
Institute of Software Technology

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Masterarbeit

Analysing and improving the
crypto ecosystem of Rust

Philipp Keck

Course of Study: Softwaretechnik

Examiner: Prof. Dr. Stefan Wagner

Supervisor: Kai Mindermann M.Sc.

Commenced: 2016-10-13

Completed: 2017-04-14

CR-Classification: D.2.2, D.2.11, D.2.13, E.3

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Publikationen der Universität Stuttgart

https://core.ac.uk/display/147556618?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract
Context: Rust is an emerging systems programming language that suits security-critical
applications because it guarantees memory safety without a garbage collector. Its grow-
ing ecosystem already encompasses several crypto libraries, though the competition is
still open. Previous cryptography research found that vulnerabilities are often due to
misunderstandings and misuse of cryptographic APIs rather than bugs in the libraries
themselves. Aim: This thesis presents a holistic analysis of Rust’s current crypto ecosys-
tem and aims to improve its further development. A particular focus is on API design
because all libraries are still open to change their APIs and it will become increasingly
difficult to change them later. Method: All parts of the ecosystem are systematically
analysed, guided by the general structure of a crypto ecosystem. Research methods
include a systematic search for libraries, a survey among contributors, GitHub analyses
as well as a self-experiment and a controlled experiment to test the usability. Results:
The contributors are typical open source developers and they collaborate in typical ways
on GitHub. Most libraries have a clear main developer and there is a general lack of
contributors. While two of the major libraries focus on usability and are consequently
easier to use and more resistant to misuse, the two most widespread libraries consciously
neglect these topics and exhibit flaws known from crypto libraries in other languages.
Conclusion: The misuse resistant Rust crypto libraries should be advertised more actively.
In the medium term, an officially endorsed API could improve interoperability and
foster competition. For such an API and for the improvement of existing APIs, the thesis
discusses a number of design decisions and their usability implications.

3

Kurzfassung
Kontext: Rust ist eine junge Systemprogrammiersprache, die sich für sicherheitskritische
Anwendungen eignet, weil sie Speichersicherheit ohne einen Garbage Collector garan-
tiert. Das wachsende Ökosystem umfasst bereits einige Krypto-Bibliotheken, wobei der
Wettbewerb noch offen ist. Die bisherige Forschung hat gezeigt, dass Schwachstellen oft
durch Missverständnisse und Missbrauch der kryptographischen APIs verursacht werden
anstatt durch Fehler in den Bibliotheken selbst. Ziel: Diese Thesis enthält eine ganzheit-
liche Analyse des Krypto-Ökosystems von Rust mit dem Ziel, die zukünftige Entwicklung
zu verbessern. Ein besonderer Fokus liegt auf dem API-Design, weil alle Bibliotheken
noch offen für API-Änderungen sind und solche Änderungen später schwieriger werden.
Vorgehen: Alle Bestandteile des Ökosystems werden anhand der allgemeinen Struktur
eines Krypto-Ökosystems systematisch analysiert. Zu den eingesetzten Forschungsme-
thoden gehören eine systematische Suche nach Bibliotheken, eine Entwicklerumfrage,
GitHub-Analysen sowie ein Selbstversuch und ein kontrolliertes Experiment um die Be-
nutzbarkeit zu testen. Ergebnisse: Die Entwickler sind typische Open-Source-Entwickler
und sie arbeiten auf typische Weise auf GitHub zusammen. Die meisten Bibliotheken
haben einen eindeutigen Hauptentwickler und es gibt einen generellen Mangel an wei-
teren Entwicklern. Während zwei der größeren Bibliotheken sich auf Benutzbarkeit
konzentrieren und dementsprechend einfacher zu verwenden und missbrauchsresis-
tenter sind, vernachlässigen die beiden am weitesten verbreiteten Bibliotheken diese
Themen bewusst und weisen Schwächen auf, die von Krypto-Bibliotheken anderer Spra-
chen her bekannt sind. Fazit: Die missbrauchsresistenten Krypto-Bibliotheken in Rust
sollten aktiver beworben werden. Mittelfristig könnte eine offiziell unterstützte API
die Interoperabilität und den Wettbewerb fördern. Für eine solche API und für die
Verbesserung der existierenden APIs werden in der Thesis diverse Designentscheidungen
und ihre Auswirkungen auf die Benutzbarkeit erörtert.

4

Acknowledgements
I would like to thank my supervisor Kai Mindermann for coming up with this exciting
topic and for his guidance, advice and collaboration. Without his support, this thesis
would not have been possible. I would also like to thank all survey participants for
their time and input as well as the active community members on the #rust-crypto IRC
channel and @briansmith for their help, tips and for interesting discussions.

Publication
Parts of this thesis have been submitted as a paper at the Thirteenth Symposium on
Usable Privacy and Security (SOUPS ’17), in collaboration with Kai Mindermann M.Sc.
and Prof. Dr. Stefan Wagner. A separate paper has been submitted for the controlled
experiment that is only briefly reported on in this thesis.

Note on links
Many of the sources referenced in this thesis are rather volatile. Where necessary,
links are annotated with the date on which they were stored in the Internet Archive
(https://web.archive.org/), where the respective version can be retrieved.

License
This thesis and all supplementary material (see appendix A) are licensed under the
Creative Commons Attribution 4.0 International License. To view a copy of this license,
visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons,
PO Box 1866, Mountain View, CA 94042, USA. Suggested citation: “Philipp Keck,
master’s thesis ‘Analysing and improving the crypto ecosystem of Rust’, 2017”

5

https://github.com/briansmith
https://web.archive.org/
http://creativecommons.org/licenses/by/4.0/

Contents

List of Figures 9

List of Tables 10

1 Introduction 11

2 Foundations 13
2.1 The Rust programming language . 13
2.2 Cryptographic foundations . 20

3 Related work 27
3.1 Open-source projects . 27
3.2 API design and usability . 28
3.3 Crypto usability . 30

4 Ecosystems 35
4.1 Deriving a definition . 35
4.2 Definition . 36
4.3 C and C++ . 40
4.4 Java . 40
4.5 .NET . 42
4.6 Python . 43
4.7 Conclusion . 43

5 The Rust crypto ecosystem 45
5.1 Research questions . 45
5.2 Library search and categorization . 46
5.3 Libraries providing primitives . 50
5.4 Contributors survey . 55
5.5 GitHub analysis . 63
5.6 Crypto in the standard library . 72
5.7 Areas for improvement . 73
5.8 Conclusion . 79

7

6 Usage analysis 81
6.1 Approach . 82
6.2 High-level results . 84
6.3 Hashing . 85
6.4 HMAC . 90
6.5 Symmetric encryption . 92
6.6 Threats to validity . 94
6.7 Conclusion . 96

7 Usability analysis 97
7.1 Self-experiment . 97
7.2 Controlled experiment . 105
7.3 Conclusion . 108

8 Improving usability and misuse resistance 109
8.1 Documentation . 110
8.2 Scope of included algorithms . 113
8.3 Level of abstraction . 115
8.4 Organization of included algorithms 118
8.5 Split into multiple crates . 126
8.6 Defaults and future security . 128
8.7 Strong types . 130
8.8 Keys, nonces and seeds . 131
8.9 Constant-time comparisons . 133
8.10 &mut parameters . 134
8.11 Conclusion . 136

9 Conclusion 137
9.1 Future of crypto in Rust . 137
9.2 Future work . 138
9.3 Summary . 139

A Supplementary material 141

B Rust contributors survey questionnaire 142

Acronyms 147

References 149

8

List of Figures

2.1 Data flows for symmetric encryption 23
2.2 Data flows for authenticated symmetric encryption 25

4.1 Populations and interactions in a programming ecosystem 38

5.1 Rust crypto libraries and their dependencies 49
5.2 Timeline of the major Rust primitive libraries’ start dates and ancestors 50
5.3 Self-ratings for cryptography and Rust skills 58
5.4 Years of experience with programming and cryptography 59
5.5 Time commitment in hours per week 60
5.6 GitHub issue and pull request (PR) topics 69
5.7 Importance of API design to the contributors 70

6.1 Number of considered search results per library 84
6.2 Filtering the crates found in the previous step 84
6.3 High-level usages per category and library 85
6.4 Hash function usage . 88
6.5 HMAC usage . 91
6.6 Symmetric encryption usage . 93
6.7 Hash function usage: output data types, percentages per library 94

8.1 Proportions of crypto-using crates which only need a single primitive . 127

9

List of Tables

5.1 Key data of major crypto libraries . 51

6.1 Hash function data types accepted/produced by current libraries . . . 89

7.1 Major libraries’ compliance with recommendations from the literature 108

8.1 Summary of alternative approaches to algorithm organization 126

10

1 Introduction

The systems programming language Rust, sponsored by Mozilla, was published in
2010 and reached its first stable version in 2015. Its main goals are safety, speed and
concurrency [Moz16]. Rust is able to guarantee memory safety without needing a
garbage collector and thus rules out entire error classes like segmentation faults and
(certain) race conditions at compile time. While it promises performance on par with
other low-level languages like C, the syntax and the ecosystem are designed to make
it feel more like a high-level language such as Java. Mozilla is already using Rust
productively to build parts of its Firefox browser [Her16a] and a number of other
companies have begun to experiment with the new language. Even though the Rust
language itself is declared stable, it is still under heavy development to make it more
productive [Mat+16] and the ecosystem is not mature, yet. According to the 2017 Stack
Overflow developer survey, Rust is the most loved programming language for the second
year in a row [Sta17].

The first libraries providing cryptographic primitives in Rust started being developed in
late 2011. To my knowledge, there are currently 12 crypto libraries which offer a range
of cryptographic primitives and 80 crypto libraries in total. The overall crypto ecosystem
of Rust is in its early stages and the competition among libraries is still open, as is the
technical question how to best implement cryptography in Rust.

Cryptography research has shown that many applications are vulnerable because their
developers knowingly or unknowingly misuse cryptographic libraries—and not only
due to cryptographic bugs in those libraries, as one might expect [EBFK13; FHM+12;
GIJ+12; LCWZ14]. This misuse results from developers misunderstanding the libraries’
interfaces and concepts, combined with an understandable lack of detailed cryptographic
knowledge. Tulach [Tul08] formulates the concept of selective cluelessness. The idea
is that software engineers—despite being good programmers—are allowed to know
only little about components and tools they use, such as cryptographic libraries, if those
are not central to their product. And more often than not, cryptographically securing
sensitive data is not the main feature of an application, but merely a cross-functional
requirement that pretty much any application using the internet is faced with. The
goal is to “maximize cluelessness, while getting reliable results” [Tul08], and properly
designed application programming interfaces (APIs) at the right level of abstraction are
the “perfect tool” to reach this goal.

11

1 Introduction

Many researchers and developers have pointed out that usable and misuse resistant
API designs are just as crucial for crypto libraries as bug-free implementations of the
cryptographic algorithms [DK14; LCWZ14; Min16; NKMB16], and many make concrete
API design recommendations [FHP+13; FLW12; GS16]. The established crypto libraries
such as OpenSSL, however, cannot make significant changes to their APIs for backward
compatibility reasons. Instead, new libraries with a strong focus on API usability and
misuse resistance are being developed. Notable examples are NaCl [Ber09], its offspring
libsodium [Den] and Keyczar [DW08].

This thesis systematically analyses all parts of the crypto ecosystem of Rust, that is,
the libraries, the developers and development processes, the influence of the Rust
platform and the way the libraries are currently used. Suggestions to improve various
aspects of the crypto ecosystem are made, especially regarding usability and misuse
resistance. As none of those libraries guarantees long-term API stability yet, but most of
them already implement executable primitives and higher-level protocols such as the
Transport Layer Security (TLS) protocol, it is the right moment to (re)consider the API
design. Particularly for a language like Rust, which focuses on and advertises safety, the
ecosystem should also provide secure, fast and usable crypto libraries. Just like the Rust
language is designed to prevent mistakes like dereferencing null pointers, a good Rust
crypto library should be designed to prevent mistakes like nonce reuse, hard-coded keys,
insecure comparisons, etc. And with all of Rust—the language itself, the compiler, the
standard library, the package manager and all crypto libraries—being open source, the
emerging crypto ecosystem of Rust is also an interesting scientific subject to study how
crypto libraries are developed and how design decisions are made.

After an overview of the basic principles of Rust and cryptography in chapter 2 and
a summary of related work in chapter 3, chapter 4 derives a definition of the term
crypto ecosystem and outlines the crypto ecosystems of other well-known programming
languages. Chapter 5 uses the definition to derive research questions (section 5.1) and
analyse every population of the crypto ecosystem—with a systematic search (section 5.2),
a survey among Rust crypto contributors (section 5.4) and an analysis of publicly avail-
able data on GitHub (section 5.5)—and to derive recommendations for improvement
in certain areas (section 5.7). The remainder of the thesis singles out API usability
as a particularly important aspect at this stage of the ecosystem. Chapter 6 analyses
current usages of cryptographic primitives in Rust to find out which particular features
are used. Chapter 7 reports on several experiments with the existing primitive libraries
and chapter 8 makes recommendations for the design of cryptographic libraries and
their APIs in Rust based on insights from the experiments and the literature. Finally,
chapter 9 summarizes the thesis and looks at the future of the Rust crypto ecosystem
and possible research directions.

12

2 Foundations

This chapter introduces the knowledge required to understand the following chapters.
The explanations in this chapter assume that the reader is familiar with general con-
cepts in computer science and a major programming language such as C++ or Java.
Section 2.1 gives an overview of Rust’s syntax and important differences from other
programming languages. Section 2.2 covers the cryptographic primitives and concepts
used in this thesis.

2.1 The Rust programming language
This section only covers a few particular aspects of the Rust programming language,
standard library and build system, which are relevant to this thesis. For more details,
please refer to the excellent and free online book The Rust Programming Language
[Moz16]. All code snippets from this section are available for download in a runnable
sample application (see appendix A).

Like many other languages, Rust’s syntax is loosely based on C. The most obvious
differences are some keywords (fn to define a function and let to create a variable
binding) and the parentheses requirements being the other way round: Blocks such as
if and for do not require parentheses around their condition/head, but curly braces
around the body are mandatory:

1 fn main() {

2 let mut x: i32 = 0; // i32 is a 32-bit signed integer

3 for i in 1..10 {

4 if i % 2 == 1 { x += i; }

5 else { x -= i; }

6 }

7 println!("Alternating sum: {}", x); // will output 5

8 }

Variable bindings are immutable by default and need to be declared mutable explicitly
with the mut keyword. Unlike in C or Java, the type is added after a colon instead of in
front, and the type annotation is optional because the type can usually be inferred.

13

https://doc.rust-lang.org/book/

2 Foundations

2.1.1 Arrays, vectors and slices

Arrays are built-in types and have a fixed size, whereas vectors are dynamically sized
and implemented in the standard library:

1 let array1: [i32; 4] = [1, -2, 3, -4];

2 let byte_array: [u8; 5] = [1, 2, 3, 4, 5]; // u8 is a 8-bit unsigned integer

3 let array_of_tens: [i32; 20] = [10; 20]; // contains the number 10 twenty times

4 let empty_array: [i32; 0] = [0; 0]; // empty array

5

6 let mut vector1 = Vec::new();

7 vector1.push(42);

8 vector1.push(43);

9 let vector2 = vec![42, 43]; // short-hand generation with macro

Because array sizes are fixed, they are usually not suitable as function parameters (or
one would have to implement fn sum(nums: [i32; 1]) and fn sum(nums: [i32; 2])

separately, and so on). Instead, slices are typically used. The type of a slice referencing
some elements of type T is expressed as &[T]. Even though slices are proper types, they
cannot be allocated themselves. They only reference data that is stored elsewhere (in
an array or a vector, for example); either the entire structure or a continuous subrange.
Continuing the example above:

10 fn sum(nums: &[i32]) -> i32 {

11 let mut result = 0;

12 for num in nums {

13 result += *num; // num is of type &i32 and needs to be dereferenced

14 }

15 result

16 }

17 println!("Array sum: {}", sum(&array1)); // will output -2

18 println!("Sub-Array sum: {}", sum(&array1[1..4])); // will output -2+3-4=-3

19 println!("Vector sum: {}", sum(&vector1)); // will output 85

Note that line 15 omits the return keyword and the semicolon. This is idiomatic in Rust
and it is possible because the syntax is expression-based and not statement-based.

2.1.2 Strings

Similar to arrays, the built-in str type is for fixed-length strings. Unlike arrays, however,
the length is not part of the type and it cannot be expressed in the source code (like
[i32; 10] for arrays). Strings are mostly used in the form of string slices denoted as
&str. Every string literal is of type &str, for example. The dynamically sized, mutable
counterpart is String. UTF-8 (Unicode Transformation Format) is used as the internal
encoding and a &str or String can be converted to its UTF-8 byte representation with
the .as_bytes() method:

14

2.1 The Rust programming language

1 let str1: &str = "Hello World";

2 let mut string1: String = str1.to_string();

3 string1.push_str(" and Mars");

4

5 let utf8_bytes: &[u8] = string1.as_bytes();

6 let utf8_vector: Vec<u8> = utf8_bytes.to_vec();

7 let converted_back = String::from_utf8(utf8_vector);

Note that Vec<T> is a generic type whose elements are of type T. Generics work similar
to other programming languages.

2.1.3 Structs and enums

There are no classes in Rust and in particular there is no inheritance. Instead, impl
blocks can be used to define static and instance methods for structs and enums. Structs
are very similar to most other programming languages. Enums are union types that have
multiple variants, each of which can have different fields associated with it.

1 struct PhoneNumber {

2 country_code: u32,

3 area_code: String,

4 number: String,

5 }

6 enum TANMethod {

7 iTAN,

8 smsTAN { phone_number: PhoneNumber }, // alternatively unnamed: smsTAN(PhoneNumber)

9 }

10 impl PhoneNumber {

11 pub fn parse(string_representation: &str) -> Result<PhoneNumber, InvalidNumberError> {

12 // omitted

13 }

14 pub fn to_string(&self) -> String {

15 format!("+{} {} {}", self.country_code, self.area_code, self.number)

16 }

17 }

Note that the parse() method is static because it does not take a self parameter,
whereas the to_string() method takes a &self parameter and is thus an instance
method with read-only access (similar to const methods in C++). Hence, they are
called as PhoneNumber::parse(...) and instance_variable.to_string(), respectively.
If an instance method wants to modify its instance, it needs to declare a &mut self

parameter. The Result<..> type is part of the error handling, see below.

15

2 Foundations

2.1.4 Error handling

Rust does not have exceptions or any other language-level feature to throw and catch
errors—the only built-in feature are panics, which are uncatchable and always terminate
the current thread. Nevertheless, there are carefully crafted types and macros to aid
error handling. The information that an operation failed needs to be passed back as part
of the return value, and the Result<T, E> is the idiomatic way to do so. It can either
be Ok(T) and contain the result of type T, or it can be an Err(E) with additional error
information of type E. Upon receiving one of these enum values, the caller can use the
match keyword to react to errors. For example, the PhoneNumber parser above would be
used as follows:

18 let phone_number = match PhoneNumber::parse("+49 123 4567") {

19 Ok(number) => number, // simply pass out the value

20 Err(e) => { println!("Error {:?}", e); return } // abort

21 };

22 println!("Parsed number: {}", phone_number.to_string());

However, there are a few easier ways that require less boilerplate code. When any error
must be caused by a bug in a program, or when the program is just a quick test rather
than a productive application, the unwrap() method can be used, which essentially
returns the nested result or panics if an error occurred:

23 let phone_number = PhoneNumber::parse("+49 123 4567").unwrap(); // panics if parsing failed

Alternatively, if the calling function returns a Result itself, it can automatically hand
through the error to its caller (and possibly convert it) using the try! macro:

24 fn get_area_code(input: &str) -> Result<u32, InvalidNumberError> {

25 Ok(try!(PhoneNumber::parse(input)).country_code)

26 }

The macro will return early with an error if its argument is an error, otherwise it passes
out the unwrapped value.

In addition to Result<T, E>, there is the enum Option<T> which does not contain error
information. More importantly, return values of this type can safely be ignored, whereas
ignoring a Result triggers a compiler warning. Throughout this thesis, unwrap() is used
when error handling does not play a role.

2.1.5 Macros and annotations

The vec!, format!, println! and try! statements in the code above call macros instead
of functions—macro names end with an exclamation mark. Although these and other
macros occur regularly, it suffices to know that these calls are evaluated and replaced
with other code by the compiler, so the actually executed code looks different. Macros
can be used to generate all kinds of Rust code including entire functions and modules.

16

2.1 The Rust programming language

Another frequently used Rust feature that does not play a significant role in this thesis
are annotations. They use the # character and square brackets and can be placed on any
language element. For example, a Result value cannot be ignored, as explained above,
because the type is annotated with #[must_use].

2.1.6 Ownership and borrowing

The key to Rust’s memory safety guarantees is the way it handles ownership of resources.
There is no garbage collector and while reference-counted pointer types (e.g. Rc<T>) with
a runtime overhead do exist, it is preferable to use regular references and temporarily
borrow them to functions that need them. This unique feature is at the same time
responsible for the most annoying compiler warnings—especially Rust beginners initially
struggle a lot with the borrow checker before getting acquainted with it.

Generally, the ownership system does not apply to copyable types, including all primitive
types. For all other types, the let binding where an instance is assigned owns the data.
From there it can be borrowed mutably (&mut name) or immutably (&name). At every
point of the program execution, there can only be a single mutable reference or an
arbitrary number of immutable references, conceptually similar to read-write locks.

1 let mut data: Vec<i32> = vec![1, 2, 3];

2 let immutable_ref: &Vec<i32> = &data;

3 let_me_borrow(&data);

4 let_me_borrow(immutable_ref);

5 fn let_me_borrow(data: &Vec<i32>) {

6 // omitted

7 }

8

9 let_me_modify(&mut data); // error: cannot borrow because also borrowed as immutable

10 fn let_me_modify(data: &mut Vec<i32>) {}

Instead of borrowing a value, its ownership can also be passed away (into a function, to
another binding, etc.) by using neither & nor &mut:

1 let mut data = vec![1, 2, 3];

2 fn let_me_take_ownership(data: Vec<i32>) {}

3

4 data.push(4); // works fine

5 let_me_take_ownership(data);

6 data.push(5); // error: use of moved value

Encapsulating types like vectors or strings offer methods like .as_ref(), .as_mut() or
.as_mut_slice() to give access to their internal data structures in the form of (mutable)
references or slices.

17

2 Foundations

2.1.7 Traits

Traits are an integral but also very complex part of Rust’s type system. A trait defines a
set of functions that every implementation of the trait has to provide, similar to interfaces
in other languages. Trait functions can be static or instance methods, and they can have
a default implementation. Usually, an impl TraitName for Type {...} block is used
to provide a trait implementation for a type, though there a couple of tricks to make
implementing traits easier, which are not relevant to this thesis.

Generic functions and generic types can specify trait bounds on their generic arguments.
As an example, consider this function which accepts any data as input that can be
converted to a &[u8] slice:

1 pub trait AsRef<T> { // simplified definition from std::convert

2 fn as_ref(&self) -> &T; // &T will be &[u8]

3 }

4 impl AsRef<[u8]> for PhoneNumber {

5 fn as_ref(&self) -> &[u8] { self.number.as_ref() }

6 }

7 fn do_something_with_some_bytes<T: AsRef<[u8]>>(data: T) {

8 let the_bytes: &[u8] = data.as_ref();

9 }

10 do_something_with_some_bytes(PhoneNumber::parse("+49 000 123456").unwrap());

This pattern is common to account for the lack of method overloading in Rust.

2.1.8 Build system

Modules are containers for types, implementations and functions. They are at roughly
the same hierarchical level as namespaces in C++ or packages in Java and are simply
declared with the mod keyword:

1 mod outer_module {

2 pub struct SomeType { ... }

3 pub mod inner_module1 {

4 use super::SomeType;

5 pub fn some_function(x: SomeType) { ... }

6 }

7 mod inner_module2 {} // empty module

8 }

9 mod some_other_module;

10

11 fn main() {

12 use self::outer_module::inner_module1::some_function;

13 let some_instance = outer_module::SomeType { ... };

14 some_function(some_instance);

15 }

18

2.1 The Rust programming language

Note that some_other_module is only declared, which delegates the module definition to
another (accordingly named) file and allows for modularization on the file level. pub
makes members available outside the module and use statements import names to avoid
repeating the fully qualified names.

Multiple modules form a crate, which roughly corresponds to a library in C++
or a JAR archive in Java. Dependencies have to be declared in the top-level file:
extern crate some_useful_crypto_library. Rust’s package management and build
tool is called cargo and crates are made available to others through http://crates.io/,
where cargo automatically downloads them when referenced from another crate. Meta
information about a crate and its dependencies are declared in the Cargo.toml file.

Cargo uses semantic versioning,1 which divides version numbers into three parts: major,
minor and patch. The major version must be increased when the API changes in an
incompatible way, that is, when a program written for the previous version could fail
to compile or properly execute with the new version because of the changes. When
designing an evolving API, it important to understand that not all API changes are break-
ing changes (adding new items is mostly unproblematic) and that breaking behaviour
changes can occur without API changes if the contract of the interface changes.

2.1.9 Rustdoc

Rust code is documented with comments starting with a triple slash (///) in every line,
which can be placed in front of modules, functions, structs, traits, and so on:

1 /// Returns the larger of two bytes.

2 ///

3 /// # Example

4 /// ‘max_u8(42, 43)‘ will return ‘43‘

5 fn max_u8(a: u8, b: u8) -> u8 { if a > b { a } else { b } }

In contrast to Javadoc, there is no special Rustdoc syntax because Markdown is used
instead. The rustdoc tool is used to generate Hypertext Markup Language (HTML) files
from the source files (similar to Javadoc and others), which can be viewed locally or
hosted online for convenience. Docs.rs automatically provides the documentation for all
crates published on crates.io.

2.1.10 Toolchains

Because Rust code compiles to native executables, it needs to be compiled for the
right target architecture and operating system (OS). On Windows in particular, there

1http://semver.org/ (2016-11-10)

19

http://crates.io/
http://semver.org/

2 Foundations

are two distinct toolchains that must not be mixed up: the one based on Microsoft’s
Visual C++ environment (MSVC, called -msvc in Rust) and the other based on the GNU
Compiler Collection (GCC, called -gnu in Rust). Some libraries can only be compiled
with the -msvc toolchain or the -gnu toolchain, though most libraries support both.
Additionally, there are different relevant versions of the compiler and build tools (stable
and nightly), and it can be important to be able to switch between those for experiments.
Therefore, it is advisable not to install a single variant/version of the toolchain, but to
use rustup2 instead.

2.2 Cryptographic foundations
This section explains the concepts in cryptography which are relevant to this thesis.
Please refer to a cryptography textbook (e.g. the one by Stallings [Sta06] or Ferguson,
Schneier and Kohno [FSK10]) or the respective papers for details, implementations and
further concepts not discussed here.

2.2.1 Pseudorandom number generation

Random numbers play a central role in cryptography: any secret like a private or
shared key would be compromised if an attacker could compute it deterministically.
However, truly random numbers are expensive to obtain in a computer, as they usually
originate from a non-deterministic physical process like a coin flip, radioactive decay or
atmospheric noise.3 Pseudorandom number generators (PRNGs) overcome this difficulty
by computing sequences of pseudorandom numbers starting from a given seed value.

Albeit deterministic, PRNG computations are scrambled enough to guarantee certain
quality criteria. The generated numbers should be distributed as evenly (or as closely to
the desired distribution, e.g. the normal distribution) as possible, that is, all possible
values should occur with (almost) the same probability. For cryptographic applications,
this property alone does not suffice: it must additionally be impossible for an attacker
to correctly guess the internal state of the generator or the subsequent numbers after
having observed many produced numbers. Such a generator is called cryptographically
secure (CSPRNG).

Even a CSPRNG can be attacked if its seed value can be guessed. To prevent this,
most OSs provide facilities for secure random number generation seeded with various
low-level values like the exact time, temperature sensor values and hardware identifiers,

2https://www.rustup.rs/ (2016-12-16)
3https://www.random.org/ (2017-01-12)

20

https://www.rustup.rs/
https://www.random.org/

2.2 Cryptographic foundations

which are not normally available outside the machine. Rust has an official rand crate4

for its random number generators (RNGs) and offers, among others, an OsRng to read
from the operating system’s secure generator.

2.2.2 Nonces and IVs

A nonce is a “number used once.”5 That is, a new nonce value must be generated for
every encryption/hashing/authentication operation. While not always strictly required,
random numbers can be used as nonces. Another approach is a counter: use some start
value x for the first operation, then x + 1, then x + 2, . . .

Initialization vectors (IVs) are inputs to cryptographic algorithms (typically symmetric
ciphers, see section 2.2.6) which must always be nonces and sometimes unpredictable
(i.e. not a counter). In cryptographic APIs, the terms nonce and IV are often used
interchangeably.

2.2.3 Hashing

A hash function deterministically maps an input of arbitrary length to a fixed-length
output called the hash value or digest. Although hash functions formally have a single
input, multiple pieces of input data can be concatenated and hashed together. A good
hash function produces evenly distributed hash values that fill the entire output space
and are seemingly random (small changes in the input lead to large, unpredictable
changes in the output).

As with random numbers, hash functions need to fulfil special requirements to be suitable
for cryptography. For a cryptographically secure hash function, it must be infeasible6 to
compute the original input from a hash value, or another input that maps to the given
hash value, or two inputs that lead to an arbitrary but common hash value.

Well-known cryptographic hash functions include the Secure Hash Algorithm (SHA)
family (SHA-1 is deprecated, SHA-2 and SHA-3 are unbroken) and MD5 (Message-Digest
Algorithm 5), which is widespread despite being broken for decades.7

4https://doc.rust-lang.org/rand/rand/ (2017-03-23)
5This mnemonic is not the etymologic root of the term.
6 A computational problem is infeasible if a solution theoretically exists but is provably impossible to

compute within a reasonable time.
7In this thesis, an algorithm is said to be broken when a computationally feasible6 attack has been

published that circumvents the security guarantees of the respective primitive (e.g. it computes the
original input from a hash value). Other definitions of the term broken only require a theoretical attack
faster than a brute force attack, which leads to deprecation in the sense of this thesis.

21

https://doc.rust-lang.org/rand/rand/

2 Foundations

2.2.4 MAC

A message authentication code (MAC) has similar properties as a hash value in that
small input changes lead to unpredictable output changes, making it computationally
infeasible to find an input for a given output. Unlike hashes, MACs can only be computed
with a secret key, i.e., to generate and verify a MAC value, the sender and receiver need
to share a key.

This makes MACs suitable for authentication: the receiver computes the MAC for
the received data and compares it with the received MAC value (sometimes called
authenticator or tag). If the two values match, the sender must have known the secret
key to generate the MAC, which proves the sender’s identity assuming that the key was
not compromised.

The most popular MAC algorithms are keyed-hash message authentication codes
(HMACs), which apply a secure hash function in a special way. The resulting algorithms
are named after the used hash function, e.g., HMAC-SHA-256 if SHA-256 is used as the
hash function. Another popular MAC is Poly1305.

2.2.5 Secure password hashing and key derivation

Storing passwords for user authentication bears the risk of an attacker stealing the
database with all the passwords (if they are encrypted, the attacker additionally has to
steal the key). It is therefore common practice to store a hash value of the password
rather than the password itself. The hash function guarantees that collisions are unlikely,
but if two users have the same password, their hash values are also identical, which
gives the attacker additional information: the most common passwords are probably
trivial ones and can be guessed. As a countermeasure, some random data called salt
is provided as additional input and stored in the database next to the hash value. A
different random salt must be used for every hashed password.

Even though the salt prevents the use of pre-computed rainbow tables [Oec03], this
scheme is still vulnerable to brute-force attacks, as hardware is getting cheaper and more
powerful. Thus, it is essential to use a deliberately slow hash function, which is one
of many usage scenarios for key derivation functions (KDFs) like bcrypt, scrypt or the
Password-Based Key Derivation Function 2 (PBKDF2), for which fast implementations
are impossible. The HMAC-based key derivation function (HKDF), on the other hand, is
not suitable for password hashing despite being a KDF, but it can be useful for other
KDF use cases like key expansion, which are not relevant to this thesis.

Password hashing occurs in many applications and it is not trivial to get right. To keep
developers from having to reinvent the wheel, many platforms and libraries, especially in

22

2.2 Cryptographic foundations

web development, offer functions that use an appropriate algorithm and take care of the
salting. They only produce one output which contains the salt and the hash value in a
special format. Some even include information about the used algorithm to solve another
engineering problem with password hashing: when an algorithm becomes deprecated,
applications have to switch to another one, but they cannot switch immediately because
old passwords are still hashed with the old algorithm. So the application needs to keep
track of the used hash algorithm for every hash value.

2.2.6 Symmetric encryption

Encryption encodes a given message (called plaintext or cleartext) such that the produced
ciphertext can only be decrypted by someone in possession of the right key. With
symmetric encryption, this key is the same as the one used for encrypting the original
message and is called secret key. There are various applications for symmetric encryption.
A single user can encrypt data to store it securely and read it again later (encrypted
file systems, password managers, etc.). A sender can encrypt a message before sending
it over an insecure connection to a receiver who possesses the right key, denying any
eavesdropper access to the message contents (see figure 2.1). In this scenario, the sender
and the receiver need to share the secret key beforehand by meeting in person, using a
trusted channel like the telephone or another encrypted connection, deriving it from
another secret value or using a cryptographic key exchange technique.

Encryption
algorithm

Decryption
algorithm

ciphertext

shared secret key

plaintext plaintext

Figure 2.1: Data flows for symmetric encryption

The algorithms that implement symmetric encryption are called symmetric ciphers and
can be categorized as block ciphers and stream ciphers. These two kinds of ciphers are
operated in different ways (and hence need different APIs). A stream cipher produces a
keystream from the given key, which can then be combined with the plaintext/cipher-
text (using the bitwise xor operation) to obtain the ciphertext/plaintext, that is, the
same algorithm and the same keystream can be used for both encryption and decryp-
tion. Because the keystream never ends naturally, arbitrarily long messages can be
encrypted.

23

2 Foundations

A block cipher, on the other hand, can only encrypt/decrypt a single, fixed-size block. In
order to process longer texts, there are various modes of operation that combine multiple
block encryptions in different ways. The Electronic Codebook (ECB) and the Cipher
Block Chaining (CBC) modes encrypt one block at a time, though the former encrypts
them independently and thereby leaks information about the plaintext.8 Because the
ECB and CBC modes can only encrypt messages whose length is a multiple of the
block length, most messages need to be padded to reach an appropriate length. There
are multiple padding schemes; the most commonly implemented one for symmetric
encryption is PKCS#7 from the Public-Key Cryptography Standards (PKCS). The Cipher
Feedback (CFB), Output Feedback (OFB) and Counter (CTR) modes turn the block
cipher into a stream cipher, that is, they generate a keystream. In the case of OFB and
CTR, the keystream does not depend on the input (plaintext or ciphertext) and can be
pre-computed. The CBC, CFB, OFB and CTR modes require a nonce as an IV, and CBC
becomes insecure if the IV is predictable.

Well-known block ciphers include the deprecated Data Encryption Standard (DES) and
its secure successor, the Advanced Encryption Standard (AES). Well-known stream
ciphers are the insecure RC4 cipher, Salsa20 and its newer variant ChaCha20.

2.2.7 Authenticated encryption and AEAD

Unauthenticated encryption as described in the previous section is considered harmful.
One reason is a popular misunderstanding of the security guarantees made by the
encryption primitive: only someone in possession of the right key can read the message,
but encryption alone does not prevent the message from being changed (blindly) by an
attacker [Par15]. This mistake is not limited to layman cryptographers but has been
made in the design of Kerberos version 4 [YHR04], for instance. Another reason are
side-channel attacks to break the encryption itself (i.e. allow the attacker to recover the
plaintext), which are possible when the receiver reacts differently to valid and invalid
messages [BU02].

Adding authentication solves both problems: tampered messages are rejected before
decryption, preventing any side-channel attacks on the decryption process and guaran-
teeing that the message was created by someone who has the secret key. In 2002 already,
Black and Urtubia [BU02] argued that authenticated encryption (AE) should generally
be used, especially since the cost is “quite small,” and Rogaway [Rog02] introduced the
concept of additional “associated data” (AAD or associated data (AD) for short) that is

8The weakness of the ECB mode is nicely demonstrated by the three Tux images on Wikipe-
dia: https://en.wikipedia.org/w/index.php?title=Block_cipher_mode_of_operation&oldid=758793932#
Electronic_Codebook_.28ECB.29

24

https://en.wikipedia.org/w/index.php?title=Block_cipher_mode_of_operation&oldid=758793932#Electronic_Codebook_.28ECB.29
https://en.wikipedia.org/w/index.php?title=Block_cipher_mode_of_operation&oldid=758793932#Electronic_Codebook_.28ECB.29

2.2 Cryptographic foundations

sent unencrypted but authenticated along with the main message. The resulting kind of
encryption is called authenticated encryption with associated data (AEAD). When using
AE(AD), the user has to transmit the authentication tag along with the ciphertext and
provide it to the decryption function for verification (see figure 2.2). A nonce prevents
replay attacks and has to be supplied to both encryption and decryption.

Encryption
algorithm

Decryption
algorithm

ciphertextplaintext plaintext

123

+ tag

shared secret key

random nonce

Figure 2.2: Data flows for authenticated symmetric encryption

AEAD can be implemented by combining a symmetric cipher (see the previous section)
with a MAC, e.g., ChaCha20-Poly1305.9 As an alternative, there are various block cipher
modes that provide authenticated encryption (sometimes with associated data), like the
popular Galois/Counter Mode (GCM). Note that AEAD is still not perfectly secure, as
many implementations including AES-GCM become totally insecure when a nonce is
reused—with random nonces, this is unlikely but possible. Nonce-misuse resistant AEAD
ciphers exist but are not yet widespread.

2.2.8 Digest comparisons

Digests, hash values, MAC values and tags are usually verified by computing the ex-
pected correct value and comparing it against the received one. A straightforward
implementation is prone to use comparison functions provided by the language. In Rust
in particular, there is the == operator which internally calls the PartialEq.eq() function.
Most implementations optimize for performance. Comparing byte by byte, they abort
with a negative result as soon as the first mismatch occurs. An attacker can measure the
response time (many times to gain statistically significant results), infer how many bytes
from the beginning already match and progressively guess the entire digest.

9https://tools.ietf.org/html/rfc7539 (2017-01-20)

25

https://tools.ietf.org/html/rfc7539

2 Foundations

To prevent these timing attacks, digest comparisons need to be done in constant time,
that is, the comparison function always compares all bytes before returning a result.
While this is crucial for scenarios where the digest is transmitted itself (MAC and
AEAD scenarios), it is considered a best practice in general and applied to other digest
comparisons, as well.

2.2.9 Primitives vs. protocols

Different authors use the terms cryptographic primitive, cryptosystem and cryptographic
protocol to mean slightly different things. Hashing and encryption are clearly primitives,
ElGamal encryption is clearly a cryptosystem and TLS is clearly a protocol. On the other
hand, the RSA cryptosystem (named after its inventors Ron Rivest, Adi Shamir, and
Leonard Adleman) can also be viewed and used as a primitive.

The term primitive is particularly confusing. Take authenticated encryption as an
example. As mentioned in the previous section, it can be implemented with a certain
block cipher mode for AES, which is certainly a (single) primitive. However, one can also
combine two primitives (encryption and authentication) to implement AEAD. The term
primitive suggests atomicity, i.e., a primitive would be the smallest building block and
not further decomposable. So AEAD could both be a primitive and not be a primitive.

As this thesis is about API design and how to deliver primitives to users, it is practical
to ignore the atomicity aspect (and in fact all implementation aspects) and focus on
the building block aspect instead: A primitive is a function which takes one or a few
inputs to compute usually one output and makes certain provable security guarantees.
Mere utility functions do not make such guarantees and higher-level cryptosystems and
protocols are more complex than a function. Note that a primitive can also consist of
a small set of functions, e.g., reverse or key generation functions. In particular, AEAD,
HMAC and salted password hashing are cryptographic primitives in this sense, even
though they are each built on another primitive, as explained in the previous sections.

Cryptosystems and cryptographic protocols are on higher levels of abstraction than the
one covered in this thesis. The term protocol is consistently used for any higher-level
cryptographic construction that uses primitives but is not a primitive itself, including
what other authors distinguish as cryptosystems.

26

3 Related work

This thesis touches a number of research areas. First, the thesis analyses the crypto
ecosystem of Rust using various research methods. To the best of my knowledge, there
is currently no research that analyses the crypto ecosystem of a programming language
or its platform. In non-academic writing, the term crypto ecosystem is predominantly
used in the context of crypto currencies, though a few already use it in the same sense as
this thesis. Please see the following chapter for related usages of the term ecosystem.

