
Institute of Architecture of Application Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Master Thesis

Modeling Context-Aware
Systems using TOSCA

Marta Martín Sánchez.

Course of Study: INFOTECH

Examiner: Prof. Dr. Frank Leymann

Supervisor: Kálmán Képes, M.Sc.

Commenced: January 19, 2017

Completed: July 19, 2017

CR-Classification: D.2.2,D2.11,D.2.12,D.4.7,H.5.3,I.2.8

Abstract

Cloud Computing is widely accepted as a provider of virtual resources over the Internet,
it is due to its economical and technical benefits, such as on-demand self-service,
resource pooling and rapid elasticity capabilities. To exploit these properties reliably, it is
needed to automate their internal processes for application provisioning, configuration
and management. One of the standards that has been developed in the last years
with this aim is the Topology and Orchestration Specification for Cloud Applications
(TOSCA) by OASIS. TOSCA is a standard which enables application developers to
describe applications and their management as models that incorporate components
and their relations among each other. Due to the emerging of new fields such as the
Internet of Things, Industry 4.0 and the upcoming Fog Computing paradigm, which
depend more and more on dynamically changing situations and therefore reconfiguration
of applications in such a scenario, a systematic modelling approach which handles
situational dependencies directly in the models of these applications is needed. The goal
of the thesis is to identify suitable modeling concepts from the field of context- aware
systems and apply one of these on the TOSCA language to incorporate the inherent
nature of change of future applications in the field of Cloud/Fog Computing, Internet of
Things and Industry 4.0.

3

Contents

1 Introduction 13
1.1 Scope of the work . 14
1.2 Thesis Organization . 14

2 Fundamentals 17
2.1 Cloud Computing . 17
2.2 Business Process Modeling . 18
2.3 Context Aware Systems . 21
2.4 TOSCA . 34

3 Related Works 41
3.1 Integration of Situation-Awareness in Workflow Models: SitOPT 41
3.2 Contextualization of Business Process . 42
3.3 Integration of Imperative and Declarative Approach to model Cloud

Applications . 44

4 Motivating Scenario 47
4.1 Description . 47
4.2 Modeling requirements . 53

5 Concept 55
5.1 Concepts Context Modeling . 55
5.2 Concepts Imperative Approach . 56
5.3 Concepts Declarative Approach . 67
5.4 Mapping . 76

6 Conclusions and future works 87

Bibliography 89

5

List of Figures

2.1 Representation of basic components BPMN diagrams 19
2.2 Overall Architecture of CAPEUS . 25
2.3 Structure Mark-up Model . 26
2.4 User Agent Profile . 27
2.5 Example of graphical models . 29
2.6 Different types of facts [SL04] . 30
2.7 Overview service template topology by TOSCA 35
2.8 Conceptual Layers of TOSCA-based applications 36
2.9 Example of a simple Build Plan . 37
2.10 Imperative and Declarative Approaches 39

3.1 Three steps of Generating Provisioning Plans [BBK+14] 45

4.1 General Description of Motivating Scenario 48
4.2 Representation of the first Use Case . 49
4.3 Representation of the Use Case . 50
4.4 Representation of the third Use Case . 50
4.5 Detection bad performance . 51
4.6 Representation of Forth Use Case . 52
4.7 Representation of Fifth Use Case . 52

5.1 Monitoring Workflow . 57
5.2 Imperative General Model Approach of 1st Use Case 58
5.3 Expanded View Fetch VMs activity . 59
5.4 Expanded View Provide Service Activity - Fixed Node Template 60
5.5 Expanded View Provide Service Activity - Not Fixed Node Template . . . 60
5.6 Imperative General Model Approach of 2st Use Case 61
5.7 Expanded View Connection/Disconnection appropriate Gateway 62
5.8 Imperative General Model Approach of 3rd Use Case 63
5.9 Imperative Alternative Model Approach of 3rd Use Case 64
5.10 Imperative Alternative Model Approach of 4th Use Case 65
5.11 Imperative Alternative Model Approach of 5th Use Case 66
5.12 Declarative General Model Approach of 1st Use Case 68
5.13 Possible states of 1st case topology during run-time 68

7

5.14 Declarative Alternative Model Approach of 1th Use Case 69
5.15 Possible states of 1st case(alternative) topology during run-time 70
5.16 Declarative General Model Approach of 2nd Use Case 70
5.17 Possible states of 2nd case topology during run-time 71
5.18 Declarative General Model Approach of 3rd Use Case 71
5.19 Possible states of 3rd case topology during run-time 72
5.20 Declarative Alternative Model Approach of 3rd Use Case 72
5.21 Possible states of 3rd case(alternative) topology during run-time 73
5.22 Declarative General Model Approach of 4th Use Case 74
5.23 Declarative General Model Approach of 5th Use Case 74
5.24 Possible states of 4th and 5th topology during run-time 74
5.25 General Architecture . 76
5.26 1 Concept: Data connector between Processing Logic and unique Data

Resource . 78
5.27 TOSCA realization with explicitly modeled data query 81
5.28 Data Connector with Operations Applied to Multiple Data Resources . . 82
5.29 TOSCA realization with join operation assignment via join interface . . . 84
5.30 Integrated architecture for Location Aware System 85

8

List of Tables

2.1 Evaluation of Context Models . 33
2.2 Evaluation of approaches [BBK+15a] . 40

9

List of Listings

2.1 Example of Key Value Model . 24
2.2 Example of Mark-up Model . 26

5.1 Processing Logic Node Type Definition 79
5.2 Context Resource Node Type Definition 79
5.3 Data Connector Type Definition . 80
5.4 Context Collection Node Type Definition 83

11

1 Introduction

The spread of recent technological advances is changing the way in which we consider
Internet and the Computing Paradigm [YMCL13]. Cloud Computing has introduced
a wide range of possibilities and capabilities in developing applications. Moreover,
Pervasive Computing has introduced a new perspective which involves the introduction
of technology in the people‘s daily life by the penetration of mobile computing shown as
“invisible” [Sat01] which allows to recognize automatically changing situations providing
the basis for automated adaptation of process executions. This involves a high impact
on modeling and development of applications in which context information is more and
more valuable. For that reason, a new type of systems are taking more relevance in this
area, which are so-called Context Awareness Systems, by taking advance of the context
information to adapt its performance and react to changes of its close environment. This
means that the applications would be adaptive to different situations and as one of the
objectives of Industry 4.0, the time of reaction would be insignificant. These systems are
characterized by having a dynamic architecture which simplifies end-to-end processes
and reduces costs and by making use of Big Data to generate knowledge in order to be
aware of the context. A wide range of areas can take advantage of these systems, from
emergency or healthcare areas which need to monitor the context to react as quickly
as possible, to IT areas in which improving the quality, decreasing the impact of points
of failure and adapting its performance to the users situation are a valuable advantage
from competitors.

Modeling is considered as a feedback process, models are in constant improvement, con-
tinuous examination and adaptation. It is not only required to this type of applications to
be aware of the data associated with the environment, but also a high level of situation
understanding and adaptation of the states of the system. One of the most benefits of
this approach is the adaptability which have the topologies to be reused in different
applications context. Moreover, it can be used in many different levels of granularity
and this type of topologies offer an assistance to stakeholders to handle organizational
change.context, which is the aim of this thesis. [End95; KBS+16]

Modeling context is a challenging task. First authors who wrote about context-awareness
only take into consideration location changes when describing context. Although many
definitions have been given of this term, an accepted one include all the factors that

13

1 Introduction

can characterize a situation such as temporal, spatial, environmental, device, network
information or communications capacities. Many modeling approaches have been used:
simple structures which define the context attributes which are taken into account such
as key-value or mark-up models; or more complex structures which introduces rules,
relationships, logic between the different context entities such as ontology models.

Cloud Applications are required to be automatically deployed and managed, portable be-
tween different environments and its components should be interoperable and reusable.
This requirements can be fulfilled by the standard Topology and Orchestration Speci-
fication for Cloud Applications (TOSCA). This standard defines application topologies
and management plans in order to offer a full-automated management of applications.
TOSCA supports two different processing approaches: imperative approach which makes
use of Provisioning Plans that precisely describe provisioning tasks to be executed en-
abling the customization of the service, while declarative approach adapts application
topology models by a Runtime Environment aware of provisioning logic reducing the
effort to model the application behaviour.

Due to the benefits of TOSCA modeling, TOSCA could be considered as a candidate for
modeling context aware systems. However, data management and reaction capacities to
changes are not specified in TOSCA. For this reason, it is necessary to develop a general
architecture in TOSCA to model these type of systems.

1.1 Scope of the work

The objective of this master thesis is to model a solution to integrate context-aware
systems into TOSCA. It would be necessary to understand and fulfill the requirements
that this type of applications have and evaluate about how they can be modeled.
After this analysis, we will define a general solution by modeling how the application
structure and integration into TOSCA will be handled by constructs of context awareness.
To analyze the possible profits and deficiencies a possible scenario will be described
and modelled with this solution. The conclusions of this work would help to guide
forthcoming implementation.

1.2 Thesis Organization

This document is structured as follows:

Chapter 2 – Fundamentals: In this chapter we described the fundamentals concepts
for this thesis such as Cloud Computing and Context Aware Systems.

14

1.2 Thesis Organization

Chapter 3 – Related Works: In this chapter we introduce similar works of modeling
context aware systems.

Chapter 4 – Motivating Scenario: In this chapter we describe a scenario which will be
used to present and evaluate the modeling solution proposed, analyze different
possibles use case developed in this scenario and finally specify the requirements
needed to model the scenario.

Chapter 5 – Concept: In this chapter we introduce our conceptual modeling approach
to the scenario evaluating the suitability of using imperative or declarative ap-
proaches in the use cases proposed and how our concept could be mapped into
TOSCA.

Chapter 6 – Conclusions and future works: - In this chapter, we summarize our work
and analyze if the objectives have been fulfilled. while describing possible future
improvements.

15

2 Fundamentals

This chapter introduces the fundamentals concepts related to this thesis which ranges
from Cloud Computing to Context Aware Systems and TOSCA .

2.1 Cloud Computing

Cloud Computing has been defined by the National Institute of Standards and Technology
(NIST) as "model for enabling ubiquitous, convenient, on-demand network access to a shared
pool of configurable computing resources such as networks, servers, storage, applications or
services which can be rapidly provisioned and released with minimal management effort or
service provider interaction"[MG11].

Since Cloud Computing has been introduced, it has changed the way we use the
computing infrastructures by enabling an access to a wide range of configurable com-
puting resources. This technology offers virtually unbounded storage and processing
competences allowing a rapid scalability with minimal management and cost effort of
applications because of the on-demand nature of Cloud Computing. In order to gain both
economical and technical benefits, large companies such as Amazon, Google, Facebook
have embraced this paradigm for distributing services over the Internet [Dis15].

Because of the advantages of Cloud Computing, recent applications which involve
mobile devices make use of the computing, memory and storage resources as well
as the rapid scalability that is offered by cloud servers. Moreover, context is getting
more and more valuable to smart applications in order to adapt its behavior to the
current necessities of the users. This implies complex processing which can be reduced
by using Cloud Computing. The proliferation of this kind of smart applications have
arisen a new area of development, known as Mobile Cloud Computing [NPB13]. Many
challenges have been introduced such as integration and interoperability requirements,
and the need of understanding, anticipating and adapting the behavior of applications
without the intervention of users. To fulfill the requirements of this paradigm, it involves
taking care of a good architecture, an effective management of context information, the
communication and coordination between the entities which lead to the smart adaptive
behavior requirement [BDPP16].

17

https://www.nist.gov/

2 Fundamentals

As a consequence of the amazing increment of different Internet-enabled devices and
the ubiquitous wireless and cellular data networks, a wide range of users are requiring
customized services. It is believed that the next step in Cloud Computing paradigm
would be outside the dimension of traditional cloud services, such as context aware
services [DPK+09; WB10; YD16].

2.2 Business Process Modeling

The objective of Business Process Modeling is to provide high-level specifications taking
into account the business requirements which can be automatically simulated, validated
and turned into a real-time application. With the use of a process modeling standard,
the understanding is not only tied to users of a particular tool, but also to all the users
of the standards because of its multi-vendor definition. To model business processes, it
is not only necessary to include the sequence of process activities, but also information
required to transform and optimize company’s business processes [Fis06; Sil11].

Despite different approaches in modeling used such as textual or tabular descriptions
[Dam07], the widely accepted models are the graphic model diagrams. Although
many standards are used in process modeling such as XPDL (XML Process Modeling
Language) which is used to define automatic processes and BPEL(Business Process
Execution Language) used to execute processes, BPMN has become the leading standard
for business process modeling. BPMN is an expressive language able to describe the
behavior of process models in an expanded way, and later specify the technical details
which control the process execution. BPMN could be considered as a bridge between
the business and IT world, introducing an standard that could be used by both sides.
The original aim of BPMN when it was developed by the Business Process Management
Initiative (BPMI) was to provide a graphical notation for process description by the use of
BPML(Business Process Modeling Language) which was replaced by BPEL. Few versions
have been introduced in this standard, but the most important and recent one is the
so-called BPMN 2.0 which have introduced different new diagram types(collaboration,
choreography, conversation) to cover different types of applications. In addition, a
standardized exchange format for BPMN models in order to do them portable in different
tools. Moreover, execution semantics and capabilities to introduce executable process
designs were created to automate the deployment of the processes [All16].

BPMN describes the processes as a sequence of activities which leads from an initial
state to a defined final state, including all the possible paths from this two states. An
activity in BPMN is considered as a unit of work performed repeatedly in the course of
the business, but each instance refers on a different piece of work with a well-defined
start and end state.

18

2.2 Business Process Modeling

In the Figure 2.1 the most important described components of a BPMN diagram are
represented.

