
Institute of Parallel and Distributed Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Master’s Thesis

Addressing TCAM limitations in
an SDN-based Pub/Sub System

Alexander Balogh

Course of Study: Informatik

Examiner: Prof. Dr. Kurt Rothermel

Supervisor: M.Sc. Sukanya Bhowmik

Commenced: 2016-10-24

Completed: 2017-04-24

CR-Classification: C.2.1,C.2.4

Abstract
Content-based publish/subscribe is a popular paradigm that enables asynchronous exchange
of events between decoupled applications that is practiced in a wide range of domains. Hence,
extensive research has been conducted in the area of efficient large-scale pub/sub system.
A more recent development are content-based pub/sub systems that utilize software-defined
networking (SDN) in order to implement event-filtering in the network layer. By installing
content-filters in the ternary content-addressable memory (TCAM) of switches, these systems
are able to achieve event filtering and forwarding at line-rate performance. While offering great
performance, TCAM is also expensive, power hunger and limited in size. However, current
SDN-based pub/sub systems don’t address these limitations, thus using TCAM excessively.

Therefore, this thesis provides techniques for constraining TCAM usage in such systems. The
proposed methods enforce concrete flow limits without dropping any events by selectively
merging content-filters into more coarse granular filters. The proposed algorithms leverage
information about filter properties, traffic statistics, event distribution and global filter state
in order to minimize the increase of unnecessary traffic introduced through merges.

The proposed approach is twofold. A local enforcement algorithm ensures that the flow limit
of a particular switch is never violated. This local approach is complemented by a periodically
executed global optimization algorithm that tries to find a flow configuration on all switches,
which minimized to increase in unnecessary traffic, given the current set of advertisements
and subscriptions. For both classes, two algorithms with different properties are outlined.

The proposed algorithms are integrated into the PLEROMA middleware and evaluated thor-
oughly in a real SDN testbed as well as in a large-scale network emulation. The evaluations
demonstrate the effectiveness of the approaches under diverse and realistic workloads. In some
cases, reducing the number of flows by more than 70% while increasing the false positive rate
by less than 1% is possible.

i

Acknowledgements
At this point, I would like to express my deep gratitude by acknowledging all those, without
whom this thesis would not be possible. First and foremost, I wish to thank Prof. Dr. Kurt
Rothermel for giving me an opportunity to do my thesis in the Department of Distributed
Systems and in an exciting and interesting topic.

I am also immensely grateful to my supervisor, Sukanya Bhowmik for her permanent involve-
ment and support throughout the duration of this project. Not only did I profit greatly from
her expertise but also from her constant positive attitude that helped me through this thesis.
I am wishing her all the best for her further career, especially for the near-term completion
of her Ph.D.

Moreover, I wish express my thankfulness towards Dr. Muhammad Adnan Tariq, for providing
me with his outstanding expert knowledge in the topic of pub/sub concepts, as well as critically
questioning my work and supporting me with his crucial feedback.

I’m also grateful for my friends, for their support, encouragement and for being understanding
of my absence during the more stressful stages of this thesis.

To all the people in the distributed systems lab: It was great sharing laboratory with you
during last six months. Thanks for providing a fun work environment and many interesting
discussions.

Furthermore, I want to express my very profound gratitude to my parents and to my brother
for providing me with unfailing support and continuous encouragement throughout my years
of study and through the process of researching and writing this thesis. This accomplishment
would not have been possible without them. Thank you.

Last but not least, I want to thank all the researches cited in this thesis for doing the hard
work and creating the mountain of knowledge on which this work builds upon.

iii

Contents
Abstract i

1 Introduction 1
1.1 Thesis Organization . 3

2 Background 5
2.1 Publish/Subscribe Paradigm . 5

2.1.1 Pub/Sub Models . 7
2.1.2 Event Delivery Mechanisms . 8

2.2 Software-Defined Networking . 9
2.2.1 OpenFlow . 11
2.2.2 Content-Addressable Memory . 12

3 State of the Art 13
3.1 Pub/Sub Systems Survey . 13

3.1.1 SIENA . 13
3.1.2 LIPSIN . 14
3.1.3 Gryphon . 14
3.1.4 Rebeca . 15

3.2 Addressing TCAM Limitations . 15
3.2.1 Hybrid Content-Based Filtering . 15
3.2.2 Flow Entry Eviction . 16
3.2.3 Optimized Rule Placement . 17

4 PLEROMA 19
4.1 Converting Events and Filters to Dz-Expressions 19
4.2 Encoding Dz-Expressions in Flows and Packets 21
4.3 Installing Flow Entries . 21
4.4 Problem Statement . 22

5 Enforcing Flow Limits on Switches 25
5.1 General Concepts . 26

5.1.1 Merging Flows . 26
5.1.2 Network False Positives . 27
5.1.3 Merge Tree . 28

5.2 Forces . 30
5.3 Local Flow Limit Enforcement Algorithms . 34

5.3.1 Baseline Approach . 34

v

Contents

5.3.2 Minimum Space Cost Function . 34
5.4 Global Optimization Algorithm . 35

5.4.1 Basic Algorithm . 36
5.4.2 Traffic Based Cost Function . 39
5.4.3 Event History Based Cost Function . 42

5.5 Flow Limit Compliant Flow Deployment . 45
5.6 Self-Evaluation Component . 46

6 Evaluation and Analysis 49
6.1 Evaluation Setup . 49
6.2 Network False Positives . 50
6.3 Execution Time . 55
6.4 Sampling . 58
6.5 Adapting to Changing Event Distributions . 59
6.6 Flow Limit Compliant Deployment . 61

7 Conclusion and Future Work 63

Bibliography 65

vi

List of Figures
2.1 A pub/sub system . 6
2.2 Architecture of a Software-defined network . 10
2.3 Structure of an OpenFlow flow entry . 11

