 10.6

PLFixrh—a 25 | 862 418 563 | 7LT 154 253|564 121 19.9
§ =% 50 | 878 487 627|716 212 327|577 171 264
100 | 87.5 525 656 | 72.6 257 38.0 | 61.0 21.6 31.9

10 | 86.8 401 549 | 706 124 211|380 6.7 114

PLFiark—s 2 | 857 439 581|704 163 265|555 129 209
=9 50 | 874 485 624|708 213 328|572 172 265

100 | 874 50.6 64.1 | 72.2 248 36.9 | 60.1 20.6 30.7

10 | 866 39.6 544|693 123 209|364 65 11.0

25 | 85.6 423 56.7 | 69.1 158 257|545 124 20.2
FL-FLATE =06 o0 | 75 483 622 | 69.3 214 327 | 554 171 261
100 | 87.3 49.0 628 | 71.5 245 364 | 598 205 305

10 | 868 40.3 551|683 127 215|355 6.6 11.2

.25 860 422 566|681 161 26.1|529 125 20.3

FLFLAT R =T o0 | 976 464 607 | 69.8 206 31.9 | 559 165 25.5
100 | 85.6 47.6 61.2 | 703 239 357|581 19.8 29.5

10 | 875 389 538|687 124 211|372 6.7 114

PLFiar kg 25 | 861 417 562|685 161 261|523 123 19.9
=% 50 | 875 450 594|693 20.1 312|554 161 249

100 | 85.9 47.9 615 | 69.6 24.3 36.0 | 57.8 20.2 29.9

10 | 87.2 361 511|680 114 195360 6.0 10.3

PLFiar ko 25 | 860 418 563|680 163 263|521 125 202
i =7 50 | 8.9 462 603|686 204 314|547 163 251
100 | 85.5 484 618 | 69.3 24.3 36.0 | 57.0 20.0 29.6

10 | 873 354 504|694 115 19.7|351 58 10.0

PLFiark—10 2 | 859 AL 556|670 158 256|508 120 194
=9 50 | 874 454 597|693 203 314|554 163 25.1

100 | 85.9 47.9 615 | 69.3 238 354 | 56.6 194 28.9

Table C.5.: Detailed results on test set for system FL-FLAT.
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Predicate ident. Argument ident. Argument class.
P R F P R F P, R, F,

10 | 834 416 555|550 13.5 21.7]399 98 15.7
25 | 8.1 515 639|621 20.0 30.2|50.6 163 24.6
50 | 8.4 59.0 69.8 | 676 26.6 381|582 229 32.8
100 | 85.0 63.2 725 | 68.2 31.7 43.3 | 60.0 279 381

10 | 83.8 384 527|639 10.8 185|421 7.1 122
25 | 843 446 583 | 706 156 25.6 | 582 129 21.1
50 | 86.5 51.0 64.2 | 725 227 34.6 | 61.2 19.2 29.2
100 | 86.1 56.2 68.0 | 71.7 274 39.7 | 614 23.5 34.0

10 | 8.5 370 51.7|66.0 106 182|434 7.0 120
25 | 849 446 585 | 71.0 171 275 |59.0 142 228
50 | 86.0 481 61.7] 709 20.8 322 |59.7 175 271
100 | 86.0 55.1 67.1 | 71.8 26.7 38.9 | 620 23.1 33.6

10 1863 365 514|693 114 196 | 435 72 123
25 | 84.6 454 59.1 | 708 17.7 283 | 58.1 145 23.2
50 | 86.1 493 62.7 | 708 21.3 327 |59.1 178 27.3
100 | 86.1 56.2 68.1 | 71.6 28.2 404 | 61.3 241 34.6

10 | 8.4 374 520|695 11.7 20.0| 431 73 124
25 | 84.0 451 5871689 17.8 283|564 145 23.1
50 | 86.1 493 62.7 | 709 20.7 321|594 174 26.9
100 | 85.8 54.8 66.9 | 69.8 26.7 38.6 | 60.2 23.0 33.3

10 | 8.9 396 542|693 13.2 222|433 83 139
25 | 839 427 56.6 | 66.7 16.8 269 | 53.1 134 214
50 | 8.0 47.1 60.6 | 69.0 20.5 31.6 | 56.5 16.8 25.9
100 | 84.3 519 643 | 67.8 25.6 372|577 21.8 31.7

