
Institute of Architecture of Application Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Master’s Thesis

Securing Cloud Service Archives
for Function and Data Shipping

in Industrial Environments

Muhammad Ali Haider

Course of Study: M.Sc. Computer Science

Examiner: Prof. Dr. Dr. h. c. Frank Leymann

Supervisor: Michael Zimmermann, M.Sc.

Commenced: February 1, 2017

Completed: August 1, 2017

CR-Classification: C.2.4, D.2.11, D.4.6, E.0

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Publikationen der Universität Stuttgart

https://core.ac.uk/display/147556611?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Cloud Computing paradigm needs a standard for portability, and automated deployment
and management of cloud services, to eliminate vendor lock-in and minimization of
management efforts respectively. Topology and Orchestration Specification for Cloud
Applications (TOSCA) language provides such standard by employing semantics for rep-
resentation of components and business processes of a cloud application. Advancements
in the fields of Cloud Computing and Internet of Things (IoT) has opened new research
areas to support 4th industrial revolution (Industry 4.0), which in turn has resulted
in the emergence of smart services. One application of smart services is predictive
maintenance, which enables the anticipation of future devices’ states by implementing
functions, for example, analytics algorithms, and collecting huge amounts of data from
sensors. Considering performance demands and runtime constraints, either the data
can be shipped to the function site, called data shipping or the functionality is provi-
sioned closely to the data site, called function shipping. However, since this data can
contain confidential information, it has to be assured that access to the data is strictly
controlled. Although TOSCA already enables defining policies in general, a concrete
data security policy approach is missing. Moreover, constituents of TOSCA are packaged
in a self-contained and portable archive, called Cloud Service Archive (CSAR), which is
also required to be secured and restricted to authorized personals only.

Taking the above facts into account, the goal of this thesis is to refine and enhance the
TOSCA standard to the field of smart services in production environments through the
usage of policies, for example, being effectively able to define the security aspects. In
this thesis, various available policy languages with frameworks supporting them are
researched, and their applicability for the field of Industry 4.0 is analyzed. An approach
is formulated with one language selected, to define policies for TOSCA compliant cloud
applications. Furthermore, a prototype is developed to secure the content of CSAR using
the proposed approach.

3

Contents

1 Introduction 15

2 Fundamentals 19
2.1 Cloud Computing . 19
2.2 Topology and Orchestration Specification for Cloud Applications (TOSCA) 20
2.3 Smart Services . 25
2.4 Function Shipping versus Data Shipping 26

3 Policy Language Characteristics and Frameworks 27
3.1 Policy Frameworks . 27
3.2 Characteristics of Policy Languages . 31

4 Shortlisted Policy Languages 37
4.1 TPL/ DTPL . 37
4.2 EPAL . 40
4.3 XACML . 42
4.4 Ponder . 45
4.5 WS-Policy . 48

5 Policy Based Approach to Secure TOSCA-based Cloud Services 53
5.1 Evaluation of Discussed Policy Languages 53
5.2 Approach to Address Security Requirements of Smart Services 59

6 Prototype to Secure Cloud Service Archives 67
6.1 Technologies . 67
6.2 Secure CSAR Use cases and Algorithms 68

7 Conclusion and Future Work 81

Bibliography 83

5

List of Figures

2.1 Constructs of TOSCA . 21
2.2 Sample CSAR Directory Structure . 25

3.1 Trust negotiation through bilateral exchange of digital certificates 28
3.2 Policy Core Information Model . 29
3.3 Overview of Sticky Policy Approach . 31

4.1 EPAL Policy Enforcement Model . 41
4.2 XACML Context . 43
4.3 Policy Implementation in Ponder . 46
4.4 WS-Policy assertions intersection example 50

5.1 Correspondence between the decision requests of XACML and EPAL . . . 56
5.2 Correspondence between the elements of XACML and WS-Policy framework 58
5.3 An approach to secure cloud service archives 62

6.1 Encrypt CSAR Service - Algorithm Flowchart 70
6.2 Sign CSAR Service - Algorithm Flowchart 72
6.3 Verify CSAR Service - Algorithm Flowchart 75
6.4 Decrypt CSAR Service - Algorithm Flowchart 77

7

List of Tables

4.1 EPAL Rule Example - Protecting a chemical formula 41

5.1 Comparison of Policy Languages with respect to the Defined Characteristics 54
5.2 Possible solutions of smart services security requirements 60

9

List of Listings

2.1 TOSCA syntax to define an application 23
2.2 Structure of first block of TOSCA meta file 24
2.3 Structure of non-first blocks of TOSCA meta file 24

4.1 TPL simple constraints example - Webservice accessibility to member
devices of a trusted manufacturing industry with name "Smart Industry" 38

4.2 TPL external function call example - Challenge-response to prove that the
mobile device possesses the corresponding private key 39

4.3 EPAL Syntax Example - Protecting a chemical formula 42
4.4 XACML example - Login to servers in Germany is only allowed between

9AM and 5PM . 44
4.5 Ponder example - authorization policy definition [DDLS01] 46
4.6 Ponder example - policy type and instantiation [Slo] 47
4.7 Ponder example - obligation policy definition [Slo] 47
4.8 WS-Policy example - Using compact form expression 49
4.9 WS-Policy example - Using normal form expression 49
4.10 WS-Policy example - Reffering policies using WS-Policy Attachment . . . 49
4.11 WS-Policy schema - Including one policy in another 50
4.12 WS-Policy example - Attaching a policy to a webservice using WS-Policy

Attachment . 51

5.1 Secure smart service example - X509 Authentication using WS-Policy . . 63
5.2 Secure smart service example - Policy Type definition database encryption

for storage (Adopted from [OAS13b]) 63
5.3 Secure smart service example - Policy Template definition database en-

cryption for storage (Adopted from [OAS13b]) 64

6.1 CSAR TOSCA.meta file - Encrypted entry 69
6.2 CSAR TOSCA.meta file - Signed entry . 73
6.3 CSAR TOSCA.meta file - Signing a CSAR multiple times with different

digest algorithms . 74
6.4 Signature file (with .SF extension) of a signed CSAR 74
6.5 Secure CSAR Policy Template for Signing and Encryption 78
6.6 Secure CSAR Policy Schema for Signing and Encryption 79

11

6.7 Secure CSAR Policy Type for Signing and Encryption 80

12

List of Abbreviations

API Application Program Interface. 19

BPMN Business Process Model and Notation. 20

CA Certificate Authority. 30

CSAR Cloud Service Archive. 3

DMTF Distributed Management Task Force. 28

DTPL Definite Trust Policy Language. 37

EAR Enterprise Application aRchive. 21

EPAL Enterprise Privacy Authorization Language. 39

GUI Graphical User Interface. 65

IaaS Infrastructure as as Service. 19

IETF Internet Engineering Task Force. 28

IoT Internet of Things. 3

JSON JavaScript Object Notation. 67

LDAP Lightweight Directory Access Protocol. 45

MVC Model View Controller. 67

OASIS Organization for the Advancement of Structured Information Standards. 15

PaaS Platform as a Serivce. 19

PAP Policy Authorization Point. 28

PCIM Policy Core Information Model. 28

PDP Policy Decision Point. 28

PEP Policy Enforcement Point. 28

PII Personally Identifiable Information. 29

13

List of Abbreviations

PIP Policy Information Point. 28

PR Policy Repository. 28

QoS Quality-of-Service. 61

REST REpresentational State Transfer. 60

SaaS Software as a Service. 19

SAML Security Assertion Markup Language. 50

SLA Service Level Agreement. 26

SOAP Simple Object Access Protocol. 50

TA Trusted Authority. 29

TOSCA Topology and Orchestration Specification for Cloud Applications. 3

TPL Trust Policy Language. 37

W3C World Wide Web Consortium. 39

WAR Web application ARchive. 67

WSBPEL Web Services Business Process Execution Language. 20

WSDL Web Services Description Language. 51

XACML eXtensible Access Control Markup Language. 42

14

1 Introduction

Cloud Computing is a paradigm that enables to access computing resources (e.g., net-
works, servers, storage, applications, and services) over a network ubiquitously [MG11].
Cloud Computing has revolutionized Information Technology (IT), assisting the idea of
IT services being used in the same way we use utility services like electricity, natural
gas, water, etc., with supporting different pricing models like pay-per-use [BBKL14].
Cloud-based services can be easily scale-up and scale-down by adjusting services’ de-
ployment instances with changing bandwidth requirements. In addition to that, a lot of
other benefits of Cloud Computing as well have convinced many businesses to move to
the cloud. When enterprises now prefer to use cloud services to create and deploy their
application, they find it hard to move from one cloud provider to another cloud provider.
Generally, pieces of an application need to be adjusted when migrating to a new cloud
provider [SAL15]. This problem is known as vendor lock-in. TOSCA is a standard for
Cloud Computing which solves this problem.

TOSCA is a Cloud Computing standard from Organization for the Advancement of
Structured Information Standards (OASIS) which enables to create a cloud application,
seamlessly manageable across any TOSCA compliant cloud provider. Besides support-
ing portability of application between different cloud providers, TOSCA also enables
automatic deployment and management of application, and interoperability through the
usage of TOSCA service templates. TOSCA achieves this by providing a metamodel to
describe the structure and management lifecycle of cloud applications as topologies. The
topologies define the components, and relationships between the components of a cloud
application. The management plans can also be optionally defined to describe each
step of how to achieve what is being defined in the topologies. The plans orchestrate
management operations exposed by the components to define management tasks. The
files of a TOSCA compliant application are packaged in a self-contained and portable
archive, called Cloud Service Archive (CSAR) [OAS13b].

Internet of things (IoT) is a concept that has changed the way we interact with the
physical world. IoT has no universally agreed definition but it is safe to say that it is a
collaboration of devices (things) embedded with sensors, actuators, and software, over
a network (or Internet) with active data exchange [AKN17; WIK17]. The availability of
cheap sensors, growing access to high-speed internet, and advancements in the field of

15

1 Introduction

Cloud Computing have promoted IoT to get the attention of many enterprises and have
triggered 4th Industrial Revolution (also called Industry 4.0).

Industry 4.0 is an attempt to augment conventional pieces of machinery to become
smart cyber-physical systems [WIKa]. An important use case of the Industry 4.0 is
the predictive maintenance of the machinery [FBC+16]. The goal of this idea is to
improve production flow of industrial set-up by detecting any potential risk of failure
of machines (devices) and adjusting configurations of any machine in the industrial
set-up which is not functioning to its fullest. This can be made possible by using smart
services which implement functions (e.g, analytics algorithms) and process the data
from sensors in the industrial environment. The data could be static as part of smart
service, or a reference to live data could be given to the service. The huge amount of
metered data has to be analyzed and processed in a timely manner by these functions,
to optimize system functioning at runtime. Moreover, this data contains confidential
and proprietary information of the industry, employing the smart services. Considering
security and runtime issues, for instance, latencies and limited bandwidth, it does not
suffice to transfer this data to a central processing system and give a response to trigger
actuation. Therefore, two approaches, function shipping and data shipping are used in
this context. In function shipping, functionality is shipped to the data source; and in
data shipping, data is transferred to the central execution environment, hosted in-house
or in a public cloud environment [FBC+16].

The whole business process goes as follows. Service developer designs and implements
a smart service based on TOSCA specifications, and optionally publishes it to public
repository or marketplace. Depending on permissions and licenses, another developer
can customize the service algorithm according to its specific industry needs. Customers
can search and purchase the service from the marketplace or directly from service
developer, and use it by deploying it to a TOSCA compliant cloud provider. This raises
many points of concerns, particularly regarding integrity and security [FBC+16].

The implementation of the smart services is packaged in CSAR. It is very critical to secure
the contents of CSAR from unauthorized access as the logic of algorithm and static
data in CSAR can be analyzed and re-engineered to exploit trade secrets of an industry.
Moreover, the algorithm is an intellectual property of the developer, and unless granted
rights, cannot be reused, manipulated or adopted; hence integrity and security of the
contents of CSAR must be maintained. Further, metered data from a production process
contains trade secrets and confidential information of an industry, hence transport and
persistency of the data must be done in an encrypted way. And there must be a way to
define data policies, for example, "the metering data must not leave the IT infrastructure
of the customer that will run the smart service" [FBC+16]. Although TOSCA already
enables defining policies in general, a concrete data security policy approach is missing
[FBC+16].

16

The agenda of this master’s thesis is to research on available policy languages and their
applicability to Industry 4.0, and formulate an approach to fulfill above-mentioned
security requirements of smart services. To accomplish this, non-functional requirements
of any system based on concepts of Cloud Computing and Industry 4.0 are gathered.
A conclusion is drawn that which policy language best suits to define the gathered
requirements. If the selected policy language does not satisfy any security requirement,
then the possibility to extend the selected policy language or development of new
policy language out of it is researched. Concrete use-cases specific to common security
requirements are formulated. An approach is outlined to define the security requirements
of smart service ecosystem. This thesis also contains a prototype, built to encrypt, sign,
verify, and decrypt the CSAR with finalized approach.

This thesis is structured in the following way:

Chapter 2 – Fundamentals explains the concepts this thesis is based upon. This includes
a brief outline of concepts of Cloud Computing, detailed explanation of TOSCA standard
and its constructs, and overview of smart services. Finally, the approaches of function
shipping and data shipping in industrial environments are discussed.

Chapter 3 – Policy Language Characteristics and Frameworks discusses the charac-
teristics, defining criteria for policy language selection. Further, some of the popular
policy frameworks are explained in this chapter. The research on policy language
characteristics and available policy framework are beneficial to shortlist a set of policy
languages to base the research of this master’ thesis.

Chapter 4 – Shortlisted Policy Languages analyses various policy languages, their
pros, and shortcomings. The policy languages are shortlisted based on criteria inferred
from research work already done and relevance of the policy language to the security
domain.

Chapter 5 – Policy Based Approach to Secure TOSCA-based Cloud Services discusses
the comparisons of researched policy languages. One language is selected which best
suits the characteristics defined in Chapter 3 and which is able to cater the security
requirements of Industry 4.0 in the best way. In the end, an approach is defined to secure
Cloud Service Archives for Function and Data Shipping in Industrial Environment.

Chapter 6 – Prototype explains the details of the prototype, built to secure cloud
service archives for function and data shipping. This chapter starts off with the details
on technologies used in the prototype. Then it discusses the use cases of the prototype
and the algorithms used to implement the use cases. Finally, a brief guideline of using
this prototype is also a part of this chapter.

Chapter 7 – Conclusion and Future Work summarizes the work done in this thesis and
points to the need for future research relevant to the topic of this thesis.

17

2 Fundamentals

This chapter explains the fundamentals and concepts, which this thesis is based upon.
This includes a brief outline of Cloud Computing and detailed explanation of TOSCA
constructs. A basic idea of Internet of Things (IoT), Industry 4.0, and smart services is
also included. Finally, this chapter discusses the approaches of function shipping and
data shipping in industrial environments.

2.1 Cloud Computing

Cloud Computing is a paradigm shift in Information Technology. For the sake of com-
pleteness, the definition of Cloud Computing from National Institute of Standards and
Technology (NIST) is stated as it is, as follows:

"Cloud computing is a model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing resources (e.g.,
networks, servers, storage, applications, and services) that can be rapidly
provisioned and released with minimal management effort or service provider
interaction." [MG11]

NIST categorizes Cloud Computing in three service models, including Software as a
Service (SaaS), Platform as a Serivce (PaaS), and Infrastructure as as Service (IaaS).
Some of the important actors involved in the use of cloud applications are cloud provider
(cloud vendors), service provider (cloud consumer), and service consumer. In one
line, the service providers create cloud services/ applications, which are hosted on the
infrastructure provided by the cloud providers, and consumed by the service consumers.
The cloud providers provide different services to service providers (developers) based on
the service model of cloud providers. For example, a PaaS cloud provider may provide
different database Application Program Interfaces (APIs) to developers to build their
applications, facilitating developers to set-up their database online, without having to set
up the required infrastructure in-house, thus saving cost and time. A SaaS cloud provider
may provide end users with services to manage their documents online so that service
consumers do not have to install any software on their personal computers. Similarly,

19

2 Fundamentals

IaaS cloud providers provide virtual infrastructure like virtual storage, operating systems,
etc. which can minimize costly IT maintenance of setting up own infrastructure.

Cloud services are usually comprised of a comprehensive software stack and complex
deployment procedures. Businesses keep evolving, and so their needs change. There
may be times when current cloud provider cannot fulfill the needs of a business (service
provider). In such cases, the service provider may have to migrate to another cloud
provider. This requires the service provider to patch, configure, and change parts of their
service, costing them time and money. This problem is called as vendor lock-in. TOSCA
is a Cloud Computing standard which has solved this problem [Lip13].

2.2 Topology and Orchestration Specification for Cloud
Applications (TOSCA)

When the problem of vendor lock-in was realized, a consortium of cloud vendors created
the Cloud Computing standard TOSCA and proposed a new technical committee in
OASIS [Lip13]. OASIS is "[...] a global nonprofit consortium that works on the devel-
opment, convergence, and adoption of standards for security, Internet of Things, [...]"
[WIKb]. TOSCA enables service providers to create cloud provider agnostic applications
by defining application topology and management plans (Orchestration Specification for
Cloud Applications).

2.2.1 Constructs of TOSCA Language

The application topology defines the structure of an application using TOSCA language,
and the management plans use business process modeling languages like Business
Process Model and Notation (BPMN) [MN] and Web Services Business Process Execution
Language (WSBPEL) [TC] to define management of the application lifecycle. Figure 2.1
is the bird-view of constructs of TOSCA language.

Application topology defines the structure of a cloud application in terms of Node Type,
Node Template, Relationship Type, Relationship Template, Deployment Artifact, Implemen-
tation Artifact, Policy Type, and Policy Template, with the usage of service template.

A Node Type defines the structure of a node in terms of properties a node can have, for
example, username, password, etc, and management operations, for instance, install,
start, stop, etc. The corresponding Node Templates set the value of these properties,
hence initializing the topology template. There can be many Node Templates based on
a Node Type. The concept of types and templates enable reusability as the same Node

20

2.2 Topology and Orchestration Specification for Cloud Applications (TOSCA)

Figure 2.1: Constructs of TOSCA [OAS13b]

Type can be used for many templates, even across different cloud applications. The same
concept is used for Relationship Types and Relationship Templates. A Relationship Type
with corresponding Relationship Template defines the relationship between two nodes.
Relationship Templates are directional, meaning they have a source Node Template and
a target Node Template, and they set properties defined by corresponding Relationship
Type.