4.1 Decomposition of the event space into subspaces identified by dz-expressions . 20
4.2 Conversion of dz-expressions to IPv4 addresses 21

5.1 Merging of dz-expressions 0000 and 0011 . 27
5.2 A perfect merge of dz-expressions 000 and 001 27
5.3 False positives introduced due to merging . 28
5.4 A merge tree containing several flows . 29
5.5 Merge tree after performing two merges . 30
5.6 Influence of space expansion . 31
5.7 Influence of the event distribution on merge decisions 32
5.8 Influence of the upstream flows on merge decisions 33
5.9 Influence of the downstream flows on merge decisions 33
5.10 Merge points considered by local flow limit enforcement algorithm 35
5.11 Choosing the processing order of switches . 37
5.12 Processing order without complete upstream knowledge 38
5.13 Computing the cost of a merge point . 43
5.14 Flows are deployed in a mirrored emulated network for self-evaluation 48

6.1 Number of subscribers to false positive rate with uniform distribution 51
6.2 Merge ratio to false positive rate with uniform distribution 52
6.3 Number of subscribers to false positive rate with mixed distribution 53
6.4 Merge ratio to false positive rate with mixed distribution 54
6.5 Number of subscribers to false positive rate with pure zipfian distribution . . . 54
6.6 Merge ratio to false positive rate with pure zipfian distribution 55
6.7 Local Enforcer with and without periodic global optimization 56
6.8 Influence of subscription quantity on global optimization execution time 57
6.9 Influence of the topology size on global optimization execution time 57
6.10 Influence of the sampling factor on network false positives 59
6.11 False positive rate at subscribers in real testbed 60
6.12 Influence of the sampling factor on execution time 60
6.13 Adapting to a changing mixed distribution . 61

vii

List of Algorithms
1 Installing a new flow on a switch . 23

2 Minimum Space Cost Function . 36
3 Global Optimization Base Algorithm . 38
4 Optimization of a Single Switch . 39
5 Traffic Based Cost Function . 41
6 Event History Based Cost Function . 44
7 Consistent Deployment of Flow Change Sets . 47

8 Generating a random tree . 50

ix

Chapter 1

Introduction
The publish/subscribe (pub/sub) paradigm is a well-established communication paradigm that
enables information to flow from information producers (publishers) to information consumers
(subscribers) in a manner, that is decoupled in time and/or space [1]. More specifically,
subscribers specify what kind of information they are interested in, i.e. they subscribe to
certain information. Publishers on the other hand disseminate information by publishing
events. The pub/sub system (also referred to as notification service [2] or event-based system
[3]) acts as an intermediary between publishers and subscribers and is responsible for routing
published events to all subscribers whose subscriptions match the given event. Therefore,
neither publishers, nor subscribers need to be aware of each other. Subscribers express their
interest according to a filter model (also called subscription model). A filter is a pattern
defined over the event space that matches a subset of all possible events. Many different filter
models exist, such as channel-based, topic-based, type-based and content-based, varying in
expressiveness and complexity. This thesis focuses on content-based pub/sub systems due to
the expressiveness and widespread usage of this filter model.

Pub/sub systems find application in a wide range of domains. This includes applications for
information dissemination (financial data, news, RSS-data, etc.), system and network mon-
itoring, Internet of Things (IoT) and Enterprise Application Integration (EAI) [3, p. 4 ff.].
Many of these applications put challenging requirements on the pub/sub middleware imple-
mentations. In particular:

• Supporting a large and constantly changing set of publishers and subscribers

• Delivering a large number of events with low end-to-end latency (sometimes even with
real-time characteristics) and high throughput

• Keeping bandwidth consumption at a minimum

This puts great demands for scalability and performance on the design of the pub/sub system.
In order to fulfill these requirements, many pub/sub systems employ a distributed architecture
where the physically centralized broker is replaced through a set of brokers (also termed
routers) connected through an overlay network. However, the broker network is still logically
centralized, i.e. it appears as a single entity to the publishers and subscribers. In order
to avoid unnecessarily forwarding events within the overlay, content-filters are installed in
the broker network. Content-filters define what events get forwarded to which broker. The

1

1 Introduction

bandwidth efficiency of content-based pub/sub systems largely depends on the expressiveness
of the content-filters. Implementing content-based pub/sub systems via an overlay broker
network doing event routing and filtering in the application layer has been a popular model
for implementing pub/sub systems in the past [4][2][5][6, 7][8]. However, this approach comes
with two major flaws. Firstly, while the brokers may use information from the underlying
network in order to optimize routing paths, the incompleteness of these information leads
to topology mismatches between the logical overlay network and the underlying physical
network. This topology mismatch results in imperfect routing decisions causing unnecessary
bandwidth consumption. Secondly, event filtering in the application layer and de-/serializing
events between network and application layer at each hop comes at the expense of end-to-end
latency and throughput.

To overcome these limitations, systems that leverage the power of Software-Defined Network-
ing (SDN) have recently been proposed in literature [9][10][11]. SDN enables applications to
easily shape networks by injecting custom control logic into the network layer. The aforemen-
tioned systems make use of this by installing content-filters directly in the ternary content-
addressable memory (TCAM) of switches, thus effectively pushing event-routing and filtering
logic from the application layer into the network layer. The fast hardware-based routing and
filtering of events directly within the network layer allows these systems to achieve event-
forwarding at line-rate performance.