The activities can be grouped in sub-processes which can be represented in the diagram in
a compressed or an expanded way depending of the level of detail that it is desired. In the
left side of the figure, both views are represented. These sub-processes are characterized
for requiring an start event and an end-event and allowing to have intermediate events
which can interrupt the execution of the activities of the sub-process.

Figure 2.1: Representation of basic components BPMN diagrams

To alter the control flow of a process, BPMN introduces decision points. The most
important decision gateways, which are represented in BPMN as rhombuses are the
following:

• AND gateways: These gateway trigger the parallel execution of segments of the
workflow. By that, it does not mean that they are executed at the same time, it
means that it does not matter which is executed first.

• XOR gateway: This gateway, as it will be seen in the chapter 5, will be essential
for declarative modeling to select the appropriate node instances to be installed in
the topology to the context situation in which the system is. As a difference with
the previous gateway, it only selects one path to be executed from the possible
paths.

19

2 Fundamentals

• Event-based gateway: This gateway is aware of the events that are triggered in
the process instance and depending on which is executed first the path related
would be executed. This gateway will be used very often in the imperative
modeling when the changes of the topology of the system are related to changes
in the context (time-frames, performance of servers,..)

Three different types of events are used in the workflows defined by this standard:

• Start Event: All process or sub-processes are initiated with this type of event,
which are introduced as a single ring in the diagrams. It represents what triggers
the execution of an instance of the process. By contrast with other types of events,
in each process there is only one start event. There are a wide range of types of
start events: from basic start events to trigger events such as receiving a message,
time scheduling or external signals, all of them represented in the first column of
the right side of the Figure 2.1

• Intermediate Events: This type of events, represented with a double ring in the
diagrams, occur during the execution of the process instance. These events can
be of two types: interrupting events which stops the execution of the activity if
it is not completed and execute the exception flow or non-interrupting events
represented with a dashed double ring which triggers a parallel path of the process
when the activity is completed. As well as the start events, message reception, time
scheduled and external signal triggers are different types of intermediate events,
but in addition new kinds are introduced such as error or compensation triggers.
We are going to use mainly interrupting events to model the scenario proposed
in the Section 5 so in the Figure 2.1 these events are represented in the second
column of the right side. There is also possible that intermediate events can be
generated by the process, so-called catch events represented by filled-icons.

• End events: These events, represented as a ring with a single thick border, are
which indicates the end of the execution of the instance of a process or a sub-
process model. There are as many end events as paths that a process or sub-process
has. As a difference with the start event, these events are generated by the process,
represented in the diagram by a filled icon inside the ring. The most representative
end events which are represented in the Figure 2.1 are the none event, message
sending event and terminate event.

Although BPMN is not originally adapted to context-awareness, the introduction of
improvements in the version 2.0, such as data flows, and the elements, previously
described; it is a perfect candidate to model these types of behavior. Recent researches
have introduced solutions of modeling context awareness systems by using this lan-
guage. Julian Dörndorfer et.al [DS17] proposed an extension of the BPMN enabling
the modeling of mobile context sensitive business processes by introducing a new type

20

2.3 Context Aware Systems

of events related to context variables. Alaaeddine Yousf et. al have also proposed an
extension so-called UBPMN [YBSD16] with the aim of creating end-to-end ubiquitous
business processes and guarantees their portability in a conservative way by introducing
tasks and events structures associated to the context.

2.3 Context Aware Systems

Many definitions have been used to describe context recently, some of them so general
that they include all conditions that exist in a given situation, and definitions that are
more specific capturing concrete factors such as location (where), type of device (what)
or identity (who). Both types have its limitations, the first type is really vague and does
not specify the focus and the difficulty of implementation; and the second one may not
capture all valuable events or facts which has influence in the situation. In 2000, a new
definition of context was introduced which by trying to include the different perspectives
in which the context was defined before [AG99].

”Context is any information that can be used to characterize the situation of an entity. An
entity is a person, place, or object that is considered relevant to the interaction between a
user and an application, including the user and applications themselves.”

With the use of this definition, entities, which are every necessary element included
in the context (including the user and the application itself), have vital importance
between the application and the user. The perspective in which context is seen, instead
of considering it as a central structure, as interactions between entities. This new
definition allows designers to capture all important elements of the context regardless
of which perspective is taken by the design team. It provides a way with this perspective
of evaluating and validating the possible elements which take part in the context.
Nevertheless, it is still very difficult to include all aspects which may influence the
context. Moreover, the dynamic property which characterizes context provokes that the
importance of it would depend on the situation [AG99; BE04].

Context aware systems are taking more and more presence in Pervasive Computing. The
most important characteristic of this type of systems is the ability to sense the context in
the environment and adapt its operations to predefined or dynamic changes without the
intervention of users. By this, more efficiency, usability and effectiveness are achieved.

With the big impact of mobile devices, it is highly desirable that services and applications
could adapt its behavior to their current location, time, type of device, and other
environment factors. Moreover, context data might change quickly so it requires an
intensive monitoring. This data can be taken by different sources such as sensors,
network status and device information [PFCP10].

21

2 Fundamentals

These types of systems are not relatively new. Since 1992, some examples of context
aware systems have been developed. The first ones were focused on determining the
location of the users because of being the most frequent context attribute [BCB+10].
However, in the last few years other attributes have been taken into account.

There are a wide range of areas of application of these kinds of systems such as the
healthcare area in which monitoring is important to improve the performance of the
staff of the hospital; or emergency situations such as earthquakes or floods in which the
prevention and a efficient first aids are essential. Moreover, areas like the transport or
industry would have a high impact with this new type of systems improving its perfor-
mance and efficiency, introducing an additional value and adapting to the necessities
of every one. Not only are these kinds of systems improving existing areas, but also
creating new applications such as intelligent homes in which context information helps
to improve the conformability of the people who live there, improve efficiency and
reduce costs.

One of the challenges these types of systems have to continue working with, is security.
It is necessary to guarantee the privacy, the integrity and the confidentiality of the
context data. A fault in security can provoke that the system use context data that has
been manipulated or sensible data such as data of intelligent homes can be analyzed by
intermediates causing harmful risks.

Context-aware systems can be implemented in many ways depending on specific require-
ments, conditions and the way these systems acquire the contextual information [DR07].
A good context data modeling is really valuable because it can reduce the complexity of
these applications, improve their maintainability and evolution. In the section 2.3.1 we
describe different modeling approaches that have been researched during the last years
in order to manage and integrate context in a wide range of applications.

According to Knappmeyer et. al [KKR+13] context can be classified into 9 categories:

• Spatial Context: This type of context is related to information about the physical
position of an element and the relative position to other elements (proximity).

• Temporal Context : This type of context is related to information about the
absolute or relative point in the time of an event.

• Device Context: This type of context is related to information about the capabili-
ties and resources of devices which interacts with the system.

• Network and Communication Context: This type of context is related to infor-
mation about network characteristics such as WiFi access point or bandwidth
available.

22

2.3 Context Aware Systems

• Environmental Context: This type of context is related to information about the
physical surrounding of an entity such as noise level, humidity, pollution or light
intensity.

• Individuality and user profile context: This type of context is related to infor-
mation about identified users such as preferences, interests and habits.

• Activity Context: This type of context is related to information about which task
an entity is executing and which are planned.

• Mental Context: This type of context is related to information about the physio-
logical status of the user such as level of stress, feelings and so on.

• Interaction Context: This type of context is related to information about the
interactions in the system, not only between the application and the user, but also
interaction between users.

2.3.1 Context Model

A context-aware system, in order to access to the context, needs a well designed model
as it was said in the section 2.3. Context sharing and interoperability of applications are
the objective of current research so uniform context models, representation and query
languages as well as reasoning algorithms are being developed to facilitate this aim. To
develop any kind of modeling approach it is necessary to take into account the following
requirements of ubiquitous computing:

1. Requirement 1: Distributed Composition: A context model should handle high
dynamics in terms of time, network topology and sources in the composition and
administration of context models and its data.

2. Requirement 2: Partial Validation :A context model should give partially valida-
tion of contextual knowledge despite it is not available due to the complexity of
contextual interrelationships, which makes any modeling error-prone.

3. Requirement 3: Richness and Quality of Information: A context model should
support quality and richness indication due to variations of the quality of the
measures taken and in the abundance supported by a wide range of sensors.

4. Requirement 4 : Incompleteness and ambiguity: A context model should han-
dle incompleteness and ambiguity in the amount of information available at any
time using techniques such as interpolation of incomplete data on the instance
level.

23

2 Fundamentals

5. Requirement 5: Level of Formality: A context model should describe facts
and interrelationships in a precise and traceable manner and all entities which
composes a system should share the same interpretations of data exchanged.

6. Requirement 6: Applicability to existing Environments:A context model should
be applicable within existing the infrastructure of ubiquitous computing environ-
ments.

For that reason, in the past different kinds of context models have been subject of
research. Initially, the context models were related to only one application or an
application field, but lately generic models are more taken into account because of the
benefits to a high range of applications. In this section, we present the most relevant
context models and evaluate the usefulness according to the different kinds of context
presented in the previous section.

Key-value models

The model of key-value is considered the simplest data structure for context modeling.
To describe the context, it is given a list of attributes composed each of them by a context
key and a context value. These pairs are usually realized as environment variables.
In the Listing 2.1 it is presented a simple example of the Key-Value Model where the
corresponding instances describe contextual information about a location.

Listing 2.1 Example of Key Value Model
Model:

[<ContextKey> Context Value]*

Instances

<Location_lat>48.745853; <Location_lon>9.105398;

<Temperature>1 <Temperature_unit>Centigrade;

<Humidity> 36.7; <Humidity_unit>\%;

It is commonly used in distributed service frameworks in which the key-values pairs are
used to describe the capabilities of a service. Then the discovery procedure operates an
exact matching algorithm using this key-value pairs. In that way, an architecture for
context-aware service provisioning has been proposed with the name of CAPEUS. Users
receive, with this system, the service which fits more with them (location, aim of the
user. . .). In the Figure 2.2, it is depicted the overall architecture of CAPEUS [SML01]

24

2.3 Context Aware Systems

Figure 2.2: Overall Architecture of CAPEUS

In general, key-values are manageable, easy to implement but they lack of capabilities
for sophisticated structuring for enabling efficient context retrieval algorithms [BCB+10;
GFHK14; NH13].

Markup scheme models

To represent contextual information, markup models are based on a hierarchical data
structure consisting of markup tags. The content is usually defined by markup tags in a
recursive way. A variety of markup languages are used for context modeling including
XML. Continuing with the proposed example of the key-value models, in the Figure 2.3 it
is presented the markup scheme and the hierarchical structure describing the contextual
information of it [GFHK14; NH13].

25

2 Fundamentals

Listing 2.2 Example of Mark-up Model
Model:

<Location>

<Temperature>

<Temperature_unit> Centigrade </Temperature_unit>

<Temperature_value> 1 </Temperature_value>

</Temperature>

<Humidity>

....

</Humidity>

</Location>

Figure 2.3: Structure Mark-up Model

This modeling approach is manageable and the existence of a scheme definition pro-
vides a stable foundation for developing validation tools. However, strict hierarchical
structures imply lack of flexibility.

Some modeling approaches which use this technique are:

1. CC/PP (Composite Capabilities/Preference profile): It is an W3C’s specification
which defines a basic structure for profiles, composed by a strict two level- hierarchy.
This specification was the first of using Resource Description Framework (RDF)
and including elementary constrains and relationships between context types.
Not only is the goal of this approach to express both device capabilities, but
also user preferences. However, the definition of the particular components and
attributes is not done by this specification, but by other standardization bodies
using RDF scheme. This flexible mechanism ensures CC/PP extension. Moreover,
the XML interchange format and a referencing mechanism for external resources
excellently meet the interchangeability and composability/ decomposability as
requirement. However, the CC/PP framework has some disadvantages such the
limited capabilities in capturing complex profiles of context structures such as

26

2.3 Context Aware Systems

relationships and dependencies between entities because of the two level-hierarchy,
limited capabilities in allowing consistency checking and supporting reasoning on
context, the limitation of capturing complex profile structures, the requirement of
attributes names to be unambiguous even if there are used in different components
[BCB+10; CFJ03a].

2. UAProf (User Agent Profile): The goal of this specification, defined by the Open
Mobile Alliance (OMA) is capturing capability and preference information for
WAP-enabled mobile devices. As CC/PP is, UAProf is also based on RDF. It is
used generally to provide the more appropriate content for different devices based
on the information taken. The information can be clustered in six categories:
hardware, software, browser, network, wap and push characteristics. [TJH10]. In
the Figure 2.4 it is shown what it is the schema of the UAPROF. First of all, a parent
element has a unique child which it can be seen in the figure as the description
which identifies the element. This element has as child all the attributes of each
component: HardwarePlatform, SoftwarePlatform... but it is required that there
is only one component for each profile. Each attribute is described with the
rdf:Description tag.

Figure 2.4: User Agent Profile

3. CSCP (Comprehensive Structured Context Profiles): Instead of CC/PP, CSCP
does not impose a fixed hierarchy. In contrast, it gives flexibility by expressing
natural structures of profile information (session profiles) as required for contextual

27

http://openmobilealliance.org/

2 Fundamentals

information using RDF/S. CSCP supports decomposability by means of external
references which are used to extract sub-profiles to separate CSCP documents and
provides features to attach conditions and priorities to attributes, extending the
capabilities to express user preferences [BCQ+07; BHH04; CFJ03a] .

Graphical models

Expressing relationships between context entities is the goal of graphical models. These
models are the best for structuring contextual data. Graphical visualization is the basis
of the representations, supported by many powerful graphical design tools. Moreover, it
is allowed to automatically derive code representations and model entity relationships
of databases. Graphical context models have commonly been used as generic structure
that can be used to model context in environments. These models are in general more
expressive than key models and hierarchies but they have lack of reasoning capabilities,
they are not good at handling ambiguous data sets and struggle with the incomplete
data and partial validation [BCB+10; GFHK14; NH13].

