
Institute for Natural Language Processing

Computational Linguistics

University of Stuttgart

Pfaffenwaldring 5b

D–70569 Stuttgart

Diplomarbeit

Language Identification for

German-Turkish

Code-Switching Speech

Uğur Köstak

Course of Study: Informatik

Examiner: Jun. -Prof. Dr. Ngoc Thang Vu

Dr. Antje Schweitzer

Supervisor: Dr. Özlem Cetinoğlu

Jun. -Prof. Dr. Ngoc Thang Vu

Commenced: September 15, 2016

Completed: March 31, 2017

CR-Classification: I.2.7

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Publikationen der Universität Stuttgart

https://core.ac.uk/display/147556602?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

The importance of computers has risen in recent years in our daily

lives. An average person interacts without a doubt multiple times with

computers. The wide usage of computers has caused researchers to

think of ways which would allow you to communicate with computers

by a minimum number of interactions. Speech is the main communi-

cation instrument for humans, so researchers also used speech as an

interaction method between humans and computers. However, speech

has boundaries of its own, the language varies in different societies,

especially in multicultural societies where people tend to use a mixed

language called Code-Switching language to communicate, i.e. Ger-

many is a multicultural country and foreigners, especially bilingual

Turkish people, use German and Turkish when they speak to each

other. On the other hand, computers nowadays have become more

powerful and can also process complex tasks such as NLP tasks, which

requires a lot of processing power. In this thesis we aimed to solve Lan-

guage Identification task in German-Turkish code-switching speeches

with two popular machine learning methods Support Vector Machines

and Deep Neural Networks and at the end we compared the perfor-

mances of these methods.

Die Bedeutung von Computern ist in den letzten Jahren in unserem

alltäglichen Leben gestiegen. Die durchschnittliche Person interagiert

sich ohne Zweifel mehrmals am Tag mit Computern um. Dieser verbre-

itete Einsatz hat dazu geführt, dass die Forscher nach Möglichkeiten

suchen, die uns ermöglichen mit Computern durch die minimalste

Anzahl möglicher Interaktionen zu kommunizieren. Sprechen ist das

wichtigste Kommunikationsinstrument für Menschen, deswegen haben

die Forscher auch die Sprache als Interaktionsmethode zwischen Men-

sch und Computer verwendet. Allerdings hat die Sprache ihre Gren-

2

zen, die Sprache variiert sich in verschiedenen Gesellschaften, vor allem

in multikulturellen Gesellschaften, in denen Menschen dazu neigen

eine gemischte Sprache namens Code-Switching Sprache zu benutzen.

Deutschland beispielsweise ist ein multikulturelles Land wo Ausländer,

vor allem zweisprachige Türken sowohl Deutsch als auch Türkisch

beim kommunizieren benutzen. Dennoch sind Computern heute leis-

tungsstärker geworden und können auch komplexe Aufgaben wie NLP-

Aufgaben verarbeiten, die viel Rechenleistung erfordern. In dieser Ar-

beit zielen wir darauf hin, die Sprachidentifizierungsaufgabe in deutsch-

türkischen Code-Switching Sprache mit zwei populären maschinellen

Lernmethoden zu unterstützen. Support Vector Machines und Deep

Neural Networks und ein Vergleich der Leistungen diese Methoden.

3

Acknowledgement

Foremost, I would like to thank my thesis supervisors Jun. -Prof. Dr. Ngoc

Thang Vu and Dr. Özlem Çetinoğlu of the Institute of Natural Language

Processing at University of Stuttgart for giving me the opportunity to work

on this subject. They have supported me with patience and knowledge from

begining to end.

I especially want to thank to Dafni Markopoulou for always standing

beside me. Her encouragement and support have been my motivation to

write my thesis. I would like to express my deep gratitude to my family, my

mother, father, brother and elder sister, for supporting me spiritually and

financially throughout my studies and my life and also for giving me the

chance to follow my dreams.

Finally, I want to thank Talha Yılmaz, Panos Anestopoulos, Akvile Degutye,

Cem Yazgılı and Şahin Ertekin for data collection and correction of the thesis

and I wish to say thank you to all who contributed in any way to this thesis.

4

”I know one thing; that I know nothing.”

Socrates

Contents

1 Introduction 10

2 Related Works 12

2.1 Acoustic-Phonetic Approaches 12

2.1.1 Gaussian Mixture Model (GMM) Classification 12

2.1.2 Vector Space Modelling for statistical approaches . . . 13

2.2 Phonotactic Approaches . 14

2.3 Artificial Neural Networks . 16

3 Background 18

3.1 Acoustic Features Extraction 18

3.2 Machine Learning . 19

3.2.1 Supervised Learning 20

3.2.2 Unsupervised Learning 20

3.2.3 Support Vector Machines 21

3.2.4 Artificial Neural Networks 23

3.3 Accuracy Estimation . 29

3.3.1 Cross-Validation . 29

4 Data and Resources 31

4.1 Data Corpus . 31

4.2 Frameworks and Tools . 32

4.2.1 Praat . 32

4.2.2 OpenSMILE . 33

4.2.3 Scikit-learn . 33

4.2.4 Theano and Lasagne 34

6

5 Proposed Approaches 35

5.1 Data Collection and Processing 35

5.1.1 Data Collection . 36

5.1.2 Annotation and Transcription 37

5.1.3 Acoustic Feature Extraction 40

5.1.4 Silence Detection and Merging Frames 41

5.2 Support Vector Machines . 43

5.2.1 Parameter Selection . 44

5.3 Deep Neural Networks . 45

5.3.1 Network designing . 46

5.3.2 Function Selection . 48

5.3.3 Parameter selection . 49

6 Results 52

7 Conclusions and Future Work 57

7.1 Conclusions . 57

7.2 Future Work . 58

Appendices 64

A Speaker Questionnaire 64

B Confusion Matrices 65

7

List of Figures

1 Step by step MFCCs feature extraction. 18

2 SVM structure. Two possible SVMs with different margin . . . 21

3 Mapping features in a higher feature space 23

4 Illustration of mammal (left) and artificial (right) neuron cells 24

5 Fully connected multilayered neural network. 25

6 Block diagram of Language Identification Model 35

7 An example of German-Turkish CS utterance segmented with

Praat. 38

8 An example for normalized and verbal layer of same speech

segment. 39

9 An example .TextGrid file of silence detection with Praat. . . 42

10 Heatmap of Gridsearch scores 45

11 Learning curves with best (C, γ) pair on two different datasets. 46

12 Different learning rates cost-epoch function tracking. 50

13 Preventing over fitting by monitoring cost and accuracy over

time. 51

8

List of Tables

1 Durations for training, development and evaluation datasets . 31

2 Basic Information about the data 32

3 Code-Switching labels and brief annotation explanations . . . 39

4 Differently labelled and shaped datasets 43

5 Numbers of frames of each class in opensmile-1frame dataset . 52

6 Numbers of frames of each class in praat-1frame dataset . . . 53

7 Performances of the DNNs on opensmile-xframe datasets . . . 54

8 Performances of the DNNs on praat-xframe datasets 54

9 Performances of the DNNs on praat datasets 55

10 Comparison of Performances of the DNN and SVMs on opensmile-

1frame dataset . 56

11 Confusion Matrix: opensmile-1frame evaluation dataset 65

12 Confusion Matrix: opensmile-3frame evaluation dataset 65

13 Confusion Matrix: opensmile-5frame evaluation dataset 65

14 Confusion Matrix: opensmile-7frame evaluation dataset 66

15 Confusion Matrix: praat-1frame evaluation dataset 66

16 Confusion Matrix: praat-3frame evaluation dataset 66

17 Confusion Matrix: praat-5frame evaluation dataset 67

18 Confusion Matrix: praat-7frame evaluation dataset 67

9

1 Introduction

Language identification is a common natural language processing problem

and is defined roughly as a categorization task. It has its own challenges

especially when a single dataset (spoken or written data) contains more than

one language such as Code-Switching (CS) conversations and texts or mixed

language speeches. There are plenty of options to define LID but one of the

most common definition is:

Automatic language identification of speech is the process by which the

language of a digitized speech utterance is recognized by a computer. It is

one of several processes in which information is extracted automatically

from a speech signal (Zissman, 1996). According to (Auer, 1999) CS is

defined as in linguistic when a speaker alternates more than one languages

in a conversation and it is a common linguistic phenomenon in multilingual

communities (Adel et al., 2013).

It is a key piece of technology in many applications such as multilingual con-

versational systems, spoken language translation, multilingual speech recog-

nition, and spoken document retrieval. LID is also a topic of great importance

in areas of intelligence and security, where the language identities of recorded

messages and archived materials need to be established before any informa-

tion can be extracted. For voice surveillance over a telephone network, LID

technology also makes huge amounts of online language routing possible.

(Zissman, 1996)

Formally LID can be: Which of the N languages does O belong to, where

N a set of languages and O the utterance? Additionally, N could be assigned

to both a closed-set and an open-set of languages. The difference between

them is that the output for open-set N could be one of the languages among

N or none of N languages; while for an closed-set N the output has to be

one N languages (Li et al., 2013). According to (Vu et al., 2013) and (Adel

et al., 2013), CS tasks could be regarded speaker-dependent phenomenon,

10

as a result adapted models could outperform speaker-independent language

models, because each individual speaker has unique language behaviour.

As mentioned prevouisly, LID is a key technology in NLP tasks and CS

makes it more challenging and gives another perspective. The aim with this

thesis to gain the multiple language recognition ability of a monolingual LID

system fed with multilingual utterances by using two state of the art machine

learning approaches. Our baseline system is the well known Support Vector

Machines (SVMs), the other system being Deep Neural Networks (DNNs),

which has recently became more popular. Moreover, we aim to show that

DNNs outperform SVMs for LID in CS conversations.

The work is organised as follows: In section 1 LID and CS are introduced

as well as the importance of LID, uses cases and issues are represented. After

introducing the task and issues, related works and state of art technologies

are explained in section 2. Section 3 clarifies key criteria related to the tech-

niques and algorithms which are used in conducting the experiments. The

data used in the experiments, is represented with some statistics in section

4, Section 5 describes the proposed approaches of thesis with background

techniques to solve LID task. Additionaly, data collection process, annota-

tion and trascription, and feature extraction are explained in this section.

Each CS case is explained through a concrete example In Section 6, the per-

formace of proposed methods are presented and evaluated, and in Section 7,

conclusions being drawn and potential avenues for future research.

11

2 Related Works

In this section, related techniques and previous work in Language identifica-

tion tasks are explained in more detail.