SDN makes this possible by untangling the, formerly tightly integrated, control plane of the
network layer from the data plane and making it accessible to applications by providing
straightforward APIs. The control plane is implemented as a logically centralized controller.
The controller has a consistent global view on the network, thus eliminating the problem of
topology mismatch between underlay and overlay network mentioned above. However, the
control plane may be physically distributed for scalability reasons [12]. As Zhang et al. [13]
assert, the dichotomy of control and data plane in SDN also fits nicely with the pub/sub
model. Subscriptions and advertisements are handled by the control plane while events get
forwarded in the data plane. OpenFlow [14] is the de facto standard for realizing SDN and
supported by many hardware switches. OpenFlow introduces the notion of flow entries that
can be installed in TCAM by the controller. A flow entry specifies what packets it matches
(based on layer 2-4 headers) and what should be done with a matched packet. In order to
implement a SDN-based pub/sub system aforementioned systems transform content-filters
into OpfenFlow flow entries.

Unfortunately, hardware-based matching in the network layer does not come without draw-
backs. TCAM is a scarce resource. In most switches, the number of available flow entries is
limited to only a couple of thousand entries [15] that may even need to be shared between
multiple applications. Moreover, TCAM is also significantly more expensive and has notably
higher power consumption and heat generation compared to DRAM/SRAM [16]. Therefore,
applications should use TCAM sparingly. Limiting TCAM usage is a well discussed topic in

2

1.1 Thesis Organization

literature [15][17][18][19]. However, in the context of SDN-based pub/sub systems, TCAM
limitations didn’t find much consideration yet. Reducing the size of the TCAM available
for the pub/sub system effectively reduces the amount of content-filter information that can
be encoded in flows / TCAM, thus reducing the expressiveness of the filters. As mentioned
above, less expressive filters lead to higher bandwidth usage due to unnecessarily forwarded
traffic. This trade off between TCAM size and expressiveness / bandwidth-efficiency has al-
ready been explored in [20] by looking at it from the perspective of single flow entries. The
authors outline how filter information can be efficiently encoded within the limited memory
available for a single flow entry. However, the proposed algorithms do not reduce the overall
amount of flow entries in TCAM.

Currently, no SDN-based pub/sub system with pure network-based filtering enforces any limits
on the amount of installed flows. Hence, current systems may deploying a large amount of
flow entries in TCAM rendering them impractical in environments where TCAM resources
are scarce. The goal of this thesis is to extend PLEROMA [9, 10], a SDN-based pub/sub
system such that concrete float limits can be enforced. PLEROMA uses the concept of spatial
indexing in order to convert content-filters into a binary representation which is encoded into
the IP-header match field of OpenFlow flow entries. Likewise, content information of events
is encoded in their IP-destination header. This allows fast prefix-based matching of events
against content-filters in TCAM of OpenFlow-enabled switches. The main contribution of
this work are algorithms that reduce the required number of flows by intelligently combining
(merging flow entries (respectively the content-filters they represent) while trying to keep the
increase of bandwidth waste due to loss of expressiveness at a minimum. To achieve this goal,
the proposed algorithms exploit information about subscriptions, advertisements, network
state and event distribution.

1.1 Thesis Organization

The remaining part of this thesis is structured as follows:

Chapter 2 provides more background on the aforementioned topics pub/sub and SDN. It gives
an overview over different types of pub/sub systems, the concepts of SDN and how they can
be applied to a real network using the popular OpenFlow standard.

Chapter 3 discusses the current state of the art regarding pub/sub systems by doing a brief
survey over current pub/sub implementations. Furthermore, it gives an overview over ap-
proaches for reducing TCAM usage in various application contexts.

Chapter 4 contains the problem statement and introduces PLEROMA [9, 10], a content-based
pub/sub system using SDN. This thesis is an extended work of PLEROMA and therefore
heavily utilizes the notations and algorithms introduced in this chapter.

Chapter 5 introduces algorithms for enforcing flow limits on PLEROMA. This chapter contains
the main contribution of this work.

3

1 Introduction

Chapter 6 describes how the algorithms previously introduced in Chapter 5 have been realized
and evaluated on a real SDN testbed as well as on an emulated network environment. The
conducted experiments mainly focus on the amount network false positives and performance.
Above that, this chapter offers analysis and discussion of the findings.

Finally, Chapter 7 provides brief summary of the work and a conclusion. Furthermore, it
proposes an outline for possible future works.

4

Chapter 2

Background
This chapter provides the necessary background to this thesis. In particular, the publish/-
subscribe paradigm and software-defined networking are discussed.

2.1 Publish/Subscribe Paradigm

Pub/sub systems are inherently driven by information and not by the identities of the pro-
ducers and consumers of said information [21]. Producers of information initiate communica-
tion by publishing events that are delivered by the pub/sub middleware to potentially many
subscribers that are unknown to the publisher. Therefore, pub/sub follows a one-to-many
communication model. As aforementioned, a key aspect of pub/sub is that it allows produc-
ers to share information with consumers in a loosely coupled manner. Following Eugster et
al. [1], this includes in particular:

• Space decoupling: publishers and subscribers do not need to know each other. All
communication between the two groups is mediated by the pub/sub middleware.

• Time decoupling: the life cycle of individual publishers and subscribers does not
depend on each other. Publishers and subscribers can join and leave the system at any
time without affecting others in any way. Some pub/sub implementations also offer the
possibility for subscribers to consume information, which has been published while they
were disconnected from the system.

• Synchronization decoupling: events are sent asynchronously. Publishers are not
blocked till a published event is consumed. Subscribers are notified asynchronously and
consume events independent from other subscribers.

Therefore, the pub/sub paradigm allows the dissemination of information between a large and
dynamic set of autonomous and heterogeneous components [22].

In the following, some key aspects of the pub/sub communication paradigm are presented.