There are two main directions used for graphical modeling:

1. Unified Modeling Language (UML): Due to its generic structure and that it is
composed by graphical elements which are excellent foundations for context
modeling, UML is an appropriate approach for modeling. There are a variety of
examples of use of this tool such as air traffic management, contextual information
classification... [Bau03]. In the Figure 2.5 it is presented the graphical context
model of the introduced simple example in the previous types of models using
UML class diagrams.

28

2.3 Context Aware Systems

Figure 2.5: Example of graphical models

It can be seen in the diagram that a city which is the focus of environmental
analysis is composed by different locations in which the sensors are located. Each
location has an identification, as well as the city, and its GPS coordinates. In each
location, different types of sensors are introduced and each one offers measures
such as temperature or humidity values.

2. Object Role Modeling (ORM): The role of this technique is the identification of
appropriate fact types and the roles that entity types take part in. Extensions of
ORM allows to categorize fact types in static or dynamic according to its persistence,
profiled, sensed or derived depending on its source. The last extension of ORM
allows to introduce a new type of relationship between facts where a change in
one fact triggers the change in the other fact [SL04].

In the Figure 2.6, different types of facts are represented: the first case the two
entities have a fixed relationship because a node is always attached to a type, so
that means that is a static fact type. The second case, the two entities are related

29

2 Fundamentals

because when a user is registered in a system he has permissions to use specific
devices so there is a profiled fact type. The third case a person is detected in a
specific location e.g city so there is a sensed fact type. The forth case it is detected
in a unique location a person and a device so a new relationship is created because
the user is detected close to a device. This type of fact is called derived . The fifth
case describes a relationship that is temporal, this means, in an specific point of
time an user is doing an activity but when he finishes it, the relationship would
be disabled. This type of fact is called temporal. Finally, the last case represents a
dependency that if a person is in an activity also need to be located in a specific
location: This type of fact is called fact dependency.

Figure 2.6: Different types of facts [SL04]

Object-oriented models

By using Object-oriented models, the context is classified into classes of objects and their
relationships. The main benefits of the object-oriented paradigm (abstraction, encapsu-
lation, polymorphism, reusability and inheritance) are powerfully used in this model
to hide parts of the problems arising from the dynamics of the context in ubiquitous

30

2.3 Context Aware Systems

environments by encapsulating in object levels and hence hide to other components.
For that reason, the access to contextual data is only possible through specific imple-
mented interfaces. Following with the introduced example of previous model, using this
technique the structure of the model would be composed mainly by two different com-
ponents: humidity and temperature, which would be implemented independently and
hide their implementation to the other. There are two projects in which object-oriented
models have been used to model the context:

• TEAPROJECT—>“cues”:A cue is a function taking a value of a single sensor in a
certain timing and giving as a result a symbolic or a sub-symbolic value. For each
cue, it has a finite or an infinite set of possible values. It is possible to have different
cues based on the same sensor. Modeling context, therefore, is the abstraction
level on top of the available cues, which provide contextual information through
their interfaces hiding the details of how it is determined the output values.

• Guide project—> Active Object Model: Its goal is to be able of managing a great
variety of personal and environmental contextual information while maintaining
scalability. All the details of the data collection and fusing are encapsulated within
the active objects and therefore hidden to other components.

All the examples of use of object-oriented technique share the benefit of its inheritance
and reutilization of capabilities, the simplification of knowledge representation in very
complex domains and systems and its strength in the requirements. On the other hand,
invisibility causes undermining of the formality of requirements [BCB+10; GFHK14;
NH13; SML01].

Logic based models

Context is defined, by this technique, in term of facts, expressions and rules with the
highest possible level of formalism. Contextual data can be derived by existing facts, logic
conditions, knowledge bases and rules, this method is known as process of reasoning
or inference. This new contextual information, given as a result of this process, can
be presented as a new fact in a formal way. Following with the environment example,
values taken from temperature and humid can determine if it is raining or snowing for
example. Different approaches for this technique have been given:

• The first logic based context modeling approach was researched and published
as Formalizing Context in 1993 by McCarthy introducing context as abstract
mathematical entities with properties useful in artificial intelligence ??. Instead
of giving a definition what context is, a set of simple axioms for common sense
phenomena was provided, using lifting rules relating the truth in one context

31

2 Fundamentals

(axiom) to the truth in another context. Accordingly, the concept of inheritance is
supported.

• A second context modeling approach, is less on context modeling than on context
reasoning. Encoding a context in an individual’s subjective perspective. This
approach was firstly developed by McCarthy (Formalizing Context), and then by
Akman and Surav (Extended Situation Theory. The wide range of different contexts
is addressed in form of rules and presuppositions related to a particular point of
view, representing the facts related to a particular context with parameter-free
expressions supported by the situation type which corresponds to the context.

Although the formality and support for reasoning makes this context model high valuable,
there are some drawbacks such as difficulty to construct implement and maintain
complex logic systems which covers a wide range of contexts, lack of possibility of partial
reasoning and validation and detection and solving incompleteness ambiguity and low
quality of information [GFHK14; NH13; SML01].

Ontology Models

This technique is a clearly combination between logic and object-oriented modeling
techniques being a promising tool to define concepts and interrelations. This approach
has features to provide formalizations of real-life entities onto a data structure utilizable
by computers. Context is modeled by a common vocabulary which represents knowledge
about the domain: classes (concepts), individuals(facts) and properties (roles, relation-
ships). Ontology reasoning is used to analyze and evaluate the contextual knowledge,
allowing computers to determine the contextual compatibility, compare contextual facts
and deduct new and more complex context from data measured. Ontology models
are characterized by semantic interoperability because of a common understanding of
the infrastructure, reuse of domain knowledge and ability of formal analysis such as
context reasoning. However, the most context ontologies lack of generality and have
not addressed important issues such as context classification, context dependency and
quality of context which are main points in context reasoning. Following with the
environment example, with this technique it is possible to expand the functionality of
the application including new context types such as other environments measures and
with the use of context reasoning deduce new information and actuate in the different
locations [CFJ03b; GFHK14; GWPZ04; NH13; SML01; WGZP04]. For example, we
preseent two different approaches which use ontology models:

• CONON (Context Ontology): This approach uses a two level hierarchy ontology.
The upper ontology captures general concepts which are basic to all context-aware
applications, and a second level is extensible to add domain-specific ontologies. To

32

2.3 Context Aware Systems

capture context information, CONON defines general concept which are believed
to be the fundamental context: Computation Entity, Location, Person and Activity
which not only form the structure of context, but also act as evidences into
associated information. In the lower ontologies would be included what is needed
for the specific context-aware application.

• CoBrA (Context Broker Architecture): In this approach, a broker-agent architecture
to provide runtime support for context-aware systems supporting agents, services
and devices to interact is presented. It is based on OWL (Ontology Web Language).
Its principal component, context broker, provides a shared model to represent con-
text information enabling context reasoning to provide new context information.
Context data is acquired by different sources: sensors, agents and also the Web.
[BCQ+07]

Evaluation

Having in mind the requirements presented in the enumeration 2.3.1, it is necessary
to analyze if the context models presented previously fulfill them. In the Table 2.1an
evaluation of these models of covering these requirements is pictured.

Table 2.1: Evaluation of Context Models

The strength of key-value models is the applicability in existing ubiquitous computing
environments. However, it can be seen that the key-value models are the weakest on
requirements mainly because of its simplicity which is beneficial for management and
handling error risk but a drawback for quality meta- information and ambiguity. It is
only possible on the instance level distributed composition and handling incomplete-
ness, there is no structure available for checking and it is required difficult processes
to obtain partial validation. The strength of markup models are the partial validation

33

2 Fundamentals

ability because of its scheme definition and its set of validation tools and as key-value
models applicability to existing environments. Depending on each single approach, the
distributed composition requirement and the formality can be met also. Handling incom-
pleteness and ambiguity is not covered by the context model so must be implemented by
each application. The strength of graphical models is the ability to describe efficiently
the structure of contextual knowledge which is high valuable in the applicability require-
ment. Moreover, partial validation is possible. However, there are requirements that they
are not taken into account such as incompleteness and ambiguity. The structure used is
mainly for human use so the level of formality is relatively low. The strength of object
oriented models is its distributed composition because its ability to handle new classes as
well as new updated instances. Moreover, partial validation is also possible. In the TEA
Project the quality information requirement is also fulfilled because of the description
of the quality of the cues which is also useful to handle incompleteness and ambiguity
requirement. However, the formality requirement is not completely fulfilled because
of the encapsulation. Moreover, applicability to existing environments is fulfilled only
with strong requirements which are often not given by ubiquitous computing systems.
The strength of logic based context models are its distributed composition and level
of formality. However, there are requirements that are not fulfilled such as partial
validation which is difficult to maintain, quality of information, incompleteness and
ambiguity or applicability to existing environments because of the difficulty of finding
full logic reasoners in ubiquitous computing devices. Moreover, although this model
uses an extremely high level of formality, without partial validation the specification
of contextual knowledge is very error-prone. The strength of ontology models is its
distributed composition, partial validation and level of formality. Depending on the
approach the quality of information and ambiguity is also fulfilled (CONON support it
but not CoBrA). Incompleteness is covered by all approaches. However, the applicability
to existing environments depends of each approach. In CONON ontologies it is necessary
to use integrate elements which handles OWL-DL for knowledge representation, but in
CoBrA ontologies it is not necessary because of its broker-centric agent architecture. It
can be seen that the ontology models are the models which covers best the majority of
the requirements listed but it does not mean that the other approaches are not good
enough for modeling context-aware applications [BCB+10; BDR07].

2.4 TOSCA

As it was said in the section 2.1, companies have started to introduce Cloud Computing
in order to use virtualized computer storage and network resources and automate the
orchestration of such resources reducing by the way costs of management and operation,
which has a vital importance.

34

2.4 TOSCA

Enterprise systems are characterized usually by a high complexity and by consisting of
a great amount of individual components, each one providing a different functionality,
aggregated and orchestrated to offer a composite application. The type of architecture
which mainly share this kind of applications is modular, so by the use of cloud tech-
nologies they benefit from properties such as elasticity, flexibility, scalability and high
availability which reduce costs as the maintenance is outsourced.

One of the challenges of this kind of applications is the development effort in time, costs
and the error-prone when done by hand. It is usually carried out in a manual way by
using scripts or even by completely manual work. For that reason, portable applications
which are automatic in deployment and management are highly desirable [BBKL14].

TOSCA (Topology and Orchestration Specification for Cloud Applications), an OASIS
standard, has introduced a way to model cloud application and to manage them in a
portable way.

In the Figure 2.7 it can be seen how TOSCA describe a service template.

Figure 2.7: Overview service template topology by TOSCA

35

2 Fundamentals

TOSCA separates application structure into so-called Topology Templates which are
graphs composed of the application components, represented as node templates, which
are semantically interconnected by relationship templates.The behavior of TOSCA appli-
cations is specified in plans. As it is shown in Figure 2.8, TOSCA is based on typing. Each
node template and each relationship is related to a specific type, introducing by this way
more valuable information to the topology. By introducing the typing, it is possible to
define life-cycle states, policies associated, artifacts and management operations.

Figure 2.8: Conceptual Layers of TOSCA-based applications

The TOSCA meta-model can be compared to abstract classes of Programming Languages.
There are abstract classes which define the functions that each node or relation could
execute. This is the first layer of the TOSCA meta-model, called Type Layer. Secondly,
there are concrete classes which extend to the abstract ones in which represent how
it is going to be instantiate the different nodes and relationships, known as Template
Layer. Finally, the last layer, known as Instances, represents the real instances of the
components and relationships, which depend on the TOSCA runtime.

2.4.1 Topologies and plans

Although TOSCA plans can be implemented in any language, TOSCA proposes the use
of languages such as BPMN 2.0 because of the standardized graphical rendering that
it offers, not enforcing to make cyclic graphs. Moreover, it also offers a well-defined
execution semantics. The main difference between other workflow languages, such as
BPEL, is that data objects are used to model meaning which offer a high granularity in
contrast with object modeling. To determine what the workflow functions are and in
which order they are carried out, BPMN needs to determine tasks, which are used for

36

2.4 TOSCA

example to call services, to execute scripts or to trigger human actions; and the control
flow between them.

TOSCA specification defines Build and Termination Plans. The so-called Build Plans are
in charge of the deployment and installation of a service. These plans are characterized
by the workflow shown in the Figure 2.9

Figure 2.9: Example of a simple Build Plan

First of all it is needed to install and configure resources in which the service we want
to integrate to the system is going to be deployed. These resources can be installed
before in the system and started when they are required or in contrast they could be
cloud resources which are requested to cloud servers, offering a high flexibility of the
adaptation of the system depending of the actual requirements. When they are started,
then the service is installed. Depending of the customization of the service, it could be
a simple execution of a script given by developers such as installation of databases or
web servers, or more complex processes. Finally in the last step the configuration of the
instance is done. In this step, it is introduced values of the properties of the Node and
Relationships templates of the Topology which are used as configurable parameters.

In contrast, Termination Plans orquestrate the termination of the service. In this plan,
first of all the service would be uninstalled in the topology and finally it would stop the
service of the resources in which the service was deployed in.

A compliant management platform is required to execute the service templates in
TOSCA. This is known as a “TOSCA container”. This runtime guarantees that all the
implementation artifacts needed for the management operations are available before the
service is instantaited. Moreover, management service templates, access to the topology
model and deployment artifacts handling is also is given by these runtimes [BBKL14].