2.1 Acoustic-Phonetic Approaches

2.1.1 Gaussian Mixture Model (GMM) Classification

The Gaussian Mixture Model (GMM) is an unsupervised classification tech-

nique and no linguistic knowledge is required to use it. The motivation for

using GMM LID is that each language has its own characteristic, such as

different sounds and sound frequencies. In other words, spectral acoustic fea-

tures of a speech utterance are independent of the language used, as such,

GMM is used to approximate the overall acoustic phonetic distributions of a

spoken language. In its simplest form, a GMM can be used to directly model

the distribution of the acoustic features.

The notion behind GMM is to approximate the probability distribution

of the samples from a class C, by a linear combination of K Gaussian distri-

butions:

(1) p(o|C) = ΣK
i=1ωiN (o|µi,Σi)

Where the weights have to satisfy the constraint and N is the normal distri-

bution:

(2) N (o|µ,Σ) =
1

(2π)D/2
1

|Σi|1/2
exp

[
−1

2
(o− µ)TΣ−1i (o− µ)

]
Given a collection of training feature vectors, a GMM is generally trained

with the expectation maximization (EM) algorithm, where the model pa-

rameters are estimated using the ML criterion. In language identification,

we train a GMM for each language for the recognition task formulated in

equation 3.

12

An unknown speech utterance represented as acoustic feature vectors

O = {o(1),o(2), ...,o(T)}, in which o(t) extracted at the discrete frame t.

Observed acoustic features will be matched with most likely language, so the

language L will be labelled as:

(3) L = argmaxl p(O|Ll)

which follows a maximum-likelihood (ML) criterion.(Li et al., 2013)

2.1.2 Vector Space Modelling for statistical approaches

There are successful approaches to representing speech utterances as a high-

dimensional vector under the SVM method using the spectral features of

speech utterances. According to (Li et al., 2013), there are two effective vector

space modelling techniques to represent a speech utterance with spectral

features and GMM parameters.

In the section 3.1 one of the acoustic extraction features is explained in

detail. In addition, there are other techniques which can also extract acoustic

features of a given speech utterance. Applying one of these approaches will

result in a speech utterance being represented as a sequence of feature vec-

tors, with these feature vectors being compared using SVM and producing

SVM output vectors. A successful approach using this sequence kernel is the

Generalized Linear Discriminative Sequence (GLDS). It takes the explicit

polynomial expansion of the input feature vectors and applies the sequence

kernel based on generalized linear discriminates. The polynomial expansion

includes all the monomials of the features in a feature vector.

GMM super-vector can be an alternative to GLDS. GLDS is a nonpara-

metric approach for language identification, despite that the GMM super-

vector offers a parametric alternative. Given a UBM (Universal Background

Modelling) and a speech utterance drawn from a language, a GMM super-

vector will be derived by stacking the mean vectors of all the adapted mixture

13

components. In this way, a speech utterance is mapped to a high dimensional

space using the mean parameters of a GMM.

Finally, for each target language, a one versus the rest SVM can be trained

in the vector space with the target language being the positive set and all

other competing languages being the negative set. A decision strategy can

be devised to summarize the outputs of multiple one-versus the-rest SVMs

during the runtime test.(Li et al., 2013)

2.2 Phonotactic Approaches

In the previous section is given information about how to discriminate lan-

guages with only using acoustic features. In this section we will have a

closer look to higher level prelexical language recognition methods. The

main idea behind the phonotactic approaches is spliting a given speech ut-

terance in to sound tokens and use the sound tokens for the task rather than

purely acoustic-phonetic features. A very widely used tokenization technique

is GMM tokenization technique that converts a bunch of frame sequence into

a Gaussian token. In practice phone recognizers are very commonly used to

tokenize speech utterances. On that occasion it is an obvious that the perfor-

mance of the language recognition task is influenced proportional by phone

recognizers performance.

PRLM. There are several different approaches in this paragraph we are

going to introduces couple of them. The first one which we will introduce is

phone recognition followed by language modelling, a single-language phone

recognizer is used to tokenize the input speech, i.e. English phone recog-

nizer, to convert the input waveform into a sequence of phone symbols. The

phone sequences are then analysed by the n-gram analyser and a language is

hypothesized on the basis of maximum likelihood. (Zissman, 1995)

(4) logP (Y |λl) = ΣJ
j=1log Pλl(wj|wj−1...wj−(n−1))

14

where Y is phone sequence, λ is language model, w is phones and J is the

length of phone sequence, log likelihood of the phone sequences. This is the

cross entropy between phone probability distribution of phone sequences and

phone n-gram models. The log likelihood should be calculated for each lan-

guage and the most likely language l will be returned as described in 3.

PPRLM. Second one is parallel phone recognizer followed by language

modelling. The idea based on first model but there are small differences

between them. For example a separate phone recognizer is used as front-end

for each target language and in the back-end additional classifier to evaluate

each score from single phone recognizer model. Finally the classifier map the

given speech utterance to most likely language. PPRLM can be also expressed

with the term a fusion of multiple PRLM subsystem. (Zissman, 1995)

(5) logP (Ll|O) = ΣF
f=1log

P (Yf |λf,l)
ΣN
i=1P (Yf |λf,i)

where O is the speech utterance, P (Yf |λf) is the likelihood score. Basically

the idea is we have multiple PRLM scores and each score is normalized and

the the log likelihood summed up. So we generated a final score and decision

is based on this score.

The last one is a bit different than the previous two approaches. Again it

has parallel phone recognizer in the front-end processing and a classifier as

back-end to classify output vectors from each part, but the one in the middle

has n-gram statistics for each language instead of language models. it named

as vector space modelling approach. Basically the VSM in phonotactic ap-

proaches is a analogous concept to bag of words approach. The idea behind

bag of words is to present a text document as a vector that contains the oc-

currence of words in the text, but if it comes to speech instead of letters and

words, the acoustic-phonotactic units such as phone sequences were used. Af-

ter tokenizing the speech utterance, the phone sequences can be converted by

high dimensional phonotactic feature vectors to the n-gram statistic. Finally,

the vectorized speech utterance can compared with the vectors that derived

15

from training data of target languages using cosine similarity and picked the

most likely language. (Zissman, 1995)

2.3 Artificial Neural Networks

As in section 2.1 and section 2.2 described there are two main approaches of

LID tasks. In this section these approaches with neural networks combined

and related researches in the field will be introduced. In many works DNNs

are used for LID and SLR tasks and obtained acceptable results in these

works. (Richardson et al., 2015) (Lopez-Moreno et al., 2016) (Shivesh Ranjan

, Chengzhu Yu , Chunlei Zhang , Finnian Kelly, 2016) (Gonzalez-Dominguez

et al., 2014) (Ganapathy et al.)

First of all what kind of features should be used for the input has to be

clear, because there are plenty of options of sound feature extraction methods

and the influence of features on the results is depending on the task, but

mainly for ASR and LID tasks SDC and MFCC, which are dominating the

research field, are used. The prediction is made for each of those feature

vectors, it means that each frame (i.e 25ms frame) is getting a label from the

DNN. After deciding which features will be used for the inputs the essential

question to be answered is what kind of neural network should be applied

on the extracted features. In the cited works in the first paragraph of this

section different type of DNNs are mentioned like Feed-Forward, Recurrent

(Long-Short Term Memory) and Convolutional Neural Networks. Especially,

RNNs and CNNs has big advantage over Feed-Forward Neural Networks,

because of the sequential form of language. (Ganapathy et al.)

On the other hand the configuration is another challenging subtask of

DNNs. There are three piece of DNNs: Input layer, hidden layers and output

layer. Input layer must have same number of neurons as input vectors. For

example in (Gonzalez-Dominguez et al., 2014)] they used 39 dimensional

PLP coefficients and the network fed with 21 frames it means input layer

has 819 (21 * 39) neurons. Hidden part can contain any desired number of

16

neurons and consist of multiple layers e.g. 4 hidden layers. The last layer is

the output, it must have exactly same number of target classes in our case

precise number of target languages. In section 5.3 it will be explained in

details.

Choosing best training algorithm could also be tough as configuring the

network, but dominating training algorithms for DNNs are gradient descent

based algorithms some of these techniques are explained in section 3.2.4

and 5. Very classical training technique is known as Back-Propagation and

for RNNs is Back-Propagation Through Time. As mentioned in previous

paragraph output layer holds the scores of network.

17

3 Background

This section describes all the techniques and algorithms used in the experi-

mental part.

3.1 Acoustic Features Extraction

Mel-Frequency Ceptral Coefficients (MFCCs) is a representation of speech

signals. Before the sound in the LID system is used, it needs to be represented

in an vector space with real numbers instead of sound waves. This prepro-

cessing process has very big impact on LID systems performance. MFCCs has

very successful acoustic features for LID tasks. (Shashidhar G. Koolagudi,

Deepika Rastogi, 2012) (Leung et al., 2009)

Figure 1: Step by step MFCCs feature extraction.

Figure 1 illustrates the necessary steps to extract MFCCs acoustic fea-

tures. First of all, the speech needs to be windowed, and then the frequency

domain representation is calculated by the Discrete Fourier Transformation

(DFT). Next step is applying Mel frequency filter on the signal and then tak-

ing the logarithm because of the human non-linear perception of loudness. In

the end, inverse DFT is used along with the calculation of ceptral coefficients

18

to filter out the speaker dependent features of speech signal.(Magre, 2013)

(Hasan et al., 2015)

3.2 Machine Learning

Machine learning is a subfield of artificial intelligence. The assumption is that

the machines (computers) can infer relations between data from given data

samples even if they are not explicitly programmed. These methods can also

be named as data-driven predictor or decision maker.

The number of devices with internet connection (smartphones, smart

TVs, autonomous cars, smart home gadgets etc.) have drastically increased

over the last decade, and as a result, the data being produced every day

has been increased as well. With the growing amount of data, researchers

have made great human-level progress; perhaps that explains why machine

learning has recently been widespread in other research areas e.g. natural

language processing, computer vision, genetics and genomics. However, we

are not completely able to apply machine learning techniques on every data

and in all research areas. Unfortunately, at the moment, these methods are

very restricted and can be applied only in very specific tasks such as classifi-

cation, regression, and clustering. To build a feasible system, there are three

crucial questions (below listed) to consider e:

• Is there enough data?

• Does a pattern exist?

• Let the data mathematically formulated?

Now we are going to examine these questions closer and find out what all

those mean in scientific sense. First of all, if the relation between data points

can be explicitly formulated with a mathematical equation or inequation,

then it might be that the machine learning techniques are not the best way

19

to solve the corresponding task; rule based techniques would be more appro-

priate. We will be able to solve the problem but not with the best results.

Besides, this similar data points must behave similarly thus means the data

has a pattern and plays a very important role to infer the relation. In real-life

data, there are usually expected noisy data but generalization techniques can

handle these data. The last point makes sure that the system has sufficient

amount of data in order to be able to analyse it and make inferences out of

the data.