10 | 86.4 378 52.6 | 685 122 20.8| 426 7.6 129
25 | 838 41.0 551|669 16.2 26.1 | 522 126 20.3
50 | 86.1 46.2 60.2 | 69.3 20.1 31.2|56.6 164 25.5
100 | 84.2 49.7 62.5 | 66.1 23.8 35.0 | 55.5 20.0 294

10 |1 86.2 369 51.7|67.3 123 20.8| 407 75 126
25 | 84.1 412 553 | 66.7 164 26.3 | 51.8 12.7 204
50 | 8.4 452 59.1 | 67.7 19.8 30.7 | 55.0 16.1 24.9
100 | 84.7 50.3 63.1 | 66.4 24.7 36.0 | 55.8 20.8 30.3

10 | 86.6 339 487|679 11.6 19.8 | 423 72 124
25 | 831 389 529|652 155 250|503 11.9 19.3
50 | 849 435 575|679 19.6 304 | 552 159 24.7
100 | 85.8 489 62.3 | 66.8 24.3 35.6 | 554 20.2 29.6

10 | 8.8 344 49.1|68.1 122 20.7| 440 79 134
25 | 828 373 514|639 149 24.1|49.7 11.6 188
50 | 84.2 424 564 | 65.7 188 29.3 | 53.3 153 23.7
100 | 84.9 478 61.1 | 65.6 23.8 349|549 199 292

10 | 86.6 345 494|681 123 209|442 80 135
25 | 831 376 518|634 149 242|483 114 184
50 | 84.3 43.2 57.1| 652 19.2 29.7| 534 158 243
100 | 85.4 478 61.3 | 66.3 24.3 355 | 556.3 20.3 29.7

System, k d

BASELINE

FL-CONTEXT k =1

FL-CONTEXT k£ = 2

FL-CONTEXT k = 3

FL-CONTEXT k =4

FL-CONTEXT k=5

FL-CONTEXT k£ =6

FL-CONTEXT k=7

FL-CONTEXT k =8

FL-CONTEXT k=9

FL-CoONTEXT k£ = 10

Table C.6.: Detailed results on test set for system FL-CONTEXT.
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Predicate ident.

Argument ident.

Argument class.

System, k ¢ ' p R F|P R F|P R, E
10 | 834 41.6 555|550 135 217|399 98 157

BASBLING 95 | 841 515 639|621 200 302|506 163 24.6
50 | 854 59.0 69.8 | 67.6 26.6 38.1 | 58.2 229 32.8

100 | 85.0 632 725|682 317 433|600 279 381

10 | 848 433 574|662 125 210|474 89 150

PL-ContexrPrens b — 1 25 | 849 467 603|672 167 267|543 135 216
50 | 85.6 55.6 67.5 | 70.3 23.8 356 | 60.0 203 304

100 | 855 61.3 714 | 71.8 296 42.0 | 62.3 25.7 36.4

10 | 859 42.9 572 | 67.7 135 225|435 87 144

PL-ContexrProns b —o 25 | 850 487 620|704 186 295|569 151 238
50 | 854 554 67.2 | 70.7 244 363 | 60.8 21.0 31.2

100 | 854 587 695 | 72.9 292 417 | 625 25.0 357

10 | 858 41.7 561|679 132 220|409 7.9 13.3

PL-ContoxrPrens b —3 23 | 852 465 602|722 182 291 [ 581 146 234
=9 50 |86.6 539 664|705 241 359|611 20.8 31.1

100 | 85.7 56.7 683 | 724 28.0 40.3 | 62.0 240 34.6

10 | 852 432 574|658 132 220|374 75 125

PL-ContoxrPrans b —4 25 | 849 463 599|724 181 289|586 146 234
- =% 50 | 8.8 52.6 655|715 237 355|612 20.3 305

100 | 86.3 554 675 | 72.0 27.7 40.0 | 60.8 234 33.8

10 | 857 425 568|669 135 225|355 7.2 11.9

PL-ContexrPrans b —5 25 | 855 439 580|705 175 280 | 565 140 225
=9 50 | 8.1 512 642|693 235 351|593 20.1 30.0

100 | 86.1 55.1 672 | 70.7 27.3 394 | 59.5 23.0 33.2

10 | 857 40.8 553|662 127 213|346 6.7 11.2

PL-ContexrPrens b — ¢ 25 | 856 423 566|693 168 270 | 549 133 214
50 | 863 504 63.6 | 684 229 343|571 19.1 287

100 | 865 55.1 67.3 | 70.7 27.3 394 | 59.6 23.0 33.2

10 | 863 402 548 | 65.6 129 216|340 6.7 11.2

PL-ContoxrPrens b —7 25 | 854 418 561688 166 267|542 131 211
= 50 | 86.7 49.9 634|675 227 340|563 189 283

