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Abstract

Testing of software is an important aspect of software development. There exist multiple
kinds of tests, like unit tests and integration tests. The tests this thesis will focus on will
be load tests, which are used to observe a system’s behavior under load. The presented
approach will use these load tests in order to observe and analyze the performance of a
system, like e.g. the response times of methods. Next these observations are compared
with those made on other versions of the system, in order to detect performance
regressions, deteriorations in performance, between versions. Another goal of the
approach will be to identify the root cause of the regressions, which is the source
code change responsible for introducing them. By doing this, the task of fixing this
problem will be made easier for the software engineer, since he has an entry point for
the problem.
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Kurzfassung

Das Testen von Software ist ein wichtiger Bestandteil der Software-Entwicklung. Es ex-
istieren viele Arten von Tests, wie Unit-Tests und Integrationstests. Die Tests, auf welche
sich diese Thesis fokussiert, sind Lasttests. Diese werden genutzt um zu beobachten, wie
ein System sich unter Belastung verhält. Der vorgestellte Ansatz wird diese Lasttests
nutzen, um das Betriebsverhalten eines Systems zu erfassen und analysieren, wie z.B.
das Antwortzeitverhalten von einzelnen Methoden. Als Nächstes werden diese Beobach-
tungen mit denen verglichen, die auf anderen Versionen des Systems gemacht wurden,
um Regressionen im Betriebsverhalten, wie Verschlechterungen des Antwortzeitverhal-
tens, zwischen den Versionen zu finden. Ein weiteres Ziel des Ansatzes wird es sein, die
Hauptursache einer Regression zu identifizieren, welches die Quellcodeänderung ist,
die für die Einführung der Regression verantwortlich ist. Dies wird es dem Software-
Entwickler, der beauftragt wurde die Regression zu verbessern, einfacher machen dies
zu tun, da er bereits einen festen Ansatzpunkt geliefert bekommen hat.
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Chapter 1

Introduction

Performance is an important aspect in software development. Amazon stated, that every
100 milliseconds of latency cost them 1% in sales [Nat08]. Similarly, when Google
[Gre06] made a test and tripled the number of search results displayed according to user
feedback, the searches within the test group dropped by 20%. The reason for this was
the page generation taking 0.5 seconds longer. Google [VGG+13] also found out that, if
an delay of 400 ms is added to every search, users will do 0.74% less searches. Since
these studies show the importance of performance for the user, keeping the performance
of a system in a good spot is an important aspect of software development.
The common way to evaluate a system, for either functionality or performance purposes,
is to test the system. Next these evaluations can be used to make changes to the program,
for example get a certain functionality to work the intended way or to increase the
performance. A system can be tested in multiple ways, depending on what the objectives
of the tests are. Figure 1.1 provides a scheme of an usual software development process.
The first stage is to gather the requirements for the software, on which a design will be
based. Next the designed software is implemented and tested. Here two kinds of testing
are commonly done.
The first is the normal testing, which includes unit tests and integration tests. In unit
tests only small parts of functionality are tested as a small unit. The usual goal for these
tests is to check whether a single functionality works. This makes it a very short type of
test. In Heger et al.’s [HHF13] case, they are also used to measure the performance of
small functional blocks. One of the problems they encountered was, that a lot of the
tests were too small and had more overhead than actual runtime. Integration tests on
the other hand test, if functionalities or modules properly work together. These tests
take more time, because they observe interactions, which is more complex, rather than
to watch one functionality irrespective of the other parts of the system.
The second type of tests are staged tests, where the whole program is run in a staged
testing environment. Tests done in this environment are usually long-running. Here
usually load tests, performance tests or stress tests are done. According to Jiang et al.
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Design ImplementationRequirements Testing Deployment

Staging

Figure 1.1.: Rough scheme of an usual software development process

[JH15] these are defined as follows: Load tests want to test the system under load of
concurrent usage and observe their behavior. Performance tests are used to see, how
the performance of the system as a whole behaves. This can be tested with various
configurations for performance data on each configuration. Stress testing has the goal
to test the system under extreme conditions, e.g. very high constant load or the missing
of a stable connection to the Internet for smart phone apps.
The last step of the software development process is the deployment of the software
into the production environment. During each step, if errors are found or complications
occur, it is usually possible to take a step back to try another approach or fix the problem.
Performance testing is especially important for the continuous integration environment.
Here users have a direct comparison to the last version after a new version is deployed.
Every new version is usually going through a series of automated tests in order to
evaluate its functionality. One of the tests that can be automated are load tests, which
put the system under artificial workload over a long period of time. They can be used
to estimate, how the system will behave during production, when it is used and the
load is for long times at the set level. This information can then be used to check if
the application can behave correctly when under a load, that was set in service level
agreements (SLAs) as the expected load, that the system has to handle.

Performance can also be measured on different versions of a system and compared, in
order to see if the performance improved, remained at the same level or got worse.
Unintended performance drops from one version to another are called performance
regressions and can be very costly. Heger et al. [HHF13] stated as two characteristics
for performance regressions: They are hard to remove and their removal is more costly
the later they are detected. Therefore it is important to detect and fix these regressions
as soon as possible. In order to fix these problems, a software developer has to detect
the cause of the problem first. In a large program with a multitude of commits between
software versions, this task gets harder. There exist some approaches, that focus on
automatically finding these performance regressions and isolating the root cause, like
Heger et al.’s, but there is no existing one, that concentrated on using load tests to do
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this. The approach presented in this thesis takes Heger et al.’s approach and applies it to
load testing in specific. The goal of the approach is to use data obtained from load tests,
to evaluate the performance, find regressions and search for their root cause.
This Thesis adds to the automated tests of a continuous integration pipeline, with the
goal of using already existing load tests in order to automatically detect regressions and
their root cause. Regressions should be detected as early as possible. This is achieved
by regular gathering of data, e.g. every time load tests are run on a new version. After
detecting a regression the root cause of the regression has to be found. Giving this
information to a developer makes it easier for him to remove the regression, since
he already knows where to look for it. In order to reach this goal the approach uses
two steps: A Bisection algorithm, in order to find the commit, which introduced the
regression, and a call tree analysis, in order to identify, which method and class are most
likely at fault.

Goals

There are three major goals for this thesis. The first is to explain the foundations on
which the thesis is based on, e.g. load testing and performance regressions, and how
similar approaches, like the one used by Heger et al., work. The second one is to
introduce the approach to automatically detect regressions and their root causes using
load testing. Here details will be given on every step of the approach. The last major
goal is to evaluate the approach by using a proof-of-concept implementation. The points,
that should be evaluated are the reliability and scalability of the approach. Additionally
possible improvements, that could be done for the approach are shown.

Thesis Structure

The thesis is set up as follows:

Chapter 2 – Foundations and related work: This chapter serves as an entry point for
the thesis and discusses the foundations it is based on. For this reason related work
will be also presented here, like performance unit testing, regression benchmarking
and performance evaluation methods.

Chapter 3 – Approach for/to..: This chapter describes the approach of the thesis to
performance regression testing and root cause isolation. As a part of the approach
used algorithms can be found here.
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1. Introduction

Chapter 4 – Evaluation: An explanation on evaluation method and results will be given
in this chapter. Additionally the research questions will be stated and answered.