The social components in the crypto ecosystem of Rust, namely the developers and their
interactions, are not necessarily specific to Rust or cryptography, but resemble open
source software development in general. Section 3.1 briefly introduces existing surveys
and other studies of open source projects. Regarding the research methods themselves
(survey, GitHub mining, experiments), there is obviously an extensive body of research
that uses them and several works that deal with the methods themselves and how to
apply them correctly. I only reference these works when I adopt their suggestions and in
the discussion of the threats to validity (e.g. in section 5.5.6).

The second half of this thesis is concerned with the usability and misuse resistance of
the cryptographic libraries in Rust. Section 3.2 briefly introduces a few works about
API design that contain general concepts applicable to Rust. There are even some blog
posts and guidelines for API design in Rust referenced in section 3.2.1. More impor-
tantly, however, this thesis concerns cryptographic APIs, which hide relatively complex
algorithms and must be used correctly to avoid vulnerabilities. This characteristic makes
them similar to other cryptographic (user) interfaces, which have been extensively
studied—section 3.3.1 gives a brief overview. Section 3.3.2 reviews studies about crypto
API usability in detail and section 3.3.3 introduces two well-known libraries which
implement usable crypto APIs.

3.1 Open-source projects
Several researchers have surveyed contributors to open-source projects to find out about
their motivation, invested efforts and backgrounds. For example, Hertel, Niedner and
Herrmann [HNH03] survey Linux kernel contributors, Lakhani and Wolf [LW03] sur-
vey contributors on SourceForge.net, and David and Shapiro [DS08] and Ghosh et al.

27

3 Related work

[GGKR02] each got responses from thousands of diverse open source developers world-
wide. Crowston et al. [CWHW12] review the literature on open source development and,
among other insights, distill the following points: Developers are primarily European
and North American, motivated by reputation and rewards (like career development),
joy of programming, joy of learning and user needs. Stack Overflow has started a yearly
survey among its users in 2011, which also covers backgrounds (including age and
gender) and motivation [Sta16; Sta17].

Besides the contributors themselves, the most interesting data points are their contribu-
tions and other interactions online. Quantitative analyses by Lima, Rossi and Musolesi
[LRM14] and Chełkowski, Gloor and Jemielniak [CGJ16] find that they resemble power-
law distributions, which are also described with the “1-9-90” rule [CGJ16] and the
Pareto principle, though the applicability of the latter could not be confirmed for many
projects [YMK+15].

Today and particularly in the Rust crypto ecosystem, most interactions happen on
GitHub, the leading social repository hosting platform, which provides convenient APIs
for automated, large-scale analyses like the ones mentioned above [LRM14; YMK+15].
When analysing the mechanics of GitHub’s pull requests, Gousios, Storey and Bacchelli
[GSB16] find that many developers use additional communication channels like e-mail
and Internet Relay Chat (IRC). Therefore, when studying discussions on GitHub, it needs
to be kept in mind that discussions might also take place elsewhere. Kalliamvakou et al.
[KGB+16] identify pitfalls and perils that arise in analyses of GitHub data, including the
one mentioned before, and discuss avoidance strategies.

3.2 API design and usability
There is a large body of literature about the usability of general APIs. Every book
about API design also covers API usability. Those works are not specific to crypto-
graphic APIs and they usually focus on a particular, widespread programming language.
This section only references a small selection, which contains concepts, solutions and
recommendations that can be transferred to the crypto ecosystem of Rust.

Tulach [Tul08] advocates the use of APIs to achieve more cluelessness, which means
that it should be possible for developers to understand only very little about the inner
workings of the libraries and tools they use. Just like a smartphone user does not need
to know programming, electrical engineering or physics, the user of a cryptographic
library should only need a minimal knowledge of cryptographic primitives and of the
library’s implementation. Tulach uses the term empirical programming for an approach
to software implementation where the programmer does not study the documentation
of an API and does not try to actually understand it, but rather just calls a promising

28

3.2 API design and usability

method and observes what happens. The programmer then iterates such experiments
until the program works. Instead of condemning this programming practice, Tulach
recommends to support it by making APIs self-documenting.

Wurster and van Oorschot [WO08] take cluelessness a step further: Any library, platform
or tool that a developer uses should be built as if the developer was an enemy similar
to an attacker instead of relying on the developer to be informed and make the right
choices. The paper covers secure programming in general, but interestingly they use a
cryptographic misuse [Wu05] to illustrate that usable and learnable APIs are important.
“[P]roviding cryptographic algorithms alone does not ensure security.” [WO08, sec. 3.4]
They also point out that usable APIs do not only prevent security bugs but also motivate
developers to use a security library in the first place. One of their two main proposals,
namely unsuppressible warnings, could also be beneficial for crypto libraries.

Robillard [Rob09] reports on a survey about API learnability among Microsoft developers
and finds that a well-structured documentation and suitable code examples are important
because they help developers understand the high-level design of the API.

3.2.1 Rust API design

APIs are code themselves and should therefore follow general coding guidelines. The
rust-guidelines repository1 by Rust core team member Aaron Turon is discontinued,
and after the style guidelines were temporarily part of the core documentation,2 there is
now a separate process for code formatting requests for comments (RFCs), the results of
which are available from the fmt-rfcs repository.3 This repository naturally focuses on
code formatting and code style, whereas the previous styleguide also covered design
topics including some API design aspects. Albeit unfinished, already deprecated and pos-
sibly outdated soon, the latest version2 contains relevant considerations on constructor
design and the builder pattern, placement of functions/methods, function signature
design, strong typing, type conversions, module organization and error handling.

An unofficial repository collects Rust design patterns,4 some of which apply to APIs.
Hertleif [Her16b] covers several design techniques for “elegant” APIs. Martins [Mar16]
writes about conversions between different data types, which allows APIs to accept data
in various formats without declaring redundant variants of the same function.

1https://github.com/rust-lang/rust-guidelines (2017-03-23)
2https://doc.rust-lang.org/1.12.0/style/ (2017-03-23)
3https://github.com/rust-lang-nursery/fmt-rfcs/blob/master/guide/guide.md (2017-03-23)
4https://github.com/rust-unofficial/patterns (2017-03-16)

29

https://github.com/rust-lang/rust-guidelines
https://doc.rust-lang.org/1.12.0/style/
https://github.com/rust-lang-nursery/fmt-rfcs/blob/master/guide/guide.md
https://github.com/rust-unofficial/patterns

3 Related work

3.3 Crypto usability

3.3.1 End-user crypto usability

Starting with the widely known paper “Why Johnny Can’t Encrypt” by Whitten and Tygar
[WT99] in 1999, there has been plenty of research about the usability of cryptographic
applications. For example, two follow-up studies by other researchers in 2006 and 2015
find that modern Pretty Good Privacy (PGP) tools are still too difficult to use. The
field covers topics such as e-mail and messaging clients, security indicators in browsers,
multi-factor authentication and so on.

This research is usually concerned with the user interface and is therefore not immedi-
ately useful for design considerations for cryptographic libraries, as those are used by
other programmers through an API. Nevertheless, there are some interesting parallels,
especially when it comes to research methods and high-level ideas. For instance, user
tests like the one by Whitten and Tygar [WT99] to evaluate PGP can analogously be
conducted with Rust programmers who are tasked to perform certain tasks with a given
Rust crypto library. Section 7.2 reports on such an experiment conducted with Rust
beginners at the University of Osnabrück.

As another example, Troutman [Tro14] questions the idea of “usable cryptography” itself
and points out that end users are not interested in encrypting messages for the sake
of encrypting, but they want to communicate securely: “Johnny can’t encrypt because
Johnny never wanted to encrypt” [Tro14]. Zurko and Patrick [ZP08, sec. 4] formulate
the same idea and also conclude that a product design perspective is essential to solve
this problem. When applied to crypto API usability, which is discussed in the next section,
the general idea still holds: An application developer’s goal is not to encrypt a data
packet or to validate a certificate, but to communicate securely with the server, and
cryptographic libraries should be designed with such goals in mind.

3.3.2 Crypto API usability

Georgiev et al. [GIJ+12] analyse Secure Sockets Layer (SSL) certificate validation code
in a range of applications and, if vulnerable, investigate the cause of the bug. They
find that the libraries themselves are correct “for the most part,” but developers often
misunderstand the APIs, which is the “primary cause” for vulnerabilities. Consequently,
they call for more high-level and more formalized APIs, consistent error reporting, safe
defaults and better documentation. They also find that many application developers
disable certificate validation altogether, which “appears to be the developers’ preferred
solution to any problem with SSL libraries” [GIJ+12, sec. 10].

30

3.3 Crypto usability

In line with Wurster’s idea of treating the application developer as an enemy, Fahl et al.
[FHP+13] suggest that the certificate validation should be implemented by the OS,
after having found similar problems with custom validation code or disabled validation
in previous work [FHM+12]. The app itself could merely configure the validation by
providing a trusted root certificate, for example. If in doubt, the OS could directly notify
the user about possibly insecure connections and thus make it impossible for apps to
silently skip certificate validation. This approach only works on “appified” platforms,
however, where the OS can actually impose such restrictions. The low-level nature of
Rust does not allow that, but the work of Fahl et al. [FHP+13] nevertheless contains
some valuable insights for Rust TLS libraries about the usage of certificate validation.

Forler, Lucks and Wenzel [FLW12] demonstrate how the Ada language and compiler can
be used to design an API that prevents nonce reuse and plaintext leaks. More specifically,
they ensure that every generated nonce can only be used once and that the state of the
nonce generator cannot be copied. Similar constructions could be possible in Rust (see
section 8.8). Their API design also prevents another kind of misuse where the caller
reads a (partially) decrypted plaintext even though the authentication has failed or has
not even been performed yet.

Egele et al. [EBFK13] implement a static analysis tool called CRYPTOLINT to automatically
discover common security flaws such as ECB mode, constant keys, constant salts and
constant PRNG seeds. CRYPTOLINT is implemented for the Android platform and only
analyses the Dalvik bytecode. In addition to the tool, which detects mistakes after they
have already been made and which needs to be incorporated into the build process
explicitly, they also discuss measures to prevent security flaws on the API or compiler
level. Like many others, they propose getting rid of insecure defaults (the ECB mode in
Java’s Cipher.getInstance(), for example), either by replacing them with more secure
values or by removing the defaults and forcing every caller to specify the respective
parameter explicitly. While the former solution breaks backward compatibility, the
latter is in conflict with Tulach’s cluelessness concept. To mitigate that, Egele et al.
recommend improving the API documentation: explicitly state all defaults and suggest
sane choices when there is no default. Finally, they propose to build APIs which enforce
their semantic contracts by the means of the API itself. For example, the criteria for
a proper initialization vector (being unique and non-predictable) should not only be
documented in the description of the function which accepts them, but their violation
should also lead to a compile error. At least in Java, this requires compiler support or a
tool like CRYPTOLINT to discover violations. [EBFK13, sec. 7]

Lazar et al. [LCWZ14] investigate 269 vulnerabilities from the Common Vulnerabilities
and Exposures (CVE) database and find that the majority is caused by application code
misusing the properly implemented crypto libraries. Among the causes are insecure

31

3 Related work

defaults, disabled or insufficient certificate validation, weak/obsolete ciphers, hard-
coded keys and weak random numbers. They discuss a range of prevention techniques
for such vulnerabilities, only one of which is aimed at the usability of crypto libraries:
APIs should be more high-level and, for example, provide authenticated encryption as a
single function. Keyczar is named as a positive example. [LCWZ14, sec. 3.1]

Das and King [DK14] define 7 properties to determine how safe a cryptographic library
is and apply them to 6 libraries for the most popular programming languages. On the
one hand, these 7 properties can also be evaluated on Rust crypto libraries, making them
comparable to other languages’ libraries. On the other hand, the discovered problems
with the non-Rust libraries can be used to check Rust libraries for similar issues (see
section 7.3 for a partial execution of this idea).

Nadi et al. [NKMB16] empirically investigate the obstacles that developers face when
using Java’s standard crypto API. They analyse Stack Overflow posts, GitHub repositories
and conduct developer surveys. For API designers, they recommend improving the
documentation, building more high-level, task-based APIs and name NaCl and Keyczar
as positive examples.

Green and Smith [GS16] develop 10 “principles for creating usable and secure crypto
APIs,” which are more or less directly applicable to Rust crypto libraries (see section 7.3).
Besides several recommendations that have already been made in earlier works, they
suggest adding a “testing mode” feature that restricts weakened cryptography for testing
purposes (e.g. hard-coded keys, weak random numbers or disabled certificate validation)
to the developer’s machine using a specific machine ID (see section 5.7.2). Their main
statement “developers are not the enemy either” is derived from the well-known state-
ment “users are not the enemy.” Just like users cannot be blamed for not understanding
the difficult concepts that applications confront them with, Green and Smith argue that
application developers cannot be blamed for misunderstanding the APIs of crypto li-
braries. While this reasoning is in accordance with all previously mentioned authors, the
formulation should not be confused with the grammatically opposite formulation “the
developer is the enemy” by Wurster and van Oorschot [WO08]. Despite the seemingly
contrary meaning, Wurster and van Oorschot actually take the same line as Green and
Smith, because they recommend library developers to view application developers as
if they were enemies, thus anticipating they will (deliberately) make every imaginable
mistake. Both lines of thought lead to the conclusion that library developers are, to
some degree, accountable for misuse of their libraries by application developers.

Besides improving the APIs themselves, there are also approaches to deal with the
misuse of APIs that cannot be changed anymore due to backward compatibility. One
approach is to improve the documentation and provide proper code samples. Another,
more obtrusive solution are automated misuse detectors (also known as linters), which
are usually based on static code analysis. The tool of Egele et al. [EBFK13] is called

32

3.3 Crypto usability

CRYPTOLINT and was already described above. The authors point out their large-scale
analysis of Android apps is not the only purpose of the tool: it can also be used by
developers to check their code, by app store operators to check submitted apps and
by “security-conscious” users to check their downloaded apps. Another example is the
PYCRYPTO LINTER by Das and King [DK14], which is a proof of concept they developed
to discover nonce reuse, counter reuse and use of the ECB mode. Amani et al. [ANN+16]
provide a set of API misuses collected from various sources called MUBENCH, some of
which are crypto API misuses, in order to benchmark such automated misuse detectors.
For Rust at its current stage of development, misuse detectors are not yet relevant, as the
goal must be to design APIs that prevent misuses from happening in the first place.

3.3.3 Crypto libraries designed for usability

Few crypto libraries are designed specifically with API usability in mind. The most
well-known ones are NaCl, libsodium and Keyczar, all of which have repeatedly been
highlighted by researchers for their good usability.

3.3.3.1 NaCl and libsodium

The Networking and Cryptography library (NaCl) by Daniel Bernstein [Ber09] has
three main goals, one of which is to improve usability. It does so by focusing on the
most important use cases and supporting those with an extremely simple and high-
level API. For example, the “most fundamental” operation, according to Bernstein, is
public-key authenticated encryption, and it is provided through a single function called
crypto_box, though lower-level functions with more flexibility are available, too. These
high-level functions are named after the cryptographic services they provide for their
user—and not after the primitives they are implemented with. Every high-level function
is backed by a default choice of primitives, though there is usually one alternative.
To avoid accidental misuse, NaCl excludes any insecure or deprecated algorithms and
conservatively chooses a few primitives only. The inherent disadvantage is that the
library cannot be used in every scenario because some protocols or other interfaces
specifically require implementations of AES-CBC, RSA or other missing, yet secure and
popular algorithms.

Because NaCl is not easily portable and packageable, the fork libsodium was created
[Den]. Unlike NaCl, which was last updated six years ago (early 2011), libsodium is
actively maintained and continually improved. There are bindings to libsodium for
numerous languages including Rust (see section 5.3.3).

33

3 Related work

3.3.3.2 Keyczar

Keyczar differs from other crypto libraries in that it does not implement primitive
algorithms itself and it is not a plain wrapper for another existing library. Instead, it
comprises a file-based key management system and a rather small set of very high-level
primitives.5 The definition of these primitives includes a custom format for ciphertexts
and signatures, which includes “technical” details like the used algorithms, modes,
initialization vectors and authentication tags. By including all this information in every
ciphertext/signature, Keyczar is able to remove the corresponding parameters and
options from its developer-facing API, to make all decisions internally and to read data
encrypted/signed with another Keyczar version. Like NaCl/libsodium, Keyczar does not
solve all use cases but tries to solve the common ones well.

There are official and mostly equivalent implementations in C++, Java and Python, each
of which uses a different lower-level crypto library for the primitive implementations on
the respective platform (namely OpenSSL, the Java Cryptography Architecture (JCA)
and PyCrypto). Implementations in other languages like Go, .NET, Perl and JavaScript
are available unofficially. Unfortunately, Keyczar is not actively developed anymore and
has some security issues.6 It is nevertheless an interesting design concept.

5https://github.com/google/keyczar/wiki/KeyczarSummary (2017-03-23)
6https://github.com/google/keyczar#known-security-issues (2017-03-23)

34

https://github.com/google/keyczar/wiki/KeyczarSummary
https://github.com/google/keyczar#known-security-issues

4 Ecosystems

This chapter defines the term crypto ecosystem, which is used to structure the analysis
of Rust’s crypto ecosystem in chapter 5, and outlines the crypto ecosystems of other
popular programming languages. The term ecosystem is widely used to mean many
different things, and yet it is usually intuitively understood. Section 4.1 draws from
various areas where the term is already used in order to characterize two particular
kinds of ecosystems—namely programming ecosystems and crypto ecosystems—and sec-
tion 4.2 then defines these terms as well as the populations and interactions within
such ecosystems. Section 4.2.3 clarifies some alternative meanings which have to be
distinguished from the meanings in this thesis. To put the crypto ecosystem of Rust into
perspective, which is later described in chapter 5, the sections 4.3 through 4.6 describe
the crypto ecosystems of C++, Java, .NET and Python and briefly summarize a few
relevant design decisions made in these ecosystems and their usability implications.

4.1 Deriving a definition
The term ecosystem originates in ecology and hence describes natural ecosystems as
communities of “living organisms in conjunction with the nonliving components of their
environment” [Wik16]. In other fields, the term can have vastly different meanings,
though certain characteristics of an ecosystem recur consistently: An ecosystem is made
up of populations (originally the living organisms, e.g. foxes and rabbits), who are
connected through certain interactions (e.g. foxes eat rabbits, their roles would be called
predator and prey in this case). Moreover, ecosystems form a hierarchy: they can have
neighbours (e.g. a lake next to a forest), with which they form higher-level ecosystems
(e.g. all ecosystems on Earth together form the biosphere), or conversely they can have
nested ecosystems inside them (e.g. a rabbit’s gut flora).

These characteristics are also found in technical and digital ecosystems, which is il-
lustrated by the Stack Exchange question “What is ecosystem in IT world?”1 [sic].
The accepted answer discusses various interconnected ecosystems on different levels:

1http://superuser.com/a/553790 (2017-03-23)

35

http://superuser.com/a/553790

4 Ecosystems

hardware, operating systems, programming ecosystems and app platforms. For “pro-
gramming ecosystems” specifically, the answer names examples of possible populations
such as integrated development environments (IDEs), libraries and documentation.

The definition of a programming ecosystem used in this thesis follows the same notion.
To delimit a programming ecosystem from its neighbours, it is reasonable to use the
technical boundaries of its programming language (e.g. Rust) or programming platform
(e.g. .NET). Like the populations in a natural forest ecosystem interact more with other
individuals inside the forest than with the outside, interactions among code written in
the same language or for the same platform are much more frequent than with other
code. The platform itself is also part of the ecosystem because the libraries interact with
it a lot and can even become part of the platform.

German, Adams and Hassan analyse the “R software ecosystem” and use a very sim-
ilar definition where the core platform is surrounded by “a halo of user contributions”
[GAH13]. Another definition by Bosch and Bosch-Sijtsema [BB10] extends the eco-
system and includes the human developers as a separate population, in addition to
the technical entities (platform, libraries, code, documentation). I follow this decision
because the interactions among developers and between developers and libraries are
particularly interesting to study and relevant to usability. Loyola and Ko [LK12; LK14]
even quantify these interactions and apply the Lotka-Volterra equations, which originally
model biological mutualism and competition, to open source ecosystems.

Based on the programming ecosystem definition, the crypto ecosystem can simply be
defined as the subset concerned with cryptography. Because the users of (cryptographic)
APIs are software developers themselves, I use the term contributors to distinguish
developers who work on the platform/libraries in the ecosystem itself.

4.2 Definition

4.2.1 Programming ecosystem

A programming ecosystem consists of a core platform with at least one programming
language, the standard library and development tools, all compatible libraries, their code
and documentation as well as all contributors and users.

There are (at least) the following types of interactions in a programming ecosystem (and
therefore in its crypto ecosystem):

• Library A can be a dependency of library B. Then B is said to depend on A, and B is
a reverse dependency of A. All libraries depend on the core platform.

36

4.2 Definition

• A library can be a fork of another library.2

• A library always contains a number of code files and pieces of documentation.
• A library’s code can reference other parts of the code, e.g., by using functions or

types declared there.
• A library’s documentation can reference another part of the documentation or the

corresponding code.
• A library’s documentation can be generated from the corresponding code.
• A contributor can contribute to a library or the core platform. Possible contributions

are code in the form of pull requests, code reviews, documentation and bug reports.
• A user can use a library by making it a dependency of his/her own library or

application.

Note that the contributors and users populations both consist of (human) software
developers. Thus, the term users and the use interaction always refer to using an API, its
documentation or other parts of a library rather than an end-user using an application.
The developers of such end-user applications are users in the programming ecosystem
because they use its libraries. The documentation population also includes code samples,
tutorials, blog posts, etc. besides the generated Rustdoc documentation. See figure 4.1
for an illustration of the main components of a programming ecosystem.

4.2.2 Crypto ecosystem

The crypto ecosystem of a programming language or platform is the part of its program-
ming ecosystem concerned with cryptography, that is, all cryptographic libraries, their
code and documentation as well as associated contributors and users.

It can sometimes be difficult to determine the degree to which a library is “concerned
with” cryptography, so the boundary of the crypto ecosystem is rather blurry. Libraries
which primarily implement cryptographic primitives or protocols are clearly in the scope
of the crypto ecosystem. The same holds for libraries which primarily offer primitives
or protocols by wrapping other libraries’ implementations (possibly written in another
language).

At the edge of the crypto ecosystem there are libraries which have a different primary
focus but still offer APIs that control cryptographic behaviour. A good example are
application-layer protocol implementations such as the Hypertext Transfer Protocol
(HTTP), the Internet Message Access Protocol (IMAP) and so on, which are not cryp-
tographic libraries themselves but use some TLS implementation to offer the secure

2A library is called a fork if its development started by copying the source code of the original upstream
library but continues rather independently and is driven by different developers.

37

4 Ecosystems

libraries

Platform (language, tools)

depend
fork

reference

generate ref.

co
n

tr
ib

u
te

u
se

u
se

docs

contributors users

collaborate
coordinate

code
ref.

[RQ1-2]

[RQ3]

[RQ4-7]

[R
Q

8
-9

]

[R
Q

1
4

-1
5

]

[RQ10-12]

[RQ13]

Figure 4.1: Populations and interactions in a programming/crypto ecosystem. The
annotated research questions (RQs) can be found in section 5.1 on page 45.

variants HTTPS, IMAPS, etc. Most of these libraries give the library user the opportunity
to customize the signature validation process. For example, curl-rust3 is a wrapper
for the cURL library and is therefore used to transfer data over various protocols, so its
primary purpose is not cryptography. Yet, it offers methods like ssl_cert4 to provide
certificates and keys for secure connections.

This thesis intentionally focuses on libraries that implement cryptographic primitives,
and all other cryptographic or higher-level protocols are outside the scope of this thesis.
Nevertheless, when considering API usability in the Rust crypto ecosystem, it is important
to keep in mind that libraries like curl-rust are just as well part of the ecosystem, albeit

3https://github.com/alexcrichton/curl-rust (2017-03-23)
4http://alexcrichton.com/curl-rust/curl/easy/struct.Easy.html#method.ssl_cert (2017-03-23)

38

https://github.com/alexcrichton/curl-rust
http://alexcrichton.com/curl-rust/curl/easy/struct.Easy.html#method.ssl_cert

4.2 Definition

at the outer edge. Weaknesses in the design of such APIs have led to severe vulnerabilities
[e.g. GIJ+12, sec. 7.1].

4.2.3 Disambiguation

A Google search for “crypto ecosystem” and “cryptographic ecosystem” yields 2.080 and
161 results, respectively (executed in November 2016). Manual investigation of the first
50 results, after which the results become increasingly irrelevant, shows that the term is
used to mean different things.

The understanding of a crypto ecosystem in this thesis, as defined above, is always with
regard to a certain programming language or platform. The term has been used in
this sense before, though very rarely—there are only two occurrences that I am aware
of: Mergen [Mer15] writes “Haskell’s entire cryptography ecosystem” and means all
cryptographic libraries for Haskell. And Arcieri [Arc13] writes about the “WebCrypto
ecosystem,” which is a set of cryptographic APIs for JavaScript.

In the same article and referencing the same ecosystem, Arcieri writes about “an inter-
operable cryptographic ecosystem for the web,” which highlights a different aspect: this
kind of cryptographic ecosystem is defined by compatibility rather than the platform.
Compatibility means that the populations in the ecosystem use the same data formats or
protocols. For example, all libraries, applications and even devices supporting TLS or
Kerberos can be considered an ecosystem. Another example is libsodium [Den], which
uses the same custom data format on all supported platforms for interoperability. On the
one hand, the many implementations and bindings of libsodium for various program-
ming languages form an ecosystem. On the other hand, each of these implementations
is also part of the crypto ecosystem of the corresponding language or platform. So these
different kinds of ecosystems are neighbours and even overlap.

Predominantly, however, the term crypto ecosystem is used for something else, namely
the economical and technical ecosystems that evolve around crypto currencies like
Bitcoin. While the “Blake cryptographic ecosystem”5 only refers to the ecosystem related
to BlakeCoin, most others use the term the crypto ecosystem to mean the single global
ecosystem encompassing all crypto currencies and sometimes even related blockchain
applications.

5https://blakecrypto.com/ecosystem/ (2016-12-22)

39

https://blakecrypto.com/ecosystem/

4 Ecosystems

4.3 C and C++
The C crypto ecosystem is the biggest of all crypto ecosystems with quite many libraries
for primitives (libgcrypt, libsodium, LibTomCrypt, NaCl, nettle, wolfCrypt), TLS and
other protocols (BoringSSL, cryptlib, LibreSSL, GnuTLS, mbed TLS, OpenSSL, wolfSSL;
some of these provide access to the underlying primitives, too) as well as a large number
of smaller libraries with a few algorithms only. Most reference implementations for
cryptographic algorithms and most mature and well-regarded crypto libraries are written
in C. Therefore, many wrappers and bindings written in other languages reference
libraries from the C crypto ecosystem.

C++ projects can easily compile, link against and call C functions directly, effectively
making the C++ (crypto) ecosystem a superset of of the C (crypto) ecosystem. There
are three notable crypto libraries implemented in C++ itself (Botan, Crypto++ and
Keyczar), though the development of the latter two seems to have stalled.

While libsodium, NaCl and Keyczar are generally praised for their high-level, usable
interfaces (see section 3.3.3), the usability analysis by Das and King [DK14, table 3]
finds few weak points in Crypto++ and criticizes most aspects of OpenSSL. To my
knowledge, the usability of the other libraries has not been systematically analysed.

4.4 Java
Java is not only a programming language but also the basis of various platforms. There-
fore, its crypto libraries can be used in different contexts like Android, Java EE server or
desktop applications. Since version 1.1 (released in February 1997), the Java platform
contains the Java Cryptography Architecture (JCA), which features a service provider
interface (SPI). That is, there is a set of interfaces to be implemented by a cryptographic
provider, whose capabilities are then made available to other programmers through a
single common API. The JCA was designed and implemented by then-Sun employee
Benjamin Renaud with feedback from many others including Java and API design expert
Joshua Bloch.6 It can be found in the packages java.security and javax.crypto. Its
documentation explicitly lists the design principles of the API—and API usability or
misuse resistance are not among them. Instead, the documentation contains a clear and
highlighted warning: “this document does not cover the theory of security/cryptography”
and “also does not cover the strengths/weaknesses of specific algorithms, not does it
cover protocol design.” [Ora16]

6https://www.cis.upenn.edu/~bcpierce/courses/629/jdkdocs/guide/security/CryptoSpec.html#
Ack (2016-08-14)

40

https://www.cis.upenn.edu/~bcpierce/courses/629/jdkdocs/guide/security/CryptoSpec.html#Ack
https://www.cis.upenn.edu/~bcpierce/courses/629/jdkdocs/guide/security/CryptoSpec.html#Ack

4.4 Java

The SPI proved to be a practical solution to the U.S. export restrictions: while the API
itself was part of the Java Development Kit (JDK) so that application programmers could
compile against it, the possibly restricted implementations could be shipped separately.
For the same reason, the Java Cryptography Extension (JCE) was not part of the core
platform at the time but available as an extension. With version 1.4 (released in February
2002), the JCE’s interfaces were integrated and are now considered part of the JCA.

A cryptographic provider is, of course, not part of the JDK itself and it is up to the vendor
of a Java Runtime Environment (JRE) to include one. Oracle’s official JRE distribution
ships with the official JCE provider implemented by Sun (hence called the Sun-JCE), but
it is disabled by default due to export restrictions and needs to be enabled by installing
the “Unlimited Strength Jurisdiction Policy Files.” Android, on the other hand, uses the
other popular JCE implementation called BouncyCastle and modifies it for the Android
platform. These modifications have been subject to a lot of criticism because features
are missing, the implementation is outdated on older devices and it is difficult for app
developers to supply the latest version of BouncyCastle due to class name conflicts with
the built-in version. One solution to this problem is the library SpongyCastle, which
simply renames all BouncyCastle packages to resolve the conflicts. The other solution is
to use an entirely different library which is not based on the JCA. Both solutions require
additional effort from the developer and thus nullify the advantage of having a built-in
cryptography architecture.

The usability of the JCA APIs has been criticized occasionally, especially after the Android
platform caught security researchers’ attention [ANA+15; EBFK13]. In the comparison
by Das and King [DK14], it ranks about average. Nadi et al. [NKMB16] find that its APIs
are too low-level.

Keyczar, as one of the many alternative crypto libraries in Java, addresses this by
building on the JCA and providing a higher-level API (see 3.3.3.2), but it is not actively
maintained anymore. Jasypt also advertises7 easy-to-use, crypto functions based the JCE,
but it has not been updated in three years and has been criticized for using non-standard
constructions without peer review.8 There are several bindings for libsodium (NaCl;
see section 3.3.3.1), e.g. Kalium, and another high-level crypto library is AeroGear
Crypto. Apache Commons Crypto wraps OpenSSL or JCE, alternatively, and exposes
them through a common API, though only RNG and symmetric encryption are supported.
Besides the named libraries, there area few commercial libraries and many smaller,
mostly discontinued libraries for specific purposes.

7http://www.jasypt.org/ (2016-09-08)
8http://security.stackexchange.com/a/65240 (2017-03-23)

41

http://www.jasypt.org/
http://security.stackexchange.com/a/65240

4 Ecosystems

4.5 .NET
The .NET Framework ecosystem encompasses the runtime environment called Com-
mon Language Runtime (CLR), an extensive standard library and several programming
languages including C#, managed C++, F# and Visual Basic .NET as well as the web
framework Active Server Pages .NET (ASP.NET). Since the .NET Framework’s first release
in 2002, its predominant crypto library is officially developed by Microsoft and shipped in
the System.Security.Cryptography namespace. It integrates well with the surrounding
.NET ecosystem, for example by using the System.IO.Stream API for most crypto opera-
tions, or by allowing new algorithm implementations to be specified through a configur-
ation file without any code changes [Pil04]. Internally, System.Security.Cryptography
partially implements cryptographic algorithms in the managed .NET environment and
partially wraps the Microsoft Cryptography API (CryptoAPI) or the newer Cryptography
API: Next Generation (CNG).

The documentation is extensive and contains many code samples. The API usability has
not been analysed scientifically, though Duong and Rizzo [DR11] find problems with key
management and unauthenticated encryption in ASP.NET and criticize that “developers
still have to figure out on their own how to use cryptographic primitives correctly.”
This criticism is also applicable to the System.Security.Cryptography namespace: the
.NET Framework itself lacks authenticated encryption primitives entirely, requiring
users to combine authentication and encryption manually, which would be highly error-
prone. The official but separate CLR Security project provides extensions for the .NET
Framework, and its Security.Cryptography.dll provides authenticated encryption in
the same API style and with comparable documentation and code samples. The project
aims to have its developments integrated in the official .NET platform, eventually,
and has influenced the current crypto APIs of .NET already.9 By open-sourcing the
development and letting new features mature before integrating them into the core
library, Microsoft benefits from community feedback and peer review and avoids getting
stuck with a suboptimal API due to backward compatibility.

Alternative crypto libraries include the C# version of BouncyCastle, bindings to libsodium
and a few commercial ones. The inferno crypto library is advertised10 as “developer-
friendly” and “misuse-resistant.” It deliberately excludes unauthenticated encryption
and, similar to NaCl, only provides a few primitives with an opinionated choice of
algorithms to implement them—though the chosen algorithms are different from NaCl.
Yet, the documentation is scarce and contains hard-coded keys. Like the other presented
crypto ecosystems, the .NET crypto ecosystem comprises a large number of smaller
libraries for specific tasks.

9http://clrsecurity.codeplex.com/discussions/651423 (2017-03-23)
10http://securitydriven.net/inferno/ (2016-10-22)

42

http://clrsecurity.codeplex.com/discussions/651423
http://securitydriven.net/inferno/

4.6 Python

4.6 Python
Python’s standard library contains modules for cryptographic hash functions, HMACs and
CSPRNGs.11 Besides those, there is no officially endorsed solution like in Java or .NET,
but one of the oldest Python crypto libraries, PyCrypto by Dwayne Litzenberger, has
been the de-facto standard for a long time and reaches more downloads than all other
crypto libraries combined, according to the PyPI Ranking.12 It has not been updated in
years, however, and Das and King [DK14, table 3] find many critical points regarding
misuse resistance in their comparison with other libraries. For instance, PyCrypto
lacks authenticated encryption as a single primitive. The first Google search result13

for “PyCrypto authenticated encryption” manually combines authentication (HMAC-
SHA-256) with encryption (AES-CBC-256) but fails to use a constant-time comparison
function for verification. PyCryptodome is an actively maintained fork, provides AE and
promises improved APIs.

The second most popular Python crypto library is simply called cryptography [KG+]
and pioneers a structural concept that divides the entire interface into two levels with
different target users: the “recipes” layer contains high-level primitives that are easy
to use and require minimal understanding of cryptography, whereas the “hazardous
material” layer provides access to the underlying low-level primitives.

Other crypto libraries include the OpenSSL wrappers PyOpenSSL and M2Crypto, the
Python version of Keyczar (see section 3.3.3.2), the NaCl-based libraries PySodium and
PyNaCl (see section 3.3.3.1), Python bindings to the Botan library from the C++ crypto
ecosystem and oscrypto, which leverages the crypto implementation of the respective
operating system.

4.7 Conclusion
Programming ecosystems consist of a platform, libraries consisting of code and doc-
umentation as well as contributors and users. Their crypto ecosystem is the subset
concerned with cryptography. Those ecosystems vary in size; C and C++ have the
biggest crypto ecosystem because reference implementations and other algorithm im-
plementations are mostly written in C. A few libraries span across multiple ecosystems.
Most notably, OpenSSL and NaCl/libsodium have countless wrappers in other languages
and Keyczar is implemented in at least seven languages.

11https://docs.python.org/3.6/library/crypto.html (2016-04-19)
12http://pypi-ranking.info/search/crypto/ (2017-03-23)
13http://code.activestate.com/recipes/576980/ (2017-03-23)

43

https://docs.python.org/3.6/library/crypto.html
http://pypi-ranking.info/search/crypto/
http://code.activestate.com/recipes/576980/

4 Ecosystems

Some ecosystems are dominated by an official standard crypto solution built into the
standard library. This approach seems to decelerate the entire crypto ecosystem. The
standard solution reasonably attracts more users because it is easy to discover and
requires no extra dependencies. Because the remaining libraries have fewer users, their
development slows down and they take longer to mature. On the other hand, the
standard solution is less agile than the remaining ecosystem, which results in problems:
Java’s JCA has API issues that cannot be resolved due to backward compatibility, and
the .NET Framework’s solution does not have authenticated encryption, yet.

.NET presents a solution at the same time: the CLR Security project extends the .NET
Framework and offers authenticated encryption among other improvements. Its devel-
opment is more dynamic because it is not part of the standard library, but the library
is still officially developed by Microsoft and therefore credible, making this form of
development a good compromise. The equivalent in Rust are so-called “rust-lang crates”
(see section 5.6). Albeit official, such libraries compete with other libraries (more so
than a standard solution) and, as they are being developed openly, they benefit from
mutual ecosystem dynamics (forks, wrappers and direct contributions).

44

5 The Rust crypto ecosystem

The general ecosystem structure introduced in the previous chapter (see figure 4.1 on
page 38) guides the further research regarding the crypto ecosystem of Rust. Section 5.1
derives research questions from every population and from every interaction, the follow-
ing sections 5.2 to 5.5 contain the corresponding analyses, section 5.6 discusses the role
of the standard library and section 5.7 proposes improvements.

5.1 Research questions
To get an overview of the ecosystem’s scope, the first three research questions (RQs)
pertain to its core population—the libraries:

RQ 1: Which libraries does the ecosystem encompass? (sections 5.2.1 and 5.3)
RQ 2: How can the many libraries in the ecosystem be subdivided? (section 5.2.2)
RQ 3: What are the forking and dependency relations between the libraries? (section 5.2.3)

The second most important population are the contributors, whose individual back-
grounds are studied by the survey in section 5.4:

RQ 4: Who are the contributors demographically, especially in comparison to average open
source developers? (section 5.4.4)
RQ 5: What relevant qualifications do the contributors have? (section 5.4.5)
RQ 6: What motivates the contributors to work on crypto in Rust? (section 5.4.6)
RQ 7: How much time do the contributors invest in the crypto ecosystem? (section 5.4.7)

The GitHub analysis in section 5.5 investigates the interactions among contributors and
their contributions to the libraries with respect to these questions:

RQ 8: Do the contributors work on multiple libraries? (section 5.5.1)
RQ 9: How is the work on a library distributed among its contributors? (section 5.5.1)
RQ 10: How do the contributors collaborate, cooperate and coordinate? (section 5.5.3)

Because the API design processes strongly affect the libraries’ usability and misuse
resistance, the following questions target them specifically and the GitHub data is
combined with survey responses and statements from the web to answer them:

RQ 11: Do discussions about API design take place and, if so, where? (section 5.5.4)
RQ 12: How important is usability in relation to other goals? (section 5.5.5)

45

5 The Rust crypto ecosystem

Unlike with other programming languages, the Rust platform does not itself offer any
crypto functionality, though there is ongoing discussion about including crypto in the
standard library (see section 5.6). Nevertheless, the platform influences the crypto
libraries, which leads to the following question:

RQ 13: Which crypto-relevant features are offered by the Rust platform and which are
missing? (section 5.7.2)

Last but not least, the entire ecosystem’s purpose is to serve its users. To be able to
improve the ecosystem for them, it is vital to look at their usage of the ecosystem. These
questions are addressed by a systematic usage analysis and a series of experiments:

RQ 14: Which features are the most widely used? (chapter 6)
RQ 15: How usable and misuse resistant are the current APIs? (chapter 7)

The raw data and processing scripts for all analyses presented in this thesis are available
for download (see appendix A). All major analyses used to answer the research questions
above have individual threats to their validity, which are discussed in the respective
sections. However, there is a general threat to the coherence of those results: the
analyses were spread out over the course of a semester and the Rust crypto ecosystem
is continuously evolving. Minor problems uncovered in one analysis could be fixed
before the next analysis already, and my presence in the ecosystem (asking questions
on the #rust-crypto IRC channel, etc.) could have influenced the development and
therefore the further analyses. To mitigate this issue, I report the date of every analysis,
use absolute links to stable versions wherever possible and attempted to conduct every
individual analysis within a few days or automate it for flexible reproduction so that
each individual data set is consistent.

5.2 Library search and categorization
A systematic search approach was used to find all the available libraries in the Rust
ecosystem (section 5.2.1). The libraries were then manually categorized (section 5.2.2),
the forking and dependency relations were analysed semi-automatically (section 5.2.3),
and the major libraries were selected for all further analyses (section 5.2.4).

5.2.1 Systematic search (RQ 1)

The search was started from a few different places (in October 2016 and refreshed on
19 February 2017):

• the crypto and cryptography keywords on crates.io
• the crypto and cryptography topics on GitHub

46

5.2 Library search and categorization

• Reddit thread “What crypto library do y’all use?”1

• the “Cryptography” collection on libs.rs2

• an overview on arewewebyet.org3

• asking on the #rust-crypto IRC channel on the Mozilla IRC network.