The example Service Template (Listing 2.1), depicting the structure and management
lifecycle of a hypothetical payroll application, can be taken to understand the con-
stituents of the application topology. The application can be packaged as an En-
terprise Application aRchive (EAR), and deployed to an application server, for ex-
ample, IBM WebSphere Application Server (a well-known application server). The
application server must be installed on an operating system, for example, Ubuntu

(a flavor of Linux operating system). In this scenario, the required Node Types
may be EAR Application, Application Server, and Operating System, where Payroll

Application, IBM WebSphere Application Server, and Ubuntu Operating System be
the corresponding Node Templates [OAS13b]. The example shows deployed on Re-
lationship Template, defining that payroll application is deployed on IBM WebSphere

21

2 Fundamentals

Application Server, where the Relationship Template can set any property required for
deployment. The corresponding Relationship Type (not shown in the example) declare
those properties. This is how TOSCA language defines the structure of an application.
The business logic, for example, code, scripts, etc. are defined by Deployment Artifacts.
On other hand Implementation Artifacts support the business plan (service orchestration
for deployment and management) by implementing management operations exposed by
the Node Types.

A Deployment Artifact is associated with a Node Template, and defines the concrete
instance of a node. For example, in the above example, Payroll.ear file could be
Deployment Artifact associated with the Payroll Application Node Template. Imple-
mentation artifacts support management of a node. For example, in the above example,
the EAR Application Node Type have an operation start that is implemented by an
Implementation Artifact payrolladm.jar [OAS13b]. Further, Node Templates can have
capabilities and requirements which can be defined using TOSCA Capability Types and
Requirement Types constructs. They are used to find a suitable Node Template fulfilling
the requirements of another Node Template, for example, memory, bandwidth, version,
etc. In the discussed example, IBM WebSphere Application Server Node Template can
define requirements in its definition that the node can only be installed on the Linux

operating system.

TOSCA language also enables defining policies for a Node Type using Policy Type and
Policy Template. Policy Type defines the place holders for policy properties using XML
schema. Policy Templates define the actual values of the properties. For example, in the
above example, the Application Server Node type may have "high availability" policy
with heartbeat frequency" count defined by a Policy Type, whose actual value is set by
the corresponding Policy Template, keeping the Application Server up and running
with high availability [OAS13b].

Service Template file can refer to constructs of TOSCA from other TOSCA definition files
as well. For example in the Listing 2.1, the corresponding Node Types and Relationship
Types are being referred from another TOSCA definition document, PayrollTypes.tosca.
Artifacts can be referred even from other CSARs, for example, Deployment artifact
Payroll.ear is being referenced from another CSAR in Listing 2.1.

2.2.2 Cloud Service Archive (CSAR)

All the files related to application topology, for example, schemas, templates, types,
definitions, binary files, and business process related files, are packaged in a ZIP file (with
extension ".csar") known as Cloud Service Archive (CSAR). The CSAR follow a standard
format which enables it to get deployed in any TOSCA compliant cloud provider, hence

22

2.2 Topology and Orchestration Specification for Cloud Applications (TOSCA)

Listing 2.1 TOSCA syntax to define an application (adopted from [OAS13b, p.77-78])
1 <?xml version="1.0" encoding="UTF-8"?>

2 <Definitions xmlns:pay="http://www.example.com/tosca/Types" id="PayrollDefinitions"

targetNamespace="http://www.example.com/tosca">

3 <Import namespace="http://www.example.com/tosca/Types"

location="http://www.example.com/tosca/Types/PayrollTypes.tosca" importType="

http://docs.oasis-open.org/tosca/ns/2011/12" />

4 <Types>...</Types>

5 <ServiceTemplate id="Payroll" name="Payroll Service Template">

6 <TopologyTemplate ID="PayrollTemplate">

7 <NodeTemplate id="Payroll Application" type="pay:EAR Application">

8 ...

9 <DeploymentArtifacts>

10 <DeploymentArtifact name="PayrollEAR" type="http://www.example.com/ ns/tosca/2011/12/

DeploymentArtifactTypes/CSARref">EARs/Payroll.ear</DeploymentArtifact>

11 </DeploymentArtifacts>

12 ...

13 <!-- ImplementationArtifacts -->

14 ...

15 </NodeTemplate>

16 <NodeTemplate id="IBM WebSphere Application Server" type="pay:Application Server">

17 <DeploymentArtifacts>

18 <DeploymentArtifact name="IBMWebSphereAS" type="http://www.example.com/ ns/tosca/2011/12/

DeploymentArtifactTypes/WebSphereASref">ibm-websphere-edf2cf99</DeploymentArtifact>

19 </DeploymentArtifacts>

20 </NodeTemplate>

21 ...

22 <!-- Linux Operating System node template -->

23 ...

24 <RelationshipTemplate id="deployed_on" type="pay:deployed_on">

25 <SourceElement ref="Payroll Application" />

26 <TargetElement ref="IBM WebSphere Application Server" />

27 </RelationshipTemplate>

28 </TopologyTemplate>

29 </ServiceTemplate>

30 </Definitions>

enabling portability. The CSAR contains at least two directories, the TOSCA-Metadata
directory and the Definitions directory. Apart from these two directories, the creator
of CSAR can have any structure in CSAR; what suits best for the cloud application
modularity.

The TOSCA-Metadata directory essentially has a TOSCA meta file, TOSCA.meta which is
consisted of name/value pairs. A name/value pair is separated by a colon and followed
by a space. The name must not have any colons in it. Each name/value pair is on a
new line. Related name/value pairs are separated by an empty line. The consecutive

23

2 Fundamentals

Listing 2.2 Structure of first block of TOSCA meta file [OAS13b, p.75]
1 TOSCA-Meta-File-Version: digit.digit

2 CSAR-Version: digit.digit

3 Created-By: string

4 Entry-Definitions: string ?

Listing 2.3 Structure of non-first blocks of TOSCA meta file [OAS13b, p.76]
1 Name: <path-name_1>

2 Content-Type: type_1/subtype_1

3 <name_11>: <value_11>

4 <name_12>: <value_12>

5 ...

6 <name_1n>: <value_1n>

7
8 ...

9
10 Name: <path-name_k>

11 Content-Type: type_k/subtype_k

12 <name_k1>: <value_k1>

13 <name_k2>: <value_k2>

14 ...

15 <name_km>: <value_km>

name/value pairs are called as block. Each block describes an artifact in CSAR. The first
block represents the CSAR itself [OAS13b]. The content of the first block in the TOSCA
meta file is shown in Listing 2.2.

Each block except the first block has the first name/value pair, with key name "Name",
referring to the path of the artifact within CSAR (relative to CSAR). Each non-first block
of TOSCA meta file also have a key Content-Type which tells about the MIME type of
the referred artifact. The structure of non-first blocks of TOSCA meta file is shown in
Listing 2.3.

Figure 2.2 illustrates the content of CSAR for the example payroll application that we
discussed in the previous section.

Having discussed all the constructs of TOSCA standard, it is important to realize that
TOSCA only presents a grammar for describing cloud applications by means of topology
templates and business plans [OAS13b]. TOSCA needs a runtime to deploy and manage
instances of cloud application as defined in the Service Template of CSAR. "Without
such a container, TOSCA could be used as pure exchange format and manually operated
according to the definitions in the Service Template" [BBKL14].

24

2.3 Smart Services

Payroll-Application.csar

/TOSCA-Metadata

TOSCA.meta

/Definitions

Payroll.tosca

PayrollTypes.tosca

/Plans

AddUser.bpmn

/EARs

Payroll.ear

/JARs

Payrolladm.jar

/Python

wsadmin.py

Figure 2.2: Sample CSAR Directory Structure [OAS13b, p.78]

2.3 Smart Services

Devices (Things) embedded with electronics, for example, sensors and actuators, etc. are
interconnected with the usage of a shared platform, such as cloud services, to perform
functions adaptively, on their own, or with the input from the physical world [AKN17].
Industry 4.0 is inspired from the concepts of IoT. Four design principals of Industry
4.0 as mentioned on [WIKa] are Interoperability, Information transparency, Technical
assistance, and Decentralized decisions. Interoperability means the ability of devices,
sensors, machines, actuators, and humans to connect with each other via Internet of
Things (IoT). Information transparency is the ability of the system to create a virtual
copy of the physical model by aggregating data from all the devices and sensors in the
industrial environment. Technical assistance design principals mean that the system
should update the users about the status of the industrial environment so that the users
can take decisions effectively. The last design principal of Industry 4.0, Decentralized
decisions enables the system to take decisions on its own. Only if there is a conflict in
decisions, request for decision is delegated to humans.[WIKa]

25

2 Fundamentals

In general, a smart service is just a smart (web) service with provided awareness of
context, makes it "reactive or even proactive" [AL05]. In the context of Industry 4.0, one
application of the smart services is predictive maintenance of the devices in an industrial
environment. The idea is that all the mounted sensors send data to the smart service.
The smart service based on the metered data, categorize a device as good or bad. Good
means that the device is functioning correctly and bad means that the device is not
functioning correctly and needs to be replaced or re-configured.

Considering the advantages of Cloud Computing and TOSCA standard, as discussed
in the previous sections, the smart services are deployed in a TOSCA compliant cloud
provider. Hence they are packaged as CSAR. The business process is that a data scientist
(service developer) develops an analytics algorithm and put it in CSAR. Apart from the
algorithm, CSAR may have static data, for example, if the analytics algorithm needs
some data that does not change over time, and reference to the data source of sensors.
Further, policies to manage the smart service, for example, a security policy stating that
metering data must not leave the industrial environment, is also part of the CSAR. The
two approaches to incorporate a smart service in an industrial environment are function
shipping and data shipping [FBC+16].

2.4 Function Shipping versus Data Shipping

Function Shipping and Data Shipping are two approaches that are used for incorporating
Smart Services in industrial environments. In general, function shipping means that
the function, for example, analytics algorithm is provisioned close to a data source. On
other hand, in data shipping, data from the data source is provisioned to the function.
In the function shipping approach, data ownership is more in control as the data never
leaves the environment where it is created. Further, function shipping enables to
perform parallel processing in a timely manner. This is because, in real-time systems, the
existence of high latency hinders transport of data (request), and command to actuators
(response) in a parallel manner [FBC+16].

But sometimes, processing of metered data from sensors require a powerful processing
environment. Thus, insufficient IT infrastructure close to the data source requires
shipping and aggregation of data from sensors to a centralized location. This is also
the case when the purpose of use-case is only to analyze the data and not real time
processing. But this approach is only suitable if the industry does not have security
constraints on their data, and the industry can afford to have their data leave their
premises. In such cases, the smart service is deployed in self-hosted or public TOSCA
compliant cloud infrastructure. It totally depends on the use-case requirements, and
Service Level Agreements (SLAs), that which approach is used [FBC+16].

26

3 Policy Language Characteristics and
Frameworks

This chapter discusses some of the existing frameworks for policy negotiation between
different parties. It also reviews the characteristics of policy languages, some of which
may count for the goodness of a policy language. The research in this chapter is beneficial
to shortlist a set of policy languages to base the research of this master thesis.

3.1 Policy Frameworks

Although the purpose of this thesis is to research on available policy languages, the
reason of discussing policy frameworks is that the policy languages need a policy
framework to work with.

3.1.1 Trust Negotiation Model

The first framework worth considering is proposed by Seamons et al. [SWY+]; even
though the work was done in 2002, but their research is still considered valuable and
forms the basis of a lot of researches in policy languages. Their work was mainly about
the requirements for the policy languages, but they also introduced a model based on
which a trust negotiation between two parties can be made. Figure 3.1 illustrates main
components of Trust Negotiation Model. It is a very basic model to exchange policies,
with the consideration that policies themselves are confidential as well. The model
is peer-to-peer, which means that both parties hold sensitive resources, policies, and
credentials.

Trust negotiation is initiated when a client wants to access a secret resource on a
server. The server demands credentials from the client to access that resource, by using
policies. The client cannot give the credentials straight away to the server. Thus, before
establishing trust, the client may also require the server to provide, for example, a digital

27

3 Policy Language Characteristics and Frameworks

Client

Nego�a�on Manager

Compliance
Checker

Server

Nego�a�on Manager

Compliance
Checker

Secret resources

Secret creden�als

Secret policies

Secret resources

Secret creden�als

Secret policies
Request for a secret resource

Disclose star�ng creden�al
(possibly digital cer�ficate)

Disclose subset of policies
(requiring creden�als)

Disclose subset of creden�als
(applicable to current nego�a�on)

Grant access to requested resource
only if valid creden�als

Figure 3.1: Trust negotiation through bilateral exchange of digital certificates [SWY+]

certificate, certifying the server to be a part of a trusted organization. So besides the
initial policy, the server must also give a starting credential to the client [SWY+].

The policies themselves are confidential as well because by viewing requirements speci-
fied in a policy, sensitive information about a party could be inferred. Considering this,
the exchange of such policies happen in round-trips comprising a set of negotiations.
Each negotiation only exposes a subset of policies. If both parties satisfy each other
policy requirements, access to the secret resource is granted to the client [SWY+].

Negotiations are managed by a negotiation manager. The manager is responsible for
regulating a strategy which determines "which credentials and policies to disclose, and
when to disclosed them" [SWY+]. The manager is assisted by a compliane checker which
analyze whether the credentials against the policies under the current negotiation are
satisfied or not. Based on the decision from compliance checker about an assertion of
access control policies, negotiation manager could grant or reject access to the secret
resource, or proceed with further negotiations [SWY+].

28

3.1 Policy Frameworks

PDPPEP

PRPAP Restore

Retrieve

Response
PIPFetch

Event Request

Ac�on

Figure 3.2: Policy Core Information Model (adopted from [HL12])

3.1.2 Policy Core Information Model

Policy Core Information Model (PCIM) was developed jointly by Internet Engineering
Task Force (IETF) and Distributed Management Task Force (DMTF). It consists of three
pivotal components: Policy Repository (PR), Policy Decision Point (PDP), and Policy
Enforcement Point (PEP) [HL12]. There are two other components which have been
repeatedly proposed and incorporated by policy language standards: Policy Authoriza-
tion Point (PAP) and Policy Information Point (PIP). This should be noted that these two
components are not part of actual IETF standard. But, their use makes a lot of purpose
in the PCIM. Figure 3.2 illustrates how the components of PCIM fit in a policy-driven
management system.

The PAP provides an interface to define, update, or delete policies. The policies are
stored in the PR. The PEP keeps polling for any request or event to the system, and
forward all the requests to the PDP. The PDP looks into PR for all the applicable policies
and makes decisions like permit, deny, and NotApplicable, and give a response back to
PEP. While making the decision, PDP may interact with PIP (systems like LDAP, database,
web service, etc.), to fetch request detailed attributes. Finally, PEP takes the concrete
action based on the decision made by the PDP [HL12].

3.1.3 Sticky Policies

Sticky policies is an approach as part of EnCoRe project [HP] to manage the privacy of
data across multiple parties. By party, it means the organizations or service providers
which need confidential data from the users for processing. The data is made available
to parties with the consent of the users. The consents are defined in terms of machine-
readable policies. The data is encrypted and attached to the policies, as the data
travels across multiple parties [PM11]. The data could comprise anything but the

29

3 Policy Language Characteristics and Frameworks

approach sticky policies was designed with motivation to protect Personally Identifiable
Information (PII), for example, name, date of birth, address, phone number, credit
card number, password, etc. The attached policies define how the data needs to be
treated, including constraints, conditions, or compliance with standards. The policies
also contain a list of Trusted Authorities (TAs) which provide keys to decrypt the data on
the satisfaction of the policies [PM11].

Figure 3.3 illustrates the basic idea behind the management of sticky policies. Organi-
zations which incorporate sticky policy framework publishes lists of supported policies
and TAs. The data subject (data owner) encrypts the subset of the data which needs to
be protected. Policies are created by the data subject and TAs are added to the policies.
Finally, the created policies are defined on that data subset. The policy could include
preferences like data should be deleted after 2 years of use, or data should not be made
accessible to particular parties, etc. The data subject then includes a list of TAs which
can be requested for the key to decrypt the data. The data subject may also encrypt
different subsets of data with different keys. The system then sends the encrypted data
with the sticky policies to the service provider. After receiving the encrypted data and
sticky policies, the service provider sends the sticky policies to one of the listed TAs, with
the assertion that it complies with the sticky policies. The TA can confirm this assurance
from the service provider with methods, for example, verifying digital certificates from
trusted Certificate Authorities (CAs) that the service provider may hold, or by verifying
the absence of the service provider from a known blacklist, or verifying from an external
reputation management system. The verification actions are logged by the TA, which
creates an audit trail made available to the data owner and the TA in cases, for example,
policy violation. Once the TA verifies all the policy requirements, the key to decrypt the
data is released to the service provider [PM11].

Sticky policy approach does not have any fixed underlying encryption mechanism to
protect data, though [PM11] suggests a public-key encryption technique to secure
propagation of data along the service provision chain. This technique assumes that all
stakeholders (data subject, service provider, and TA) possess certified public or private
key pairs from trusted CAs. In this technique, data owner generates the policy, together
with a symmetric key K. Data owner sends two items to service provider: (1) Data
encrypted with K, (2) Sticky policy, having K appended to the policy’s hash, with K
and hash encrypted with TA’s public key and signed with the data owner’s private key.
The signing makes it possible to verify the policy’s authenticity and integrity. When
the service provider receives the sticky policy with the encrypted data, it sends the
sticky policy which contains encrypted K and policy hash, to one of the TAs. The TA
decrypts K and policy hash, verifies the policy’s signature with data owner’s public key,
and challenges the service provider for fulfillment of the policy. If all the verification
steps get passed, TA sends K to the service provider by encrypting it with the service

30

3.2 Characteristics of Policy Languages

Organiza�on 1

Organiza�on 2

Organiza�on 3

Organiza�on 4

Trusted Authority (TA)

Data subject

Data Storage

S�cky Policy
Decrypted DataBusiness

Applica�ons

Data
Storage

Data
Storage

Data
Storage

Data Storage

Policy analysis, key release,
and audi�ng

Encrypted data + S�cky
policy

Encrypted data + S�cky
policy

Disclosure of keys to decrypt
data

�Request for keys to
decrypt data

�S�cky Policy

Business Applica�ons
Business Applica�onsBusiness

Applica�ons

Business
Applica�ons

Business
Applica�ons

Business
Applica�ons

Figure 3.3: Overview of Sticky Policy Approach [PM11]

provider’s public key. The service provider can then decrypt K with its private key and in
turn decrypt the data using K [PM11].