5

2 Background

Pub/Sub Middleware

B1

B2

B3

B4

publisher1 subscriber1

subscriber2publisher2

advertise(f)/
unadvertise(f)

advertise(f)/
unadvertise(f)

publish(evt)

publish(evt)

subscribe(f)/
unsubscribe(f)

subscribe(f)/
unsubscribe(f)

notify(evt)

notify(evt)

Figure 2.1: A pub/sub system

Components As mentioned before, a pub/sub system knows the roles of publishers and
subscribers. Publishers are the source of information. They disseminate information by pub-
lishing events. Subscribers on the other hand are consumers of information. They can specify
in what kind of information they are interested. The concept of publishers and subscribers
is orthogonal to physical hosts or applications. An application can act as a publisher and
as a subscriber at the same time. The pub/sub middleware acts as an intermediary between
publishers and subscribers. It is responsible for delivering published events to interested sub-
scribers. The pub/sub middleware itself may be implemented as a centralized component or
as a distributed system. A popular model to implement a distributed middleware is as a set
of brokers connected by an overlay network [4]. Implementations come in different topologies
and can range from static networks to dynamic peer-to-peer based approaches [23]. Figure 2.1
shows a pub/sub architecture. The middleware is implemented as a network of brokers but
acts as a single entity towards publishers and subscribers (i.e. it is logically centralized).

Operations In a pub/sub system, publishers and subscribers only interact with the pub/sub
middleware, not directly with each other. The pub/sub paradigm requires only a small set of
operations. Subscribers express their interests with the subscribe(f) operation where f is a filter
that describes the set of events that the subscriber is interested in. Subscribers can revoke their
subscriptions with the corresponding unsubscribe(f) operation. Publishers on the other hand
can publish information in form of events (also called event notifications) using the publish(evt)
operation [24, p. 245 ff.]. The structure of events is defined by the data model of the pub/sub
system. Events can, among others, be expressed as attribute/value pairs, objects and semi-
structured data like XML [25]. Additionally, some systems offer a advertise(f) operation and
the corresponding unadvertise(f) operation for publishers. Advertisements specify the set of
possible events that the publisher may publish and are again expressed in terms of a filter.
Advertisements are primarily used to implement an efficient event delivery mechanism in the
pub/sub middleware [24, p. 245 ff.].

6

2.1 Publish/Subscribe Paradigm

Filters Filters are an integral part of pub/sub systems. A filter is a pattern defined over
the event space that can be matched against events. As such, a filter can be expressed as a
boolean function that takes an event as input and returns true if the event matches the filter
and otherwise false [3, p. 13]. Another way to look at filters is that they select a subset of all
possible events, which contains all events that are matched by the filter (or alternatively, the
filter defines a subspace of the event space). How exactly filters are specified, i.e. the filter
model depends on the structure of the events, i.e. the data model. Possible types of filter
models are further described in the next section.

2.1.1 Pub/Sub Models

Channel-based and topic-based pub/sub In a channel based model, publishers publish
events to named channels. Channels are categorized in a flat collection. Subscribers on
the other hand can subscribe to arbitrary channels. This model is used for example by the
CORBA Event Service [26]. Filters cover all events that belong to a particular category.
The topic-based approach extends the channel concept by introducing a hierarchical arrange-
ment of topics. Filters match topics and all subtopics. For example, a publisher can sub-
scribe to the topic "news.sport" and will receive events from the topics "news.sport.football",
"news.sport.basketball", etc. Topics are also often referred to as subjects [24, p.246 f.].

Type-based pub/sub In a type-based model, events are objects situated in a type hierarchy.
This allows filtering based on type or subtype relationships. As such, type-based filtering is
similar to topic-based approaches. Both depend on the arrangement of events into categories.
An object-based approach can extend the type-based approaches to include filtering based
on the attribute values of events [24, p.247]. This makes them similar to content-based
approaches.

Content-based pub/sub In a content-based pub/sub model filters can be defined as con-
straints over the actual content of events, i.e. the information carried by the event. This
allows very expressive and flexible filters. The specific filter model depends on the structure
of the events, i.e. the data model. The following lists some possible combinations of data and
filter models:

• XML/XPath: events are modeled in XML. One advantage is, that already existing
technologies for processing XML can be leveraged. For example, filters can be defined
as XPath queries [27].

• Tuples/Templates: events are modeled as tuples, i.e. an ordered list of attributes (e.g.
("weather", "sensor4", 15◦C, 70%)). Corresponding filters are expressed as templates. A
template has the same number of attributes and can specify concrete values or wildcard
(*, don’t care), e.g. ("weather", "sensor4", *, *) will match all weather data events of
sensor4. This concept is for example used in LINDA [28].

7

2 Background

• Attribute-Value Pairs/Conjunctive Attribute Filters: events are modeled as
attribute-value pairs (e.g. (type="weather", sensor="sensor4", temperature="15◦C",
humidity=70%)). In contrast to tuples, attribute-value pairs allow optional attributes.
A filter can be defined as the conjunction of multiple attribute filters. Attribute fil-
ters define a boolean condition over a single attribute and typically support a range of
operations. String typed attributes can for example be tested for equality, matching
prefix/suffix or containment. Numeric values can be evaluated against concrete values
or value ranges. A possible filter matching the above event is {(type = "weather") ∧
(temperature ∈ [10,30]) ∧ (humidity > 50%)} [3, p.36 ff.].

2.1.2 Event Delivery Mechanisms

Multicast and Subscription Clustering One way to deliver events is by grouping subscribers
together in multicast groups. In order to deliver an event, it just needs to be send to the correct
multicast group (or to multiple groups), using IP-multicast where it is available. The members
of a multicast group can either be the subscribers themselves or brokers, which deliver the
received events to all connected subscribers. In channel-based pub/sub, the mapping from
subscriptions to groups is straightforward - every channel gets a corresponding group. A
possible multicast strategy for topic-based pub/sub is to map every topic and topic-subtree
to a group. Implementation of multicast for a content-based pub/sub system is much more
complex and a popular research topic (e.g. [29][30][31][32]). A popular theme is in order to
use a clustering approach to group similar subscribers (or brokers) together. This can be done
for example based on similarity of subscriptions or geographical proximity [33].