Chapter 5 – Conclusion: In this last chapter the results will be summarized and poten-
tial future work will be discussed.
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Chapter 2

Foundations and related work

This chapter will start by presenting the underlying technologies this thesis and the
proof-of-concept implementation will be based on together with related work to the
approach. First, testing will be described in general in section 2.1. The following section
2.2 will describe load tests, which will be used during this thesis. Afterwards a brief
introduction to the related performance unit tests will be given in section 2.3. In the
following sections 2.4 and 2.5 performance regressions and methods for performance
evaluation will be shown. Section 2.6 will introduce regression benchmarking, another
related topic. During section 2.7 root cause isolation will be presented. Next the software
development style of continuous deployment will be discussed in section 2.8. At last in
section 2.9 the tools used during the thesis will be briefly presented.

2.1. Testing

Testing is an important step during software development. It is usually the last step
before deploying a developed program into production, as it can be seen in Figure 1.1.
During this step the implementation of a software is tested for errors. This is done in
order to make sure, that a system fulfills all SLAs and works properly. As stated by Myers
et al. [MSB11] this step of software development takes up more than 50% of the budget
of a software development project. Patton and Ron [Pat01] stated that the time effort,
that goes into testing grew over the years.
Myers et al. divide testing into five types of tests. The first type they state are module
tests, more commonly known as unit tests. These types of tests tend to be of a short
nature and test if a small part of the code functions properly. Usually a set of input data
is given to a method or function and it is tested if the returned results are equal to the
expected results from the given input set. A special usage of these types of tests is shown
in section 2.3. The second type Myers et al. state are integration tests. Here it is tested,
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if the modules of a system work together the intended way. This type of testing is similar
to unit/module testing and if the module testing is done incrementally it can be part of
it. The third type of test are function tests. These are used to find discrepancies between
what the customer expects the program to be able to do according to the agreements
and what it is actually able to do. This step can be used to test, whether functions are
missing. Another type of testing is acceptance testing. Here it is tested, whether the
program is according to contract. This is usually not done by the developers, but the
customer in order to check, that he got what he ordered.
The last type of testing is system testing. These tests have the widest variety with 15
different types of tests according to Myers et al.. This type of tests checks, if a system as
a whole meets set requirements by the customer. This can for example include security
tests, where the security of a system is tested, and performance tests, which tests how the
system performs. Myers et al. state that this is only possible, when there are requisites
to be met, as the functionality of the whole system is already tested during function
tests. So according to them, whether these tests are done, depends on the contract.

Patton and Ron [Pat01] divided testing into similar types, but there are some differences.
They define system testing more like function testing of Myers et al.. The types of tests,
that were defined as system tests by Myers et al., were classified as specialized tests. This
also includes performance tests, like described above, and stress or load tests, tests which
test the system near or above the boundaries, that were set as required capabilities of
the system. While stress and load tests are the same for Pattron and Ron, other literature
differentiates. Gheorghiu [Ghe05] defines load testing as having concurrent high load
on a system near the maximum of what it can take. The goal is not to break the system,
but have it running for a long period of time. Stress tests on the other hand have the
goal of breaking the system by applying more load than the system can handle. It is
used for the developer to see how the system reacts to failures.

2.2. Load testing

Load tests [JD 07; Wey98] are a form of performance tests, that are used to measure
the performance of an application under conditions, that should be similar to the target
environment or higher. Doing this is one way to check, whether the performance of a
program is in accordance to SLAs. Another benefit is, that the developers are able to
predict the behavior of the system under the stress of production, in order to evaluate,
whether the performance is good enough or has to be optimized. This originates from
the fact, that data about performance, such as response times, throughput, resource
utilization can be measured. Load tests are usually done with the help of tools, e.g.
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JMeter 1, which send a defined number requests to an application in order to simulate
multiple users using the program at the same time. Aside from performance it is also
possible to observe the behavior under stress and stability, reliability and availability of
the system.

Jiang et al. [JH15] described the process of load testing to consist of three steps. The
first step is to design the load test. For this the objectives, that one wants to achieve with
the test should be clear. This step includes the decision on what load is to be used. If the
tests goal is to see, how the system handles a certain error, a fault inducing load can be
chosen. If the fulfillment of SLAs is to be evaluated or how the system will behave under
the expected usage, a realistic load similar to the stated requirements should be chosen.
Other points, that should be decided on during this phase include length of the test run
and whether to optimize the load depending on the technique used to generate it.
The second step is to execute the load test itself. This includes setting everything up,
generating the load, execution of the tests and monitoring and collecting data from the
tests. The test execution can be done according to three types of approaches. The first
is to use live-users, who manually generate the load for the system. The second is to
use a driver, that automatically generates the specified load. The last is to use special
platforms, to deploy the tests into and execute them, that behave in an intended way.
The last step is to analyze the obtained system behavior data. This can be either to
check against threshold variables, like the ones set by the SLAs. Another option is to
see, whether a known problem still exists or if it was solved. Another option is to detect
anomalous system behavior. This can be used to look for unknown problems.

Another important aspect is to automate tests. This is used to a large extent in continuous
deployment environments, like described in section 2.8. Here tests are usually fully
automated and run without manual inputs. Under these circumstances load tests also
have to be automated. Bayan et al. [BC08] presented an approach to automate load
testing. In their approach they automatically generated load for a system. They first
identify what inputs influence the resource of a system, that is to be tested, like memory
usage or response times. Next they automatically configured a controller, which is
responsible for generating load in order to get the tested system to the desired load
level.

One of the areas where this type is very common is web development [BD99] [Men02]
[DGH+06]. Here HTTP requests are created and sent to the application in order to
simulate users. One goal here is to simulate a ’virtual user’ that behaves as close to how
a real user would as possible. Examples for this would quitting, when the response time
of the website is too high, and taking time to think between requests. During a load test

1http://jmeter.apache.org/
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multiple ’virtual users’ are to be simulated, since the test should achieve a load similar
to what is expected later, when the web service is running.

2.3. Performance Unit Tests

Heger et al. [HHF13] propose using performance-aware unit tests. These tests had
the goal to gather more valid data on performance, than normal unit tests. Usually,
unit tests are rather short and test only a small part of functionality. This leads to low
runtime of the tests. Heger et al. mentioned, that this low runtime of normal functional
unit test, with often more overhead for preparing and launching the test than time
needed for the test itself, would falsify the gathered performance data. For this reason
they implemented performance-aware unit tests. These unit tests are designed with
test length in mind, in order to be able to gather more valid performance data. The
length of test can be extended by choosing the right coverage and granularity during
test design.

Bulej et al. [BBH+17] propose to create a new category of unit tests, the ’performance
unit tests’. Similar to how usual ’functional unit tests’ test components for whether their
functionality is working correctly, these performance unit tests would test, whether the
performance of components is within acceptable parameters. In order to evaluate this
correctly three challenges were stated by Bulej et al. that had to be considered, when
creating performance unit tests. The first challenge is to define what fast enough means
for a method. The easiest approach would be setting an absolute time, which defines
for a specific test whether the test failed (the test took longer than the time set) or was
successful (the test finished faster than the time set). But this approach has some flaws.
The first one being defining the time for a single method on how long it should take.
Another flaw comes with the platform the test is run on, since times can differ vastly
there. Thus they propose the requirement to be not absolute.
The second challenge they state is the implementation of the unit tests. Here they propose
to tackle the test implementation similar to how one would create a microbenchmark
and be aware of common mistakes that can be made when creating these. The third
and last challenge is the execution of the tests. When executing functional unit tests,
compiling and running them in parallel will not matter. For performance unit tests this
would be fatal, since it would influence the execution times of the tests. Other influences
like garbage-collection can also influence this time. Their solution to this challenge is
to execute these tests multiple times and evaluate the test conditions in a probabilistic
manner.
Another work from Horký et al. [HLM+15] proposes using this new kind of unit tests in
order to increase the awareness for performance of software developers. They propose

8
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using performance unit tests in order to gather data on method execution times. In
their approach they use a workload generator, which delivers dynamic input for the
performance unit tests, which allows to scale the time the unit test takes. This is used
in order to dynamically generate and acquire data when the developer wants to access
it, similar to Javadoc. The performance data should then be displayed in a similar way
to Javadoc as well. By doing so the approach tries to show information about method
performance to the developer during development, raising the chance of the developer
making decisions based on the software performance.