3.2.1 Supervised Learning

Machine learning techniques are distinguished from each other by the input

data. One of them is called as supervised learning methods given a training

data set with the correct label, and the task is to predict labels for new data

samples. If the labels are real-value numbers, then the task is a regression

task. However, if the labels represent a class or a category, then we apply

on the data a classification technique in order to map the input data to the

corresponding class. For instance, in the following equation:

(6) f(x) = y

where x is the input data in vector form and y is the corresponding label for

the x, and f is an unknown mapping function which we are trying to find

out the best one for. If the output y is a value for instance y ∈ IR or y ∈ IN

of a continuous set then we should deal with a regression problem. On the

other hand if y is a member of a closed set, which means a non-continuous

set, e.g y ∈ {red, blue, green} or y ∈ {car, human, animal, couch} then we

have to get a handle on the classification problem.

3.2.2 Unsupervised Learning

In supervised techniques, for each data sample an explicit label is given, but

in the unsupervised learning, the data clearly differs from the input data.

20

All we get is only the raw data samples collected for a particular purpose

but labels are not included, so the task is to try to predict hidden groups

or hidden patterns in the data. Common unsupervised learning tasks are

density analyses. Clustering could be solved with techniques such as k-means

clustering, hidden markov models, self organizing maps etc. but these kind

of tasks and techniques are out of scope for this thesis.

3.2.3 Support Vector Machines

The SVMs is a machine learning method based on a linear discriminant

function, which belongs ideally in binary classification problems solutions.

On the other hand it could also be applied on regression problems (Drucker

et al., 1997). The main idea of SVMs is shown in 2. In the figure below there

are two possible SVMs but the algorithm chooses the one on the right side

on account of minimizing misclassification of unseen data.

Figure 2: SVM structure. Two possible SVMs with different margin

Consider a given dataset formulated as:

(7) D = {(xi, yi), xi ∈ Rp, yi ∈ {−1, 1}}ni=1

21

which is linearly separable. Lets assume that cirles demonstrates class +1

and squares class -1 in the figure 2. The algorithm aims to find best hyper-

plane with maximum margin. The hyperplane could be expressed with this

formulation

(8) w · x− b = 0

where w is weight vector and b is bias and the classification step could be

expressed with

(9) class(xi) =

{
1 w · x− b > 0

-1 w · x− b ≤ 0

(Fokoue et al., 2013)

Kernel Trick. As it previously mentioned, SVMs can only be successful

with classification when the data is linearly separable. If the data is in its

feature space (not linearly separable in this case) the solution would be to

map the features non-linearly in to a higher dimensional feature space and

try to separate there. Whereas mapping the features in higher dimensional

space is used in a non-linear kernel, this technique is called as kernel trick. As

shown in figure 3 the classification data in two dimensions and not linearly

separable through the kernel function φ is mapped into three dimensional

space and linearly separated in a 2-dimensional hyperplane.

A Kernel is a replacement of an inner product with an appropriate positive

definite function, which implicitly performs a non-linear mapping of the input

data to a high dimensional feature space. Basically, a kernel function can be

expressed like in equation 10, where x, y are n-dimensional inputs vectors.

f is a function which maps input vectors from n-dimension to m-dimension

space (in this case m is much bigger than n). < x, y > represents the dot

product.

(10) K(x, y) =< f(x), f(y) >

22

Figure 3: Mapping features in a higher feature space

Two most popular kernel functions are polynomial and radial basis

functions. ”Polynomial kernel” is shown below in the equation 11

(11) K(x, y) = (x · y + 1)n

and Radial basis function (RBF) in equation 12

(12) K(x, y) = eγ‖x−y‖
2

3.2.4 Artificial Neural Networks

Artificial neural networks are very successful subfield in machine learning,

and artificial intelligence as well. This algorithm is inspired by biological

(human and animal) neural networks. A few brief comments on the percep-

tual brains, cognitive and control functions: The brain consists of billions of

interconnected neurons which process through sensory cells perceived signals

by using biochemical reactions. As mentioned above, the neurons are con-

nected to each other with nerve fibres and those transmit signals from one

23

cell to another. If the electrical potential of a cell reaches a threshold, as a

result the neuron is fired. Figure 4a is the structure of a mammalian neu-

ron. Dendrites are receiving signals from the other nerve cells which pass to

the nucleus. Here, the electrical potential changes by processing the received

signal and finally the signal travels along the axon to synapses and synapses

distributes it to the other connected neighbour nerves. (Abraham, 2005)

An artificial neural network is a mathematical model of a biological nerve

system. Figure 4b iillustrates the simplified structure of a biological neuron.

The synapses are represented with weights and the non-linear characteris-

tics of the biological neuron are represented by a non-linear mathematical

function known as an activation function e.g. Sigmoid, TanH, ReLU.

(a) Biological neuron (b) Artificial neuron

Figure 4: Illustration of mammal (left) and artificial (right) neuron cells

(13) a = f(z) = f

(
n∑
j=1

wj · xj

)
where w is the weight vector, a is the output vector of a single neuron and f

is the activation function. The calculation of z is as follows:

(14) z = wT · x = w1x1 + ...+ wnxn

where x is input variables and wT is transpose of w. To calculate a we have

plenty of choices, for instance

(15) a = f(z) = σ(z) =
1

1 + e−z

24

where σ refers to sigmoid function and also many other non-linear functions

can be used instead of sigmoid functions. (Abraham, 2005)

An artificial neural network is illustrated in figure 5. In the previous para-

graph we learned the work principle of a single nIn the previous paragraph

we learned the work principle of a single neuron, and now we will explain

how to build a neural network combining single neurons. An artificial neural

network consists of an input layer, a hidden layer and an output layer. Each

layer consists of multiple neurons, where directed and weighted connection

between those neurons exists. Usually neural networks have one hidden layer,

so if the number of hidden layers is more than one, then this type of neural

networks is called ”deep” neural network. In some cases, ANNs of multi-

ple hidden layers with less number of neurons could give better results than

ANNs of one hidden layer with big number of neurons. Further information

about designing an sensible ANN is explained in section 5.3.1. (Seide et al.,

2011)

Figure 5: Fully connected multilayered neural network.

According to neural network illustrated in figure 5 computation of the

final output vector y is as follows:

(16) y = f(x) = σ(w(L)...σ(w(2)σ(w(1)x + b(1)) + b(2))...+ b(L))

where y is the final output vector of the network, x is the input vector and σ

25

in equation 15 is chosen as activation function, w and b are weight matrix and

bias and L represents the corresponding layer number. This is the forward

propagation of the normalized input data.

(17) yi =
ez

(L)
i∑

j e
z
(L)
j

This is a normalized exponential function and it takes forward passed val-

ues m-dimensional respect to figure 5 at the output layer L and maps each

prediction to a real value ∈ [0, 1], where
∑m

j=1 yj is equal to 1.

Training an Artificial Neural Network. Data is passed forward

through the weighted connections, therefore choosing the best activation

function, initializing and tuning hyper-parameters, are very crucial tasks for

the artificial neural networks. Usually hyper-parameters are randomly initial-

ized and after each forward propagation they are tuned. Following paragraphs

contain more information about the tuning parameters and a couple of al-

gorithms. By tuning parameters, we are aiming to find ideal values for each

parameter. Before we tune the parameters we need to identify the deviation

of the results, in other words we need to evaluate the performance of ANN.

Deviation could be calculated by defining an error function.

(18) E(θ) =
1

|D|
∑
(x,y)

c(f(x), y) =
1

|D|
∑
(x,y)

c(θ)

where θ is parameter set, f(x) is referred to predicted value, so that f(x) = ŷ

and y is actual value and D is the number of total data samples.

(19) c(θ) = (ŷ − y)2

is a possible function to calculate c(θ). It calculates the distance between pre-

dicted value and actual value. Now the cost function is called mean square

error (MSE. There are plenty of options to calculate error, but to demon-

strated mean square error is very simple. Training networks are minimiz-

ing the cost function which depends on parameters, so the cost function is

26

minimized by changing parameters. One simple solution of this task would

be a brute-force technique, but if the number of parameters increases, the

complexity of the problem will increase as well, for that reason brute-force

approach is not worth to try with higher number of parameters.

To reduce the computation time we need to avoid redundant calculations.

First of all the parameters are randomly initialized and then the gradient is

calculated; if
∂E

∂θ
is negative it means that the cost function tends to downhill

and if positive the cost function goes uphill; if equals zero this is the minima

for cost function.

Back-Propagation algorithm. At the previous section and previous

paragraph we described forward propagation, and evaluation of results, there-

fore cost function, and estimating the direction of local minima. Now we are

going to explain the back-propagation technique that tunes θ to converge to

the local minima in a smart way.

Back-propagation is based on gradient descent algorithm. As usual, at

first we compute forward propagation and then back-propagate the error from

the output layer via hidden layers to input layer. Finally, each of the weights

is updated. Lets take a closer look to each step of back-propagation.Forward

propagation is defined in equation 16 and finally at the output layer by

applying softmax function defined in equation 16, we get final predictions ŷ.

After that step cost function, how well ŷ is predicted by the ANN, should

be calculated with the equation 18. At this step we figured outerror of the

network which should be back-propagated starting from the output layer until

it reaches the input layer to minimize the cost function by tuning weights.

The derivative of the cost function respect to each parameter, gives us the

gradients of each function

(20)
∂E

∂w(l)
=
∂z(l)

∂w(l)

∂E

∂z(l)

where ∂ is partial derivative and l represents the corresponding layer. This

formula calculates derivatives of each layer. To understand a bit more we

27

need to investigate first and second terms both separately.

(21)
∂z(l)

∂w(l)
= a(l−1)

first term of equation 20 partial derivative of z respect to weights at layer l

is equal to activities from the previous layer.

(22)
∂E

∂z
(l)
i

= δ(l) = f ′(z(l))(w(l+1))T δ(l+1)

and second term is a recursive function which makes sense because we start to

tune weights from last layer to the first. Now, for each layer we have gradients

of all the weights in a matrix form. As mentioned before, if the cost function

goes uphill which means error is growing, the derivative is positive. The

essential movement to do is to subtract the negative value of a derivative

from corresponding weight and vice versa if the derivative is negative.

(23) w(l) = w(l) − η(a(l−1)δ(l))

where η is learning rate. This step is called updating weights and repeats all

the steps until cost function reaches the local minima. In consequence, the

training process has been accelerated a lot and saves computation power and

time comparison in brute-force technique. (Rojas, 1996)

Limitations of back-propagation. There are some limitations with

gradient decent procedures. First of all, if the cost function is a concave

function, it means that there are more than one minima. Here, the weight

initialization plays a very crucial role because in case of random initialization,

the gradient decent algorithm detects only local minima and unfortunately

can not guarantee that the local minima is a global minima at the same time.