These sources alone turned up a vast number of almost a hundred crypto crates belonging
to about 75 libraries or projects (a single project can deploy multiple crates). For the
purposes of this thesis, all the crates that originate from a single GitHub repository or
are otherwise developed under a single umbrella (like a common “brand” name) are
treated as a single library. Only libraries whose main purpose is to provide cryptographic
functionality at any level of abstraction were considered (cf. section 4.2.2). Libraries
whose crate was retracted (“yanked”) from crates.io were excluded. A few additional
libraries were identified by considering the main contributors of the main crypto libraries
and looking at other GitHub repositories they work on, leading to a total of 80 libraries.
This answers RQ 1, though the full list is not reproduced in this thesis but provided as
supplementary material (see appendix A item 3).

5.2.2 Categorization (RQ 2)

There are several possible ways to categorize the libraries. As this thesis focuses on
usability, a natural categorization groups the libraries by functionality. The presented
categorization first organizes the libraries by the level of the provided algorithms,
such that higher-level libraries normally depend on lower-level libraries:

• 10 crypto-specific utility libraries for constant-time operations, secret memory and
so on. Examples: nadeko, secrets4

• Libraries on the primitive level.
– 12 larger libraries which offer multiple primitives and usually multiple al-

gorithms per primitive. The implementations are either written in Rust or
attached through wrappers to code in another language. All libraries in this
category are introduced in section 5.3.

– 35 libraries which implement a single primitive, algorithm or a small family.
Example: ed25519-dalek5

– 5 libraries which offer a simpler interface to other implementations for specific
application scenarios. Example: crypto_vault5

• 18 libraries that implement cryptosystems or protocols. Example: rustls6

1https://reddit.com/4d8hxm (2016-04-06)
2http://libs.rs/cryptography/ (2016-04-12)
3http://www.arewewebyet.org/topics/crypto/ (2016-10-05)
4https://github.com/klutzy/nadeko, https://github.com/stouset/secrets (2017-04-07)
5https://code.ciph.re/isis/ed25519-dalek, https://github.com/zmbush/crypto_vault (2017-03-23)
6https://github.com/ctz/rustls (2017-03-16)

47

https://reddit.com/4d8hxm
http://libs.rs/cryptography/
http://www.arewewebyet.org/topics/crypto/
https://github.com/klutzy/nadeko
https://github.com/stouset/secrets
https://code.ciph.re/isis/ed25519-dalek
https://github.com/zmbush/crypto_vault
https://github.com/ctz/rustls

5 The Rust crypto ecosystem

Most parts of this categorization can be further refined. For instance, there are 10 TLS
libraries, which form a significant sub-population of the 18 protocol-level libraries. Note
again that only libraries which expose a (mostly) crypto-related API to other developers
are included in the ecosystem. This excludes command-line tools and applications that
simply use cryptography somewhere inside, and it also excludes libraries whose API is
not crypto-related anymore, though it might still be security critical.

A relevant alternative way to subdivide the libraries (RQ 2) is to group them by
dependencies, i.e., to consider the visible clusters in figure 5.1. Many alternative
categorizations are possible, of course, depending on the purpose.

5.2.3 Forks and dependencies (RQ 3)

To analyse the dependency relations between the libraries, I used a script that down-
loaded every library’s Cargo.toml file from the repository (on 9 March 2017) and parsed
the respective dependency sections. Forking relations were noted manually when in-
specting the repository (GitHub displays the upstream project, if any, under the name of
the current repository).

The dependency graph in figure 5.1 shows 54 of the 80 Rust crypto libraries and their
dependencies—the remaining ones do not have any dependency relations with other
crypto libraries. Note that all these libraries have many more dependencies to libraries
outside the crypto ecosystem that are not depicted. Two kinds of “centres” can be seen in
the graph: openssl, rust-crypto and ring are surrounded by other libraries depending
on them. On the other hand, octavo and sarkara consist of multiple smaller crates
aggregated in a meta crate, which thus depends on all the others. The visualization
shows multiple clusters that can be interpreted as sub-ecosystems since there are more
interactions within the clusters than with the outside.

Almost all projects have a couple of forks because the standard workflow on GitHub
requires forking a project before making changes and then submitting them as a pull
request. Besides these forks for technical reasons, very few projects have been forked
with the intention of developing the fork separately—such an intention becomes apparent
when a separate crate is published. All cases of such forks currently concern the major
libraries for primitives introduced in the next section and are thus depicted in figure 5.2
on page 50. Note that this analysis cannot find forks that happen by copying (part of) a
library’s code into a new project manually without creating a fork on GitHub.

To answer RQ 3, regarding dependency relations between libraries, it can be concluded
that the expected dependencies from protocol-level libraries (like rustls) on primitive-
level libraries (like ring) and on utility libraries (like untrusted) do indeed exist, but
surprisingly few libraries participate in this network at all—one third does not and

48

5.2 Library search and categorization

blissbtiny-keccak

octavo-digest

hc256

crypto_vault

argon2rs

octavo-mac

hkdf

octavo-crypto

alt-tls

nobsign

rustls

message_verifier

sodiumoxide

dono

cargon

scram

octavo

ring-
pwhash

sha2

crypto-hash

bcrypt

susurrus
ring

constant_
time_eq

security-
frameworklioness

consistenttime

ed25519-
dalek

newhope

common
crypto

sarkara

objecthash

schannel

hashsign

webpki-
roots

pwhash

rust-
crypto

fastpbkdf2

rusty_secrets

zerodrop

secrets

openssl

blake2-rfc

octavo-kdf

untrusted

native-tls

curve25519-
-dalek

noises

django
hashers

webpki

chacha20-
poly1305-

aead

ruma-
signatures

seckey

primitives primitive simplifier primitives + TLS TLS cryptosystem utility

Figure 5.1: Rust crypto libraries and their dependencies (only crates with at least one
dependency are shown)

only depends on other non-crypto libraries. Regarding forking relations, it can be
concluded that forking mostly happens due to GitHub’s workflow and only few real
forks exist.

5.2.4 Major libraries

Considering the large number of libraries, it is necessary to focus on a subset for analyses
which cannot be carried out automatically. Two metrics lend themselves to quantify the
importance of a library: the number of downloads (from crates.io) and the number
of dependent crates (the number of higher libraries and applications published on
crates.io which use the crate in question). The main difference between the two is
that transitive dependencies only count towards the downloads. For instance, rustls

49

5 The Rust crypto ecosystem

depends on ring. A single user of rustls only increases the dependent crates counter
of rustls but leads to equally many downloads of both rustls and ring. A bug in
ring can affect this user as much as any other, direct user of ring—thus the number
of downloads measures the impact of a library. However, this user probably does not
use ring’s API directly and hence the usability and misuse resistance of ring itself do
not affect the transitive user’s code. For this thesis, the number of dependent crates is
therefore the more suitable metric.

The libraries with more than 20 dependent crates (as of 1 March 2017) are: rust-crypto,
rust-openssl, sodiumoxide and ring, in decreasing order. All of them fall in the
category that provide multiple primitives and are introduced in detail in the following
section. In the remainder of this thesis, these libraries are referred to as the major
libraries. For some analyses, the octavo library is also included because it falls in the
same category and is interesting to compare with because it implements all primitives
purely in Rust. In addition, RustCrypto and rust_sodium are sometimes included
alongside or instead of rust-crypto and sodiumoxide, respectively. The former two are
forks of the latter two and have advantages in certain areas, whereas they are identical
in others.

5.3 Libraries providing primitives
This section introduces libraries which provide multiple cryptographic primitives in Rust.
These libraries are the centre of all further analyses and improvements. See section 2.2.9
for the characterisation of primitives used in this thesis. Table 5.1 provides an overview
of the key data and figure 5.2 visualizes the libraries and their ancestors on a timeline.

sodiumoxide

2008 2012

2010

2014

OpenSSL

NaCl

rust-openssl

2016

libsodium

C Rust

rust-crypto

rust_sodium

octavo

BoringSSL ring

1998

Rust language

RustCrypto

fork wrap/depend

Figure 5.2: Timeline of the major Rust primitive libraries’ start dates and ancestors

50

5.3 Libraries providing primitives
N

am
e

ru
st

-o
pe

n
ss

l
ru

st
-c

ry
pt

o
so

di
u

m
ox

id
e

oc
ta

vo
ri

n
g

ru
st

_s
od

iu
m

R
u

st
C

ry
pt

o
B

as
ed

on
O

pe
nS

SL
(p

la
in

R
us

t)
lib

so
di

um
(p

la
in

R
us

t)
B

or
in

gS
SL

so
di

um
ox

id
e

ru
st

-c
ry

pt
o

St
ar

te
d

D
ec

20
11

Se
p

20
13

D
ec

20
13

Ju
l2

01
5

Se
p

20
15

A
ug

20
16

O
ct

20
16

La
st

re
le

as
e

on
go

in
g

M
ay

20
16

on
go

in
g

A
pr

20
16

on
go

in
g

Se
p

20
16

on
go

in
g

La
st

co
m

m
it

on
go

in
g

Se
p

20
16

on
go

in
g

Se
p

20
16

on
go

in
g

N
ov

20
16

on
go

in
g

O
pe

n
is

su
es

/P
R

s
14

/
2

48
/

26
8

/
4

7
/

1
17

7
/

11
1

/
1

7
/

1
C

om
m

it
s

1,
69

0
75

3
43

5
28

8
6,

02
7

(2
,2

99
)a

46
72

C
on

tr
ib

ut
or

s
12

3
49

27
10

83
(3

3)
a

8
5

D
ow

nl
oa

ds
70

2,
82

7
24

8,
75

6
56

,3
52

75
3

36
,6

89
8,

94
0

<
20

,0
00

D
ow

nl
oa

ds
(6

0d
)

95
,1

32
49

,4
50

5,
15

9
13

0
16

,5
99

2,
86

1
(u

nc
le

ar
)

G
it

H
ub

st
ar

s
25

1
53

8
20

1
11

7
44

8
10

21
D

ep
en

de
nt

cr
at

es
92

11
8

30
0

25
8

9+
A

PI
le

ve
l

m
ed

iu
m

lo
w

hi
gh

m
ed

iu
m

-l
ow

m
ed

iu
m

-h
ig

h
hi

gh
lo

w
FI

PS
co

ve
ra

ge
b

67
%

50
%

8%
31

%
34

%
8%

19
%

C
N

SA
co

ve
ra

ge
c

92
%

67
%

8%
17

%
67

%
8%

17
%

O
th

er
al

go
ri

th
m

sd
9+

e
20

11
7

6
11

16

Ta
bl

e
5.

1:
Ke

y
da

ta
of

m
aj

or
cr

yp
to

lib
ra

ri
es

(a
s

of
2

M
ar

ch
20

17
)

a
r
i
n
g

is
te

ch
ni

ca
lly

a
fo

rk
of

Bo
ri

ng
SS

L
an

d
th

er
ef

or
e

co
nt

ai
ns

al
lo

fi
ts

co
nt

ri
bu

ti
on

s.
Th

e
nu

m
be

rs
in

pa
re

nt
he

se
s

on
ly

co
un

t
co

nt
ri

bu
ti

on
s

w
hi

ch
ar

e
no

t
pr

es
en

t
in

th
e

up
st

re
am

B
or

in
gS

SL
pr

oj
ec

t.
b A

lg
or

it
hm

s
de

fin
ed

in
th

e
FI

PS
14

0-
2

A
nn

ex
A

[N
IS

16
]:

A
ES

(C
B

C
,C

C
M

,G
C

M
,X

T
S)

,G
M

A
C

,C
M

A
C

,H
M

A
C

,T
ri

pl
e-

D
ES

,S
H

A
-1

,s
ev

er
al

SH
A

-2
,S

H
A

K
E

an
d

SH
A

-3
va

ri
an

ts
,D

SA
,R

SA
an

d
EC

D
SA

c A
lg

or
it

hm
s

de
fin

ed
in

th
e

C
om

m
er

ci
al

N
at

io
na

lS
ec

ur
it

y
A

lg
or

it
hm

(C
N

SA
)

Su
it

e
[I

nf
15

]
(f

or
m

er
“S

ui
te

B
”)

:A
ES

(C
B

C
,G

C
M

),
SH

A
2-

25
6,

SH
A

2-
38

4,
EC

D
H

,E
C

D
SA

d F
or

ex
am

pl
e:

C
ha

C
ha

20
,P

ol
y1

30
5,

bc
ry

pt
,s

cr
yp

t,
C

ur
ve

25
51

9
e O

pe
nS

SL
pr

ov
id

es
a

pl
et

ho
ra

of
al

go
ri

th
m

s,
bu

t
r
u
s
t
-
o
p
e
n
s
s
l

cu
rr

en
tl

y
on

ly
ex

po
se

s
a

se
le

ct
io

n.

51

5 The Rust crypto ecosystem

5.3.1 rust-openssl

The library with bindings to OpenSSL is the oldest major crypto library in Rust and
is actively developed and maintained by a member of the official Rust library team
(@sfackler). It is also the most used library according to the downloads statistics, though
it is not directly comparable because rust-openssl offers both crypto primitives and a
TLS implementation in the same crate. Following some criticism regarding the code
quality in February 2016, which the developer confirmed himself (“some of rust-openssl
is a mess, particularly on the crypto side”) [Cua+16, posts 12 and 17], there has been
a lot of activity over the rest of the year with about as many contributions as in all
previous years combined. As a result, the code is in much better shape today.

Because it is based on the mature OpenSSL library, the obvious advantage of
rust-openssl is its high standard of security and stability, although the wrapping
Rust code has not been audited itself. The underlying OpenSSL library is also the major
obstacle when using rust-openssl today: the OpenSSL binaries need to be downloaded,
compiled and set up manually in the build environment. While this is a fair requirement,
it may be a significant barrier for beginners in systems programming.

According to the developer, the API is designed to be higher-level than OpenSSL’s API.
For example, the Rust API offers a single function to hash a value, whereas OpenSSL
requires at least three calls (init, update and final). The wrapping layer also takes care of
error handling using Rust’s Result<T,E> type, which fixes a major source of API misuses
that OpenSSL has been criticized for [GIJ+12, sec. 4.1]. Apart from these improvements
on a fine-grained level, rust-openssl explicitly does not attempt to create high-level
APIs to improve usability and misuse resistance, as it intends to mirror OpenSSL’s
functionality. It also only exposes part of OpenSSL because “OpenSSL has approximately
an infinite amount of features, so stuff gets supported as-needed in rust-openssl,”7 as
the developer puts it.

5.3.2 rust-crypto

The oldest library that implements primitives in Rust itself is rust-crypto. After its main
development period from early 2014 to mid-2015, the number of commits has decreased
and issues and PRs started to accumulate, though the developer (@DaGenix8) declined
rumors that it might be abandoned.9 There is a recent effort to split rust-crypto’s

7Source: #rust-crypto IRC chat (2017-02-21)
8The @-notation is used throughout this thesis to refer to GitHub usernames. The profile of @username

can be found at https://github.com/username.
9https://reddit.com/46s75m, https://github.com/Keats/rust-jwt/issues/7 (2017-03-23)

52

https://github.com/sfackler
https://github.com/DaGenix
https://github.com/username
https://github.com/username
https://reddit.com/46s75m
https://github.com/Keats/rust-jwt/issues/7

5.3 Libraries providing primitives

functionality into smaller crates under the RustCrypto10 GitHub organization. Because
of this modularization, the statistics of RustCrypto cannot be determined exactly (see
table 5.1). Despite the developer’s warning that rust-crypto “has not been thoroughly
audited for correctness,” it is currently the second most downloaded crypto library and
the one with the most dependent crates, among which there are OAuth implementations,
a Bitcoin library and a Simple Mail Transfer Protocol (SMTP) implementation.

The focus of rust-crypto is on the implementation of primitives, so it does not wrap
another implementation. While the majority of its code is written in Rust, it requires
some C code for the AES New Instructions (NI),11 which may cause build problems
especially on Windows. As can be seen from table 5.1, the library already supports many
algorithms and covers most users’ needs. In relation to the other primitive libraries,
rust-crypto is a rather low-level set of primitive implementations and its API reflects
that and serves to make the implementations interoperable and composable.

5.3.3 sodiumoxide and rust_sodium

NaCl by Daniel Bernstein [Ber09] was designed with usability as one of its three main
goals. The fork called libsodium [Den] was created to make it more easily portable and
packageable, and unlike NaCl itself it is actively maintained and continually improved
today. Please see section 3.3.3.1 for more details.

The bindings for Rust are in the libsodium-sys crate and can be used through proper
Rust APIs in the sodiumoxide crate. Unfortunately, sodiumoxide is difficult to build
(especially on Windows) and there are no build instructions. That is one of the issues
that its fork rust_sodium solves (at least for the -gnu toolchain), which was created very
recently (August 2016) and is currently almost identical to sodiumoxide apart from the
build and continuous integration system. For this reason, the experiments in this thesis
evaluate rust_sodium only, though it is worth pointing out that the API, documentation
and most other parts were created by sodiumoxide’s developer (@dnaq).

sodiumoxide has the same concepts and characteristics as NaCl/libsodium and provides
roughly the same set of high-level functions and underlying primitives. It also deliber-
ately excludes any insecure or deprecated algorithms and only offers few, opinionated
choices for every primitive. Thus, it cannot be used in certain scenarios where specific
algorithms are required by a cryptographic protocol. sodiumoxide is more than just a
simple wrapper: it uses Rust’s type system and other language features to make the

10https://github.com/RustCrypto (2017-03-16)
11The AES-NI is an instruction set extension for the x86 microprocessor architecture and allows

applications to use hardware acceleration for AES encryption and decryption operations.

53

https://github.com/dnaq
https://github.com/RustCrypto

5 The Rust crypto ecosystem

API more usable and it adds Rust code samples to libsodium’s extensive documentation.
sodiumoxide and rust_sodium combined have a lot fewer downloads and dependent
crates than rust-crypto or ring despite similar age.

5.3.4 octavo

octavo is another take at pure-Rust cryptography. It is split into multiple crates so that,
for example, hash functions can be used without including the entire crypto stack. The
main developer (@hauleth) points out in various places that the code is not production-
ready and probably insecure. In particular, it does not defend against timing attacks at
all, though a new constant-time helper library12 is being developed. In addition to not
being reviewed, the library is also incomplete. Of the more popular algorithms, some
significant ones are missing, e.g., AES, Poly1305 and the Diffie-Hellman key exchange.

Although octavo is not safe to use in the short term, its long-term goal is to provide a
solid, “hard tested”13 implementation that is more readable than rust-crypto’s code.14

The project clearly aims at making this implementation available in other programming
ecosystems,15 supporting the idea that Rust is a good language to implement crypto
primitives in because of its safety guarantees.

5.3.5 ring

BoringSSL is Google’s fork of OpenSSL, which cleaned out some old algorithms among
other changes. ring provides a subset of BoringSSL’s features (hence the name) in
Rust and, in particular, it excludes the entire TLS stack and most deprecated algorithms
(for example, there is no MD5 in ring on purpose). A notable difference to other Rust
crypto libraries based on implementations in other languages is the way in which ring

incorporates BoringSSL: it is technically a fork. All other wrapping libraries discussed in
this chapter, on the other hand, are Rust crates with a dependency on a sys crate, which
in turn is built against the original C library. So the original library is a dependency,
whereas in ring it is the upstream. BoringSSL updates are regularly merged into ring

and there are also contributions the other way round.

Despite this close relationship, the two libraries share mostly the algorithmic core and
ring comes with its own, independent Rust API and documentation. It is the developer’s

12https://github.com/libOctavo/ct (2017-03-23)
13https://reddit.com/comments/3hci07/-/cu6apht/ (2017-03-23)
14https://reddit.com/comments/3hci07/-/cu67q0c/ (2017-03-23)
15https://github.com/libOctavo/octavo/blob/d94d92/src/lib.rs#L9 (2017-03-23)

54

https://github.com/hauleth
https://github.com/libOctavo/ct
https://reddit.com/comments/3hci07/-/cu6apht/
https://reddit.com/comments/3hci07/-/cu67q0c/
https://github.com/libOctavo/octavo/blob/d94d92/src/lib.rs#L9

5.4 Contributors survey

declared goal to make ring as usable16 and “foolproof”17 as possible and it is the
only library that has a (frequently used) “usability” label in its issue tracker.18 The
documentation is extensive, virtually no method or module remains undocumented,
the only deprecated algorithm (SHA-1) is marked as such, and there are code samples
for most major functions. Because ring is mostly non-Rust code, it requires a C/C++
compiler and on Windows it currently depends on Microsoft’s MSBuild tool and therefore
only works with the -msvc toolchain, not with the -gnu toolchain.

Compared to the other libraries, ring is relatively new and had its first release on
crates.io in August 2016. At the time of writing, it is by far the most actively developed
library for crypto primitives in Rust, with the highest number of commits and quite many
contributors considering its young age. Moreover, it is most frequently recommended
library (see section 5.4.8).

5.3.6 Other primitive libraries

sarkara is an experimental post-quantum cryptography library. sodalite and microsalt

wrap the TweetNaCl library, which implements the main NaCl primitives with as little
code as possible to be easily auditable. grypt and commoncrypto are relatively straight-
forward bindings to libgcrypt and the Common Crypto library on Mac OS X, respectively.
These five libraries also provide a range of primitives and algorithms, but they are
neither introduced nor analysed in detail in this thesis because they are less developed
and less popular. In addition, there are numerous libraries which only implement a
particular primitive and mostly only a single algorithm.

5.4 Contributors survey
To find out about the backgrounds and the opinions of the developers in the Rust crypto
ecosystem, I conducted an online survey. Sections 5.4.1 to 5.4.3 describe the setup of
the survey. Sections 5.4.4 to 5.4.7 report on those results that pertain to the contributors
themselves to address RQs 4 to 7. Section 5.4.8 briefly reports on the crypto libraries
recommended by the survey respondents for basic tasks. Further results from the survey
can be found in section 5.5 as they concern the collaboration of contributors (RQs 8
to 12) and in section 5.7.2 regarding crypto-relevant features missing from the Rust
platform (RQ 13). Finally, section 5.4.9 discusses threats to the validity of this survey.

16https://reddit.com/comments/3jdlux/-/cuool0h/ (2017-03-23)
17https://github.com/briansmith/ring/issues/359#issuecomment-263207373 (2017-03-23)
18https://github.com/briansmith/ring/labels/usability (2017-03-23)

55

https://reddit.com/comments/3jdlux/-/cuool0h/
https://github.com/briansmith/ring/issues/359#issuecomment-263207373
https://github.com/briansmith/ring/labels/usability

5 The Rust crypto ecosystem

The survey structure, anonymous parts of the responses, the R scripts used to analyse
the data and more plots and tables than the ones included in this chapter are available
for download (see appendix A).

5.4.1 Survey design

The 37 questions were chosen in collaboration with my supervisor based on their
relevance regarding the research questions 4 through 13 as well as their potential to
yield insights for improving the crypto ecosystem of Rust. The questions were grouped
by topic and displayed on separate pages:

1. demographics (7 questions)
2. involvement of the contributor (10 questions)
3. Rust’s crypto ecosystem (4 questions)
4. API design (4 questions)
5. questions about the concrete libraries the contributor works on (8 questions)
6. final comments (3 questions)

The full list of questions is reproduced in appendix B. While the first two parts consisted
mostly of multiple choice questions and numeric answer fields, the latter parts were
dominated by open-ended questions. Group 5 in particular asked the contributors about
the concrete projects they work on. As this makes them personally identifiable, these
questions were grouped separately. Survey participants were informed about a possible
loss of anonymity and could choose between skipping the entire part, answering it
anonymously (that is, their individual answers are not published anywhere) or providing
a contact address (in which case they have been asked for permission before any
individual statements were published).

Overall, the survey was estimated to take between 10 and 20 minutes, depending on
the detail of the answers to the open-ended questions. The survey was implemented
with a self-hosted, HTTPS-protected installation of the open-source, web-based tool
LimeSurvey [LS16] version 2.58.0 build 170104.

5.4.2 Participant recruitment

For a small initial test of the survey design, on 9 January 2017, I posted the link and a
short introduction to the #rust-crypto IRC channel on the Mozilla IRC network, where
about a hundred users are permanently logged in and about ten actively chat on a
weekly basis. This resulted in three responses.

To recruit further participants without the bias introduced by their IRC use, I system-
atically gathered the e-mail addresses of the contributors to the major crypto libraries

56

5.4 Contributors survey

(specifically the libraries for primitives and the TLS libraries, section 5.2) who had
contributed at least five commits. Invitation e-mails were sent on 21 and 22 January
2017. If a contributor’s e-mail address was not specified on their GitHub profile, on the
personal website linked from there or in the meta data of one of their commits, they
were not sent an invitation e-mail. Overall, 58 contributors were invited via e-mail and
20 additional responses were collected before the survey closed on 5 February 2017,
resulting in a total of 23 respondents.

5.4.3 Sample

Of the 23 responses, 3 were incomplete and had to be excluded. All remaining 20
responses came from people who self-identified as contributors in the survey. Because
many contributors only make minor or non-technical contributions like small bugfixes,
fixes to the build process or improvements to the documentation, the survey asked
whether they implement “cryptographic algorithms, interfaces, libraries, etc. in Rust.”
5 respondents answered “No” and are therefore not treated as implementers, but only
as contributors in the following evaluation. While some results are presented based on
the answers of all 20 contributors (also referred to as respondents), other results that are
implementation-specific are evaluated only for the 15 implementers.

5.4.4 Demographics (RQ 4)

All respondents are male, almost half are 25-29 years old and another third are between
30 and 39 years old. About a third lives in the USA, a quarter in Germany, two live in
the UK and two in the Netherlands; the remaining countries only get a single mention.
Almost half have a graduate degree, a third have a bachelor’s degree, and three are
still younger than 22 and have high school degree. 60% work full time, 30% have a
part-time job and 15% of those study at the same time. None of the respondents is a
student without a part-time job.

These results roughly correspond to the results of the 2016 Stack Overflow developer
survey [Sta16] and previous research (see section 3.1). In conclusion regarding RQ 4, the
contributors in the Rust crypto ecosystem are demographically average developers.

5.4.5 Qualification (RQ 5)

The participants were asked to rate their own cryptography and Rust skills as well as
to specify the years of experience they have. Regarding their cryptography skills, most
implementers rate themselves as “experienced” and 20% only as “educated” and hence
without practical experience, whereas the Rust programming skills are consistently rated

57

5 The Rust crypto ecosystem

“experienced” or better, with the majority answering “advanced” (see figure 5.3). Only 4
implementers (26.7%) rate their crypto skills above their Rust skills.

Crypto
Rust

Pr
op

or
ti

on
 o

f i
m

pl
em

en
te

rs

Novice Educated Experienced Advanced Expert
0%

10%

20%

30%

40%
n = 15

Figure 5.3: Self-ratings for cryptography and Rust skills

The years of experience have considerably different distributions in the different areas
(see figure 5.4). All contributors have extensive programming experience between 4 and
25 years (median 14). This is significantly above the values reported by Stack Overflow
[Sta16], where the median is 6.5 and only 26.5% have 11 years of experience or more,
compared to 60% in the present survey. On the one hand, most programmers seek help
on Stack Overflow and only few are experienced enough to provide it, which introduces
a bias towards inexperienced programmers. On the other hand, the difference is large
enough to support the hypothesis that Rust crypto contributors have above-average
programming experience.

The experience with Rust itself naturally cannot be as long because Rust was published
as recently as 2010, and indeed the maximum of 4 years is only as high as the minimum
of the programming experience distribution. The median of 2 years indicates that most
implementers have only recently started using Rust. For instance, the creator of the
well-recognized rustls library (@ctz) only has one year of experience with Rust (and
therefore crypto in Rust) but a strong programming and cryptography background (25
and 13 years, respectively). Little experience with Rust is the norm rather than the
exception, and it is compensated by feedback and contributions from the community.
@ctz, for instance, announced his rustls library with the remark: “It’s my first large-
scale rust project, so I’d appreciate some comments.”19

19https://reddit.com/4s2n9q (2017-03-23)

58

https://github.com/ctz
https://github.com/ctz
https://reddit.com/4s2n9q

5.4 Contributors survey

0

5

10

15

20

25

Programming Rust Crypto Crypo in
Rust

ye
ar

s

Figure 5.4: The implementers’ experience with programming and cryptography in Rust
and elsewhere

Unlike the programming experience, the cryptography experience is not normally dis-
tributed but visibly right-skewed, hence most contributors are relatively inexperienced
(the median is 3 years), but there are a few experts with up to 17 years of experience.

To summarize the qualifications (RQ 5), Rust crypto contributors have above-average
programming experience, little Rust experience due to the youth of the language
and there are only a few experienced cryptographers among them.

5.4.6 Motivation (RQ 6)

When asked for their motivation to work on crypto in Rust, many contributors included
the goals for their specific libraries in their answer, namely portability, idiomatic APIs,
interoperability of different primitive implementations and high-quality TLS support.
One respondent simply names the lack of other suitable libraries as their motivation.
This indicates that the main motivation is simply an intrinsic desire or a practical need
for the result.

In general, money would be the most straightforward extrinsic motivation. Only one
respondent—a minor contributor to the ring library—is currently paid for implementing
crypto code in Rust and another two were paid in the past. In contrast, three respondents
(in this survey among Rust crypto contributors) are currently paid for crypto implement-
ation work in other programming languages, and another two were paid for other
crypto-related tasks in the past. The paid work on crypto code does not necessarily result
in publicly available contributions to the crypto ecosystem, though. This shows that

59

5 The Rust crypto ecosystem

money is not a motivational factor in the Rust crypto ecosystem, and most contributors
work on the public Rust crypto projects in their unpaid free time.

As other extrinsic motivational factors, respondents mostly named properties of the Rust
language, namely safety (mentioned 5 times), expressiveness and its ability to run in
bare-metal environments. Intrinsic motivational factors are the desire to learn and gain
insights and to help grow the Rust ecosystem (mentioned twice).

In conclusion regarding RQ 6, Rust crypto contributors have several motives that also
appear in the literature. Hertel, Niedner and Herrmann [HNH03], for instance, also
find pragmatic motives like an interest in the produced software itself and hedonistic
motives like the desire to learn. Beyond that, Rust crypto contributors are specifically
motivated by the desirable properties of the Rust programming language.

5.4.7 Time commitment (RQ 7)

Figure 5.5 shows the amount of time that the respondents spend on crypto-related tasks
today and have spent in the past when they were most active. While the hours per week
at each contributor’s individual peak time form an only slightly right-skewed distribution,
the time commitments today (at a given point in time which is the same for all contribut-
ors) are heavily right-skewed with medians at zero. This latter distribution is consistent
with the amount of contributions that the developers make (see section 5.5.1).

0

5

10

15

20

Implementing
(today)

Other
tasks

(today)

Implementing
(peak)

Other
tasks

(peak)

ho
ur

s
pe

r
w

ee
k

Figure 5.5: Amount of time in hours per week spent on implementation and other tasks
related to cryptography in Rust. The two distributions on the left show the
time spent today and the two on the right refer to the (possibly past) time
when the respective contributor was most actively involved.

60

5.4 Contributors survey

Of the 15 implementers, nearly half (7) spent 10 hours or more per week at some point.
Today, the only developer who works 10 hours on implementation and an additional 10
hours on other tasks is also the only one who is paid to do so (see the previous section),
whereas the others spend much less time (the overall medians are both zero, the means
are 1.6 and 1.3 hours, respectively).

It is crucial to note that the time spent on cryptography tasks does not necessarily
mean an investment in the public (Rust) crypto ecosystem. The survey question (un-
fortunately) does not distinguish between the two, so that RQ 7 cannot be answered
definitely. However, the one contributor with the highest time investment answered a
respective follow-up question and indicated that part of his 20 hours per week result in
contributions to public crypto libraries.

Hertel, Niedner and Herrmann [HNH03] find that a “lack of time is one of the biggest
obstacles for participating in the Linux kernel project” and the situation seems to be
similar in the Rust crypto ecosystem. For example, the main developer of rust-crypto
writes: “I’ve been quite busy at work over the last few months and its hard to program
8 - 10 hours during the day and then jump into more programming at night.”20 And a
survey respondent writes: “No funding appears to be available for such work, making it
hard to sustain.” Even @briansmith, the main developer of ring and currently the most
productive contributor in terms of commits per week (he is likely not among the survey
respondents), sees the same issue: “People working on Rust crypto are making money
doing stuff that has nothing to do with Rust, and then investing it into Rust. That’s not a
sustainable strategy.” [Cua+16, post 14]

Regarding RQ 7, it can be concluded that the time commitment of all but the main
contributors is well below 5 hours per week. Most contributors work on Rust crypto
in their unpaid free time, making the lack of time a major obstacle to the success of
the crypto ecosystem.

5.4.8 Recommended library

The survey asked the respondents to recommend a library for string encryption to a
Rust beginner. For such a basic task, the survey respondents could ignore the feature
richness of the libraries and focus on other quality attributes like stability, usability,
documentation, etc.

ring received 9 recommendations, which is more than all others combined. The given
reasons included the solid BoringSSL base, the credible main developer, high-level
and misuse resistant APIs and the fact that it is actively maintained. sodiumoxide and

20https://github.com/DaGenix/rust-crypto/issues/106#issuecomment-74023642 (2017-03-23)

61

https://github.com/briansmith
https://github.com/DaGenix/rust-crypto/issues/106#issuecomment-74023642

5 The Rust crypto ecosystem

rust-openssl received 3 recommendations each and rust-crypto received 2. Although
these recommendations partly reflect the involvement of the respective survey respon-
dents, which some pointed out as a threat to validity, the overall picture is consistent
with recommendations given out on other occasions on the #rust-crypto IRC channel
and elsewhere. Particularly Tony Arcieri [Arc17], who is an active crypto expert in
the Rust crypto ecosystem but not directly involved in any of the libraries in question,
repeatedly recommends ring.21

5.4.9 Threats to validity

The sample is the main threat to the validity of the presented survey results. Firstly, it
only encompasses 20 respondents because the overall number of contributors in the Rust
crypto ecosystem is rather low—the response rate of about a third is above average and
resembles response rates of company-internal surveys.22 Thus, no statistically significant
correlations could be drawn from the collected data. Secondly, the participants were
not sampled randomly from a larger population. To increase the absolute number of
respondents, all relevant Rust crypto contributors had to be invited, so the sample is
biased towards users who are generally more willing to participate in surveys (about
Rust) or who are more passionate about Rust. Other than that, the recruitment mode
(IRC and e-mail) and the web-based format of the survey likely did not introduce any
additional bias. The proportion of repository owners who participated in the survey
(i.e. the sub-sample from the sub-population of all main contributors) is also a third,
indicating that the sample has a reasonable coverage in this respect.

Another threat to the honesty of the responses is the non-anonymous part in the survey.
The survey was designed to avoid any possible bias by placing and mentioning the
respective part only at the very end so that no participants would abort the survey
early or decide not to participate because of it. In the non-anonymous part itself, 8
out of 15 implementers (or 12 out of 20 contributors) decided to remain anonymous
and skip it or not to provide a contact address. The additional bias and the even lower
number of responses in this last part have only little impact on their validity because
the last part consisted mostly of free-text questions for opinions and ideas, which were
aggregated without statistical analyses and will be presented as part of the discussions
in the following section.

21https://reddit.com/4xyb5j (2017-03-23)
22https://www.surveygizmo.com/survey-blog/survey-response-rates/ (2017-03-01)

62

https://reddit.com/4xyb5j
https://www.surveygizmo.com/survey-blog/survey-response-rates/

5.5 GitHub analysis

5.5 GitHub analysis
Because the Rust ecosystem is entirely open source, (almost) all contributions and other
interactions happen publicly. This chapter uses the publicly available data on GitHub,
responses from the survey introduced in the previous section and personal observations
to shed light on how the Rust crypto community works together.

Section 5.5.1 addresses RQs 8 and 9 by quantitatively analysing contributions data
from GitHub. The data shows an overall lack of contributors, which is discussed in
section 5.5.2. Section 5.5.3 describes the various ways in which contributors interact
(RQ 10) based on qualitative observations and section 5.5.4 investigates the frequency
of discussions about API design and usability on GitHub (RQ 11). To put the presented
numbers into perspective, section 5.5.5 draws from survey responses and public state-
ments of repository owners and identifies which projects and developers make usability
a priority (RQ 12). Finally, section 5.5.6 discusses threats to the validity of the presented
analyses of GitHub data. The technical details of the automated GitHub analyses are not
elaborated, but the R scripts and raw data are available for reproduction (see appendix A
items 6 and 7).

5.5.1 Quantitative contributions analysis (RQs 8 and 9)

This section quantifies the relationship between contributors (GitHub users) and libraries
(GitHub repositories). Some users contribute more to a library than others, and some
contribute to multiple libraries related to cryptography in Rust. The “Contributors”
graph on every repository’s “Graphs” page shows every contributors’ involvement over
time as well as the total number of commits, additions and deletions. For an automated
analysis, I downloaded this data through the GitHub API on 1 March 2017.

The 80 libraries in the Rust crypto ecosystem (see section 5.2) have 392 contributor
relations in total, though there are only 279 unique contributors. While most of them
contribute to only one project, 38 contribute to two and 19 contribute to three or even
more projects (up to 11). Looking at the top ten contributors (with respect to the
number of repositories the contribute to), there seem to be two main reasons for the high
numbers: Some contributors like @quininer (11 repositories), @ctz (5) or @cesarb (5)
simply split their work into many smaller crates, each of which has a separate repository,
and thus contribute mostly to their own repositories. On the other hand, users like
@frewsxcv (9) or @tarcieri (5) are active across a relatively wide range of projects which
they do not own (@frewsxcv owns none of the 9 Rust crypto projects he contributes
to). Regarding RQ 8 it can thus be concluded that a few developers work on multiple
Rust crypto libraries but most have only contributed to one (and possibly to many
other non-crypto Rust libraries).

63

https://github.com/quininer
https://github.com/ctz
https://github.com/cesarb
https://github.com/frewsxcv
https://github.com/tarcieri
https://github.com/frewsxcv

5 The Rust crypto ecosystem

The reverse relations are distributed similarly: almost half of the projects only have a
single contributor, many projects have a few (less than ten) and only the bigger projects
attract more contributors—up to 100 in the case of rust-openssl. The other libraries
with many contributors are ring (where all BoringSSL contributors are counted in),
rust-crypto, sodiumoxide, rustls and octavo, in decreasing order.

But even among the libraries with many contributors the contributions follow an ex-
tremely skewed distribution—so much so that they effectively also have a single main
developer. Following previous work [CGJ16, for example], the contributions of a user
are measured as the number of commits. Chełkowski, Gloor and Jemielniak [CGJ16]
analyse 263 Apache projects and find that they “predominantly [rely] on radically solit-
ary input.” They contrast this observation with the general perception that open source
development is collaborative.

In the Rust contributors survey, when asked about the number of main developers of the
library they work on (without looking it up), the respondents answered with fairly differ-
ent numbers for the same libraries, depending on their notion of a main developer: most
answered that ring and rust-openssl have a single main developer, but one respondent
estimated 8 for ring and another said 20 for rust-openssl. In fact, all larger crypto
libraries in Rust (including those two) have a single contributor whose contributions far
outweigh all others combined.23 While a main contributors’ contributions encompass
hundreds of commits and 10k–100k lines of codes, the remaining contributors have on
the order of ten commits and 100-1000 lines of codes.

In summary, most developers only contribute to a single library but a few are more
active (RQ 8). A few projects thus receive much more attention than the majority, which
have very few contributors overall (less than ten). The distributions of contributions
towards individual libraries (RQ 9) are heavily skewed: a single main developer
contributes more than all others combined and is often the only contributor in
the first place.

5.5.2 Lack of contributors

The data presented in the previous section shows that most crypto projects are driven
by a single main developer. A couple of survey respondents named the low number of
contributors as an obstacle that the Rust crypto ecosystem currently faces. They make
out two causes. Firstly, some survey respondents bemoan a lack of funding, which

23If you manually confirm this hypothesis with the “Contributors” pages on GitHub, note that ring’s
page includes all BoringSSL contributors and that the main developer @DaGenix is missing from
rust-crypto’s page because the commits were made by a different Git user (Palmer Cox).

64

https://github.com/DaGenix

5.5 GitHub analysis

forces developers to work on their projects in their (limited) free time (cf. section 5.4.7).
Secondly and more importantly, the work on cryptography in Rust requires two rare
skill sets, the combination of which is even rarer. One respondent says that there is
especially a lack of cryptographers who become active in the Rust ecosystem, meaning
that it would be easier for current crypto experts to learn Rust than for Rust programmers
to become crypto experts.