Although all the benefits that this standard has introduced, the complexity of the
modeling and management plans has become a challenge to developers. Oliver Kopp
et.al has introduced a new domain language called BPMN4TOSCA [KBBL12] in which
the complexity is reduced by the provision of ways to access properties independently of
the modeling and dynamic plan to access to topologies. Moreover, it enforces the strong

37

2 Fundamentals

integration of management plans and operations. Scripts also take an important role
in the topologies so the objective of this language is that scripts on nodes can be easily
executed.

2.4.2 Declarative & Imperative Management of Cloud Applications

One of the objectives of developers is to reduce costs and timing in the way they
implement a service. Traditionally, the way to design and develop a service was to
define all possible situations that may occur and the performance of the service in those
situations. In contrast, an approach in which the management logic is more important
instead of the definition of plans [SXV].

• Imperative processing: This approach allows a precise specification of all man-
agement logic enabling a high level of customization in the application provisioning
and creating an explicit process model which can be executed automatically by a
runtime. By using this model, it is necessary to define the control flow of activities,
the data flow between them and finally all technical execution details. In TOSCA,
it is required that all needed management logic is contained in CSAR (Cloud Ser-
vice Archive). These archives contain fully automatically executable Management
Plans which describe management tasks such as provisioning, scaling or updating
provided by their components or by publicly accessible services (Amazon Web
Services API). Therefore, not only does it describe what has to be done, but also
how the whole provisioning tasks have to be executed. However, there is needed a
huge amount of specified statements in order to execute the application because
of the lack of logic of the runtime itself. It makes a labour-intensive nature, time
consuming and error-prone because of the need of orchestrating heterogeneous
management services. Moreover, the need of creating the application’s plans from
scratch, in complex topologies such as Cloud Application topologies, these manual
creations are easy to develop and error-prone.

• Declarative processing: This approach, in contrast with imperative processing,
focuses its effort in describing management logic, not in defining plans. Therefore,
it is needed a precise definition of the semantics of the components of the topology.
So, it is defined, by this model, what functionalities have the applications, but
not how they should be technically implemented. There are declarative technolo-
gies, such as Chef or Puppet, whose focus is describing the desired state of the
components without specification of tasks that should be done to achieve that
state. In TOSCA, TOSCA Runtime Environments interpret application topologies by
introducing management logic without the need for plans, requiring an accurate
definition of the semantics of nodes and relations between them. This approach
solves the difficulties of imperative processing in modeling complex topologies

38

2.4 TOSCA

and makes the process easier and faster. However, this processing produces a
lack of flexibility in provisioning capabilities and pre-defined operations during
the runtime because TOSCA runtime Environments have to understand the com-
ponents or at least the management operations they provide. In addition, the
declarative approach is only suited for common applications without any level of
customization. Nevertheless, this approach supports native Cloud Providers, allows
to use reusable artifacts and simplifies the applications deployments. [EBF+17]

Figure 2.10: Imperative and Declarative Approaches

39

2 Fundamentals

In the Figure 2.10 the basis of both approaches is represented. In the imperative
approach, a Workflow Engine manages business processes and which automates the
execution of the appropriate tasks in a fixed order required in the different situations
that can be expected during runtime. In the left side of the first figure, it can be seen
an abstract workflow whose aim is to install an application in a server instance: first
of all a virtual machine (VM) is started. Then an instance of the server which is going
to provide the service is installed and finally the service is installed and started. The
execution of this workflow would derive to the final topology represented in the left
side. On the other hand, by using the declarative approach it is only necessary to define
the different node and relationship templates which can be integrated in the topology
and then during runtime the TOSCA Runtime Environment would be the responsible of
deploying the final topology.

To sum up, in the Table 2.2, it can be seen a summary of properties of each approach. It
can be seen that if an integration of both approaches is made, all the requirements of an
automated application provisioning can be handled.

Table 2.2: Evaluation of approaches [BBK+15a]

40

3 Related Works

In this chapter we show related works that have been taken into account in this thesis.

3.1 Integration of Situation-Awareness in Workflow Models:
SitOPT

Integrating context in workflow modeling is not an easy challenge. Workflows are defined
as a set of activities which are interconnected in order to achieve a business objective by
executing this set in a runtime environment. So in order to take into account changes in
the model during runtime, it was necessary to introduce into the workflow model all the
possible situations that may occur and changes must be monitored and acted upon by the
system. The SitOPT project has presented a solution defined as ProSit Method [KBS+16]
which enables to model traditional workflow models and automatically adapts and
transforms them to situation-aware workflow models. The system developed (SaWMS
or Situation-aware Workflow Management System has the capability of taking advance of
low-level sensor data in high-level situations in order to adapt workflows dynamically.
In order to process the context data and the detection of which situation is happening,
the SitOPT architecture is used which is mainly structured in three layers: Sensing
Layer, Situation Recognition Layer and Situation-Aware Workflow Layer. The first layer,
Sensing Layer, is composed by all the low-level sensors , measure data associated to the
context and propagate it to the upper layers. The second layer, Situation Recognition, is
in charge of processing the data taken in the first layer using different techniques such
as filtering or aggregating. The last layer, Situation-Aware Workflow Layer maps this
aggregated data to high-level situations.

The adaptation of the workflows, as said before, is handled by the SaWMS and its
Situation Handler component. The SaWMS system is in charge of executing the work-
flows and send service requests to the Situation Handler. The Situation Handler is a
situation-aware bus which selects the most appropriate workflow fragment capable of
executing the requested operation invocated by the SaWMS.

41

https://www.ipvs.uni-stuttgart.de/abteilungen/as/forschung/projekte/SitOPT

3 Related Works

In order to transform traditional workflows into situation-aware ones the method,
previously presented, Prosit is used. This method is mainly based on six steps. First of all
it is necessary to model the workflow desired. In the second step, a set of fragments of a
situation-aware workflow are matched against the workflow model in order to detect
subworkflow models. The fragments are aware of not only the action they are carrying
out but also the situation in which this fragment is executed. After this detection, it is
necessary to check if some overlap between fragments exists. In that case, it is manually
selected which fragment should be executed. Moreover, if the data flow of the original
and new workflow do not uniquely match, it is configured. After this adaptation,all
the matched fragments are replaced from the original workflow to single placeholder
activities, which include each one a definition of the invocation to Situation Handler,
transforming it to a situation-aware workflow. As the final step of the method, this
model is provisioned.

This solution was evaluated in a temperature regulation mechanism case study. In order
to do that, first of all there were modeled as fragments the main actions of the service.
Secondly the workflow introducing all the tasks necessary to regulate the temperature
was modeled. Afterwards, the transformation to a situation-aware workflows was carried
out by the substitution of the logic to situation-aware placeholder activities. When the
execution takes place, and a variation of temperature is detected an instance of the
workflow invoke the activity required (reduce temperature) in the Situation Handler
which by the use of the SitOPT system knows the temperature of outdoor area and
analyze which is the best operation to carry out in the situation (open the door if the
temperature of outdoors is lower or regulate the temperature by the climate control...)

3.2 Contextualization of Business Process

One of the big challenges in Context-Aware Systems is to determine which context
variables have impact in the process and how different values of these can affect the
structure and behaviour of applciations. Michael Rosemann et. al [RRF08] in their
research have focused in the conceptualization of context in business models and
introduce a meta-model in order to integrate them as a whole. They consider that the
context variables that should be taken into account have impact in the whole process,
not in only one step of the workflow. It is necessary to have in mind the goals of the
process because they determine strategic, operational, regulatory relationships between
the steps of the process. This method is really promising because the context factors
which have importance in the process can be predetermined and modeled and by the
integration of the context variables with the goals, the flexibility to handle changes in
the environment can be modeled.

42

3.2 Contextualization of Business Process

In the meta-data proposed by this research, the context is considered as a layer frame-
work composed mainly by four disjoint categories. The first one, known as Immediate
Context, include standard process description such as control flow (order of steps),
data (information required in the execution), application (what application supports
a determined step?) , resources (what capabilities are needed?) and so on. These
elements are fundamental for the comprehension and execution of a business process.
To execute a business process, if no contextual changes are detected, these elements are
enough. The second layer, known as Internal Context, which encompasses the internal
environment of the organization relevant in the process such as resources, strategy,
values, culture, policies... This context is so valuable because a change in a policy or in a
strategy have a big impact on the business process. The third layer, known as External
Context, captures elements that are not part of the organization but may affect the
business process such as suppliers and regulations . Finally, the last layer known as
Environmental Context covers the environment in which the process is executed such as
weather, time and workforce related factors. These variables may change regularly so
the changes related to elements of this layer are the most frequent.

With the use of this meta-data it was evaluated in this research how context could
be analyzed and select the variables more relevant to the process. First of all, it was
necessary to identify the hard-goals and soft-goals of the business and their suitable
variables. Secondly, decomposition of the process was needed depending of the goal-
relevant information. Afterwards, it was required to evaluate the relevance of the context
variables in the goal associated. Then, the identification of the contextual elements
is done and finally these elements were catalogued with the use of the meta-model
previously described.

With this procedure, a case study was done related to the check-in process of a major
Australian airline. The process usually works in a regular environment but there are
situations that may require that the processes change. For example, weather conditions
(bad weather conditions) or time conditions (holiday season) or server failures may
provoke that customers miss deadlines because of big queues in the check-in, so changes
in the structure are required such as the introduction of more check-in counters, using
the counters of priority clients to all the economic passengers too or the reduction of the
timing of check-ins by eliminating special requests. By using the procedure, first of all
they selected a goal that was to "Minimize throughput time". Then the decomposition
of sub-processes and sub-goals was done. To determine the relevance of context used
single functions which eased the determination and to identify contextual events, for
example by analyzing which elements of the context were not inside the immediate
context such as elements that affect the availability of internet connection or alarms. By
applying the categorization and classification of the context, eases the anticipation of
important external triggers and the adaptation to the change are possible.

43

3 Related Works

3.3 Integration of Imperative and Declarative Approach to
model Cloud Applications

Cloud applications are getting more and more complex, using heterogeneous Cloud
Providers which allow to employ services on different levels (IaaS, SaaS, PaaS), and
it is necessary to be combined and integrated to get a fully automated deployment
and management process. In order to do that, it is highly valuable to integrate both
imperative and declarative approaches profiting from their benefits.

By using declarative processing in standard but complex activities, such as, configuration
of a certain application component (installation of virtual machines, installation and
configuration of an Apache Web Server. . .) and using imperative processing for more
customized activities, an efficient of application provisioning is achieved. [BBK+15b]

Uwe Breitenbücher et. al [BBK+14] have introduced a solution to combine the two
approaches in order to generate fully automatic provisioning plans which are work-
flows that can be customized by developers after generation. The Provisioning Plan
proposed is composed by three steps. In the Figure 3.1 the Provisioning Plan Concept is
represented.

First of all, the Topology Template is evaluated and it is transformed to a Workflow
Provisioning Order Graph, which indicates the order of provisioning of all the compo-
nents that integrate the topology and their relationships. Secondly a Provisioning Plan
Skeleton is generated which defines the structure of the final Provisioning Plan using
a specific workflow language such as BPMN or BPEL. Finally, it introduced executable
capabilities which transforms the skeleton in a fully automatically executable workflow.
This workflow is executed in a TOSCA Run-time Environment, so-called OpenTOSCA
which offer fully automated provisioning with the presented concept.

44

3.3 Integration of Imperative and Declarative Approach to model Cloud Applications

Figure 3.1: Three steps of Generating Provisioning Plans [BBK+14]

45

4 Motivating Scenario

In this chapter we present a scenario which we use to present and evaluate the modeling
solution proposed. Moreover, we describe some use cases of this scenario which use
context data to provide different services. Finally, we specify and present the formal
requirements to model this scenario.

4.1 Description

Because of the incorporation of mobile devices in a growing number of systems, it is
needed to take changes of location and temporal connections between different systems
into account. By this location-awareness, a user can access to services available in the
area they are or the systems can take advance of the facilities that are available to
improve the performance of the services offered.

The Figure 4.1 represents our scenario. There are two systems, each one has its services
which are deployed by the different components interconnected, and one user device,
that depending on its location, is temporally connected with the system closer and
more suitable to it. Moreover, additional components which can be portable and
could introduce new services in a system can be temporally connected to the required
entity. Depending of the provided service to the user it may be necessary to connect to
specific components of the system depending on the performance and efficiency of the
components of the overall application.

47

4 Motivating Scenario

Figure 4.1: General Description of Motivating Scenario

This scenario encompasses different use cases that not only take spatial context into
account but also other context variables, which were described in the section 2.3. As-
sociated to the different systems like temporal connections to external systems such as
back-ends servers, connections to emergency services because of detection of extraor-
dinary environments situations, or connection to better performance external entities
detected are also part of the context. In the following list we present potential use cases
of this scenario that try to cover most of the possible usages of context in the system:

1. Connection to server instances:In this use case, we consider a user that moves
from location A to B, as it is shown in the Figure 4.2, which is using a service
provided by the node template called SA. In order to implement this use case
it would be necessary that the node template is available as an instance in the
topology close to the location of the user and to have resources in which it can be
installed in order to connect to the user. In the 4.2 we specify that an instance of
the server SA is hosted on the VMS A or VMS B depending of if the user is close to
Location A or B respectively.

48

4.1 Description

Figure 4.2: Representation of the first Use Case

A variation of this use case is to include services that depending of the location
of the user, are provided by different service templates. As well as the first one,
it considers an user that moves from location A to B and it is connected to the
node template called SA or SB respectively. In order to implement this, it would
be required that an instance of the node template associated to the location where
the user is installed in available resources of the topology. This means the system
can allocate the resources dynamically when it detects the user.

2. Temporal Connection to Environment Sensors: A context-aware system is char-
acterized by having a dynamic topology in which the relationships between com-
ponents are not fixed and the incorporation of new components is possible. In
this use case, (see Figure 4.3) are analyzed changes of time frames. It considers
a Node Instance that is a central component of a system which depending of the
period of time (day/night) is connected with the gateway of light-detector sensors
of outdoor or indoor areas respectively in order to take valuable environment
measures. For that reason, an establishment of a connection with the convenient
gateway and a disconnection with the previous gateway would be required.