Flooding Flooding works by propagating events to all subscribers and filtering locally at
the subscribers. In case of a distributed implementation of the pub/sub middleware as a
network of brokers, events can also be propagated by flooding through the broker overlay
network. The advantages of flooding are that it is easy to implement and that it maps well
to multicast [24, p.250 f.]. Since events are sent to every subscriber, flooding often produces
a lot of unnecessary traffic, especially in the presence of expressive and diverse subscriptions.
However, if most events should be propagated to most subscribers anyway, flooding is a very
efficient implementation strategy [8].

Content-Based Routing In content-based routing, events delivered by selectively forwarding
them through a network of content-based routers. The routers make routing decisions based on
the content of the events, i.e. based on content-filters installed on the router. If the routers
are situated in the application layer and connected through an overlay network, they are
commonly referred to as brokers. There are various different approaches that try to balance the
accuracy and performance of content-filters against the overhead of maintaining the content-
based routing tables. Generally, if new a new subscription is added to the system, brokers
need to be made aware of that. A simple approach floods every subscription (respectively
the corresponding filters) to ever broker. More advanced techniques avoid forwarding all

8

2.2 Software-Defined Networking

filters, for example by not forwarding a filter if an identical filter is already in place (identity-
based routing), or if a new subscription is already covered by an existing filter (covering-based
routing), i.e. if all events matched by the new filter will also be matched by an existing one
[3, p. 80 ff.]. Another technique is, to merge multiple filters into a more coarse granular filter
and propagate the aggregated filter instead of the individual filters (merge-based routing) [8].
Finally, some systems also propagate advertisements to the brokers. Therefore, brokers need
to only forward subscriptions to places where overlapping advertisements exist [4]. A concern
of content-based routing is also, to avoid cyclic forwarding and the delivery of duplicates. This
can be easily achieved using acyclic topology. However, acyclic topologies are often plagued
by single point of failures and performance bottlenecks [23].

2.2 Software-Defined Networking

The core idea of Software-Defined Networking (SDN) is to provide a programmable network.
One way to look at network devices is the perspective of control plane and data plane. The
control plane is the decision module of a switch or router. It manages the network topology,
access control and is responsible for establishing routes, i.e. routing protocols that write the
routing tables of a router, like the Border Gateway Protocol (BGP) [34], are implemented in
the control plane. The data plane is responsible for forwarding packets.

In traditional network devices, control and data plane are tightly coupled and integrated into
the network device. The control plane logic, implemented a low-level language in the firmware
of the switch / router, is typically quite complex due to the big large amount of protocols
that it needs to support and often a vendor specific and closed platform. This makes it hard
and expensive to implement new network functionality, even for the vendor [35].

This leads to the fact that many systems rely on the ’one size fits all’ solutions, provided
by traditional network devices. However, many systems could greatly profit from control
plane logic customized to their specific applications and needs. A popular example of that is
Google, which has successfully used custom control plane in order to achieve high bandwidth
utilization and fault tolerance in the WAN connecting its datacenters by deploying a large
SDN infrastructure [36].

SDN makes this possible by providing clean APIs for implementing custom control logic in high
level languages. For this purpose, the control plane is extracted from the network devices and
implemented in a separate (logical) centralized component named controller. The controller
has an integrated view of the whole network and can make routing decisions based on that
knowledge. Figure 2.2 shows a SDN architecture. The controller itself implements the kernel
and the communication with the data plane. It can be a single entity as depicted or distributed
but logically centralized component, e.g. for scalablility reasons [12]. There are many popular
open source controller implementations available, for example Floodlight [37] and NOX [38].
The controller provides a so called northbound interface that can be used by the control code
modules in order to interact with the network. The actual form of the northbound interface
is not standardized and depends on the controller implementation. Controllers may offer a
web API, a modular plugin system or control logic can be implemented directly in the source

9

2 Background

code of an open source controller [39]. But the general idea is always, that control logic can
be implemented in a modular way. Therefore, one can use modules that implement standard
network routing protocols like BGP or OSPF as well as modules that implement more specific
algorithms customized to once needs, e.g. in order to implement a SDN-based firewall or
pub/sub system.

Control Plane

Data Plane

Controller

Southbound Interface

Northbound Interface

BGP OSPF
Custom

Control Logic
Custom

Control Logic

Figure 2.2: Architecture of a Software-defined network

The southbound interface of the controller is used for the communication between controller
and SDN-based switches. The controller is connected to each switch over each southbound
interface. Over this connection, the controller can gather network statistics, inject packets into
the network and modify the state of the switches. More specifically, SDN uses the concept of
flow entries that can be installed in flow tables of switches. Similar to routing tables, flows in
flow tables match incoming packets and then perform an action specified by the flow entry (e.g.
forwarding, dropping or modifying the packet). One can differentiate two routing approaches.
In a proactive routing approach, all necessary flows are installed from the very beginning. In
a reactive routing approach on the other hand, switches forward packets that aren’t matched
by any flows to the controller. The controller then determines the route, installs the according
flows and injects the packet back into the network. Following similar packets do not need to

10

2.2 Software-Defined Networking

be sent to the controller again. OpenFlow [14] is the de facto standard for the southbound
interface. It is developed by the Open Networking Foundation and backed by many big players
such as Cisco, Verizon, Deutsche Telekom, Microsoft, Google and Facebook. The following
section describes the OpenFlow protocol in detail.