On the other hand, it could also happen that the random initialization

made a great job and landed very close to global minima (basically a ”good”

local minima), so the expectation is back-propagation of error will converge

weights to the global minima but suddenly the local minima is left afterwards

28

because the gradients have been very high and after-weight updates missed

the global minima. Having high initial gradient might miss the ”good” local

minima, furthermore low initial gradient -eventually zero- might lead the

poor generalization.

Nevertheless, choosing the learning rate, affects extremely on the per-

formance of the ANN. Small learning rate could have a bad influence on

computation performance, while large learnings rate (as mentioned in the

previous paragraph) overstepping global minima. Furthermore, fixed learning

rate could result osculation in canyons and endless loop. Further information

is given in section 5.3.1.

3.3 Accuracy Estimation

In this section we learned the basic idea of machine learning and we di-

vided the learning tasks in two classes which are supervised and unsuper-

vised learning algorithms. Supervised learning techniques are intended to

solve classification and regression problems, where a set of labelled train-

ing data is available. Afterwards, in order to solve these problems, we have

learned a couple of approaches: Support Vector machines and Artificial Neu-

ral Networks. After these steps the performance of built model needs to be

evaluated whether the model works well or not. (Refaeilzadeh et al., 2009)

3.3.1 Cross-Validation

Cross Validation is a very common used evaluation method. Basically it splits

the training data set into two segments known as validation sets and then the

first validation part is used for training the model and the second validation

set is used as test data and vice versa, finally the results are averaged.

One of the biggest problems of machine learning algorithms, is fitting too

much to the training data. This problem is well known as overfitting problem.

Although the model works on trainings data well, the accuracy on the unseen

29

dataset is very poor. Cross-Validation is good to prevent this type of problem

in particular. (Refaeilzadeh et al., 2009)

30

4 Data and Resources

This section contains information about the data used for researches, data

transcription tools, and the acoustic features extracted with. Additionally,

it gives information about the Frameworks that we used to implement our

baseline system and DNNs.

4.1 Data Corpus

The corpus that used for the research, contains interviews and conversations

in multiple languages. All the data has been collected from bilingual Turkish

people who were either born or grown up in Germany. There are in total 28

participants (20 females, 8 males), most of them students at the university of

Stuttgart, between 19 and 28 years old. Additionally, there are a few younger

and older participants also. As it was previously mentioned, the majority of

participants are students and the others are from diverse professions such as

bankers, school students, social pedagogues etc. Another remarkable fact, is

the diversity of their origin in Germany and Turkey as their families originate

from various cities and areas of Turkey and all across Germany.

Total length of recorded conversations is 4.5 hours containing Turkish and

German languages, although other languages like English, French, Arabic

etc. are regarded as other languages. Table 1 gives information about the

training, development and the evaluation datasets. We made sure that the

sets of speakers of the training set and the test set were disjoint.

Training Development Evaluation

Speaker 24 2 2

Duration 233 min 24 min 23 min

Table 1: Durations for training, development and evaluation datasets

31

Table 2 gives statistical information about the data (Çetinoglu, 2017).

Right column represents number of left column. In the table 2, the number

of sentences is equivalent to the number of utterances which we used for

training, development, and evaluation.

sentences 3614

tokens 41056

sentence boundaries (SB) 2166

intersentential switches (SCS) 1448

intrasentential switches (WCS) 2113

intra-word switches (§) 257

switches in total 3818

sent. with at least one WCS 1108

Table 2: Basic Information about the data

4.2 Frameworks and Tools

We decided to develop our language identification system using a bunch of

tools and frameworks. Praat helped a lot in transcriptions and silence detec-

tion in speech. The voice records were handled by OpenSMILE which is used

for acoustic features extraction. We chose Python programming language

because of its powerful and robust Deep Learning and Machine Learning

frameworks such as Theano and Lasagne plus Scikit-learn.

4.2.1 Praat

Praat1 is a free software for phonetic analysis of speech data and developed

by Institute of Phonetic Sciences at University of Amsterdam. It was devel-

oped by the Institute of Phonetic Sciences at the University of Amsterdam,

1Praat resource: http://www.fon.hum.uva.nl/praat/

32

http://www.fon.hum.uva.nl/praat/

and it is used in different tasks like speech analysis and synthesis, labelling

and segmentation. However, we have used the transcription function rather

than other functions. There are different labelling styles. First one is the

transcription of an interval (interval tier) i.e. a whole sentence, word, or even

a letter, and the other one is the transcription of a time point (point tier).

We labelled our speech with interval and point tiers. Code Switching points

are marked with point tier and four different labels and other information

like speakers, spoken words, and languages which are stored in a multiple

interval tiers. See section 5.1.2 for further information.

4.2.2 OpenSMILE

OpenSMILE2 toolkit is a modular and flexible feature extractor for signal

processing and machine learning applications. OpenSMILE can read data

from the RIFF-WAVE file format, the audio recorded in. The primary fo-

cus is clearly put on audio-signal features. MFCC low-level descriptors can

be computed by openSMILE. Further information about feature extraction is

given in section 3.1. The Software takes as input a sound file and returns cor-

responding features in many different formats e.g. Comma Separated Value

(.csv), .htk parameter file, .arff WEKA file, .libsvm feature file format, and

”Binary float matrix format”. However we only use .csv, .arff and .libsvm

files; other file formats are irrelevant to our research. (Eyben, 2014)

4.2.3 Scikit-learn

Scikit-learn3 is a free machine learning library for Python. It includes a large

selection of state-of-the-art machine learning algorithms such as support vec-

tor machines, k-means, and k-nearest neighbour for supervised and unsuper-

vised problems. The main purpose of the library is: ease of use, good perfor-

mance on a high-level language, and consistency of the user interface. The

2OpenSMILE resouce: http://audeering.com/technology/opensmile/
3source: http://scikit-learn.org/stable/

33

http://audeering.com/technology/opensmile/
http://scikit-learn.org/stable/

working principle of scikit-learn is as follows: First we choose the estimator

and then train the estimator using training data with the fit method. Once

the model has been trained, we evaluate the performance of the estimator by

using the score method. The predict method which is only with supervised

learning estimators available, allows the estimator to predict new data labels.

On the other hand. GridSearchCV makes possible to tune the parameters

to the best working ones. Source code, binaries, and documentation can be

downloaded from 4. (Pedregosa et al., 2012)

4.2.4 Theano and Lasagne

Theano5 is a general mathematical library for Python. Theano is very pow-

erful for defining, optimizing. and evaluating expressions involving high-level

operations on tensors with a GPU support. Besides being a general math-

ematical library. Theano aims to speed up the deep learning application.

(Bergstra et al., 2011)

Lasagne 6 is a Python module built on top of Theano which makes build-

ing neural network models very simple. It has been developed as an extension

of Theano; basically it inherits Theanos conventions. and functionalities ac-

cept and return Theano expressions. In this way, it makes constructing com-

monly used network structures easy but also allows arbitrary/unconventional

models.

Theano is a strongly typed language and it requires that all the associated

variables are in the same shape (dimension) and same type. This feature is

important for input and output variables. With theano.function the network

can be built and trained as aimed. (Theano Development Team, 2016). At

this point, Lasagne offers a lot of simple solutions. Lasagne has plenty of

predefined updates and cost functions. On the other hand, the lasagne.layers

has a lot of different predefined layer types including input and output layers..

4download: http://scikit-learn.sourceforge.net
5source: http://deeplearning.net/software/theano/
6source: https://lasagne.readthedocs.io/en/latest/

34

 http://scikit-learn.sourceforge.net
http://deeplearning.net/software/theano/
https://lasagne.readthedocs.io/en/latest/

5 Proposed Approaches

This section explains the essential steps for LID tasks. Figure 6 is a block

diagram of LID Model. In this section, we firstly explain the data collection

and preprocessing process, and then we continue with selecting the best pa-

rameters to train models (SVMs and DNNs). In section 6 we evaluate the

results which have come out of the LID-systems by using these parameters.

Figure 6: Block diagram of Language Identification Model

5.1 Data Collection and Processing

Data has generally a big impact on the NLP and other machine learning

tasks. As mentioned in the previous sections, we have to have enough and

well-prepared data to make a satisfying generalization or else we may have a

bad generalization. In this section we explained how the data was collected

and processed.

35

5.1.1 Data Collection

Germany is a multicultural country and one of the most popular migration

destinations in the world. In Germany, one out of five people is immigrant

and with three million population, Turks are the second biggest immigrant

group after the Russians (BAMF, 2016). This cultural diversity leads to code-

switching conversations as in other multicultural countries like Singapore,

USA, Switzerland, China (Lyu et al., 2015). Recent research has shown that

speech recognizers outperform for the monolingual speech and data, while

on the other hand, monolingual speech recognizers are not able to recognize

these code-switched languages. Recognizing code-switched languages makes

the problem more challenging and leads the interest of research on how to

handle this problem. (Adel et al., 2013)

Hence the data collected for training and test processes, is very crucial in

LID tasks, and on this account it has to meet certain standards and quality

level. Not only external factors such as background noise, voice overlapping,

volume of voice, but also social impact and psychological factors, should

be considered in order to reach the desired quality level. In this section we

aim to give information about issues we have had on data collection process

and interesting observations about speech behaviour which varies extremely

under particular conditions.

Foremost, two different scenarios took place, and these scenarios were

conducted among two test participants. All scenarios included interviews

or were interview alike. In both scenarios, each speaker had a certain role;

the first one asked questions the other one answered, and sometimes the

other way round. In general, the roles could be named as interviewer and

interviewee. Before the experiment started, the participants were asked what

they wanted to speak about. They were free to choose either topics that were

prepared to talk about or a self suggested topic, which is related to Turkey or

Germany. Scenarios briefly described: The topics had been selected so that

the speakers had felt encouraged to switch languages as much as possible.

36

They were told where the speech was going to be used and they were asked

for permission.

Before they started we gave them some instructions and advice in order to

have all the records uniformed and in clean form. Afterwards they started ask-

ing basic questions about the topic and answering the questions subjectively

according to their own knowledge and opinion. Finally, a small questionnaire

about personal information, consciousness and emotions, was conducted with

the interviewees (see appendix 8). We thought that this procedure could give

interesting information about demography and statistics. The participants

were also requested to give their opinion and suggestions about the data

collection process. They replied that if they would not know the intention

of the experiment consequently, they would speak more naturally and feel

less pressure so the quality of the data could be more satisfactory. In respect

of the observations during the data collection, we had the same opinion. If

we had not told them the aim of the work, we might have a more natural

conversation.

5.1.2 Annotation and Transcription

The data contains three different code-switching types which vary between

sentences, words, or a single word, meaning that the first part of a word could

be German and the other part Turkish and vice-versa. The first two code-

switching type might not sound very interesting because it is very common

CS which occurs in many languages like Spanish - English, Mandarin - En-

glish etc. However, the last one, CS within a single word, does make German-

Turkish CS conversations more interesting and challenging (Lyu et al., 2015).