3.2 Characteristics of Policy Languages

Seamons et al., 2002 [SWY+] presented requirements for a policy language in their work
on the trust negotiation model. To date, a lot of advancements have been done in the
field of policy languages, and dynamics of information technology have changed. But the
work of Seamons et al. is still considered valuable. Duma et al., 2007 [DHS07] and Coi et
al., 2008 [CO08] referred to [SWY+] for their work on the scenario based comparison of
policy languages, and review of security policy languages respectively. Policy properties
included in this section have been taken from [SWY+], [CO08], [DHS07], and [HL12].
The properties should only be considered as general characteristics of policy languages,
and are not necessarily the criteria for a policy language to qualify for goodness. First
fifteen characteristics are general language features and last four are related to credential
support.

31

3 Policy Language Characteristics and Frameworks

Well-defined semantics. A policy language semantics are well defined if its constructs
are not implementation specific, for example, relational algebra is not implementation
specific but SQL is. A language having this quality allows to confidently infer something
from it, irrespective of how and when the language is used [CO08; SWY+].

Monotonicity. A policy language should be monotonic, which means the disclosure
of more policies or more credentials should only give more privileges or access rights
to the requester. For example, an insurance company ABC issues ABC credentials to
its clients certifying them to be part of the insurance company. If a health care club
web-service should not be accessible to the clients of ABC, imagine a policy language
that grants access to the health care club web-service as long as the ABC credentials are
not disclosed. From this case, it does not mean that negation of credentials should not
be allowed, it only means that a policy language should allow policy writers to define
the absence of credentials. Further, the monotonicity requirement does not prevent the
use of inequality constraints or temporal predicates, for example, access to the health
care club web-service should only be made between 06:00 and 21:00 [CO08; SWY+].

Condition expressiveness means expressiveness of a policy language in defining condi-
tions under which a request should be fulfilled. Policy languages differ in expressiveness:
Many policy languages allow to add constraints on attributes of requesters, values of
credentials, or properties of the requested action. Some policy languages enable to
define pre-conditions for a request to be considered. Further, some policy languages
even allow to add constraints on environmental factors (for example, time), and a few
also support the notion of purpose in the requests [CO08; SWY+].

Action execution is the ability of a policy language to execute an action during evalua-
tion of a policy. For example, being able to get system current time and send it with the
response of the evaluation. Some policies also enable executing an action depending
on the outcome of an evaluation, for example, sending an email to a customer if his
discount gets approved [CO08].

External functions. Some policy languages come with a library of functions, for exam-
ple, date comparisons, time formatting, currency conversions, etc. The well-defined
semantics of these functions enable the involved parties to agree on the same outcome
of an evaluation of the policy [SWY+].

Negotiation support. Negotiation takes place when a request is initiated with the
consideration of multiple policies individually defined by the parties involved in the
negotiation, and evaluation of the request is done in a distributed way. The important
point here is that not only the party offering a service has a policy, but also the party
requesting for a service also have a policy. Policy evaluation is successful if both of the
parties satisfy each other’s policy requirements. For example, in the case of the sticky

32

3.2 Characteristics of Policy Languages

policy approach that we discussed in the previous section, policy language ought to have
this characteristic [CO08].

Type of evaluation. Those policy languages which support negotiation between multiple
parties, perform the evaluation of policies in a distributed way. Each involved party
evaluates a policy step by step, and advance the negotiation. This type is named as
distributed evaluation. Some languages enable their runtime to break a policy on several
nodes. Each node can further split the policy or return the evaluation result to the
peer who sent the policy for evaluation. Finally, the root node could accumulate the
results from each node, evaluate all the responses, and return the final result. This
type of evaluation is called as distributed policies. The policy languages which do not
offer negotiations, perform all their evaluations locally, hence the name local evaluation
[CO08].

Policy engine decision. Policy language semantics should enable the policy engine to
notify requester about the policy evaluation. This could be made possible by, for example,
having a detailed policy response structure. The result sent back to the requester may
consists of simple boolean value true/ false, or values like allow, deny, and don’t care, or
detailed reasons, for instance, why the evaluation of the policy got failed [CO08].

ECA. This refers to Event, Condition, Action paradigm. It is recommended that a policy
language is based on ECA paradigm because this paradigm enables a policy language
to handle more complex events, for example, asynchronous event calls, or composite
policies. If a policy language is not based on ECA paradigm, then it follows Condition-
Action way of evaluating policies [HL12].

Indexing. This characteristic allows a policy language to create indexes on entities
of policy languages, for example, subject, resources, etc. Normally, there are a lot of
policies in a system, and at runtime, there is the need for a policy engine to quickly
access the required policy for evaluation. Indexes enable a policy engine to retrieve the
required policy more efficiently [HL12].

RBAC stands for Role-Based Access Control. The policy languages which have this
characteristic, perform policy evaluation by mapping subjects (for example, users,
machines, etc.) to roles. Then, the roles are given permissions, and access control is
calculated. It is good for a policy language to have this characteristic as it is easier to
manage access control policies based on roles, rather than individual subjects. Also, the
access permissions of a subject automatically change with role changes [HL12].

Obligation means that apart from performing an action based on a condition, perform
another task. This task can be, for example, log the request, email the requester, start a
scheduler, etc. The policy languages having this characteristic are able to produce a side
effect based on a policy evaluation [HL12].

33

3 Policy Language Characteristics and Frameworks

Extensibility is the ability of a policy language to facilitate extensions. A policy language
should be extensible with new features, and customizable for a specific system needs
[CO08].

Conflict Resolution is the ability of a policy language to resolve the conflicts if two
policies are satisfied but both are contradictory, for example, one policy grants access to
a web service call and the other denies the access. The policy engine cannot take both
of the actions. In such cases, there must be some way in the language itself to resolve
the conflicts and choose one action.

Protecting sensitive policies. A policy itself may also be confidential. For instance, if
the policy protecting a person’s medical record requires that the requester of the medical
record must submit a certificate issued by a mental health organization, it could be
inferred that the person may have some mental health problem. So during evaluation of
policies, it should be able to protect such sensitive information either at policy syntax
level or using the policy engine. For example, the policy engine could disclose sensitive
policies only when required, or the policy content is encrypted, which can be decrypted
with external function calls [SWY+].

Evidences. It should be able to specify signed statements (credentials) in a policy
language and should be able to specify authentication requirements by means of external
function calls or as part of policy language itself. For example, a student discount system
must be able to authenticate that a customer indeed is the student mentioned in the
student digital ID credential. There should be a mechanism to confirm a credential
ownership by, for example, being able to refer to the private key associated with a public
key referred to in a credential [CO08; SWY+].

Credential chains. A policy language should allow to construct and constrain a chain
of credentials. This means that a policy language should be expressive enough to verify
that the issuer name in one of the credential is the subject name of the next credential
in a credential chain [SWY+].

Credential combinations. Many times, in order to establish trust, it is required to
prove authenticity using multiple credentials from different trusted authorities. For
example, a health care service may require student certificate and insurance certificate
to offer a particular discount. This also ensures greater credibility because an attacker
would have to fabricate several private/public key pairs before being able to get illegal
access. So, policy language having this characteristic enable the policy writers to
specify combinations of credentials using a conjunction, disjunction or other semantics
[SWY+].

Inter-credential constraints. If two certificates are issued to the same subject, it is very
likely that subject name is same in both of the certificates. For example, if a health care
service may require student certificate and insurance certificate from a customer, then

34

3.2 Characteristics of Policy Languages

the policy language should allow adding a constraint that subject name on both of the
certificates is same or at least close enough [SWY+].

Based on the discussion included in this chapter, different policy languages are short-
listed and will be discussed in the next chapter. In the later chapters, the discussed
policy languages and their compliant frameworks will be compared, based on which
an approach will be defined to secure applications of Industry 4.0, particularly smart
services deployed in TOSCA runtime.

35

4 Shortlisted Policy Languages

The languages considered for this thesis are TPL/ DTPL, XACML, EPAL, X-Sec, Rei, PSPL,
KeyNote, P3P/ APPEL, ASL, VALID, PDL, PFDL, WS-Policy, and Ponder. The languages
are considered based on their popularity. Only the prominent features and the domain
in which the considered policy languages deal in, are briefly researched. Out of these
14 policy languages, 5 policy languages are shortlisted for the detailed research due to
their closeness with the security domain and applicability for the field of Industry 4.0.
Further, the general characteristics defined in the previous section are also considered
while selecting the policy languages.

4.1 TPL/ DTPL

Trust Policy Language (TPL) [IBM] created by IBM Research centre is an XML based
policy language which maps requesters to groups/ roles based on the certificates they
possess. The terms roles and groups are used in the language interchangeably. Definite
Trust Policy Language (DTPL) is the subset of TPL which does not contain negative rules
and hence is monotonic. The constructs of TPL are as follow.

The root of TPL is POLICY tag. The POLICY tag may contain one or more GROUP tags.
Membership of the group is determined by multiple RULE tags. The RULE tag expresses
constraints on a certificate using a sequence of INCLUSION and EXCLUSION tags and
an optional FUNCTION tag. The INCLUSION tag adds basic constraints on existence
of a certificate, for example, type and issuer. Similarly, the EXCLUSION tag adds basic
constraints on the nonexistence of a certificate. Both INCLUSION and EXCLUSION tags
have an attribute ID, which is used to refer the certificate associated with the RULE tag.
The scope of ID attribute is only limited to the RULE tag. The FUNCTION tag is used to
express complex constraints on a certificate by using TPL logical constructs like AND, OR,
NOT, EQ, GE, etc. TPL expresses the reference to a field in a certificate using FIELD tag.
The FIELD tag consists of two attributes: (1) ID attribute, which refers to INCLUSION
or EXCLUSION ID (a unique id of the certificate where the field appears), (2) NAME
attribute which refers to the name of a field in the certificate. TPL enables external
function calls using EXTERN tag. The FIELD and EXTERN tags could come inside TPL

37

4 Shortlisted Policy Languages

Listing 4.1 TPL simple constraints example - Webservice accessibility to member devices
of a trusted manufacturing industry with name "Smart Industry"

1 <?xml version="1.0"?>

2 <POLICY>

3 <GROUP NAME="self"></GROUP>

4 <GROUP NAME="industries">

5 <RULE>

6 <INCLUSION ID="indCrt" TYPE="memberIndustry" FROM="self"></INCLUSION>

7 </RULE>

8 </GROUP>

9 <GROUP NAME="mobileDevices">

10 <!-- device identification from an industry -->

11 <RULE>

12 <INCLUSION ID="deviceCrt" TYPE="DeviceID" FROM="industries"></INCLUSION>

13 <FUNCTION>

14 <EQ>

15 <FIELD ID="deviceCrt" NAME="Industry Name"></FIELD>

16 <CONST>"Smart Industry"</CONST>

17 </EQ>

18 </FUNCTION>

19 </RULE>

20 </GROUP>

21 </POLICY>

logical construct tags. Listing 4.1 is the TPL snippet, defining policy requirements for
accessibility of a web service only for mobile devices possessing a certificate issued by a
particular trusted manufacturing industry with name "Smart Industry" [SWY+].

As can be seen in Listing 4.1, TPL has well-defined semantics. A special group, ’self’
group refers to the self public key. The FROM attribute in INCLUSION and EXCLUSION
tags refers to the name of a group. Only certificates signed by a member in that group
should be eligible to evaluate the function in INCLUSION or EXCLUSION; this enables
TPL to verify credential chains. The CONST tag allows TPL to express a comparison for
the value of a field in a certificate with a constant value. The ability of TPL to express
external function calls enable it to specify complex constraints, evaluate Inter-credential
constraints, and allows requester to specify evidences. The ability of TPL to execute
external functions can be used to develop a library of standard functions. One function
could be checkStrongAuthentication, which at the time of role mapping evaluation decrypt
some data. The function should be provided with certificate public key in the input,
and the data to decrypt could be provided from within function call itself. For example,
Listing 4.1 can be extended to decrypt some data as shown in Listing 4.2. Invoking this
function would trigger a challenge-response to prove that the mobile device possesses
the corresponding private key [SWY+].

38

4.1 TPL/ DTPL

Listing 4.2 TPL external function call example - Challenge-response to prove that the
mobile device possesses the corresponding private key

1 <?xml version="1.0"?>

2 <POLICY>

3 <GROUP NAME="self"></GROUP>

4 <GROUP NAME="industries">

5 <RULE>

6 <INCLUSION ID="indCrt" TYPE="memberIndustry" FROM="self"></INCLUSION>

7 </RULE>

8 </GROUP>

9 <GROUP NAME="mobileDevices">

10 <RULE>

11 <INCLUSION ID="deviceCrt" TYPE="DeviceID" FROM="industries"></INCLUSION>

12 <FUNCTION>

13 <AND>

14 <EQ>

15 <FIELD ID="deviceCrt" NAME="Industry Name"></FIELD>

16 <CONST>"Smart Industry"</CONST>

17 </EQ>

18 <EXTERN CLASS="checkStrongAuthentication">

19 <PARAM NAME="publicKey">

20 <FIELD ID="deviceCrt" NAME="publicKey"/>

21 </PARAM>

22 </EXTERN>

23 </AND>

24 </FUNCTION>

25 </RULE>

26 </GROUP>

27 </POLICY>

In Listing 4.2, to make the external call possible, a class must be created that implements
the checkStrongAuthentication interface. The name of the class should match the value
of the CLASS attribute in the EXTERN tag.

TPL does not support sensitive policies but Seamons et al. [SY01] have proposed a way
to protect sensitive policies by using the policy graphs. Formally, the policy graph is
a directed acyclic graph with exactly one node and sink. Every node except the sink
represents a policy. The sink represents the resource to be protected. A policy node n
should only be disclosed if the outcome of all the policy nodes in the path to n (except
policy node n itself) have been satisfied by the credential [SWY+].

39

4 Shortlisted Policy Languages

4.2 EPAL

Enterprise Privacy Authorization Language (EPAL) is an XML-based language proposed
by IBM, and was submitted to World Wide Web Consortium (W3C) in 2003 for consider-
ation as a standard [HKPS03], but has not been approved yet. EPAL addresses security
issues of enterprise applications in a structured and interoperable manner. It is based on
Policy Core Information Model that we discussed in the previous chapter. An EPAL policy
expresses applications privacy by defining the following constructs: data-categories,
user-categories, conditions, purposes, sets of (privacy) actions, and obligations.

Data-categories define the data to be protected, for example, medical record, chemical
formula, etc. User-categories (users/ groups) are the entities which collect the data, for
example, health researcher, chemical composition analyst, etc. Conditions consist of
boolean expressions to expresses constraints on the Data-categories. The purposes define
the intended use of the data, for instance, marketing, auditing, processing, analysis, etc.
Actions tell how the data is used, for example, disclose, store, read, etc. Obligations
model actions that should be taken by EPAL engine when interacting with the data, for
instance, delete the data 1 week after using, or ask for consent from the data holder,
etc.

The elements defined above are used to formulate rules to establish access control. The
outcome of policy could be one of allow, deny, Not-applicable. Not-applicable means that
the formulated policy does not care if the user-category should be allowed or disallowed
to perform the specified action on the data-category for certain purpose while enforcing
particular conditions. Figure 4.1 illustrates EPAL policy enforcement model.

EPAL has a strict but very generic XML schema. Hence, EPAL has well-defined semantics.
The root element of EPAL is epal-vocabulary tag which has user-category, date-category,
action, purpose, container, and obligation. It is possible that the rules conflict with
each other. EPAL vocabulary allows to resolve such conflicts by for example, assigning
precedence to a particular rule over others, etc. Table 4.1 shows an example of how a
policy can be mapped to the elements of EPAL Rule.

The corrosponding EPAL syntax for EPAL Rule shown in Table 4.1 is presented
in Listing 4.3. It must be noted that the individual elements, for example data-
category, data-user, etc. need to be defined in epal-vocabulary. Separating rule def-
inition from epal-vocabulary provides modularity. There can be a sequence of one
or more <user-category>, <data-category>, <purpose>, and <action> elements in
<epal-query>.

Constructs and vocabulary of EPAL are very abstract. It does not enforce how different
elements need to be implemented, for example, how an action is triggered when
the policy rule is evaluated, or how to call an application which is implementing a

40

4.2 EPAL

Policy Administrators

Applica�ons

Policies Obliga�ons No�fy
Audit

Permit

...

Access Control
Deny

Data/Resources
�Files
�Equipment
�Databases
�Other applica�ons
�...

Figure 4.1: EPAL Policy Enforcement Model [And04]

Policy Rule Allow a chemical researcher or chemical engineer to collect a
product formula’s for analysis if the formula inventor has not
patented the formula, and the formula inventor has been notified
of the privacy policy. Delete the data 5 years from now.

ruling allow

user category chemical department

action store

data category product-formula

purpose analysis

condition the product formula is not patented

obligation delete the data 5 years from now

Table 4.1: EPAL Rule Example - Protecting a chemical formula

41

4 Shortlisted Policy Languages

Listing 4.3 EPAL Syntax Example - Protecting a chemical formula
1 <epal-query>

2 <rule id="rule1" ruling="allow"/>

3 <data-user id="chemical department"/>

4 <data-category id="product-formula"/>

5 <purpose id="analysis"/>

6 <action id="store"/>

7 <condition id="not-patented"/>

8 <obligation id="retention">

9 <parameter id="years">5</parameter>

10 </obligation>

11 </epal-query>

particular obligation logic. Neither it has any concrete scheme to exchange key-pairs
for authorization and security. Furthermore, it does not enforce how the data which
needs to be protected is stored, and mapped to EPAL data-category vocabulary. It is the
responsibility of the policy engine to enforce what has been defined in policies.