2.2.1 OpenFlow

As aforementioned, OpenFlow [14] is the de facto standard for the southbound interface of
a SDN architecture. OpenFlow specifies a protocol for the communication between con-
troller and switches and how OpenFlow-enabled switches need to behave in the context of an
OpenFlow-based network. This section describes the parts of the OpenFlow standard, more
specifically OpenFlow version 1.3.x, that provide the relevant context for this thesis.

In OpenFlow, each switch has at least one flow table. The controller can install, modify and
delete flow entries inside a flow table. An incoming packet matches exactly zero or one flow
entries in a table. Once a packet is matched, the actions defined by the respective flow entry
are executed by the switch. In case of multiple flow tables a pipeline-based processing is
possible. However, only one flow table is used in the context of this thesis. Figure 2.3 depicts
the general structure of a flow entry.

Figure 2.3: Structure of an OpenFlow flow entry

The match fields are used to match packets against flow entries. One can match against a
specific ingress port and a set of several layer 2-4 header, e.g. source and destination IP, source
and destination port, VLAN ID, ... For each match field, the flow can specify a concrete value
or wildcard (often denoted as *), i.e. the flow does not care about the value of said match
field. One can for example implement routing by matching against certain IP-addresses or
match all traffic to the http standard port 80 regardless of destination IP and MAC.

Priority is an integer value that acts as a tie breaker in case an incoming packet matches
against multiple flow entries. The packet is handled by the flow entry with the highest
priority.

Counters are updated, whenever the packet is matched by this flow entry.

The instructions describe what the switch should do if a packet matches this flow. Most
importantly, one can define a set of actions that should take place when the flow is matched.
Possible actions are for example to drop the packet, forward it through one or multiple ports
and/or modify the packet headers.

The timeouts field can be used to define an optional timeout (total time or idle time) after
which the flow is automatically deleted.

Finally, the cookie is a value that can be freely set by the controller for its own internal
purposes.

11

2 Background

One can specify a table miss flow entry that matches all flows with lowest priority. Otherwise,
the specified or default table miss action (e.g. drop or forward to controller) is taken if a
packet matches none of the flow entries.

Furthermore, OpenFlow specifies a large number of optional and required statistics that
switches need to keep track of. This includes statistics on flow tables, flow entries, ports,
groups, etc. Notable examples are received packets and received bytes counters for ports and
flows. The statistics can be queried by the controller on demand.

2.2.2 Content-Addressable Memory

Classical random access memory (RAM) allows the lookup of data stored at a specified mem-
ory address. Content-addressable memory (CAM), also called associative memory, inverts
this principle. It allows searching for a specific data word (content) in a tabular memory
and returns the memory address of the matching data and/or additional data associated with
it. CAMs are highly optimized for these kind of search operations. In fact, CAM is able to
search the complete memory in a single clock cycle by comparing the queried data against
every CAM entry fully in parallel. Therefore, CAMs allow extremely fast search operations,
however this comes at the expense of increased cost and power consumption due to a more
complex architecture using a much larger number of circuits [40].

Binary CAM allows searching for arbitrary binary words, e.g. ’10011010’. Ternary CAM
(TCAM) additionally allows to mask or wildcard some bits, denoted as ’*’. While searching,
it does not matter if the state of that bit is 0 or 1, e.g. searching for ’11*00’ will search for both
’11000’ and ’11100’. This makes more sophisticated searches possible while maintaining the
same performance of simple binary CAMs. However, this comes at the expense of additional
cost and power consumption [41].

Find application where fast searching is necessary, e.g. in pattern matching [41] or fast routing
table lookup [42]. In the context of SDN, TCAM memory allows fast matching of packets
against flow entries.

12

Chapter 3

State of the Art

3.1 Pub/Sub Systems Survey

3.1.1 SIENA

SIENA (Scalable Internet Event Notification Architectures) [4] is a content-based pub/sub
system that aims to scale to wide-area networks while maintaining expressiveness. Events are
expressed as set of typed attribute value pairs. SIENA supports a predefined set of common
primitive types such as string, temporal and numeric types among others. Subscriptions can
be expressed as conjunctive attribute filters, i.e. a set of predicates over single attributes (e.g.
amount > 30) that must be all true in order to match an event. Furthermore, subscribers
can define patterns of events that they want to receive by given an ordered list of filters. For
example, if the pattern specifies that f1 must be matched before f2, all events that come
before any event matching f1 will be dropped. After an event matching f2 has been received,
everything but events matching f2 will be dropped.

Events are routed through a network of brokers placed in the application layer. In order to
only forward events to places where it is necessary, SIENA employs content-based filtering
at the brokers, i.e. brokers match incoming events against a local subscription based rout-
ing table and forward events accordingly. To establish routing tables, two approaches are
supported. The first approach floods subscriptions to all brokers. The second approach in-
troduces an advertise-operation. Advertisements are flooded in the system and subscriptions
are only forwarded to brokers with matching advertisements. Both approaches additionally
only forward subscriptions that are not covered by existing subscriptions (cf. covering-based
routing, 2.1.2).

All in all, SIENA is able to provide an expressive filter model and even more advanced event
selection mechanism, such as matching event patterns, while maintaining scalability. However,
its end to end delay is inherently limited due to the application layer based filtering approach
that is uses.

13

3 State of the Art

3.1.2 LIPSIN

LIPSIN (Line Speed Publish/Subscribe Inter-Networking) [43] is a topic-based pub/sub sys-
tem, suitable for large-scale networks. LIPSIN achieves line-rate performance by employing
a novel network-based event-forwarding strategy, based on multicast. The architecture sepa-
rates a control and a data plane. The data plane’s responsibilities are packet forwarding, error
correction and traffic scheduling. The main purpose of the control plane is to make routing
decision. Therefore, a topology manager is implemented in the control plane that has a con-
sistent global view of the network. The global view is build during an initial bootstrapping
phase and continuously maintained. Furthermore, the control plane contains a rendezvous
system that brings together subscribers and publishers.