100 | 873 54.9 674|704 272 392|584 225 325

10 | 873 432 578 | 67.9 145 240|364 7.8 128

PL-ContoxrProns b —g 23 | 861 414 559|674 162 262|525 126 204
=% 50 | 86.6 499 633|682 229 342|573 192 288

100 | 87.7 551 67.7 | 702 272 39.2 | 581 225 325

10 | 873 40.7 555|688 139 231|374 75 12.6

PL-ContexrProns b —o 25 | 866 415 501|688 168 270 | 544 133 213
- =7 50 | 872 491 629|681 226 339|569 188 283

100 | 873 54.6 672 | 69.0 266 384 |57.0 21.9 31.7

10 | 87.9 40.3 553 | 67.3 138 229|372 7.6 12.6

9% | 86.9 42.7 57.3 | 67.8 17.2 275 | 540 13.7 21.9

FL-CONTEXT-PREDS k =10 o0 | ¢7'a 501 637 | 67.3 22.9 341 | 56.1 19.0 284
100 | 86.8 55.0 67.3 | 68.1 267 383|564 221 31.8

Table C.7.: Detailed results on test set for system FL-CONTEXT-PREDS.
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Predicate ident. Argument ident. | Argument class.
P R F | P R F |P R, F,

10 | 834 416 555|550 13.5 21.7|399 98 157
25 | 8.1 515 639|621 200 302|506 163 24.6
50 | 8.4 59.0 698 | 67.6 26.6 381|582 229 328
100 | 85.0 63.2 725 |68.2 31.7 433|600 279 381

10 | 8.6 41.0 554 | 64.0 11.7 198 | 40.7 74 12.6
25 | 8.0 446 585|675 156 253|535 123 20.0
50 | 86.2 484 620 | 70.3 19.7 30.8 | 58.8 16.5 25.8
100 | 86.2 549 67.1 | 71.4 252 373|616 21.8 32.2

10 | 84,5 41.2 553 | 652 124 208 | 428 81 13.7
25 | 844 452 589|659 146 239|523 11.6 19.0
o0 | 849 45.7 594|694 175 279|574 144 23.1
100 | 85.0 525 649 | 70.1 233 35.0]| 603 20.1 30.1

10 | 83.1 40.2 54.1|63.6 127 21.2|395 79 132
25 | 846 439 578|664 146 239|526 11.5 189
50 | 8.4 47.7 61.2 | 69.0 18.0 286 | 574 150 23.8
100 | 85.3 51.3 64.0 | 70.3 220 33.5|59.3 185 283

10 | 83.3 429 56.6 | 63.8 125 20.9 | 409 80 134
25 | 83.3 428 56.5| 655 14.1 232|515 11.1 18.2
50 | 8.3 459 59.7 | 689 173 276 | 553 138 221
100 | 84.6 48.0 61.2 | 68.8 204 31.5| 575 17.1 26.3

10 | 823 438 571|640 132 218|411 84 14.0
25 | 834 432 570|655 150 243 |51.0 11.6 189
50 | 84.7 44.6 584|684 17.0 272|545 13.5 21.7
100 | 82.9 454 58.6 | 69.7 199 309 | 57.8 16.5 25.6

10 | 823 439 572|656 12.1 204|422 7.8 131
25 | 827 424 56.1 | 63.7 144 235|489 11.1 18.0
50 | 84.0 43,5 573 | 67.7 165 26.5 | 53.6 13.0 21.0
100 | 82.9 45.8 59.0 | 69.9 20.2 313|570 164 255

10 | 82.1 439 572|632 11.7 19.7 | 415 7.7 129
25 | 82.0 422 55.7|63.6 13.6 224|489 104 17.2
o0 | 834 434 571|681 164 264|548 132 21.2
100 | 82.3 455 586 | 68.9 19.6 30.5 | 57.0 16.2 25.3

10 | 82.1 439 572 |63.0 11.7 19.8 | 416 7.7 131
25 | 824 423 559|628 13.7 225|488 10.7 175
50 | 83.3 44.1 577|680 169 27.1 | 548 13.6 21.8
100 | 81.9 444 575 | 68.7 194 30.3 | 55.8 15.8 24.6

10 | 81.2 41.6 55.0 | 62.2 120 20.2| 403 78 131
25 | 82.6 42.0 55.7|63.5 144 234|493 11.2 18.2
50 | 82.7 445 579 | 683 174 278 | 554 14.1 225
100 | 82.3 445 578 | 67.9 19.7 30.5 | 549 159 24.7