2.4. Performance Regressions

As a performance regression Heger et al. [HHF13] defined the “[...] significant increase
of the response time of a tested method”. In their context the increase of response
time happened from one commit of the project to another, not during a single test run.
The cause for the increase in response time is undefined in this definition and as such
can be anything. This is opposed to another definition [ZAH12] found in literature for
’regression’, which defines it as the reintroduction of an already solved problem (bug)
into the code. An older definition [NTY07] defines it as a bug, that causes features to
stop working after a certain event, like a patch. During this thesis the definition stated
by Heger et al. will be used as definition for performance regression, as their work
serves as a basis for this thesis.

2.5. Performance Evaluation Methods

Georges et al. [GBE07] presented different methods to evaluate the performance
of a Java system. They analyzed the methods in regards to two different aspects:
data analysis and experimental design. For data analysis only a small minority used
confidence intervals, which was also the approach Georges et al. recommended. Most
of the approaches used a single number to describe the performance. This number
was either the computed average or median over multiple measurements or a specific
extreme taken from the runs, like best or worst. An example for the median being used
can be found in [AHR02]. Here the median of 10 runs was used to get a representative
data set. In [BGK+02] the average over three runs of a benchmark was used. While
most approaches, which use a single number for performance, use the best run, the
SPECjvm98 [Cor08] approach included both the best and the worst run. Exceptions that
can be found here include [BM03], where the second-best method run was used and
[BOP03], where only one test run was done and the resulting time returned.
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2. Foundations and related work

The second aspect, experimental design, generally defines how the data is acquired.
This includes factors like using one or multiple VM invocations and implementation,
the number of benchmark iteration and how the program was compiled. An example
here would be [MH06], where multiple benchmark iterations were run on a single VM
invocation on the same system with the same VM implementation. Additionally, they
compiled all methods before the benchmark and fully cleared the heap using garbage
collection, in order to have as few random factors as possible influence the measurements.
Another consideration that has to be made is, when to take the measurements. Arnold
et al. [AHR02] differenced between steady-state performance and start-up performance.
The difference between these two types, is that start-up performance includes class
loading, which may influence the performance of methods negatively. While for short-
term programs this may be of importance, long running services will not be influenced
for most of their runtime. This implies, that for short programs measuring the startup
performance would return more valid results, while for application that have long
runtime, excluding the startup-performance and concentrating on steady-state makes
much more sense.

2.6. Performance Regression Benchmarking

This approach developed by Kalibera et al. [BKT04] uses benchmarks in order to find
performance regression. It is a specialized application of already existing benchmarks in
order to measure performance. The requirement they state as a base for the benchmark
is, that it has to be fully automated. This automation includes execution, data gathering
and data analysis. The execution is the easiest to automate. For data gathering, the warm
up period of benchmarks has to be ignored and only steady state has to be captured.
The last point has to detect regressions in a quick and reliable manner. Therefore, they
propose using small enough benchmarks, that are able to be run daily. They divide
benchmarks into simple benchmarks, that test a single isolated feature with artificial
workload and complex benchmarks, that test a number of features with real-world
workload. As the second group is not as easy to interpret, Kalibera et al. use only simple
benchmarks. Additionally they try to minimize the interference of e.g. the system on
the benchmark results and run the benchmark multiple times in order to gather enough
data. Since the results from even one simple benchmark will vary when run multiple
times, they propose using standard statistical tests for comparing samples from a normal
population to compare the sets of different versions.
In later works Kalibera et al. also pointed out, that random initial conditions will
influence each run of the benchmark. In [KBT05] they describe how to measure the
influence of these random initial conditions using multiple test runs and how use this
information to calculate the precision of a benchmark. This information can then be
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used to evaluate, how reliable regressions are detected using these benchmarks. In
[KT06] they describe how random effects of compilation, a subcategory of these random
initial conditions, influence the performance. An example for this is how a compiler
generates a random name for symbols in anonymous name spaces. These names are
different every time and as a result the linker will place them at different places within
the binary.

2.7. Root cause Isolation

Heger et al. [HHF13] introduced an approach, which used existing unit-tests to test
performance of a project and use this data to check for performance regressions. The
idea for this approach was, to compare the performance of the project frequently, e.g.
weekly, with the last measured performance. Should a regression be found out, the next
step would be to identify possible root causes for the regression. This was done with the
goal in mind to reduce the time needed to fix the problem.

The regression detection method used by Heger et al., was based on the statistical
approach to find performance regressions proposed by Goerges et al. [GBE07]. The
idea for this approach is to use the mean of measured response times and calculate
the confidence intervals over these values. These confidence intervals could then be
compared in order to identify possible regressions. This method was proposed, since
unpredictable outside influences can alter response times and by using statistics and
a large pool of measurements these become less relevant. For more details on this
approach check the chapter describing the approach 3.3. In Heger’s case they used 50
executions of the unit tests as base to collect the data.

After detecting a regression Heger et al. continued by identifying the faulty code piece,
that introduced the regression. This was done in two steps. First, they used the GIT bisect
function [GIT17] in order to find the exact commit, which introduced the regression.
The GIT-Bisect function uses a bisection algorithm similar to a binary search. By marking
commits as ’good’ or ’bad’ the first commit, that introduced the regression is singled out.
For more details on this algorithm see 3.4.
After the commit is known, the faulty part of the source code has to be found during
the second step. For this they started by extracting the call graph using the Kieker
monitoring tool and running the unit test with full instrumentation. After knowing
the structure of the call tree, they proceeded by extracting performance data on each
method by running the test multiple times with partial instrumentation. By doing this
they created an annotated call tree, with methods as nodes, that have all data on their
performance as annotation. Next they compared the call tree from a commit before the
regression with the one from the commit that introduced the regression. If the call tree
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of a method changed, they marked it as root cause. If the call tree was the same, they
looked if a method, that was identified as having regressed, contained another method,
that regressed. The called method was then identified as the cause for the regression
in the other method and the process was repeated till a method was found, that didn’t
contain regressed methods. An additional criterion was, that only methods, that were
updated in the identified faulty commit were able to be selected as a cause.

The problem with the approach were the existing unit-tests. These tests are usually
made to only test very small parts of a system. This results in execution times, that
consist more of preparation for the test, than the actual test took place. These times are
hard to compare, since the overhead is too influencing. This results in the need for unit
tests, which have the goal to also have a size to be significant enough to evaluate the
performance.

Approaches similar to Heger’s often have the goal to heighten performance awareness of
the developer during development. One of these approaches is the one by Horký et al.
[HLM+15] presented in section 2.3. They used performance unit to obtain performance
data, which they planned to show the developer in an Integrated development environ-
ment (IDE) similar to Javadoc. Another approach, that is similar, is the approach of
Danciu et al. [DCBK15], which creates an performance model for Java EE components
in order to predict their performance. This data is then provided for the developer,
which enables him to see how changes will likely influence the performance. A third
approach by Kalbarczyk et al. [KIZ+14] also tries to heighten performance awareness.
Their approach was mainly tested for C, but some other languages are also supported.
They search for performance differences between version and identify changed functions
using a tool. This data is then given to the developer, to give him the option to fix the
problem. They also integrated their tool into GIT, which makes it possible to run it on
every commit.