49

4 Motivating Scenario

Figure 4.3: Representation of the Use Case

3. Detection of Points of Failure: One of the benefits of being aware of the context
is that detection of failures inside or outside the system is faster and adaptations
to decrease the impact is possible. In this use case, (see Figure 4.4) a node called
NA is connected to a Server Instance, called SB. If a time threshold is exceed, it is
evaluated what available instance of server is more suitable and after disconnecting
with SB it is connected with this suitable instance, called SC.

Figure 4.4: Representation of the third Use Case

As an alternative to this use case would be that instead of monitoring the availability
and performance of a server connected, analyzing the performance of the node
itself and if the execution is not as it was expected, finding resources in which
host the instance and improve the performance, as shown in the Figure 4.5. In
this alternative the type of context used would be device context, this means, the
information taken would be what it is offered by the device itself.

50

4.1 Description

Figure 4.5: Detection bad performance

4. Video Streaming: Not only the context-aware detection is about the performance
of the system, but also, about new components that can improve the quality or
introduce new functionalities into the system. In this use case, (see in Figure 4.6)
it is studied how a video provider, which sends streaming in a traditional way,
when it is detecting a good WIFI connection and nodes which could improve the
quality of streaming by using Internet transmission, establish a connection with it
and changes the way of stream broadcasting.

51

4 Motivating Scenario

Figure 4.6: Representation of Forth Use Case

5. Emergency Situation: Environment context is as valuable as space or time con-
text. Emergency situations are one of the areas in which context-aware systems
are beneficial to the most because a quickly reaction is highly valuable in such
situations. For that reason, this use case (see in Figure 4.7) analyze how when
an emergency situation is detected by the monitoring entity, a connection to the
emergency server which can handle this situation by activating alarms or handling
the protocol to act could be established.

Figure 4.7: Representation of Fifth Use Case

52

4.2 Modeling requirements

4.2 Modeling requirements

In order to model this scenario we identified the following requirements that have to be
taken into account:

1. Active Context Monitoring: Context is constantly changing so it is necessary to
adapt as quickly as possible. This means that it is needed that all the processes
carried out in the system should be aware of situation shifts and if it is necessary,
executing procedures to adapt to them. Active Monitoring is valuable in emergency
situations handling because when a emergency situation is detected, it is required
to react to it as fast as possible.

2. Monitoring System Execution: It is needed to evaluate at runtime if the pro-
cedures executed by the different node instances of the topology is adequate to
the context situation and moreover, if there are failures in the different process
executed, try to solve them. For example, in the Detection of Points of Failure Use
Case, Monitoring Execution is required to check if the performance of the node
instances installed or the communication with external nodes is as expected, or if
not try to find new resources which can improve the performance of the services.

3. Context Variable Relevance: Because of the amount of context variables which
can influence an entire system, it is necessary to evaluate the relevance of each
one in each process in order to know when it is necessary to react to situation
changes. For example in the Connection to Server Instance Use Case the spatial
context would influence most to the system.

4. Portability of Node Templates: As it was said before, there are services which
need specific nodes templates and it is fundamental that instances of these node
templates can be installed and started in the location where the users are. This
is needed in the first use case proposed, because independent of the location, an
instance of the server always must be available.

5. Compensation critical procedures: There are activities such as installation of
node instances, establishment of connections that are vital to deliver the function-
alities required. Errors in these procedures could provoke singles points of failure
and they need to be compensate in case of any type of error during their execution.

6. Unbuilding previous situation-related topologies: When it is detected that the
context situation has shift, before introducing the changes related to this adaptation
it is needed to reestablish the previous modifications of the topology such as the
installation of new nodes or establishment of new connections. It is required in all
the use cases proposed.

53

4 Motivating Scenario

7. Events Relevance: A system could have a big amount of events than can trigger
different procedures and they may be executed simultaneously such as the change
of location and time period or emergency situation and detection of changes in the
network context. Some events have more importance than others so it is necessary
to define a order in which the different events that could happen in the system
should be handled first. For example, emergency events should be prioritized from
other events because of the requirement of timely reaction.

54

5 Concept

In this chapter we introduce our conceptual modeling approach to the scenario described
in Chapter 4. We evaluate the suitability of using Imperative or Declarative Approach in
the use cases we presented and how the solutions proposed could be integrated in the
TOSCA specification by modeling an architecture solution which is event-aware.

5.1 Concepts Context Modeling

Our first aim when designing the modeling solution was to provide an easy integration
of the context in the topology. By that, the context model used, was required to be
simple and easy to integrate the relevant context categories to the scenario and use
cases described in the Chapter 4. Two possible context models were analyzed: Key-Value
Model and Mark-Up Model, described both in the Section 2.3.1. Both of them are
characterized by its simplicity to model the context but one requirement for us was to
maintain a hierarchy of each relevant context category to the scenario. It is only possible
to fulfill this requirement by using a Mark-Up Model.

First of all after deciding the type of context model required, we have analyzed what
context categories are relevant in the scenario and use cases.

• Spatial Context: This context information is fundamental for the scenario. In all
the use cases described, the location varies from Location A to Location B. So the
hierarchy of the Location Category would have two markup tags associated each
one with one location and whose values would be true or false depending of either
the user is in that location or not.

• Temporal Context: This context information used in the use cases selected de-
pending of the time frame the entity is connected or disconnected to. In the use
cases, we selected two time frames: day and night, so it would be required two
markup tags each one related to one time frame. As well as the modeling of spatial
context, the values of the markup tags would be a boolean value depending of the
timing.

55

5 Concept

• Device Context: This context information is used to analyze the performance of
the entities integrated in the topology and also the performance possible entities
to connect to when there are errors in the topology. This structure would have as
mark tags all the nodes which could be possible to integrate in the system and the
value of this markups would be true or false depending of its performance.

• Network Context: This context information is associated to the network per-
formance which the system has. This information is required to improve the
capabilities of the system in case of having a good Internet Connection. This
structure would have as markups all the possible connections that the system have
and as a boolean it would be represented if the connection is good enough or not.

This categories need to be formally defined [McC93]. The context categories would be
defined by the following equations and the context would be integrated by these context
structures.

c0 ≡ SpatialContext = (LocationA, LocationB) (5.1)

c1 ≡ TemporalContext = (dayframe, nightframe) (5.2)

c2 ≡ DeviceContext = (node0, node1, node2.....) (5.3)

c3 ≡ NetworkContext = (connection1, connection2, ...) (5.4)

c0, c1, c2, c3ϵC (5.5)

5.2 Concepts Imperative Approach

All use cases presented in the section 4.1 have in common that they need to be notified
when a change in their relevant context has happened. In order to do that, we have
designed a monitoring entity which is in charge of constantly checking if it has detected
a change and notifies the necessary entities. In the Figure 5.1 the workflow which
describes the performance of this entity is described. First of all, this is a process which
should be repeated during the runtime of the system. For that reason, the sub-process
checks if there are changes in a loop. In this sub-process, it is sent to the context data
acquired by the available sources, then by using a variety of algorithms it is detected if
there is a valuable change in the context measures (this activity is concurrent because it
evaluates each variable at the same time) and if there is concluded that a change has
happened, it would notify to the affected entities.

56

5.2 Concepts Imperative Approach

Figure 5.1: Monitoring Workflow

5.2.1 Imperative Modeling Solution of the 1st Use Case

First of all, the 1st Use Case called Connection to server instances was related to providing
a service to a user not depending of the location.

To model this use case it is needed to analyze which events could happen during the
execution of the system.

• Change of location: The monitoring entity would send when it detects a change of
location a message to the system with the information of the new location. This
event would trigger the adaptation of the system to the new location.

• Compensation events: Installation or start operations of different entities can
provoke errors so it is necessary to handle them and compensate the changes in
order to not affect the performance or the availability of these entities.

• Communication error events: There would be cases in which the connection
between the device and the server could be denied. In this case, it would be
notified to the central workflow which would handle the situation.

By taking into account the requirements presented in the section 4.2 and these events,
in Figure 5.2 a model of this use case is presented. Modeling by using an Imperative
Approach requires to define all the details of the workflow, (details, such as, what
locations the user could be or what VMs are needed to be selected depending on the
location) so to make easily understandable, it was needed to fix a low range of possible
locations. For that reason, we selected two possible location in which the user can be:
Location A and B. When a change of location is detected and the entity is notified by
the monitoring workflow, a sub-process is executed in which first of all, fetches the

57

5 Concept

VMs suitable and after that all activities required to provide the service to the user.
This sub-process is aware to the context, this means, that if during its execution a new
change of location is detected, the execution of the sub-process is stopped. The changes
introduced are compensated and the service is initiated again with the introduced
changes. Moreover, if there are errors in the provide service phase, it would stop the
execution of the process and would notify to the central workflow in order that the
failure situation could be solved. When the provision of the service in the new location
of the user is achieved, the system would be maintained until a new change of location
is detected, which would trigger the sub-process previously explained or a termination
signal which would trigger the end of the execution.

Figure 5.2: Imperative General Model Approach of 1st Use Case

Two activities in the sub-process in the diagram are collapsed. One of them is the called
"Fetch VMs activity". This activity is in charge of selecting the VMs resource related to
the location of the user. In the Figure 5.3 the expanded description of this activity can
be seen. When the VMs are fetched, a XOR operation is executed and depending on the
location of the user is (A or B) it selects the VMs available in the system maintained in
that location.

58

5.2 Concepts Imperative Approach

Figure 5.3: Expanded View Fetch VMs activity

The second activity is called "Provide Service". In the Figures 5.4 and 5.5 they are
represented as two alternatives of implementation of this activity. The description of
this activity differs depending of the type of the server instance required to provide the
service. If the service is provided by a specific node template, it would be required to
start the VMs previously fetched, then an installation of an instance of the fixed service
template would be executed and finally the connection between the service instance
and the user would be defined. On the other hand, if the service could be provided by
different server templates an additional step would be necessary. The aim of this step is
to select the available and more suitable service in which deploy the service.

59

5 Concept

Figure 5.4: Expanded View Provide Service Activity - Fixed Node Template

Figure 5.5: Expanded View Provide Service Activity - Not Fixed Node Template

5.2.2 Imperative Modeling Solution of the 2nd Use Case

The 2nd use case called Temporal Connection to Environment Sensors was related to
establish temporal connections efficiently between nodes in the topology depending of
the time frame of the day.

To model this use case it is needed before to analyze which events could happen during
the execution of the system.

60

5.2 Concepts Imperative Approach

• Change of time frame: The monitoring entity would send when it detects that the
frame day/night has changed. This would be the trigger to change the connection
from one gateway to the other.

• Compensation events: Connection operations of different entities can provoke
errors so it is necessary to handle them and compensate the changes in order to
not affect the performance or the availability of these entities.

• Communication error events: There would be cases in which the connection
between the device and the server could be denied. In this case, it would be
notified to the central server which would handle the situation.

In the Figure 5.6 a workflow of a modeling solution for this use case is pictured. As
well as the previous use case, we have considered only two gateways to which the
environment monitoring node could connect because of the lack of flexibility that the
imperative language approach has in run-time. In the solution it is represented that
first it is necessary to start the monitoring node in order to handle the connections and
receive the measures from one or the other gateway. Then it is initiated a sub-process
that would be executed repeatedly until an error in the connections is detected. That
would require an action of the central server. This sub-process waits until a change of
time frame is detected. When it is detected the connection with the appropriate gateway
is established and it is maintained until a new change of time frame is coming (a small
threshold between time frames) in which the connection with the gateway would be
disabled in order to start the sub-process again with the new temporal situation.

Figure 5.6: Imperative General Model Approach of 2st Use Case

Two activities represented in the sub-process are collapsed: the connection and discon-
nection activities. In the Figure 5.7 we represent the expanded version of these activities.

61

5 Concept

In this expanded version it can be seen how the selection of the gateway to connect to is
defined. If the time frame detected is the night the gateway to connect would be which
is in charge of the sensors of indoor and in the other case would be the outdoor one.

Figure 5.7: Expanded View Connection/Disconnection appropriate Gateway

5.2.3 Imperative Modeling Solution of the 3rd Use Case

The 3rd use case called Detection of Point of Failures was related to introduce capabilities
in the system to react to bad performance detection and try to find solutions in its close
environment.

To model this use case it is needed before to analyze which events could happen during
the execution of the system.

• Alive message: This type of messages will be received when the connected server
is available so nothing would be necessary to be done.

• Compensation events: Connection and installation operations of different entities
can provoke errors so it is necessary to handle them and compensate the changes
in order to not affect in the performance or in the availability of these entities.

• Connection and disconnection errors events: There will be cases in which the
(dis)connection between the device and the server could be denied. In this case, it
will be notified to the central server which should handle the situation.

In the Figure 5.9 we present a modeling solution for this use case. The default situation
in this use case is that a node (NA) is connected with a server instance (SA). So in
this workflow, the two initial activities are the start of the execution of NA and the
establishment of the connection with the SA instance. Then alive messages from the

62

5.2 Concepts Imperative Approach

server instance need to be received. When a time threshold is exceed without not
receiving any answer, it starts the disconnection process from this instance and after
detecting the most efficient node instance, NA is connected with it and it would be
maintained until a new time-threshold is exceeded the process would be started again.

Figure 5.8: Imperative General Model Approach of 3rd Use Case

As an alternative to this use case, it may happen that the resources in which a node
instance is deployed do not work as expected. In that case, it would be necessary to
select a new resource available in the topology or an external one to install the node
instance so that the performance improves. In the Figure 5.10 it is represented how
this alternative would be modeled. As a difference with the general use case, in this
case instead of receiving alive messages from the server which is connected, it would be
analyzed the performance by taking into account device context. If the performance is
good, there would be no changes in the topology. Nevertheless, when a bad performance
is detected, first of all the uninstalling of the node instance is executed and then after
finding a resource in which it could be deployed, the configuration and installation
would happen. This would be maintained until a new bad performance is detected
which trigger again the process.