10 | 81.6 41.0 54.6 | 63.8 124 20.8| 408 79 133
25 | 8.1 424 56.1 639 145 23.7|499 113 185
50 | 824 444 57.7 | 673 173 275 | 54.8 141 224
100 | 81.5 44.1 573 | 66.0 19.7 30.3 | 53.8 16.0 24.7

System, k d

BASELINE

KK-Fratr k=1

KK-FLAT £k =2

KK-FrLaT k=3

KK-FrLaT k=4

KK-Fratr k=5

KK-FLAT k=6

KK-FLAaT k=7

KK-FLAT £k =8

KK-FLat k=9

KK-Frar k=10

Table C.8.: Detailed results on test set for system KK-FLAT.
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Predicate ident.

Argument ident.

Argument class.

System, k ¢ ' p R F|P R F|P R, F
10 | 834 41.6 555|550 135 21.7 ]399 98 157

BASELINE 25 | 841 515 639|621 200 302|506 163 246
50 | 854 59.0 69.8 | 67.6 26.6 381|582 229 328

100 | 85.0 632 725 | 682 317 433|600 279 381

10 | 86.2 44.8 589 | 628 138 226 | 457 10.0 16.5

KK-Contexr h—1 25 | 845 498 627|644 188 202|529 155 239
=1 50 |87.0 556 679|699 246 364|601 21.2 313

100 | 86.7 59.7 70.7 | 709 30.6 427 | 60.8 262 36.7

10 | 84.9 444 583|616 139 226|460 10.3 16.9

KK-Contpxr b —g 25 | 868 478 616699 182 289|585 152 241
=% 50 |86.0 536 66.1|69.8 241 358|589 203 30.2

100 | 85.8 574 687 | 707 297 41.8 | 61.0 25.7 36.1

10 | 84.6 468 603 | 643 145 237|472 107 174

KK Contmxr b3 25 | 843 519 643|684 198 307|567 164 255
=2 50 | 863 564 682|719 254 37.6| 609 21.6 318

100 | 86.0 57.5 69.0 | 728 29.9 424 | 624 25.7 36.4

10 | 844 478 611|650 154 249|469 11.1 18.0

KK Contmxr b —4 25 | 846 512 637|687 204 314|556 165 255
- =% 50 |88 567 682|702 262 382|581 217 316
100 | 85.9 57.9 692 | 731 30.5 43.0 | 62.6 26.1 36.9

10 | 84.1 474 606|662 162 261|471 115 185

KK Contmxr b— 5 25 | 843 5L1 636690 20.7 3L9 565 17.0 261
- =° 50 | 858 575 689|707 269 39.0| 592 225 326
100 | 86.2 57.8 692 | 732 30.1 427 | 62.9 25.9 36.6

10 | 83.7 473 604 | 638 168 26.7 | 455 12.0 19.0

KK-Contexr b —g 25 | 840 50.4 630|672 206 316|543 167 255
=% 50 |88 587 69.7|70.8 27.6 39.7| 589 23.0 33.1

100 | 85.9 585 69.6 | 729 308 433|619 26.1 36.7

10 | 84.2 467 600 | 644 165 263 | 464 119 18.9

KK-Contmxr b —7 25 | S41 490 619|677 204 313|555 167 257
=1 50 |84 572 685|711 27.7 39.9 | 59.1 23.0 33.1

100 | 85.6 584 695 | 725 31.0 434 | 61.8 264 37.0

10 | 838 465 598 | 635 168 265|464 122 194

KK Contmxr b —g 25 | 845 496 625|678 202 311|550 164 253
=% 50 |85.6 567 682|711 27.8 40.0 | 59.1 23.1 332

100 | 85.5 58.0 69.1 | 725 31.0 434 | 622 26.6 37.2

10 | 84.0 464 598 | 641 167 265 | 47.1 123 19.5

KK-Contmxr b —o 25 | 850 510 638|692 215 328|567 176 26.9
- =7 50 | 856 559 67.7| 711 27.5 39.6 | 59.0 22.8 32.9
100 | 85.4 569 683 | 725 30.3 427 | 61.7 25.8 36.4

10 | 84.0 459 593|646 174 275|470 127 20.0

25 | 85.3 49.7 62.8 | 6.8 20.8 32.0 | 56.0 16.9 26.0

KK-CONTEXT k=10 o0 | oo'6 569 670 | 700 27.3 305 | 593 22.9 33.0
100 | 85.5 56.5 68.0 | 729 30.6 43.1 | 61.7 25.9 36.5