An example for root cause isolation in other software areas, is the approach of Bellur et
al.’s [BA07]. They try to isolate the root cause of failure in J2EE environments. For this
they first monitor the system for failure symptoms. When they find some they generate
call traces and a topology graph for the system. These are used to generate a probability
for the occurrence of certain exceptions in a component. These exceptions are then
inserted into a Bayesian Belief Networks model together with the information on how
they interact. The output of the model then provides information about the root cause
of a certain exception, which is used to help a system in self recovery.
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2.8. Continuous deployment

Continuous deployment is a software development method, which, according to Humble
et al. [HF10], uses a ’deployment pipeline’ in order to create more stable versions of
an application. For this every change to the code has to be built first, before being
tested by multiple automatic tests. If this is successful for a change, it is committed
into the version control system, like e.g. GIT. By doing so, since every change is
tested, less errors are introduced. This also leads to multiple runnable commits on the
version control tool, which makes choosing revisions for releases easier. Humble et
al. proposed in an earlier paper [HRN06] four principles, that can be used as a basis
when trying to use a deployment pipeline. The first one is, that every stage of the
build should provide a working program. There shouldn’t be stages, where the built
software doesn’t work. The second is to always deploy the same artifacts into every
environment. Runtime configurations should be managed seperatly. The third principle
states, that there should be several testing stages, that are fully automated together with
an automated deployment. The last principle is to evolve the production line. If the
assembled application changes, the production also should be changed accordingly to fit
the needs of the application better.

Rahman et al. [RHWP15] defined continuous deployment as “[...] a software engi-
neering process where incremental software changes are automatically tested, and
frequently deployed to production environments”, during their survey on continuous
deployment practices of different companies. They also name benefits of this software
development approach, such as lowering the cost of the development and improving
both, the satisfaction of customers and the quality of the software. These benefits are
also partly mentioned by Olsson et al. [OAB12]. Since the goal of this approach is the
ability to deliver functionality of the software to the customer in a faster manner, a
result of this is to be able to obtain information about the functionality faster, as the
customer will use the feature earlier. The data will also be more realistic, as it is not
obtained during preset tests, but from actual usage at the customers. This enables the
development team to notice and tackle challenges the software encounters during usage
earlier.

2.9. Tooling

The following subsections will describe the tools, that were used in this thesis to test the
approach.
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2.9.1. Kieker

Kieker2 [VWH12] is a framework, which is able to monitor and analyze a system’s
runtime behavior. In order to monitor said behavior, Kieker provides measurement
probes, which allow performance monitoring and also control flow tracing, and utility
to analyze the obtained data. The framework is divided into two extensible parts, Kieker
Monitoring and Kieker Analysis.

Kieker Monitoring’s purpose is to monitor a system and log its performance data,
e.g. execution times of certain methods. It currently supports multiple programming
languages, like Java and .Net. The obtained data can either be written into persistent
logs or can be streamed directly to a destination, where it is processed, using message
protocols. The module is also configurable, making monitoring the whole system, or only
certain parts of it possible. This configuration can additionally be changed at runtime,
allowing for dynamic monitoring. For Java-based systems code-injection can be used in
order to monitor any program.

Kieker Analysis analyses the obtained data, which can be done either directly when
obtaining the data, or using the logs of the performance data. The module’s pipes-
and-filter structure makes it highly flexible and allows for plugins to be exchanged
easily, in order to customize the analysis for a given system. The module also supports
custom plugins making it highly extensible. Using the Kieker WebGUI or the Kieker
Trace Analysis Tool also allows using graphical user interfaces to present the analysis
results.

2.9.2. GIT-Hub

Git-Hub3 is an online-platform for sharing code and version control. It allows program-
mers, who work on a project together, to obtain the newest code (‘pull’) or submit their
own current version of it (‘commit’) in order to work on it together in an efficient manner
from anywhere in the world. Each project is therefore stored inside a ‘repository’. Within
a repository every commit is saved, making it possible to go back to an earlier (or later)
version of the code.

It is also possible to create ‘branches’ which allows the programmers to work on different
versions of the repository at the same time. This works by creating a copy or snapshot,
usually from the ‘master’ branch. This branch can then be modified and the code
is updated by committing it. The branches and their commits are also saved in the

2http://kieker-monitoring.net/
3https://github.com/
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repository. After the work is done it is possible to merge the branch with other branches
or the ‘master’ branch, in order to introduce the changes or new feature there.

2.9.3. Locust

Locust4 is an open source tool, that is able to generate load for a specified system. It can
be used to do load testing. In order to use it, python code has to be written, that defines
how users would behave. After this is done and given to Locust, it will automatically use
the behavior code to generate users. The number of users and how many users are to
be created can be defined at the start of each test run. Another benefit of this tool is its
scalability. Since it supports distribution over multiple servers, it can be used to simulate
millions of users at the same time.

2.9.4. Docker

Docker5 is a software container platform. It provides the Docker container engine, which
can be used to run a container on an operating system like Linux and Windows, on cloud
platforms and many server systems. Containers are a virtualization technique and work
by packaging software with everything it needs to run into an isolated environment. This
makes containers more efficient and lightweight than Virtual Machines, which contain
a whole operating system. It also ensures, that the software execution stays the same,
no matter what underlying operating system is used. That also means, that developers,
who work on the same project, can achieve the same test results regardless of their
machine.

2.9.5. Kubernetes

Kubernetes6 is an open-source application, that can be used to manage containerized
applications. It is able to deploy the applications and also scale them, e.g. higher number
of containers. Examples for the management functionality are, that Kubernetes restarts
failing containers, like the ones that stopped responding, and is also capable of giving
IP-Addresses to containers and balance the load between the containers.

4http://locust.io/
5https://www.docker.com/
6https://kubernetes.io/
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2.9.6. OpenStack

OpenStack7 is a platform for orchestrating clouds and is capable of controlling large
scaled pools of compute, storage, and networking resources. It can be controlled by
administrators using a dashboard, and users are able to get resources using a web
interface.

7https://www.openstack.org/
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Chapter 3

Approach for/to...

This chapter will describe the approach. For this first an overview of the approach will
be given together with a description on how it belongs into the software development
circle during section 3.1. Next load testing, the method used for data acquisition, and
how they compare to unit tests is discussed in section 3.2. Afterwards the Regression
Detection Method is shown in section 3.3. The GIT-Bisect algorithm will be introduced
in section 3.4 and the call-tree analysis is described in section 3.5. The last section,
section 3.6 will give some information about the proof-of-concept implementation.