63

5 Concept

Figure 5.9: Imperative Alternative Model Approach of 3rd Use Case

5.2.4 Imperative Modeling Solution of the 4th Use Case

The 4th use case called Video Streaming is related to take advance of the available
resources in the closeness to improve the performance of the service provided. In
this case it is focused in the selection of the channel to broadcast multimedia content
depending of the resources available and the quality of the connection to them.

The different events associated with this use case are the following:

• Video Server Detection: This message would be received and would trigger the
change of sending streaming, not by the video device, instead by the video server
which have good connection to Internet.

• Compensation events: Connection and start operations of different entities can
provoke errors so it is necessary to handle them and compensate the changes in
order to not affect the performance or the availability of these entities.

• Bad connection detection: When it is detected that the quality of streaming by
Internet is bad enough it would be disconnected from the server and the streaming
would be sent by the traditional way.

In the Figure 5.10 it is represented how this use case would be implemented. First of all
the video provider will be started and the traditional streaming will be initiated. This
should be maintained until a video server with good stream capabilities is detected and
a good WIFI connection is available. If this happens, the video provider is connected
with this server and the video streaming is handled by that server. When it is detected
that the Internet Connection is decreased, the video provider would disconnect from the
video server and the traditional streaming would rebooted.

64

5.2 Concepts Imperative Approach

Figure 5.10: Imperative Alternative Model Approach of 4th Use Case

5.2.5 Imperative Modeling Solution of the 5th Use Case

The 5th use case called Emergency Situation is related to react as quickly as possible
to situations which need to be handled by emergency servers because of its harmful
impact.

The different events associated with this use case are the following:

• Emergency Situation Detection: This message would be received and would trigger
the connection to the emergency server in change of this kind of situations.

• Compensation events: Connection and start operations of different entities can
provoke errors so it is necessary to handle them and compensate the changes in
order to not affect the performance or the availability of these entities.

• Emergency Situation deactivation: When it is detected that the emergency has been
resolved, the connection with the emergency server would be disabled, getting to
the normal state of the topology.

In the Figure 5.11 it is presented how this use case could be modeled. When the
execution of the service is started, a monitoring entity would be instantiated and initiated.
When a emergency situation is detected, a quick connection with the appropriate
emergency server is established and the monitoring entity would send data recollected
by the service until the emergency situation is handled and the alarm deactivated, when
ends the connection with the emergency server. This process have priority from other

65

5 Concept

processes that are being executed simultaneously so events associated to emergency
situations would be treated before other events.

Figure 5.11: Imperative Alternative Model Approach of 5th Use Case

5.2.6 Conclusions of Imperative Approach

After analyzing how it could be modeled different use cases of the general scenario
described in the previous chapter, we have reached to some conclusions:

• Good adaptability to customize :Currently, the amount of services provided to
the user is bigger than it used to be. Moreover, an addition value wants to be given
so new services are characterized for being customized by each user. In this use
cases, it has been shown that every detail can be given of how a service should be
provided such as specifying that a service should be provided by a specific server
template or which gateway the node should connect and what timing.

• Easy to Monitor: As in the imperative approach, all the possible behaviours that
a system could have, is easy to detect, such as, possible failures in performance
or situations that may need a manual intervention. For example, errors in the
installation of nodes in the topology or connection with others could be solved in
a easy way by using this approach.

• Lack of flexibility in run-time: As it was said before, it is needed to define all the
details before the execution of the processes in reference to the performance of
the system. This means that it is required to cover details such as all the possible
situations that may occur or what the system need to behave in each of those
situations. In the use cases where in some situations there was needed to connect to
new components, using the Imperative Approach it was necessary to define before
a list of nodes to be connected in order to achieve the selection. In the examples

66

5.3 Concepts Declarative Approach

we introduced it would be possible to use an imperative approach, but if the use
cases were more complex by introducing more components or more situations
possible, which could be unpredictable, during the execution, the complexity of
modeling would be a big challenge.

5.3 Concepts Declarative Approach

All the modeling topologies which will be presented in this section have a single node
in common. As it was introduced in the Section 2.2 the gateway XOR of the BPMN
was a clear candidate to be used in the declarative processed topologies. This gateway,
modified for TOSCA, would trigger the change of a topology when a new context
situation. By that, this node would be in charge of being aware of changes in the
context. We explain in the Mapping Section (see Section 5.4) in detail how this would
be achieved. This node would execute algorithms evaluating measures of the context to
detect if a change has occurred. In that case,it would return a trigger to the worflow to
adapt to the context.

Following the structure of the previous section, it would be presented the solutions
designed for the use cases.

5.3.1 Declarative Modeling Solution of the 1st Use Case

In the Figure 5.12 we present a declarative modeling approach solution for the first use
case. In this case, the XOR gateway, depending of the location of the user (Location A or
Location B), the server instance would be installed and hosted in the VMs available (VMs
A in Location A and VMs B in Location B) and then the connection with the user would
be established. One of the rules needed in this declarative model is that the connection
would be established after the installation and initiation of the server instance in the
VMs selected. By using this approach, it would not be necessary to pre-define the VMs
which are going to be selected depending on the location, it could be detected and
selected in runtime, as a main difference with the imperative solution presented.

67

5 Concept

Figure 5.12: Declarative General Model Approach of 1st Use Case

When the system is initiated, it will not install any node until it detects the location of
the user. When it is detected, the decision point, XOR gateway, would install and start
the topology associated to the location which would be composed by the VMs associated
to the location, an instance of the server hosted in the VMs selected and required to
provide the service as a common node in both topologies, and would represent the
connection to the user, which should be established when the previous components
are correctly started in the topology. When a change of location is detected, first of
all the connection with the user will be disabled, then it would uninstall the instance
of the server, stop the performance of the VMs selected and then it would initiate the
other topology by starting and installing all the nodes required. In the Figure 5.13 we
represent all the possible states of the topology associated to this use case.

Figure 5.13: Possible states of 1st case topology during run-time

In the Figure 5.14 we present the declarative modeling solution of the alternative
proposed in this use case: a service could be provided by different server templates. In

68

5.3 Concepts Declarative Approach

this case, it would be necessary two XOR gateways, which depending of the location,
find the VMs which would host the server instance and then install the server instance,
appropriate to the location, and finally the connection to the user with this instance
would be established. As well as the general use case, it must define some rules associated
with the order of the installation of the nodes which are going to be integrated in the
topology: the establishment of the communication to the user must have as a precedence
the installation and initiation of the Server Instance and the precedence of the Server
Instance would be the selection of the VMs in which it would be hosted.

Figure 5.14: Declarative Alternative Model Approach of 1th Use Case

As well as the previous use case, it will not be installed until the location of the user is
detected. In that moment it will start the VMs associated to that location, the instance
of the server available in that location will be installed and the communication with the
user and the server instance which is going to provide the service that he is consumer
of, will be established. When a change of location happens, the procedure will be the
same as the previous case, first of all the communication would be disabled, then the
uninstalling of the instance and finally the stop of the VMs of the previous location.
When the unbuild is done, then the installation of the new topology could be executed.
In the Figure 5.15 these states are represented:

69

5 Concept

Figure 5.15: Possible states of 1st case(alternative) topology during run-time

5.3.2 Declarative Modeling Solution of the 2nd Use Case

In the Figure 5.16 we present the declarative modeling solution of the second use case.
In this use case, the gateway XOR would select the gateway the environment monitoring
node should connect to. When the time frame changes, the XOR would execute an
algorithm whose result would be the id of the gateway of the sensor of this time frame.
This use case could be extended to more time frames or simultaneous connections with
gateways of different environment measures.

Figure 5.16: Declarative General Model Approach of 2nd Use Case

In this case, as a difference with the previous solutions, before detecting the context
it would install an Environment Monitor Server Instance. Then, it would check what
time frame is and the connection with the appropriate gateway would be done. When a
change of time frame is detected, then first of all it would disable the communication
with the previous gateway and then it would establish the new communication. In
the Figure 5.17 we present all the states of the topology that can occur during the
execution.

70

5.3 Concepts Declarative Approach

Figure 5.17: Possible states of 2nd case topology during run-time

5.3.3 Declarative Modeling Solution of the 3rd Use Case

In the Figure 5.18 we present the declarative modeling solution of the third use case.
In this use case, a default topology is introduced when the run-time is started. The
XOR gateway, when it is detected that the server instance(SA) to which the node NA
is connected is not working as it was expected, executes an algorithm in which selects
the id of the new server instance to be connected. With this approach, it will not be
necessary to pre-define which server the node to connect to, it will be only necessary to
specify which capabilities are required.

Figure 5.18: Declarative General Model Approach of 3rd Use Case

In this case, as the previous one, an initial topology will be installed when the system
is initiated. This topology only would be changed if a bad performance of the server

71

5 Concept

instance is detected. In that case, first of all, it would disable the communication with it
and then after deciding which server instance, it would replace a new communication
would be established. In the Figure 5.19 it is presented all the possible states that the
topology of the solution could have during the execution.

Figure 5.19: Possible states of 3rd case topology during run-time

As an alternative it was analyzed that instead of detecting bad performance of communi-
cations with external nodes, detecting the performance of the resources in which the
node instance are installed. In the Figure 5.20 we present the declarative modeling
solution of this alternative. In this case, the XOR gateway would handle the installation
of the node instance in the VMs which has better performance.

Figure 5.20: Declarative Alternative Model Approach of 3rd Use Case

72

5.3 Concepts Declarative Approach

As well as the general case, a default topology would be installed: a node instance NA is
installed in the VMs A. When it detects that the performance of the VMs A is not good
enough, first of all the node instance is uninstalled from the VMs A, this resource stops
its execution and then after starting the new resource in which it is going to be deployed
the instancing (VMs*) the NA instance would be again installed but in this new resource
selected. In the Figure 5.21 we present all possible states of the topology that they could
occur during the run-time.

Figure 5.21: Possible states of 3rd case(alternative) topology during run-time

5.3.4 Declarative Modeling Solution of the 4th and 5th Use Cases

In the Figures 5.22 and 5.23 we present the declarative modeling solutions for the
forth and fifth use case. They have in common that the XOR depending of the context
situation in which the system is would decide if a new relationship between a node of
the topology with an external node is established (video server or emergency server
depending of the use case).

73

5 Concept

Figure 5.22: Declarative General Model Approach of 4th Use Case

Figure 5.23: Declarative General Model Approach of 5th Use Case

In these cases, a default topology will be installed when the system is started. In the 4th
case it should be configured and start the execution of the Video Provider and in the 5th
case the Monitoring Node. When the condition is detected (good WIFI connection /
emergency situation detection) the connection with the respectively server instance will
be established. When the condition, which has triggered the change in the topology is
not fulfilled any more, the connection is disabled so the topology returns to the initial
state. In the Figure 5.24 we represent all the possible states of the topology that could
occur during the execution.

Figure 5.24: Possible states of 4th and 5th topology during run-time

74

5.3 Concepts Declarative Approach

5.3.5 Conclusions of Declarative Approach

After analyzing how it could be model the different use cases proposed in a declarative
approach, we have reached to these conclusions:

• Easy to model unforeseen situations: Context-aware systems are characterized
by being adaptive to multiple context situations. In the imperative approach it is
required to pre-define the possible situations that can occur. By contrast, with the
declarative approach this is not required so the solution modeled could cover all
the states of the system during the execution. Moreover, the design of the solution
is simpler than the imperative one because all the details of how the system should
react when a change of context is detected are not required to be integrated in the
solution. As it was said before, the use cases proposed could cover more locations,
time-frames or more node instances to connect and the complexity of the solution
would not vary.

• Easy to model Complex systems: Context-aware systems are characterized by
being composed by a big amount of different entities which are interconnected
by temporal or situation-aware communications. It has been seen in some use
cases that depending of the context such as time-frames, emergency situations
or network conditions the communication with different server instances are
established. By using this approach, this could be easy modeled with the use
of qualified decision points which are which are in charged of depending of the
situation trigger changes in the topology.

• Deficiencies in monitoring: As it is not defined the performance of the system by
using this approach, is hard to monitor to detect how efficient the system is during
execution and possible errors are more difficult to detect than in the imperative
solutions.

• Lack of customization services: Declarative programming is focused on standard
and portable services, but as it is not easy specify the details of behaviour of the
system, it cannot easily specified customization in performance. Nevertheless, the
use cases described were able to be modeled by the declarative approach because
changes in context trigger changes in communications and incorporation of new
nodes in the topology are standard processes.

75

5 Concept

5.4 Mapping

In order to generate the events which trigger the changes into the topologies of the
different solutions, it has been defined an architecture which allows the adaptation to
situation changes of the different services which integrate a context-aware system. This
architecture is based on the solution proposed by L. González et al. to construct context
aware systems [GO14]. In the Figure 5.25 we present the high-level specification of the
architecture.

Figure 5.25: General Architecture

As it can be seen in the figure, it is integrated by 4 principal components:

• Contextual Data Providers: This component represent the external sources which
provide during the run-time contextual information to the system.

76

5.4 Mapping

• Complex Event Processing (CEP) engine: CEP techniques are used to analyze the
contextual information introduced by the contextual data providers and detect
complex situations that might affect the services of the system.

• Context Reasoner: This component knows what situation is relevant to the services
provided in the system (use cases) and trigger the events required to these services.
This component was called Monitoring Entity in the introduction of the section
5.2.

• Context Service Bus: This component which is in charge of exchanging all the
messages from the different components of the architecture and also delivering
the appropriate events to the different services in the system.