For crypto libraries, a low number of active contributors is particularly harmful. Cryp-
tographic code is always security-critical and therefore should be reviewed, which
obviously requires a second active developer on every project. To some degree, the lack
of reviewing can be mitigated by having a certain version of the code professionally
audited at some point, though none of the existing libraries is currently at this point and
it is unclear whether accordingly qualified experts would be available. Furthermore, the
design of a library also needs to be reviewed—especially its API design. APIs are con-
tracts between the implementer and the user of a library and need to be designed with
the interests of both sides in mind, but when implementers design the APIs themselves
as they implement the underlying algorithms, they naturally focus on the implementer’s
interests. As research has shown (see section 3.3.2) and as will be discussed in chapter 8,
bad API design can lead to vulnerabilities, which makes it especially important for
cryptographic APIs. In short, crypto projects require multiple active developers for
reviews and for API design to improve their level of security, though the additional
developers do not necessarily have to contribute a lot of code.

5.5.3 Contributor collaboration (RQ 10)

All projects have a main developer who normally acts as a benevolent dictator for life
(BDFL).24 That is, as repository owners, the main developers have the final say when it
comes to making a decision, though they cannot prohibit forks. Some make use of this
decision power more determinedly than others. For example, ring’s owner @briansmith
makes strong decisions even against (friendly) opposition, yet never without giving
reasons and always open for discussions.25 On the other hand, rust-crypto’s owner
@DaGenix accepted pull requests—during the time when he was still active—with
relatively few comments (mostly just “thanks”) and therefore acted more as a manager
of the project rather than a dictator.

This kind of dictatorship or at least central management makes involved development
processes unnecessary as long as the number of contributors is low. Survey respondents

24Unlike in politics, dictatorship does not have negative connotations in the context of open source
projects and is a widespread, accepted and effective form of organization.

25Example: https://github.com/briansmith/ring/issues/414 (2017-03-23)

65

https://github.com/briansmith
https://github.com/DaGenix
https://github.com/briansmith/ring/issues/414

5 The Rust crypto ecosystem

characterized the processes as “ad-hoc” and “passive (bugfixes and PRs only).” These
options were selected 4 and 3 times, respectively, and none of the other, more structured
forms of organization like Scrum or test-driven development were selected. The pro-
cesses are mostly shaped by the tools of the platform GitHub, where virtually all Rust
crypto libraries are hosted. The platform implements a “fork and pull request”-based
model, where the issue tracker and the pull requests (PRs) with review functionality
provide space for discussions. I will not discuss the technical details, since these parts of
the process are no different from other GitHub projects. Note that bug reports and new
ideas submitted through the issue tracker also constitute a form of contribution.

As it is customary on GitHub, all projects welcome contributions, many advertise this and
some name areas in which support is especially needed. ring even has a “good-first-bug”
label in its issue tracker to show new contributors where to start. The numbers presented
in the previous sections show that active contributors are nevertheless rare. In his talk,
@ctz happily reports about a feature where “there is someone, like, actually working
on it, who is not me, which is really cool” [Bir17], which shows again that external
contributions are rare but genuinely appreciated. Most input from the outside does
not come in the form of pull requests but in the form of feature requests in the issue
tracker, and it is mostly (though not always) the main developer who then decides about,
designs and implements those features. Discussions about the necessity and design take
place directly in the issue tracker, if at all.

Some owners try to encourage discussions by posting their intentions and design sug-
gestions in the issue tracker a while before implementing them, both for others to
discuss or to take over the work. This can be quantified by the proportion of issues
(not PRs) opened by the repository owner. When considering only repositories with
at least 5 issues (of which there are only 17 in the Rust crypto ecosystem as of 27
February 2017), a few stand out with particularly high ratios: all issues of @mikeycgto’s
message_verifier and 89% of @burdges’s zerodrop-rs utility library were created by
the respective owners, and some even have titles that ask a design question like “Should
we have a Deref trait?”26 The repositories of @briansmith also have many issues created
by him,27 for the major projects ring and webpki it’s more than 78%. On the other end
of the spectrum, there are rustls (10%), rust-crypto (8%) and rust-openssl (7%),
whose issue trackers are mostly filled with feature requests and bug reports from users.
Note that lower numbers are not necessarily worse, they simply indicate that the devel-
opment is driven or at least initiated by other contributors, or that the main developer
simply does not use the issue tracker to attract ideas, opinions and collaborators.

26https://github.com/burdges/zerodrop-rs/issues/9 (2017-03-23)
27Example: https://github.com/briansmith/ring/issues/419 (2017-03-23)

66

https://github.com/ctz
https://github.com/mikeycgto
https://github.com/burdges
https://github.com/briansmith
https://github.com/burdges/zerodrop-rs/issues/9
https://github.com/briansmith/ring/issues/419

5.5 GitHub analysis

Besides the interactions on GitHub, there is an IRC channel on the Mozilla network
called #rust-crypto, where about a hundred “crustographers” are permanently logged
in. Their participation there follows the usual power-law distribution, i.e., only a few
of these IRC users regularly participate in discussions. Topics on the chat range from
issues concerning the Rust crypto libraries, their development and their usage, over
crypto-related topics not specific to Rust, up to very rare off-topic messages. Technical
issues regarding the implementation of a specific library are rarely discussed there,
though it does happen occasionally.28 Moreover, there are regular Meetups about Rust
in the whole world. The ones in the San Francisco Bay Area, which are recorded and
published online, sometimes cover cryptography in Rust.29 Some Rust crypto developers
use Reddit or their Twitter feed to publish news about new libraries, new releases or
other big changes.

In conclusion regarding RQ 10, the contributors collaborate in a way that is typical
for small to medium GitHub projects: the repository owner acts as a dictator and
contributions are made in the form of pull requests or reported issues, which is where dis-
cussions take place. Some repository owners follow their own vision more strongly
than others, and some facilitate and solicit contributions more than others. Other
communication channels include IRC and in-person Meetups.

5.5.4 API design discussions (RQ 11)

As shown in the previous section, discussions take place on GitHub in issues and pull
requests and possibly other private or non-recorded places. To the best of my knowledge,
the vast majority of technical discussions regarding API designs happens on GitHub,
where the discussed code can be seen and commented on directly. This section analyses
those public discussions to find out how often the API design is discussed at all and
how often usability (and misuse resistance) are discussed in particular. To this end, I
systematically examined all 710 issues and 1001 PRs (collectively called items in the
following) associated with crypto libraries that have at least 100 items [cf. KGB+16,
sec. 4.6]. In decreasing order, those libraries are rust-openssl, ring, rust-crypto,
sodiumoxide and octavo. The analysis was conducted on 22–26 February 2017.

As a first indicator, I downloaded the entire contents of all items and marked the ones
that matched the keywords usability (or usable), API, misuse and doc. These keywords
alone produce many false positives (e.g. build problems with “libwinapi” match the API
keyword) and also many false negatives because API design discussions only occasionally
mention these exact keywords explicitly. I manually looked at the title of every item

28https://github.com/briansmith/ring/pull/111 (2017-03-23)
29https://www.meetup.com/Rust-Bay-Area/events/past/ (2017-03-23)

67

https://github.com/briansmith/ring/pull/111
https://www.meetup.com/Rust-Bay-Area/events/past/

5 The Rust crypto ecosystem

along with the results of these keyword matches and grouped the items by topic. In
some cases, the title was inconclusive and I had to investigate the entire content. From
these items, 24 topics emerged. Most items only belong to a single topic, though a few
items belong to two.

The 24 topics were further aggregated to eliminate irrelevant fine-granularity in areas
not related to API design, resulting in the following, higher-level topics:

• usability: related to the usability and misuse resistance of the library (mostly of
its APIs)

• docs: related to the documentation in the code, readme files and code samples
• feature: adding or changing a feature that is visible on the user-facing API,

including simple additions of new algorithms
• apiquestion: a library user asking a question about the API or a question that

boils down to a misunderstanding of the API
• bug: bug reports and bug fixes not related to the API
• tech: technical changes regarding the build, adaption to other target architectures,

unit tests, debugging facilities and error handling
• internal: structural or performance improvements done entirely inside the library

and changes that are forcibly done to remain compatible to the latest Rust version
• other: organizational matters, duplicates, user questions and removal of features

and algorithms

In addition, I analysed all items in the feature category and evaluated whether the API
design, usability and misuse resistance of the added/changed feature were discussed.
The proportion of items with any such discussion (no matter how long) is hatched on
the feature bar in figure 5.6.

The results in figure 5.6 show that sodiumoxide and ring have more usability-related
items than the others. They also have the highest proportion of feature-related items
where discussions about API design take place (45.7% of the respective sodiumoxide

items and 40.6% of the respective ring items). In conclusion regarding RQ 11, API
design discussions do indeed take place on GitHub, though the amount differs
between libraries. From the survey and other observations, there is no indication
that major API design discussions take place elsewhere. These results correspond to
the stated priorities of the respective developers, which will be discussed in the next
section.

5.5.5 Importance of usability (RQ 12)

The previous section showed that ring and sodiumoxide have more API design dis-
cussions in feature issues/PRs and they have more usability-related issues/PRs on

68

5.5 GitHub analysis

rust-openssl ring rust-crypto sodiumoxide octavo

pr
op

or
ti

on
 o

f i
ss

ue
s/

PR
s

0%

10%

20%

30%

40%

usability
docs
usability
docs

feature
apiquestion
feature
apiquestion

bug
tech
bug
tech

internal
other
internal
other

feature with
API discussion
feature with
API discussion

Figure 5.6: GitHub issue and PR topics. Note that a few items have multiple topics,
therefore the percentages for each library sum up to slightly more than
100%.

GitHub. Having many usability-related issues, in particular, could be a sign of usability
problems—whether such an issue documents that a particular part of the API is difficult
to use or whether it makes a suggestion, it always implies that the usability is or was
suboptimal. However, the usability is arguably always suboptimal, especially in the early
stages of a project. These usability-related issues also, and more importantly, signal
awareness of the problem and the will to improve the usability. In fact, many of these
issues (36.4% for sodiumoxide, 75% for ring) were created (and usually solved) by the
owner. On the other hand, questions about the API—often initially reported as supposed
bugs—do point at unresolved and unknown usability problems. rust-crypto has the
most API questions (see figure 5.6), which is plausible given its priorities discussed in
the following.

To find out their opinion on the importance of usable API designs (with respect to how
many end-user applications are vulnerable), the survey asked the contributors directly.
Such a direct question biases the respondents to give higher ratings simply because the
question is being asked in the first place (if API design was not important, there would
be no survey question) and because respondents might want to avoid insulting the (API
usability) researcher who evaluates the answers. The survey design tried to minimize
this bias by making it the first question about API design and not mentioning the topic
in the introduction either, so that participants were asked “out of the blue.” In any case,
the results can give a rough indication: the majority of contributors (10) said that API
design was as important as a secure implementation, whereas only one respondent finds
it less important and 8 find it (much) more important, respectively (see figure 5.7).

69

5 The Rust crypto ecosystem

#
co

nt
ri

bu
to

rs

Much less
important

Less
important

About
the same

More
important

Much more
important

0

2

4

6

8

10 n = 19

Figure 5.7: Importance of API design (vs. secure implementation) to the contributors

Not all API design discussions lead to an improvement of the library’s usability or misuse
resistance, as there are other requirements that an API needs to fulfil. When it comes to
making API design decisions, the BDFLs’ opinions matter more because they ultimately
decide. The survey responses from repository owners regarding the importance of usable
API designs do not notably differ from the general opinion. However, on the web, several
owners make explicit and sometimes detailed statements regarding API design, usability
and misuse resistance. In the following, I briefly review the most important statements
found during my analysis of all GitHub issues/PRs and further research on the web.

The owner of rust-openssl characterizes the API as “rustic but fairly direct bindings” to
OpenSSL. Even though many commits during the major overhaul in 2016 did improve
API usability, the owner also says that “ideally very few people would interact with
rust-openssl directly and instead use wrappers” for higher-level APIs. This implies that
he is aware of the importance of usable crypto APIs but puts the project’s focus on other
goals like feature completeness.

rust-crypto’s main developer has a similar take on API design. Even though he ac-
knowledges that “there are tons of great reasons for [making APIs] very hard to misuse”
and finds that “ergonomics are extremely important,” he wants his project to “focus on
creating high quality implementations [...] with idomatic [sic], maximally powerful
interfaces without making (too many) concessions to ergonmics [sic].”30 As an example
he names the AES-CBC interface and calls it “yucky to use” and “very unergonomic”
but also “extremely flexible.” In particular, he does not intend to invest his own time
to improve the APIs but would appreciate other contributors doing so.31 Instead, he
wants “easier to use interfaces [to be] in higher level crates,”30 just like the owner of
rust-openssl.

30https://github.com/DaGenix/rust-crypto/issues/236#issuecomment-72353781 (2017-03-23)
31https://github.com/DaGenix/rust-crypto/issues/167#issuecomment-67441572 (2017-03-23)

70

https://github.com/DaGenix/rust-crypto/issues/236#issuecomment-72353781
https://github.com/DaGenix/rust-crypto/issues/167#issuecomment-67441572

5.5 GitHub analysis

In contrast, ring puts its goal to provide an “easy-to-use (and hard-to-misuse) API”
on the front page of the repository. Elsewhere on the web, there are countless other
statements of the main developer which underpin this goal (see section 5.3.5 for a few
examples). He strictly prioritizes API improvements over API compatibility32 and is
reluctant to add new features without knowing their use case and making sure that
they are misuse resistant.33 There is a frequently used usability label in the issue
tracker, though it is used on several issues that I did not associate with usability during
my analysis. Even so, usability is not the only major API design goal. For example,
ring often has to make compromises because it aims to support heap-less environments
(where no Vecs can be allocated, for instance).

sodiumoxide naturally inherits the focus on API design from the underlying libsodium
library. According to the main repository page, it aims to be “just as easy to use.”

To summarize regarding RQ 12, the survey responses and statements of repository
owners show that the Rust crypto community is generally aware of the importance
of usable API designs. While some libraries (most notably sodiumoxide and ring)
make usability an explicit and important goal, others (rust-crypto and rust-openssl)
consciously focus on other goals. The varying importance of usable API designs is
reflected in the usability and misuse resistance of these libraries, as will be shown in
chapter 7.

5.5.6 Threats to validity

Firstly, this analysis of GitHub data serves to describe and quantify the collaboration of
the contributors. In particular, no conclusions can be drawn about the resulting quality
of the libraries from this data alone, e.g., more commits, more contributors or more
discussions about usability do not imply more features or better usability. There are
many ways a well-thought-out and previously discussed piece of code can reach the
master branch of a repository without the discussions being visible in its issue tracker
or a pull request. I confirmed that obvious alternatives like external review tools or
comments on the commits themselves (rather than the PRs) do not play a role. However,
most repositories have a large set of commits (mostly from the early phases of the
library) that were pushed directly to the master branch. Even though these commits
can positively or negatively affect the library’s usability, the analysis method does not
capture them at all and it remains unclear whether the respective changes have been
discussed offline, in another (private) repository or elsewhere.

32https://github.com/briansmith/ring/issues/445 (2017-03-23)
33https://github.com/briansmith/ring/issues/414 (2017-03-23)

71

https://github.com/briansmith/ring/issues/445
https://github.com/briansmith/ring/issues/414

5 The Rust crypto ecosystem

Secondly, the manual analysis of issues and PRs only covered the major crypto libraries
and therefore it only serves to picture the core of the crypto ecosystem and cannot be
generalized to all Rust crypto libraries. The smaller libraries have disproportionally
fewer discussions, mostly none at all, and many of them seem to be one-time uploads of
private projects. The described ways of developer collaboration obviously do not apply
to such projects.

Thirdly, there are various pitfalls generally associated with analyses of GitHub data
[KGB+16]. Some of them do not apply to the presented analysis because of its manual
nature, e.g., the set of libraries definitely does not contain private repositories only used
for file storage because the libraries were discovered through their published crates on
crates.io and unfitting projects were excluded manually. Kalliamvakou et al. [KGB+16,
sec. 4.5] point out that GitHub might not be the only platform that a project uses for issue
tracking, reviews, discussions, planning and so on. As already discussed in section 5.5.4,
the use of other communication channels and IRC in particular cannot be ruled out,
though it seems that discussions on the technical level of APIs and implementations
mostly take place on GitHub—closer to the discussed code.

Lastly, GitHub ignores commits without an associated account when computing the
contributors page [see KGB+16, sec. 4.7]. This data was used in the contributions
analysis (section 5.5.1). To uncover significant omissions, I compared the total number
of commits reported through the contributors page with the total number of commits on
the master branch according to Git itself. Four smaller libraries have more than 10%
(but less than 50%) of their commits coming from unidentified authors, which does
not distort the analysis too much. In the case of rust-crypto, however, 68% of the
commits come from users without an associated GitHub account, mostly because the
main developer used a different Git user. This was manually corrected using the output
of git shortlog -s -n -no-merges in a cloned rust-crypto repository.

5.6 Crypto in the standard library
Currently and in the foreseeable future, there is almost no cryptographic functionality
built into the Rust standard library because of a consensus in the Rust community that
the standard library should generally be kept small [Sap+16]. As an alternative, the
Rust project maintains official crates under its rust-lang GitHub organization (so-called
rust-lang crates) as well as the rust-lang-nursery for new crates [TC15]. For example,
the std::rand module is deprecated in favour of the rand crate. It contains several
RNGs and the documentation points to OsRng for cryptographic purposes, explicitly.

There is also a std::hash module in the standard library, but, confusingly, it is not
suitable for cryptographic purposes. The only implementation at the moment is SipHash,

72

5.7 Areas for improvement

which is characterized as and proven to be “cryptographically strong” by its inventors
[AB12]. However, they have hash maps in mind as the primary use case. To protect
users from Denial of Service (DoS) attacks based on hash-flooding, a hash function
needs to guarantee that multicollisions (many inputs that all hash to the same value)
cannot be computed easily, as they would degenerate the structure of a hash map. For
most other cryptographic use cases, it is crucial that not even a single collision or second
preimage can be found. No fast hash function can guarantee this as a matter of principle
if its output size is only 64 bits, because the output space can be brute-forced entirely
with enough computing power. Since the std::hash::Hasher trait hard-codes u64 as the
output size, it can and will never be suitable for cryptographic purposes. Unfortunately,
the only warning about this is in the documentation of the SipHasher implementation,
which is discouraged to be referenced directly, as users should use DefaultHasher instead
(where there is no warning). This potential for misunderstandings and unintentional
misuses could be mitigated by warning messages on the module-level and by moving
the module closer to its only intended application, e.g., std::collections::hash.

Before the rust-lang crates were introduced, there was a discussion about including
cryptographic functionality into the standard library.34 The opening post starts with
a differentiation between crypto written in Rust itself and bindings to other libraries.
After some discussion of the various alternatives (OpenSSL, NaCl, libsodium), @tarcieri
proposes an “abstract, high-level API” to be included in the standard library—similar to
Java’s provider architecture (JCA). The advantage is that no particular implementation
needs to be shipped with the standard library itself, allowing implementations to be
updated faster and to be swapped out more easily. It also keeps up the need for
competing implementations, which is important to keep an ecosystem alive as the
examples in chapter 4 have shown. Last but not least, @taoeffect points out that such
a generic API “allows you to focus on perfecting the API itself without the distractions
of the actual implementation,” i.e., it is beneficial for API usability. Section 5.7.3 will
discuss the potential creation of such a generic interface.

5.7 Areas for improvement
After analysing all populations of Rust’s crypto ecosystem, possible improvements can
be derived. This section gives an overview of all areas of improvement, whereas the
remainder of the thesis focuses on one particular aspect, namely the usability.

34https://github.com/rust-lang/rust/issues/14655 (2017-03-23)

73

https://github.com/tarcieri
https://github.com/taoeffect
https://github.com/rust-lang/rust/issues/14655

5 The Rust crypto ecosystem

5.7.1 Developer recruitment

As discussed in section 5.5.2, the Rust crypto ecosystem suffers from a lack of contrib-
utors, especially because API design and reviews of cryptographic code fundamentally
need multiple developers to look at the same code. Currently, all projects only have one
major contributor. Both in the survey responses and on the web, the lack of contributors
has been attributed to a lack of time and funding. And clearly, one approach is to
somehow attract funding to support developers who work on Rust crypto so that their
contributions are not limited to their unpaid spare time.

Instead of donating money, a company like Mozilla, who is already using Rust produc-
tively, can invest the working time of their software engineers in the crypto ecosystem
because they need certain cryptographic functionality. For instance, MaidSafe improved
sodiumoxide’s build system and published the result in rust_sodium. Such funding is
motivated by but also limited to the needs of the respective company—and general
usability of the library is probably not one of the urgent needs. In addition, the engineers
are not necessarily cryptography experts, whom the Rust crypto ecosystem primarily
needs. And most importantly, this kind funding will increase as Rust itself gains popular-
ity and a bigger user base, but by that time, it is already too late to ensure good usability
and misuse resistance.

Getting current Rust developers to work on crypto code is one way to recruit Rust
crypto contributors. The other obvious one is to get cryptographers to work with
Rust. Fortunately, Rust is becoming increasingly attractive for cryptographers to
implement their algorithms in, because it is a memory-safe, low-level programming
language. Any attempts to further push this trend therefore have the potential to
leverage the world’s crypto expert knowledge for the Rust ecosystem. One survey
respondent proposes to advertise Rust in this context and names the ability to export
a C-compatible foreign function interface (FFI) as another advantage, making crypto
algorithms implemented in Rust available in many other ecosystems.

Universities combine both advantages: they can provide funding like companies and
they can give their employees the freedom to work beyond what is required to build a
product, resulting in more contributions to the public (crypto) ecosystem. As the Rust
language itself and cryptography in general are suitable subjects for research, it should
be possible to create positions at the intersection. Fortunately, this is already starting to
happen.35

Besides contributors, software developers who act as users can become more involved
and help improve the Rust crypto libraries—particularly their usability—by asking

35https://twitter.com/sahuguet/status/839198110819762177 (2017-03-23)

74

https://twitter.com/sahuguet/status/839198110819762177

5.7 Areas for improvement

questions, reporting unclarities and helping with the documentation. User feedback can
be increased in two ways: gain more users and gain more feedback from existing users.
To motivate users to give feedback, libraries could ask for it on their repository
and documentation pages, just like they recruit contributors there. To attract more
users beyond the natural demand for crypto in Rust, the Rust ecosystem as a whole
could direct attention towards the crypto ecosystem, e.g. by including crypto-related
examples and tasks in tutorials, contests and so on.

Once more developers join the Rust crypto libraries, more involved processes regarding
reviews, planning and coordination will become necessary. For the time being, the
relatively unstructured processes are suitable for the low number of contributors.

5.7.2 Platform

In the contributors survey, many respondents named features missing from the Rust
language and platform that constrain the implementation of cryptographic algorithms
and APIs.

Constant-time operations: To prevent timing-based side-channel attacks, many cryp-
tographic algorithms have to ensure that their runtime does not depend on the input
data. Three main steps are required to reach this goal:

• Firstly, the algorithms have to be implemented without branches, loops or table
lookups dependent on secret data. The Rust platform cannot reasonably facilitate
writing such code, but it has been suggested (and rejected for complexity reasons)
that the compiler could verify the constant-time property on annotated blocks.36

• Secondly, all basic operations (comparisons, additions, etc.) have to run in constant
time. A working solution is to use assembly language code, which can be inlined
in Rust programs with the asm! macro. There are several libraries that encapsulate
constant-time operations and it has been proposed to add constant-time functions
to the standard library.37

• Thirdly, and most frequently wished for, the Rust compiler must not optimize the
code for performance, which can easily destroy the constant-time property. While
this can be prevented by providing assembly code directly using the asm! macro,
Rust crypto contributors wish for a way to tell the compiler to turn optimizations
off through an annotation.36

36https://github.com/rust-lang/rfcs/issues/847 (2017-03-23)
37https://github.com/rust-lang/rfcs/issues/1814 (2017-03-23)

75

https://github.com/rust-lang/rfcs/issues/847
https://github.com/rust-lang/rfcs/issues/1814

5 The Rust crypto ecosystem

Type-level numbers: Array types in Rust always include the array length, e.g. [u8; 16]

could be a 128-bit key. As arrays are stored on the stack, their length needs to be known
at compile time. For flexibly sized data, functions either have to reference data stored
elsewhere using a slice (&[u8]) or use a vector stored on the heap. Many crypto libraries
want to support heap-less environments and slices usually cannot be used for return
values, so neither of these solutions work. In cases where the length is not arbitrary but
one of a few options (e.g. key lengths are usually 128-bit, 192-bit, 256-bit, etc.), generics
can be used instead. That is, the respective function has a generic parameter L which
represents a number, and [u8; L] is used as the array type. At compile time, multiple
variants of the function are generated from the same code, one for each length that
is used anywhere. The generic-array38 crate already emulates this functionality, but
ideally it would become part of the Rust platform itself, most likely by making associated
constants work in array declarations39 or through pi types.40

AES-NI and single instruction, multiple data (SIMD): Survey respondents wished for
platform support for these instruction sets of modern processors to improve performance.
Since then, the simd crate by @huonw has been promoted to the rust-lang-nursery

repository.41

To answer RQ 13 regarding existing and missing platform features in more detail, I
complement the survey responses above with additional features I encountered during
my research in general and through a search for “crypto” in the official rust-lang
repositories in particular.

Clear-on-drop and immovable types: To prevent accidental leaks, it is best practice
to erase cryptographic keys and other sensitive data from memory once they are not
needed anymore. Rust provides a Drop trait whose only method is called when the value
goes out of scope, making it the perfect place to clear the memory before deallocation.
However, Rust’s memory model only guarantees safety and does not rule out memory
leaks. Several crates try to get the many subtleties right and provide a wrapper type
that clears its contents reliably.42 Multiple requests for comments (RFCs) unsuccessfully
proposed built-in attributes for the Rust language itself, so that the compiler could
guarantee it. Regardless of the technical solution (attribute, wrapper type, compiler
support or not), it should eventually become part of the platform, e.g. as a rust-lang
crate. At the time of writing, support for immovable types seems to be the blocking
issue.43

38https://github.com/fizyk20/generic-array (2017-03-16)
39https://github.com/rust-lang/rust/issues/34344 (2017-03-23)
40https://github.com/rust-lang/rfcs/issues/1930 (2017-03-16)
41https://github.com/rust-lang-nursery/simd (2017-03-23)
42For example: https://github.com/cesarb/clear_on_drop (2017-03-23)
43https://github.com/rust-lang/rfcs/pull/1858 (2017-03-23)

76

https://github.com/huonw
https://github.com/fizyk20/generic-array
https://github.com/rust-lang/rust/issues/34344
https://github.com/rust-lang/rfcs/issues/1930
https://github.com/rust-lang-nursery/simd
https://github.com/cesarb/clear_on_drop
https://github.com/rust-lang/rfcs/pull/1858

5.7 Areas for improvement

Secure randomness: Devlin [Dev14] recommends a CSPRNG that simply passes
through the secure randomness generated by the operating system and that documents
these sources well. The official rand crate fulfils this role perfectly today.

Testing mode: Indela et al. [IKND16] propose a strict compile-time distinction between
the development environment, where workarounds like short keys or disabled certificate
validation are permitted, and the production environment, where they must lead to
compiler errors. Green and Smith [GS16] call this a “testing mode.” The cargo build tool
already provides separate debug and release builds which could be sufficient. Green and
Smith [GS16] suggest that the testing mode is enabled per machine/device (identified
by some ID). Dedicated platform support for such a testing mode would be helpful
because it makes the functionality more explicit and because a developer might want to
test something in a release build, as well.

Rustdoc: There are currently a few issues that make navigating the generated docu-
mentation pages difficult. Note that these issues were discovered during the experiments
(see chapter 7) and were not mentioned in the survey. They also do not hinder the
implementation of good crypto libraries, but solving them would result in significantly
better usability of all crypto libraries.

• The search function does not search everything. For instance, searching for “hmac”
in rust-openssl’s documentation44 does not find the code sample in the sign

module, even though the term is mentioned there multiple times.
• docs.rs is not optimized for external search engines. Google searches for the

documentation of any library (e.g. “rust-openssl documentation”) only turn up
older versions of the documentation at low ranks in the search results, whereas
the top ranks are occupied by the repository, crates.io and many unrelated pages.

• Modules that only consist of a re-export (which happens frequently when libraries
expose multiple primitives or algorithms under a single umbrella, see sections 8.4.3
and 8.5) have virtually empty documentation pages45 even though all the re-
exported items can be used normally in the code. This situation should be detected
and the documentation should either be imported as well, or there should be a
highlighted link to the respective documentation page.

5.7.3 High-level crypto API

The idea of a generic, high-level API that plugs into various crypto libraries has been dis-
cussed for a long time (see section 5.6) and libraries like rust-openssl or rust-crypto

44https://docs.rs/openssl/0.9.10/openssl/?search=hmac (2017-04-02)
45Example: https://docs.rs/octavo/0.1.1/octavo/crypto/index.html (2017-04-02)

77

https://docs.rs/openssl/0.9.10/openssl/?search=hmac
https://docs.rs/octavo/0.1.1/octavo/crypto/index.html

5 The Rust crypto ecosystem

have intentionally low-level APIs as they expect wrapper libraries to take care of the
high-level interfaces for them (see section 5.5.5). There is a subtle difference between
these two ideas, though. A generic interface consisting of traits would be created
either way and could be incorporated in the standard library or live in an officially
endorsed rust-lang crate. One approach is to rely on all crypto libraries to implement
this interface, which is more likely to happen if it is officially standardized. The alternat-
ive approach is a separate crate per existing crypto library that acts as a wrapper and
implements the interface. Although such a wrapper would introduce an additional layer
of code written and maintained by developers with less cryptography experience, the
high-level API would probably prevent more vulnerabilities through misuses than the
wrapping layer introduces. The first approach is preferable if the library creators are
willing to adapt their libraries.

Either way, the new high-level API should be designed to last as long as possible. Because
some crucial Rust language features for a perfectly ergonomic crypto API are currently
missing, as discussed in the previous section, the creation of this high-level API should
be postponed until they become available. The proposals for usable Rust crypto libraries
presented in chapter 8 will hopefully still be valid by then.

5.7.4 Usability

Perhaps the most important area of improvement is the crypto ecosystem’s usability. The
usability as a whole depends on multiple factors:

• Do users find the right library to use? Depending on the use case, a higher- or
lower-level interface is more suitable, and depending on the cryptography skills of
the user, misuse resistance plays a significant role. As discussed above, a generic,
high-level crypto API could eventually become officially endorsed. Until then, an
overview of the major crypto libraries along with directed recommendations could
prevent users from using a dangerously low-level one.

• Do users find and understand the documentation? Ideally, the first contact with the
chosen library is the documentation rather than the API itself. Section 8.1 will
discuss best practices for the documentation.

• Do users find the right primitive and choose a suitable algorithm (if they do not
have specific requirements)? Sections 8.2 to 8.4 will discuss abstraction levels and
organizational structures for primitives and algorithms.

• Do users use the API correctly? The remainder of chapter 8 will discuss various
technical details regarding usability and misuse resistance.

The latter two concern the structure of the library and its API design, both of which are
difficult to change once the library has matured. Therefore, these usability concerns
are more urgent than the former two (ecosystem overview and documentation) and

78

5.8 Conclusion

more urgent than other possible security improvements, particularly the cryptographic
algorithm implementations themselves. Before the recommendations to improve the
usability of crypto libraries in Rust, which are presented in chapter 8, the following
chapters report on two analyses to inform these recommendations: chapter 6 investi-
gates where and how crypto functions are currently used in Rust code, and chapter 7
experimentally evaluates the usability of the major existing crypto libraries.

5.8 Conclusion
The Rust crypto ecosystem consists of surprisingly many, manifold libraries, four of which
were identified as major libraries based on the number of dependent crates (rust-crypto,
rust-openssl, sodiumoxide and ring). All of the major libraries provide multiple
cryptographic primitives and therefore fall in the same category. The contributors in the
Rust crypto ecosystem are demographically average software developers with above-
average programming experience and a few experienced cryptographers among them.
Their motivation is typical for open source developers and many of them like Rust for its
desirable properties. Most contributors have well below 5 hours per week to work on
Rust crypto in their unpaid free time, though very few invest more time. Consequently,
there is a general lack of developers and especially cryptographers, and most libraries
only have one main contributor who outweighs all others. This makes complicated
development processes unnecessary—most projects use the typical GitHub workflow
and discuss new features in issues and pull requests, if at all. Although the contributors
generally recognize the importance of usability and misuse resistance in cryptographic
APIs, only some of them see it as a major goal for their library. Besides API usability,
which is discussed in the following chapters, possible improvements include several
measures to recruit more contributors, several technical additions to the Rust platform
to facilitate the implementation of cryptographic libraries as well as the development of
a common high-level crypto API after some desirable changes to the Rust platform have
been released.

79

6 Usage analysis

One of the guiding API design principles is simplicity, also known as the KISS (“keep it
simple, stupid”) principle. However, there is a broad variety of use cases and require-
ments for cryptographic APIs. To only name a few examples: users need different kinds
of ciphers, some need certain key lengths or IVs while others do not want to deal with
such decisions, some need to avoid heap allocations at all costs, a few want to attach
“associated data” when using an AEAD cipher whereas others are confused by too many
parameters, and so on.

Clearly, an API cannot be simple and perfectly tailored to all those use cases at the same
time. One approach to resolving this conflict is to first focus on the 80% use case [Kau11;
Kob12]—reminiscent of the Pareto principle—and to design an API for those users. In
a second step, it needs to be ensured that the remaining 20% of users can reach their
goals in a reasonable way, too, possibly by adding or modifying API elements. These
changes must not confuse or otherwise interfere with the 80% use case and there are
other important considerations like performance and maintainability. In order to design
a usable API or improve an existing one, it is therefore essential to understand where
and how it is going to be used, that is, to quantify and understand the “use” relation
between users and libraries in the ecosystem (see figure 4.1 on page 38) and to find out
what the 80% use case encompasses.

This chapter reports on a manual analysis of current usages of cryptographic primitives
in publicly available Rust code, which addresses RQ 14 (see page 46). Section 6.1
describes how the analysis was conducted, section 6.2 presents overall results and the
further sections 6.3 to 6.5 contain more detailed analyses of particular API types, namely
hashing, HMAC and symmetric encryption. Finally, section 6.6 discusses, among other
threats to validity, a significant bias that is inherent to this type of analysis and needs to
be considered when using the results for API design.

All numbers and figures presented in this chapter were generated by a collection of R
scripts from a single raw data file. The raw data in xlsx format as well as the scripts
and their outputs are available for download (see appendix A).

81

6 Usage analysis

6.1 Approach
For each of the libraries introduced in section 5.3, I did the following (on 4 and 5
December 2016):

1. Consider all dependent crates (crates which use the library) on crates.io and
filter out crates:

• which have been yanked (retracted),
• which are cryptographic libraries and offer a (higher-level) crypto API them-

selves (these are not interesting because their developers have to be knowl-
edgeable in cryptography and do not run the risk of misunderstanding or
misusing the API in question),

• which are only dependent according to their Cargo.toml but do not actually
use the library anywhere in their code,

• which are not easily searchable (e.g. because they do not have a master

branch or because they are hosted on a platform other than GitHub which
does not offer code search).

2. Open the repository linked on crates.io, if available, or search for the correspond-
ing repository manually.

3. Search the code for “extern crate <library name> [as <alias>]” (where the
alias defaults to the library name if the as clause is not present).

4. Search the code for “use <alias/library name>” and inspect all relevant matches:
• Open the matching file and switch to the master branch.
• Inspect all matching use clauses as well as the lines where they are referenced

and categorize the functionality which is used there.

To find additional dependent crates not listed on crates.io, I did the following for each
library (on 13 and 14 December 2016):

1. Globally search for “extern crate <library name>” on GitHub.1

2. Sort the results to show most “recently indexed” usages first.
3. Filter out matches:

• which were previously discovered as a dependent crate (see above),
• which are cryptographic libraries and offer a (higher-level) crypto API them-

selves,
• which do not actually use the library anywhere in their code,
• which are solutions to the Advent of Code.2

1There are some limitations to global code search on GitHub (https://help.github.com/articles/
searching-code/#considerations-for-code-search), though none of those seriously impact the exploration
of library usages. Searching for “extern crate crypto” in particular also yields results like crypto_hash,
crypto_tests and so on, which were identified and excluded/subtracted manually.

2https://adventofcode.com/ (2017-03-23); Because the analysis was conducted in December and
sorted to show recent usages first, there were quite many repositories with solutions to the artificial

82

https://help.github.com/articles/searching-code/#considerations-for-code-search
https://help.github.com/articles/searching-code/#considerations-for-code-search
https://adventofcode.com/

6.1 Approach

4. Go through the results one by one until either 20 proper usages are found or all
search results have been considered.

5. Analyse and categorize the usages as described above.

Those usages can be split into the following categories:

• Random number generators (RNG)
• Collision-resistant hashing

– MD5
– SHA-1
– SHA-2
– Other hash (Blake2b, RIPEMD-160, Whirlpool)

• Message authentication codes (MAC)
– HMAC3

– Poly1305
• Password hashing and key derivation (KDF)

– bcrypt
– scrypt
– Argon2
– PBKDF2, HKDF3

• Unauthenticated symmetric encryption (“symm”)
– AES block ciphers (ECB, CBC)
– Other block ciphers (Blowfish)
– RC4
– AES stream ciphers (CFB, CTR)
– Salsa20, XSalsa20, ChaCha20, XChaCha20
– Other stream ciphers (Sosemanuk, HC-256)

• Authenticated symmetric encryption (“symm (auth)”)
– AES-GCM
– ChaCha20-Poly1305

• Asymmetric cryptography (“asymm”)
– RSA
– Elliptic curve cryptography (ECC) (Curve25519, Ed25519)

There are more algorithms that fall into these categories, but this list only contains the
ones that were found to be used. Note that a single dependent crate can have multiple
usages of different kinds. Every dependent crate is counted at most once per category.

Advent of Code puzzles at the top. These solutions include rust-crypto or rust-openssl and use the
MD5 function in one of a few particular ways. Only 10 of these repositories were analysed and each kind
of usage was counted only once (see section 6.3).

3If a hash algorithm is only used inside an HMAC, the use of the inner algorithm is not counted
separately because the respective API is not used. The same applies for HMACs used inside a PBKDF2 or
HKDF.

83

6 Usage analysis

6.2 High-level results

rust-crypto

rust-openssl

sodium

ring

octavo
crates.io
GitHub considered
GitHub rest

#search results
0 200 400 600 800 1000

Figure 6.1: Number of considered search results per library (before filtering and dupli-
cate removal)

As can be seen from figure 6.1, rust-crypto and rust-openssl are used significantly
more often than the others. Because the analysis was performed manually, only a
fraction of the 1659 GitHub results (namely 322) could be considered (this number
was not predetermined; it is simply the number of GitHub results that needed to be
processed before 20 new, unique and proper usages per library had been found). In
addition, all 227 results from crates.io were considered for the next step. Note that
sodiumoxide and rust_sodium are combined into a single item called sodium and octavo

was not considered at all because it had less than five relevant dependent crates.

rust-crypto

rust-openssl

sodium

ring

#crates
0 50 100 150 200

actual usage
own crypto API
yanked
not searchable
no usage
duplicate

actual usage
own crypto API
yanked
not searchable
no usage
duplicate

Figure 6.2: Filtering the crates found in the previous step

Figure 6.2 shows the effects of “filtering” all the considered search results according to
the criteria detailed in the previous section. The GitHub search led to 245 duplicates,
which were already known either from crates.io or a previous GitHub search result. In
total, 196 unique crates were classified as “actual usage” and all following analyses are
based only on this set of crates.

84

6.3 Hashing

ring
sodium
rust-openssl
rust-crypto

#
de

pe
nd

en
t

cr
at

es

0

20

40

60

80

100

RNG MAC symm asymmhash KDF symm
(auth)

Figure 6.3: High-level usages per category and library

Of the 196 analysed crates, more than half (112) use a hash function (see figure 6.3) and
71 use nothing else. Hence, more than a third of all dependent crates only depend on a
crypto library because they need a hash function. While hashing is the most important
use case for each individual library, there are some differences with respect to the
other categories. Overall, the second most popular category is MAC (46), followed by
asymmetric (41), unauthenticated (30) and authenticated (17) symmetric encryption,
some of which outweigh the MAC usage in sodium and rust-openssl. When counted
together, the two symmetric encryption categories outweigh MAC or asymmetric en-
cryption. sodium and ring do not offer unauthenticated encryption at all, forcing users
to use authenticated encryption or switch to another library. It seems that many users
could be convinced to do the former, considering that rust-crypto and rust-openssl

do not have disproportionally many symmetric encryption users overall and almost none
of their users decided for authenticated encryption.

The following sections analyse the most popular categories (hashing, HMAC and symmet-
ric encryption, both authenticated and unauthenticated) in more detail to gain insights
for API design.

6.3 Hashing
Hash functions are not only the most widely used cryptographic primitive but also the
simplest: the input is a bit stream of arbitrary size and the output has a fixed size—there
are no keys, tags or the like. However, there are different formats in which the data can
be represented and multiple pieces of input data can be combined, if necessary.