3.1. Overview

The approach was inspired by Heger et al.’s work in [HHF13]. The idea is to take the
concept of testing for regressions and isolating their root cause and to use it for load
tests. Figure 3.1 shows a rough sketch of the continuous integration life cycle. It is
composes of five steps. The entry point of the cycle would usually be to first develop a
system based on a contract. This would be equal to the upper steps of receiving feedback
(or a contract in the first iteration) and developing based on it. After the development
is done, the system or program can be built and compiled. The next step is to execute
automated tests and inspect the system. This step is done in order to find and get rid of
faults before deploying the software into production environment. After the system is
deployed the customer provides feedback, which starts the cycle anew. The approach in
this thesis would belong into the ’automated tests’-step of such a cycle. In order to fit
into this stage, load tests, data gathering, data analysis and root cause isolation should
be fully automated. In regards to a normal software development process as it was
depicted in Figure 1.1 the approach would fit into the testing and staging steps. These
steps should be fully automated in a continuous integration environment.
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Figure 3.1.: Rough sketch of the continuous integration cycle. Taken from [Car17]

For the approach itself, first performance data is gathered while automated load tests are
run (section 3.2). The data is then analyzed and compared with the data from previous
versions in order to find possible regressions (section 3.3). After a regression is detected
the root cause for it is searched. This includes a Bisection algorithm in order to identify
the commit, that introduced the fault into the version control system (section 3.4) and a
call tree analysis (section 3.5), which has the goal to find the method that is at fault for
the loss of performance. After this analysis is done the information about the regression
and the suspected root cause are given to the developer, who can then check the code
and possibly fix the regression.
Figure 3.2 shows a overview of the approach. At first, in order to acquire data, load tests
are run on different versions of an application, while a monitoring tool observes the
application and gathers performance relevant data, like response times. After the load
tests are done, possible performance regressions are detected, by computing confidence
intervals over the measurements and comparing these intervals. If an regression was
detected between to versions N and N+X, like depicted here, the root cause has to
be identified. This is done first identifying the commit, that actually introduced the
regression into the version control system. In order to do this, GIT-Bisect is used. After
the commit is known, the call tree is analyzed, in order to additionally identify the
methods responsible for the regression. By doing this, the developer gets more accurate
feedback on where to start looking for the regression.
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Figure 3.2.: Overview of the approach

3.2. Data Acquisition

In order to obtain valid and comparable data some key aspects are of importance.
The data should be acquired under circumstances, that are as similar to each other as
possible. For this, the same platform and tool setup should be used every time, when
running the test. The same method for data collection should be used as well. Examples
for this kind of setup can be found in the evaluation chapter 4.2.2 and in the appendix A.
As the method for generating performance data, load testing was used in this thesis.
Load testing are defined as putting a system under concurrent load over a long period of
time according to Jiang et al. [JH15]. The goal of these tests is usually to observe the
system’s behavior under long lasting load. The load may vary for the tests depending
on what exactly is to be observed. It can either be realistic and near the level of actual
intended usage, or fault-inducing and far above the threshold given by requirements.
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For further information about load testing see section 2.2, for information on how they
fit into testing in general see section 2.1. As this is the key-difference to Heger et al.’s
[HHF13] approach the differences between load and unit testing and what influence
they have will be discussed in the following.

Load Tests vs Unit tests

Usually, load tests are used to investigate, how the system behaves under load over a
longer period of time, while unit tests only test a small part of the application for a very
brief period. From this two key differences can be derived. The first being which part of
the system is tested. For load tests, this is a full component, if not the whole program,
while unit tests usually test a single functionality. This means, that the interference from
other parts of the same system may be higher in load tests, when compared to unit tests.
The second, and more important difference, is the time period. It takes only a short
amount of time for a unit test to complete. Load tests, on the other side, run for a long
period of time, up to several hours. This second difference can influence the decisions
made for implementing the other algorithms.
The approach by Heger et al. for call tree analysis included extracting more exact
performance data on every method of a call tree by running the unit test multiple
times, while monitoring only this specific method. For this approach, only one fully
instrumented run of the whole load test was expected. Another difference is the number
of measurements, that can be taken within one run. For unit tests, usually a method is
called once to evaluate if the function was implemented correctly, meaning for multiple
measurements the unit test has to be repeated a couple of times. In the case of Heger
et al. they repeated each test 50 times. In load tests, methods are called more often
over the course of time, which means in order to gather multiple measurements the
test has to be run for a certain period of time as opposed to restarting. This is also
important, since startup performance, like described by Georges et al. [GBE07], is not
as interesting for programs that have long runtimes, like the ones load tests are usually
done on. Instead steady state is of more interest. Another benefit of running the test
longer, is that the number of measurements for steady state can vastly outnumber the
ones for startup, which means that the startup values don’t influence the computed
confidence intervals as much.

3.3. Regression Detection

The regression detection algorithm used is based on the work by A. Georges et al.
[GBE07], which was also used by C. Heger et al. [HHF13] The approach argues, that
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sources of non-determinism are a given in a Java system. Examples for this could be
differences in thread scheduling and how threads end up interacting because of it, when
the Java Garbage Collector becomes active or even system interrupts. Because of this,
Georges et al. suggest an approach that is based on statistic’s confidence intervals over
the mean of multiple measurements.

Confidence Intervals

Confidence intervals describe an interval of values, that are defined as such, that the
real value is with a certain probability within the interval. In the case of response times,
this would mean, that the true, uninfluenced, response time of a method would, with a
certain probability, lie within the confidence interval. There are different formulas for
large and low numbers of measurements. In both cases first the mean x̄ and standard
deviation s of the measurements has to be computed using the formulas

x̄ =
(∑n

i=1 xi)
n

s =

√√√√ ∑n
i=1(xi − x̄)2

n − 1

where xi is a single measurement and n is the number of all measurements. Next the
confidence interval c can be calculated depending on the number of measurements n.
For large n (n >= 30) the formula is

c = x̄ ± z1−a/2
s

√
n

With α being the significance level and z the z-value. The significance level has to be
chosen beforehand, and determines how much deviation from the mean is acceptable.
The term 1−α is called confidence level and is defined as the probability for the true
mean µ being between the two confidence borders c1 and c2, which are computed using
the above formula. The z-value is fixed for any given confidence interval and is usually
taken from a table. If the number of measurements is small (n < 30) the formula

c = x̄ ± t1−a/2;n−1
s

√
n

is used for the confidence intervals. The value t for this is from the Student’s t-distribution
and usually taken from a table.
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Regression Detection (Comparison of alternatives)

Georges et al. [GBE07] introduce two methods for comparing two alternatives, or
versions. The first is to compute confidence intervals for both alternatives and comparing
these intervals. When these two intervals overlap, it is concluded, that the difference
in the measurements may result of random factors, and that there is no difference in
performance between the versions. However, if they do not overlap there may be an
improvement in performance or a regression (depending on which one is the earlier
version). This method is not completely accurate and has a small room for error. The
second method, which is more accurate, is to compute the confidence interval for the
difference of the measurements. For this, the mean and the standard deviation for the
difference are computed using

x̄ = x̄1 − x̄2

sx =

√√√√ s2
1

n1
+

s2
2

n2
.

The confidence interval for large numbers of measurements is calculated using

c = x̄ ± z1−a/2sx.

For a low number the z-value has to be substituted by the t-value, which can be
approximated using the formula

ndf =
(
s2

1

n1
+

s2
2

n2
)2

(s2
1/n1)2

n1 − 1 +
(s2

2/n2)2

n2 − 1

.

For this comparison, if the interval includes 0, it is concluded, that there is no signif-
icant statistical difference between the measurements. If 0 isn’t included there is a
regression/improvement detected.

When comparing more than two alternatives, Georges et al. [GBE07] proposed using the
ANOVA method. This method wasn’t used for the implementation, since two alternatives
are compared in all cases.

3.4. GIT-Bisect

Overview

GIT-Bisect [Cou08; CS14; GIT17] is an implementation of a binary search provided
by GIT. Its purpose is to find a commit, that introduced a fault of any kind into a GIT-
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repository. GIT-Bisect can be run manually or automatically. After starting the algorithm,
for both options, the user has to mark an initial commit as ‘good’ and another later
commit, e.g. the current commit, as ‘bad’. For the algorithm, a commit marked as ‘good’
equals a commit where the regression hasn’t appeared yet, while the ‘bad’ commits
contain the regression.