Both languages have different morphological structure, while Turkish is cat-

egorized as an agglutinative language (Oflazer, 1994), German is an inflected

language (Clahsen, 1999). The agglutinative structure of Turkish makes this

interesting language phenomena possible by replacing the stem of a turkish

word with a corresponding German word and adding the turkish suffixes.

37

Thus the transcription and the annotation requires a lot of experience this

task is managed by my supervisor Dr. Özlem Çetinoğlu from the beginning

to the end. First of all we segmented each conversation by CS point or a

new sentence beginning. Each segment contains different information which

means verbal and normalized text of each participants speech, language and

code-switching points. All this information represented in Praat, is described

in 4.2, with six separated tiers. Tiers are named as followed: spk1 verbal, spk1

normal, spk2 verbal, spk2 normal, lang, codesw.

Figure 7: An example of German-Turkish CS utterance segmented with

Praat.

Figure 7 represents an example of a 3.75 seconds long CS utterance. A

two channel speech signal in two dimensions (horizontal: time and verti-

cal: frequency) is represented on the top of the figure. Spectrogram, a three

dimensional representation of sound, (horizontal: time, vertical: frequency,

intensity of color: energy distribution) is located right below the 2D signal

in the middle. On the bottom the tiers mentioned in the previous paragraph

are visible.

Each speaker is transcribed with a dedicated tier (spk1 and spk2). IIn-

cidentally, we transcribed each speakers speech in a verbal form; in other

words not grammatically correct as it was spoken out, as well as in a nor-

malized form. As in figure 8, it is obviously represented that written and

spoken languages are relatively different from each other (these differences

38

Figure 8: An example for normalized and verbal layer of same speech

segment.

are also mentioned in (Tannen, 2016)), however both written and spoken lan-

guages are carrying parallel information but in different forms. Normalized

text could be more interesting in text analysis task, while the information

on verbal tier could be used for example in speech recognition task. The first

four tier contain lexical, phonetic and paralinguistic information e.g. noise,

silence, cough. The fifth tier contains language information for the segment.

Each segment is labelled as one of the following labels: DE, TR, and LANG3.

DE stands for German, TR stands for Turkish and LANG3 stands for all the

other languages in case that there is any third language. The sixth layer

contains the points where the code switching occurs precisely.

SB sentence boundary (between DE-DE or TR-TR)

SCS code-switching between sentences (between TR-DE or DE-TR)

WCS code-switching between words

§ code-switching within a word

Table 3: Code-Switching labels and brief annotation explanations

There are different code-switching labels in table 3 3 briefly described.

These labels are described in detail with proper examples to make their

usage more understandable. For each label we give one single example

which has been taken from the corpus.

Ah V erlag < § >′ larda < WCS > Okey...

This example is explaining in which case §could be possibly used. The word

started in German but ended up with Turkish. In this case the word

39

”Verlag” (in eng. Publishing company) was spoken in German and

completed with the Turkish suffix ”lar”, which in English means the plural

suffix ”-s”.

Ja,< WCS > ama < WCS > ich muss auch ehrlich sagen...

This is an example for the usage of WCS label in German-Turkish

code-switching corpus transcription (Roughly translated ”Yes, but also to

be honest...”). The speaker used German grammar rules and German words

for the whole sentence except one single word ”ama” (in Eng. but). In this

case we used WCS label to transcribe this segment.

Hast du auch überlegt deinem Master? < SCS > yok yok o kalsn.

A simple example for SCS label is given in those sentences. The speaker

started to speak in German and right after finishing the sentence he

decently switched language to Turkish and spoke the remained part in

Turkish.

Die Stellenangebote ... hier am IMS. < SB > Aber ich glaube ... haben.

We always have job offers from Daimler here at IMS. But you have to be

one of the best or you have to know some people there. If the two whole

sentences are spoken in the same language, to separate them, we only use

as a mark a SCS label during the transcription.

5.1.3 Acoustic Feature Extraction

We modified one of the .conf files to extract mfcc features from .wav files.

This configuration extracts Mel-frequency Cepstral Coeficients from 25 ms

audio frames (sampled at a rate of 10 ms) (Hamming window). It computes 12

MFCC (1-12) from 26 Mel-frequency bands and the log-energy is appended

40

to the MFCC 1-12 instead of the 0-th MFCC, and applies a cepstral filtering

filter with a weight parameter of 22. 13 delta, and 13 acceleration coefficients

are appended to the MFCC and finaly the features are mean normalised with

respect to the full input sequence (usually a turn or sub-turn segment).

SMILExtract -C config/MFCC12 E D A Z.conf -I input.wav -O output.arff

In the above line, a command-line example is given on how the software

should be ran. SMILExtract command runs the software and this command

takes a couple of parameters. Firstly -C ; this one stands for the path to config

file. In the above example the config file is located in the subdirectory config

as MFCC12 E D A Z.conf. Other parameters, -I and -O, stand for the path

of input and output files. As input we feed the system with a .wav file and

as a result a .arff file is obtained.

OpenSMILE returns a vector for each 25 ms frame; the first two

components refer to time. Regarding these two components, we assign each

vector to a corresponding label which is gathered from the annotated data.

5.1.4 Silence Detection and Merging Frames

In the section we 5.1.3 is explained that each 25 ms frame has a feature

vector and in section 5.1.2 explained that each segment has labelled with one

of the labels DE, TR or LANG3. HHowever, each segment consists of multiple

frames depending on the length of the segment, and naturally between words

and sentences short breaks occur, sometimes even for a few seconds. These

breaks are leading to ambiguous values for the similar frames, i.e. while silence

frames between two German words or sentences are labelled as DE, same

silence frames between Turkish words are labelled as TR. Certainly, it is

not possible to classify those single ambiguous frames correctly without any

context. Because of this reason we detected those silence frames and set a

separate label. For the detection, we followed two different approaches; the

41

first one is energy value extraction with OpenSMILE choosing a threshold

value where each frame which has smaller value than threshold is labeled

as silence. The command below extracts energy values for each frame with

OpenSMILE and saves it in a .csv file.

SMILExtract -C config/Energy.conf -I input.wav -O output.csv

The second approach is silence detection with Praat. Praat offers also a

function to detect silence segments. For analogue to manual transcription

we get Praats .TextGrid and a .Table files; from those files we can read the

silence segments. An example for silence detection can be seen in figure 9.

Figure 9: An example .TextGrid file of silence detection with Praat.

After extracting and labelling silence frames we have two different datasets.

Since the speech is in the sequential form we thought that merging frames

can help to improve the evaluation scores, so we created a new feature vector;

we concatenated surrounded n frames to each frame, and created quasi: a n-

gram feature vector. Table 4 shows different datasets which we created with

praat, opensmile and merging neighbour frames. Prefix represents the tool

42

silence frames detected with, and suffix represents how many frames a single

feature vector contains, i.e. praat-3frames tells us that the silences detected

with Praat and three frames, one from the left side, one from the right side,

and one in the middle, are merged together. The last column refers to the

number of attributes of feature vectors.

Dataset Description feature

praat-1frame silence detection with praat 40

praat-3frame silence detection with praat and 120

praat-5frame silence detection with praat and 200

praat-7frame silence detection with praat and 280

opensmile-1frame silence detection with opensmile 40

opensmile-3frame silence detection with opensmile 120

opensmile-5frame silence detection with opensmile 200

opensmile-7frame silence detection with opensmile 280

Table 4: Differently labelled and shaped datasets

5.2 Support Vector Machines

The reduction of errors on the training data and the generalisation on the

new data, makes SVMs perform better on small dataset and high-dimensional

features. In the section 3.2.3 two different kernel functions were introduced:

RBF and polynomial kernel function; there are also other kernel functions like

linear or sigmoid functions. For our language discrimination task we decided

to use radial basis function kernel because of its non-linear mapping function;

it also requires relatively less number of parameters to change. Furthermore,

the linear kernel is a special case of RBF, and the sigmoid kernel behaves

like a radial basis function for certain parameters (Lin and Lin, 2003).

SVMs are ideally suited for binary classification tasks but the problem we

faced in the language identification task has more than two classes. There are

43

different strategies to classify more than two classes with a binary classifier.

One of them is called as One-versus-Rest. It trains one single classifier for

each class; in other words there should be N classifiers for N classes, one

classifier for each class. Classifierc calculates how likely sample x is in class

c. After calculating probabilities the classifier labels the sample with the most

likely class. Equation 24 is a formal description of this process. (Murty).

(24) ŷ = argmax
c∈C

fc(x)

where ŷ is the predicted class, c refers to a class, C is a set of classes, x is a

sample and fc is a classifier.

5.2.1 Parameter Selection

There are two parameters to consider at SVMs with Radial Basis Function

kernel, error penalty C and γ in equation 12. Parameter C regularizes clas-

sification error and maximum margin. On the other hand γ specifies the

influence of a single sample data point. In the next paragraph we explained

how to tune these parameters parameters in order to get best scores.

To find the optimum parameters we proposed an exhaustive search with

a set of random values. This method is also known as grid search. Basi-

cally, it applies all the possible combinations of parameter values and then

evaluates the scores for each parameter combination in order to get best

scores. The Cross-Validation technique is used to measure the performance

and produce validation scores. We proposed the following steps to choose

the best parameters: First of all we set a reasonable value range for C and

γ, C ∈ {0.1, 1, 10, 100, 1000}, γ ∈ {1, 0.1, 0.01, 0.001, 0.0001} as parameter

subset and applied the classifier for each combination of these values on the

sample data separately (Chih-Wei Hsu, Chih-Chung Chang and Lin, 2008).

Figure 10 shows the accuracies for each (C, γ) pair with a heatmap. Grid-

44

search was performed on the development dataset of opensmile-1frame (see

Table 4).

Figure 10: Heatmap of Gridsearch scores

Finally, the results were evaluated with a 10-fold cross-validation tech-

nique. In the figure 11 shows the behaviour of cross validation scores over

the number of training example. Figures 11a and 11b demonstrates learning

curves of the best parameter pair on the development dataset praat-1frame

and opensmile-1frame. If the system can not learn on training data of course

we can not expect that it will work well on evaluation data.

5.3 Deep Neural Networks

In section 3.2.4 we analysed the components of an typical ANNs. In brief, neu-

ral networks consists of an input layer, hidden layers and an output layer. The

inputs have passed through the network, layer by layer applying a non-linear

activation function and the error was measured with an objective function

and the error back-propagated again layer by layer through entire network

and parameters were updated with gradient descent algorithm. This section

45

(a) Learning curve on praat-1frame (b) Learning curve on opnesmile-1frame

Figure 11: Learning curves with best (C, γ) pair on two different datasets.

explains the network architecture, the training strategies and the optimum

parameter selection.