85

6 Usage analysis

For every dependent crate that uses the hash API directly (that is, not only inside an
HMAC), I did the following to analyse the usage in more detail:

1. Open all matching files identified in the previous step (see section 6.1).
2. Find the code parts (usually only one) where the hash API is used.
3. Determine whether there is a single piece of input data or multiple ones (the

number of calls to the respective input() function, or similar).
4. Determine the present input data type(s).

• If the data needs to be converted beforehand, determine the original data
type before all conversions.

5. Determine the desired output data type.
• If the digest value is converted afterwards, determine the eventual data type

and format after all conversions.

There are the following input data types:

• “slice”: The data is available as a &[u8] function parameter or variable.
• “arr”: The data is available as a [u8] array on the stack.
• “vec”: The data is available as a Vec<u8> on the heap.
• “int”: The data is an integral number, e.g., u8, u32, u64, and so on.
• “&str”: The data is available as a &str parameter or &’static str string literal.
• “String”: The data is available as a String on the heap.
• “Read”: The data is read from a source that implements the std::io::Read trait.

This is usually achieved with a helper function4 that reads until no more data
is available or with the std::io::copy() function if the hasher implements the
std::io::Write trait.

• “Write”: The hash implementation supports the std::io::Write trait and the
write/write_all/write_fmt methods are used directly (without std::io::copy()).

The output data types can be categorized as:

• “arr”: The hash value is stored in a fixed-size [u8] array on the stack.
• “vec”: The hash value is stored in a Vec<u8> on the heap.
• “slice”: The hash value is stored in an array or vector and it is directly and only

passed on to a function that accepts a &[u8] slice.
• “hex”: The hash value is converted to hexadecimal format and stored as a String

on the heap.
• “base64/base58”: The hash value is converted to Base64 or Base58 format and

stored as a String on the heap.
• “comp”: The hash value is stored in any format, but the value is only used for

comparison with either a fixed value (which could easily be converted into any
format) or another hash value that was computed the same way.

4https://github.com/NicolasDP/git/blob/4073194/src/protocol/hash.rs#L131 (2017-03-23)

86

https://github.com/NicolasDP/git/blob/4073194/src/protocol/hash.rs#L131

6.3 Hashing

Conversions are “excluded” from the analysis because the goal is to find out the best
possible API for the respective use case, which would not require any conversion but
would accept the data in the very format that the user already has. For example, this
rust-openssl user5 converts a String to a byte slice using the as_bytes() method and
converts the resulting Vec<u8> to a Base64 String using the to_base64() method from
the rustc_serialize crate (type annotations added):

1 // self.key is of type String

2 let res: Vec<u8> = hash::hash(Type::SHA1, self.key.as_bytes());

3 let response_key: String = res.to_base64(STANDARD);

This usage is counted as a single “String” input and “base64” output.

This user,6 on the other hand, implements a helper function that hashes a String and a
&[u8] slice and returns the result as a Vec<u8>:

1 fn hash(app_id: String, data: &[u8]) -> Vec<u8> {

2 let mut hasher = Sha1::new();

3 let mut output = vec![0x0; hasher.output_bytes()];

4 hasher.input(app_id.as_bytes());

5 hasher.input(data);

6 hasher.result(&mut output[..]);

7 output

8 }

Helper functions like this are always counted towards the data type categories indicated
by their signature because a helper function around a library function indicates that the
library user was dissatisfied with the API and built the desired API around it. Therefore,
this usage is counted as multiple inputs (“String” and “slice”) and “vec” output.

The discovered data types are aggregated as follows: A single dependent crate which
uses the hashing API in multiple places or which has multiple pieces of input data can
count towards multiple categories (all the ones that occur in the code), but every crate
can only be counted once per category. That is, multiple similar or identical uses in the
same crate are not counted twice. In many cases, these are merely code clones that
could be avoided with better abstraction or helper functions.

6.3.1 Results

Only 10 hash API users (9.8%) have multiple pieces of input data. By far the most
common input data type is the byte slice (42.2%, see figure 6.4 left). It is also the
primary data format accepted by all libraries (see table 6.1) because it is the most

5https://github.com/jfager/d3cap/blob/f0c4/src/json_serve/src/rustwebsocket.rs#L63 (’17-03-23)
6https://github.com/manuels/bulletinboard-dht/blob/cf51/src/dbus_service.rs#L49 (2017-03-23)

87

https://github.com/jfager/d3cap/blob/f0c4/src/json_serve/src/rustwebsocket.rs#L63
https://github.com/manuels/bulletinboard-dht/blob/cf51/src/dbus_service.rs#L49

6 Usage analysis

flexible: a slice can reference an entire vector or array or only part of it, and a slice can
be used with the Deref and AsRef<[u8]> traits to read from structs. A &[u8] parameter
is the standard way to “borrow” a read-only sequence of bytes from the caller. Hence,
slices also cover the “vec” (12.5%) and “arr” (3.9%) use cases, which are not supported
directly by any library.

slice

String

&str

vec

Read

arr

int

Write

#usages
0 10 20 30 40 50

Input data types

hex

arr

vec

slice

comp

base64

base58 rust-crypto
rust-openssl
sodium
ring

#usages
0 10 20 30 40

Output data types

Figure 6.4: Hash function usage

The second and third most common input types (32.8% together) are strings (either
as a heap-allocated String or a string slice &str). It does not make sense for a hash
function to accept a String parameter because it would unnecessarily take ownership of
the data on the heap. The standard way to borrow a String is a &str parameter, which
rust-crypto implements in its input_str() method (see table 6.1). All other libraries
do not accept strings, so the caller must convert them manually.

The remaining input types are the Read and Write traits (5.5% and 1.6%, respectively).
No library accepts Read values directly, but rust-openssl implements the Write trait
and Read values can easily be copied over.

The most common output data types are hexadecimal strings (36.6%, see figure 6.4
right), [u8] arrays on the stack (24.1%) and Vec<u8> vectors (22.3%). While
rust-crypto provides a result_str() method for hex values, users of all other libraries
have to resort to the rustc_serialize crate for conversion to hex/Base64/Base58.

Each library has its own approach to returning the hash value as a byte sequence (see
table 6.1). rust-crypto does not have a return value at all but takes a &mut [u8]

parameter which can write out to a vector or an array. rust-openssl allocates and
returns such a vector itself. sodium does almost the same with an array but wraps it in a

88

6.3 Hashing

rust-crypto rust-openssl sodium ring
Multiple inputs possible ✔ ✔ ✔

slice ✔ ✔ ✔ ✔

&str ✔

ReadIn
pu

t

Write ✔

hex ✔

base64/base58
&mut [u8] ✔

vec ✔

arr ✔

slice (AsRef<[u8]>) ✔ ✔

O
ut

pu
t

comp ✔

Table 6.1: Hash function data types accepted/produced by current libraries

Digest struct. This requires a separate Digest type for every hash function (because they
have different output sizes), but it comes with several advantages: no heap usage, type
safety, expressiveness of the API and the possibility to implement various traits on that
value. For example, the PartialEq implementation allows the digest to be compared to
others simply with the == operator. ring also returns a custom Digest type but currently
only implements AsRef<[u8]> for it, which requires the user to call as_ref() for all
comparisons and further conversions.

When comparing the data types that users have/need (figure 6.4) with the ones that the
libraries accept/return (table 6.1), there are some obvious discrepancies. For example,
many users have strings as their input and most users need their hash value as a
hexadecimal string, but only one library accepts and returns strings. It is worth pointing
out that this discrepancy is not necessarily a concern: as long as most users can easily
reach their goals with little code and all users can reach their goals with reasonable
effort, the API is good enough. And most string conversions require nothing more than
an in-line call to a single conversion function.

Together, the completely broken algorithms MD5 (27.7%) and SHA-1 (18.5%) account
for almost half of all hashing usages. It remains unclear whether these usages would
require a cryptographically secure hash function (and thus result in vulnerable appli-
cations) or if they simply need any hash function. This question could be answered
in future work (see section 9.2) and result in separate MD5 and SHA-1 crates for
non-cryptographic purposes.

89

6 Usage analysis

6.4 HMAC
All MAC users use some HMAC-SHA variant. Other kinds of MACs like Poly1305 are
only used by crates that were excluded because they expose a higher-level cryptographic
API themselves, that is, they are currently only relevant for usage by crypto experts.

The approach is analogous to the one for hashing (section 6.3), but there are four points
of interest now:

• the data type of the key,
• the input data type,
• the transfer format used to send, receive or store digest values (if the computed

digest remains within the same process, i.e., there is no actual transfer happening,
this format is simply the data type of the digest variable or return value; it is thus
comparable to the hash function output type),

• the verify or comparison function used to check if a signature is valid or if two
digests match.

The verify/comparison functions can be categorized as:

• “built-in verify”: sodium and ring offer functions that accept all parameters re-
quired to compute a digest value plus an existing digest value to compare against.
The newly computed digest value is never returned to the user and is only used for
the internal comparison.

• “built-in compare”: All libraries offer constant-time comparison functions like
rust_sodium::utils::memcmp() or openssl:memcmp::eq(). rust-crypto even
makes its constant-time comparison available through the == operator by im-
plementing the PartialEq trait for its MacResult type.

• “manual compare”: A few users implement their own constant-time comparison
function, copy it from elsewhere or reference the constant_time_eq crate.

• “insecure compare”: Some users use the == operator or PartialEq.eq() function
on strings or byte slices, both of which are not constant-time.

• “none”: The user does not verify digests.

Constant-time comparison functions are best practice because comparisons which do
not guarantee a constant runtime could potentially make the application vulnerable
to timing attacks (see section 2.2.8). However, timing attacks are not realistic in all
scenarios, as the attacker needs many attempts and has to access the system as directly
as possible to obtain useful timing data. Whenever a timing attack could not obviously
be ruled out, I filed a GitHub issue in the respective repository and some users reacted
by resorting to the safer built-in comparison functions. The results presented below do
not include these corrections. That is, they reflect the situation based on the existing
APIs and documentation without my intervention.

90

6.4 HMAC

As part of the many refactorings in 2016, rust-openssl’s old HMAC API was removed7

and replaced with a new API based on PKey, which generalizes signing and verifying
with RSA, HMAC and others. Most users reference an older version of the library and
still use the old API. Users of both APIs were counted together.

6.4.1 Results

The data types for HMAC keys and input data are largely comparable to the hash input
data types (see figure 6.4): most users have a string or a byte slice, whereas vectors and
arrays are less popular. The Read and Write traits are not used at all to feed HMACs.
Only 5 users (10.9%) have multiple pieces of input data. Compared to the output types
of hash functions, Base64 encoding is much more popular with HMACs (see figure 6.5
left). The reason is that Base64 encoding is often used for client authentication when
contacting a server. Only the “vec” category has as many users as Base64 (28.1%), but
vectors are usually used for process-internal comparisons rather than internet requests.

base64

vec

hex

slice

arr

other

#usages
0 5 10 15

Transfer/output data types

built-in
compare

none

insecure
compare

built-in
verify

manual
compare rust-crypto

rust-openssl
sodium
ring

#usages
0 2 4 6 8 10 14

Verify/comparison functions

Figure 6.5: HMAC usage

30.4% of all HMAC users do not need verification or digest comparisons at all (see
figure 6.5 right). Just as many use the comparison function provided by the library.
21.7% use an insecure comparison function, though this does not necessarily lead to
a vulnerability, as mentioned above. Interestingly, none of ring’s and sodium’s users
use an insecure function, as they have all discovered the built-ins designed for secure
verification. However, the absolute number of users of these two libraries is too low for
this observation to be statistically significant. Please see section 8.9 for a discussion of
mitigation strategies against accidentally insecure comparisons.

7https://github.com/sfackler/rust-openssl/pull/474 (2017-03-23)

91

https://github.com/sfackler/rust-openssl/pull/474

6 Usage analysis

6.5 Symmetric encryption
The 30 users of unauthenticated symmetric encryption and the 17 users of authenticated
symmetric encryption are analysed together because it is reasonable to assume that the
requirements are similar and most users of unauthenticated encryption should probably
be using authenticated encryption.

The approach is analogous to the previous analyses, but there are six points of interest:

• the data type of the key,
• the data type of the initialization vector, if applicable,
• the input and output data types (plaintext and ciphertext),
• the chosen padding (none or PKCS padding),
• whether additional data is specified for AEAD ciphers and, if so, its data type,
• whether a blockwise/piecewise API is used instead of encrypting/decrypting all the

data at once.

rust-crypto’s API for block ciphers in ECB or CBC mode uses its own buffer types for
inputs and outputs, and the encrypt() function does not always encrypt the whole
input. Instead, it either returns BufferUnderflow or BufferOverflow and the caller has
to react accordingly. This makes the API incredibly difficult to use, as the caller would
need to understand all these concepts from the sparse documentation and then combine
them to form a solution. Fortunately, there is a code sample8 in the repository that
contains a helper function, which essentially lifts the low-level API of the library to a
higher-level API that is much more usable. All users except one (88.9%) consequently
copy this helper function into their code and some slightly adapt it. These cases were
not counted as usages of the piecewise API because that API is only used within the
generic helper function that could as well be part of the library itself (i.e. it does not
contain application-specific code). For comparison, 46.7% of rust-openssl users also
create their own helper function, mostly because they use the fine-grained Crypter API
rather than the one-shot function encrypt(). In all those cases, the data types used
outside the helper functions were analysed.

6.5.1 Results

The input data types (see figure 6.6 left) are still similar to the ones of hashing and
HMAC, but (heap-allocated) Strings are less important (11.4%) and heap-allocated
vectors are used instead (30.0%). The output is mostly used as a byte vector (30.0%) and
only rarely converted to UTF-8 strings (only works for decryption outputs as ciphertexts
are usually not valid UTF-8) or formatted as Base64. Similarly, the key is often present as
a slice (30.8%, see figure 6.6 right), in a vector (30.8%) or in an array (19.2%), whereas

8https://github.com/DaGenix/rust-crypto/blob/b6e3294/examples/symmetriccipher.rs (2017-03-23)

92

https://github.com/DaGenix/rust-crypto/blob/b6e3294/examples/symmetriccipher.rs

6.5 Symmetric encryption

slice

vec

String

arr

base64

&str

Read rust-crypto
rust-openssl
sodium
ring

#usages
0 5 10 15 20 25

Input data types

slice

vec

arr

&str

other

#usages
0 5 10 15

Key data types

Figure 6.6: Symmetric encryption usage

strings are again rare (11.5%), especially compared to HMAC usages where strings
are the second most popular data format for keys (35%). A brief follow-up analysis
showed that HMAC keys are often passwords (entered by the user or read from a file) or
tokens/keys received from a server in an HTTP request, so that they are naturally strings.
Keys for symmetric encryption, on the other hand, need to be of a specific size (whereas
HMAC accepts arbitrary-length keys), so that they are either generated randomly, derived
from a given password or loaded from a file. All of these operations tend to return
heap-allocated vectors of plain bytes rather than human-readable strings.

The data types for the initialization vector (IV) are dominated by arrays (40.7%) because
the easiest way to generate a random IV is to allocate an array of the respective (fixed)
size and fill it. Furthermore, sodium’s widely used gen_nonce() function returns an array.
During decryption, the received IVs are mostly present as byte slices (25.9%) or vectors
(22.2%); strings again play a minor role.

Most users (58.1%) stick with the library’s default padding. This option is always secure:
rust-crypto and rust-openssl default to PKCS, sodium always uses a custom padding
format and ring does not offer ciphers that require padding to begin with. 23.3% set
the padding to PKCS explicitly (which has no effect) and 18.6% turn it off.

The AEAD APIs of rust-crypto and ring have a parameter for additional associated
data (AAD), and rust-openssl added it recently.9 However, they only account for 4 of
the 17 uses of authenticated encryption, and all 4 users leave the parameter empty. The
remaining 13 crates use sodium, which does not have the parameter in the first place.

9https://github.com/sfackler/rust-openssl/pull/519 (2017-03-23)

93

https://github.com/sfackler/rust-openssl/pull/519

6 Usage analysis

Only 7 users (14.9%) need the blockwise/piecewise API, that is, they need to feed a
block cipher with individual blocks or a stream cipher with individual chunks of data.
A follow-up analysis of these usages shows that 5 of them encrypt streamed/buffered
data that is not available all at once because it is sent over a network connection or
similar, and the remaining 2 need to encrypt single blocks with AES to implement the
custom key transformation function of KeePass.10 The latter is an advanced cryptography
application and there might be more use cases like this that have been excluded because
they expose a cryptographic API themselves (see figure 6.2).

6.6 Threats to validity
There are several threats to the external validity of this analysis. Most importantly, the
results should not be applied blindly to design new APIs because of self-reinforcement
effects similar to the echo chamber effect in news media [cf. JC09, chapter 5]. The
assumption that users have a solid application design, which determines the data types
they use and the kind of algorithms they need, is flawed. Especially in smaller projects,
the algorithms offered by a crypto library and the data types used by its interfaces can
influence the design of the application using the library.

For empirical evidence, consider figure 6.7, which is a different view of the output data
types presented in figure 6.4 on page 88. If there were no influences between a project’s
code structure and the used libraries, all four bars would be similar, with the usual
statistical variance (the percentages of ring are problematic because is has rather few
users in this analysis, but at least rust-crypto and rust-openssl would be similar).

rust-crypto

rust-openssl

sodium

ring hex
arr
vec
slice
comp
base64
base58

proportion of usages
0% 25% 50% 75% 100%

Figure 6.7: Hash function usage: output data types, percentages per library

10https://github.com/raymontag/rust-keepass/blob/a15a9b8/src/kpdb/crypter.rs#L313 (2017-03-23)

94

https://github.com/raymontag/rust-keepass/blob/a15a9b8/src/kpdb/crypter.rs#L313

6.6 Threats to validity

Nevertheless, more than half of rust-crypto’s users work with the hexadecimal format,
which rust-crypto conveniently provides through its result_str() getter, whereas
the proportion is much smaller for the other libraries. Similarly, rust-openssl has
disproportionally many “vec” users, probably because Vec<u8> is the return type of its
hashing functions, and many sodium users work directly with the [u8] array embedded
in the Digest result type without further conversions.

There are two relevant causes that can explain these empirical observations and, unfor-
tunately, it is impossible to tell them apart with the data available on GitHub. On the
one hand, a user who only needs a crypto library for a specific purpose (a scenario in
which the desired algorithm and data types are already determined) could base their
decision for a crypto library on the specific needs at hand and choose the one that
fits best. On the other hand, a user who already uses or has chosen a certain library
could adapt the surrounding code design to fit the data types of the crypto API. And
if the user is not bound to use a specific crypto algorithm because of some protocol
or another external interface, they will choose one of the algorithms available in the
library. In particular, only very few users will make an informed decision about the
best algorithm independently of the library they already have—and then possibly look
for another library that implements it. In order to find out whether the API design
influenced the application’s code design or the application’s requirements influenced the
library selection, one would have to ask the developers directly because these decisions
are generally not documented publicly.

If at least some users adapt their code to fit the current APIs, then using the insights
gained from their code to design new APIs would result in an echo chamber: the old
APIs would indirectly influence the design of the new API—not by being a good API
to learn from, but by giving the impression that this is the kind of API that users need.
Hence, the data in this analysis cannot perfectly reflect the pure needs of Rust crypto
users: it is biased towards the currently existing APIs. rust-crypto and rust-openssl

have the most users and thus the biggest influence. This bias needs to be kept in mind
when working with the data presented in this chapter.

Another threat to external validity is posed by the selection method for dependent crates.
Normally, crates published on crates.io are reusable libraries, as opposed to end-
user applications. As such, they potentially have different (presumably more complex)
requirements with respect to a crypto API than the average end-user application would
have. On the other hand, end-user applications should rarely use crypto APIs directly in
the first place. The second group of dependent crates was selected through a GitHub
search ordered by “recently indexed.” This provides sufficient randomness with respect
to the kinds of users, but it naturally constrains the selection to open-source code
published on GitHub. As crates with a cryptographic API of their own were excluded
as users from this analysis, the most sophisticated use cases are naturally missing. This

95

6 Usage analysis

is done on purpose and limits the applicability of these results to the 80% use case as
discussed in the introduction.

The main threat to internal validity is the small number of dependent crates in some
groups. While the total number is well in the hundreds, ring has only 4 HMAC users, for
example. To mitigate this threat, no conclusions are drawn in this thesis from statistics
based on populations smaller than 10 or the threat is pointed out explicitly.

In addition, library usages and especially the data types before and after conversions are
sometimes ambiguous. The available body of open-source Rust code is diverse, every
project has its own coding style, the notion of “idiomatic Rust” has changed over the
years and thus it is not always possible to find the perfectly fitting category for every
usage. This only affects a few special cases though, where I tried to find the most
reasonable fit, and it impacts the internal validity only slightly.

6.7 Conclusion
This section presents an analysis of how often certain features of Rust crypto libraries
are currently used by code available on GitHub, in order to answer RQ 14. Hashing,
MAC, symmetric encryption and asymmetric encryption are the most frequently
used primitives. Data is mostly passed around in the form of byte slices, vectors and
arrays, though the primitives also have other particular favourites: hash values are
often represented as hexadecimal strings, HMACs are converted to Base64 strings and
symmetric encryption is mostly used with plain u8 arrays or vectors.

Interestingly, the used primitives do not quite correspond to the results of Nadi et al.
[NKMB16, table 4], who analyse the cryptographic tasks of Java projects on GitHub and
find symmetric encryption and signatures (which includes MAC) to be the most common,
whereas hashing is extremely rare. The difference shows that tasks are rather high-level,
but the implementation often calls low-level primitives. For instance, generating a hash
value is rarely the ultimate goal, but it is often done to reach a goal. It would be
interesting to analyse the Rust crypto usages with an open-coding technique like the one
by Nadi et al. (see section 9.2).

Conclusions have to be drawn with care from this data because they can result in
an echo chamber effect. For instance, the AAD parameter of AEAD ciphers is currently
not used at all. Based on this data alone it could seemingly be removed, but instead
it should be promoted and explained because more users arguably should be using
it to make their applications more secure. Similarly, library authors should not feel
obligated to convert hash values to hexadecimal strings only because most users need
that particular format—the conversion can be done with a single function call in the
same line of code, which improves the separation of concerns. This data can nevertheless
be used to inform design decisions, and it will be used in sections 8.3.2, 8.5 and 8.9.

96

7 Usability analysis

This chapter investigates one particular aspect of the existing Rust crypto primitive
libraries, namely their usability and misuse resistance (RQ 15), through a series of
experiments. Section 7.1 reports on a self-experiment I conducted at the very beginning
of my work on this thesis and section 7.2 reports on a controlled experiment with Rust
beginners. While this chapter only analyses the existing libraries, chapter 8 will make
concrete recommendations to improve the usability and misuse resistance of existing
and future crypto libraries in Rust.

7.1 Self-experiment
One of my first activities for this thesis was a self-experiment with the major Rust crypto
libraries. Before starting this thesis, I had never used Rust before, but I have significant
programming experience in Java, .NET, C++ and others as well as basic cryptography
knowledge. Right after completing a Rust tutorial and playing around with the language
for a week, I started the four-stage self-experiment described in the following. The
self-experiment was conducted between 4 and 16 November 2016 with all five libraries
introduced in section 5.3 (not counting the forks) and the resulting implementations are
available for download (see appendix A).

7.1.1 Protocol

The tasks of the four experiment stages are designed to cover the most important APIs
(hashing, HMAC, symmetric encryption, AEAD and key management) and to explore
the libraries’ structure and documentation. In particular, the cryptographic protocol
implemented here is not sensible in itself but only designed to drive the experiment and
to get a runnable sample application.

There are a server and a client, which establish a Transmission Control Protocol (TCP)
connection and send messages both ways. The technical details of the TCP connection
are not relevant to this analysis and the code is the same for all experiments. Inside that
code skeleton, I inserted the respective crypto library calls.

97

7 Usability analysis

To help explain the protocol steps, the rust_sodium implementation is also given below
(crypto API calls are highlighted in bold print). rust_sodium was in fact the last library
I experimented with, but it provides a one-line solution to almost all the steps listed
below, so it serves well as an illustration.

1. Before the TCP connection is established, the main application generates a ran-
dom key and saves it in a shared key file.

1 let key = secretbox::gen_key();

2 keyfile.write_all(&key.0).unwrap();

2. Both client and server load the key from the file, then the client connects to the
server.

1 file.read_exact(&mut key_bytes).unwrap();

2 let key = secretbox::Key::from_slice(&key_bytes).unwrap();

3. The client encrypts a fixed test string with the key. Depending on the encryption
method, this requires generating a random nonce and produces a ciphertext and
possibly a tag.

1 let nonce = secretbox::gen_nonce();

2 let ciphertext = secretbox::seal(&text, &nonce, &key);

4. The client sends the ciphertext and possibly the nonce and the tag to the server.
5. The server receives the data and decrypts the text.

1 let text_bytes = secretbox::open(&ciphertext_bytes, &nonce, &key).unwrap();

6. The server computes a digest of the text (a hash or HMAC value).
1 let hash_value = hash::hash(&text_bytes).0.to_hex();

7. The server sends the digest to the client.
8. The client receives the digest and verifies that it is correct (either with a dedicated

verification method or by computing the digest as well and comparing it).
1 let received_hash = received_data.from_hex().unwrap();

2 let received_digest = hash::Digest::from_slice(&received_hash).unwrap();

3 assert_eq!(received_digest, hash::hash(&text_bytes));

7.1.2 Tools and practices

I used the cargo command line tool, rustc version 1.12.1 and IntelliJ IDEA with the
intellij-rust plugin, which provides code completion and navigation unless too many
Rust macros are involved. While I generally used the library version available at the start
of my experiments (4 November 2016), I had to update in some cases after reported
build problems other other issues had been resolved. If available, I used the publicly
hosted Rustdoc of the respective library, otherwise I read the Rustdoc comments from
the source code. The first step for every library was to read the top-level documentation

98

7.1 Self-experiment

of the crate and of the relevant module(s). Whenever I found applicable example code,
I tried to use it by copying and adapting.

7.1.3 Stages

I. Integrate encryption and hash function from the library into the code skeleton.
• Use the documentation to find the suitable module and algorithm. Generally,

any symmetric encryption method is fine here. Prefer well-known algorithms
when a decision needs to be made.

• Use the documentation to choose a hash algorithm. Prefer newer SHA versions
over everything else when a decision needs to be made.

II. Switch to another encryption cipher.
• If the previous cipher was not AEAD, switch to an authenticated cipher now.
• Otherwise, just try another cipher.

III. Replace the hash function with HMAC.
• For convenience, use the same key as for the encryption (even though this is

not generally recommended, it simplifies the experiment).
• If a hash function needs to be specified to use HMAC, prefer newer SHA

versions over everything else.
IV. Tamper with the authenticators and observe the effects.

• Modify a byte of the AEAD tag.
• Modify a byte of the HMAC digest.
• Examine how easily the checks could be forgotten or ignored.

During the experiment, I paid particular attention to the following aspects of the
libraries:

• Their documentation: How easy to navigate, how detailed and how helpful is it?
• Their structure: How are the algorithms organized into modules? How easy is it to

find the right one? Which algorithms use the same interface and are thus easily
substitutable?

• The function signatures: Are they at a suitable level of abstraction? How difficult
is it to supply the right values to every parameter?

• Their misuse resistance: Does the library warn about deprecated and insecure
algorithms? (How) does the library promote or enforce the use of constant-time
comparison functions?1 How easily can important checks be skipped (e.g. by
accidentally ignoring a return value)?

1At the time of the experiment, I was not aware that the regular comparison functions (==) are insecure
for these purposes—like most developers with only basic cryptographic knowledge. This evaluation was
therefore done several months later.

99

7 Usability analysis

7.1.4 rust-crypto (0.2.36)

Documentation: The documentation is helpful and detailed, if present (e.g. for hashing),
but many modules have no documentation at all, including the modules for symmetric
encryption and AEAD. Fortunately, the only code sample2 of the entire library implements
AES-CBC encryption, which would be difficult to do without guidance (see below). Every
primitive is represented by one or more traits, whose implementations live in other
modules but the automatically generated “implementors” sections in the documentation
make it easy to find them.

Signatures: The API for AES-CBC cannot process an entire message at once. In-
stead, it requires the caller to feed the input and output through custom buffer
types and react dynamically to buffer overflows and underflows, because “each en-
cryption operation will ‘make progress’. ‘Making progress’ is a bit loosely defined
[...],” as the code sample explains.2 Hence, the API user needs to implement a
loop that keeps calling the encrypt() (or decrypt()) function until all data has been
processed. Considering the task at hand, the API is extremely low-level and diffi-
cult to understand, so I just used the higher-level API exposed by the code sample:
fn encrypt(data: &[u8], key: &[u8], iv: &[u8]) -> Result<Vec<u8>, ...>

The AEAD, hashing and HMAC functions were relatively straightforward to use, though
they do not have convenience functions like most other libraries. They return authen-
tication tags and digest values through &mut [u8] parameters, for which an array or
vector has to be preallocated. While the hashing and HMAC APIs inform about the
appropriate size in bytes through separate getters, the user has to guess the size of the
authentication tag (and adjust until no more error occurs), look it up online or extract it
from the rust-crypto source code.

API structure: It is difficult to switch between block, stream and authenticated ciphers
or between hashing and HMAC because they use entirely different APIs. Switching
between algorithms is trivial because the library’s concept cleverly uses Rust’s type
system: primitives are traits and algorithms are structs which implement these traits.
This concept is rigorously applied, which results in complex constructions: the generic
CTR mode implementation can be used with any block cipher, the Hmac<D> takes a
hashing algorithm (digest) D as a parameter, and so on. By definition, such an accurate
reflection of the implementation cannot hide implementation details from the user,
making it more difficult to use and less misuse resistant. There is one module per
primitive and one per algorithm, all of which are on the top level, which clutters the
namespace and the documentation landing page, especially if more algorithms were
added in the future.

2https://github.com/DaGenix/rust-crypto/blob/b6e3294/examples/symmetriccipher.rs (2017-03-23)

100

https://github.com/DaGenix/rust-crypto/blob/b6e3294/examples/symmetriccipher.rs

7.1 Self-experiment

Misuse resistance: The HMAC API returns a custom struct which overrides the ==

operator so that comparisons are performed in constant time. However, I still made
the mistake to retrieve the underlying value (overlooking the warning on the .code()

getter) and to compare it insecurely, likely because the same code previously used a plain,
unauthenticated hash value—and the hashing API does not encourage constant-time
comparisons like the HMAC API does. Regarding the last stage, rust-crypto returns
false from the decrypt() function if the authentication tag does not match. In case the
caller ignores the return value (for which there is no compiler warning), no harm is done
because rust-crypto does not write the decrypted message to the output parameter
when the verification fails.

7.1.5 ring (0.5.3)

Documentation: The documentation is brief but complete. Most parts of the library
have a code sample, though the difficult AEAD API does not (yet).

Signatures: The encryption API is relatively cumbersome to use.3 It works “in-place,”
that is, it uses the same memory space for input and output, whereby the latter is
longer because it also contains the authentication tag. Therefore, extra space (called
out_suffix) has to be allocated beforehand, but it is not always fully used, so the result
needs to be truncated to the appropriate length. The API allows efficient implementations
even in heap-less environments, but it does not fit the use case in the experiment. The
hashing and HMAC APIs were easy to use.

API structure: For every primitive, ring has a top-level module with global functions
for the main operations and static instances for the supported algorithms. This makes
substituting algorithms straightforward and other primitives are also easy to use because
all modules have a similar structure.

Misuse resistance: ring does not offer unauthenticated encryption at all. Therefore,
already during the first stage of my experiment, I was directed to use the safer AEAD
instead. As discussed in section 6.4, ring has a dedicated verify() for HMACs, which
never exposes the digest to prevent accidental misuse. Although the user could still use
the sign() function during verification, the function names, the symmetrical design of
the module and the code sample all encourage the use of the safe verify() function.
Tampering with the tag or digest produces errors in the return values of the decryption
or verification functions, and ignoring these return values leads to compiler warnings.

3There is an issue to improve it: https://github.com/briansmith/ring/issues/371 (2017-03-23)

101

https://github.com/briansmith/ring/issues/371

7 Usability analysis

7.1.6 rust-openssl (0.9.1)

My initial attempts to use AES-GCM in rust-openssl version 0.9.0 failed because the
wrapper API was not designed for AEAD ciphers, as it turned out.4 The missing code
was added within a few hours and released in version 0.9.1.

Documentation: The documentation contains helpful code samples for the most im-
portant parts of the library, though the remaining documentation is rather sparse. For
example, I missed information about nonce and key lengths and about which ciphers
need a nonce in the first place. Theoretically, the official OpenSSL documentation
could be used in addition to the Rustdoc, but it contains many low-level details that
rust-openssl users do not need to worry about. The missing information turned out to
be returned from other API functions rather than being documented. The documentation
does not guide towards the right module and does not recommend algorithms or at least
warn about dangerous ones. It took me a while to find the HMAC implementation be-
cause there is no module named hmac or similar. A documentation search led me to the
pkey::PKey::hmac() constructor, but there was no hint towards the sign module that
contains the necessary main functions and even an extensive code sample for HMAC.

API structure: rust-openssl mostly mirrors OpenSSL’s structure. Besides the crypto-
graphic primitives, it contains a TLS implementation, though they are not noticeably
separated. Like in ring, there is roughly one module per primitive. Every module has a
low-level (usually multi-step) API that is accessible through the main struct of the mod-
ule, and most modules additionally offer global convenience functions that do common,
simple operations in one step. This is a best practice, in principle, as it minimizes the
amount of documentation the user has to read, the number of mistakes they can make
and the effort required to switch to another algorithm.

Signatures: The symm module unites all symmetric encryption primitives despite their
differences: some modes require an IV, AEAD ciphers accept an AD parameter and they
return an authentication tag. The encrypt() function declares an iv: Option<&[u8]>

parameter so that the IV can be omitted if the cipher does not require one. A new
encrypt_aead() function handles all AEAD ciphers separately, but it accepts instances
of the same Cipher struct. Given such an instance, the user has to find out manually
which function to use and whether to supply an IV. In particular, the compiler cannot
prohibit nonsensical calls like using ECB mode with a nonce, CBC mode without a nonce,
a non-AE cipher with the AE API or vice versa. The former goes unnoticed entirely,
a missing nonce leads to a good error message during encryption and the latter two
just fail at encryption or decryption with a confusing message. Otherwise, calling the

4https://github.com/sfackler/rust-openssl/issues/518 (2017-03-23)

102

https://github.com/sfackler/rust-openssl/issues/518

7.1 Self-experiment

library’s functions was easy thanks to the global convenience functions and because it
returns vectors instead of using &mut parameters.

Misuse resistance: The API prevents the user from accidentally using the de-
crypted plaintext when the verification failed, since the return value of type
Result<Vec<u8>, ErrorStack> does not contain the plaintext at all in this case. How-
ever, I unknowingly implemented an insecure comparison with == on hexadecimal
Strings because the API made it easy to convert the HMAC digests into that format.
The Verifier struct, which could take care of the constant-time comparison, does not
support HMACs.

7.1.7 rust_sodium (0.1.2)

As sodiumoxide failed to build on Windows, I used the rust_sodium fork with exactly
the same API instead.

Documentation: The top-level documentation points out the right modules for the most
common use cases, including the secretbox module for symmetric encryption. Every
module’s documentation contains a code sample that can be used right away and all
relevant items are documented.

Signatures: The libsodium bindings were by far the easiest to use because the primitives
are rather high-level. rust_sodium improves on the underlying library with strong types
(e.g. Key and Nonce), generator functions for these types in the same module and return
values instead of &mut parameters. The stricter type safety exposed the issue in my
experiment design, which uses the same key for encryption and HMAC, and forced me
to create two instances from the same key material.

API structure: Switching to other ciphers for stage two would have been easy if there
had been another AEAD implementation, but XSalsa20-Poly1305 is currently the only
algorithm exposed in the Rust bindings. Instead, I tried to use a different hash algorithm,
which is as easy as replacing rust_sodium::hash with rust_sodium::hash::sha256 (or
any other submodule). This is because every primitive has its own module and all
submodules have exactly the same structure generated from the same macro. While the
macros do not impact the readability of the code, they make the documentation more
difficult to navigate and confuse the intellij-rust plugin, so that code completion and
navigation were not available in the experiment.

Misuse resistance: Besides the type-safe function signatures, rust_sodium prevents
many misuses through an opinionated selection of algorithms (inherited from libsodium)
that rigorously excludes insecure algorithms and dangerous primitives like unauthenti-
cated encryption. According to the documentation, even hashing and HMAC should not
be used “unless you know what you’re doing.” Like in ring, a constant-time verify()

103

7 Usability analysis

function is placed right next to the HMAC generation function and its use is demonstrated
by the code sample, so misuse is unlikely. And like in rust-openssl, the decryption
function only returns a plaintext if the verification was successful.

7.1.8 octavo (0.1.1)

Completeness: Because ChaCha20 is currently the only symmetric cipher, I could
not use AES in the first stage and had to skip the entire second stage. There is no
authenticated encryption and no constant-time comparison function.

Documentation: A few parts of the library have extensive documentation (though
sometimes irrelevant to average users, e.g., an explanation of Kerckhoff’s Principle and a
formal definition of a cryptosystem) and the hashing module has a helpful code sample.
Yet, most parts relevant to the experiment were practically undocumented.

Signatures: Unlike other libraries, octavo does not offer convenience functions but
always requires separate steps to instantiate a cipher, pass in the inputs and retrieve
the outputs. The otherwise easy-to-use API also uses a &mut parameter that needs to be
preallocated.

API structure: The different primitives live in separate crates which can be built indi-
vidually to reduce compile times and binary sizes. Although there is a main crate that
re-exports them and allows to use them almost like a single crate, the design makes the
code and documentation more difficult to navigate. Like in rust-crypto, the HMAC API
takes a hash algorithm as a generic parameter, making it inconvenient to use:

1 let mut digest = hmac::Hmac::<sha2::Sha256>::new(&key);

2 let mut hash_value = vec![0; hmac::Hmac::<sha2::Sha256>::output_bytes()];

Misuse resistance: As there is no constant-time comparison function, I ended up with an
insecure == comparison. The documentation visibly warns about insecure algorithms.

7.1.9 General observations

As mentioned above, I found &mut [u8] parameters difficult to use in general. While
ring’s use of the parameter was actually complicated (requiring extending and truncating
of a vector), most other &mut parameters simply serve to return a value from a function
whose length is known beforehand. I had trouble allocating the vectors for these
parameters and many other Rust users do, too: there are solutions that require two
lines of code and an unsafe block5 (still the accepted answer) or that create an infinite
iterator and collect it (I used copied this solution from rust-crypto’s internal code):

5http://stackoverflow.com/a/28209155 (2017-03-23)

104

http://stackoverflow.com/a/28209155

7.2 Controlled experiment

1 use std::iter::repeat;

2 let mut buf: Vec<u8> = repeat(0).take(length).collect();

Since March 2015, there is a much easier but surprisingly unknown solution:
vec![0; length]. There is also a resize() method to extend or truncate an exist-
ing vector, but even ring’s more recent unit test6 instead uses a loop to push the right
number of zeros to the end.

This was one of many occasions when I turned to a library’s own source code (particularly
the unit tests) for help after the documentation was unhelpful. It is reasonable to assume
that other library users would do the same, especially when no code samples are
provided. While I rarely had trouble finding a part of the API that addressed my needs,
more links between documentation elements or more code samples would have helped
to put the pieces together. In addition, I could not find the documentation at all for
rust-crypto and octavo because it was not linked from the repository pages or from
crates.io. It was only after the experiment that I found out about docs.rs, which hosts all
documentation for all versions of all published crates.

Note that I only experimented with the major libraries for cryptographic primitives, so
this experiment is not representative of all Rust crypto libraries. Quite contrary, there is
a bias towards further developed and polished libraries, which appropriately reflects the
experience of the average crypto user in Rust. The other major group of libraries are
TLS libraries, which were not covered here.

7.2 Controlled experiment
In joint work with Kai Mindermann (my supervisor), the self-experiment was extended
to a controlled experiment with a group of 29 Rust programmers. A detailed report
paper has been submitted for review to the Thirteenth Symposium on Usable Privacy
and Security (SOUPS ’17). This section only briefly explains the experiment setup and
summarizes the usability-relevant results.

7.2.1 Setup

In the winter semester 2016/17, the University of Osnabrück offered a semester-long lec-
ture on the Rust programming language. Most of the students in the course participated
in the experiment on 7 and 8 February 2017.

6https://github.com/briansmith/ring/blob/503ac19/src/aead/aead.rs#L359 (2017-03-23)

105

https://github.com/briansmith/ring/blob/503ac19/src/aead/aead.rs#L359

7 Usability analysis

The experiment took place in an on-campus computer lab, where participants were
given an instruction sheet that briefly introduced symmetric cryptography and explained
the task, as well as a running Ubuntu virtual machine (VM) with the Sublime Text editor,
the latest Rust compiler and a browser to freely surf the web without limitations. Upon
completion of the task or after approx. 50 minutes, participants were asked to fill in a
LimeSurvey questionnaire regarding their background, their experience with the library
and with the task itself. In addition, the VM’s screen was recorded and the resulting
code was obtained from the VM.