4.3 XACML

The eXtensible Access Control Markup Language (XACML) is an XML based policy
language defined in 2001, the third version of it was approved as an OASIS standard in
2013 [Ris13]. XACML can be broken down into three parts: policy language, request/
response scheme, and underlying model. The policy language defines how to express
access control constraints. The request/ response scheme defines the structure of request
and response in XACML context. The request enables to form the query that whether an
access to a resource is permitted or not. Similarly, the response enables to interpret a
policy evaluation result. The policy engine must convert application context attributes,
for example, JAVA, LDAP, etc. to create XACML context request, and convert XACML
policy decision to an application context response. How to perform this conversion,
does not come under the scope of XACML. The underlying model is PCIM (Figure 3.2)
that we discussed in the previous chapter. Figure 4.2 illustrates how XACML fit in an
application context. [OAS13a; Ris13]

When someone wants to access a resource (database, web service, filesystem, etc.), the
request first goes to PEP. PEP creates XACML context request based on the requester’s
attribute, action, the resource to access, and any relevant information for access control.
The request is forwarded to PDP. PDP fetches request’s other details it may require from
PIP, and looks into PR for all applicable policies. The PDP then evaluates the policies and
takes a decision. The decision could be one of the following: Permit, Deny, Indeterminate
(a decision cannot be made because some error occurred while evaluating policies, or

42

4.3 XACML

Domain-specific
inputs

XACML Cotext/
Request.xml

XACML
Policy.xml

XACML Context/
Response.xml

Domain-specific
outputs

PDP

Applica�on context

XACML context

Figure 4.2: XACML Context [Ris13]

some required value was missing) or Not Applicable (the request is not applicable to any
policies in PR). The decision is then returned to the PEP, based on which the requester
is either allowed or denied the access to the resource.

The root of XACML policy document is either Policy element or PolicySet element.
PolicySet can contain Policy elements, references to policies on remote locations, or
further PolicySet elements. The Policy element defines the rule for access control. It is
consisted of one Target element and multiple Rule elements. The Target specifies for
which Subject, Resources, and Actions the policy holds. Beside enabling XACML to find
applicability of a policy for a request, the Target also help XACML to create indexes on
the policies to quickly shift from one policy to another. For instance, if a policy applies to
resource country name, and thus Target must apply constraint on Resource, in this case
an index can be made on Resource country name; when request arrives, PDP will know
where to look for the policies.

Once the applicable policies have been found, they are evaluated using Rule elements.
Rule is applicable to a certain Target and contains policy evaluation logic in Condition
element. The Condition can calculate complex logics using XACML built-in functions
or custom-made functions. If the condition results in true, then the effect of the Rule
(Permit or Deny) is applied. The condition can also result in Intermediate (some error
occurred) or NotApplicable (rule does not apply). As one Policy element can have
many Rule elements, the result of rules need to be combined. XACML achieves that
by providing Combining Algorithms. The XACML standard contains thirteen built-in
Combining Algorithms but custom Combining Algorithms can also be defined.

XACML entire logic runs on XACML context attributes. So when PEP receives an
event, PEP maps application context attributes to XACML context request attributes

43

4 Shortlisted Policy Languages

Listing 4.4 XACML example - Login to servers in Germany is only allowed between 9AM
and 5PM (adopted from [Ris13])

1 <?xml version="1.0" encoding="UTF-8"?>

2 <Policy PolicyId="GermanyServer"

RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:permit-overrides">

3 <Target>

4 <Subjects>

5 <AnySubject />

6 </Subjects>

7 <Resources>

8 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

9 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">Germany</AttributeValue>

10 <ResourceAttributeDesignator DataType="http://www.w3.org/2001/XMLSchema#string"

AttributeId="urn:oasis:names:tc:xacml:1.0:resource:country-name" />

11 </ResourceMatch>

12 </Resources>

13 <Actions>

14 <AnyAction />

15 </Actions>

16 </Target>

17 <Rule RuleId="LoginRule" Effect="Permit">

18 <!-- Rule Target specifying Action attibute "ServerAction" equal to "login"-->

19 ...

20 <Condition FunctionId="urn:oasis:names:tc:xacml:1.0:function:and">

21 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:time-greater-than-or-equal">

22 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:time-one-and-only">

23 <EnvironmentAttributeSelector DataType="http://www.w3.org/2001/XMLSchema#time"

AttributeId="urn:oasis:names:tc:xacml:1.0:environment:current-time" />

24 </Apply>

25 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#time">09:00:00</AttributeValue>

26 </Apply>

27 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:time-less-than-or-equal">

28 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:time-one-and-only">

29 <EnvironmentAttributeSelector DataType="http://www.w3.org/2001/XMLSchema#time"

AttributeId="urn:oasis:names:tc:xacml:1.0:environment:current-time" />

30 </Apply>

31 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#time">17:00:00</AttributeValue>

32 </Apply>

33 </Condition>

34 </Rule>

35 <Rule RuleId="FinalRule" Effect="Deny" />

36 </Policy>

44

4.4 Ponder

which are characteristics of Subject, Resource, Action, and Environment. The request
attributes can be referred and compared with policy attributes using two mechanisms:
AttributeDesignator and AttributeSelector. The AttributeDesignator lets referring to
attribute values using name and type. The AttributeSelector enables looking up attribute
values by specifying XPath query.

Listing 4.4 is an example policy in XACML using the elements discussed above. Its Target
says that the Policy is only applicable on servers in Germany. The Policy has a Rule
(with RuleId "LoginRule") which has a Target, specifying the action to be "login" and a
Condition that applies only if the Subject tries to log in to the server between 9 AM and
5 PM.

The CombineAlgorithm used in the Listing 4.4 is permit-overrides which means that Permit
decision have priority over Deny decision. So if any Rule causes the Policy outcome to
be Permit, other Rules’ outcomes (Deny, NotApplicable, Indeterminate) are overridden.
In the listing, the second Rule (with RuleId "FinalRule") is being used as the default rule,
which always returns Deny; so if the first rule (LoginRule) does not apply, the default
rule is considered. Rules are always evaluated in sequence. Other rules can be added in
this listing to specify different actions and constraints.

Only basic elements of XACML were discussed in this section, to understand control
flow of XACML. Other than that, XACML has a rich vocabulary, providing elements like
StatusCodes, MissingAttributeDetails, ObligationExpressions, AdviceExpressions, etc. It
provides a standard extension mechanism by defining XACML Attribute definitions for
Subject, Resource, Action, and Environment. Similarly, custom CombiningAlgorithms,
DataTypes, and Functions can be defined. It does not provide any mechanism for key-
pairs exchange; but being based on PCIM, any request information can be defined and
extracted from the PIP.

4.4 Ponder

Ponder is a declarative, object oriented, and role-based access control policy language
created by Imperial College in 2001. The language consists of the following constructs:
subjects (actors which interact with the resources to protect), targets (resources to
protect), actions (what to do when a policy is satisfied), and constraints (limits the
applicability of a policy). It introduces the concept of Domains, which means the
grouping of subjects and targets. References to the domains are maintained by a domain
service which could be implemented by protocols like Lightweight Directory Access
Protocol (LDAP). This enables Ponder to assign policies to a group of objects, hence the
policy changes go with the domain membership. Ponder has five types of policies for

45

4 Shortlisted Policy Languages

Obje�on and refrain policies

Policy Service Domain Service

Monitoring service

Policy Service Domain Service

Edit, enable,
disable, etc.

Query, subject, and targets

Query targetsAuthoriza�on policies

Ac�ons

Events Events SubjectsTarget Objects

Figure 4.3: Policy Implementation in Ponder [Slo]

Listing 4.5 Ponder example - authorization policy definition [DDLS01]
1 inst auth+ switchPolicyOps {

2 subject /NetworkAdmin;

3 target <PolicyT> /Nregion/switches;

4 action load(), remove(), enable(), disable() ;

5 }

access control: Authorization policies, Refrain policies, Filter Policies, Obligation policies,
and Delegation policies. Ponder is not based on any standard model, for example, PCIM
or Trust Negotiation Model, etc. but it has its own model to enforce policies; Figure 4.3
illustrates how policies are implemented in Ponder. [DDLS01; Slo]

Authorization policies are of two types: Positive authorization policies which define
what a member of the subject domain is permitted to do to a target, and Negative
Authorization policies are used for revocation of access rights. Listing 4.5 is an example
of how a positive authorization policy can be defined in ponder.

The example in the listing defines the policy for network switches in Nregion that a
network administrator is authorized to load, remove, enable, and disable them. In the
listing "+" sign means the definition of positive policy authorization. The same way,
negative authorization can be defined using "-" sign. The keyword inst is used for direct
declaration and instantiation. For the purpose of reusability, Ponder also provides a
mechanism for defining the Policy Type with which instances of a policy could be created;

46

4.4 Ponder

Listing 4.6 Ponder example - policy type and instantiation [Slo]
1 type auth+ doorcontrol (subject s, target t, string start, string end)

2 {

3 action enter ();

4 when time.between (start, end);

5 }

6 inst ChildSwimmer = doorControl (/hotelGuest/child, /leisure/pool, "1000","1700");

7 inst AdultSwimmer = doorControl (/hotelGuest/adult, /leisure/pool "1000", "2000");

Listing 4.7 Ponder example - obligation policy definition [Slo]
1 Inst oblig {

2 on workexit(userid)

3 subject securityAgent(userid)

4 do enable.pda(userid, highSecurity)

5 }

this is shown in Listing 4.6. This listing is an example of defining access control on the
doors of a swimming pool.

The Obligation policies define the actions that must be performed by the subjects (human
or automated manager components) on objects in the target domain when a certain
event occurs. Examples of an event could be temperature exceeding, component failing,
disk space close to limit, web service call, etc. Actions could be, for example, auditing,
email, shutting down a component, etc. A chain of actions could also be specified.
Listing 4.7 is an example of this specification. In the listing, workexit is name of the
event, securityAgent the subject, and enable.pda is name of the action.

Refrain policies specify the actions the subject should refrain to do. The difference
between Negative Authorization Policies and Refrain Policies is that the Refrain Policies
are enforced by Subjects rather than Target access controllers. They are used when it
is not possible to define policies on target objects; for example, there may be the case
when a target object is not exposing any interface for policy definition. This mechanism
is a clear violation of Monotonicity that we discussed in the previous chapter. The
Non-monotonic policy languages introduce complexities when it comes to resolving
policy conflicts.

Filter policies are defined on top of Positive Authorization Policies to transform input
or output parameters associated with their actions, based on attributes of subject or
target. They are used when it is not possible for external authorization agent to provide
different operations to reflect permitted parameters. The same way output parameter
transformation is done to reflect the result in the format expected by an enforcement
agent. Delegation Policies enables subjects to perform an action on behalf of some other
subject. This delegation is temporary, and holds only till the expression in valid element

47

4 Shortlisted Policy Languages

of Ponder is applicable. Roles group policies for subjects having same duties and rights.
This enables Ponder to specify policies in terms of Roles rather than persons or any other
individual system component.

A set of tools and services have been developed for the enforcement of policies defined in
Ponder. These include implementations for the domain service, event enforcement agent,
policy compiler, application communication agent, etc. Ponder2 is another language
created in 2007, inspired by features and semantics of the Ponder. Ponder2 comes with
a runtime that enables to interact with other software and hardware components, for
example, tools to capture events from hardware, a JAVA based application to create
Ponder objects (subjects, targets), etc [Pon13].

Ponder does not have well-defined semantics, this is because they are not based on
Logic programming or Description logics [CO08]. Although, Ponder is not an XML
based language, there are tools available to translate Ponder definitions into XML
representations, for the exchange of policies across different domains. But it is hard to
extend Ponder language. This is the reason Ponder2 is a redesign and reimplementation
of the Ponder [Pon13]. It has no mechanism to protect sensitive policies and does not
provide a concrete mechanism for trust building based on certificates.

4.5 WS-Policy

WS-Policy is an XML based framework for defining policies in web service based systems.
It is a W3C recommendation as of September 2007 [BBC06]. WS-policy defines policies
using a collection of policy alternatives, where each alternative consists of multiple
policy assertions. Each policy assertion defines a policy requirement or capability. The
requirements and capabilities defined by policy assertions could either be those which
are directly manifested on the wire (for example, transport protocol or authentication
scheme), or those which define selection criteria for web services (for example QoS
characteristics or privacy mechanisms) [BBC06].

WS-Policy defines policies by using the combinations of two operators (XML tags):
wsp:ExactlyOne and wsp:All. WS-Policy provides two types of expressions for defining
policies: normal form and compact form. Listing 4.8 is a simple example of WS-Policy
definition using the compact form. Line 1 in the listing is the policy definition. Line 2
to line 5 is the policy declaration, in which line 3 and line 4 are the assertions for the
declarations. The compact form is more human readable and concise, and the normal
form expression is verbose because it enforces a strict order to define policies. The
normal form version of Listing 4.8 is shown in Listing 4.9. The normal form expression

48

4.5 WS-Policy

Listing 4.8 WS-Policy example - Using compact form expression [Ley]
1 <wsp:Policy xmlns:fl="..." xmlns:wsp="...">

2 <wsp:ExactlyOne>

3 <fl:PaymentMethod Period="monthly"/>

4 <fl:PaymentMethod Period="perClick"/>

5 </wsp:ExactlyOne>

6 </wsp:Policy>

Listing 4.9 WS-Policy example - Using normal form expression [Ley]
1 <wsp:Policy xmlns:fl="..." xmlns:wsp="...">

2 <wsp:ExactlyOne>

3 <wsp:All>

4 <fl:PaymentMethod Period="monthly"/>

5 </wsp:All>

6 <wsp:All>

7 <fl:PaymentMethod Period="perClick"/>

8 </wsp:All>

9 </wsp:ExactlyOne>

10 </wsp:Policy>

enables interoperability by performing intersection on policies from a requester and a
service provider, resulting in an effective policy [BBC06; Ley].

The policies could be referenced from the same document, a different document placed
locally, or a document at a remote location. Listing 4.10 is an example of how this can
be done using WS-Policy semantics.

WS-Policy framework allows referring to multiple policies using Policy Inclusion as
shown in Listing 4.11. The policy is reffered using URI attribute, and the optional
attribute Digest enables to check the integrity of a referred policy by, for example,
calculating and comparing hashes. Policy Inclusion is specially useful in order to import
a common policy in multiple policies, hence supporting reusability.

When resolving policies, assertions are intersected based on assertion type and delegate
parameters. For example in Figure 4.4, Policy 1 have two alternatives, A1 and A2. Policy
2 also have two alternatives, A3 and A4. Alternatives A2 and A3 are compatible with
each other because each assertion type in A2 (sp:SignedParts and sp:EncryptedParts)
is compatible with that of assertions in A3. Parameters of the assertion types may
be different when checking for the compatibility of alternatives, as in this case. The

Listing 4.10 WS-Policy example - Reffering policies using WS-Policy Attachment [Ley]
1 <wsp:Policy xml:Name="http://fabrikam123.com/policies" wsu:Id="audit" xmlns:my="...">

2 <my:Audit/>

3 </wsp:Policy>

49

4 Shortlisted Policy Languages

Listing 4.11 WS-Policy schema - Including one policy in another [BBC06]
1 <wsp:Policy>

2 ...

3 <wsp:PolicyReference URI="xs:anyURI" (Digest="xs:base64Binary" (

DigestAlgorithm="xs:anyURI")?)? .../>

4 ...

5 </wsp:Policy>

Policy 1 Policy 2

Effec�ve Policy

<wsp:Policy>
<wsp:ExactlyOne>
<wsp:All> <!-- Alternative A1 -->
<sp:SignedElements>
<sp:XPath>/S:Envelope/S:Body</sp:XPath>
</sp:SignedElements>
<sp:EncryptedElements>
<sp:XPath>/S:Envelope/S:Body</sp:Xpath>
</sp:EncryptedElements>
</wsp:All>
<wsp:All> <!-- Alternative A2 -->

</wsp:All>
</wsp:ExactlyOne>
</wsp:Policy>

<wsp:Policy>
<!-- Policy P2 -->
<wsp:ExactlyOne>
<wsp:All> <!-- Alternative A3 -->

</wsp:All>
<wsp:All> <!-- Alternative A4 -->
<sp:SignedElements>
<sp:XPath>/S:Envelope/S:Body</sp:XPath>
</sp:SignedElements>
</wsp:All>
</wsp:ExactlyOne>
</wsp:Policy>

<wsp:Policy>
<!-- Intersection of P1 and P2 -->
<wsp:ExactlyOne>
<wsp:All>

</wsp:All>
</wsp:ExactlyOne>
</wsp:Policy

<sp:SignedParts />
<sp:EncryptedParts>
<sp:Body />

</sp:EncryptedParts>

<sp:SignedParts />
<sp:EncryptedParts>
<sp:Body />

</sp:EncryptedParts>

<sp:SignedParts>
<sp:Body />
<sp:Header Namespace=
"http://schemas/2004/08/addressing" />
</sp:SignedParts>
<sp:EncryptedParts>
<sp:Body />

</sp:EncryptedParts>

<sp:SignedParts>
<sp:Body />
<sp:Header Namespace
"http://schemas/2004/08/addressing" />
</sp:SignedParts>
<sp:EncryptedParts>
<sp:Body />

</sp:EncryptedParts>

Figure 4.4: WS-Policy assertions intersection example [BBC06]

effective policy constitutes of an alternative having assertions in both of the policies
A2 and A3. It must be noted here, that the effective policy now have two assertions of
type sp:SignedParts. In such cases, both of the assertions must be calculated for correct
behaviour [BBC06].

Domain specific extensions are available that make up the actual assertion. WS-Security
(an OASIS standard) [OAS06] is one such specification to secure Simple Object Access

50

4.5 WS-Policy

Listing 4.12 WS-Policy example - Attaching a policy to a webservice using WS-Policy
Attachment [BBC06]

1 <businessService>

2 <name>...</name>

3 <description>...</description>

4 <bindingTemplates>...</bindingTemplates>

5 <categoryBag>

6 <keyedReference

tModelKey="uddi:schemas.xmlsoap.org:remotepolicyreference:2003_03"

keyName="Policy for my registered Web service"

keyValue="http://www.fl.com/myservice/policy"/>

7 </categoryBag>

8 </businessService>

Protocol (SOAP) messages in SOAP based web services, by providing a framework
for confidentiality, authentication, authorization, and integrity. Discussion of SOAP
messages is not under the scope of this thesis [Sos10]. WS-Security provides five types
of token profiles to incorporate security in SOAP messages: Username, x509 (use of x509
certificates to secure the SOAP message), Security Assertion Markup Language (SAML),
Kerberos, REL. The two token profiles are worth mentioning here are username token
profile and x509 token profile. The username token profile uses username and password
to authenticate the SOAP messages. The x509 token profile uses x509 certificates to
encrypt, sign, verify, and decrypt the SOAP messages [OAS06]. WS-Trust [NGG+] is
an extension of WS-Security which provides a framework for issuing and requesting
security token for building trust relationship between involved parties [NGG+].