To model the integration of the context into Service Templates in TOSCA, first of all it
is necessary to analyze the possible options to process the data taken by the different
sources a context-aware system has:

• Data shipping: This approach is based on retrieving data from the data location
and processing it where the computational resources resides. This approach
is characterized by high communication costs because of the size of raw data
that should be sent, but the level of customization in the processing and the
independence of the location of the data are also factors to be taken into account
where selecting this approach,

• Function Shipping: This approach is based on executing functions (queries) on
the data location and only sending the result of the operation to the client side (
context-aware system). By that, a reduction of the computation in the client side is
fulfilled but it is necessary to locate the computation resources as close as possible
to the data storage.

Because of the benefits of each approach and to give to our solution flexibility both
approaches have been considered. Saatkamp introduced 8 modeling concepts which
enables these approaches in TOSCA [Saa16]. After analyzing these solutions, we have
selected the approaches that could implement both data and function shipping and
integrated them into two final solutions which differs mainly of the unique or multiple
data sources that could have the system.

• Data connector between Processing Logic and unique Data Resource: This
concept focus on the relationship that has to be modeled in order to communicate
the Processing Logic Entity with where is located the context information. In the
Figure 5.26 it is represented the basis of the solution. It can be seen that it is
needed to define in TOSCA three components, the Processing Logic Entity which
identifies the entity which is in charge of processing the data, the Data Connector
Relationship which represents an 1:1 relationship between a Processing Logic and

77

5 Concept

a Data Resource and finally a Context Data Resource which identifies the entity
where it is locating the data. Depending of the approach selected, it would include
the Deployment Artifact with the required functions to execute in the data resource
(Function Shipping) or the location address where is placed the data resource
(Data Shipping). Moreover, it may integrate in the model additional capacities such
as transformation operations of data. In order to do that, it would be necessary to
link this operations to the Data Connector Entity and introduce properties about
the structure and format of the data storage.

Figure 5.26: 1 Concept: Data connector between Processing Logic and unique Data
Resource

Although different TOSCA realizations were proposed by Saatkamp to this concept,
we have selected the realization which integrates data queries. As this concept
only considers an unique data resource in which all the context measures would
be integrated, it is necessary that each service only has access to the relevant
information. In the Figure 5.27 we present how modeling the topology template
of the first use case described in the Chapter 4 is possible, whose relevant context
information was spatial context. First of all, it is needed to define two node
types: Processing Logic and Context Resource. The Processing Logic Node Type
provides the operation checkchanges which takes a context measure as a input
via the Application Interface Context Change Detection Interface. In the Listing 5.1
the definition of this Node Type is represented. The operation’s input would be a
location variable which is an array composed by two boolean related to the two
possible locations (Location A and Location B).

78

5.4 Mapping

Listing 5.1 Processing Logic Node Type Definition
< Node Type name="ProcessingLogic">

...

<opentosca:ApplicationInterfaces

xmlns:opentosca="http//www.uni-stuttgart.de/opentosca">

<Interface name = "Context_Changes_Detection_Interface">

<Operation name="checkchanges">

<documentation> detects changes of location of users registered in the

service </documentation>

<InputParameters>

<InputParameter name="location">

<xs:complexType>

<xs:attribute name="LocationA" type="xs:boolean"/>

<xs:attribute name="LocationB" type="xs:boolean"/>

</xs:complexType>

</InputParameter>

</InputParameters>

</Operation>

</Interface>

</opentosca:ApplicationInterfaces>

</NodeType>

The Context Resource Node Type defines three properties: Resource Type (R.Type
in the Figure) describes what the structure of the data storage is, Resource Format
(R.Format in the Figure) describes what format is available for the data and the
Location references where the data storage is. In the Listing 5.2 the definition of
this Node Type is represented.

Listing 5.2 Context Resource Node Type Definition
<NodeTemplate id="ContextResourceFile" name = "Context Resource File" type="DataResource"

...

<Properties>

<DataResourceProperties>

<Properties>

<xs:element name="R.Type" type="xs:String">/>

<xs:element name="R.Format" type="xs:String>/>

</Properties>

<Location ref="address" minOccurs="0">/>

</DataResourceProperties>

</Properties>

</NodeTemplate>

Moreover, it is necessary to define the DataConnector Relationship Type which has
4 properties: Source Interface, Source Operation and SourceInputPar which are the

79

5 Concept

identifiers of what operation of what interface is going to be used and what input
data is required to such operation, and DataQuery in which can be specified a
query of what data is required from the Context Resource. In the Listing 5.3 the
definition of this Relationship Type is represented.

Listing 5.3 Data Connector Type Definition
<RelationshipTemplate id="DataConnectorFile" name="Data Connector File"

type="DataConnector">

...

<Properties>

<DataConnectorProperties>

<DataConnectorProperty name="SourceInterface" type="xs:String">/>

<DataConnectorProperty name="SourceOperation" type="xs:String">/>

<DataConnectorProperty name="SourceInputPar" type="xs:String">/>

<DataConnectorProperty name="DataQuery" type="xs:String">/>

</DataConnectorProperties>

</Properties>

</RelationshipTemplate>

After defining the typing, it is necessary to define the Topology Template. This
would be integrated by the following components.

– Location Change Detection: This template is a Processing Logic Node. If
the approach used is Function Shipping, it is needed to include a Deployment
Artifact to deploy and run the processing logic.

– Context Resource File: This template is a Context Resource Node. In this use
case, the context data is stored in a SQL table. This is defined in the properties
R.Type and R.Format. Moreover, if the approach used is Data Shipping, it is
needed to include the location of the data resource file.

– Data Connector Table: This template is a DataConnector Relationship. This
relationship establish the connection between the Processing Logic and Con-
text Resource nodes. Moreover, it defines that it is going to be used in the
operation checkchanges of the interface LocationInterface and that the input
required by this operation would be the user location.

80

5.4 Mapping

Figure 5.27: TOSCA realization with explicitly modeled data query

• Data Connector with Operations Applied to Multiple Data Resources: By con-
trast with the first concept, in this approach it can use different data resources
which can be modeled as data collection if they belong to the same collection and
moreover it can have operations to be applied in these resources and to connect
them to a processing logic. In the Figure 5.28 we present the basis of the solution.
As well as in the first approach, the Processing Logic Node would have as properties

81

5 Concept

an identifier and if it uses Function Shipping the Deployment Artifact Required.
The Data Connector Entity connects the Processing Logic Node with the different
Data Resources available, for that reason, it is assigned a Join Operation attribute
which allows to join data from the different sources together with the aim of
providing a single input for the processing logic node. The Context Data Collection
may comprise several data resources and it is characterized by four attributes:
identifier and location, as well as in the first concept, and Collection Type and
Resource Type which defines the type of collection it is ,such as directories or
databases, and the type of data resources hold in the collection respectively.

Figure 5.28: Data Connector with Operations Applied to Multiple Data Resources

Although there were proposed alternatives to model this concept, we have selected
the solution based on assignment of the Join Operation via a Join Interface. In the
Figure ?? it is represented how it would be modeled this solution. As well as the
first solution proposed, the topology would be integrated by two node templates
and a relationship template. By that first, of all it is necessary to define the types
associated to these templates. The definition of the Processing Logic Node would
be equal to the proposed in the first solution and described in the Listing 5.1. A
new Node Type is defined in this solution: Data Collection. As commented before,
the definition of the type would require to include three attributes: collection type,
resource type and location if Data shipping is used. Moreover, it would include the
resources which are included in the collection. Listing 5.4 includes the definition
of this node type.

82

5.4 Mapping

Listing 5.4 Context Collection Node Type Definition
<NodeTemplate id="ContextResourceFile" name = "Context Resource File" type="DataResource"

...

<Properties>

<DataResourceProperties>

<Properties>

<xs:element name="Collection Type" type="xs:String">/>

<xs:element name="R.Format" type="xs:String>/>

</Properties>

<Location ref="address" minOccurs="0">/>

</DataResourceProperties>

</Properties>

<ContextResources>

<ContextResource id="locationresource">

....

</ContextResource>

<ContextResource id="temporalresource">

....

</ContextResource>

....

</ContextResources>

</NodeTemplate>

Finally it is necessary to define a Data Connector Relationship Template. The main
difference to the presented first concept is that it includes an interface so-called
Data Join which introduces the operation JoinData which aim is to join data from
different sources and have as an input an array of Context Ids that want to be
processed in the Processing Logic Node.

After the typing definition, the topology template would be integrated as a template
for each node and relationship type. As it can be seen in the Figure, the processing
operation that it is going to be used is checkchanges, as well as the first solution
and moreover, the data collection used would be a directory and the data resources
integrated would be files hosted in this directory.

83

5 Concept

Figure 5.29: TOSCA realization with join operation assignment via join interface

After analyzing modeling solutions which enable the integration of the context into
topologies and an architecture solution which adapts the systems deployed, to be
aware of changes in the context and to adapt to them, we propose a solution which
integrates both and which can be adapted to the different use cases proposed in
Chapter 4. In the Figure 5.30 we present the architecture proposed to the first
use case, which was related to changes of location. All the components of the
architecture would be communicated by the Context Service Bus. First of all, the
location sensors would transmit the measures taken into a context data resource,
which could be a directory or a single file depending on the modeling solution
used. The CEP engine, which is the Processing Logic Node, would execute the
operation checkchanges of the interface LocationInterface which would detect if the
situation has changed. In that case, the Context Reasoner, which is the Monitoring
Node in the topology would analyze the new situation and send the appropriate
event to the implicated nodes. In this use case, the XOR node would require the

84

5.4 Mapping

notification of change of location to install an instance of the server SA in the VMs
associated with the new location (VMs A for Location A, VMs B for Location B).

Figure 5.30: Integrated architecture for Location Aware System

85

6 Conclusions and future works

The goal of this master thesis is to define a modeling solution for context aware systems
using TOSCA. Thereby, modeling context, analyzing different use cases hold in a general
scenario which are adaptive to the context, evaluating the requirements needed to model
them, designing modeling solutions for them by the use of the modeling languages
approaches and mapping this solutions into a general architecture into TOSCA are the
main aspects. To model the context we have selected a mark-up model. To model the
use cases, the context is integrated by 4 context categories: spatial, temporal, device
and network context.In total 5 use cases which use relevant context data for different
approaches are presented. 2 modeling solutions of each use case has been proposed by
using imperative and declarative approaches and it has been evaluated the suitability of
both approaches. On the one hand, by using an imperative approach the customization
of the service is easily achieved. On the other hand, by using the declarative approach
the flexibility of performance in many situations that may be not able to predict in the
design phase is introduced.

Context-aware systems are characterized by reacting to situation changes. In order
to trigger events in the different service topologies, we have proposed an architecture
solution composed mainly by 4 principal components: a context service bus which is
in charge of exchanging information between the different components, a CEP engine
which detects situation changes and a Context Reasoner which after being notified of
a situation changes, it send events to the affected services templates or entities of the
topology. To map the modeling solutions to the use cases and adapt the situation-aware
architecture proposed into TOSCA, first of all it is necessary to process the context data
taken by the sources of the system. Two approaches have been taken into account
for processing the data: data shipping which is based on retrieving data from the
data location and processing it where the computational resources resides or function
shipping which is based on executing functions on the data location and only sending
the result of the operation.

Two final modeling solutions which can be provided in TOSCA have been proposed
incorporating in both the chance to choose between the two data processing approaches
in order to increase the area in which these solutions can be used. The basis of the two
modeling solutions proposed is to define the communication between the Processing

87

6 Conclusions and future works

Logic Entity which is going to check the changes of the context by using an operation
of an interface defined in the entity with the Context Data Resource Entity which
identifies where we located the context information. A third entity is necessary to
define in TOSCA: Data Connector which is a Relationship Template and represents the
communication. The difference between the two modeling solutions proposed is how
the data is storaged. The first modeling solution a unique data source is considered, by
contrast the second modeling solution allows the use of multiple data resources. Finally
to check its suitability to the use cases proposed, it has adapted the architecture to the
location-aware use case.

Further work is required in terms of the development of a runtime environment, which
is able to process the presented modeling solution. In order to do that, it can be
used in OpenTOSCA, a runtime environment able to model application topologies and
automatically provide and manage them [BBH+13]. This runtime could be extended
with the solution proposed in order to provide the performance required to model
context aware applications.

Another field of work is the introduction in the solution, a combination of imperative
and declarative approaches in order to include the ability to the developers of context
aware systems that can be customized after its generation. As it was introduced in the
section 3.3, Uwe Breitenbücher et. al [BBK+14] has proposed a solution to combine
both approaches that can be introduced in our solution.

88

Bibliography

[AG99] D. K. Anind, A. D. Gregory. “Towards a Better Understanding of Context-
Awareness.” In: HUC ’99 Proceedings of the 1st international symposium on
Handheld and Ubiquitous Computing (1999), pp. 304–307 (cit. on p. 21).

[All16] T. Allweyer. BPMN 2.0: Introduction to the Standard for Business Porcess
Modeling. 2016. ISBN: 9783741219788 (cit. on p. 18).

[Bau03] J. Bauer. “Diplomarbeit: Identification and Modeling of Contexts for Dif-
ferent Information Scenarios in Air Traffic.” In: (2003) (cit. on p. 28).

[BBH+13] T. Binz, U. Breitenbücher, F. Haupt, O. Kopp, F. Leymann, A. Nowak,
S. Wagner. “OpenTOSCA – A Runtime for TOSCA-based Cloud Applica-
tions.” In: 11th International Conference on Service-Oriented Computing.
LNCS. Springer, 2013 (cit. on p. 88).