As the time in the experiment had to be limited to about an hour, the task was much
simpler than the self-experiment. Participants were given an application frame that
receives a “business text” from a submodule and were supposed to encrypt and decrypt
this text within the same main() method. The students were divided into two groups:
one worked with rust-crypto (version 0.2.36) and one worked with ring (version
0.6.3). From both groups, a few results had to be excluded because the participants
had misunderstood the task and implemented their own encryption function without
using the respective library at all, hence their success did not depend on the library or its
usability at all. We used several metrics computed from the resulting code and the video
recordings to evaluate and compare the usability of the libraries, including effectiveness,
efficiency, satisfaction and lostness.

7.2.2 Summary of results

Given my experience in the self-experiment, the result of the controlled experiment
is quite counter-intuitive: none of the ring users finished the task but 4 out of 11
rust-crypto did. We demonstrate that they only succeeded because they found and
used the code sample from the rust-crypto repository, which fitted the use case and
required only little more code to be written. The rust-crypto users who missed
or ignored the code sample were all unsuccessful, like all ring users, where no
sample existed at all. These remaining participants mostly could not finish because of
the time limit but made progress in the right direction nonetheless. Consistent with
this observation, many successful participants name the code sample as crucial to
their success, and many ring users name the lack of a code sample as the major
obstacle.

In addition, the rust-crypto users were significantly more experienced Rust program-
mers according to their self-rating, even though the groups were randomly assigned.
The results clearly show that more experienced Rust programmers across both groups
were more successful, so there is a natural tendency towards higher success in the
rust-crypto group which is not due to the library’s usability. Therefore, the hard data
from the experiment cannot fairly compare the two libraries, but the experiment

106

7.2 Controlled experiment

still provides many valuable insights regarding the overall usability of Rust crypto li-
braries and the usability of particular technical constructs. The major technical issues
regarding the libraries’ documentation and APIs are briefly summarized below, combin-
ing the video observations with the participants’ answers in the questionnaire. Note that
most of these issues have also arisen in the self-experiment (see the previous section)
and are explained there in more detail.

None of the participants researched the security implications of the chosen al-
gorithms. The rust-crypto users who found the code sample stuck to the suggested
AES-CBC encryption with random nonce. Even after completing the task, they did not
(re)consider this decision. Some ring users did not identify the ring::aead module
as the encryption module, but most did and used the AES-GCM algorithm there. In
the questionnaire, most participants indicated that they were rather unsure about the
security of their code and it remains unclear how much time they would have invested
researching the security aspects if they had been given more time.

Several parts of the API were difficult to deal with for multiple users. Mostly ring users
were unsure about the nonce and ad parameters (rust-crypto’s code sample demon-
strates how to generate a random nonce and there is no ad parameter in unauthenticated
encryption). Although the majority figured out the correct solution (random nonce and
empty ad) after some research, a few ended up passing zeros, the plaintext or the secret
key into these parameters instead. Secondly, all ring users had difficulties using the
in_out parameter, dealing with the out_suffix and truncating the result correctly.

While the majority of rust-crypto users criticized that its documentation was mostly
unhelpful and difficult to find (even though a URL was provided on the instruction
sheet), the ring documentation was harder to navigate and not detailed enough:
From the top-level documentation page, many did not decide for aead as the right
module and a few participants copy-pasted the code samples from the unrelated hmac

or pbkdf2 modules. Those who identified the aead module and the seal_in_place()

function inside tried to instantiate an Algorithm to pass to the SealingKey because they
had not found the static instances in the same module. Those who did not initially choose
the aead module later found the ring::aead::AES_GCM_256 instance through a search
on the web or in the documentation but then struggled to find the seal_in_place()

function to use it with. Besides the libraries’ and Rust’s documentation, participants
often used Wikipedia and Stack Overflow as information sources. None of these sites
currently offers Rust-crypto-specific advice.

107

7 Usability analysis

7.3 Conclusion
To put the experimental findings described in this chapter into perspective, this section
relates them to the literature. Please refer to section 3.3.2 for an overview of the existing
research on the usability and misuse resistance of cryptographic APIs. I systematically
reviewed all these sources for:

• criteria that they use to measure or otherwise judge the quality of crypto APIs,
• best practices they derive from experience, experiments and analyses,
• ideas, suggestions and pleas on what to improve in future crypto APIs, and
• design problems they discovered in existing crypto APIs.

In particular, I considered the “Common Rules in Cryptography” and the “Mitigations” by
Egele et al. [EBFK13, sec. 3 and 7], the “Vulnerabilities” section by Lazar et al. [LCWZ14,
sec. 2], all seven “Points of Interest” by Das and King [DK14, sec. 5], the “Ten Principles
for Creating Usable and Secure Crypto APIs” by Green and Smith [GS16] and the seven
“Crypto Interface Pitfalls” by Devlin [Dev14]. For each of these, I analysed how they
apply to the existing Rust crypto APIs and summarized the findings in table 7.1.

Overall, the libraries which focus on usability—namely sodiumoxide/rust_sodium
and ring—do almost everything right, though ring’s AEAD API is currently difficult
to use. Both libraries are highly misuse resistant already. The other libraries con-
sciously do not prioritize these goals and consequently exhibit some of the design
weaknesses described in the literature and especially a lack of documentation.
Despite its unintuitive structure, rust-openssl is more usable than the lower-level,
pure-Rust library rust-crypto, though the only code sample of the latter helped many
experiment participants succeed. octavo cannot be evaluated properly because many
relevant features are still missing.

Best practice / suggestion
rust-

crypto
rust-

openssl
sodium ring octavo

Extensive, helpful documentation [DK14; EBFK13] ✗ ✔✗ ✔✔ ✔ ✔✗

High-level interfaces [Dev14; LCWZ14; NKMB16] ✗ ✔✗ ✔✔ ✔ ✗

Exclude deprecated algorithms / warning [DK14] ✗✗ ✔✗ ✔✔ ✔ ✔

Offer and advertise AE [Dev14; EBFK13] ✔✗ ✔✗ ✔✔ ✔✔ ✗✗

Offer and advertise CSPRNG [Dev14; LCWZ14] ✗✗ ✔✗ ✔✔ ✔✔ ✗✗

Safe defaults [Dev14; DK14; EBFK13; GS16, . . .] ✔ ✔ ✔ ✔ ✔

Don’t leak unauthenticated plaintext [FLW12] ✔ ✔ ✔ ✔ ✔

Prevent nonce reuse [Dev14; DK14; FLW12] ✗ ✗ ✗ ✗ ✗

Table 7.1: Major libraries’ compliance with recommendations from the literature

108

8 Improving usability and misuse
resistance

When designing or improving an API, it is natural to look at other existing APIs and
to learn from their innovations, best practices as well as their mistakes. The previous
chapter experimentally evaluated the usability of the existing Rust crypto APIs for
primitives and related the results to the literature on crypto API usability. In this chapter,
insights from all these sources are bundled into a single discussion, which is split into
topics from documentation in section 8.1 to &mut parameters in section 8.10, ordered
by their level of technical detail. Only topics that affect usability or misuse resistance
are discussed, but every discussion naturally considers other goals such as performance,
maintainability or the implementation effort because every API design is ultimately a
compromise.

Several topics are omitted because they are not specific to crypto APIs. However, a few
of them should be pointed out because they are particularly important for crypto APIs:

• Error handling conventions: See section 2.1.4 for a description of how error hand-
ling works in Rust and the RFC 236 [TC14] for the important distinction between
contract violations and obstructions. Only for the latter, the Result<T, E> type
should be used. Unlike simple numeric return values, which are often used in
C programming and have led to several vulnerabilities [GIJ+12, sec. 4.1], the
Result type generates a compiler warning when a return value is ignored. It
should therefore be used for all security-relevant return values.

• Data conversions: As the analysis in section 6.3.1 showed, there is a disconnect
between the data types that hash functions (and others) accept/provide and the
types that users have/need. There are multiple approaches to making conversions
more “convenient and idiomatic” [Mar16], but they arguably also make them
more subtle and the function signatures harder to understand. In cryptography,
most conversions involve a String format: UTF-8, hexadecimal, Base64 or Base58.
Because all of these have the type String, there is not much that a library can do
to simplify the process, as the user needs to explicitly specify the format anyway.
To maintain a proper separation of concerns, crypto libraries should just work
with sequences of bytes (slices, arrays and vectors of u8) and leave all conversions

109

8 Improving usability and misuse resistance

to other libraries, as this does not entail any significant extra effort for the caller.
Based on the data presented in chapter 6, API designers should ensure that the
80% use case can be implemented with little code and the documentation could
refer to appropriate third-party crates/functions for the most commonly needed
conversions.

• Naming conventions: Please refer to section 3.2.1 for general styleguides, which
also cover naming conventions.

All code snippets presented in this chapter are available for download in a runnable
sample application (see appendix A).

8.1 Documentation
The top two of Nichols’ “six easy ways to make your crate awesome” concern document-
ation and example code [Nic16]. Good documentation improves an API’s learnability
and, in the case of crypto APIs, it may teach some cryptography basics, as well. It is
essential for misuse resistance, too, because users will consult less reliable sources when
the documentation is missing or incomplete. For example, Acar et al. [ABF+16] find
that programmers who use Stack Overflow produce significantly less secure code and
call for better documentation with “secure and functional code examples.” This section
discusses how the documentation should be structured and what elements should be
included. As Das and King [DK14, sec. 6] point out, “developers may still accidentally
skip over” the documentation and code samples. Therefore, the misuse resistance of an
API can never rely solely on its documentation.

8.1.1 Structure and navigation

A library’s documentation should obviously be as complete as possible. However, this
not only includes explanations for every struct, trait and function, the structure of
which is given by the code structure, but also “landing pages” [DK14, sec. 5.5] on
the crate and module levels. Such landing pages should point developers to the right
(sub)modules and functions for their use case, especially if the library offers (too) many
cipher implementations [DK14, sec. 5.3].

During my self-experiment, I was often lost for multiple minutes trying to find the
right module. The symmetric (authenticated) encryption modules in different li-
braries, for example, go by the names symmetriccipher, aes, symm, aead, secretbox and
crypto::stream (no name occurs twice). Similarly, HMAC can be found under hmac,
sign and pkey, mac or auth. This shows that module names alone are not enough. The

110

8.1 Documentation

landing page should mention primitive and algorithm names and point to the right
modules. Currently, sodiumoxide is the only library with a true landing page.

DO include landing pages with introductions, explanations and pointers at the crate
and module level.

Aside from this top-down navigation, the existing libraries could also benefit from
more pointers between related items in different modules. Two current examples
are the openssl::pkey::PKey::hmac() factory, whose result needs to be used with
functions from other modules (see section 7.1.6), and ring::aead::seal_in_place(),
which takes a nonce:&[u8] parameter whose length has to be retrieved elsewhere (see
section 7.2.2).

8.1.2 Recommendations and education

As part of the top-down navigation, the documentation should also recommend which
of multiple modules/algorithms to choose, at least for the most common use cases.
Although most developers probably have an idea of what encryption and authentication
are, very few of them understand why certain ciphers or hash functions are secure
while others are not, why authenticated encryption should be used over unauthenticated
encryption, and so on. As Das and King [DK14, sec. 5.5] put it, “developers are likely
to take the path of least resistance and use the first primitive they come across that
seems to solve their problem.” Hence, the documentation should warn users about using
widely known, yet insecure algorithms like MD5 and RC4 (or the library should omit
them in the first place, see section 8.2.2) and recommend suitable alternatives.

At a lower level, the documentation also needs to educate about the consequences of
certain parameter values if they can impact security. For instance, octavo leaves the
choice of key length to the user but includes tables in its documentation1 to explain
the levels of security that each key length provides. Georgiev et al. [GIJ+12, sec. 11.2]
propose that the documentation of such parameters should not only state what they
do (e.g. “turn on/off hostname verification”) but also explicitly state the possible
implications (e.g. “if turned off, anyone can impersonate the server”). There are
certainly cases in which these implications are irrelevant or impossible (which is why
the parameter exists in the first place), but the developer can always make an informed
decision beyond the information contained in the documentation and ignore the warning.
That is, the documentation does not need to discuss all eventualities, a brief but visible
warning is sufficient.

DO warn users about insecure algorithms and dangerous parameter values.

1https://docs.rs/octavo-crypto/0.1.1/octavo_crypto/ (2017-04-01)

111

https://docs.rs/octavo-crypto/0.1.1/octavo_crypto/

8 Improving usability and misuse resistance

8.1.3 Code samples

A code sample serves many purposes at once that the documentation would otherwise
have to fulfil individually: point to the right API to use, recommend sensible choices for
algorithms and key lengths, explain the order in which the functions must be called and
illustrate how the returned result can be used. The controlled experiment showed that a
code sample can crucially improve the usability of a library. Therefore, all important
APIs should be accompanied with code samples for the most common use cases (Hertleif
even recommends a small code sample for “everything” [Her16b]).

Code samples can either be placed in the documentation or in separate files (in an
examples directory). In some programming languages, the latter might be the preferred
location because the code will then be compiled against the actual API, which prevents
it from getting outdated. In Rust, it is arguably better to keep code samples in the
documentation. Firstly, rustdoc compiles included Rust code and, secondly, it makes the
code samples easier to find. In my experience from the self-experiment, code samples
are best kept in the module-level documentation, as this might be the last level of
documentation that the user navigates to before they start coding and using the IDE’s
code completion instead. An excellent example are ring’s code samples for the hmac

module,2 whereas I overlooked the documentation for the digest() function entirely.3

Whenever a code sample becomes so long that it seemingly needs a separate file,4 this is
a strong indication that the API is not high-level enough and needs to be adjusted (see
section 8.3.2). A code sample for an appropriate API should only be a few lines long.

DO include code samples in the module-level documentation.

Many authors demand that example code needs to be of high quality—it needs to
be copy-pasteable without causing trouble for the developer or introducing security
bugs. Das and King [DK14, sec. 5.6] point out that code samples must not use “unsafe
practices,” that is, they should use secure ciphers, secure parameter values (like key
lengths), no hard-coded keys, and so on.

During my self-experiment, I discovered that unit tests can easily be abused as code
samples, especially when actual code samples are not anywhere to be found. In Rust, it is
common practice to place unit tests in a submodule called test in the same file. The code
is not only available online through GitHub, but it is also included in the documentation
through the “src” link. For instance, there is no example code for rust-openssl’s
encrypt_aead() function, where the user can specify the desired tag length by allocating

2https://docs.rs/ring/0.5.3/ring/hmac/ (2017-03-23)
3https://docs.rs/ring/0.5.3/ring/digest/fn.digest.html (2017-03-23)
4Example: https://github.com/DaGenix/rust-crypto/blob/b6e3294/examples/symmetriccipher.rs

(2017-03-23)

112

https://docs.rs/ring/0.5.3/ring/hmac/
https://docs.rs/ring/0.5.3/ring/digest/fn.digest.html
https://github.com/DaGenix/rust-crypto/blob/b6e3294/examples/symmetriccipher.rs

8.2 Scope of included algorithms

an accordingly sized array or vector for the respective output parameter. Uninformed
users could turn to the unit tests to find out how to allocate that vector and copy the
dangerously small 4-byte array from there.5 (In the meantime, warnings in the unit test
and explanations in the function documentation have been added.)

DON’T use insecure primitives, parameter values or hard-coded keys/IVs in code
samples. If they are needed in unit tests, place visible warnings around the test code.

8.2 Scope of included algorithms
A crypto library offers a certain selection of algorithms for a number of crypto primitives
(a few symmetric ciphers, a couple of hash algorithms, and so on). The set of algorithms
and their organization has significant impact on the usefulness, usability and misuse
resistance of the library. This section discusses which algorithms to include and which to
leave out, section 8.3 discusses levels of abstraction of user-facing APIs, and section 8.4
discusses how to organize the primitives and algorithms.

8.2.1 Completeness

Omitting certain classes of algorithms entirely can pose a risk. Firstly, a secure random
number generator (RNG) and a constant-time comparison function should be included
(that is, implemented or referenced), as every user needs to generate random keys and
nonces and needs to compare hash values and authenticators. If users have to find their
own RNG, they could unknowingly choose an insecure one (see section 8.8). And if
there is no constant-time comparison function, they could accidentally use Rust’s built-in
comparison operators (see section 8.9).

Secondly, the most widespread and the most recommendable algorithms should be
included. The former are needed for compatibility with existing systems and the latter
are hopefully used for new projects. If the library behind an excellent API does not
support an important algorithm, several users are forced to turn to another library or
even a plain implementation of that algorithm, which is likely less safe and less usable.

DON’T leave out important algorithms or functions like RNG and constant-time
comparisons.

5https://github.com/sfackler/rust-openssl/blob/9137239/openssl/src/symm.rs#L653 (2017-03-23)

113

https://github.com/sfackler/rust-openssl/blob/9137239/openssl/src/symm.rs#L653

8 Improving usability and misuse resistance

8.2.2 Insecure algorithms

A crypto library could ban all broken algorithms entirely. This is, for instance, the policy
of sodium and ring. Most old and insecure algorithms will not find their way into a
modern crypto library simply because nobody needs them and they would have to be
maintained and compiled for no benefit at all.

There are, however, a few legitimate use cases for certain insecure algorithms. Especially
if they are widespread like MD5 or SHA-1, excluding them is in conflict with the
completeness principle in the previous section. Whether these algorithms should be part
of a modern crypto library is highly controversial.6 It would need to be analysed whether
these algorithms are used for cryptographic purposes, where their security matters, or
otherwise. In the latter case, they should live in a separate library that has nothing to do
with cryptography and explicitly states that.

If a library includes such deprecated or insecure algorithms, it must be made exceedingly
clear to the user that they are deprecated/insecure. There is an ongoing discussion
about the various ways to inform the user in the rust-crypto repository6 because
it currently has no warnings at all. As a positive (yet not perfect) example, ring

marks SHA-1 as “deprecated” in the documentation. It is important to place the warn-
ings in the right position(s): when rust-openssl’s hash() function is used with MD5
(hash::hash(hash::MessageDigest::md5(), ...)), the user does not come across the
warning on the hash::Hasher trait.7 Similarly, the RustCrypto fork has a nice visual
representation for the security of hash algorithms8 (where SHA-1 was marked insecure
only hours after the “shattered” attack was published [SBK+17]), but users might
not see these warnings when they discover the individual crates like md4 on crates.io,
where there are no further warnings. In addition to deprecation warnings, the docu-
mentation should also guide users to choose the right algorithms for new projects (see
section 8.1.2).

Even if a warning is well visible in the documentation, some users might not see it
because they navigate the library with their IDE’s code completion function. For example,
a developer might type “hash::MessageDigest::” and then choose an insecure algorithm
from the popup list. To protect these users, too, these algorithms can be moved to a
separate crate or module, which has “deprecated” or “insecure” as (part of) its name.
Section 8.4 discusses appropriate locations for insecure/deprecated algorithms with
respect to different library structures.

6https://github.com/DaGenix/rust-crypto/issues/365 (2017-03-23)
7https://docs.rs/openssl/0.9.0/openssl/hash/struct.Hasher.html#warning (2017-03-23)
8https://github.com/rustcrypto/hashes/#supported-algorithms (2017-03-16)

114

https://github.com/DaGenix/rust-crypto/issues/365
https://docs.rs/openssl/0.9.0/openssl/hash/struct.Hasher.html#warning
https://github.com/rustcrypto/hashes/#supported-algorithms

8.3 Level of abstraction

A combination of both solutions (documentation and separate module/crate) provides
the best misuse protection and does not hurt the informed user either who needs to
use deprecated ciphers. When a cipher’s status changes (i.e. it becomes deprecated),
it is moved to the respective module or crate, which is a breaking change and requires
bumping the major version (see section 2.1.8). The user has to decide if using or
supporting the algorithm is still necessary and, if so, actively has to point the code to
the new coordinates (and possibly add a dependency). There are various approaches
to ensure that algorithms from different modules or crates are substitutable so that no
further changes are required (see section 8.4 for details).

Consider Crypto++ as a perfectly positive example: it even requires a preprocessor
directive to enable a flag called CRYPTOPP_ENABLE_NAMESPACE_WEAK before algorithms
like MD5 can be used, in addition to the namespace being called CryptoPP::Weak:: and
the explicit warning in the documentation.9

DO include warnings about deprecated and insecure algorithms and move them to a
module with an off-putting name.

8.3 Level of abstraction
Many researchers have found low-level cryptographic APIs to be a cause of misuse.
For example, Duong and Rizzo characterize OpenSSL as “powerful” but criticize that
it “requires its users to know how to use cryptographic primitives securely” [DR11,
sec. VII]. Surveys conducted by Nadi et al. [NKMB16] find “that the APIs are generally
perceived to be too low-level.” On the other hand, the higher-level APIs of NaCl,
libsodium and Keyczar are often named as positive examples because they “hide details
like encryption algorithms, block cipher modes, and key lengths from programmers”
[LCWZ14, sec. 3.1].

There are two aspects that make up an API’s level of abstraction: the exposed primitive
and the API’s granularity, as explained in the following two sections. Note that high-
level and low-level are relative terms. For instance, OpenSSL’s wiki states that its
“EVP functions provide a high level interface”10 because they abstract over multiple
implementations. Compared to the APIs discussed here, this OpenSSL API is very
fine-grained and low-level, though. Protocols like TLS, on the other hand, are clearly
on a higher level than any primitive. In the following, only APIs that offer access to
cryptographic primitives are considered and the terms high-level and low-level are used
in relation to this spectrum.

9https://www.cryptopp.com/wiki/Hash_Functions#The_MD5_algorithm (2017-03-14)
10https://wiki.openssl.org/index.php/EVP

115

https://www.cryptopp.com/wiki/Hash_Functions#The_MD5_algorithm
https://wiki.openssl.org/index.php/EVP

8 Improving usability and misuse resistance

8.3.1 High-level and low-level primitives

Low-level primitives include encryption, authentication and hashing, whereas high-
level primitives like AEAD or password hashing combine or augment other primitives
(see section 2.2). Libraries should definitely include and promote these two particular
high-level primitives because the corresponding low-level primitives (unauthenticated
encryption and regular hash functions for passwords) are deemed insecure [Dev14;
DK14; DR11]. Other high-level primitives can also be helpful and are worth including if
they solve a common use case.

Similar to the previously discussed algorithms like MD5, which are insecure but popular,
there are even more legitimate use cases for low-level primitives. After all, they are
the “building blocks” of cryptosystems and higher-level cryptographic protocols—both
of which are developed by cryptography experts, though. Instead of trying to strike
a balance between low-level and high-level APIs that cater to average developers and
experts, it is recommended to offer two API layers at different levels of abstraction.11

The lower layer offers individual algorithms for low-level primitives, fine-grained controls
and is optimized for performance. It should nevertheless be designed with usability and
misuse resistance in mind. The higher layer builds on the low-level primitives, but its
API is independent from the underlying algorithms and geared towards the user’s task at
hand (e.g., storing/verifying a password or sending data securely). Nadi et al. [NKMB16]
coined the term task-based for such designs. Good examples of task-based APIs are PHP’s
password_hash() function and the entire “recipes layer” of the cryptography Python
library [KG+]. The “recipes layer” is built on low-level APIs in the so-called “hazardous
materials” layer. The latter’s deliberately off-putting name does not only describe the
layer, but it also gives its name to the hazmat module, which contains all the low-level
interfaces and needs to be written out in every source code file using it, similar to the
deprecated and insecure modules suggested in section 8.2.2.

To my knowledge, there is currently no Rust crypto library that splits its interface into two
layers as consequently as the cryptography Python library. sodium makes a distinction in
its documentation and puts hash functions and others in a “low-level functions” section,
which is not to be used “unless you know what you’re doing,” but the separation is not
reflected in the module names. ring goes a step further and only exposes its “recipes”
layer, consciously leaving users with special needs no choice but to use another library,
in order to maximize misuse resistance.12

The “recipes and hazmat” structure is certainly worth adopting in Rust libraries. Firstly,
the recipes layer accomplishes a central API design goal: “simplify the most common use

11https://cryptocoding.net/index.php?title=Coding_rules&oldid=195 (http://archive.is/vkai6)
12https://github.com/briansmith/ring/issues/414#issuecomment-275571259 (2017-03-23)

116

https://cryptocoding.net/index.php?title=Coding_rules&oldid=195
http://archive.is/vkai6
https://github.com/briansmith/ring/issues/414#issuecomment-275571259

8.3 Level of abstraction

case” [DK14, sec. 6]. Secondly, the naming and placement of the hazmat layer protects
uninformed users from accidentally using the wrong primitives. And last but not least, it
adheres to the completeness principle, i.e., the overall API is powerful enough even for
expert users.

DO split the crypto interface (API) into a high-level “recipes” and a low-level “hazard-
ous materials” layer.

8.3.2 API granularity

Most parameters, except the one for the actual input data, can potentially be eliminated
from the API and be replaced with a fixed value, based on a hopefully informed and
possibly opinionated decision. Keys and nonces can be generated and returned by the
library implementation, obviating the need for the respective parameters. Otherwise,
high-level APIs should hide all rarely needed parameters whereas low-level APIs should
offer all relevant parameters without setting defaults for them (see section 8.6).

Another kind of granularity results from primitives which accept multiple inputs or
primitives where it is convenient to provide the input in multiple pieces. For example,
this is the case for all the primitives investigated in chapter 6: hash and HMAC can
be fed with individual chunks and produce a single digest in the end, and symmetric
block ciphers can encrypt one block at a time. To allow for multiple inputs, the library
has to keep the state of the cipher across function calls, so there must be some state
object (usually called Context or Cipher) that accepts multiple input calls and one final
output or optional cleanup call. Most users (hash: 90.2%, HMAC: 89.1%, block ciphers:
85.1%) only have a single input, though. As this is clearly the 80% use case, it should
be supported with a “one-shot” API that only takes a single piece of input data and saves
the user the effort of instantiating a Context object. Section 8.4 discusses appropriate
locations for the one-shot API and the regular multi-step API with respect to different
library structures.

During my self-experiment, I experienced the lack of such a “one-shot” API a couple
of times. While most multi-step APIs only require around three function calls,
rust-crypto’s low-level block cipher API becomes much easier to use with the 14-
line helper function from the code sample. Most users (all successful participants in the
controlled experiment and 88.9% of users on GitHub, see section 6.5) simply copy this
code sample and use the “one-shot” API provided there.

DO include a “one-shot” API for the most common use case.

117

8 Improving usability and misuse resistance

8.4 Organization of included algorithms
Once the right levels of abstraction for primitives, the desired API granularity and the
algorithms to be included are determined (as discussed in the previous sections), they
need to be organized so that users can find the right API for their use case. More
specifically, structural elements of the Rust language like modules, structs and methods
are used, along with their documentation, to help users discover the library, i.e.:

• identify the right primitive to use,
• identify the right implementing algorithm to use and
• steer clear of dangerously low-level primitives (see section 8.3.1) and insecure

algorithms (see section 8.2.2).

Algorithms are always grouped by the primitive they implement in some way, so that
all grouped algorithms have a common API, making them substitutable. This allows the
user to switch between algorithms easily (and possibly even dynamically at runtime).
Some organization strategies allow the library designer to choose a default algorithm,
which is used when the user does not explicitly specify another.

On a more technical level, there are often slight differences between similar algorithms.
For example, different hash algorithms have different output lengths, different encryption
ciphers have different key lengths, some block cipher modes require an initialization
vector and others do not. Although they can still be called through the same function,
the API contract is slightly different. A good API does not only let the user choose an
algorithm but also exposes the necessary meta information to deal with these differences.
If the user needs to preallocate a buffer for a return value or needs to generate a key,
the API should provide information about its required length, for example.

Finally, a minor requirement is the ability to parameterize algorithms with other al-
gorithms for a different primitive. For example, an HMAC needs a hash function
internally. One approach is to list all combinations as separate algorithms: HMAC-SHA1,
HMAC-SHA256, and so on. Alternatively, a library can provide a single, generic HMAC

implementation that takes the underlying hash algorithm as a parameter.

There are multiple ways to implement discoverability, substitutability, default algorithms,
meta information sources and parameterization, which are discussed in the following
sections and summarized in table 8.1 on page 126.

8.4.1 One instance per algorithm (instance-based)

These approaches use one module per primitive (called primitive1 below; examples
are hash, mac and aead) and a single main type (called Primitive1 below; examples
are Hash, Mac and AEAD, though the type can also be called something generic like

118

8.4 Organization of included algorithms

Algorithm), the instances of which represent algorithms. The approaches differ in how
they generate the instances and what type they use (see the sections below).

8.4.1.1 Placement of the main API

As explained in section 8.3.2, some users need a fine-grained multi-step API (represented
by the Context type and its step1() function below), though most users can be served
with a simpler one-shot API that only requires a single function call (represented by the
execute() function below). The one-shot functions can be implemented as methods of
the algorithm instances:

1 mod primitive1 {

2 pub [struct/enum] Primitive1;

3 impl Primitive1 {

4 pub fn execute(&self, ...) -> ... { ... } // one-shot API

5 }

6 pub struct Context(&Primitive1, ...);

7 impl Context { // multi-step API

8 pub fn new(algorithm: &Primitive1) -> Context { ... }

9 pub fn step1(&mut self, ...) -> ... { ... }

10 }

11 }

or as global functions which take the algorithm instance as a parameter:

1 mod primitive1 {

2 pub [struct/enum] Primitive1;

3 pub fn execute(algorithm: &Primitive1, ...) -> ... { ... } // one-shot API

4 pub struct Context(&Primitive1, ...);

5 impl Context { // multi-step API

6 pub fn new(algorithm: &Primitive1) -> Context { ... }

7 pub fn step1(&mut self, ...) -> ... { ... }

8 }

9 }

The former design is an idiomatic use of methods in object-oriented programming (al-
lowing the method syntax: algo_instance.execute(...)), but the latter design is more
consistent because the one-shot function execute() and the multi-step type Context

are next to each other on the same level and both receive a reference to the algorithm
instance. For example, ring uses the latter design to let the user choose from the
same set of hash algorithms when using the global digest(&SHA256, ...) function and
when instantiating a digest::Context::new(&SHA256) for multi-step hashing, where a
reference to the SHA256 instance is embedded in the Context instance. Both designs let
the user substitute the chosen algorithm trivially.

119

8 Improving usability and misuse resistance

8.4.1.2 Placement of meta information

If the main type is a struct (and not an enum), the meta information can be placed
inside the struct:

1 pub struct Primitive1 {

2 pub meta_information_1: ...,

3 pub meta_information_2: ...

4 }

The alternative is to provide getters for the meta information on the main type:

1 impl Primitive1 {

2 pub fn get_meta_information_1(&self) -> ... { ... }

3 pub fn get_meta_information_2(&self) -> ... { ... }

4 }

The latter has the usual benefits of using getters over public fields—most importantly, it
allows to keep backward compatibility when changing the struct.

8.4.1.3 Instance retrieval

If the main type is an enum, the instances are simply its variants. For example, a global
API function could be called like this:

1 execute(Primitive1::Algorithm5, ...)

No library currently uses enums for algorithm selection. The main disadvantage is the
lack of a common struct where meta information can be placed. Instead, the many
meta information getters, as shown above, would have to be implemented with large
match blocks or lots of if blocks because there is no common field to store the data.

For structs, instances can be provided as static variables (which is what ring does):

1 pub static ALGORITHM1: Primitive1 = Primitive1 { meta_information_1: ... };

2 pub static ALGORITHM2: Primitive1 = Primitive1 { meta_information_1: ... };

3

4 // Usage with methods:

5 use primitive1::ALGORITHM1;

6 ALGORITHM1.execute(...);

7

8 // Usage with global functions:

9 use primitive1::{execute, ALGORITHM1};

10 execute(&ALGORITHM1, ...);

11

12 // Usage with multi-step API:

13 use primitive1::{Context, ALGORITHM1};

14 let mut ctx = Context::new(&ALGORITHM1);

15 ctx.step1(...);

120

8.4 Organization of included algorithms

This design matches the “A module full of constants” pattern by Hertleif [Her16b]. It has
slight performance benefits and allows for an insecure submodule to contain deprecated
and broken algorithms. But, when the main module contains a lot more than just the
constants, it makes the algorithms slightly less discoverable because they are on the
same level as all the types and global functions.

Alternatively, instances can be created by factory functions on the main type (which is
what rust-openssl does):

1 impl Primitive1 {

2 pub fn algorithm1() -> Primitive1 { Primitive1 { meta_information_1: ... } }

3 pub fn algorithm2() -> Primitive1 { Primitive1 { meta_information_1: ... } }

4 }

5

6 // Usage with methods:

7 use primitive1::Primitive1;

8 Primitive1.algorithm1().execute(...);

9

10 // Usage with global functions:

11 use primitive1::{execute, Primitive1};

12 execute(Primitive1::algorithm1(), ...);

13

14 // Usage with multi-step API:

15 use primitive1::{Context, Primitive1};

16 let mut ctx = Context::new(Primitive1::algorithm1());

17 ctx.step1(...);

This design supports dynamic parameterization (pub fn hmac(hasher: Hash) -> MAC,
for example), which is inherently impossible with statics (a constant can be used as a para-
meter value, but it cannot accept another algorithm as a parameter itself). Factories for
insecure algorithms could be placed in a separate InsecurePrimitive1 type, though they
would confusingly have to return Primitive1 instances, whereas InsecurePrimitive1
instances do not make sense.

Both designs allow to specify a default algorithm by adding another item named DEFAULT

or default(), respectively.

8.4.2 One struct per algorithm (trait-based)

This approach also uses one module per primitive, but inside the module there is one
type per algorithm (as opposed to one instance of a common type). The only reasonable
language item to use for the type is a struct. In order to let the user access the
algorithms through a common API, a trait needs to be added and implemented by each
of the algorithm structs:

121

8 Improving usability and misuse resistance

1 mod primitive1 {

2 pub trait Primitive1 {

3 fn execute(...) -> ... { ... }; // no "self", calls the multi-step API below

4 fn new() -> Self;

5 fn step1(&mut self, ...) -> ...;

6 fn get_meta_information_1() -> ...;

7 }

8 pub struct Algorithm1;

9 impl Primitive1 for Algorithm1 { ... }

10 }

11

12 // Usage:

13 use primitive1::{Primitive1, Algorithm1};

14 Algorithm1::execute(...);

15

16 // Usage with multi-step API:

17 use primitive1::{Primitive1, Algorithm1};

18 let mut ctx = Algorithm1::new();

19 ctx.step1(...);

Note that the Primitive1 trait needs to be imported with use every time one of its
methods is used. Meta information getters can be added as associated functions (known
as static methods in other languages) on the trait. The trait and the structs do not
necessarily have to live in the same module (rust-crypto has one module per algorithm),
though a single module is preferable for better discoverability. At first it might seem
that a lot of redundant code is required to implement the trait for every algorithm, but
the implementer can use private helper functions for most of the code and/or wrap a
prototypical implementation in a macro.

Because the algorithms are now distinguished types, the one-shot APIs like the execute()

function above become associated functions. This leaves the instances of the algorithms
for the multi-step APIs, where the state can be conveniently stored in the struct, that
is, no separate Context is required. A default algorithm can be specified with a type
alias (pub type Default = AlgorithmX). One implementation can be substituted with
another by simply referencing the other type, as long as it implements the same relevant
trait(s). And insecure algorithms can easily be moved to a submodule called insecure.

The trait-based approach is much more flexible than the ones above because structs can
implement multiple traits. Special cipher features (such as resetting, additional input
data like the “associated data” for AEAD ciphers and so on) could be exposed as separate
traits. Empty traits can serve as “flags”, for example to declare that an algorithm runs
in constant time, fulfils certain security requirements, etc., and users of the algorithms
could specify requirements with trait bounds. A struct for a single algorithm could even
implement the traits for multiple primitives, which demonstrates that the flexibility
of this approach is at the same time its downside, because it can lead to confusingly

122

8.4 Organization of included algorithms

complex designs. Note that the other two approaches can also, to some degree, benefit
from traits, though the traits would need to be added in specifically and are not naturally
part of the design.

For external helper methods that want to accept an algorithm as a parameter, and for
parameterized algorithms like HMAC, generics need to be used instead of function
parameters. A password hashing function, which is based on any hash function and
applies a random salt, could have the following signature:

1 pub fn password_hash<H: hash::Hasher>(password: &str) -> Vec<u8>

and an Hmac type could generically depend on a hash function like so (which is how
octavo implements it):

1 pub struct Hmac<H: hash::Hasher> { ... }

Even though this works throughout any use case, the syntax for accessing associated
(static) members needs getting used to, as it involves the “turbofish”13 operator:

1 Algorithm1::<InnerAlgorithm2>::execute(...);

2 let mut ctx = Algorithm1::<InnerAlgorithm2>::new();

3 let value = Algorithm1::<InnerAlgorithm2>::get_meta_information_1();

4

5 let mut ctx = hmac::Hmac::<hash::SHA256>::new();

6 let out_size = hmac::Hmac::<hash::SHA256>::output_size();

Instead of using this syntax, the library or its users can define type aliases for the
parameterizations they need (e.g. type HmacSha256 = hmac::Hmac<hash::SHA256>).

The most outstanding and unique advantage of the type-based approach is the separation
of the primitive APIs (traits) from the implementations (structs and impls)—so much
so that the traits could live in another crate. This separation can be useful to unify the
APIs of various crypto libraries and it hopefully allows designing and thinking about
the API independent of the implementation, as pointed out by @taoeffect [Sap+16,
post 45].

At the time of writing, traits in Rust still have some limitations and the language design is
still emerging. Future changes can interfere with a heavily trait-based API design or open
up new possibilities. For instance, associated constants and types are being improved
and the variants of an enum could become first-level types. As the Rust language is
declared stable, trait-based designs will likely become more powerful in the future.

13https://twitter.com/steveklabnik/status/659034597062262784 (2017-04-01)

123

https://github.com/taoeffect
https://twitter.com/steveklabnik/status/659034597062262784

8 Improving usability and misuse resistance

8.4.3 One module per algorithm (module-based)

The most static approach implements each algorithm in its own module. sodiumoxide
and therefore rust_sodium use this approach.

1 mod primitive1 {

2 pub mod algorithm1 {

3 pub fn execute(...) -> ... { ... }

4 pub const META_INFORMATION_1: ... = ...;

5 pub struct Context(...);

6 impl Context {

7 pub fn new() -> Context { ... }

8 pub fn step1(&mut self, ...) -> ... { ... }

9 }

10 }

11 pub mod algorithm2 {

12 pub fn execute(...) -> ... { ... }

13 pub const META_INFORMATION_1: ... = ...;

14 ...

15 }

16 }

Meta information is exposed through constants. Every module is self-contained in the
sense that it does not share common structs, constants or functions with its siblings.
Internally, they may still have common helpers or multiple similar modules can be
generated from a single source file with macros. As far as their APIs are concerned, the
modules are separate—but not independent: to make algorithms for the same primitive
substitutable, the modules must have the same structure.

Instead of declaring all these modules at the crate level, they are grouped by the primitive
they implement (and possibly submodules for insecure algorithms or the “hazardous
materials” layer, see section 8.3.1). This, for one, makes them discoverable more easily
and creates another module layer where general documentation can be placed. It also
allows the primitive module to re-export one of the algorithm modules, effectively
making it the default implementation:

1 mod primitive1 {

2 mod algorithm1;

3 mod algorithm2;

4 pub use self::algorithm1::*; // algorithm1 is the default

5 }

6

7 // Usage:

8 primitive1::execute(...);

9 primitive1::algorithm2::execute(...);

10 let mut ctx = primitive1::Context::new();

124

8.4 Organization of included algorithms

This is the only design which hides the implementations completely from users
who are not interested in them, i.e., neither an algorithm name nor the word
“default” occur in the default use case. Furthermore, a user who previously
used the default implementation—imported by use library::primitive1—can
switch to a specific implementation simply by changing the use statement to
use library::primitive1::algorithm2 as primitive1.

Another advantage is the possibility to reference the meta information statically. Particu-
larly arrays always have to be declared with their size as part of the type ([u8; SIZE]),
hence the size needs to be available statically. The trait-based design introduced in the
previous section might also support that in the future, when associated constants for
traits become stable.

Because the individual algorithms lack a type or an instance to represent them, they
cannot be used to parameterize other functions or algorithms intuitively. Instead, one
would have to pass a function pointer or a representative value (like a string or enum
value), which is neither elegant nor type-safe. In rust_sodium’s case, parameterization
is certainly not missing because it would make the API too complex for the target users.
If an API also wants to support more complex use cases with a usable API, the lack of
parameterization could become an obstacle.

Last but not least, the module-based design can be combined with the trait-based design
to gain some of the benefits (parameterization, separation of API and implementation,
ability to implement multiple traits, as described in the previous section).

8.4.4 Conclusion

The approaches detailed in sections 8.4.1 to 8.4.3 (summarized in table 8.1) all use a
module for every primitive, but different language elements to represent algorithms.
Instances are the smallest and at the same time the most dynamic elements, types
are static yet flexible, and modules are rather bulky but still provide some elegant
solutions.