WS-Policy does not enforce how the policies need to be attached to web services
endpoints, resources, messages, and entities. Other technologies specific specifications
could be defined for this. WS-Policy Attachment [VOH07] is one such specification
(a W3C recommendation) for attaching WS-Policies with Web Services Description
Language (WSDL) artifacts and UDDI elements. Just to give a flavor of how the WS-
Policy Attachment specification hooks policies to subjects, Listing 4.12 is an example for
that [BBC06]. In this listing, keyValue is the URI where the policy is located.

51

5 Policy Based Approach to Secure
TOSCA-based Cloud Services

This chapter starts off with a comparison of the shortlisted policy languages that were
discussed in the previous chapter. One policy language is selected based on contextual
requirements and the characteristics of policy languages that were discussed in Chapter
3. After that, an approach is formulated on how to define policies for cloud services
running in TOSCA environment.

5.1 Evaluation of Discussed Policy Languages

This section determines the positive and weak points of the shortlisted policy languages
based on the characteristics discussed in Chapter 3 and common scenarios in context of
the distributed systems.

5.1.1 Characteristics Comparison

Table 5.1 summarizes the comparison for the full list of characteristics. All the languages
except Ponder have well-defined semantics, and this is because Ponder is not XML based.
In Chater 3, the assumption was made that only the languages that are based on logic
programming or description logics have well-defined semantics [CO08]. Monotonicity
means that fulfillment of more credentials only gives more privileges. So this char-
acteristic is only for the languages which support a concrete credential or evidence
handling mechanism. In this sense, DTPL is the only language which is monotonic. All
the languages support condition expressiveness by means of functions and operators.

In Type of evaluation, WS-Policy is the only language which supports both distributed
evaluation and distributed policies. This is because WS-Policy has Negotiations character-
istics. TPL also supports Negotiation but does not support distributed evaluation because
their semantics does not support breaking down the policies in chunks (distributed
policies). Ponder is the only policy language which supports ECA paradigm because of

53

5 Policy Based Approach to Secure TOSCA-based Cloud Services

hhhhhhhhhhhhhhhhhhhCharacteristic
Language

TPL/DTPL Ponder EPAL XACML WS-Policy

Well-defined semantics Yes No Yes Yes Yes

Monotonicity
TPL: Yes

DTPL: No
Not applied Not applied Not applied Not applied

Condition expressiveness Yes Yes Yes Yes Yes
Action execution No Yes Yes Yes Yes

External functions Yes Yes Yes Yes Yes
Negotiation support Yes No No No Yes

Type of evaluation Local Local Local
Distributed polices

local evaluation
Distributed policies

distributed evaluation
Policy engine decision Yes Yes Yes Yes Yes

ECA No Yes No No No
Indexing No No Yes Yes No

RBAC Yes Yes Yes No No
Obligation No Yes Yes Yes No

Extensibility Yes Yes Yes Yes Yes
Conflict Resolution Not applicable Yes Yes Yes Yes

Protecting sensitive policies
By default: No
Extension: Yes

No No No Yes

Evidences Yes Not applied No No Yes
Credential chains Yes Not applied Not applied Not applied Yes

Credential combinations Yes Not applied Not applied Not applied Yes
Inter-credential constraints Yes Not applied Not applied Not applied No

Table 5.1: Comparison of Policy Languages with respect to the Defined Characteristics

"on" element in their Obligation policies. XACML and EPAL do not support ECA because
in PCIM, an event received by PEP and sent to PDP is only an access request, it does not
include environment attribute changes [CO08].

WS-Policy is the only policy language which supports sensitive policies by default, the
reason being they support distributed evaluation. This means WS-Policy can keep
a policy confidential, and only disclose this policy if the previous negotiations have
succeeded. TPL can support sensitive policies with an extension approach discussed in
Chapter 4. EPAL, XACML, and Ponder do not support sensitive policies because they
require the (distributed or local) policies to gather at one place before starting the
evaluation.

Evidences are required if there is a need to prove identity in the requirements of policy.
TPL supports shreds of evidence based on credentials, by exchanging digital certificates.
Evidences are not applicable to Ponder because Ponder assumes that the subject (for
example, a user, or an application) has already been authenticated, and its policies are
mainly in regard to limiting the access of the subject [CO08]. WS-Policy also supports
Pieces of evidence with its extension WS-Security. Credential chains and Credential
combinations are supported by both TPL/ DTPL and WS-Policy. The last characteristic
Inter-credential constraints is only supported by TPL/ DTPL, for this reason TPL/ DTPL is
a good trust negotiation policy language.

54

5.1 Evaluation of Discussed Policy Languages

The intent of this comparison is not to select the best policy language having the most
features. Not a single language exists which is able to fulfill the requirements of all the
environments and the best fit for every scenario. Having said that, it is also not the case
that this comparison is meaningless. The comparison based on the characteristics can
help to identify the weak and strong points of a policy language. One policy language
can be selected based on the context where it is going to be used. In order to select such
language, first it is required to identify the context of use, then the characteristics can be
filtered which are applicable in the required context. Finally, the language which fulfills
most of the characteristics can be selected.

5.1.2 Contextual Comparison

If there is a need to setup an access control system for devices and users in a network,
with the assumption that the devices or users have already been authenticated by some
other system, for example, username and password authentication. And if, there is a
need to perform the audit of any access request made to the resources of the network.
Further, the requirements also contain the need for a ready-made implementation for the
policy engine supporting the policy language. In such a scenario, looking at Table 5.1,
this can be deduced that Ponder is the best option. The reason that Ponder offers
a ready-made policy engine [Pon13] and a set of tools, also vote for Ponder in this
scenario.

EPAL, XACML, and WS-Policy are platform independent languages, to describe policies
for exchanging information in a distributed environment. Though the purpose of all the
three languages is to establish the exchange policies between applications or enterprises,
the structure of the languages is different which considerably affect their usability and
capabilities. It is practically feasible to identify which of the three policy languages
should be used in which types of distributed systems.

XACML 2.0 is an OASIS standard, and EPAL 1.2 was submitted to W3C to be recognized
as a standard in 2003, but no decision has yet been taken on that. Both XACML and
EPAL are based on PCIM (Figure 3.2). Both are XML based and hence have well-defined
semantics, but both have different language structure to exchange policies [And05;
HKPS03; Ris13]. The correspondence of EPAL request and XACML decision request is
shown in Figure 5.1.

Both XACML and EPAL use the concept of Rules in their semantics. The policy request
query outcome could be one of the following in both of the languages: allow, deny,
Not-applicable. EPAL have it indicated in ruling attribute of rule tag. XACML have it in
Effect attribute of Rule tag. EPAL supports Obligations in Rules, where as XACML define
it in Policies [HKPS03; Ris13].

55

5 Policy Based Approach to Secure TOSCA-based Cloud Services

EPAL decision request XACML decision request

user-category

data-category

ac�on

purpose-category

Ca�egory a�ributes

subject a�ributes

resource a�ributes

ac�on a�ributes

environment a�ributes

Figure 5.1: correspondence between the decision requests of XACML and EPAL [And04]

EPAL is not recommended for enterprise level security because EPAL authorization query
consists of purpose. This is a mandatory part of the query, hence without knowing it, a
policy decision cannot be calculated. XACML also have two purpose elements, one for
data collected, and one for data accessed. But these elements are optional. The policy
calculation does not depend on purpose. EPAL does not support nesting of the policies
as XACML enables with the use of PolicySet, within PolicySet, within Policy, and so on.
Further, XACML provides policy combining algorithms, for example, permit-overrides,
first applicable, etc. to resolve conflicting policies. Own custom algorithms can also
be defined. On other hands, EPAL resolves conflicting policies with precedence. It is
the responsibility of policy writer to order set of rules in EPAL query in such a way
that whichever rule is satisfied first, gets applicable. Further, EPAL does not provide
distributed policies, XACML achieves this by using references to remote policies in
PolicySet [And04; HKPS03; Ris13].

As XACML is an OASIS standard, it is already being used by many enterprises. XACML
also have supporting frameworks, for example, ALFA [AXI12] is an eclipse plugin
to author XACML 3.0 policies using a programming language. The ALFA program
generates XACML 3.0 policies. Such plugins can simplify writing and managing policies.
Considering the upsides of XACML over EPAL, XACML leads EPAL.

56

5.1 Evaluation of Discussed Policy Languages

XACML query evaluation takes place in PDP. Combining algorithms are used while
resolving policies, which returns boolean results. This can be used in web service calls,
for example, if a (web) service provider has a set of policies, and wants to verify if a
client request fulfills those policies before processing the request. Similarly, a client can
verify that if the response from the service provider complies with its defined policies
in order to process the response. The issue is that XACML is unable to deal with the
scenarios where both a client and a service provider have policies. This is the Negotiation
characteristic that we discussed in Chapter 3. Such scenarios are applicable when a client
at the time of sending a request to a service provider, considers both its own policies
and the policies of the service provider. Similarly, the service provider should send the
response to the client with considering both its own policies and the client’s policies.
XACML only considers its own policies when a request is received. However, WS-Policy
framework does support this characteristic. Negotiation is an important characteristic
that we need to have when defining policies for a distributed system. Apart from WS-
Policy, TPL/ DTPL also supports Negotiation, but TPL/ DTPL have several other features
missing which exist in XACML and WS-Policy (as can be seen in Table 5.1).

WS-Policy framework also allows securing sensitive policies because it has the ability to
perform distributed evaluation of policies. The negotiation can proceed in the WS-Policy
framework by evaluating a subset of policy at each intermediary. If the policy evaluation
is successful, then the negotiation could be carry on, otherwise terminated. This way,
a confidential policy could be kept secret at a very last intermediary and can only be
exposed if all previous negotiations get successful.

To verify, if WS-Policy has all other required features that are in XACML, Figure 5.2
shows the correspondence between elements of XACML and WS-Policy.

XACML Target specifies the resource to be protected. In the case of WS-Policy, there
is no explicit need of a Target. This is because the target is indicated by the location
where a WS-Policy is being attached. For example an operation or endpoint in WSDL
(Listing 4.10), or the SOAP message with which a policy is being attached. XACML uses
Target for indexing which is useful when a relevant policy needs to be referred from an
external system, for instance, ODBC, LDAP, etc.

XACML enables attaching multiple policies to a single target. WS-Policy framework
allows this by referring multiple policies in one policy through the usage of Policy
Inclusion (Listing 4.12). XACML provides Obligation related policies, for example,
auditing requests, deletion of a record after some time, etc. WS-Policy does not have
any such built-in semantics for doing that. But this can easily be created as a domain
specific assertion, the same way, WS-Security framework provides security assertions for
WS-Policy.

57

5 Policy Based Approach to Secure TOSCA-based Cloud Services

XACML WS-Policy Framework

Target

Policy Set

XACML Policy

Rule

Effect

Policy a�achment

Policy inclusion

WSPF Policy

Policy asser�on

Rule Combining Algorithm

Usage/ Preference

Compositor

Figure 5.2: Correspondence between the elements of XACML and WS-Policy framework
[Mos03]

XACML Policy consists of a set of rules and Rule Combining Algorithms are used to
combine the rules. On other hands, WS-Policy contains a nesting of assertions, which are
resolved by forming a hierarchy of "ExactlyOne", "All", or "OneOrMore" tags. The concept
of Combining Algorithms is more formal and extensible and WS-Policy assertion nesting
is complex, informal, and inextensible. A rule in XACML forms a conditional expression
using custom or built-in functions for example, "and", "or", "time-greater-than-or-equal",
etc. The assertions in the WS-Policy framework are declarative. For example, "I will
only respond if you talk to me in German or English" is a conditional expression and, "I
can communicate in German and English" is a declarative expression. However, there
is no such feature difference here, because this is how both of the policy languages
work. XACML use predicates because it was designed with the focus on access control.
WS-Policy framework on another hand, forms an agreement based on requirements and
capabilities.

Concluding from the discussion above, XACML should be used when the requirement
really is to define access control in a distributed system, and WS-Policy framework
should be used when there is a need to establish peer-to-peer communication between
parties in a distributed system based on requirements and capabilities of the parties. This

58

5.2 Approach to Address Security Requirements of Smart Services

is because XACML provides features including indexing support for policies, obligation
policies, and extensible rules combining algorithms, which are useful for defining
access control policies but are missing in the WS-Policy framework. On the other hand,
WS-Policy framework supports Negotiation characteristic and protection of sensitive
policies which are important for peer-to-peer communication, and are missing in XACML.
Another common requirement for peer-to-peer communication is trust building between
parties through the issuance, verification, and exchange of credentials. WS-Security has
extensions including WS-Security and WS-Trust which fulfill these requirements.

5.2 Approach to Address Security Requirements of Smart
Services

The end-to-end business process and security requirements of smart services are briefly
recalled before defining an approach to fulfill the security requirements of smart services
for function shipping and data shipping. After which, policy language characteristics
and features are selected which are mandatory to address the security requirements in
the context of smart services. Finally, an approach is defined to refine and enhance the
TOSCA standard to the field of smart services in production environments through the
usage of policies.

There should be Restricted Access to Smart Services as the smart services may contain
critical intellectual property of a company, for example, proprietary analytics algorithms,
or confidential data about manufacturing steps of a product, etc. Data Security both
in terms of transport and persistency layer needs to be enforced especially in the case
of data shipping approach. As we discussed in Chapter 2, smart service is just a smart
(web) service with provided awareness of context, hence it can be deployed anywhere.
It can be deployed at data source environment or at any distant environment. Data
Ownership is a key requirement in this regard, as the data owner should be able to
govern that where its data is stored or being processed. The Algorithms as Intellectual
Property also need to be safeguarded as it is the property of the service developer. The
customer who purchases smart services does not necessarily gets the rights to reuse,
adapt, or manipulate the algorithm. This is especially critical when a smart service needs
to be offered via platforms, for instance, public repositories or marketplaces. Therefore
Smart Service Integrity need to be preserved [FBC+16].

Table 5.2 suggests possible solutions for each security requirement defined above. In
the table, CSAR stands for Cloud Service Archive which contains the implementation of
smart service, the structure of which we discussed in Chapter 2. Looking at the security
requirements and their possible solutions, it is realized that the security requirement

59

5 Policy Based Approach to Secure TOSCA-based Cloud Services

No. Security Requirement Possible Solution
1 Restricted Access to Smart Services Authentication of the smart service client

using X509 certificates
2 Data Security (transport) Encrypt and sign request/ response mes-

sages when sending. Verify and decrypt
the messages when receiving.

3 Data Security (storage) Database encryption to store the metered
data

4 Data Ownership Offer an interface to service consumer
where it could be defined that where the
data should be stored and processed

5 Algorithms as Intellectual Property Encrypt, sign, verify, and decrypt CSAR
6 Smart Service Integrity Sign and verify CSAR

Table 5.2: Possible solutions of smart services security requirements

number 3, 4, 5 and 6 are related to the deployment and management of the smart
services and number 1 and 2 are related to dialogue or interaction between a smart
service and its client begins. Thereby, the policies are suggested to be divided into two
types: Deployment and Management policies and Dialogue policies. The Deployment and
Management policies should cater all policy requirements whi, irrespective of whether
the requirements are for QoS, access control, security, or obligation. The same way,
Dialogue policies should deal with all types of policies related to negotiation between the
two parties regardless of the type of policy requirements.

5.2.1 Dialogue Policies

For the dialogue requirements, for example, 1 and 2 in Table 5.2, WS-Policy framework
should be used. The Systems based on the concept of IoT and Industry 4.0 involve
peer-to-peer communication, both between a device to device, and device to a server.
And so with the case, when the smart services are used in such systems. Especially
in regard to function shipping and data shipping, when a negotiation may require
exchanging of policies from both, the party acting as a client and the party acting as
a server. So, there is a need for Negotiation support which are only provided by the
WS-Policy framework, except TPL/ DTPL. But TPL/ DTPL misses many other features
that are required to fulfill other security requirements of smart services. The other
reason for choosing WS-Policy framework is that it enables protection of sensitive
policies by supporting distributed evaluation of policies. The security requirements of
smart services also include a requirement for two-way authentication for verification

60

5.2 Approach to Address Security Requirements of Smart Services

of the identity of smart (web) service endpoint and to protect the service endpoint
from attacks. This requirement can be catered with exchanging, for example, x509
certificates, for trust building. WS-Policy provides this mechanism with the usage of
its extensions, WS-Security and WS-Trust. Having said that, an assumption has been
taken that smart services are SOAP based web services. Only then, WS-Policy and
accompanying frameworks are applicable. Otherwise, if smart services are, for example,
REpresentational State Transfer (REST) based, then WS-Policy framework should not be
used because REST web services have whole different concepts. In this case, XACML with
some extensions of the language could be one option. Detailed discussion on web service
technologies is not part of this thesis, but talking about security, it is recommended to
use SOAP based web services for smart services. In the rest of the discussion, smart
services are assumed to be SOAP based web services.

5.2.2 Deployment and Management Policies

The deployment related security requirements (3, 4, 5, and 6 in Table 5.2) should
be defined using TOSCA Policy Type and Policy Templates. TOSCA is being used for
automatic deployment and management of smart services and TOSCA already enables
defining policies. These policies could define deployment and management policies, for
example, configuring a particular region for cloud provider or data center selection, or
setting up high availability of a service to support particular Quality-of-Service (QoS)
defined in the SLAs. [WWB+13b], [BBK+13], and [WWB+13a] describe how to
realize TOSCA policies in TOSCA runtime, and enable "Policy-Aware Provisioning and
Mangement of Cloud Applications" [BBK+13]. All the policy languages shortlisted in
this thesis after a consideration of different policy language characteristics and different
policy models are meant for catering access control, trust negotiation, and interaction
policy requirements, hence should not be used for deployment or management policy
requirements.