5.3.1 Network designing

The network architecture is a main factor in DNNs and has to be carefully

decided, because the number of parameters indicates the power of the network

and it has a very strong influence on the output. Additionally, for the number

of units in the hidden layers there are neither a fixed number nor a rule to

calculate optimal number of units exists. It depends on different factors, i.e

the number of variables, size of data sets, validation methods, data types,

quality of data sets and the nature of your data.

Shape of Input Layer. As it was mentioned before input layer has the

same number of neurons with the number of attributes in the feature vectors.

We have four different feature vector shapes (see table 4); i.e. data with one

frame has 40 attributes, with three frames 120 attributes because each single

frame has 40 attributes and we merged three frames, so 40 multiplied by

three is 120, this calculationis analogous to the approximation of five and

seven frames feature vectors, hereby the number of the input layer neurons

46

had to be adjusted for each dataset regarding the number of frames so we

have four different input layers.

shape of input ε {40, 120, 200, 280}

Shape of Hidden Layers. There are two crucial tasks to solve for

hidden layers. The first task is the decision of the number of hidden layers

and the number of units in each layer. According to (Heaton, 2008), ANNs

with no hidden layers are only able to classify linear separable data; one

hidden layer can classify non-linear separable data, and more than one layer

could separate more complex data. We trained our network once with two

hidden layers and once with three hidden layers.

The second problem is how many neurons should be in the hidden lay-

ers. There is a sanity check for the total number of parameters; the number

of parameters should not be greater than the number of the training point,

because using too many neurons can result to overfitting, meaning that the

outputs is accurate on the training data but on the test data it results in a

poor generalization; using few neurons could result to the opposite of overfit-

ting called underfitting. In this case the generalisation will not be sufficient

neither on training data nor on test data therefore, we experimented with

different number of units in the hidden layers {16, 32, 64, 128, 256}.

Shape of Output Layer. Since we have a classification task in the

output layer, we have to have same number of units with the number of

total classes. Thus the data contains three different classes (German, Turkish

and LANG3) and additionally silence class; the output layer has only four

neurons. The difference between units in the output layer and other layers

is that the neurons in the output layer has a different activation function,

which we mentioned in section 3.2.4 (equation 17). Each neuron contains the

probability that the sample in a certain class, so the outputs could be seen as

probabilities. This layer is very crucial for training, because the parameters

(weights and biases) are tuned regards the output error.

47

5.3.2 Function Selection

Non-Linear Unit. In section 3.2.4 we showed how to activate the neu-

rons and also explained the traditional activation function sigmoid σ in equa-

tion 15. However, according to (Maas and Ng, 2013) the rectify activation

function improves the neural network acoustic models on working faster than

its alternatives (tanh and sigmoid functions) hence the reason we used rec-

tify activation function as a non-linear function. Equation 25 is the rectified

linear function:

(25) ϕ(x) = max(0, x)

where x is the input of a neuron, if the input has a positive value then the

neuron is activated; otherwise it stays inactive.

Loss Function. In equation 18 we mentioned a cost function to eval-

uate how far is the output from the actual label and gave an example of

objective function in equation 19. Since we have more than one class, same

as the output, this function is not suitable to calculate the distance between

actual label and output and can lead the network to bad generalization; this

was mainly used in regression tasks. In multiclass classification tasks the most

common used function is cross entropy function and it is shown in equation

26

(26) c(θ) = −
∑
i ε C

y log(pi(x))

where i is a class in C, y is the actual value, pc(x) is the probability of sample

x is in class i.

Training Algorithm. In section 3.2.4 we also explained the ANN

Back-propagation training algorithm which has its own challenges by choos-

ing learning rate such as never reaching or overstep the local minima, and

the oscillations in canyons. To prevent this problems, we decided to use the

48

Adaptive Moment Estimation (Adam), one of the adaptive learning rate al-

gorithms.

(27) mt = β1mt−1 + (1− β1)δt

(28) v̂t = β2v̂t−1 + (1− β2)δ2t

where mt is the first moment, v̂t is the second moment and δ is the gradient;

according to equations 27 and 28 the update rule is as follows:

(29) θt+1 = θt −
η√
v̂ + ε

m̂t

where η is the learning rate and θ the parameters and suggested values of

0.9 for β1 0.999 for β2 and 10−8 for ε. Roughly, this method adapts the

learning rates for each parameter from the estimation of the first and second

moments of the first order gradients. This method is the state-of-the-art

method. (Kingma and Ba, 2015)

5.3.3 Parameter selection

Choosing the learning rate could effect tremendously on performance. In

the last paragraph of section 3.2.4 we mentioned some possible problems

which could be caused by learning rate; overstepping can occur with high

learning rate for instance; on the other hand low learning rate can lead to

bad computation time. We tested a set of learning rates on the development

data tracked the cost function and in respect to improvement we chose the

best learning rate. Figure 12 shows us the change of cost over the epochs for

different learning rate on opensmile-1frame data. In figure 12a the red line

shows that the cost function is improving very slow and blue, orange and

brown lines overfits, but the green line looks well (not too slow or too fast);

it corresponds also with validation data in figure 12b.

49

(a) Cost - Epoch function on development set (b) Cost - Epoch function on validation set

Figure 12: Different learning rates cost-epoch function tracking.

On the other hand, we had to decide when we should stop the training.

There is a common approach in order to decide the number of epochs, which

is called early stopping. Basically, it says: train the network until it starts

to overfit and stop at that point. (NIPS 2015 Tutorial)7. From the term

”Overfitting” arises another question; how can we recognize when the the

DNN overfits. The answer is very simple. We have to track the accuracy if

the accuracy does not improve, meaning that the network overfits on the

training data or the validation cost does not really improve. This method

is also prevents overfitting on the training data. Figure 13 shows us the

accuracy and cost over the number of epochs. The red lines represent cost

and accuracy on the training data and the green line on the validation data.

While green line stops to improve the red lines continues to improve after

around 40th epoch.

7http://www.iro.umontreal.ca/ bengioy/talks/DL-Tutorial-NIPS2015.pdf

50

(a) Monitoring acuracy (b) Monitoring cost

Figure 13: Preventing over fitting by monitoring cost and accuracy over time.

6 Results

In this section we represent the performance of SVMs and DNNs, which we

proposed in section 5. Finally, we compare the performances of classifiers

trained on one of the datasets opensmile-1frame (see section 4.1.)

Tables 5 shows us the total number of frames for each class in opens-

mile1frame dataset, additionally the number of frames for training, devel-

opment and evaluation datasets which are produced by splitting opensmile-

1frame dataset, and table 6represents the same values for praat-1frame dataset.

We did not include any statistics about other concatenated datasets (open-

mile3frame, openmile-5frame etc.), because all the numbers are almost same.

The total number of data in praat-1frame is a little less than total number

of data in praat-7frame, because for each utterance first three frames have

merged with the fourth frame and last three frames have merged with fourth

frame from the end. Since the number of utterances is much smaller than

total number of frames we can ignore this difference and assume that the

values in the tables are also valid for concatenated datasets. As the tables

show that the numbers from tables are completely different, the major dif-

ference is in the last column the number of silence frames. While majority of

opensmile-1frame dataset consists of silence frames, other classes comprise

only a small part of praat-1frame dataset. In contrast to this, the numbers

of other classes (German, Turkish and lang3) are in table 6 larger than the

numbers in table 5.

german turkish lang3 silence

development 34272 21999 175 87356

evaluation 27112 19806 825 93164

training 289675 266300 2251 821278

total 351059 308105 3251 1001798

Table 5: Numbers of frames of each class in opensmile-1frame dataset

52

german turkish lang3 silence

development 62245 43297 1873 34119

evaluation 63081 38143 286 43089

training 647494 476087 4250 250249

total 772820 557527 6409 327457

Table 6: Numbers of frames of each class in praat-1frame dataset

As in section 5.3 described we trained and tested our network with differ-

ent hidden units and hidden layers. First of all, we tested the performance of

the DNN with two hidden layers and different numbers of hidden units and

then we monitored the performance of the DNN with three layers on different

datasets. Table 7 and 8 show the results. The rows represent datasets and

the columns represent differently designed DNNs. In addition to annotation

of DNNs, the first part represents the number of hidden layers, i.e. 3L means

a DNN with three layers, and second part represents the number of units in

each hidden layer, i.e. 128U means that each hidden layer contains 128 hid-

den units. For training and evaluation purposes, we used disjoint datasets,

see table 1, 5 and 6 for further information.

Table 7 shows the performance of the DNNs on opensmile-xframe datasets

with different frames. Apparently, concatenating neighbour frames did not

help much because majority of the DNNs outperformed on the opensmile-

1frame data. On the other hand, DNNs with three hidden layers, 32 and 64

hidden units, have the best overall performance on the opensmile datasets.

DNNs with two hidden layers, 32 and 64 hidden units, also indicate high

performance among other two hidden layered DNNs. On top of that, an-

other remarkable observation is that DNNs with 128 and 256 hidden units

performed worst.

Table 8 shows the performance on the praat-xframe datasets with the

same configuration as table 7, but there are huge differences between scores.

53

2L

16U

2L

32U

2L

64U

2L

128U

2L

256U

3L

16U

3L

32U

3L

64U

3L

128U

3L

256U
1

frame 82.60 82.80 82.18 82.12 81.80 83.42 82.16 83.75 81.85 81.80
3

frame 81.93 82.58 82.59 81.97 81.62 81.79 82.24 83.16 82.43 82.06
5

frame 80.97 82.24 82.73 82.10 79.40 82.74 82.87 80.59 82.13 80.47
7

frame 80.70 81.73 80.38 80.96 80.98 82.14 82.63 82.03 81.97 81.46

Table 7: Performances of the DNNs on opensmile-xframe datasets

Almost all the best scores of each DNN are reached on praat-7frame dataset

and other datasets with multiple frames improved the scores only a little bit.

Similarly to the opensmile-xframe datasets, the DNNs with 32 and 64 hidden

units performed slightly better than other DNNs, not only with three layers

but also with two layers. Obviously, the best score on praat-xframe datasets

has been reached with the DNN with two layers and 16 hidden units.

2L

16U

2L

32U

2L

64U

2L

128U

2L

256U

3L

16U

3L

32U

3L

64U

3L

128U

3L

256U
1

frame 58.69 62.13 59.30 59.73 59.33 58.65 59.79 59.97 59.29 60.50
3

frame 60.67 60.96 61.36 60.82 61.09 59.90 62.17 59.31 60.24 59.59
5

frame 59.88 61.82 61.97 59.80 60.39 61.86 60.31 62.02 61.77 60.10
7

frame 65.24 63.67 61.79 62.53 61.09 63.85 63.03 63.49 61.31 59.94

Table 8: Performances of the DNNs on praat-xframe datasets

Table 9 represents two different scores for each dataset. We took the

best performed DNNs on each dataset from table 7 and 8 and tested each

of them excluding the silence frames on evaluation dataset, i.e. for praat-

7frame dataset we took the DNN with two layers and 16 hidden layers and for

opensmile-1frame dataset, the DNN with three layers and 64 hidden units.