From a usability perspective, the trait-based approach with one struct per algorithm
(section 8.4.2) is preferable because it separates the interface from its implementation
and because it intuitively places the one-shot API and the multi-step API of an algorithm/
primitive in a single type as static and instance methods, respectively. It is also the
most flexible and allows for fine-grained traits, though this advantage runs the risk of
producing overly complex designs. And while traits in Rust are not matured, yet, they
are already reasonably stable and feature-rich for this design to work well.

DO create one module and trait per primitive and one struct per algorithm.

125

8 Improving usability and misuse resistance

Approach instance-based trait-based module-based
Section 8.4.1 8.4.2 8.4.3
For every primitive,
create ...

a common struct a common trait a module

For every
algorithm, create ...

an instance of the
struct

a struct which im-
plements the trait

a submodule

To choose an
algorithm, the
user ...

refers to a global
variable / calls a
factory

use-s the trait and
refers to the struct

use-s the module

Select default
with ...

yet another
instance / factory

type alias re-export
(pub use)

Place one-shot API
in ...

instance methods
or global functions

associated
functions

global functions

Place multi-step
API in ...

a separate type
(e.g. Context)

instance methods a separate type
(e.g. Context)

Place meta info
in ...

instance fields or
getters

associated
functions

global variables or
constants

Parameterize ... by passing
instances

with generics -

Examples rust-openssl,
ring

rust-crypto,
octavo

sodiumoxide,
rust_sodium

Unique advantages - fine-grained traits
possible,
API separate from
implementation

elegant selection of
default algorithm,
static meta
information

Limitations - Rust traits are not
yet mature,
trait must be use-d

difficult
parameterization

Table 8.1: Summary of alternative approaches to algorithm organization

8.5 Split into multiple crates
Some Rust programmers prefer many smaller crates over a big one.14 octavo follows
this principle and ships its hashing, MAC and key derivation modules as separate crates.
The top-level octavo crate merely bundles and re-exports them—some refer to this as a
“collection” or “meta” crate. The fact that the smaller crates are collectively managed,
developed and shipped solves most of the issues with small crates: it ensures that the

14https://github.com/rust-unofficial/patterns/blob/bfd4b5c/patterns/small-crates.md (2017-03-23)

126

https://github.com/rust-unofficial/patterns/blob/bfd4b5c/patterns/small-crates.md

8.5 Split into multiple crates

versions match, it makes them a single dependency to manage and it provides them
under a single license. The RustCrypto project goes one step further and publishes a
single crate per algorithm and one per primitive just for the traits. Through the “meta”
crate, users can use these libraries like any other one—but they additionally have the
possibility to only include a subset and hence reduce their build times and binary size.

However, too many crates make the overall ecosystem more confusing and the library
harder to use, which is why ring’s owner refuses to do it.15 Besides the possible confusion
about similarly named crates on crates.io and the n:1 relationship to GitHub repositories,
there are currently a few bugs in Rust tools which make separated libraries harder to
use. My self-experiment showed that autocompletion with the intellij-rust plugin
breaks and the meta crate’s documentation becomes unusable.16 In addition, users have
to find and include every required crate manually. Thus, if the library does not strike the
right balance, all users end up including the full-blown “meta” crate instead.

To find this balance, the data from the usage analysis (chapter 6) can help identify
primitives which are often used alone and could benefit from a separate crate. As can
be seen from figure 8.1, more than half of all dependent crates could benefit from a
separate hash or MAC crate. Splitting off single algorithms usually does not warrant
the resulting confusion from crates like sha3,17 which are difficult to associate with the
corresponding library. The only exception are widespread insecure algorithms like MD5
and SHA-1 (see section 8.2.2), which could be excluded completely rather than factored
out and re-exported from the meta crate without breaking API compatibility, as they
could still implement the common traits.

Only hash (37.4%)

Only MAC (+ hash) (16.9%)

Only symm (9.7%)

Only asymm (7.7%) Mixed (28.2%)

Figure 8.1: Proportions of crypto-using crates which only need a single primitive

DON’T split the library into too many crates, especially not prematurely. Only split
off entire primitives if there is a user base who can provably benefit from it.

DO move insecure algorithms to a separate crate without re-exporting them.

15https://github.com/briansmith/ring/issues/432 (2017-03-23)
16https://docs.rs/octavo/0.1.1/octavo/index.html (2017-03-23)
17https://crates.io/crates/sha3

127

https://github.com/briansmith/ring/issues/432
https://docs.rs/octavo/0.1.1/octavo/index.html
https://crates.io/crates/sha3

8 Improving usability and misuse resistance

8.6 Defaults and future security
By setting default values for parameters or default algorithms for primitives, a library
can spare its user the decision, for which the user might have to read up on the topic
and weigh all the arguments for and against all possible choices. However, the history
of defaults in cryptographic APIs teaches us that they are dangerous. The notorious
example is Java’s Cipher.getInstance("AES"), which uses the insecure ECB mode by
default [EBFK13, sec. 4]. PyCrypto does the same and it sets the initialization vector
(IV) to zero for CBC mode [DK14, sec. 5]. Georgiev et al. [GIJ+12, sec 11.1] even
recommend application developers not to rely on any default values but to “always
explicitly set the options necessary.” Even perfectly secure values may become obsolete
when new weaknesses are discovered or simply in the course of time because computing
power becomes cheaper and longer keys are required for the same level of security.

On the other hand, not offering a default could be the worse decision. Choosing the
appropriate block cipher mode is too much to ask of many users. The only solution they
have is to turn to the documentation for advice and hard-code the recommended value,
which is no better than if the library had set its recommendation as the default. And for
all users who do not override the default, the library can change the values to match the
latest recommendations without requiring the users’ code to change.

The fundamental technical concern is backward compatibility: Ciphertexts and digests
generated with outdated algorithms or parameters (block cipher mode, key/IV lengths,
etc.) still have to be readable, as they might be received from outdated systems or be
stored on disk. If Java changed its API so that "AES" refers to the more secure CBC mode,
existing applications would break because they could not decrypt old ciphertexts.

These thoughts lead to the core issue: How can an application be made secure in the
long term as the state of cryptography advances, requiring nothing but library updates
on the application developer’s part and especially no code changes? Of course, there is
no perfect solution to this problem—quantum computers and other ground-breaking
discoveries could turn cryptography upside down and make an API entirely obsolete.
And yet, it is worth designing libraries to work as long as possible.

Higher-level APIs can solve this problem by storing an identifier for the used algorithm
and its parameters alongside the data. For example, PHP’s password_verify() func-
tion recognizes passwords hashed with any supported hash function because the used
algorithm and its parameters are prepended to the hash value. Similarly, the Fernet
format [Rar13] for authenticated encryption contains a version field to identify particular
algorithm-parameter-combinations. Both examples show that this kind of backward
compatibility is only suitable for high-level primitives in the “recipes” layer (see sec-
tion 8.3.1). There are no defaults in such designs because the parameters themselves
have been eliminated and replaced with sensible and updateable choices [Dev14].

128

8.6 Defaults and future security

For lower-level primitives, i.e., those in the “hazardous materials” layer, any attempt to
solve backward compatibility for the user would fail—and it would also be a misdirected
attempt: these lower-level primitives are supposed to serve as building blocks for higher-
level protocols rather than being used in applications directly. In this scenario, the
protocol can take care of backward compatibility, and it should also specify a value
for every parameter to make implementations in different platforms compatible. Users
of low-level APIs are knowledgeable enough to choose a suitable value themselves.
Therefore, defaults in low-level APIs are neither necessary nor helpful.

Besides being discouraged, defaults for function parameters are also difficult to im-
plement in Rust. There is no native support for optional parameters and no function
overloading to provide alternatives with fewer parameters. Instead, libraries can define
multiple functions with different names, declare Option<T> instead of T as the para-
meter type, use the builder pattern for constructors with many parameters or the
parameter object pattern for regular functions, or expose the default value separately,
e.g. const DEFAULT_KEY_LEN: usize = 256 / 8;. All of these solutions make the API
more difficult to learn and should be used with care. Finally, if a default value is neces-
sary at all, it has to be documented well to make the API understandable and help the
user switch to another value if necessary.

So in short, there should be very few defaults in a crypto library: on higher levels, the
choice itself should be eliminated and be taken care of transparently by the library, and
on lower levels, all parameters and algorithms should be exposed without defaults.

There are two general exception to this rule: Firstly, some parameters can be made
optional without requiring a specific default value that represents a decision. For
example, when an encryption function is called without an IV, the library should
generate a random one in a secure way and return it. This prevents users from hard-
coding IVs and saves them a call to the library’s IV generation function. Secondly, default
algorithm-parameter-combinations should be provided for high-level primitives, e.g., the
default for authenticated encryption could be AES-GCM-256. This extends to hashing
and HMAC, as they are widely used (see section 6.2). Section 8.4 discusses how default
algorithms can be specified with respect to different library structures.

DO choose a secure default algorithm with secure parameter values for high-level
primitives and eliminate parameters or other choices where possible.

DON’T provide any defaults in low-level APIs.

129

8 Improving usability and misuse resistance

8.7 Strong types
Sequences of bytes (Vec<u8> or [u8] in Rust) represent most of the data in cryptographic
algorithms: inputs, ciphertexts, different kinds of keys, nonces, tags and digests. But
they are easily mixed up:

1 fn hmac(key: &[u8], data: &[u8]) -> Vec<u8> { ... }

For this function, hmac(&data, &key) is a perfectly valid call and it will only fail at
runtime if the data exceeds the maximum key length (and the implementation does
not just truncate it). A confusion like this rarely results in a vulnerability and is usually
discovered with a simple functionality test because the mix-up breaks decryption or
verification or causes other runtime failures. And yet, a well-designed API should prevent
such mistakes at compile time to improve the API’s usability.

To harness the type system, at least some of these data kinds need to be represented by
types, which can be simple wrappers:

1 pub struct Key(pub [u8; 32]); // Known length

2 pub struct Tag(pub Vec<u8>); // Unknown length

This changes the wrong call to hmac(&data, &Key(key)), which fails. The user data
(inputs and ciphertexts) do not need a separate type and are most intuitively repre-
sented by arrays or vectors, as before. Ideally, the types serve other purposes than just
the type safety of the function call. sodium offers functions like fn gen_key() -> Key

as type-safe and expressive variants of its RNG function, for example, which encour-
ages using the types throughout the application. The mere fact that there is also a
fn gen_nonce() -> Nonce, which connects to the nonce parameter through the com-
mon type, tells the user that the nonce should also be generated (randomly), which
is not clear to all users as the controlled experiment showed. According to Hertleif
[Her16b], in an elegant API, “types are cleverly used to prevent logic errors, but don’t
get in your way too much.”

Note that there should not be a single type Key for all kinds of keys used by the API. Using
a single key for different cryptographic purposes is considered bad practice because it
can lead to subtle vulnerabilities [YHR04, sec. 9.2]. Thus, at least every primitive should
define its own key type.

DO use type-safe wrapper structs for keys, nonces, tags and digests to avoid confusion.

Boolean, integer and string parameters are also easily mixed up when they represent
certain fixed values rather than user data. Especially boolean parameters are frowned
upon [Hid11; Leb11], as they can often be removed entirely and replaced with two
versions of the function with telling names. Georgiev et al. [GIJ+12, sec. 4.2 and 7.1]
report on a particularly severe case:

130

8.8 Keys, nonces and seeds

1 curl_setopt($ch, CURLOPT_SSL_VERIFYPEER, true);

2 curl_setopt($ch, CURLOPT_SSL_VERIFYHOST, true);

This PHP code sets options for an SSL connection with the cURL library and runs
without warnings in older PHP versions. The second call effectively disables host
verification, making the application vulnerable to man-in-the-middle attacks because
the peer can be impersonated by presenting any valid certificate for another host. The
CURLOPT_SSL_VERIFYHOST parameter is an integer and defaults to 2, which is the only
secure option. While a value of 0 disables verification entirely, as one would expect,
a value of 1 (or true) only enables it partly. In this example, various factors play a
role: PHP is weakly typed and silently coerces true to 1, the cURL library has a similar
boolean parameter CURLOPT_SSL_VERIFYPEER, 1 happens to be an insecure option, and
the mistake does not raise any warnings or cause failures.

Like many other languages, Rust provides enum types to prevent such mistakes, with
the added benefit of more usable APIs and more readable code. Enum types and enum
variants need expressive and specific names. They should be reused with care, as the
use of a generic enum State {Enabled, Disabled}, for example, can lead to the same
mix-up issues as plain booleans. For one parameter in particular, namely the chosen
algorithm, there are alternative and more powerful solutions, though (see section 8.4).

DO use enums for parameters with a small set of choices.

8.8 Keys, nonces and seeds
As discussed in the previous section, keys and nonces should be encapsulated in respect-
ive types. They also need to be generated randomly and securely by a CSPRNG (see
section 2.2.1). The pure-Rust libraries do not implement an RNG because, unlike C,
Rust has an officially endorsed rand crate that provides direct access to the operating
system’s CSPRNG through the OsRng type and explicitly advertises it for cryptographic
purposes.

The wrapper libraries additionally hand through the RNG of the underlying C library
(OpenSSL, BoringSSL or libsodium). Besides marginal differences (e.g. OpenSSL only
seeds from the OS18), the major downside of the libraries’ own RNGs are the less
ergonomic interfaces, as the user has to preallocate and fill a vector/array in two
separate steps. ring supports heap-less environments and the rand crate does not, which
forces ring to offer its users an RNG.

18https://github.com/openssl/openssl/issues/898 (2017-03-23)

131

https://github.com/openssl/openssl/issues/898

8 Improving usability and misuse resistance

Users can easily overlook the library’s own RNG and the OsRng and use the insecure
rand::random() function instead. A similar situation in Java, where the insecure
java.util.Random and the secure java.security.SecureRandom coexist in the JDK, has
led to accidental misuse [EBFK13, sec. 6.2], see also [ANA+15; LCWZ14]. In my self-
experiment with rust-crypto, even though I had found the correct OsRng, I was unsure
about using it. The crypto libraries’ documentation should therefore point to a secure
RNG, whether it is included or from the rand crate. As mentioned in the previous section,
sodium cleverly uses strong types and promotes its fn gen_key() -> Key function, so
that users do not have to search for an RNG and the right key/nonce length at all.

DO offer key and nonce generation functions with the appropriate type.

The controlled experiment and other research show that some users provide insecure
keys or nonces, particularly zeros, hard-coded or otherwise reused values, when they can-
not find a generation method for them in the library. Lazar et al. [LCWZ14, sec. 2.3.1]
find hard-coded encryption keys to be a common mistake and hypothesize that de-
velopers believe that the keys cannot be read from the compiled binary. Unfortunately
they can and an attacker in possession of the key can decrypt and forge any message.
For the same reason, hard-coding other kinds of keys (e.g. MAC keys), nonces or seeds
for RNGs is highly insecure. Lazar et al. [LCWZ14, sec. 3.1] name the Keyczar library
as a positive example, where the user does not specify the key itself but the path to a
key file, which discourages hard-coding. The API is obviously geared towards the use of
key files, but other scenarios where the key needs to be read from memory or derived
from another secret can be implemented, too. A solution like this is also possible and
desirable in Rust because it helps the user load and store the keys properly.

DO offer simple (default) ways to load and create key files.

To prevent nonce misuse entirely, Devlin [Dev14] proposes that encryption functions
generate the nonce internally and return it, which can be done separately (returning a
tuple) or concatenated with the ciphertext (see section 8.6). While the latter is desirable
because it results in a higher-level primitive, the former only applies to low-level APIs,
whose users should know how to generate a nonce anyway.

DO generate nonces internally for high-level primitives and concatenate them with
the ciphertext.

Egele et al. [EBFK13, sec. 5.2] use static analysis to detect hard-coded keys and seeds
and non-random nonces in Android apps. Their detection can be executed by app stores
as part of the approval process for uploaded apps or by developers as part of the build
process to ensure that no bugs of this kind have been introduced. Rust programs are
also amenable to static analysis, but priority should be given to the solutions discussed
above, as they prevent these mistakes from happening in the first place.

Forler, Lucks and Wenzel [FLW12] use features of the Ada programming language to
prevent the accidental or intentional reuse of nonces. Unfortunately, it is unclear how

132

8.9 Constant-time comparisons

their approach works in the usual symmetric encryption scenario and they have not
responded via e-mail or on GitHub.19 Using the language specification and thus the
compiler to prevent nonce reuse generally sounds like a good approach that could also
work in Rust, especially because Rust’s memory models allows values to be “consumed”
by functions so that they cannot be used anymore afterwards.

8.9 Constant-time comparisons
Digests like MAC values or the authentication tags used by the AEAD primitive have to
be compared in constant time, but the runtime of Rust’s default comparison function
PartialEq.eq() and the == operator depends on the length of the common prefix,
making these comparisons insecure (see section 2.2.8). All crypto libraries except octavo
offer constant-time comparison functions, usually inside a utility module that contains
nothing else. However, users will probably never search for a proper comparison function
if they are not aware of the side-channel attacks enabled by variable-time comparisons.
The documentation should definitely explain the risks, point to the right solution and use
it in all code samples (see section 8.1.2), but not all users read the documentation. Since
only expert users can be expected to know the danger, crypto libraries need additional
strategies to advertise their constant-time comparison functions and to prevent accidental
misuse of Rust’s insecure/default ones.

In the case of AEAD encryption, the library’s API can simply demand the tag as a
parameter and refuse to return the decrypted plaintext if the tag does not match. The
comparison can then be implemented securely as part of the decryption function, making
it impossible to accidentally misuse the wrong comparison function. All crypto libraries
do this properly (except octavo, which does not support AEAD yet).

The case of MAC (or hash) digests is more difficult because it really only consists of
one operation, as opposed to the encrypt-decrypt pair of AEAD. The digest is generated
to sign the message, and later it is generated again to verify (that is, compare) the
signature. An exemplary strategy implemented by rust-openssl, ring and sodium is to
expose two separate top-level methods (or respective other structures) that reflect the
sign-verify pair—even if the verification function does nothing more than calling the
signing function and doing a secure comparison. For instance, ring has a sign() and
a verify() function right next to each other in its hmac module and uses separate key
types. This makes the correct verification method much harder to miss.

DO offer a dedicated signature/MAC verification function based on a constant-time
comparison.

19https://github.com/cforler/Ada-Crypto-Library/issues/8 (2017-03-23)

133

https://github.com/cforler/Ada-Crypto-Library/issues/8

8 Improving usability and misuse resistance

rust-crypto does not implement this solution but has another way to advertise its
comparison function: the digest is wrapped in a MacResult struct, which implements
the PartialEq trait itself and redirects to the constant-time comparison function.20

Thus, comparing two MacResult instances with == is secure. The MacResult::code()

getter, which returns the digest as a plain byte slice, has an appropriate warning in
its documentation. Unfortunately, this is not enough, as figure 6.5 on page 91 shows:
28% of users end up with an insecure comparison—significantly more often than users
of the other libraries. In the third stage of my self-experiment with rust-crypto (see
section 7.1.4), I also used an insecure == comparison on two Vec<u8> because I was
unaware of the problem and had used regular hash values just before.

Nevertheless, rust-crypto’s solution is worth adopting, as it introduces a strong type
for digests at the same time (see section 8.7). To improve the solution, retrieving
the bare representation of the digest ([u8], Vec<u8> or a reference to them) has to
be discouraged. An off-putting name like .raw_digest() or even .raw_less_secure()

cautions users about the bare digest and might prompt them to read the documentation.
More importantly, the function should rarely have to be called. As the usage analysis in
section 6.4 showed, most users need to send or to store the digest as a Base64 string.
Instead of exposing the bare digest, the wrapper struct could interface directly with the
functions for sending and storing, e.g. by implementing the Encodable and Decodable

traits from the official rustc_serialize crate and advertising it through code samples.

DO use a wrapper type for digests, which implements PartialEq, Encodable,
Decodable and other useful traits to avoid the need for bare digest values.

8.10 &mut parameters
Instead of or in addition to returning a value, a function can write to a memory location
specified by one of its parameters. These parameters are regular pointers in C, out
parameters in C# and &mut parameters (so-called mutable borrows) in Rust. Their use
is generally discouraged in all languages because it obfuscates the data flow. While it
is necessary to use in some languages when a function absolutely needs to return two
separate values, modern languages like Python and Rust natively support tuple types,
which can also be returned from functions. The official Rust style guide recommends:
“prefer compound return types to out-parameters.”21

20https://docs.rs/rust-crypto/0.2.36/crypto/mac/struct.MacResult.html (2017-03-23)
21https://doc.rust-lang.org/1.12.0/style/features/functions-and-methods/input.html (2017-03-23)

134

https://docs.rs/rust-crypto/0.2.36/crypto/mac/struct.MacResult.html
https://doc.rust-lang.org/1.12.0/style/features/functions-and-methods/input.html

8.10 &mut parameters

However, returning values (be it a single value or a tuple) has a relevant downside:
the stack size of the return type needs to be static (known at compile time). To work
around this problem, functions allocate flexible space on the heap (e.g. with a Vec<u8>

in Rust) and return a reference to the heap location. The reference itself has constant
size and thus solves the problem. This fundamentally applies to all programming
languages, though higher-level programming languages like Python or Java work with
heap-allocated types most of the time so that the developer does not notice the problem.
In the case of systems programming languages like Rust, some runtime environments do
not have a heap at all, forbidding the use of vectors and strings entirely.

Crypto libraries often have to return plaintexts or ciphertexts whose size is not static.
Using &mut parameters has the following advantages and disadvantages:

++ Compatibility: Works in heap-less environments.
+ Memory usage: Can be used in-place, that is, the en-/decrypted result is written

in the memory location of the input. This saves half the memory usage and is
especially relevant for huge plaintexts/ciphertexts.

+ Performance: Saves unnecessary allocations and copy operations. Compared to
many other operations, including the cipher operations themselves, this benefit is
negligible.

– Readability: The code does not look as intuitive, preallocating a target array/vector
requires extra lines of code.

– Understandability: When a function returns a Result<T, E>, it is not inherently
clear whether/which output parameters will be filled in the error case and what
they contain.

– – Usability: Requires the caller to find out about the proper size and dynamically
allocate a vector:

1 // Without preallocation:

2 let result = crypto_primitive.execute(...);

3

4 // With preallocation:

5 let mut result = vec![0u8; crypto_primitive.output_bytes()];

6 crypto_primitive.execute(..., &mut result);

In my self-experiment (see section 7.1.9), preallocation was often the most difficult
aspect of an API, especially because I was not aware of the simple solution with the vec!

macro shown above.

Fortunately, the most significant advantage (compatibility with heap-less environments)
and the remedy for the most significant downside (usability) can be combined in a

135

8 Improving usability and misuse resistance

single design, as implemented by rust-openssl: it simply offers both variants simulta-
neously. Its fine-grained API (see section 8.3.2) in the symm::Crypter22 type works with
&mut parameters and hence without heap allocations. The corresponding “one-shot”
functions23 symm::encrypt() and symm::decrypt() return a heap-allocated vector, mak-
ing them easier to use. This pattern is not used consistently across the rust-openssl

API (e.g. the fine-grained hash::Hasher type still returns a vector), but it could be
applied everywhere. Similarly, sodium has a stream_xor() and a stream_xor_inplace()

function next to each other in its stream module.24

DO offer a high-level API variant with return values instead of &mut parameters.
Consider designing an entirely allocation-free variant in addition, which can coincide
with the fine-grained API (see section 8.3.2).

8.11 Conclusion
This chapter presented recommendations for crypto API design in Rust based on ex-
periments and the literature. The most important recommendations pertain to rather
non-technical matters, namely the documentation, code samples and the structure of
the library. Offering and advertising functionality like RNGs, constant-time comparison
functions and key management functions already improves misuse resistance. Higher-
level primitives, which choose appropriate parameter values, generate nonces for the
user and avoid &mut parameters, can be implemented alongside the existing lower-level
primitives to improve usability and misuse resistance. In addition, the type system can
be used to detect errors like mixed-up parameters.

For those libraries that do not want to dedicate their development time to improving their
usability (like rust-crypto and rust-openssl) there is still one important recommen-
dation: they should state this non-goal explicitly on the front pages of their repositories
and documentations and recommend an alternative library (or a good overview of
other libraries) for beginners and those who appreciate better usability for average use
cases.

22https://docs.rs/openssl/0.9.1/openssl/symm/struct.Crypter.html (2017-03-23)
23https://docs.rs/openssl/0.9.1/openssl/symm/index.html (2017-03-23)
24https://docs.rs/rust_sodium/0.1.2/rust_sodium/crypto/stream/chacha20/index.html (2017-03-23)

136

https://docs.rs/openssl/0.9.1/openssl/symm/struct.Crypter.html
https://docs.rs/openssl/0.9.1/openssl/symm/index.html
https://docs.rs/rust_sodium/0.1.2/rust_sodium/crypto/stream/chacha20/index.html

9 Conclusion

Section 9.1 looks at the future of the Rust crypto ecosystem, section 9.2 discusses possible
directions of future scientific research and section 9.3 retrospectively summarizes the
entire thesis.

9.1 Future of crypto in Rust
The Rust crypto ecosystem obviously depends on the Rust language as a whole to
become established over the coming years. Like any other programming language,
Rust has a crypto ecosystem to provide cryptographic functionality to its users, and the
current libraries for primitives analysed in this thesis already provide a good range of
functionality. However, the crypto ecosystem of Rust has the potential to serve even
more users because Rust is a good language to implement cryptographic primitives
in and to make them available to other languages’ ecosystems.

Currently, the main obstacle is a lack of developers or funding (see section 5.5.2).
This is an important issue to address because any library can benefit from (more)
reviews and design discussions—and for crypto libraries, fixing bugs and improving
misuse resistance is crucial. Therefore, section 5.7.1 discussed various approaches to
recruit more developers.

Before Rust sees a major increase in usage numbers, the crypto libraries will have to
polish and stabilize their APIs. The Rust platform itself has a couple of open issues (see
section 5.7.2) that will hopefully be fixed soon to enable better cryptographic implement-
ations and APIs. As the analyses in this thesis showed, not all crypto library developers
care equally about usability and misuse resistance. For those who do, this thesis
contributes quantitative data and experimental observations to base decisions on, as
well as discussions and recommendations regarding the most relevant API design topics.
For those libraries that focus on other goals, there should be corresponding warnings
from the Rust community in general and inside the libraries’ own documentations to
prevent uninformed users from choosing them.

There are good reasons to deprioritize a usable API design and focus on other aspects,
especially for the libraries like rust-crypto and octavo which implement cryptographic

137

9 Conclusion

primitives in Rust. To make such libraries successful in the medium term, they need a
wrapper library which provides higher-level primitives and APIs based on their low-
level primitives. Such a high-level wrapper would compete with other high-level libraries
like sodiumoxide, but it would not need bindings to foreign-language code. ring also
approaches the same goal, but instead of bindings it directly includes the BoringSSL
code and often ports it to Rust, and instead of merely wrapping a lower-level library it
constantly evolves its interfaces to become more high-level and especially more misuse
resistant. As the competition is still very much open, it will be interesting to see how
these libraries develop in the future.

In the long term, once the crypto libraries have matured and a suitable candidate
emerges, an officially endorsed crypto library is desirable—where “endorsing” means
making it a rust-lang crate because the standard library itself is generally kept small.
Such an official crypto library would spare Rust users some research and another security-
relevant choice. And it would allow the Rust crypto developers to concentrate their
implementation and review efforts on a single product.

9.2 Future work
While the analyses of the developers and processes in the Rust crypto ecosystem (the
contributors survey and the GitHub analyses) could answer the corresponding research
questions in a satisfactory manner, the analyses regarding the usage and usability of the
current crypto libraries suggest several starting points for further research.

Firstly, the rather quantitative usage analysis presented in chapter 6 found that hashing
is the most frequently used primitive and unauthenticated encryption has many more
users than AE, which is in stark contrast to the common crypto tasks identified by Nadi
et al. [NKMB16]. A qualitative, open-coding analysis similar to theirs could identify
the tasks of those users, whether they actually need hashing and unauthenticated
encryption or should really be using something else, and how well they cope with the
existing APIs.

Secondly, a similar qualitative analysis could find out why the completely broken
algorithms MD5 and SHA-1 are so widespread (see section 6.3.1). A qualitative
analysis of these usages could find out why these users still need MD5 and SHA-1 and
what they use hashing for in general. It can be suspected that these users do not need
a cryptographically secure hash function but just any (fast) hash function for other
purposes like comparing two files without any security requirements. They possibly
turn to full-blown crypto libraries because they know that these algorithms, which are
not in the standard library, can be found there. If this suspicion can be confirmed, the
solution would be to exclude these algorithms from all crypto libraries and to offer them
as separate crates (as the RustCrypto fork is already doing).

138

9.3 Summary

Thirdly, the usage analysis itself could be repeated as soon as more developers and
especially beginners have started using the crypto libraries in Rust, to see how their
usages differ and possibly adjust the crypto libraries accordingly. By the time a repetition
of this analysis becomes interesting, the number of usages will have grown so much
that only a small sample of the newest usages can be analysed manually. Alternatively,
the analysis could be automated with large-scale static analysis tools (once they are
available for Rust) to track the usage over time with less manual effort. Such static
analysis tools can be helpful in general, as they can inform library developers about the
number of users who would be affected by a certain, breaking API change, and possibly
they can even post automated issues to affected GitHub repositories. The analysis could
also allow to find all usages of a function on GitHub so that API designers can quickly
check whether their current API is misunderstood or not. Being a clean, fairly simple
and explicit language where everything needs to be imported with use explicitly, Rust
seems relatively amenable to such static usage analyses.

Lastly, the controlled experiments presented in section 7.2 could be repeated in a
number of ways: with a similar pool of participants (possibly from the same university)
in order to measure the progress of the libraries over time, with other libraries to get
experimental data and observations for them as well, or with a think-aloud protocol to
get more detailed insights for API design.

9.3 Summary
Rust has set out to rival C and C++. If it succeeds, good Rust crypto libraries will be
in high demand, especially since Rust promotes memory safety and thus suits security-
critical applications. The ecosystem is growing and encompasses several crypto libraries
already. Now is the right time to ensure that design weaknesses, which have made
other crypto libraries difficult to use and have led to vulnerabilities in end-user applica-
tions, and other mistakes are not repeated in the emerging Rust crypto libraries. This
thesis aims to analyse the growing crypto ecosystem and to highlight potentials for
improvement, with a particular focus on usability and misuse resistance.

The general definition of a crypto ecosystem serves as a foundation to systematically ana-
lyse Rust’s crypto ecosystem, as it describes the populations in the ecosystem (platform,
libraries, contributors and users) and their interactions. Fifteen research questions based
on this ecosystem structure were used to guide the analyses, which employed various
research methods: a systematic search, which found 80 crypto libraries and identified 4
major ones, a survey with 20 Rust crypto contributors, several GitHub analyses including
a manual analysis of all 710 issues and 1001 PRs of the major libraries as well as a
self-experiment and a controlled experiment (in collaboration with my supervisor Kai
Mindermann) to test the libraries’ usability.

139

9 Conclusion

Overall, the contributors are typical open source developers, though they have above-
average programming experience and there are a few crypto experts working in the
Rust crypto ecosystem. They collaborate in typical ways on GitHub, where discussions
take place at least for the larger projects. Because of a general lack of contributors
and because most spend their unpaid free time to work on Rust crypto, almost all
libraries only have a single main developer who contributes (much) more than all others
combined. The most frequently used cryptographic primitives are hashing, HMAC and
symmetric encryption. It would be interesting to find out why hashing is so popular,
especially the cryptographically insecure MD5 and SHA-1, and possibly decide to move
them to separate, non-cryptographic crates.

ring and sodium make usability and misuse resistance a top priority and there are
regular discussions about these topics on GitHub. Accordingly, they make almost none
of the mistakes that related usability studies have found in other crypto libraries and
they proved the most usable in the self-experiment. rust-crypto and rust-openssl are
more difficult to use (although rust-crypto helped more participants of the controlled
experiment succeed with its fitting code sample) and especially less misuse resistant,
which is to be expected as they explicitly prioritize other goals. Despite that and the
difficult underlying OpenSSL library, rust-openssl is easier to use than rust-crypto

because its interface is more high-level. octavo still lacks many features and does not
prioritize usability, either.

Being the most downloaded libraries with relatively canonical names, rust-crypto

and rust-openssl run the risk of attracting uninformed users who likely misuse their
interfaces and produce insecure code. While the Rust crypto community recommends
sodiumoxide and especially ring to beginners at every opportunity, these recommenda-
tions often get lost in long discussions and chat logs. To avoid cryptographic misuse, the
Rust community and maybe even rust-crypto and rust-openssl themselves should act-
ively inform users about easier-to-use alternatives. Apart from that, the thesis gathered
suggestions to attract more contributors and to improve the Rust platform for crypto-
graphic purposes, and it discussed several usability topics, which should be considered
when developing new cryptographic APIs in Rust. One particular API that ought to be
built in the future is a common, official interface for important cryptographic primitives.
However, its development should be based on certain platform features that are to be
built in the near future. Future academic work includes qualitative extensions of the
quantitative usage analysis presented in this thesis, a repetition and possibly automa-
tion of this analysis to gain insights about API usage over time and new controlled
experiments with other libraries or newer versions of the same libraries.

140

A Supplementary material

The following materials are provided for download:

1. all figures included in this thesis (as PDF files) and the corresponding numbers or
raw data cited in the text (CSV), as well as further figures not used in the text

2. the R scripts and PowerPoint files used to generate these figures
3. the full list of identified Rust crypto libraries along with their categorization and

number of downloads and dependent crates (Excel sheet)
4. the survey structure including all questions (LimeSurvey LSS file)
5. the raw survey responses except the part that would make participants personally

identifiable (CSV)
6. the R scripts used to download GitHub issues, pull requests, contributor data and

commits
7. the raw data of our GitHub issues and pull requests analysis with topics assigned

to every issue, and the type and length of discussion for feature-relevant issues
(multiple Excel sheets and RData files)

8. a list and categorization of all usages of the major crypto libraries (multiple Excel
sheets)

9. the code that resulted from the self-experiment (multiple Rust projects)
10. all code snippets from chapters 2 and 8 in a runnable application
11. instructions on how to read and use these materials

Download URL: http://philippkeck.de/download?202
Mirror: https://osf.io/edjtb/

This thesis and all supplementary material are licensed under the Creative Commons
Attribution 4.0 International License. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons, PO Box
1866, Mountain View, CA 94042, USA. Suggested citation: “Philipp Keck, master’s thesis
‘Analysing and improving the crypto ecosystem of Rust’, 2017”

141

http://philippkeck.de/download?202
https://osf.io/edjtb/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

B Rust contributors survey questionnaire

This is the full questionnaire, which was presented to survey participants as a web page
generated by LimeSurvey [LS16]. The few mandatory questions are marked with a
star.

Thank you for participating in this survey, we appreciate your support! This should take
you about 10-20 minutes (less if you are not a main contributor, more if you spend lots of
time expressing many thoughts). Please feel free to skip any questions you cannot or do
not want to answer. The results of this survey are used for a master thesis ("Analysis and
improvement of the crypto ecosystem of Mozilla Rust") at the University of Stuttgart, and
possibly in an academic research paper. If you have any questions, please do not hesitate to
contact <e-mail address>.

B.1 Demographics
Q1.1 What is your gender? Male/Female/No answer
Q1.2 How old are you? 17 or younger; 18-20; 21-24; 25-29; 30-34; 35-39; 40-49; 50-59;
60 or older
Q1.3 Which country (or US state) do you live in? Free-text
Q1.4 What is the highest level of school you have completed or the highest degree you have
received? Less than high school degree; High school degree or equivalent (e.g., GED);
Some college but no degree; Associate degree; Bachelor degree; Graduate degree
Q1.5 Which of the following categories best describes your employment status? Student,
not employed; Student, employed part-time; Employed, working 40 or more hours per
week; Employed, working 1-39 hours per week; Not employed, looking for work; Not
employed, NOT looking for work; Retired; Disabled, not able to work
Q1.6 Counting all locations where your employer operates, what is the total number of
persons who work there? 1; 2-9; 10-24; 25-99; 100-499; 500-999; 1000-4,999; 5,000+
Q1.7 Which industry does your employer belong to? Software development; Other IT;
Other technical; Anything else

142

B.2 Your involvement

B.2 Your involvement
Q2.1 How many years of experience do you have in . . . ? Numeric input
a. . . . programming in general (in any language)?
b. . . . programming in Rust?
c. . . . cryptography (e.g. from hearing a lecture, working on a project, ...)?
d. . . . cryptography in Rust?
Q2.2 How would you rate your own cryptography skills? Novice; Educated (heard a
lecture or similar); Experienced (worked on crypto topics for a few weeks); Advanced
(worked on crypto topics for at least a year); Expert (written blog/book or given talks or
developed new crypto algorithms or similar)
Q2.3 How would you rate your own Rust skills? Novice; Educated (heard a lecture about
Rust, done a tutorial or similar); Experienced (worked with Rust for a few weeks);
Advanced (worked with Rust for at least a year; can give advice to others); Expert
(written blog/book or given talks or Rust core developer or similar)
*Q2.4 Do you implement or have you implemented cryptographic algorithms, interfaces,
libraries, etc. in Rust? Yes/No
Q2.5 If you answered yes, what is your primary motivation for working on (crypto in)
Rust? Free-text
Q2.6 How many hours per week do you currently spend on . . . ? Numeric input
a. implementing crypto in Rust
b. implementing crypto in other languages
c. other crypto-related tasks (documentation, testing, consulting) in Rust
d. other crypto-related tasks (documentation, testing, consulting) in other languages
Q2.7 How many hours per week did you spend on . . . when you were most involved?
Numeric input, same 4 sub questions as above
Q2.8 Which of the following are you paid for (e.g. as part of your job, a project, a PhD,
etc.)? Multiple choice, same 4 items as above
Q2.9 Which of the following were you paid for in the past? Multiple choice, same 4 items
as above
*Q2.10 Are you a contributor to one or multiple published Rust crypto libraries? Yes/No

143

B Rust contributors survey questionnaire

B.3 Rust’s crypto ecosystem
Q3.1 In what stage is Rust’s crypto ecosystem overall? Infancy; Early stages; Maturing;
Mature; Deprecated; + free-text comment box
Q3.2 Are there any significant influences from people without cryptographic knowledge
onto the crypto ecosystem of Rust? If so, from whom and in what way? Free-text
Q3.3 Which Rust crypto library would you spontaneously recommend for a Rust beginner
who simply wants to encrypt a string, and why? Free-text
Q3.4 Which Rust (TLS) library would you spontaneously recommend for a Rust beginner
who wants to securely query a server over HTTPS, and why? Free-text

B.4 API design
Q4.1 How important is crypto API design in relation to the security of the implementation
itself, with respect to how many end-user applications are vulnerable? Much less important;
Less important; About the same; More important; Much more important
Q4.2 If any come to mind, please name examples of problematic crypto APIs in Rust
(otherwise just skip the question). Free-text
Q4.3 If any come to mind, please name examples of exceptionally good/safe/clever crypto
APIs, both in Rust and other languages that do or could serve as a model (otherwise just
skip the question). Free-text
Q4.4 What obstacles do you currently see (with respect to the Rust language and ecosystem)
that prevent the implementation of usable (crypto) APIs? Free-text

B.5 Identifiable part
If you do not work on any crypto library in Rust, please skip this page (just leave everything
empty and click “Next” right away).

Otherwise: Because of the low total number of contributors, it is likely that you will be
personally identifiable if you answer the following questions. However, we do guarantee
that we will not publish any results from this survey that make you identifiable without
your consent. That is, we might publish something like “The average developer. . . ” or “Most
developers...”, but we will ask for your explicit consent before publishing something like
“The developers of library X spend Y amount of time”. You can (a) skip this page to avoid
being identifiable entirely (just leave everything empty and click “Next” right away), (b)
specify your e-mail address or #rust-crypto IRC name so that we can contact you or (c) fill
in the answers without contact information, in which case we will not publish anything
that might identify you.

144

B.6 Additional comments

Q5.1 Optional contact address (e-mail / #rust-crypto IRC) Free-text
Q5.2 Which crypto library in Rust do/did you work on? (If there are multiple, you can
specify them in a separate line/paragraph each and do the same for the following fields.)
Free-text
Q5.3 Off the top of your head, how many main contributors (possibly including yourself)
work on this library? Free-text
Q5.4 What are the goals of the library (most important ones first)? Free-text
Q5.5 Does the library guarantee API stability already or what is the priority of backward
compatibility versus other goals such as performance, safety, usability, etc.? Free-text
Q5.6 Is the library modelled after another one (wrt. functionality, algorithms, API design,
documentation)? Are there other sources that directly inspire the library? If so: Which
ones? Free-text
Q5.7 If the library is a wrapper or fork of another implementation: What is the relationship
between your library and the wrapped/forked one? Bug reports / fixes contributed (both
ways, one way)? Free-text
Q5.8 How are design decisions made (e.g. which functions to include, how to structure the
code, which default values to use, etc.)? (Where/How) Do discussions take place? Is a full
consensus required or does a single developer have the authority to decide? Free-text
Q5.9 How do you and the other library contributors organise the development process?
Multiple choice: Ad-hoc; Code-and-fix; Systematic; Agile; Waterfall; Scrum; Chaos
model; Test-driven development; Passive (bug fixes and pull requests only); Other
(specify)

B.6 Additional comments
If you have anything else you want to say, please write it down here.