5.2.3 An Approach to Secure Cloud Service Archives

Figure 5.3 illustrates an approach to secure cloud service archives for function and
data shipping in industrial environments. Starting from step 1 , a service developer
implements a smart service, creates WSDL file, defines WS-Policy for the endpoints of
the smart service. Listing 5.1 shows a sample WS-Policy used for authentication of the
clients using X509v3 certificates. This means, whichever client needs to interact with
the web service is required to send security tokens of the type specified in the policy. In
this case, it is requiring the client to submit an X509v3 certificate. If the security token

61

5 Policy Based Approach to Secure TOSCA-based Cloud Services

Trust
Authority

Service developer

2. Encrypt CSAR

3. Sign CSAR

TOSCA
compliant cloud

provider

Market place

Service customer

5. Publish signed & encrypted CSAR

6. Buy signed & encrypted CSAR

8. Verify CSAR

9. Decrypt CSAR

10. Request private key

11. Deploy CSAR

11'. Decrypt CSAR
(if CSAR was deployed encrypted)

4' . Deploy CSAR

�Implement smart service (ws-policy in WSDL)
�Write TOSCA service template (policy types,

policy templates, node types, node templates,
etc.)

12. SOAP message
request/ response

Embedded devices
(service consumer)

1. Prepare & package CSAR Encrypt
CSAR Service

Sign CSAR
Service

Verify CSAR
Service

Decrypt
CSAR Service

4. Register private
key(s) for CSAR

7. Register cer�ficate for a CSAR

Service customer
Private key

The service developer
private key encrypted with

the customer public key

Service developer
Private key

WS-Policy
in WSDL

Figure 5.3: An approach to secure cloud service archives

is trusted by the smart service, only then the request should be catered. There are other
security mechanisms supported by WS-Policy [OAS06] as well, for example, username/
password authentication, or mutual authentication with signing and encrypting the
messages using X509 certificates, etc.

After defining the Dialogue Policies in WSDL using WS-Policy, the service developer writes
TOSCA service template for defining the deployment and management lifecycle of the
smart service. While doing this, policy types and policy templates are also defined. This
could include policies, for example, which regions should be selected for the deployment
of a service, or what database encryption should be used for data storage. Listing 5.2
shows a simple policy type, with corresponding policy template shown in Listing 5.3, to
setup database encryption on a database. In this example, DatabaseProperties defines the

62

5.2 Approach to Address Security Requirements of Smart Services

Listing 5.1 Secure smart service example - X509 Authentication using WS-Policy
1 <wsp:ExactlyOne>

2 <wsp:All>

3 <sec:SecurityToken>

4 <sec:TokenType>sec:X509v3</sec:TokenType>

5 </sec:SecurityToken>

6 </wsp:All>

7 </wsp:ExactlyOne>

Listing 5.2 Secure smart service example - Policy Type definition database encryption
for storage (Adopted from [OAS13b])

1 <Definitions id="MyPolicyTypes" name="My Policy Types"

targetNamespace="http://www.example.com/SamplePolicyTypes"

xmlns:bnt="http://www.example.com/BaseNodeTypes"

xmlns:dbp="http://www.example.com/DatabaseProperties">

2
3 <Import importType="http://www.w3.org/2001/XMLSchema"

namespace="http://www.example.com/SamplePolicyProperties"/>

4 <Import importType="http://docs.oasis-open.org/tosca/ns/2011/12"

namespace="http://www.example.com/BaseNodeTypes"/>

5
6 <PolicyType name="DatabaseEncryption">

7 <PropertiesDefinition element="dbp:DBEncProperties"/>

8 <AppliesTo>

9 <NodeTypeReference typeRef="bnt:DBMS"/>

10 </AppliesTo>

11 </PolicyType>

12
13 </Definitions>

XML schema which is used by DatabaseEncryption policy type to hook with bnt:DBMS
node type and instantiated by MyDatabaseEncPolicy template. After that, CSAR is
packaged with all the relevant files discussed above.

In step 2, the service developer use Encrypt CSAR Service to encrypt the CSAR. In doing
so, the service requires from the service developer to provide information including,
encryption key, key algorithm, key size, etc. The service should be able to perform the
encryption on artifact level. By default, all artifacts can get encrypted. Once the CSAR is
encrypted, The service developer signs the CSAR using Sign CSAR Service, as shown in
step 3 in Figure 5.3. In this step, the service developer must provide the service with a
key pair and certificate information. The other optional information could include, for
example, signature algorithm, key size, etc. Once the CSAR is encrypted and signed, the
service developer registers the private keys for the CSAR to the TA as illustrated in step
4. There could be multiple keys for each CSAR if the service developer uses different

63

5 Policy Based Approach to Secure TOSCA-based Cloud Services

Listing 5.3 Secure smart service example - Policy Template definition database encryp-
tion for storage (Adopted from [OAS13b])

1 <Definitions id="MyPolices" name="My Policies"

targetNamespace="http://www.example.com/SamplePolicies"

xmlns:spt="http://www.example.com/SamplePolicyTypes">

2
3 <Import importType="http://docs.oasis-open.org/tosca/ns/2011/12"

namespace="http://www.example.com/SamplePolicyTypes"/>

4
5 <PolicyTemplate id="MyDatabaseEncPolicy" name="My AES Database Encryption Policy"

type="pt:DatabaseEncryption">

6 <Properties>

7 <DBEncProperties>

8 <EncryptionAlgorithm>AES</EncryptionAlgorithm>

9 <KeyLength> 256 </KeyLength>

10 </DBEncProperties>

11 </Properties>

12 </PolicyTemplate>

13
14 </Definitions>

keys for encrypting different artifacts in the CSAR. In step 5, the service developer
publishes the CSAR to a marketplace or a public repository.

A smart service customer buys the CSAR from the market place, or download it from
a public repository (step 6). The customer must provide its certificate to buy the
CSAR, which is used to fetch encryption key in the later steps. In step 7, the market
place registers this certificate and the CSAR information in the TA, confirming that
the customer has bought the CSAR. A variation in this step could be that the market
place does not send the customer certificate to the TA, instead it notifies the service
developer with the customer certificate that a service has been bought. Now it becomes
the responsibility of the service developer to register the customer certificate to the TA,
approving her for the use of CSAR.

In step 8 the service customer verifies that the contents of the CSAR has not changed
and the CSAR is from the right service developer, by using Verify CSAR Service. Once
the service confirms the authenticity and integrity of the CSAR, in step 9, the service
customer use Decrypt CSAR Service to decrypt CSAR. The service customer must provide
its certificate and private key when using this service. The Decrypt CSAR Service requests
the TA for the private key of the CSAR by forwarding the certificate provided by the
service customer to the TA (step 10). The TA sees if the certificate is registered for the
CSAR. Optionally, the trustworthiness of the certificate can also be verified by traversing
through the certificate chain to see if the root certificate of the customer’s certificate is
trusted. Once the eligibility of the certificate is confirmed, TA encrypts the CSAR private

64

5.2 Approach to Address Security Requirements of Smart Services

key with the customer public key in the certificate, and send it to the Decrypt CSAR
Service. The Decrypt CSAR Service decrypts the CSAR private key using the customer’s
private key. Now the Decrypt CSAR Service has gotten the private key of the CSAR,
hence all the encrypted artifacts can be decrypted. If individual artifacts are encrypted
with different private keys, then step 10 needs to be performed multiple times for each
artifact.

After the CSAR is decrypted, the service customer deploys the CSAR to a TOSCA
compliant cloud provider (step 11). If the service developer does not want the service
customer to see the code/ artifacts in the CSAR in any way, then the customer has
to upload the encrypted CSAR to the TOSCA compliant cloud provider. And in that
case, at the time of the service deployment, TOSCA runtime needs to call the Decrypt
CSAR Service to decrypt the CSAR, as shown in step 11’. Also, in that case, the service
developer needs to register the TOSCA compliant cloud provider’s certificate to the TA.

Once, the deployment of the smart service is done, the Dialogue Policies come into play
(step 12). The smart service endpoints and their corresponding policies are described
in WS-Policy. As discussed in the previous sections, WS-Policy with the usage of its
extension WS-Security and WS-Trust, provides several security mechanisms, for instance,
username authentication, X509 certificate authentication, etc. Depending on that, the
service consumer needs to send the required security tokens in its SOAP message. The
smart service infrastructure verifies the validity of the tokens, and respond accordingly.
An intermediary could be added between the service consumer and the smart service to
audit every request. This can result in more security but can degrade the performance,
especially in the case when the metering data from embedded devices need to be
analyzed and processed in a timely manner. Moreover, WS-Policy framework does not
provide audit policies, but the WS-Policy language could be extended to support this
feature.

The approach defined above is not rigid in sense, that some of the components could
take more responsibilities, for example, the encrypt CSAR, sign CSAR, verify CSAR,
and decrypt CSAR services could be part of the TA. Similarly, the market place or the
cloud provider may have their own TAs. A mandatory functionality of TA is to log all
the requests made for the private keys, for an individual artifact, or the whole CSAR.
The audit trail from the request logs should be available to the service developer. The
TA must have a Graphical User Interface (GUI) for private key registration, customer
certificate registration, and viewing of the audit trail. Similarly, the secure CSAR services
must also have a GUI for use cases, for example, keystore creation, certificate creation,
signature, encryption algorithm selection, etc. All the secure CSAR services must either
be running on secure transport protocol or have their own endpoints’ policies defined in
WS-Policies with one of the WS-Security mechanisms as well.

65

6 Prototype to Secure Cloud Service
Archives

The prototype includes the implementation of four services: Encrypt CSAR, Sign CSAR,
Verify CSAR, and Decrypt CSAR. These four services are collectively called Secure CSAR
services in the following discussion. As discussed in the previous chapter, the deployment
and management policies are defined using TOSCA Policy Types and Policy Templates,
hence the policies of the Secure CSAR services are also defined in TOSCA policy files.

6.1 Technologies

The Secure CSAR services are REST based web services, implemented on a well-known
framework for modern Java-based enterprise web applications, known as Spring [SPR].
The version of Java used is 1.8. Bouncy Castle Crypto APIs [BOU] are used for encryption,
signing, key generation, and keystore management. The services are packaged as Web
application ARchive (WAR) file and are deployed on Tomcat Application Server. The
prototype is tested with Tomcat version 9 [TOM]. JavaScript Object Notation (JSON)
[JSO] is used as data interchange format between the server and the client which is
using the Secure CSAR services. The services are exposed as REST endpoints, so they
can be used for any type of client supporting HTTP. It must be noted, that the services
are mandatory to run on a secure channel, for example, HTTPS, but the prototype only
supports HTTP. For the packaging and dependency management of the Secure CSAR
service implementation, Maven [MAV] is used. The prototype also includes a Web GUI
front-end to call the Secure CSAR services. The technologies used to implement the
front-end are: Grunt [GRU] for front-end web server and task runner, NodeJS [NOD]
and Bower [BOW] for front-end package management, Restangular [res] for front-end
Model View Controller (MVC) support, and finally Bootstrap [BOO] as a framework to
design the look-and-feel of the web front-end. The technologies are chosen with the
mission to ease the development and future extensions.

67

6 Prototype to Secure Cloud Service Archives

6.2 Secure CSAR Use cases and Algorithms

All the Secure CSAR services can be used independently of each other. Signing and
verification scheme is inspired from JAVA JAR signing utilities [JAV] and from [BLS12].

6.2.1 Encrypt CSAR Service

The Encrypt CSAR service encrypts all the artifacts in a CSAR by default. However,
individual artifacts can also be specified in the policy file for the encryption. The name
of Encrypt CSAR Service REST endpoint is "EncryptCsarService". Figure 6.1 is the flow
chart of the algorithm to encrypt a CSAR.

The request to the endpoint must contain the following mandatory attributes: CSAR file,
new keystore information or an existing keystore file. The following information is also
required, but if not provided, default parameters are used: Encryption algorithm (default
value is AES), Key algorithm which is required if a new keystore is being created (default
value is AES), Key size is also required a new keystore is being created (default value is
128). Other optional parameters are Encrypted By and Encryptor contact information.

Once a request is received, the request is validated. The validation checks the existence
of mandatory attributes and validation of keystore credentials, for example, if the
alias exists, or the password of the keystore is correct, etc. Validation also checks if
the encryption algorithm is compliant with the encryption key and if the key size is
correct. The prototype provides the following options for encryption algorithms and
the corresponding key algorithms: AES, DES, DESede. All the possible key sizes for the
key algorithms are supported, for example, for AES, the key size could be one of 128,
192, and 256. It must be noted that encryption of CSAR can take a lot of time if the
encryption algorithm is asymmetric. In one run, that was performed while testing the
prototype, it took 26 minutes to encrypt a CSAR of size 25MB, using RSA encryption,
on a machine with 2.59GHz processor, 8GB RAM and 64-bit operating system. So
considering this, the prototype is only supporting symmetric keys currently. The decision
for asymmetric or symmetric encryption can be left for the client.

If the validation gets failed then an error response is created, having validation failure
reason, and is sent to the client. If the validation is successful, the csar file in the request
is extracted using Apache Commons Compress utility [Com]. A list of the artifacts in the
CSAR is created. A Policy object is created from the Policy Template in the CSAR. The
Policy Template, the corresponding Policy Type, and Policy schema for CSAR encryption
information are shown in Listing 6.5, Listing 6.7, and Listing 6.6 respectively. The policy
object contains the list of artifacts which need to be encrypted, as defined in the Policy
Template. The location of the artifact is defined by the path of the artifact in CSAR. If

68

6.2 Secure CSAR Use cases and Algorithms

Listing 6.1 CSAR TOSCA.meta file - Encrypted entry
1 .

2 .

3 Name: artifacttemplates/path/to/a/deploymentartifact.ear

4 Content-Type: application/zip

5 Encrypted-By: Muhammad Ali Haider

6 Encryption-Algorithm: AES

7 Encryptor-Contact: smalihaider@gmail.com

8 Key-From: KEYSTORE

9 .

10 .

there exist TOSCA-Metadata/TOSCA.meta file, CSAR manifest object is created out from
it. If there is no such file exists, then the manifest object is created, using the artifact list
in the CSAR object. If there is a request to create new keystore, then a new JCEKS type
keystore is created, with provided alias name, password, and keystore name. A new
symmetric key is created in the keystore. If the client provides an existing keystore, then
JCEKS keystore object is created from the provided keystore file and keystore password.
The symmetric key is extracted from the keystore using the provided alias name and
alias password.

All the artifacts listed in the Policy object are encrypted. For each encrypted artifact,
its entry in the manifest object is updated. Listing 6.1 shows how an encrypted entry
may look like. Here, Encryptor-Contact (Line 5 in Listing 6.1) and Key-From (Line
6 in Listing 6.1) can be used to contact the service developer for the private key, for
decryption. This is not the approach defined in the previous chapter. In actual, the
process of exchanging private key for decryption is automatic, via Trusted Authority
(TA). But in the prototype, a manual process is being followed, it does give a general
idea though, that how private/ public keys are used for encryption, signing, verification,
and decryption. In fact, this process is practical as well, in cases where there is no such
need to automize the key exchange process. The value of Key-From, "KEYSTORE" comes
from policy template as can be seen on Line 14 in Listing 6.5. There could be URL
instead of "KEYSTORE" if the process needs to be automized. The policy engine can read
this URL and request, for example, the TA for the private key for decryption. Once all
the artifacts are encrypted and TOSCA.meta is updated for all the encrypted artifacts,
encrypted CSAR object is created out of it. If the client had requested for the creation of
a new keystore, then the created keystore and the encrypted CSAR are zipped and sent
to the client, otherwise, only the encrypted CSAR is sent to the client.

69

6 Prototype to Secure Cloud Service Archives

Create CSAR
object from .csar

file

Start

Request

Valida�on

End

Unsuccessful

Keystore
provided

no
Create new

keystore
yes

Load keystore
object

Create CSAR
object from

.csar file

Successful

TOSCA.meta
exists

no

Create TOCA
META object with

all ar�facts
infoma�on

yes
Create TOSCA

META object from
TOSCA.meta file

Get next ar�fact
from ar�facts list

If ar�fact to
encrypt

no

yes

Encrypt ar�fact
and update its
info in TOSCA
META object

All ar�facts
traversed

no

yes

Send encrypted
CSAR to user

(with keystore if
created)

Send Valia�on
error to user

Start

Create a list
of ar�facts in

CSAR

Create Policy
Template

object

End

Figure 6.1: Encrypt CSAR Service - Algorithm Flowchart
70

6.2 Secure CSAR Use cases and Algorithms

6.2.2 Sign CSAR Service

The Sign CSAR service signs all the artifacts in a CSAR by default. However, individual
artifacts can also be specified in the policy file for the signing. The name of Sign CSAR
Service REST endpoint is "SignCsarService". Figure 6.2 is the flow chart of the algorithm
to sign a CSAR.

The request to the endpoint must contain the following mandatory attributes: csar file,
new keystore information or an existing keystore file. The following information is also
required, but if not provided, default parameters are used: digest algorithm (default
value is SHA-256), signature algorithm (default value is SHA1withDSA), key algorithm
(default value is DSA), key size (default value is 1024), certificate Information, certificate
signature algorithm (default value is SHA1withDSA), certificate validity, which are only
required if a new keystore is being created. If certificate information is not provided,
all the certificate fields, for example, Name of Organization, Name of City or Locality,
are set to "Unknown". Other optional parameters are the Signature file name. If the
signature file name is not provided, keystore alias name is used as the signature file
name.

Once a request is received, the request is validated. The validation checks the existence
of mandatory attributes, validation of keystore credentials, for example, if the alias
exists, or the password of the keystore is correct, etc. Validation also checks if the
signature algorithm is compliant with the signature key and if the key size is correct.
The prototype provides the following options for signature algorithms: MD2withRSA,
MD5withRSA, SHA1withRSA, SHA256withRSA, SHA384withRSA, SHA512withRSA,
SHA1withDSA, with the corresponding key algorithms: RSA and DSA. All the possible
key sizes for the key algorithms are supported, for example, for AES, full range from
512 to 1024 is supported.