In order to achieve delivery of events at line-rate performance, LIPSIN assigns a binary link
identifier to each link in a specific manner. The control plane then creates spanning trees for
topics and encodes all links of the tree in a bloom filter [44]. This bloom filter can be matched
against any link id using a fast binary AND operation. The result will tell us if the link is
contained in the bloom filter or not. When an event is published to a topic, the bloom filter
associated with this topic is encoded in the packet header of the event. Therefore, all routing
information is contained in the packet. Forwarding nodes simply need to compare the ids
of their links against the bloom filter of an incoming packet and forward it over all matched
links.

LIPSIN provides a scalable pub/sub approach that is able to achieve dissemination of events
at line-rate performance. However, it uses a topic-based pub/sub model that lacks the ex-
pressiveness of content-based systems. Furthermore, the matching of links against the bloom
filters is not perfect and will introduce false positives in the system.

3.1.3 Gryphon

Gryphon [45] is a content-based pub/sub system that is focused on scalability, availability
and security. Gryphon supports a centralized pub/sub middleware or can scale out to a large
distributed broker network. Gryphon uses an efficient application layer based approach to
match events against subscriptions, outlined by Aguilera et al. in [46]. Subscriptions are
arranged as leafs in parallel match tree. The inner nodes of the tree are attribute filters, i.e.
they test a single attribute of an event against a value, a value range, etc. Events are matched
against the nodes starting from the root. The next node is chosen depending on the outcome
of the test at the current node. A single subscription can be matched by following a path
from the root to a leaf. At any point, all subscriptions in the subtree, with the current node
as its root, match all before-tested conditions. With this technique, events can be matched
against all subscriptions in sub-linear time (in the number of subscriptions).

A simple way to implement routing through a network of brokers would be to match events
against all subscriptions at each hop, using the aforementioned matching technique. However,
Gryphon uses an more efficient solution, described in [47]. The general idea is to annotate
the match tree with routing information at each broker. Assuming that an event has been

14

3.2 Addressing TCAM Limitations

matched up till a certain node, the broker knows over which links the event definitely should
be forwarded, over which it maybe should be forwarded and over which it definitely should not
be forwarded. The deeper the matching algorithm descends into the merging tree, the more
links can be classified as definitely forward / definitely not forward. Therefore, the match
tree is only needed to be matched partially at every broker, thus increasing the performance.
By sending events to all "definitely forward" and "maybe forward" links, no false negatives
can occur. Sending events over "maybe" links can however introduce false positives, i.e.
unnecessary traffic.

Gryphon presents an interesting and high-performance approach for content-based routing in
an application-layer broker overlay for content-based pub/sub. However, it cannot match the
performance of a hardware-based approach.

3.1.4 Rebeca

Rebeca [8, 48] is a content-based pub/sub system using a broker overlay architecture. Rebeca
supports advertisement propagation and identity and covering-based routing among others.
Since its initial development in 1999, Rebeca has provided as base for various research efforts.
The implementation of merge-based routing [8, 49] is of particular interest to the topic of this
thesis. In merge-based routing, brokers combine multiple filters to a new aggregated filter and
propagate only the aggregated filter to other brokers. Mühl et al. explore perfect merging,
as well as imperfect merging, although latter only briefly. In the case of perfect merging,
the aggregated filter matches only events that are matched by at least one of the individual
filters. An imperfect merge on the other hand results in an aggregated flow, that matches
some events, which none of the original filters match.

Although the reduction of filter table sizes is one of the goals of merge-based routing in
Rebeca, Rebeca does not address the problem of enforcing concrete limits on the number
of filters, because it does not face the problem of limited hardware. Therefore, its actual
implementation of merge-based routing is rather limited. It allows only i) merging of filters
with the same destination and ii) perfect merges. However, in the context of limited TCAM
space, flow limits quotas cannot be met reliably by performing only such restrictive merges.
Especially, if multidimensional event spaces and diverse and expressive subscriptions make
perfect merges unrealistic.

3.2 Addressing TCAM Limitations

3.2.1 Hybrid Content-Based Filtering

In [17], Bhowmik et al. face the problems of limited TCAM capabilities in a SDN-based
pub/sub system. In order to reduce the number of flows that need to be installed in TCAM,
they propose a hybrid approach where some of the content-filters are installed in the network
layer and some in the application layer. The approach tries to combine the positive attributes

15

3 State of the Art

of both approaches while trying to minimize the negative aspects. Application-based filtering
is slow but highly expressive. On the other hand, network-based filtering is very fast but less
expressive due to the constraints on the amount of memory available to filters and therefore
forwards more unnecessary traffic. Bhowmik et al. propose means for selecting which filters
should be installed in the network layer and which should be installed in the application layer,
such that bandwidth usage and end to end delay is minimized.

CacheFlow [50, 51] provide a general solution for transparently caching flows in the application
layer and thereby creates the illusion of a large TCAM size. CacheFlow selects the flows that
are cached in the application layer based on popularity of flows and dependencies between
flows.

Obviously, hybrid approaches that offload some of the flows to the application layer can reduce
and limit the amount of used TCAM. However, this comes at the expense of increased end to
end delay for all those events that are routed over the application layer. Since the goal of this
work is to not compromise on delay and throughput, the proposed hybrid approaches are not
applicable.

3.2.2 Flow Entry Eviction

A common approach deal with a limited number of flows is to remove old flow entries in order
to install new ones. This can either happen once the TCAM is exhausted and a new flow
should be installed or pro-actively before the flow limit is reached.