Q6.1 About cryptography in Rust Free-text
Q6.2 About crypto API usability research Free-text
Q6.3 About the survey Free-text

This is the end of the survey, thank you for your time! If you have any questions, please do
not hesitate to contact <e-mail address>.

145

Acronyms

AAD additional associated data. 24, 93, 96
AD associated data. 24, 25, 102
AE authenticated encryption. 24, 25, 33, 43, 102, 108, 140
AEAD authenticated encryption with associated data. 25, 26, 81, 92, 93, 96, 97, 99–103,

109, 118, 124, 135
AES Advanced Encryption Standard. 24–26, 33, 43, 53, 54, 70, 76, 83, 94, 100, 102,

104, 107, 131
API application programming interface.
ASP.NET Active Server Pages .NET. 42
BDFL benevolent dictator for life. 65, 70
CBC Cipher Block Chaining (mode for block ciphers). 24, 33, 43, 70, 83, 92, 100, 102,

107, 130
CFB Cipher Feedback (mode for block ciphers). 24, 83
CLR Common Language Runtime. 42
CNG Cryptography API: Next Generation. 42
CNSA Commercial National Security Algorithm. 51
CSPRNG cryptographically secure pseudorandom number generator. 20, 43, 77, 108,

133
CTR Counter (mode for block ciphers). 24, 83, 100
CVE Common Vulnerabilities and Exposures. 31
DES Data Encryption Standard. 24
DoS Denial of Service. 73
ECB Electronic Codebook (mode for block ciphers). 24, 33, 83, 92, 102, 130
ECC elliptic curve cryptography. 83
FFI foreign function interface. 74
GCC GNU Compiler Collection. 20
GCM Galois/Counter Mode (for block ciphers). 25, 83, 102, 107, 131
HKDF HMAC-based key derivation function. 22, 83
HMAC keyed-hash message authentication code. 22, 26, 43, 81, 83, 85, 86, 90–93,

96–104, 112, 119, 120, 125, 131, 142
HTML Hypertext Markup Language. 19
HTTP Hypertext Transfer Protocol. 37, 93
HTTPS Hypertext Transfer Protocol Secure. 38, 56

147

Acronyms

IDE integrated development environment. 36, 114, 116
IMAP Internet Message Access Protocol. 37
IMAPS Internet Message Access Protocol Secure. 38
IRC Internet Relay Chat. 5, 28, 47, 52, 56, 62, 66, 67, 72
IV initialization vector. 21, 24, 81, 93, 102, 130, 131
JCA Java Cryptography Architecture. 34, 40, 41, 44, 73
JCE Java Cryptography Extension. 41
JDK Java Development Kit. 41, 134
JRE Java Runtime Environment. 41
KDF key derivation function. 22, 83
KISS Keep it simple, stupid (design principle). 81
MAC message authentication code. 22, 25, 26, 83, 85, 90, 96, 128, 129, 134, 135
MD5 Message-Digest Algorithm 5. 21, 54, 113, 116–118, 129, 142
MSVC Microsoft Visual C++. 20
NI New Instructions. 53, 76
OFB Output Feedback (mode for block ciphers). 24
OS operating system. 19, 20, 133
PBKDF2 Password-Based Key Derivation Function 2. 22, 83
PGP Pretty Good Privacy. 30
PHP PHP: Hypertext Preprocessor (recursive acronym; originally: Personal Home Page

Tools). 118, 130, 133
PKCS Public-Key Cryptography Standards. 24, 92, 93
PR pull request. 52, 66–71, 141
PRNG pseudorandom number generator. 20, 31
RFC request for comments. 29, 76, 111
RNG random number generator. 21, 41, 72, 83, 115, 132–134, 138
RQ research question. 38, 45
RSA a cryptosystem named after Ron Rivest, Adi Shamir, and Leonard Adleman. 26, 33,

83, 91
SHA Secure Hash Algorithm. 21, 22, 43, 55, 89, 90, 99, 116, 129, 140, 142
SIMD single instruction, multiple data. 76
SMTP Simple Mail Transfer Protocol. 53
SPI service provider interface. 40, 41
SSL Secure Sockets Layer. 30, 133
TCP Transmission Control Protocol. 97, 98
TLS Transport Layer Security. 12, 26, 31, 37, 40, 52, 54, 102, 105, 117
UTF Unicode Transformation Format. 14, 92, 111
VM virtual machine. 106

148

References

[AB12] J.-P. Aumasson, D. J. Bernstein. “SipHash: A fast short-input PRF”. In:
Progress in Cryptology - INDOCRYPT 2012: 13th International Conference
on Cryptology, Kolkata, India, 9-12 December 2012. Proceedings. Ed. by
S. Galbraith, M. Nandi. LNCS 7668. Berlin, Heidelberg: Springer, 2012,
pp. 489–508. ISBN: 978-3-642-34931-7. DOI: 10.1007/978-3-642-34931-
7_28 (cit. on p. 73).

[ABF+16] Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, C. Stransky. “You
get where you’re looking for: The impact of information sources on code
security”. In: 37th IEEE Symposium on Security and Privacy (S&P ’16), San
Jose, CA, USA, 23-25 May 2016. Proceedings. 2016, pp. 289–305. ISBN:
978-1-5090-0824-7. DOI: 10.1109/SP.2016.25 (cit. on p. 110).

[ANA+15] S. Arzt, S. Nadi, K. Ali, E. Bodden, S. Erdweg, M. Mezini. “Towards secure
integration of cryptographic software”. In: ACM International Symposium
on New Ideas, New Paradigms, and Reflections on Programming and Soft-
ware, Pittsburgh, PA, USA, 2015. Proceedings. Onward! New York: ACM
Press, 2015, pp. 1–13. ISBN: 978-1-4503-3688-8. DOI: 10.1145/2814228.
2814229 (cit. on pp. 41, 132).

[ANN+16] S. Amani, S. Nadi, H. A. Nguyen, T. N. Nguyen, M. Mezini. “MUBench: A
benchmark for API-misuse detectors”. In: 13th International Workshop on
Mining Software Repositories (MSR ’16), Austin, TX, USA, 14-15 May 2016.
Proceedings. New York: ACM Press, 2016, pp. 464–467. ISBN: 978-1-4503-
4186-8. DOI: 10.1145/2901739.2903506 (cit. on p. 33).

[Arc13] T. Arcieri. What’s wrong with in-browser cryptography? 2013. URL: https:
//tonyarcieri.com/whats-wrong-with-webcrypto (visited on 2016-11-07)
(cit. on p. 39).

[Arc17] T. Arcieri. Talk: Macaroons – a better kind of cookie. 2017. URL: https:
/ / air. mozilla . org / rust - meetup - february - 2017 - 02 - 09/ (visited on
2017-03-16) (cit. on p. 62).

[BB10] J. Bosch, P. Bosch-Sijtsema. “From integration to composition: On the
impact of software product lines, global development and ecosystems”. In:
Journal of Systems and Software 83.1 (2010), pp. 67–76. ISSN: 0164-1212.
DOI: 10.1016/j.jss.2009.06.051 (cit. on p. 36).

149

http://dx.doi.org/10.1007/978-3-642-34931-7_28
http://dx.doi.org/10.1007/978-3-642-34931-7_28
http://dx.doi.org/10.1109/SP.2016.25
http://dx.doi.org/10.1145/2814228.2814229
http://dx.doi.org/10.1145/2814228.2814229
http://dx.doi.org/10.1145/2901739.2903506
https://tonyarcieri.com/whats-wrong-with-webcrypto
https://tonyarcieri.com/whats-wrong-with-webcrypto
https://air.mozilla.org/rust-meetup-february-2017-02-09/
https://air.mozilla.org/rust-meetup-february-2017-02-09/
http://dx.doi.org/10.1016/j.jss.2009.06.051

References

[Ber09] D. J. Bernstein. “Cryptography in NaCl”. Chicago, 2009. URL: http://cr.yp.
to/highspeed/naclcrypto-20090310.pdf (cit. on pp. 12, 33, 53).

[Bir17] J. Birr-Pixton. Talk: rustls - a modern, pure-Rust TLS library. 2017. URL:
https://air.mozilla.org/rust-meetup-february-2017-02-09/ (visited on
2017-03-16) (cit. on p. 66).

[BU02] J. Black, H. Urtubia. “Side-channel attacks on symmetric encryption
schemes: The case for authenticated encryption”. In: 11th USENIX Se-
curity Symposium, San Francisco, CA, USA, 5-9 August 2002. Proceedings.
Berkeley: USENIX Association, 2002, pp. 327–338. ISBN: 1-931971-00-5
(cit. on p. 24).

[CGJ16] T. Chełkowski, P. Gloor, D. Jemielniak. “Inequalities in open source soft-
ware development: Analysis of contributor’s commits in Apache Software
Foundation projects”. In: PLoS ONE 11.4 (2016), pp. 1–19. ISSN: 1932-
6203. DOI: 10.1371/journal.pone.0152976 (cit. on pp. 28, 64).

[Cua+16] J. Cuadra et al. Why is a trusted, feature-complete crypto library not a
top priority for the Rust community? 2016. URL: https://internals.rust-
lang.org/t/3125 (visited on 2017-03-23) (cit. on pp. 52, 61).

[CWHW12] K. Crowston, K. Wei, J. Howison, A. Wiggins. “Free/Libre open-source
software development: What we know and what we don’t know”. In:
ACM Computing Surveys 44.2 (2012), pp. 1–35. ISSN: 03600300. DOI:
10.1145/2089125.2089127 (cit. on p. 28).

[Den] F. Denis. libsodium. URL: https://github.com/jedisct1/libsodium (cit. on
pp. 12, 33, 39, 53).

[Dev14] S. Devlin. Talk: Crypto interface pitfalls and how to avoid them. 2014. URL:
https://air.mozilla.org/bay-area-rust-meetup-december-2014/ (visited
on 2017-01-01) (cit. on pp. 77, 108, 116, 128, 132).

[DK14] S. Das, K. King. “IV = 0 security: Cryptographic misuse of libraries”. 2014.
URL: https://courses.csail.mit.edu/6.857/2014/files/18-das-gopal-king-
venkatraman-IV-equals-zero-security.pdf (cit. on pp. 12, 32, 33, 40, 41,
43, 108, 110–112, 116, 117, 128).

[DR11] T. Duong, J. Rizzo. “Cryptography in the web: The case of cryptographic
design flaws in ASP.NET”. In: 32nd IEEE Symposium on Security and Privacy
(S&P ’11), Berkeley, CA, USA, 22-25 May 2011. Proceedings. IEEE, 2011,
pp. 481–489. ISBN: 978-0-7695-4402-1. DOI: 10.1109/SP.2011.42 (cit. on
pp. 42, 115, 116).

[DS08] P. A. David, J. S. Shapiro. “Community-based production of open-source
software: What do we know about the developers who participate?” In:
Information Economics and Policy 20.4 (2008), pp. 364–398. ISSN: 0167-
6245. DOI: 10.1016/j.infoecopol.2008.10.001 (cit. on p. 27).

[DW08] A. Dey, S. Weis. Keyczar: A cryptographic toolkit. 2008. URL: http://www.
keyczar.org (cit. on p. 12).

150

http://cr.yp.to/highspeed/naclcrypto-20090310.pdf
http://cr.yp.to/highspeed/naclcrypto-20090310.pdf
https://air.mozilla.org/rust-meetup-february-2017-02-09/
http://dx.doi.org/10.1371/journal.pone.0152976
https://internals.rust-lang.org/t/3125
https://internals.rust-lang.org/t/3125
http://dx.doi.org/10.1145/2089125.2089127
https://github.com/jedisct1/libsodium
https://air.mozilla.org/bay-area-rust-meetup-december-2014/
https://courses.csail.mit.edu/6.857/2014/files/18-das-gopal-king-venkatraman-IV-equals-zero-security.pdf
https://courses.csail.mit.edu/6.857/2014/files/18-das-gopal-king-venkatraman-IV-equals-zero-security.pdf
http://dx.doi.org/10.1109/SP.2011.42
http://dx.doi.org/10.1016/j.infoecopol.2008.10.001
http://www.keyczar.org
http://www.keyczar.org

References

[EBFK13] M. Egele, D. Brumley, Y. Fratantonio, C. Kruegel. “An empirical study of
cryptographic misuse in Android applications”. In: ACM SIGSAC Conference
on Computer and Communications Security (CCS ’13), Berlin, Germany,
2013. Proceedings. New York: ACM Press, 2013, pp. 73–84. ISBN: 978-1-
4503-2477-9. DOI: 10.1145/2508859.2516693 (cit. on pp. 11, 31, 32, 41,
108, 128, 132).

[FHM+12] S. Fahl, M. Harbach, T. Muders, M. Smith, L. Baumgärtner, B. Fre-
isleben. “Why Eve and Mallory love Android: An analysis of Android
SSL (in)security”. In: ACM Conference on Computer and Communications
Security (CCS ’12), Raleigh, NC, USA, 2012. Proceedings. New York: ACM
Press, 2012, pp. 50–61. ISBN: 978-1-4503-1651-4. DOI: 10.1145/2382196.
2382205 (cit. on pp. 11, 31).

[FHP+13] S. Fahl, M. Harbach, H. Perl, M. Koetter, M. Smith. “Rethinking SSL devel-
opment in an appified world”. In: ACM SIGSAC Conference on Computer
and Communications Security (CCS ’13), Berlin, Germany, 2013. Proceed-
ings. New York: ACM Press, 2013, pp. 49–60. ISBN: 978-1-4503-2477-9.
DOI: 10.1145/2508859.2516655 (cit. on pp. 12, 31).

[FLW12] C. Forler, S. Lucks, J. Wenzel. “Designing the API for a cryptographic
library: A misuse-resistant application programming interface”. In: 17th
Ada-Europe International Conference on Reliable Software Technologies,
Stockholm, Sweden, June 11-15, 2012. Proceedings. Ed. by M. Brorsson,
L. M. Pinho. LNCS 7308. Berlin, Heidelberg: Springer, 2012, pp. 75–88.
ISBN: 978-3-642-30598-6. DOI: 10.1007/978-3-642-30598-6_6 (cit. on
pp. 12, 31, 108, 132).

[FSK10] N. Ferguson, B. Schneier, T. Kohno. Cryptography engineering: Design
principles and practical applications. Indianapolis: Wiley, 2010. ISBN: 978-
0-470-47424-2 (cit. on p. 20).

[GAH13] D. M. German, B. Adams, A. E. Hassan. “The evolution of the R software
ecosystem”. In: 17th European Conference on Software Maintenance and
Reengineering (CSMR ’13), Genova, Italy, 5-8 March 2013. Proceedings.
IEEE, 2013, pp. 243–252. ISBN: 978-0-7695-4948-4. DOI: 10.1109/CSMR.
2013.33 (cit. on p. 36).

[GGKR02] R. A. Ghosh, R. Glott, B. Krieger, G. Robles. Free/libre and open source
software: Survey and study (FLOSS Final Report Part 4). Tech. rep. Univer-
sity of Maastricht, 2002. URL: http://flossproject.merit.unu.edu/report/
FLOSS_Final4.pdf (cit. on p. 27).

[GIJ+12] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, V. Shmatikov.
“The most dangerous code in the world: Validating SSL certificates in non-
browser software”. In: ACM Conference on Computer and Communications
Security (CCS ’12), Raleigh, NC, USA, 2012. Proceedings. New York: ACM

151

http://dx.doi.org/10.1145/2508859.2516693
http://dx.doi.org/10.1145/2382196.2382205
http://dx.doi.org/10.1145/2382196.2382205
http://dx.doi.org/10.1145/2508859.2516655
http://dx.doi.org/10.1007/978-3-642-30598-6_6
http://dx.doi.org/10.1109/CSMR.2013.33
http://dx.doi.org/10.1109/CSMR.2013.33
http://flossproject.merit.unu.edu/report/FLOSS_Final4.pdf
http://flossproject.merit.unu.edu/report/FLOSS_Final4.pdf

References

Press, 2012, pp. 38–49. ISBN: 978-1-4503-1651-4. DOI: 10.1145/2382196.
2382204 (cit. on pp. 11, 30, 39, 52, 109, 111, 128, 130).

[GS16] M. Green, M. Smith. “Developers are not the enemy! The need for usable
security APIs”. In: IEEE Security & Privacy 14.5 (2016), pp. 40–46. ISSN:
1540-7993. DOI: 10.1109/MSP.2016.111 (cit. on pp. 12, 32, 77, 108).

[GSB16] G. Gousios, M.-A. Storey, A. Bacchelli. “Work practices and challenges in
pull-based development: The contributor’s perspective”. In: 38th Inter-
national Conference on Software Engineering (ICSE ’16), Austin, TX, USA,
14-22 May 2016. Proceedings. New York: ACM, 2016, pp. 285–296. ISBN:
978-1-4503-3900-1. DOI: 10.1145/2884781.2884826 (cit. on p. 28).

[Her16a] D. Herman. Shipping Rust in Firefox. 2016. URL: https://hacks.mozilla.
org/2016/07/shipping-rust-in-firefox/ (visited on 2016-11-08) (cit. on
p. 11).

[Her16b] P. Hertleif. Elegant library APIs in Rust. 2016. URL: https://scribbles .
pascalhertleif.de/elegant-apis-in-rust.html (visited on 2016-03-16) (cit.
on pp. 29, 112, 121, 130).

[Hid11] A. Hidayat. Hall of API shame: Boolean trap. 2011. URL: https://ariya.io/
2011/08/hall-of-api-shame-boolean-trap (visited on 2017-03-23) (cit. on
p. 130).

[HNH03] G. Hertel, S. Niedner, S. Herrmann. “Motivation of software developers in
open source projects: An Internet-based survey of contributors to the Linux
kernel”. In: Research Policy 32.7 (2003), pp. 1159–1177. ISSN: 0048-7333.
DOI: 10.1016/S0048-7333(03)00047-7 (cit. on pp. 27, 60, 61).

[IKND16] S. Indela, M. Kulkarni, K. Nayak, T. Dumitraş. “Helping Johnny encrypt:
Toward semantic interfaces for cryptographic frameworks”. In: ACM In-
ternational Symposium on New Ideas, New Paradigms, and Reflections on
Programming and Software, Amsterdam, Netherlands, 2-4 November 2016.
Proceedings. Onward! New York, 2016, pp. 180–196. ISBN: 978-1-4503-
4076-2. DOI: 10.1145/2986012.2986024 (cit. on p. 77).

[Inf15] Information Assurance Directorate at the NSA. Commercial National Se-
curity Algorithm Suite (CNSA Suite). 2015. URL: https://www.iad.gov/iad/
programs/iad-initiatives/cnsa-suite.cfm (visited on 2017-03-14) (cit. on
p. 51).

[JC09] K. H. Jamieson, J. N. Cappella. Echo chamber: Rush Limbaugh and the
conservative media establishment. New York: Oxford University Press, 2009.
ISBN: 9780195366822 (cit. on p. 94).

[Kau11] C. Kaula. The 80% use case. 2011. URL: https://christiankaula.com/80-
percent-use-case.html (visited on 2017-03-23) (cit. on p. 81).

[KG+] P. Kehrer, A. Gaynor et al. cryptography. URL: https://cryptography.io/
(cit. on pp. 43, 116).

152

http://dx.doi.org/10.1145/2382196.2382204
http://dx.doi.org/10.1145/2382196.2382204
http://dx.doi.org/10.1109/MSP.2016.111
http://dx.doi.org/10.1145/2884781.2884826
https://hacks.mozilla.org/2016/07/shipping-rust-in-firefox/
https://hacks.mozilla.org/2016/07/shipping-rust-in-firefox/
https://scribbles.pascalhertleif.de/elegant-apis-in-rust.html
https://scribbles.pascalhertleif.de/elegant-apis-in-rust.html
https://ariya.io/2011/08/hall-of-api-shame-boolean-trap
https://ariya.io/2011/08/hall-of-api-shame-boolean-trap
http://dx.doi.org/10.1016/S0048-7333(03)00047-7
http://dx.doi.org/10.1145/2986012.2986024
https://www.iad.gov/iad/programs/iad-initiatives/cnsa-suite.cfm
https://www.iad.gov/iad/programs/iad-initiatives/cnsa-suite.cfm
https://christiankaula.com/80-percent-use-case.html
https://christiankaula.com/80-percent-use-case.html
https://cryptography.io/

References

[KGB+16] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German,
D. Damian. “An in-depth study of the promises and perils of mining
GitHub”. In: Empirical Software Engineering 21.5 (2016), pp. 2035–2071.
ISSN: 1573-7616. DOI: 10.1007/s10664-015-9393-5 (cit. on pp. 28, 67,
72).

[Kob12] M. Koby. The 80/20 rule. 2012. URL: https://mkoby.com/the-8020-rule-2/
(visited on 2017-03-23) (cit. on p. 81).

[LCWZ14] D. Lazar, H. Chen, X. Wang, N. Zeldovich. “Why does cryptographic soft-
ware fail? A case study and open problems”. In: 5th Asia-Pacific Workshop
on Systems (APSys ’14), Beijing, China, 25-26 June 2014. Proceedings.
New York: ACM Press, 2014, 7:1–7:7. ISBN: 978-1-4503-3024-4. DOI:
10.1145/2637166.2637237 (cit. on pp. 11, 12, 31, 32, 108, 115, 132).

[Leb11] J. Lebar. Boolean parameters to API functions considered harmful. 2011.
URL: http://jlebar.com/2011/12/16/Boolean_parameters_to_API_
functions_considered_harmful. .html (visited on 2017-03-23) (cit. on
p. 130).

[LK12] P. Loyola, I.-Y. Ko. “Biological mutualistic models applied to study open
source software development”. In: IEEE/WIC/ACM International Confer-
ences on Web Intelligence and Intelligent Agent Technology (WI-IAT ’12),
Macau, China, 4-7 December 2012. Proceedings. IEEE, 2012, pp. 248–253.
ISBN: 978-1-4673-6057-9. DOI: 10.1109/WI-IAT.2012.228 (cit. on p. 36).

[LK14] P. Loyola, I.-Y. Ko. “Population dynamics in open source communities: An
ecological approach applied to Github”. In: 23rd International Conference
on World Wide Web (WWW ’14 Companion), Seoul, Korea, 7-11 April 2014.
Proceedings. New York: ACM, 2014, pp. 993–998. ISBN: 978-1-4503-2745-
9. DOI: 10.1145/2567948.2578843 (cit. on p. 36).

[LRM14] A. Lima, L. Rossi, M. Musolesi. “Coding together at scale: GitHub as a
collaborative social network”. In: 8th International Conference on Weblogs
and Social Media (ICWSM ’14), Ann Arbor, MI, USA, 1-4 June 2014. Pro-
ceedings. AAAI Press, 2014, pp. 295–304. ISBN: 978-1-57735-659-2. arXiv:
1407.2535 (cit. on p. 28).

[LS16] LimeSurvey Project Team, C. Schmitz. LimeSurvey: An open source survey
tool. Hamburg, Germany, 2016. URL: http://www.limesurvey.org/ (cit. on
pp. 56, 142).

[LW03] K. R. Lakhani, R. G. Wolf. “Why hackers do what they do: Understanding
motivation and effort in free/open source software projects”. 2003. URL:
http://www.ssrn.com/abstract=443040 (cit. on p. 27).

[Mar16] R. Martins. Convenient and idiomatic conversions in Rust. 2016. URL:
https://ricardomartins.cc/2016/08/03/convenient_and_idiomatic_
conversions_in_rust (visited on 2017-03-23) (cit. on pp. 29, 109).

153

http://dx.doi.org/10.1007/s10664-015-9393-5
https://mkoby.com/the-8020-rule-2/
http://dx.doi.org/10.1145/2637166.2637237
http://jlebar.com/2011/12/16/Boolean_parameters_to_API_functions_considered_harmful..html
http://jlebar.com/2011/12/16/Boolean_parameters_to_API_functions_considered_harmful..html
http://dx.doi.org/10.1109/WI-IAT.2012.228
http://dx.doi.org/10.1145/2567948.2578843
http://arxiv.org/abs/1407.2535
http://www.limesurvey.org/
http://www.ssrn.com/abstract=443040
https://ricardomartins.cc/2016/08/03/convenient_and_idiomatic_conversions_in_rust
https://ricardomartins.cc/2016/08/03/convenient_and_idiomatic_conversions_in_rust

References

[Mat+16] N. Matsakis et al. Rust roadmap 2017: productivity: learning curve and
expressiveness. 2016. URL: https://internals.rust-lang.org/t/4097 (visited
on 2017-03-14) (cit. on p. 11).

[Mer15] L. Mergen. On the state of cryptography in Haskell. 2015. URL: https :
//leonmergen.com/c272fb0b6478 (visited on 2017-03-23) (cit. on p. 39).

[Min16] K. Mindermann. “Are easily usable security libraries possible and how
should experts work together to create them?” In: 9th International Work-
shop on Cooperative and Human Aspects of Software Engineering (CHASE
’16), Austin, TX, USA, 16 May 2016. Proceedings. New York: ACM Press,
2016, pp. 62–63. ISBN: 978-1-4503-4155-4. DOI: 10 .1145/2897586 .
2897610 (cit. on p. 12).

[Moz16] Mozilla. The Rust programming language. 2016. URL: https://doc.rust-
lang.org/book/ (cit. on pp. 11, 13).

[Nic16] C. Nichols. Six easy ways to make your crate awesome. 2016. URL: http:
//www.integer32.com/2016/12/27/how-to-make-your-crate-awesome.
html (visited on 2017-03-16) (cit. on p. 110).

[NIS16] NIST. Annex A: Approved security functions for FIPS PUB 140-2, Security
requirements for cryptographic modules. 2016. URL: http://csrc.nist.gov/
publications/fips/fips140-2/fips1402annexa.pdf (cit. on p. 51).

[NKMB16] S. Nadi, S. Krüger, M. Mezini, E. Bodden. “"Jumping through hoops": Why
do Java developers struggle with cryptography APIs?” In: 38th Interna-
tional Conference on Software Engineering (ICSE ’16), Austin, TX, USA,
14-22 May 2016. Proceedings. New York: ACM Press, 2016, pp. 935–946.
ISBN: 978-1-4503-3900-1. DOI: 10.1145/2884781.2884790 (cit. on pp. 12,
32, 41, 96, 108, 115, 116, 138).

[Oec03] P. Oechslin. “Making a faster cryptanalytic time-memory trade-off”. In:
Advances in Cryptology - CRYPTO 2003: 23rd Annual International Crypto-
logy Conference, Santa Barbara, CA, USA, 17-21 August 2003. Proceedings.
LNCS 2729. Springer, 2003, pp. 617–630. ISBN: 978-3-540-40674-7. DOI:
10.1007/978-3-540-45146-4_36 (cit. on p. 22).

[Ora16] Oracle. Java Cryptography Architecture (JCA) Reference Guide. 2016. URL:
http://docs.oracle.com/javase/8/docs/technotes/guides/security/
crypto/CryptoSpec.html#Design (visited on 2016-11-25) (cit. on p. 40).

[Par15] Paragon Initiative Enterprises. Using encryption and authentication correctly
(for PHP developers). 2015. URL: https://paragonie.com/blog/2015/05/
using-encryption-and-authentication-correctly (visited on 2017-03-23)
(cit. on p. 24).

[Pil04] D. Piliptchouk. Java vs. .NET security. O’Reilly Media, 2004. ISBN: 978-0-
596-55668-6 (cit. on p. 42).

[Rar13] K. Rarick. Fernet spec. 2013. URL: https://github.com/fernet/spec/blob/
0250c59/Spec.md (visited on 2017-03-23) (cit. on p. 128).

154

https://internals.rust-lang.org/t/4097
https://leonmergen.com/c272fb0b6478
https://leonmergen.com/c272fb0b6478
http://dx.doi.org/10.1145/2897586.2897610
http://dx.doi.org/10.1145/2897586.2897610
https://doc.rust-lang.org/book/
https://doc.rust-lang.org/book/
http://www.integer32.com/2016/12/27/how-to-make-your-crate-awesome.html
http://www.integer32.com/2016/12/27/how-to-make-your-crate-awesome.html
http://www.integer32.com/2016/12/27/how-to-make-your-crate-awesome.html
http://csrc.nist.gov/publications/fips/fips140-2/fips1402annexa.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402annexa.pdf
http://dx.doi.org/10.1145/2884781.2884790
http://dx.doi.org/10.1007/978-3-540-45146-4_36
http://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html#Design
http://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html#Design
https://paragonie.com/blog/2015/05/using-encryption-and-authentication-correctly
https://paragonie.com/blog/2015/05/using-encryption-and-authentication-correctly
https://github.com/fernet/spec/blob/0250c59/Spec.md
https://github.com/fernet/spec/blob/0250c59/Spec.md

References

[Rob09] M. P. Robillard. “What makes APIs hard to learn? Answers from de-
velopers”. In: IEEE Software 26.6 (2009), pp. 27–34. ISSN: 0740-7459.
DOI: 10.1109/MS.2009.193 (cit. on p. 29).

[Rog02] P. Rogaway. “Authenticated-encryption with associated-data”. In: 9th
ACM Conference on Computer and Communications Security (CCS ’02),
Washington, DC, USA, 18-22 November 2002. Proceedings. New York: ACM,
2002, pp. 98–107. ISBN: 1-58113-612-9. DOI: 10.1145/586123.586125
(cit. on p. 24).

[Sap+16] S. Sapin et al. What should go into the standard library? 2016. URL: https:
//internals.rust-lang.org/t/2158 (visited on 2017-03-23) (cit. on pp. 72,
123).

[SBK+17] M. Stevens, E. Bursztein, P. Karpman, A. Albertini, Y. Markov. “The first
collision for full SHA-1”. 2017. URL: https://shattered.io/static/shattered.
pdf (cit. on p. 114).

[Sta06] W. Stallings. Cryptography and network security: Principles and prac-
tices. Vol. 4301. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer, 2006. ISBN: 978-3-540-49462-1. DOI: 10.1007/11935070 (cit.
on p. 20).

[Sta16] Stack Overflow. Developer survey results. 2016. URL: http://stackoverflow.
com/insights/survey/2016 (visited on 2016-03-22) (cit. on pp. 28, 57,
58).

[Sta17] Stack Overflow. Developer survey results. 2017. URL: http://stackoverflow.
com/insights/survey/2017 (visited on 2017-03-22) (cit. on pp. 11, 28).

[TC14] A. Turon, A. Crichton. Rust RFC 236: Error conventions. 2014. URL: https:
//github.com/rust-lang/rfcs/blob/master/text/0236-error-conventions.
md (visited on 2017-03-23) (cit. on p. 109).

[TC15] A. Turon, A. Crichton. Rust RFC 1242: rust-lang crates. 2015. URL: https:
/ / github . com / rust - lang / rfcs / blob / master / text / 1242 - rust - lang -
crates.md (visited on 2017-03-16) (cit. on p. 72).

[Tro14] J. Troutman. People want safe communications, not usable cryptography.
2014. URL: https://www.technologyreview.com/s/533456/ (visited on
2016-11-22) (cit. on p. 30).

[Tul08] J. Tulach. Practical API design: Confessions of a Java framework architect.
Apress, 2008. ISBN: 978-1-4302-0973-7. DOI: 10.1007/978-1-4302-0974-
4 (cit. on pp. 11, 28, 29, 31).

[Wik16] Wikipedia. Ecosystem. 2016. URL: https://en.wikipedia.org/w/index.
php?title=Ecosystem&oldid=751960746 (visited on 2017-03-23) (cit. on
p. 35).

[WO08] G. Wurster, P. C. van Oorschot. “The developer is the enemy”. In: Work-
shop on New security paradigms (NSPW ’08), Lake Tahoe, CA, USA, 22-25

155

http://dx.doi.org/10.1109/MS.2009.193
http://dx.doi.org/10.1145/586123.586125
https://internals.rust-lang.org/t/2158
https://internals.rust-lang.org/t/2158
https://shattered.io/static/shattered.pdf
https://shattered.io/static/shattered.pdf
http://dx.doi.org/10.1007/11935070
http://stackoverflow.com/insights/survey/2016
http://stackoverflow.com/insights/survey/2016
http://stackoverflow.com/insights/survey/2017
http://stackoverflow.com/insights/survey/2017
https://github.com/rust-lang/rfcs/blob/master/text/0236-error-conventions.md
https://github.com/rust-lang/rfcs/blob/master/text/0236-error-conventions.md
https://github.com/rust-lang/rfcs/blob/master/text/0236-error-conventions.md
https://github.com/rust-lang/rfcs/blob/master/text/1242-rust-lang-crates.md
https://github.com/rust-lang/rfcs/blob/master/text/1242-rust-lang-crates.md
https://github.com/rust-lang/rfcs/blob/master/text/1242-rust-lang-crates.md
https://www.technologyreview.com/s/533456/
http://dx.doi.org/10.1007/978-1-4302-0974-4
http://dx.doi.org/10.1007/978-1-4302-0974-4
https://en.wikipedia.org/w/index.php?title=Ecosystem&oldid=751960746
https://en.wikipedia.org/w/index.php?title=Ecosystem&oldid=751960746

September 2008. Proceedings. New York: ACM Press, 2008, pp. 89–97. ISBN:
978-1-60558-341-9. DOI: 10.1145/1595676.1595691 (cit. on pp. 29, 32).

[WT99] A. Whitten, J. Tygar. “Why Johnny can’t encrypt: A usability evaluation of
PGP 5.0”. In: 8th Conference on USENIX Security Symposium (SSYM ’99),
Washington, DC, USA, 23-26 August 1999. Proceedings. Berkeley: USENIX
Association, 1999, pp. 169–183 (cit. on p. 30).

[Wu05] H. Wu. “The misuse of RC4 in Microsoft Word and Excel”. 2005. URL:
http://ia.cr/2005/007 (cit. on p. 29).

[YHR04] T. Yu, S. Hartman, K. Raeburn. “The perils of unauthenticated encryption:
Kerberos version 4”. In: 11th Network and Distributed System Security Sym-
posium, (NDSS ’04), San Diego, CA, USA, 5-6 February 2004. Proceedings.
The Internet Society, 2004. ISBN: 1-891562-18-5 (cit. on pp. 24, 130).

[YMK+15] K. Yamashita, S. McIntosh, Y. Kamei, A. E. Hassan, N. Ubayashi. “Revisiting
the applicability of the Pareto principle to core development teams in open
source software projects”. In: 14th International Workshop on Principles of
Software Evolution (IWPSE ’15), Bergamo, Italy, 30 August 2015. Proceed-
ings. New York: ACM, 2015, pp. 46–55. ISBN: 978-1-4503-3816-5. DOI:
10.1145/2804360.2804366 (cit. on p. 28).

[ZP08] M. E. Zurko, A. S. Patrick. “Panel: Usable cryptography: Manifest destiny
or oxymoron?” In: 12th International Conference on Financial Cryptography
and Data Security (FC ’08), Cozumel, Mexico, 28-31 January 2008. Revised
Selected Papers. Ed. by G. Tsudik. LNCS 5143. Berlin, Heidelberg: Springer,
2008, pp. 302–306. ISBN: 978-3-540-85230-8. DOI: 10.1007/978-3-540-
85230-8_27 (cit. on p. 30).

http://dx.doi.org/10.1145/1595676.1595691
http://ia.cr/2005/007
http://dx.doi.org/10.1145/2804360.2804366
http://dx.doi.org/10.1007/978-3-540-85230-8_27
http://dx.doi.org/10.1007/978-3-540-85230-8_27

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources
and references than the listed ones. I have marked all
direct or indirect statements from other sources con-
tained therein as quotations. Neither this work nor
significant parts of it were part of another examination
procedure. I have not published this work in whole or
in part before. The electronic copy is consistent with all
submitted copies.

place, date, signature

	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Foundations
	2.1 The Rust programming language
	2.1.1 Arrays, vectors and slices
	2.1.2 Strings
	2.1.3 Structs and enums
	2.1.4 Error handling
	2.1.5 Macros and annotations
	2.1.6 Ownership and borrowing
	2.1.7 Traits
	2.1.8 Build system
	2.1.9 Rustdoc
	2.1.10 Toolchains

	2.2 Cryptographic foundations
	2.2.1 Pseudorandom number generation
	2.2.2 Nonces and IVs
	2.2.3 Hashing
	2.2.4 MAC
	2.2.5 Secure password hashing and key derivation
	2.2.6 Symmetric encryption
	2.2.7 Authenticated encryption and AEAD
	2.2.8 Digest comparisons
	2.2.9 Primitives vs. protocols

	3 Related work
	3.1 Open-source projects
	3.2 API design and usability
	3.2.1 Rust API design

	3.3 Crypto usability
	3.3.1 End-user crypto usability
	3.3.2 Crypto API usability
	3.3.3 Crypto libraries designed for usability
	3.3.3.1 NaCl and libsodium
	3.3.3.2 Keyczar

	4 Ecosystems
	4.1 Deriving a definition
	4.2 Definition
	4.2.1 Programming ecosystem
	4.2.2 Crypto ecosystem
	4.2.3 Disambiguation

	4.3 C and C++
	4.4 Java
	4.5 .NET
	4.6 Python
	4.7 Conclusion

	5 The Rust crypto ecosystem
	5.1 Research questions
	5.2 Library search and categorization
	5.2.1 Systematic search
	5.2.2 Categorization
	5.2.3 Forks and dependencies
	5.2.4 Major libraries

	5.3 Libraries providing primitives
	5.3.1 rust-openssl
	5.3.2 rust-crypto
	5.3.3 sodiumoxide and rust_sodium
	5.3.4 octavo
	5.3.5 ring
	5.3.6 Other primitive libraries

	5.4 Contributors survey
	5.4.1 Survey design
	5.4.2 Participant recruitment
	5.4.3 Sample
	5.4.4 Demographics
	5.4.5 Qualification
	5.4.6 Motivation
	5.4.7 Time commitment
	5.4.8 Recommended library
	5.4.9 Threats to validity

	5.5 GitHub analysis
	5.5.1 Quantitative contributions analysis
	5.5.2 Lack of contributors
	5.5.3 Contributor collaboration
	5.5.4 API design discussions
	5.5.5 Importance of usability
	5.5.6 Threats to validity

	5.6 Crypto in the standard library
	5.7 Areas for improvement
	5.7.1 Developer recruitment
	5.7.2 Platform
	5.7.3 High-level crypto API
	5.7.4 Usability

	5.8 Conclusion

	6 Usage analysis
	6.1 Approach
	6.2 High-level results
	6.3 Hashing
	6.3.1 Results

	6.4 HMAC
	6.4.1 Results

	6.5 Symmetric encryption
	6.5.1 Results

	6.6 Threats to validity
	6.7 Conclusion

	7 Usability analysis
	7.1 Self-experiment
	7.1.1 Protocol
	7.1.2 Tools and practices
	7.1.3 Stages
	7.1.4 rust-crypto (0.2.36)
	7.1.5 ring (0.5.3)
	7.1.6 rust-openssl (0.9.1)
	7.1.7 rust_sodium (0.1.2)
	7.1.8 octavo (0.1.1)
	7.1.9 General observations

	7.2 Controlled experiment
	7.2.1 Setup
	7.2.2 Summary of results

	7.3 Conclusion

	8 Improving usability and misuse resistance
	8.1 Documentation
	8.1.1 Structure and navigation
	8.1.2 Recommendations and education
	8.1.3 Code samples

	8.2 Scope of included algorithms
	8.2.1 Completeness
	8.2.2 Insecure algorithms

	8.3 Level of abstraction
	8.3.1 High-level and low-level primitives
	8.3.2 API granularity

	8.4 Organization of included algorithms
	8.4.1 One instance per algorithm (instance-based)
	8.4.1.1 Placement of the main API
	8.4.1.2 Placement of meta information
	8.4.1.3 Instance retrieval

	8.4.2 One struct per algorithm (trait-based)
	8.4.3 One module per algorithm (module-based)
	8.4.4 Conclusion

	8.5 Split into multiple crates
	8.6 Defaults and future security
	8.7 Strong types
	8.8 Keys, nonces and seeds
	8.9 Constant-time comparisons
	8.10 &mut parameters
	8.11 Conclusion

	9 Conclusion
	9.1 Future of crypto in Rust
	9.2 Future work
	9.3 Summary

	A Supplementary material
	B Rust contributors survey questionnaire
	B.1 Demographics
	B.2 Your involvement
	B.3 Rust's crypto ecosystem
	B.4 API design
	B.5 Identifiable part
	B.6 Additional comments

	Acronyms
	References