If the validation gets failed then an error response is created, having validation failure
reason, and is sent to the client. If the validation is successful, the csar file in the request
is extracted. A list of the artifacts in the CSAR is created. The Policy object is created
from the policy template file in the CSAR. The Policy Template, the corresponding Policy
Type, and Policy schema for CSAR encryption information are shown in Listing 6.5,
Listing 6.7, and Listing 6.6 respectively. The policy object contains the list of artifacts
which need to be signed, as defined in the Policy Template. The location of the artifact
is defined by the path of the artifact in CSAR. If there exist TOSCA-Metadata/TOSCA.meta
file, CSAR manifest object is created out from it. If there is no such file exists, then the
manifest object is created, using the artifact list in the CSAR object. If there is a request
to create new keystore, then a new JCEKS type keystore is created, with provided alias
name, password, and keystore name. A key pair is created using the provided key
algorithm and key size. The certificate associated with the key pair is also created in

71

6 Prototype to Secure Cloud Service Archives

Create CSAR
object from .csar

file

Sign ar�fact and
update its entry

in TOSCA.meta

Start

Request

Valida�on

End

Unsuccessful

Keystore
provided

no

Create new
keystore

yes

Load keystore
object

Create CSAR
object from

.csar file

Successful

TOSCA.meta
exists

no

Create TOCA
META object with

all ar�facts
infoma�on

yes
Create TOSCA

META object from
TOSCA.meta file

Get next ar�fact
from ar�facts list

If ar�fact to
sign

no

yes

Sign ar�fact
and update
its entry in

TOSCA.meta

All ar�facts
traversed

no

yes

Send signed CSAR
to user (with

keystore if
created)

Send Valia�on
error to user

Start

Create a list
of ar�facts in

CSAR

Create Policy
Template

object

End

Start

Create
signature file

(.SF file)

Create
signature

block

End

Figure 6.2: Sign CSAR Service - Algorithm Flowchart
72

6.2 Secure CSAR Use cases and Algorithms

Listing 6.2 CSAR TOSCA.meta file - Signed entry
1 .

2 .

3 Name: Definitions/path/to/a/artifact.tosca

4 SHA-256-Digest: 5r042XJ1ILzM4bMX2fv3yZcH0TYLkV7DRgG8rQjrrkc=

5 Content-Type: application/vnd.oasis.tosca.definitions

6 .

7 .

the keystore. If the client provides an existing keystore, then JCEKS keystore object is
created from the provided keystore file and keystore password. The key pair is extracted
from the keystore using the provided alias name and alias password.

For each artifact to sign, the hash of the artifact is created using the digest algorithm. The
artifact entry in TOSCA.meta file is updated as shown in Listing 6.2. "SHA-256-Digest"
key name tells about the hashing algorithm used, and the key value is the hash of the
contents of the artifact. Once the hash of each artifact is calculated, the hash of each
entry of the manifest is also calculated and is written to the signature file (Listing 6.3).
The name of the signature file is either provided by the client or otherwise, the name is
taken from the keystore alias. The extension of the signature file is always ".SF". Once
the hash of each manifest is created, the hash of whole the TOSCA.meta file (Line 3 in
Listing 6.4) and hash of the header of TOSCA.meta (Line 2 in Listing 6.4) are created.
The hash of the header is calculated to verify, for example, the entry point of service
template is not changed. The purpose of the hash of the whole manifest is to verify,
that neither a new file is added in the CSAR, nor any of the existing files are deleted.
Once the signature file is created, signature block file is created. The signature block file
is ASN1 encoded file and is created with signing the content of the signature file with
the private key part of key-pair, using the provided signature algorithm. The name of
the signature block file is either provided by the service client or if not provided, alias
name of the keystore is used. The extension of the signature block file depends on the
signature algorithm. So if the signature algorithm used is "SHA1withDSA", the extension
is ".DSA".

Multiple signing of a CSAR is also possible, and in that case, there are multiple signature
and signature block files, each having a different name. If the CSAR is signed the second
time, with the same signature name and the same signature algorithm, signature file and
signature block are overwritten. If different digest algorithms are used in each signing,
then there are multiple digest entries in TOSCA.meta file as shown in Listing 6.3. The
signature file, signature block file, and updated TOSCA.meta files are put into the CSAR.
If the client had requested for the creation of a new keystore, then the created keystore
and the signed CSAR are zipped and sent to the client, otherwise only the signed CSAR
is sent to the client.

73

6 Prototype to Secure Cloud Service Archives

Listing 6.3 CSAR TOSCA.meta file - Signing a CSAR multiple times with different digest
algorithms

1 .

2 .

3 Name: Definitions/path/to/a/artifact.tosca

4 SHA-256-Digest: 5r042XJ1ILzM4bMX2fv3yZcH0TYLkV7DRgG8rQjrrkc=

5 MD5-Digest: nwb0El4x3EUPjCuK7ZzgpA==

6 Content-Type: application/vnd.oasis.tosca.definitions

7 .

8 .

Listing 6.4 Signature file (with .SF extension) of a signed CSAR
1 Signature-Version: 1.0

2 SHA-256-Digest-Manifest-Main-Attributes: c38rAc98FtZ9Hc0kKyao5wXylOW8etEYEkcoAt8taTY=

3 SHA-256-Digest-Manifest: YWaVexRuQql7FAvY/IPj8oQ1Y5V+fdV3awFWgOeZ1rA=

4 Created-By: University of Stuttgart - IAAS Department

5
6 Name: Definitions/path/to/a/artifact1.tosca

7 SHA-256-Digest: OgU/KurG0cXPNblElX+y82vOKY7MXB2ig3GfJUbNlDg=

8
9 Name: Definitions/path/to/a/artifact2.tosca

10 SHA-256-Digest: N3fm3LmFE7jYPOzRhTO4/2PE689HkQ5Hnu/HTx47bNo=

11 .

12 .

6.2.3 Verify CSAR Service

The Verify CSAR service verifies only those artifacts which are requested for, by providing
the signature name. The name of Verify CSAR Service REST endpoint is "VerifyCsarSer-
vice". Figure 6.3 is the flow chart of the algorithm to verify a CSAR. This service
maintains a list of response messages. The purpose of this list is to present the ver-
ification status of each requested artifact. Overall CSAR verification result, missing
mandatory files, etc. are also added to this response message list. The request to the
endpoint must contain the following mandatory attributes: CSAR file and signature file
name. Once a request is received, the request is validated. The validation checks for the
existence of mandatory attributes. If the validation gets failed then an error response is
created, having validation failure reason, and is sent to the client. If the validation is
successful, the csar file in the request is extracted.

If TOSCA.meta file, signature file (.SF) against the provided signature file name, and sig-
nature block file against the signature file name, do not exist in the CSAR, corresponding
messages are populated in the response message list. Otherwise, the signature file (.SF)
file is read, and all the entries are traversed for verification.

74

6.2 Secure CSAR Use cases and Algorithms

Verify entryStart

Request

Valia�on

End

Unsuccessful

Create CSAR
object from .csar

file

Successful

Create a list of
ar�facts in CSAR

TOSCA.meta
exists

yes

Get next entry in
TOSCA.meta

Send Valia�on
error to user

Calculate digest
of ar�fact

against entry

Digest
= manifest

digest

Verify entry

Add error in
response

message list

Add success in
response

message list

Start

Verify manifest
header digest

Verify full
manifest digest

Verify signature
block file

All entries
verified

Send response
messages to user

End

yes

no

Figure 6.3: Verify CSAR Service - Algorithm Flowchart 75

6 Prototype to Secure Cloud Service Archives

For verification, the entry in TOSCA.meta corresponding to the ".SF" file is located. Then
the artifact corresponding to the TOSCA.meta entry is loaded. Further, the hashing
algorithm is also read, which is mentioned in one of the meta file entry (Line 4 in
Listing 6.2). The digest is calculated for the artifact. The digest is compared with the
one mentioned in the TOSCA.meta entry. If both of the digests are equal, which means
that the content of the artifact has not changed, the verification for the artifact gets
successful. If the digests are not equal, verification fails message is added to the response
message list.

Once all the artifacts are verified. Hash of the whole TOSCA.meta is calculated and
compared with the hash mentioned in the signature file (Line 3 in Listing 6.4). I both of
the hashes are equal, this means that neither a new file got added nor deleted in the
CSAR. The corresponding verification message is added to the response message list. In
the end, signature block file is loaded and verified using BouncyCastle CMSSignedData
Crypto API. Finally, the response message list is sent to the client.

6.2.4 Decrypt CSAR Service

The Decrypt CSAR service decrypts all the encrypted artifacts in a CSAR. The name
of Decrypt CSAR Service REST endpoint is "DecryptCsarService". Figure 6.4 is the
flow chart of the algorithm to decrypt a CSAR. The information about which artifacts
need to decrypted comes from TOSCA.meta file. The structure of an encrypted entry
(Listing 6.1) tells about the encrypted algorithm and from where to get the key to decrypt
the artifact. This service maintains a list of response messages. The purpose of this list
is to present the decryption status of each encrypted artifact. Overall CSAR decryption
result is also added to this response message list. The request to the endpoint must
contain the following mandatory attributes: CSAR file, keystore file, alias name, alias
password. Once a request is received, the request is validated. The validation checks
for the existence of mandatory attributes and credentials of keystore and alias. If the
validation gets failed then an error response is created, having validation failure reason,
and is sent to the client. If the validation is successful, the csar file in the request is
extracted.

If TOSCA.meta file does not exist in the CSAR, error message is added to the response
message list. Otherwise, all entries in TOSCA.meta files are traversed. If an entry needs
to be decrypted then the symmetric private key is extracted from the keystore and
de-cypher is performed on the content of the artifact. If the artifacts gets decrypted
successfully, its encryption information is removed from the TOSCA.meta file. Once
all the artifacts are decrypted, all the artifacts are packaged back in CSAR, and this
decrypted CSAR is sent to the client.

76

6.2 Secure CSAR Use cases and Algorithms

Decrypt CSAR

ar�fact

Start

Request

Valida�on

End

Unsuccessful

Keystore
provided

no yes
Load keystore

object

Create CSAR
object from .csar

file

Successful

TOSCA.meta
exists

no

Get next entry in
TOSCA.meta

If ar�fact to
decrypt

no

yes Decrypt ar�fact

All entries
traversed

no

yes

Send decrypted
CSAR to client

Send Valia�on
error to user

Start

Read
encryp�on
algorithm

Load
symmetric

key

End

no

De-cipher
ar�fact
content

Figure 6.4: Decrypt CSAR Service - Algorithm Flowchart
77

6 Prototype to Secure Cloud Service Archives

Listing 6.5 Secure CSAR Policy Template for Signing and Encryption
1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

2 <tosca:Definitions id="SecureCsarPolicyTemplate"

xmlns:tosca="http://docs.oasis-open.org/tosca/ns/2011/12"

targetNamespace="http://opentosca.org/policytemplates"

xmlns:pt="http://opentosca.org/policytypes"

xmlns:pp="http://opentosca.org/policyproperties">

3
4 <tosca:Import namespace="http://opentosca.org/policytypes"

location="SecureCsarPolicyTpes.tosca"

importType="http://docs.oasis-open.org/tosca/ns/2011/12"/>

5
6 <tosca:PolicyTemplate id="EncryptCsarPolicy" name="Encrypt Csar Policy"

type="pt:EncryptCsar">

7 <tosca:Properties>

8 <pp:EncryptCsarProperties>

9 <pp:ArtifactsToEncrypt>

10 <tosca:ArtifactReference

reference="artifacttemplates/path/to/a/deploymentartifact.ear"/>

11 <tosca:ArtifactReference

reference="artifacttemplates/path/to/a/scriptfile.py"/>

12 </pp:ArtifactsToEncrypt>

13 <pp:DecryptionMode>

14 <pp:Name>KEYSTORE</pp:Name>

15 </pp:DecryptionMode>

16 </pp:EncryptCsarProperties>

17 </tosca:Properties>

18 </tosca:PolicyTemplate>

19
20 <tosca:PolicyTemplate id="SignCsarPolicy" name="Sign Csar Policy" type="pt:SignCsar">

21 <tosca:Properties>

22 <pp:SignCsarProperties>

23 <pp:SignAllArtifacts>true</pp:SignAllArtifacts>

24 </pp:SignCsarProperties>

25 </tosca:Properties>

26 </tosca:PolicyTemplate>

27
28 </tosca:Definitions>

78

6.2 Secure CSAR Use cases and Algorithms

Listing 6.6 Secure CSAR Policy Schema for Signing and Encryption
1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

2 <schema attributeFormDefault="unqualified" elementFormDefault="qualified"

targetNamespace="http://opentosca.org/policyproperties"

xmlns:tosca="http://docs.oasis-open.org/tosca/ns/2011/12"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

3
4 <xs:element name="EncryptCsarProperties">

5 <xs:complexType>

6 <xs:sequence>

7 <xs:choice>

8 <xs:element name="EncryptAllArtifacts" type="xs:boolean" default="true"/>

9 <xs:element name="ArtifactsToEncrypt" type="tosca:ArtifactReferences"/>

10 </xs:choice>

11 <xs:element name="DecryptionMode">

12 <xs:complexType>

13 <xs:sequence>

14 <xs:element name="Name"/>

15 <xs:element name="Url" minOccurs="0"/>

16 </xs:sequence>

17 </xs:complexType>

18 </xs:element>

19 </xs:sequence>

20 </xs:complexType>

21 </xs:element>

22
23 <xs:element name="SignCsarProperties">

24 <xs:complexType>

25 <xs:sequence>

26 <xs:choice>

27 <xs:element name="SignAllArtifacts" type="xs:boolean" default="true"/>

28 <xs:element name="ArtifactsToSign" type="tosca:ArtifactReferences"/>

29 </xs:choice>

30 </xs:sequence>

31 </xs:complexType>

32 </xs:element>

33
34 </schema>

79

6 Prototype to Secure Cloud Service Archives

Listing 6.7 Secure CSAR Policy Type for Signing and Encryption
1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

2 <tosca:Definitions id="EncryptCsarPolocyTypes" name="Encrypt Csar Policy Types"

targetNamespace="http://opentosca.org/policytypes"

xmlns:tosca="http://docs.oasis-open.org/tosca/ns/2011/12"

xmlns:pp="http://opentosca.org/policyproperties">

3
4 <tosca:Import namespace="http://opentosca.org/policyproperties"

location="schemas/SecureCsarProperties.xsd"

importType="http://www.w3.org/2001/XMLSchema"/>

5
6 <tosca:PolicyType name="EncryptCsar">

7 <tosca:documentation>EncryptCsar policy type defines list of artifacts to be encrypted in

CSAR</tosca:documentation>

8 <tosca:PropertiesDefinition element="pp:EncryptCsarProperties"/>

9 </tosca:PolicyType>

10
11 <tosca:PolicyType name="SignCsar">

12 <tosca:documentation>SignCsar policy type defines list of artifacts to be signed in

CSAR</tosca:documentation>

13 <tosca:PropertiesDefinition element="pp:SignCsarProperties"/>

14 </tosca:PolicyType>

15
16 </tosca:Definitions>

6.2.5 Prototype Usage Instructions

The implementation of the prototype is consisted of two projects: securecsar-frontend
(accessible at https://github.com/smalihaider/securecsar-frontend.git), which contains
Web based GUI to call REST services, and securecsar (accessible at https://github.com/
smalihaider/securecsar.git), which contains the REST web services. The respective URLs
contains instructions to setup and use the Secure CSAR Service.

80

https://github.com/smalihaider/securecsar-frontend.git
https://github.com/smalihaider/securecsar.git
https://github.com/smalihaider/securecsar.git

7 Conclusion and Future Work

The goal of this thesis is to define a concrete security policy approach for smart services
with the refinement and enhancement of TOSCA standard. Thereby, various policy
languages and their applicability for the field of Industry 4.0 are researched. In total, 19
policy language characteristics and 3 policy frameworks are analyzed to set selection
criteria for the policy languages.

The 5 policy languages shorlisted and included in this thesis are TPL/ DTPL, EPAL,
XACML, Ponder, and WS-Policy. The semantics, features, underlying policy engines,
and characteristics of each of the languages are discussed. Various language snippets
are presented to define common security requirements. Strong and weak points of
the languages are identified using the defined characteristics and the context of use.
Different security requirements in the area of Industry 4.0 are discussed with the rec-
ommendation for a policy language given for specific scenarios. It is identified that the
security requirements of the smart services need to be satisfied with policies of two types:
deployment and management policies, and dialogue policies. The deployment and
management policies cater policy requirements, such as, availability of an application,
database encryption, cloud provider region selection, etc. which are enforced when
an application is being deployed and when the management aspects of an application
are being configured. On the other hand, the dialogue policies deal with the policy
requirements, for instance, a secure transport channel, client server mutual authentica-
tion using X509 certificates, etc. which are supposed to be enforced during a dialogue
between a smart service and a client.

It is suggested that the deployment and management policies should be defined using
TOSCA language constructs, Policy Types and Policy Templates, to get the full use of
TOSCA automatic deployment and management support. For the dialogue policies of
the smart services, WS-Policy framework is selected. WS-Policy with its accompanying
security policy extensions WS-Security and WS-Trust provide end-to-end security to
SOAP based web services. The ability of WS-Policy framework to support distributed
policy evaluation, protection of sensitive policies, and being an approved W3C standard
also contributed to the selection. On a downside, WS-Policy does not provide obligation
policies and rule combining algorithms, which can be areas of WS-Policy extension.

81

7 Conclusion and Future Work

Finally, an approach is formulated to secure cloud service archives for function and data
shipping in industrial environments through the usage of policies. The approach also
covers the end-to-end security of smart services. The approach requires no extension for
the TOSCA metamodel, except the addition of a Trust Authority component in TOSCA
processing environment for credentials management. A prototype, realizing the use
case of encrypting, signing, verifying, and decrypting a CSAR is also implemented and
discussed in this thesis.

Future work is required to enhance WS-Policy framework to provide the missing features
which exist in another popular policy language, XACML. It is proposed to introduce a new
extension for the WS-Policy framework with the name WS-Obligation, for provisioning
of obligation policies, for example, auditing of SOAP request and response messages,
deletion of records, emailing of messages, etc. Further, it is recommended that the
Secure CSAR services should be part of the TOSCA modeling tools. OpenTOSCA [Stu]
which is an open source ecosystem for TOSCA can be extended to incorporate the Trust
Authority and Secure CSAR services to demonstrate the proposed approach.

82

Bibliography

[AKN17] B. Abendroth, A. Kleiner, P. Nicholas. “CYBERSECURITY POLICY FOR
THE INTERNET OF THINGS.” In: (2017). URL: https://mscorpmedia.
azureedge.net/mscorpmedia/2017/05/IoT_WhitePaper_5_15_17.pdf
(cit. on pp. 15, 25).

[AL05] G. Allmendinger, R. Lombreglia. Four Strategies for the Age of Smart
Services. Oct. 2005. URL: https://hbr.org/2005/10/four-strategies-for-
the-age-of-smart-services (cit. on p. 26).