[BBK+14] U. Breitenbücher, T. Binz, K. Képes, O. Kopp, F. Leymann, J. Wettinger.
“Combining Declarative and Imperative Cloud Application Provisioning
based on TOSCA.” In: Proceedings of the IEEE International Conference on
Cloud Engineering (IEEE IC2E 2014). IEEE Computer Society, Mar. 2014,
pp. 87–96. DOI: DOI10.1109/IC2E.2014.56 (cit. on pp. 44, 45, 88).

[BBK+15a] U. Breitenbücher, T. Binz, O. Kopp, K. Képes, F. Leymann, J. Wettinger.
“Hybrid TOSCA Provisioning Plans: Integrating Declarative and Imperative
Cloud Application Provisioning Technologies.” In: (2015) (cit. on p. 40).

[BBK+15b] U. Breitenbücher, T. Binz, O. Kopp, F. Leymann, J. Wettinger. “A Mod-
elling Concept to Integrate Declarative and Imperative Cloud Application
Provisioning Technologies.” In: Proceedings of the 5th International Confer-
ence on Cloud Computing and Services Science (CLOSER). SciTePress, 2015,
pp. 487–496 (cit. on p. 44).

[BBKL14] T. Binz, U. Breitenbücher, O. Kopp, F. Leymann. “TOSCA: Portable Auto-
mated Deployment and Management of Cloud Applications.” In: Advanced
Web Service (2014), pp. 527–549 (cit. on pp. 35, 37).

89

https://doi.org/DOI 10.1109/IC2E.2014.56

Bibliography

[BCB+10] Bettini, Claudio, Brdiczka, Oliver, Henricksen, Karen, Indulska, Jadwiga,
D. Nicklas, Ranganathan, Anand, Riboni, Daniele. “A survey of context
modelling and reasoning techniques.” In: Pervasive and Mobile Computing
6.2 (2010), pp. 161–180 (cit. on pp. 22, 25, 27, 28, 31, 34).

[BCQ+07] C. Bolchini, C. A. Curino, E. Quintarelli, F. A. Schreiber, L. Tanca. “A Data-
oriented Survey of Context Models.” In: ACM SIGMOD Record 36 (2007),
pp. 19–26. DOI: 10.1145/1361348.1361353 (cit. on pp. 28, 33).

[BDPP16] A. Botta, W. de Donato, V. Persico, A. Pescapé. “Integration of Cloud Com-
puting and Internet of Things: a Survey.” In: Future Generation Computer
Systems 56 (2016), pp. 684–700 (cit. on p. 17).

[BDR07] M. Baldauf, S. Dustdar, F. Rosenberg. “A survey on context-aware systems.”
In: Int. J Ad Hoc and Ubiquitous Computing 2 (2007) (cit. on p. 34).

[BE04] J. J. Bisgaard, D. A. East. How is Context and Context-awareness Defined
and Applied? A Survey of Context-awareness. 2004 (cit. on p. 21).

[BHH04] S. Buchholz, T. Hamann, G. Hübsch. “Comprehensive Structured Context
Profiles (CSCP): Design and Experiences.” In: Pervasive Computing and
Communications Workshops (2004). DOI: 10 .1109/PERCOMW.2004 .
1276903 (cit. on p. 28).

[CFJ03a] H. Chen, T. Finin, A. Joshi. “An Ontology for Context- Aware Perva-
sive Computing Environments.” In: The Knowledge Engineering Review
18 (2003), pp. 197–207. DOI: 10.1017/S0269888904000025 (cit. on
pp. 27, 28).

[CFJ03b] H. Chen, T. Finin, A. Joshi. “An Ontology for Context-Aware Pervasive Com-
puting Environments.” In: The Knowledge Engineering Review 18 (2003),
pp. 197–207. DOI: 10.1017/S0269888904000025 (cit. on p. 32).

[Dam07] N. Damij. In: Business Process Management Journal 13 (2007), pp. 70–90.
DOI: 10.1108/14637150710721131 (cit. on p. 18).

[Dis15] M. Distefano. Cloud Computing and the Internet of Things: Service Architec-
tures for Data Analysis and Management. 2015 (cit. on p. 17).

[DPK+09] M. D. Dikaiakos, G. Pallis, D. Katsaros, P. Mehra, A. Vakali. “Cloud Com-
puting: Distributed Internet Computing for IT and Specific Research.” In:
IEEE Internet Computing 13 (2009) (cit. on p. 18).

[DR07] S. Dustdar, F. Rosenberg. “A Survey on context-aware systems.” In: In-
ternational Journal of Ad Hoc and Ubiquitous Computing (2007) (cit. on
p. 22).

90

https://doi.org/10.1145/1361348.1361353
https://doi.org/10.1109/PERCOMW.2004.1276903
https://doi.org/10.1109/PERCOMW.2004.1276903
https://doi.org/10.1017/S0269888904000025
https://doi.org/10.1017/S0269888904000025
https://doi.org/10.1108/14637150710721131

Bibliography

[DS17] J. Dörndorfer, C. Seel. “A Meta Model Based Extension of BPMN 2.0
for Mobile Context Sensitive Business Processes and Applications.” In:
Proceedings of the 13. Internationale Tagung Wirtschaftsinformatik (2017)
(cit. on p. 20).

[EBF+17] C. Endres, U. Breitenbücher, M. Falkenthal, O. Kopp, F. Leymann, J. Wet-
tinger. “Declarative vs. Imperative: Two Modeling Patterns for the Auto-
mated Deployment of Applications.” In: Proceedings of the 9th International
Conference on Pervasive Patterns and Applications (PATTERNS). Xpert Pub-
lishing Services, Feb. 2017, pp. 22–27. ISBN: 978-1-61208-534-0 (cit. on
p. 39).

[End95] M. R. Endsley. “Toward a Theory of Situation Awareness in Dynamic
Systems.” In: Human Factors: The Journal of the Human Factors and Er-
gonomics Society 37 (1995). DOI: 10.1518/001872095779049543 (cit. on
p. 13).

[Fis06] L. Fischer. Workflow Handbook. Future Strategies, Inc, 2006 (cit. on p. 18).

[GFHK14] H. Guermah, T. Fissaa, M. N. Hatim Hafiddi, A. Kriouile. “An Ontology
Oriented Architecture for Context Aware Services Adaptation.” In: Interna-
tional Journal of Computer Science Issues 11 (2014) (cit. on pp. 25, 28, 31,
32).

[GO14] L. González, G. Ortiz. “An Event-Driven Integration Platform for Context-
Aware Web Services.” In: Universal Computer Science 4 (2014), pp. 1071–
1088 (cit. on p. 76).

[GWPZ04] T. Gu, X. H. Wang, H. K. Pung, D. Q. Zhang. “An Ontology-based Context
Model in Intelligent Environments.” In: Proceedings of Communication
Networks and Distributed Systems Modeling and Simulation Conference
(2004) (cit. on p. 32).

[KBBL12] O. Kopp, T. Binz, U. Breitenbücher, F. Leymann. “BPMN4TOSCA: A
Domain-Specific Language to Model Management Plans for Composite
Applications.” In: Business Process Model and Notation. Ed. by J. Mendling,
M. Weidlich. Vol. 125. Lecture Notes in Business Information Processing.
Springer Berlin Heidelberg, 2012, pp. 38–52. ISBN: 978-3-642-33154-1.
DOI: 10.1007/978-3-642-33155-8_4 (cit. on p. 37).

[KBS+16] K. Képes, U. Breitenbücher, S. G. Sáez, J. Guth, F. Leymann, M. Wieland.
“Situation-Aware Execution and Dynamic Adaptation of Traditional Work-
flow Models.” In: Proceedings of the 5th European Conference on Service-
Oriented and Cloud Computing (ESOCC). Springer International Publishing,
2016, pp. 69–83. DOI: 10.1007/978-3-319-44482-6_5 (cit. on pp. 13,
41).

91

https://doi.org/10.1518/001872095779049543
https://doi.org/10.1007/978-3-642-33155-8_4
https://doi.org/10.1007/978-3-319-44482-6_5

Bibliography

[KKR+13] M. Knappmeyer, S. L. Kiani, E. S. Reetz, N. Baker, R. Tonjes. “Survey of
Context Provisioning Middleware.” In: IEEE COMMUNICATIONS SURVEYS
TUTORIALS 15 (2013) (cit. on p. 22).

[McC93] J. McCarthy. “Notes on formalizing context.” In: Proceeding IJCAI’93 Pro-
ceedings of the 13th international joint conference on Artificial Intelligence 1
(1993), pp. 555–560 (cit. on p. 56).

[MG11] P. Mell, T. Grance. “The NIST Definition of Cloud Computing.” In: NIST
Special Publication (2011) (cit. on p. 17).

[NH13] D. Novakovic, C. Huemer. “A Survey on Business Context.” In: Intelligent
Computing, Networking, and Informatics. Advances in Intelligent Systems
and Computing 243 (2013). DOI: 10.1007/978-81-322-1665-0_19 (cit. on
pp. 25, 28, 31, 32).

[NPB13] N. Z. Naqvi, D. Preuveneers, Y. Berbers. Cloud Computing: A Mobile Context-
Awareness Perspective. Springer London, 2013. ISBN: 978-1-4471-5106-7.
DOI: 10.1007/978-1-4471-5107-4_8 (cit. on p. 17).

[PFCP10] M. Poveda, M. C. S. Figueroa, R. G. Castro, A. G. Perez. “A Context Ontol-
ogy for Mobile Environments.” In: Proceedings of Workshop on Context,
Information and Ontologies - CIAO 2010 Co-located with EKAW 2010 626
(2010) (cit. on p. 21).

[RRF08] M. Rosemann, J. Recker, C. Flender. “Contextualization of Business Pro-
cesses.” In: International Journal of Business Process Integration and Man-
agement (2008) (cit. on p. 42).

[Saa16] K. Saatkamp. Modeling Approaches to Enable Data Shipping and Function
Shipping by Means of TOSCA. 2016 (cit. on p. 77).

[Sat01] M. Satyanarayanan. “Pervasive Computing: Vision and Challenges.” In:
IEEE Personal Communications (2001) (cit. on p. 13).

[Sil11] B. Silver. BMPN Method Style With BPMN Implementer’s Guide. Cody-
Cassidy Press, 2011 (cit. on p. 18).

[SL04] T. Strang, C. Linnhoff-Popien. “A Context Modeling Survey.” In: In: Work-
shop on Advanced Context Modelling, Reasoning and Management, UbiComp
2004 - The Sixth International Conference on Ubiquitous Computing, Not-
tingham/England. 2004 (cit. on pp. 29, 30).

[SML01] M. Samulowitz, F. Michahelles, C. Linnhoff-Popien. “CAPEUS: An Ar-
chitecture for Context-Aware Selection and Execution of Services.” In:
IFIP International Federation for Information Processing 70 (2001). DOI:
10.1007/0-306-47005-5_3 (cit. on pp. 24, 31, 32).

92

https://doi.org/10.1007/978-81-322-1665-0_19
https://doi.org/10.1007/978-1-4471-5107-4_8
https://doi.org/10.1007/0-306-47005-5_3

[SXV] O. Sofela, L. Xu, P. T. D. Vrieze. “Context-Aware Process Modelling through
Imperative and Declarative Approach.” In: FIP Advances in Information
and Communication Technology 408 (), pp. 191–200. DOI: 10.1007/978-3-
642-40543-3_21 (cit. on p. 38).

[TJH10] C. Timmerer, J. Jabornig, H. Hellwagner. “A Survey on Delivery Context
Description Formats – A Comparison and Mapping Model.” In: Journal of
Digital Information Management 8 (2010) (cit. on p. 27).

[WB10] Y. Wei, M. B. Blake. “Service-Oriented Computing and Cloud Computing.”
In: IEEE Computer Society (2010) (cit. on p. 18).

[WGZP04] X. H. Wang, T. Gu, D. Q. Zhang, H. K. Pung. “Ontology Based Context
Modeling and Reasoning using OWL.” In: PERCOMW ’04 Proceedings of
the Second IEEE Annual Conference on Pervasive Computing and Communi-
cations Workshops (2004) (cit. on p. 32).

[YBSD16] A. Yousfi, C. Bauer, R. Saidi, A. K. Dey. “uBPMN: A BPMN extension for
modeling ubiquitous business processes.” In: Information and Software
Technology 74 (2016), pp. 55–68 (cit. on p. 21).

[YD16] D. S. Yadav, P. K. Doke. “Mobile Cloud Computing Issues and Solution
Framework.” In: International Research Journal of Engineering and Tech-
nology (IRJET) 03 (2016) (cit. on p. 18).

[YMCL13] P. Yu, X. Ma, J. Cao, J. Lu. “Application mobility in pervasive computing:
A survey.” In: Pervasive and Mobile Computing 9 (2013), pp. 2–17 (cit. on
p. 13).

All links were last followed on Juli 19, 2017.

https://doi.org/10.1007/978-3-642-40543-3_21
https://doi.org/10.1007/978-3-642-40543-3_21

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources
and references than the listed ones. I have marked all
direct or indirect statements from other sources con-
tained therein as quotations. Neither this work nor
significant parts of it were part of another examination
procedure. I have not published this work in whole or
in part before. The electronic copy is consistent with all
submitted copies.

place, date, signature

	1 Introduction
	1.1 Scope of the work
	1.2 Thesis Organization

	2 Fundamentals
	2.1 Cloud Computing
	2.2 Business Process Modeling
	2.3 Context Aware Systems
	2.4 TOSCA

	3 Related Works
	3.1 Integration of Situation-Awareness in Workflow Models: SitOPT
	3.2 Contextualization of Business Process
	3.3 Integration of Imperative and Declarative Approach to model Cloud Applications

	4 Motivating Scenario
	4.1 Description
	4.2 Modeling requirements

	5 Concept
	5.1 Concepts Context Modeling
	5.2 Concepts Imperative Approach
	5.3 Concepts Declarative Approach
	5.4 Mapping

	6 Conclusions and future works
	Bibliography