54

The table shows that DNNs could not classify well the frames excluding

silence frames. Apparently, on opensmile-xframe datasets only the silence

frames are well classified and all the other frames could not be classified as

aimed. However, DNNs behaved similarly on praat-xframe datasets even the

silence frames excluded, the silence frames have only a light influence on

the scores in contrast to the silence frames in opensmile-xframe datasets. In

appendix B all correnponding confusion matrices are attached. According to

confusion matrices generally class german and silence are classified relatively

well, but class turkish and lang3 could not be classified well.

w silence frames w\o silence frames

opensmile-1frame 83.75 50.84

opensmile-3frame 83.16 51.20

opensmile-5frame 82.87 49.68

opensmile-7frame 82.63 49.04

praat-1frame 62.13 54.32

praat-3frame 62.17 55.35

praat-5frame 62.02 57.41

praat-7frame 65.24 59.86

Table 9: Performances of the DNNs on praat datasets

Table 10 shows the best performances of two proposed approaches on

opensmile-1frame data. While SVMs could achieve 82.50% accuracy, DNN

achieved 83.75%. Due to limitation of time we could not train SVMs to rep-

resent the performance measurement on praat-1frame dataset. In figure 11a

SVMs converged to 60% on a small part of praat-1frame dataset. Contrary

to SVMs, DNN achieved 62.13% on the entire praat-1frame dataset.

55

SVMs DNN

opensmile-1frame 82.50 83.75

Table 10: Comparison of Performances of the DNN and SVMs on

opensmile-1frame dataset

7 Conclusions and Future Work

The aim of this thesis was to develop a language identification system with

deep neural networks and to support vector machines for German-Turkish

Code-Switching language. We concentrated on data collection, transcription

and acoustic feature extraction. We experimented with support vector ma-

chines and deep neural networks during this thesis, and finally we represented

the performances of these two approaches on the collected data. In this sec-

tion we intend to make some remarkable observations, identify any issues we

faced during experiments and propose any suggestions for future researches.

7.1 Conclusions

The most serious issue we faced during this thesis was silence extraction. We

developed frame based language identification approach and frame size was

only 10ms. The frame size was only 10ms and the data transcription does

not contain the word boundaries. The data rather transcribed sentence by

sentence and indeed this misled labelling of frames. Taken into account my

supervisor Jun. Prof. Ngoc Thang Vu’s advice, this issue was solved with

two different strategies. As a result the quality of the data was strongly

dependent on the silence frames. In section 6 (table 5 and 6) we gave the

number of frames in each class and identified there was a great difference

between the numbers. On the other hand, we also merged the frames to

improve the performances of classifiers, and found the performances either

did not improve or only slightly improved.

Another serious issue we faced was training time for SVMs. As notified

in the previous paragraph, we discovered a serious issue with silence frames.

After discovering this issue, we repeated acoustic features extraction as well

as data preparation process and then we started to train SVMs again. Unfor-

tunately, due to a large amount of training of the data and quadratic runtime

of SVMs, we could not complete the training for each datasetx (see table 4)

57

and could not compare all of the performances properly to each other.

In appendices B confusion matrices of the best classifiers are attached

and the class silence has the best prediction accuracy. Due to lack of samples

of lang3 class the classifiers could not classify this class accuratly. The class

german has an acceptable accuracy unlike the class turkish. The majority

of the participants stated that the language proficiency is much higher for

German than for Turkish. It could be that most of them pronounced even

the Turkish words with German accent.

7.2 Future Work

We implemented a frame-based language identification system. Instead of

using acoustic features of each speech frame we can use higher level speech

features for instance phonotactic features.We might improve the performance

of the language identification system integrating a German and a Turkish

phone recognizer as front-end processor to the system and training system

with these features. The selection of optimal parameters is also a though task.

We executed a grid search with a set of values to choose the optimal parame-

ters of support vector machnines. Additionally, we might obtain better scores

through extending the range of gridsearch values and / or decreasing the size

of steps, i.e. executing a finer grid search.

We only implemented feed forward neural networks, besides feed forward

networks there are other types of deep neural networks such as recurrent

neural networks (RNNs), long-short term memory (LSTMs), and convolu-

tional neural network. Thus speech signal is in a sequential form RNNs and

LSTMs are ideal to solve classification on such data. Basically, they store

values of previous frames in their memory cells use these values to predict

current frame (Gonzalez-Dominguez et al., 2014).

58

References

Ajith Abraham. NEURAL NETWORKS. 2005.

Heike Adel, NT Vu, and T Schultz. Combination of Recurrent Neural

Networks and Factored Language Models for Code-Switching Language

Modeling. Acl (2), pages 206–211, 2013. URL http://stage-csl.

anthropomatik.kit.edu/downloads/Adel{_}Vu{_}ACL{_}2013.pdf.

Peter Auer. Main Articles — From codeswitching via language mixing to

fused lects : Toward a dynamic typology of bilingual speech *. 3(4):309–

332, 1999.

BAMF. Das Bundesamt in Zahlen 2015. Asyl. Bundesamt

für Migration und Flüchtlinge, Jahr 2015:54, 2016. URL

http://www.bamf.de/SharedDocs/Anlagen/DE/Publikationen/

Broschueren/bundesamt-in-zahlen-2015.pdf;jsessionid=

DF6E16E43DFFCF33780D72DC91AFDB7E.1{_}cid368?{_}{_}blob=

publicationFile.

James Bergstra, Frédéric Bastien, Olivier Breuleux, Pascal Lamblin, Razvan

Pascanu, Olivier Delalleau, Guillaume Desjardins, David Warde-Farley, Ian

Goodfellow, Arnaud Bergeron, and Yoshua Bengio. Theano: Deep Learning

on GPUs with Python. Journal of Machine Learning Research, 1:1–48,

2011.

Özlem Çetinoglu. A Code-Switching Corpus of Turkish-German Conversa-

tions. 2017.

Chih-Wei Hsu, Chih-Chung Chang and Chih-Jen Lin. A Practical Guide to

Support Vector Classification. BJU international, 101(1):1396–400, 2008.

ISSN 1464-410X. doi: 10.1177/02632760022050997. URL http://www.

csie.ntu.edu.tw/{~}cjlin/papers/guide/guide.pdf.

59

http://stage-csl.anthropomatik.kit.edu/downloads/Adel{_}Vu{_}ACL{_}2013.pdf
http://stage-csl.anthropomatik.kit.edu/downloads/Adel{_}Vu{_}ACL{_}2013.pdf
http://www.bamf.de/SharedDocs/Anlagen/DE/Publikationen/Broschueren/bundesamt-in-zahlen-2015.pdf;jsessionid=DF6E16E43DFFCF33780D72DC91AFDB7E.1{_}cid368?{_}{_}blob=publicationFile
http://www.bamf.de/SharedDocs/Anlagen/DE/Publikationen/Broschueren/bundesamt-in-zahlen-2015.pdf;jsessionid=DF6E16E43DFFCF33780D72DC91AFDB7E.1{_}cid368?{_}{_}blob=publicationFile
http://www.bamf.de/SharedDocs/Anlagen/DE/Publikationen/Broschueren/bundesamt-in-zahlen-2015.pdf;jsessionid=DF6E16E43DFFCF33780D72DC91AFDB7E.1{_}cid368?{_}{_}blob=publicationFile
http://www.bamf.de/SharedDocs/Anlagen/DE/Publikationen/Broschueren/bundesamt-in-zahlen-2015.pdf;jsessionid=DF6E16E43DFFCF33780D72DC91AFDB7E.1{_}cid368?{_}{_}blob=publicationFile
http://www.csie.ntu.edu.tw/{~}cjlin/papers/guide/guide.pdf
http://www.csie.ntu.edu.tw/{~}cjlin/papers/guide/guide.pdf

H Clahsen. Lexical entries and rules of language: a multidisciplinary study of

German inflection. The Behavioral and brain sciences, 22:991–1013; discus-

sion 1014–1060, 1999. ISSN 0140-525X. doi: 10.1017/S0140525X99002228.

Harris Drucker, Chris J C Burges, Linda Kaufman, Alex Smola, and

Vladimir Vapnik. Support vector regression machines. Advances

in Neural Information Processing Dystems, 1:155–161, 1997. ISSN

10495258. doi: 10.1.1.10.4845. URL http://papers.nips.cc/paper/

1238-support-vector-regression-machines.pdf.

Florian Eyben. Real-time speech and music classification by large audio

feature space extraction. 2014. ISBN 978-3-319-27298-6. doi: 10.1007/

978-3-319-27299-3.

Ernest Fokoue, Zichen Ma, and Ernest Fokoué. Speaker Gender Recogni-

tion via MFCCs and SVMs. 2013. URL http://scholarworks.rit.edu/

article/1749.

Sriram Ganapathy, Kyu Han, Samuel Thomas, Mohamed Omar,

Maarten Van Segbroeck, and Shrikanth S Narayanan. Robust Language

Identification Using Convolutional Neural Network Features.

Javier Gonzalez-Dominguez, Ignacio Lopez-Moreno, Joaquin Gonzalez-

Rodriguez, and Pedro J Moreno. Automatic Language Identification using

Long Short-Term Memory Recurrent Neural Networks. Proceedings of the

15th Annual Conference of the International Speech Communication As-

sociation, INTERSPEECH 2014, (September):2155–2159, 2014.

Rashidul Hasan, Mustafa Jamil, Golam Rabbani, and Saifur Rah-

man. Speaker Identification Using Mel Frequency Cepstral Coeffi-

cients SPEAKER IDENTIFICATION USING MEL FREQUENCY.

(September), 2015.

Jeff Heaton. Introduction to Neural Networks for Java, 2Nd Edition. Heaton

Research, Inc., 2nd edition, 2008. ISBN 1604390085, 9781604390087.

60

http://papers.nips.cc/paper/1238-support-vector-regression-machines.pdf
http://papers.nips.cc/paper/1238-support-vector-regression-machines.pdf
http://scholarworks.rit.edu/article/1749
http://scholarworks.rit.edu/article/1749

Diederik P Kingma and Jimmy Lei Ba. ADAM: A METHOD FOR

STOCHASTIC OPTIMIZATION. pages 1–15, 2015.

C. C. Leung, R. Tong, B. Ma, and H. Li. A lattice-based phonotactic language

recognition system with cmllr adaptation and its implementation issues.

In 2009 International Conference on Asian Language Processing, pages

285–288, Dec 2009. doi: 10.1109/IALP.2009.67.