Table C.9.: Detailed results on test set for system KK-CONTEXT.
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Predicate ident. Argument ident. Argument class.
P R F pP R F P, R, F,

10 | 834 416 555|550 13.5 21.7]399 98 15.7
25 | 8.1 515 639|621 20.0 30.2|50.6 163 24.6
50 | 8.4 59.0 69.8 | 67.6 26.6 381|582 229 32.8
100 | 85.0 63.2 725 |68.2 317 433|600 279 381

10 | 839 374 517|579 120 199|405 84 139
25 | 8.6 455 594|665 179 282|555 149 235
50 | 86.2 542 66.6 | 694 249 36.6 | 58.8 21.1 31.1
100 | 87.0 60.1 71.1 | 71.6 31.0 43.2| 613 26.5 370

10 | 8.3 39.8 543 |60.6 13.2 21.7| 436 95 156
25 | 8.3 454 595 |69.7 189 298|574 156 245
o0 | 873 53.6 664 | 70.2 255 374|594 216 31.7
100 | 87.3 59.1 70.5 | 72.2 31.0 433|622 26.7 374

10 | 86.4 43.2 57.6 | 659 157 254 | 473 11.3 18.2
25 | 8.9 439 584|694 187 294|558 150 23.7
50 | 874 525 656 | 69.7 249 36.7|959.2 21.1 311
100 | 87.3 571 69.0 | 72.6 304 429|621 26.0 36.7

10 | 85.5 44.2 583 | 66.6 159 25.7| 456 10.9 17.6
25 | 8.6 455 59.7 | 70.2 194 304 | 56.6 157 245
50 | 870 533 66.1 | 70.1 253 372|589 21.2 312
100 | 86.4 55.9 679 | 72.8 296 42.1|61.0 248 353

10 | 85.3 424 56.6 | 689 154 25.1 | 479 10.7 175
25 | 862 433 576 | 70.6 18.2 289 |57.1 147 234
50 | 871 519 65.1 | 70.2 247 36.6 | 59.2 208 30.8
100 | 86.5 552 674 | 729 289 414|619 246 352

10 | 84.1 38.0 524 | 67.2 145 239|457 99 163
25 | 86.7 41.0 55.7| 706 174 279|574 141 227
50 | 874 494 63.1 | 70.5 234 351|587 19.5 292
100 | 86.1 554 674 | 71.8 28.9 41.2 | 60.1 24.2 34.5

10 | 84.3 399 542 | 66.8 158 255|476 11.3 182
25 | 870 419 56.6 | 70.3 181 288 | 57.3 147 235
o0 | 875 522 654|704 251 370|588 21.0 309
100 | 85.5 56.0 67.7 | 71.7 29.4 41.7 | 59.9 245 34.8

10 | 85.5 41.1 555 | 66.9 163 26.2| 459 11.2 18.0
25 | 879 41.8 56.6 | 69.9 18.0 28.6 | 56.8 14.6 23.3
50 | 875 ©52.6 65.7 | 704 257 376 |59.0 215 315
100 | 86.5 55.5 67.6 | 71.7 294 41.7 | 59.6 245 34.7

10 | 86.3 41.2 55.8 | 69.0 164 26.5 | 47.0 11.2 18.0
25 | 878 429 576|698 186 294 |56.6 151 23.8
50 | 871 52.6 656 | 70.2 257 376 |59.0 216 31.6
100 | 86.3 55.6 67.7 | 71.4 299 42.1 593 248 350

10 | 86.5 42.8 57.2 | 67.6 172 27.5 | 45.7 11.7 18.6
25 | 875 433 580 | 703 191 30.1 | 56.9 155 24.3
50 | 8.8 533 66.0 | 70.1 26.1 38.0 | 58.6 21.8 31.8
100 | 85.7 55.7 67.5 | 70.9 30.0 42.1|59.2 25.0 352

System, k d

BASELINE

KK-CONTEXT-PREDS k =1

KK-CONTEXT-PREDS k = 2

KK-CONTEXT-PREDS k = 3

KK-CONTEXT-PREDS k = 4

KK-CONTEXT-PREDS k =5

KK-CONTEXT-PREDS k = 6

KK-CONTEXT-PREDS &k =7

KK-CONTEXT-PREDS k = 8

KK-CONTEXT-PREDS £k =9

KK-CONTEXT-PREDS k& = 10

Table C.10.: Detailed results on test set for system KK-CONTEXT-PREDS.
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