After appointing these two commits, GIT-Bisect will automatically select a commit
according to its Bisection algorithm and pull it from the repository. If GIT-Bisect is used
manually, the user now has to test the pulled version and tell the algorithm, whether
the commit is ‘good’ or ‘bad’. In an automated setup a script or command can be given
to GIT-Bisect, which will be run in order to evaluate the commit. Other options aside
from ‘good’ and ‘bad’ are ‘stop’ in case you want to abort the search, or ‘skip’, which
will result in skipping the current commit and GIT-Bisect selecting and pulling another
one. This second one is especially useful if e.g. the selected commit contains a version
of the source code, that can’t be built. The process of the algorithm pulling a commit
and marking this commit, is repeated according to the Bisection algorithm, until the
faulty commit is found.

Bisection Algorithm

The Bisection algorithm, that is used in GIT-Bisect, in order to select the next commit,
was first implemented by Linus Trovalds and later improved by Junio Hamano. The
algorithm consists of three steps, that are used to prepare for the selection of the next
commit to be tested, and the selection of the commit itself. At first it is important to
note, that GIT-commits for a directed acyclic graph (DAG). This is true for any change
history, since a later version can’t influence an earlier one, and a certain version derives
from an earlier one. Figure 3.3 shows an example of a commit tree. Nodes are commits
and are labeled with letters. The arrows represent which commits influenced which
other commits.

The first step of the Bisection is to reduce the DAG, with the result that only relevant
commits are contained. For this all commits, that are not ancestors of the (earliest) ‘bad’
commit or the ‘bad’ commit itself are removed. Then all commits, that are marked as
‘good’ and their ancestors, will also be removed. Figure 3.4 the previous example of the
commit tree. Now the good commit A is marked as green and the bad ones, G and H, as
red. The commits, that are ancestors of good commits, like U and V, or do not influence
bad ones, like W, X and Y, are marked in a darker shade of blue. The next figure, Figure
3.5, shows the reduced Graph with only relevant commits. Here commits U to Y were
removed due to not being ancestor of a bad commit, or being ancestor of a good commit.
The commit labeled Z was also removed, as it isn’t the first bad commit.
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Figure 3.3.: An example for a commit tree represented as a DAG.
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Figure 3.4.: The DAG of the commit tree with marked good and bad commits.
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Figure 3.5.: The reduced DAG of the commit tree, which only contains relevant commits.
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Figure 3.6.: The DAG, here with commits labeled with the number A
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Figure 3.7.: The final DAG, this time with commits labeled according to min(A, N − A).

The second step is to assign every commit a number A. This number is obtained by
counting the ancestors of a commit in the DAG and adding one to it. An example for
this is shown in Figure 3.6. Here every commit in the reduced DAG is labeled with the
number of ancestors in the graph plus one. As example for A this would be no ancestors,
so A = 0 + 1 = 1, while for H this would be seven ancestors, so A = 7 + 1 = 8.
This step is preparation for the third and last step, where each commit gets a label with
its weight using the following formula: min(A, N − A), where N is the total number of
Nodes in the DAG. This is shown in Figure 3.7. This DAG has the labels updated to the
formula min(A, N − A). As examples: A did not change since 1 < 8 − 1 = 7, meanwhile
later commits, which have many ancestors, like G, which has A = 7 and H with A = 8
were updated to 1 and 0 respectively. After the graph was prepared using the described
three steps, the next commit which was labeled with the highest weight will be selected
as the next commit to be tested. In the example from Figure 3.7, this would be commit
F, which is labeled with a weight of 4.
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Figure 3.8.: An example for a call-tree.

3.5. Call-Tree Analysis

For the Call-Tree analysis, the call-tree has to be extracted first. For this purpose,
OPEN.xtrace [OHH+16] was used. The OPEN.xtrace format is a model with the goal of
allowing data interoperability and exchange for application monitoring tools. It is based
on the fact, that most of these tools are extracting execution traces, which describe the
control flow of method executions. This also equals the call-tree for a request. For this
reason, the implementation of the OPEN.xtrace model is able to extract the call-tree
from APM-tool data. One of the supported tools is Kieker, which was used in this setup
to monitor the test-application. This means, by using OPEN.xtrace it is very simple to
obtain the call-tree for a method from the Kieker monitoring data, which is why it was
used. An example for a call tree is given in Figure 3.8. Here some methods are listed.
Method methodA() calls two other methods, methodAa() and methodAb(). The first
of the two again calls another method, methodAa1, which calls another two methods
methodsAa11() and methodsAa12().

After obtaining the call-tree, it has to be analyzed. For this purpose, the call trees of
methods, that were found suspect of containing a regression are looked at. If a method
directly contains another method, that was identified as possible regression, the cause of
the regression is looked for in that method. The reason for this being, that the contained
method, by having regressed, influenced the containing one, which resulted in slower
Execution there too, since the response time of the contained method is part of the
response time of the containing one. This only accounts for directly contained methods,
since if a middle-tier method exists, whose response time was not influenced enough for
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Figure 3.9.: The commit tree with regressed methods marked as red and nonregressed
methods marked as green.

it to be detected as a regression, the regression in the lower method should not influence
the upper method enough to have a high enough impact on performance. Another
possibility is that the call tree of a method changed and that’s how the regression was
introduced. If the call tree of a method changed the method will be marked as a root
cause of the regression. Figure 3.9 shows the previous call tree, this time with methods
marked. Methods marked red have regressed, when compared to the previous version.
Methods marked as green have not. In explicit, methods methodA(), methodAa() and
methodAa1() have regressed. Since methodA() calls methodAa(), which again calls
methodAa1(), the algorithm would conclude, that the most likely root cause of the
regression would be methodAa1(), since this methods could have influenced methodAa()
into being detected as regression, which in turn would have influenced methodA(). If
methodAa() was not marked as regression, the algorithm would mark both methodA()
and methodAa1() as likely root causes, since the regression in methodAa1() did not
influence methodAa() enough to be detected as a regression. Because of that, it would
also most likely not have influenced methodA().

Another step is to look at the change-history of GIT if the commit, which introduced the
regression, was found. Since GIT saves the information on which classes were edited
together with the package name of the classes, in this step only methods that belong to
classes, which are listed as touched, are looked at as possible root causes. This enables
to exclude methods, that were detected to contain a regression, but were not touched
in the commit, where the regression first appeared. Figure 3.10 shows the same graph
as Figure 3.9, but with methods, which were edited in the detected faulty commit in
form of a black dot. The methods influenced were methodAa1() and methodAb(). From
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Figure 3.10.: The commit tree with regressed methods marked. Additionally methods
influenced by the faulty commit are marked.

this the algorithm would select methodAa1() as the most likely root cause, since it was
touched in the fault inducing commit and is the lowest method, that has regressed.

3.6. Implementation

The following will briefly describe some details on the implementation. This includes
used technologies, data structures and some interesting code snippets.

3.6.1. Used Technologies

To start with, Java was used as programming language. The Java version used is Java
1.8. For call tree analysis Open.XTRACE [OHH+16] was used. Additionally Kieker1

[VWH12] was used. For Git-Bisect the GIT implementation 2.13.0 for windows2 was
used.

1http://kieker-monitoring.net/
2https://git-scm.com/download/win
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ProcessedOperationExecutionRecord
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Figure 3.11.: Class diagrams of the model classes ProcessedOperationExecutionRecord
and MethodLeaf.

3.6.2. Data Structures

There were two interesting data structures used during this thesis. Both are depicted in
form of class diagrams in Figure 3.11. The first data structure is the class ProcessedOper-
ationExecutionRecord, which contains the data for a method during a measurement. It
holds the information about number of measurements, mean, standard deviation and
lower/upper confidence borders. The class implements comparable in order to access
methods in alphabetical order. The second class is MethodLeaf. This class is used to
depict call trees in an efficient manner. It’s equals(Object o) method was overridden in
order to quickly being able to compare different call trees. The getTree(String) method
allows to obtain the call tree of a called method and the methods containsMethod(String)
and containsMethodDirectly(String) are used to check if the call tree, or only the root of
the call tree, contain a certain method.