[And04] A. Anderson. Privacy Policy Languages: XACML vs EPAL. 2004. URL:
http : / / cacr . uwaterloo . ca / conferences / 2004 / isw / slides /
AnneAndersonpresslides.pdf (cit. on pp. 41, 56).

[And05] A. Anderson. “A Comparison of Two Privacy Policy Languages: EPAL and
XACML Anne.” In: (Sept. 2005) (cit. on p. 55).

[AXI12] AXIOMATICS, ed. Axiomatics releases free plugin for the Eclipse IDE to
author XACML3.0 policies. July 16, 2012. URL: https://www.axiomatics.
com/news/axiomatics- releases- free-plugin- for- the- eclipse- ide- to-
author-xacml3-0-policies/ (cit. on p. 56).

[BBC06] S. Bajaj, D. Box, D. Chappell. Web Services Policy 1.2 - Framework (WS-
Policy). Apr. 25, 2006. URL: https://www.w3.org/Submission/WS-Policy/
(cit. on pp. 48–51).

[BBK+13] U. Breitenbücher, T. Binz, O. Kopp, F. Leymann, M. Wieland. “Policy-
Aware Provisioning of Cloud Applications.” In: Proceedings of the Sev-
enth International Conference on Emerging Security Information, Systems
and Technologies (SECURWARE). Xpert Publishing Services (XPS), 2013,
pp. 86–95 (cit. on p. 61).

[BBKL14] T. Binz, U. Breitenbücher, O. Kopp, F. Leymann. In: Advanced Web Ser-
vices. New York: Springer, Jan. 2014. Chap. TOSCA: Portable Automated
Deployment and Management of Cloud Applications, pp. 527–549. ISBN:
978-1-4614-7534-7. DOI: 10.1007/978-1-4614-7535-4_22 (cit. on
pp. 15, 24).

83

https://mscorpmedia.azureedge.net/mscorpmedia/2017/05/IoT_WhitePaper_5_15_17.pdf
https://mscorpmedia.azureedge.net/mscorpmedia/2017/05/IoT_WhitePaper_5_15_17.pdf
https://hbr.org/2005/10/four-strategies-for-the-age-of-smart-services
https://hbr.org/2005/10/four-strategies-for-the-age-of-smart-services
http://cacr.uwaterloo.ca/conferences/2004/isw/slides/AnneAndersonpresslides.pdf
http://cacr.uwaterloo.ca/conferences/2004/isw/slides/AnneAndersonpresslides.pdf
https://www.axiomatics.com/news/axiomatics-releases-free-plugin-for-the-eclipse-ide-to-author-xacml3-0-policies/
https://www.axiomatics.com/news/axiomatics-releases-free-plugin-for-the-eclipse-ide-to-author-xacml3-0-policies/
https://www.axiomatics.com/news/axiomatics-releases-free-plugin-for-the-eclipse-ide-to-author-xacml3-0-policies/
https://www.w3.org/Submission/WS-Policy/
https://doi.org/10.1007/978-1-4614-7535-4_22

Bibliography

[BLS12] G. Breiter, F. Leymann, T. Spatzier. Topology and Orchestration Specifi-
cation for Cloud Applications (TOSCA): Cloud Service Archive (CSAR) –
Version 0.1 –. May 2012 (cit. on p. 68).

[BOO] BOOTSTRAP. Bootstrap: The world’s most popular mobile-first and re-
sponsive front-end framework. URL: http://getbootstrap.com/ (cit. on
p. 67).

[BOU] BOUNCYCASTLE. The Legion of the Bouncy Castle. URL: https://www.
bouncycastle.org/ (cit. on p. 67).

[BOW] BOWER. Bower A package manager for the web. URL: https://bower.io/
(cit. on p. 67).

[CO08] J. L. D. Coi, D. Olmedilla. A REVIEW OF TRUST MANAGEMENT, SECURITY
AND PRIVACY POLICY LANGUAGES. July 2008 (cit. on pp. 31–34, 48, 53,
54).

[Com] A. Commons. Apache Commons Compress. URL: https://commons.apache.
org/proper/commons-compress/ (cit. on p. 68).

[DDLS01] N. Damianou, N. Dulay, E. Lupu, M. Sloman. “The Ponder Policy Specifi-
cation Language.” In: Jan. 31, 2001. URL: https://spiral.imperial.ac.uk:
8443/bitstream/10044/1/18346/2/Policy2001.pdf (cit. on p. 46).

[DHS07] C. Duma, A. Herzog, N. Shahmehr. “Privacy in the Semantic Web: What
Policy Languages Have to Offer.” In: 2007 (cit. on p. 31).

[FBC+16] M. Falkenthal, U. Breitenbücher, M. Christ, C. Endres, A. W. Kempa-Liehr,
F. Leymann, M. Zimmermann. “Towards Function and Data Shipping in
Manufacturing Environments : How Cloud Technologies leverage the
4th Industrial Revolution.” In: Proceedings of the 10th Advanced Summer
School on Service Oriented Computing. IBM Research Division, 2016,
pp. 16–25 (cit. on pp. 16, 26, 59).

[GRU] GRUNT. GRUNT The JavaScript Task Runner. URL: https://gruntjs.com/
(cit. on p. 67).

[HKPS03] P. A. S. Hada, G. Karjoth, C. Powers, M. Schunter. Enterprise Privacy
Authorization Language (EPAL 1.2). Ed. by C. Powers, M. Schunter.
Nov. 10, 2003. URL: https://www.w3.org/Submission/2003/SUBM-
EPAL-20031110/ (cit. on pp. 40, 55, 56).

[HL12] W. Han, C. Lei. “A survey on policy languages in network and security
management.” In: The International Journal of Computer and Telecommu-
nications Networking (Mar. 2012) (cit. on pp. 29, 31, 33).

[HP] HP, ed. The EnCoRe Project. URL: http://www.hpl.hp.com/breweb/
encoreproject/ (cit. on p. 29).

84

http://getbootstrap.com/
https://www.bouncycastle.org/
https://www.bouncycastle.org/
https://bower.io/
https://commons.apache.org/proper/commons-compress/
https://commons.apache.org/proper/commons-compress/
https://spiral.imperial.ac.uk:8443/bitstream/10044/1/18346/2/Policy2001.pdf
https://spiral.imperial.ac.uk:8443/bitstream/10044/1/18346/2/Policy2001.pdf
https://gruntjs.com/
https://www.w3.org/Submission/2003/SUBM-EPAL-20031110/
https://www.w3.org/Submission/2003/SUBM-EPAL-20031110/
http://www.hpl.hp.com/breweb/encoreproject/
http://www.hpl.hp.com/breweb/encoreproject/

Bibliography

[IBM] R. IBM, ed. Policy Language. URL: https://www.research.ibm.com/haifa/
projects/software/e-Business/TrustManager/PolicyLanguage.html (cit.
on p. 37).

[JAV] JAVA. Signing and Verifying JAR Files. URL: https://docs.oracle.com/
javase/tutorial/deployment/jar/signindex.html (cit. on p. 68).

[JSO] JSON. Introducing JSON. URL: http://www.json.org/ (cit. on p. 67).

[KCLC] P. Kumaraguru, L. F. Cranor, J. Lobo, S. B. Calo. A Survey of Privacy Policy
Languages.

[Ley] “Policies For Web Services (University of Stuttgart IAAS - Service Com-
puting course lecture slides)” (cit. on p. 49).

[Lip13] P. Lipton. “Escaping Vendor Lock-in with TOSCA, an Emerging Cloud
Standard for Portability.” In: (2013). URL: http://www.arcserve.com/
us/~/media/Files/About%20Us/CATX/escaping-vendor-lock-in-with-
tosca-an-emerging-cloud-standard-for-portability.pdf (cit. on p. 20).

[MAV] MAVEN. Apache Maven Project. URL: https://maven.apache.org/ (cit. on
p. 67).

[MG11] P. Mell, T. Grance. The NIST Definition of Cloud Computing. Recom-
mendations of the National Institute of Standards and Technology. Sept.
2011, p. 2. 3 pp. URL: http://nvlpubs.nist.gov/nistpubs/Legacy/SP/
nistspecialpublication800-145.pdf (cit. on pp. 15, 19).

[MN] O. M. G. B. P. Model, Notation. Object Management Group Business Process
Model and Notation. URL: http://www.bpmn.org/ (cit. on p. 20).

[Mos03] T. Moses. A technical comparison of WS-Policy framework and XACML.
June 29, 2003. URL: https:// lists .oasis - open.org/archives/xacml/
200301/msg00021.html (cit. on p. 58).

[NGG+] A. Nadalin, M. Goodner, M. Gudgin, D. Turner, A. Barbir, H. Granqvist,
eds. WS-Trust 1.4. URL: http://docs.oasis-open.org/ws-sx/ws-trust/v1.
4/ws-trust.html (cit. on p. 51).

[NOD] NODEJS. NODEJS. URL: https://nodejs.org/en/ (cit. on p. 67).

[OAS06] OASIS, ed. OASIS Web Services Security (WSS) TC. Nov. 28, 2006. URL:
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=
wss (cit. on pp. 50, 51, 62).

[OAS13a] OASIS, ed. A Brief Introduction to XACML. Mar. 14, 2013. URL: https:
/ /www.oasis - open .org/committees /download .php/2713/Brief _
Introduction_to_XACML.html (cit. on p. 42).

85

https://www.research.ibm.com/haifa/projects/software/e-Business/TrustManager/PolicyLanguage.html
https://www.research.ibm.com/haifa/projects/software/e-Business/TrustManager/PolicyLanguage.html
https://docs.oracle.com/javase/tutorial/deployment/jar/signindex.html
https://docs.oracle.com/javase/tutorial/deployment/jar/signindex.html
http://www.json.org/
http://www.arcserve.com/us/~/media/Files/About%20Us/CATX/escaping-vendor-lock-in-with-tosca-an-emerging-cloud-standard-for-portability.pdf
http://www.arcserve.com/us/~/media/Files/About%20Us/CATX/escaping-vendor-lock-in-with-tosca-an-emerging-cloud-standard-for-portability.pdf
http://www.arcserve.com/us/~/media/Files/About%20Us/CATX/escaping-vendor-lock-in-with-tosca-an-emerging-cloud-standard-for-portability.pdf
https://maven.apache.org/
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
http://www.bpmn.org/
https://lists.oasis-open.org/archives/xacml/200301/msg00021.html
https://lists.oasis-open.org/archives/xacml/200301/msg00021.html
http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/ws-trust.html
http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/ws-trust.html
https://nodejs.org/en/
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
https://www.oasis-open.org/committees/download.php/2713/Brief_Introduction_to_XACML.html
https://www.oasis-open.org/committees/download.php/2713/Brief_Introduction_to_XACML.html
https://www.oasis-open.org/committees/download.php/2713/Brief_Introduction_to_XACML.html

Bibliography

[OAS13b] OASIS. Topology and Orchestration Specification for Cloud Applications
Version 1.0. OASIS Standard, Nov. 25, 2013. URL: http://docs.oasis-
open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html (cit. on pp. 15,
21–25, 63, 64).

[PM11] S. Pearson, M. C. Mont. “Sticky Policies: An Approach for Managing
Privacy across Multiple Parties.” In: (Sept. 2011) (cit. on pp. 29–31).

[Pon13] Ponder2Project, ed. Ponder2 Wiki. Nov. 25, 2013. URL: http://ponder2.
net/ (cit. on pp. 48, 55).

[res] restangular. AngularJS service to handle Rest API Restful Resources properly
and easily. URL: https://github.com/mgonto/restangular (cit. on p. 67).

[Ris13] E. Rissanen, ed. eXtensible Access Control Markup Language (XACML)
Version 3.0. Jan. 23, 2013. URL: http://docs.oasis-open.org/xacml/3.0/
xacml-3.0-core-spec-os-en.html#_Toc325047070 (cit. on pp. 42–44, 55,
56).

[SAL15] SALESFORCE-UK. Why Move To The Cloud? 10 Benefits Of Cloud Comput-
ing. Nov. 17, 2015. URL: https://www.salesforce.com/uk/blog/2015/11/
why-move-to-the-cloud-10-benefits-of-cloud-computing.html (visited
on 06/25/2017) (cit. on p. 15).

[Slo] M. Sloman. Ponder: Policy Specification for Large-Scale Distribute Comput-
ing. URL: http://www.hpl.hp.com/news/events/csc/2003/sloman_slides.
pdf (cit. on pp. 46, 47).

[Sos10] D. Sosnoski. Understanding WS-Policy. Nov. 2, 2010. URL: https://www.
ibm.com/developerworks/library/j-jws18/index.html (cit. on p. 51).

[SPR] SPRING. Spring Framework. URL: https://projects.spring.io/spring-
framework/ (cit. on p. 67).

[Stu] U. of Stuttgart. OpenTOSCA Research Prototype. URL: http : / / www.
opentosca.org/ (cit. on p. 82).

[SWY+] K. E. Seamons, M. Winslett, T. Yu, B. Smith, E. Child, J. Jacobson, H. Mills,
L. Yu. Requirements for Policy Languages for Trust Negotiation (cit. on
pp. 27, 28, 31, 32, 34, 35, 38, 39).

[SY01] K. Seamons, T. Yu. “Limiting the Disclosure of Access Control Policies
during Automated Trust Negotiation.” In: Jan. 2001. URL: https://www.
researchgate.net/publication/277291102_Limiting_the_Disclosure_of_
Access_Control_Policies_during_Automated_Trust_Negotiation (cit. on
p. 39).

86

http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://ponder2.net/
http://ponder2.net/
https://github.com/mgonto/restangular
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html#_Toc325047070
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html#_Toc325047070
https://www.salesforce.com/uk/blog/2015/11/why-move-to-the-cloud-10-benefits-of-cloud-computing.html
https://www.salesforce.com/uk/blog/2015/11/why-move-to-the-cloud-10-benefits-of-cloud-computing.html
http://www.hpl.hp.com/news/events/csc/2003/sloman_slides.pdf
http://www.hpl.hp.com/news/events/csc/2003/sloman_slides.pdf
https://www.ibm.com/developerworks/library/j-jws18/index.html
https://www.ibm.com/developerworks/library/j-jws18/index.html
https://projects.spring.io/spring-framework/
https://projects.spring.io/spring-framework/
http://www.opentosca.org/
http://www.opentosca.org/
https://www.researchgate.net/publication/277291102_Limiting_the_Disclosure_of_Access_Control_Policies_during_Automated_Trust_Negotiation
https://www.researchgate.net/publication/277291102_Limiting_the_Disclosure_of_Access_Control_Policies_during_Automated_Trust_Negotiation
https://www.researchgate.net/publication/277291102_Limiting_the_Disclosure_of_Access_Control_Policies_during_Automated_Trust_Negotiation

[TC] O. W. S. B. P. E. L. (TC. OASIS Web Services Business Process Execution
Language (WSBPEL) TC. URL: https://www.oasis-open.org/committees/
tc_home.php?wg_abbrev=wsbpel (cit. on p. 20).

[TOM] TOMCAT. Apache Tomcat. URL: https://tomcat.apache.org/ (cit. on
p. 67).

[VOH07] A. S. Vedamuthu, D. Orchard, F. Hirsch. Web Services Policy 1.5 - Attach-
ment. Sept. 4, 2007. URL: https://www.w3.org/TR/ws-policy-attach/
(cit. on p. 51).

[WIKa] WIKIPEDIA, ed. Industry 4.0. URL: https://en.wikipedia .org/wiki/
Industry_4.0 (cit. on pp. 16, 25).

[WIKb] WIKIPEDIA. OASIS (organization). URL: https://en.wikipedia.org/wiki/
OASIS_(organization) (visited on 07/01/2017) (cit. on p. 20).

[WIK17] WIKIPEDIA, ed. Internet of things. 2017. URL: https://en.wikipedia.org/
wiki/Internet_of_things (cit. on p. 15).

[WWB+13a] T. Waizenegger, M. Wieland, T. Binz, U. Breitenbücher, F. Haupt, O. Kopp,
F. Leymann, B. Mitschang, A. Nowak, S. Wagner. “Policy4TOSCA: A
Policy-Aware Cloud Service Provisioning Approach to Enable Secure
Cloud Computing.” In: On the Move to Meaningful Internet Systems: OTM
2013 Conferences. Springer Berlin Heidelberg, 2013. ISBN: 978-3-642-
41029-1. DOI: 10.1007/978-3-642-41030-7_26 (cit. on p. 61).

[WWB+13b] T. Waizenegger, M. Wieland, T. Binz, U. Breitenbücher, F. Leymann.
“Towards a Policy-Framework for the Deployment and Management of
Cloud Services.” In: 2013 (cit. on p. 61).

All links were last followed on July 27, 2017.

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
https://tomcat.apache.org/
https://www.w3.org/TR/ws-policy-attach/
https://en.wikipedia.org/wiki/Industry_4.0
https://en.wikipedia.org/wiki/Industry_4.0
https://en.wikipedia.org/wiki/OASIS_(organization)
https://en.wikipedia.org/wiki/OASIS_(organization)
https://en.wikipedia.org/wiki/Internet_of_things
https://en.wikipedia.org/wiki/Internet_of_things
https://doi.org/10.1007/978-3-642-41030-7_26

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources
and references than the listed ones. I have marked all
direct or indirect statements from other sources con-
tained therein as quotations. Neither this work nor
significant parts of it were part of another examination
procedure. I have not published this work in whole or
in part before. The electronic copy is consistent with all
submitted copies.

place, date, signature

	1 Introduction
	2 Fundamentals
	2.1 Cloud Computing
	2.2 Topology and Orchestration Specification for Cloud Applications (TOSCA)
	2.3 Smart Services
	2.4 Function Shipping versus Data Shipping

	3 Policy Language Characteristics and Frameworks
	3.1 Policy Frameworks
	3.2 Characteristics of Policy Languages

	4 Shortlisted Policy Languages
	4.1 TPL/ DTPL
	4.2 EPAL
	4.3 XACML
	4.4 Ponder
	4.5 WS-Policy

	5 Policy Based Approach to Secure TOSCA-based Cloud Services
	5.1 Evaluation of Discussed Policy Languages
	5.2 Approach to Address Security Requirements of Smart Services

	6 Prototype to Secure Cloud Service Archives
	6.1 Technologies
	6.2 Secure CSAR Use cases and Algorithms

	7 Conclusion and Future Work
	Bibliography