Haizhou Li, Bin Ma, and Kong Aik Lee. Spoken language recognition: From

fundamentals to practice. Proceedings of the IEEE, 101(5):1136–1159,

2013. ISSN 00189219. doi: 10.1109/JPROC.2012.2237151.

Ht Lin and Cj Lin. A study on sigmoid kernels for SVM and the training of

non-PSD kernels by SMO-type methods. Neural Computation, (2):1–32,

2003. doi: 10.1.1.14.6709. URL http://home.caltech.edu/{~}htlin/

publication/doc/tanh.pdf.

Ignacio Lopez-Moreno, Javier Gonzalez-Dominguez, David Martinez, Oldich

Plchot, Joaquin Gonzalez-Rodriguez, and Pedro J. Moreno. On the use

of deep feedforward neural networks for automatic language identifica-

tion. Computer Speech & Language, 40:46–59, 2016. ISSN 08852308.

doi: 10.1016/j.csl.2016.03.001. URL http://linkinghub.elsevier.com/

retrieve/pii/S088523081530036X.

Dau Cheng Lyu, Tien Ping Tan, Eng Siong Chng, and Haizhou Li. Man-

darinEnglish code-switching speech corpus in South-East Asia: SEAME.

Language Resources and Evaluation, 49(3):581–600, 2015. ISSN 15728412.

doi: 10.1007/s10579-015-9303-x.

Andrew L Maas and Andrew Y Ng. Rectifier Nonlinearities Improve Neural

Network Acoustic Models. 28, 2013.

Smita B Magre. A Comparative Study on Feature Extraction Techniques in

Speech Recognition A comparative study on feature extraction techniques

in speech recognition in. (June 2015), 2013.

61

http://home.caltech.edu/{~}htlin/publication/doc/tanh.pdf
http://home.caltech.edu/{~}htlin/publication/doc/tanh.pdf
http://linkinghub.elsevier.com/retrieve/pii/S088523081530036X
http://linkinghub.elsevier.com/retrieve/pii/S088523081530036X

M N Murty. SPRINGER BRIEFS IN COMPUTER SCIENCE Support Vec-

tor Machines and Perceptrons Learning , Optimization , Classification ,

and Application to Social Networks. ISBN 9783319410623.

Kemal Oflazer. Two-level description of turkish morphology. Literary and

Linguistic Computing, 9(2):137–148, 1994. ISSN 02681145. doi: 10.1093/

llc/9.2.137.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,

Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer,

Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David

Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard Duch-

esnay. Scikit-learn: Machine Learning in Python. Journal of Ma-

chine Learning Research, 12:2825–2830, 2012. ISSN 15324435. doi:

10.1007/s13398-014-0173-7.2. URL http://dl.acm.org/citation.cfm?

id=2078195{%}5Cnhttp://arxiv.org/abs/1201.0490.

Payam Refaeilzadeh, Lei Tang, and Huan Liu. Cross-Validation, pages

532–538. Springer US, Boston, MA, 2009. ISBN 978-0-387-39940-9.

doi: 10.1007/978-0-387-39940-9 565. URL http://dx.doi.org/10.1007/

978-0-387-39940-9_565.

Fred Richardson, Senior Member, Douglas Reynolds, and Najim Dehak.

Deep Neural Network Approaches to Speaker and Language Recogni-

tion. IEEE Signal Processing Letters, 22(10):1671–1675, 2015. ISSN 1070-

9908. doi: 10.1109/LSP.2015.2420092. URL http://ieeexplore.ieee.

org/lpdocs/epic03/wrapper.htm?arnumber=7080838.

R. Rojas. The Backpropagation Algorithm. Springer Verlag, Berlin, 1996.

Frank Seide, Gang Li, and Dong Yu. Conversational Speech Transcription

Using Context-Dependent Deep Neural Networks. (August):437–440, 2011.

K. Sreenivasa Rao Shashidhar G. Koolagudi, Deepika Rastogi. Identification

of Language using Mel-Frequency Cepstral Coefficients (MFCC). INTER-

62

http://dl.acm.org/citation.cfm?id=2078195{%}5Cnhttp://arxiv.org/abs/1201.0490
http://dl.acm.org/citation.cfm?id=2078195{%}5Cnhttp://arxiv.org/abs/1201.0490
http://dx.doi.org/10.1007/978-0-387-39940-9_565
http://dx.doi.org/10.1007/978-0-387-39940-9_565
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7080838
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7080838

NATIONAL CONFERENCE ON MODELLING OPTIMIZATION AND

COMPUTING, 38:3391–3398, 2012. doi: 10.1016/j.proeng.2012.06.392.

John H . L . Hansen Shivesh Ranjan , Chengzhu Yu , Chunlei Zhang ,

Finnian Kelly. LANGUAGE RECOGNITION USING DEEP NEURAL

NETWORKS WITH VERY LIMITED TRAINING DATA. pages 5830–

5834, 2016.

Deborah Tannen. The Relation between Written and Spoken Language Au-

thor (s): Wallace Chafe and Deborah Tannen Source : Annual Review

of Anthropology , Vol . 16 (1987), pp . 383-407 Published by : Annual

Reviews Stable URL : http://www.jstor.org/stable/2155877 REFEREN.

16(1987):383–407, 2016.

Theano Development Team. Theano: A Python framework for fast compu-

tation of mathematical expressions. arXiv e-prints, abs/1605.02688, May

2016. URL http://arxiv.org/abs/1605.02688.

Ngoc Thang Vu, Heike Adel, and Tanja Schultz. An Investigation of Code-

Switching Attitude Dependent Language Modeling. 2013.

Zissman. Automatic Language Identification of Telephone Speech.

Cis.Hut.Fi, 8(2):115–144, 1995.

M.a. Zissman. Comparison of four approaches to automatic language identi-

fication of telephone speech. IEEE Transactions on Speech and Audio Pro-

cessing, 4(1):31–44, 1996. ISSN 1063-6676. doi: 10.1109/TSA.1996.481450.

63

http://arxiv.org/abs/1605.02688

Appendices

A Speaker Questionnaire

first name: ...

last name: ...

mother tongue 1: ...

mother tongue 2: ...

foreign language 1: ...

birth place: ...

birth country: ...

age: ...

gender: ...

education: ...

occupation: ...

most used language daily: ...

most used language with family and close friends: ...

proficiency in mother tongue 1 (1-10): ...

proficiency in mother tongue 2 (1-10): ...

mother tongue 1 origin: ...

mother tongue 2 origin: ...

64

B Confusion Matrices

Predicted

german turkish lang3 silence accuracy

A
ct

u
al

german 16723 7147 0 3242 61.68%

turkish 11281 6024 0 2501 30.41%

lang3 381 309 0 135 0.0%

silence 81 50 0 93033 99.86%

Table 11: Confusion Matrix: opensmile-1frame evaluation dataset

Predicted

german turkish lang3 silence accuracy

A
ct

u
al

german 18505 7018 0 1534 68.40%

turkish 12625 5893 0 1255 29.80%

lang3 466 282 0 76 0.0%

silence 285 48 0 92474 99.64%

Table 12: Confusion Matrix: opensmile-3frame evaluation dataset

Predicted

german turkish lang3 silence accuracy

A
ct

u
al

german 17336 7153 0 2510 64.21%

turkish 11560 6295 0 1886 31.89%

lang3 444 279 0 99 0.0%

silence 41 5 0 92407 99.95%

Table 13: Confusion Matrix: opensmile-5frame evaluation dataset

65

Predicted

german turkish lang3 silence accuracy

A
ct

u
al

german 18842 5018 0 3077 69.95%

turkish 12917 4435 0 2359 22.50%

lang3 558 150 0 112 0.0%

silence 36 3 0 92062 99.96%

Table 14: Confusion Matrix: opensmile-7frame evaluation dataset

Predicted

german turkish lang3 silence accuracy

A
ct

u
al

german 43913 16762 29 2377 69.61%

turkish 25271 11228 10 1634 29.44%

lang3 164 119 0 3 0.0%

silence 7681 681 0 34727 80.59%

Table 15: Confusion Matrix: praat-1frame evaluation dataset

Predicted

german turkish lang3 silence accuracy

A
ct

u
al

german 43936 17333 0 1720 69.75%

turkish 24783 12147 0 1126 31.92%

lang3 177 104 0 3 0.0%

silence 8786 536 0 33506 78.23%

Table 16: Confusion Matrix: praat-3frame evaluation dataset

66

Predicted

german turkish lang3 silence accuracy

A
ct

u
al

german 45385 16281 19 1212 72.16%

turkish 25509 11536 0 927 30.38%

lang3 191 90 0 1 0.0%

silence 9800 642 0 32122 75.47%

Table 17: Confusion Matrix: praat-5frame evaluation dataset

Predicted

german turkish lang3 silence accuracy

A
ct

u
al

german 56069 4860 0 1876 89.27%

turkish 32271 4370 0 1247 11.53%

lang3 268 10 0 2 0.0%

silence 9386 19 0 32895 77.77%

Table 18: Confusion Matrix: praat-7frame evaluation dataset

67

68

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu

haben. Ich habe keine anderen als die angegebenen

Quellen benutzt und alle wörtlich oder sinngemäß aus

anderen Werken übernommene Aussagen als solche

gekennzeichnet. Weder diese Arbeit noch wesentliche

Teile daraus waren bisher Gegenstand eines anderen

Prüfungsverfahrens. Ich habe diese Arbeit bisher weder

teilweise noch vollständig veröffentlicht. Das elektron-

ische Exemplar stimmt mit allen eingereichten Exem-

plaren überein.

Ort, Datum, Unterschrift

Declaration

I hereby declare that the work presented in this thesis is

entirely my own and that I did not use any other sources

and references than the listed ones. I have marked all di-

rect or indirect statements from other sources contained

therein as quotations. Neither this work nor significant

parts of it were part of another examination procedure.

I have not published this work in whole or in part be-

fore. The electronic copy is consistent with all submitted

copies.

place, date, signature

69

	Introduction
	Related Works
	Acoustic-Phonetic Approaches
	Gaussian Mixture Model (GMM) Classification
	Vector Space Modelling for statistical approaches

	Phonotactic Approaches
	Artificial Neural Networks

	Background
	Acoustic Features Extraction
	Machine Learning
	Supervised Learning
	Unsupervised Learning
	Support Vector Machines
	Artificial Neural Networks

	Accuracy Estimation
	Cross-Validation

	Data and Resources
	Data Corpus
	Frameworks and Tools
	Praat
	OpenSMILE
	Scikit-learn
	Theano and Lasagne

	Proposed Approaches
	Data Collection and Processing
	Data Collection
	Annotation and Transcription
	Acoustic Feature Extraction
	Silence Detection and Merging Frames

	Support Vector Machines
	Parameter Selection

	Deep Neural Networks
	Network designing
	Function Selection
	Parameter selection

	Results
	Conclusions and Future Work
	Conclusions
	Future Work

	Appendices
	Speaker Questionnaire
	Confusion Matrices