3.6.3. Interesting Code Parts

As mentioned earlier, Open.XTRACE was use to generate call trees, as it was easy to use.
The following code piece shows how to easily obtain the Open.XTRACE data structures,
that contain the call trees, from Kieker files:

LinkedBlockingQueue<Trace> traceListTraceOld = new LinkedBlockingQueue<Trace>();

String[] pTOld = { pathTraceOld };

TraceConversion.runAnalysis(traceListTraceOld, pTOld);

Afterwards the call tree can be extracted into the previously shown model class. Then
the trees are compared with the suspicions, methods that were identified as regressions,
in order to narrow the suspicions down to the root cause.
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Chapter 4

Evaluation

This chapter contains the evaluation of the approach. For this a proof-of-concept
implementation was created. In the first section, section 4.1, research questions, that
this thesis tries to answer will be introduced. Section 4.2 contains information about the
evaluation methodology and how the experiment was setup. In section 4.3, the results
of the the experiment will shown. At last, in section 4.4, the results will be discussed
with reference to the research questions and threats to validity.

4.1. Research Questions

In the following the research questions of the thesis will be described. They serve as a ba-
sis for the evaluation. Since the evaluation is done on a proof-of-concept implementation,
the questions will be answered using this implementation.

4.1.1. RQ1: How reliable is the approach?

This question is about the reliability of the approach. The reliability is here defined as,
whether regressions are detected correctly and if, after a regression was detected, its
root cause was isolated.

4.1.2. RQ2: How scalable is the created approach?

This is about evaluating the performance of the approach, by testing, how long it takes
with different scales of projects. For this, different parts should be scaled, like size of the
project, number of services, quantity of regressions and number of revisions.
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4.1.3. RQ3: How can the approach be improved?

This question means researching how the approach could be improved in order to
become better. This includes how the limits that were found in the previous questions
could be altered for the better, along with how it generally could be improved.

4.1.4. RQ4: Is it worth to do a call tree analysis before GIT-Bisect?

This last research question overlaps with RQ3. The question here is whether doing a call
tree analysis before doing GIT-Bisect could be an improvement. The goal of this question
is to reduce the time needed for doing GIT-Bisect by straight up skipping commits, that
are not of relevance to the method call-tree anyway.

4.2. Evaluation Methodology and Setup

The following subsections will describe which methodology was used for the evaluation
and how it was set up.

4.2.1. Methodology

For the evaluation a proof-of-concept implementation for the approach was created, in
order to be able to test it. In order to acquire data for the evaluation a test project was
chosen and altered in order to create regressions. The created data was then given to
the implementation in order to test its correctness and if the approach worked. The goal
is to have the implementation find regressions and identify the correct root causes.

4.2.2. Setup

The methodology part roughly sketched out how the experiment was set up. As a test-
project the Netflix RSS-Reader [net14] was used. Before running any tests, some Console
outputs and fake-commits (e.g. add a whitespace and commit it) were introduced in
order to create regressions within the program, that can be detected. It was set up as
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Figure 4.1.: Rough sketch of the test setup.

Docker1 containers within a Kubernetes2 Cluster, that is running on OpenStack3. A guide
for this can be found in their wiki. For instrumentation of the program, Kieker [Kie17]
was added into the Docker image. There is an existing load test for the program, which
uses Locust4 to send requests to it. For more information on these tools see section 2.9.
Figure 4.1 shows a rough sketch of the setup. On the bottom is OpenStack with
Kubernetes running on top. On top of the Kubernetes Cluster the four docker container
run with the parts needed to run the RSS-Reader: Cassandra, the core of the server,
edge and middletier. The middletier-part is instrumented with Kieker within the docker
container. Additionally the Locust-Master container is running with two instances of
Locust-Worker. This is generating the load. Aside from these depicted containers the
kubernetes master node was also running for the cluster.

After the RSS-Reader was set up together with the Locust, Locust was started with
100 Users and 1 user per second as load test parameters. This test was then run for
two hours. After two hours passed the test was stopped and the performance data
gathered by Kieker was extracted. The data was then given to the proof-of-concept
implementation in order to test it. The following listing shows which how regressions
were inserted into the middletier-components by inserting code.

public class MiddleTierResource {

[...]

public void newMethod(){

for(int i =0;i<100;i++)

System.out.println(i);

}

[...]

1https://www.docker.com/
2https://kubernetes.io/
3https://www.openstack.org/
4http://locust.io/
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public Response fetchSubscriptions (final @PathParam("user") String user) {

newMethod();

[...]

}

[...]

public Response subscribe (final @QueryParam("url") String url,

final @PathParam("user") String user) {

for(int i =0;i<10000;i++)

System.out.println(i);

[...]

}

[...]

}

As a remark, the proof-of-concept implementation only able to use parts of the data
Kieker measures. Thus about 8%(up to 25000 overall measurements) of the data was
taken and compared from the 2 hours of load testing (only a single .dat file of a Kieker
folder at a time). This data still consisted of between 350 to 7000 measurements per
method and was taken from around the same time into the test. For the most part used
were: third set of measurements, about 20 minutes in and additionally compared second
from last.

4.3. Observed Results

The results of the measurements varied vastly. Often methods, that were not touched
came up detected as regressions. In some cases, unaltered methods were detected as
regression, while other methods that were not touched were detected. An example for
such a method was com.netflix.recipes.rss.jersey.resources.MiddleTierResource.unsubscribe.
This method came up as regression often while not being altered.
The measurements were taken 5 times between the unchanged version and the one with
changed listed above. Figure 4.2 shows the means of the fetchSubscription() method
for each of the 5 repetitions. The mean was calculated of all taken measurements of
the method during the run. This is one of the changed methods and it was expected to
be generally slower in response times. The means of the two versions are fluctuating
around the same numbers. The same is shown in Figure 4.3 for the method subscribe().
Here the first repetition seems to vary highly, while the next 4 seem to be around the
same value. This is also a changed method. The means for a third method can be found
in Figure 4.4. This time they are for the unsubscribe() method. This method was not
touched, but has similar fluctuations to the other two methods of the same class.
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Figure 4.2.: Means over a whole measurement run for fetchSubscriptions() method.
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Figure 4.6.: Confidence intervals over 2 hours for the unsubscribe() method.

Another factor, that has to be mentioned, is that the number of taken measurements
per run fluctuated also. In around half the cases the between 125,000 and 150,000
measurements were taken. During the remaining measurements about 275,000 to
300,000 response times were recorded. This didn’t seem to impact the mean of the
response times though. The standard deviation during the measurements was around
0.8 to 1.2 times the mean, which is pretty high.
Figure 4.5 shows the confidence borders for the fetchSubscriptions() method during the
two hours of the first measurement. Here it can be seen, that they overlap quite often, in
other words they are evaluated as not significantly different, even though changes were
made to method to reduce its performance. Figure 4.6 shows the same graph for the
unchanged method unsuscribe(). Here the opposite is available and there is a significant
difference. Every interval would be detected as a performance regression.

As for Git Bisect, since regressions were detected in any commit and method, doing
GIT Bisect was impossible. Since results varied vastly between the measured commits,
commits where no changes happened were either improvements or regressions compared
to the initial commit. The call tree analysis behaved similar to this, since sometimes
in-between methods would be flagged, sometimes they weren’t.
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4.4. Discussion

In the following the approach will be discussed in regards to the research questions,
which were stated above.

4.4.1. RQ1: Reliability

The reliability as observed during evaluation falls with the observed results. The load
tests conducted seem to be an unreliable source of performance data. One reason for
this may be how the load tests were executed. There may have been too many outside
factors, that changed the measurements. An more isolated environment may have led to
more stable measurements. One point may be, that Locust and the RSS-Reader were
both in the same Kubernetes cluster.
Another problem could lie with the proof-of-concept implementation, that was only able
to take a part of the measurements at once. While around 400 measurements for a
method may seem as a good basis for computing the confidence intervals, compared
to Heger et al.’s 50 measurements, it may simply not be enough in order to filter out
random spikes in response time.
As a result of the problems with regression detection, GIT-Bisect does not work correctly
and can’t be used.

4.4.2. RQ2: Scalability

The approach itself in theory seems to scale well. The load test length can be altered
and the number of measurements either lowered or raised. As far as the implementation
goes it didn’t run into any problems with scalability yet. The time needed goes up with
number of measurements. One point, where problems may appear, is, if the number
of measurements gets too high and the computation of confidence intervals runs into
problems because of the maximal possible long value.

4.4.3. RQ3: Improvements

One improvement was already mentioned in a previous section: The computation of
confidence intervals should be improved to be able to take a whole set of data, not only a
part. In the evaluation this may have made a difference when computing the confidence
intervals. Another improvement, that could be done would be to prepare the data for
confidence interval computation, by for example removing vast outliers.
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In the area of call tree analysis one improvement that could be made for the implemen-
tation would be to count the number of times a certain call tree appears. This number
of appearances may have influence when a method comes with optional methods. If
a certain call-tree with a long running contained method becomes more frequent this
could lead to a regression being detected, even if no change was made. By counting this
case could be removed and the number of false-positives would be lowered.

4.4.4. RQ4: Call Tree Analysis before GIT-Bisect

The idea behind this was to do a call tree analysis before doing GIT-Bisect in order to
identify classes and methods, which are part of the call tree of a detected regression. If
GIT-Bisect selects a commit for testing, in which none of the classes are touched, that
could influence the as regression marked method, one could simply use the GIT-Bisect
skip function, where another new commit is chosen for testing. By doing this only
commits, that could’ve influenced the identified method are tested. In a setup similar
to the evaluation setup, this could potentially save much time, since tests were run for
multiple hours. If one wants to make sure, that the correct commit is identified, the
last marked ’good’ commit and the commit identified by Bisect could be used to do a
second GIT-Bisect to find the exact commit. A slight alteration to this is to do the test on
the commit right before the identified commit of the first Bisection, since then it can be
learned, whether the error results from the identified or another commit.

4.4.5. Threats to Validity

There are external and internal threats to validity, as this was an experiment.

Internal

During measurements the test setup was influenced by unknown factors. This is visible
in form of strong fluctuations of the mean of the measurements. These factors are
could be reduced by further isolating the test environment in order to reduce possible
influencing factors. Even though the number of measurements per method were in most
cases around 2,000 and above, the time the tests are run could be raised further, in order
to get more data. Also by doing measurements, like in case of the experiment using
Kieker, the recorded measurements are influenced. A last point is the implementation of
the proof-of-concept implementation, that lets it only analyze 25,000 measurements at
a time may have influenced it.

38



4.4. Discussion

External

The RSS-Reader is a relatively small application, with small call-trees. Industrial systems
may be much bigger and even though the approach should scale well, it wasn’t tested
with bigger systems. Another point is, that the server, the experiments were done on,
may have varying performance depending on the time of day due to more or less usage.
This may also have influenced the measurements.
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Chapter 5

Conclusion

During this work a method to test for performance regressions using load testing and
searching for their root cause was introduced. The approach used data, that was
gathered during load testing with existing load tests of a project, in order evaluate the
performance on one commit. This was then used to compare with the performance of
earlier versions in order to find performance regressions using confidence intervals over
the response time mean. Next possible root causes were identified by utilizing GIT’s
GIT-Bisect function and a call tree analysis. This second step is done in order to help the
developer fix the problem faster and easier. The approach can be used in continuous
integration environments, where load tests exist and are run regularly.
This approach was implemented in form of a proof-of-concept implementation, which
was evaluated by using test data generated using the Netflix RSS-Reader [net14]. For the
evaluation Regressions were introduced and the implementation was used to discover
them.

Overall the evaluation showed, that there are flaws in the approach when the per-
formance data varies too much. However the approach may work, when the data is
taken from a more isolated area and as such is less influenced. If the problem with
the input data can be resolved, the approach may be a viable addition to the field of
performance regression testing. The future work states some factors, that may improve
the approach.

Future Work

One part of the future work is to evaluate the approach fully automated. This includes
using a fully automated testing setup as opposed to the one used during evaluation,
where tests were manually started. An example for a tool-setup that could be fully
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automated is presented in Appendix A.
Another part, that has yet to be automated is the GIT-Bisect usage within the proof-
of-concept implementation. Therefore, the testing setup should also be automatically
controlled from the implementation.
The evaluation should further be extended by using a real-world software as the test
program, where a regression occurred at an earlier time. This would be a more valid
approach to evaluate the implementation and the approach.
A fourth and last point would be to simply evaluate further. Scalability of the approach
was not evaluated as much as it was planned, and could be looked into more. And the
flaw for confidence intervals in the proof-of-concept implementation should be removed
and retested with an value over all measurements.
The call tree analysis part of the root-cause isolation could be further extended and
enhanced. An example for this would be the improvement proposed during evaluation.
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Extended Toolchain for automation

In the following a toolchain will be described, that may be fully automated. For this the
tools not used in the thesis will be presented, followed by a short overview how the final
tool chain may look like.

A.1. Gatling/JMeter

Gatling1 and JMeter2 are tools that can be used in order to put load on a system. This
allows to do load tests on a system, that is to be evaluated. Creating these load tests
early and doing them, will enable the developer to detect bottlenecks and performance
problems early, reducing the time needed to test later. This is also enhanced by the fact,
that it is possible to script automatable tests, which simulate multiple users with different
actions. It is possible to integrate both tools into a continuous delivery pipeline.

A.2. Jenkins

Jenkins3 is an open source automation server for software development. It is possible
to use it in order to automate steps like building, testing and deployment. It is very
extensible, since it supports the use of plugins, which can be added into a ‘pipeline’
in order to build/test/deploy the software in the desired way. There is a multitude of
existing plugins that can also be downloaded and used. Jenkins itself can be run either

1http://gatling.io/
2http://jmeter.apache.org/
3https://jenkins.io/doc/
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by using native system packages, installing it and running it as a Java-application or by
using a Docker-Container. This makes it very portable and system-independent.

The earlier mentioned ‘pipeline’ is used in order to automatically guide a project from
source code to a deployed version. This pipeline first has to be configured by the user.
After configuring it, Jenkins automatically takes the code (either from the system’s
own memory or an online version-control platform such as Git-Hub) and builds the
project. After a successful build is available it can be either tested or deployed (or both)
automatically.

A.3. Toolchain overview

As a base for the tool chain serves an OpenStack Cloud, where a Kubernetes instance
runs on top. In Kubernetes a Docker-Container with Jenkins will be running. Jenkins will
pull a test-project from GitHub, build it and deploy it containerized into the Kubernetes
cluster, using a plugin to manage the container. Gatling or JMeter can then be used in
order to run load tests on the application then and Kieker enables the measurement of
performance data from the system under load. This results in a toolchain, that is able to
automatically pull, build, deploy and test a repository from GIT.
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