One popular way to achieve this is by the means of flow entry timeouts. OpenFlow offers a
timeout feature, which makes it possible to automatically discard flows after a certain idle time
or total time. Furthermore, applications can implement their own timeout mechanism and
remove timed out flows themselves. SmartTime [19] proposes a heuristic for choosing adaptive
idle timeout values such that flow table misses are minimized. A similar approach is proposed
by Zhu et al. with Intelligent Timeout Master [52], which aims to predict good timeout values
using a history based approach. Furthermore, timeout values are adjusted according to the
current load factor of the flow table in order to prevent exhausting the available TCAM.

FlowMaster [53] tries to detect stale flows using a Markov based learning predictor and pro-
actively deletes those flows. Additional to the aforementioned timeout mechanisms, Smart-
Time also provides FIFO and random based flow eviction in case of imminent TCAM exhaus-
tion [19].

However, in the context of SDN-based pub/sub, removing flows and the therewith associated
flow table misses would lead to dropped events (i.e. false negatives) or forwarding of the
unmatched event to the application layer. Both is not compatible with the goals of this
thesis.

16

3.2 Addressing TCAM Limitations

3.2.3 Optimized Rule Placement

Some research has been done regarding the optimal placement of rules in a SDN environment.
For this purpose, [18] differentiates routing and endpoint based policies, that both need to
be encoded in flow. Routing policies define the paths that packets should take through the
network. Endpoint policies, e.g. load balancing and access control, on the other hand only care
about the packets received at an endpoint. Based on that, Kang et al. try to distribute the
rules over multiple switches along a path such that the amount of needed flows is minimized.
Palette [54] follows a similar approach. vCRIB [55] can route traffic purposefully over a longer
path in order to ensure sufficient TCAM capacity to apply all endpoint policies.

However, the proposed techniques don’t help to reduce the TCAM usage of the problem at
hand, because SDN-based pub/sub uses only routing based policies that need to be installed
at every switch along the path. Furthermore, these algorithms do not work if the number
of rules exceeds the combined TCAM capacities of all switches. Nevertheless, rule placing
optimization could be useful for balancing the TCAM usage of SDN-based pub/sub with
other applications that share the same TCAM.

17

Chapter 4

PLEROMA
This section introduces PLEROMA [9, 10], a SDN-based pub/sub system, in detail. This work
extends the PLEROMA system, since PLEROMA has proven to achieve event forwarding at
line-rate performance under scale but does not address TCAM limitations. This section
explains the parts of the PLEROMA system necessary to understand the extensions proposed
by this work.

PLEROMA uses a content-based filter model over a d-dimensional event space. Events are
expressed as attribute value pairs, e.g event = {price = 25, weight = 200, height = 2}. They
are represented as a point in the event space. Participants can express their advertisements and
subscriptions as conjunctive attribute filters, e.g adv = {price ≥ 20 ∧ 500 ≤ weight < 1000}.
An advertisement / subscription represents a subspace of the event space. PLEROMA requires
that publishers send only events that are covered by a previously announced advertisement.

PLEROMA converts advertisements and subscriptions to a binary representation called dz-
expression. The dz-expressions are then encoded in the match fields of OpenFlow flow entries
and deployed into the TCAM of OpenFlow-enabled switches. Events are converted to dz-
expressions as well and encoded in the packet header of the packet transmitting the event.
While routing through the network, the dz-expression of events can be matched against the
dz-expression encoded in flow entries allowing fast hardware based prefix filtering and routing
in TCAM.

4.1 Converting Events and Filters to Dz-Expressions

In order to convert content filters and events to binary dz-expressions PLEROMA uses spacial
indexing. The concept of spatial indexing is widely used in the context of geospatial databases
to allow fast geo-based queries [56]. The idea of simple spatial indexing is to recursively divide
the event space into regular subspaces along each dimension. Each dz-expression represents a
subspace of the event space. Longer dz-expressions define smaller subspaces. Figure 4.1 shows
a simple two dimensional event space. Both dimensions, dim1 and dim2, allow values in range
[0, 100]. The first subfigure shows the event space, identified by the empty dz-expression {*}.
The next step shows all subspaces defined by dz-expressions of length 1 (({0}, {1}). The next
step all subspaces defined by dz-expressions of length 2 ({00}, {01}, {10}, {11}) and so forth.
A very important property of this spatial indexing technique is prefix based containment. A
subspace spaceA identified by dzA is contained by another subspace spaceB identified by dzB

19

4 PLEROMA

iff dzB is a prefix of dzA. For example, in figure 4.1, the subspace identified by dz-expression
{00} contains all subspaces, that are identified by dz-expressions starting with 00, e.g. the
subspaces defined by {000} and {001}. We use the notation dzB � dzA iff dzB covers dzA, i.e.
dzB is a prefix of dzA. We say that two dz-expressions are related iff they are overlapping,
i.e. they are either equal or dzB � dzA or dzB ≺ dzA.

Figure 4.1: Decomposition of the event space into subspaces identified by dz-expressions

Events are approximated by the smallest subspace that they fall in. Subscriptions and Ad-
vertisements are represented as a single dz-expression or multiple dz-expressions, for exam-
ple in the event space illustrated in figure 4.1, the subscription {dim1 = [0, 25] ∧ dim2 =
[0, 50]} can be represented as dz-expression {010}. On the other hand, the subscription
{dim1 = [0, 25] ∧ dim2 = [0, 100]} can only be expressed by two dz-expressions: {000,
010}. But not all subscriptions can be expressed so nicely. For example, subscription
{dim1 = [0, 10] ∧ dim2 = [50, 100]} cannot be perfectly expressed using only dz-expressions
up to length 3 as depicted in the figure. It has to be approximated by dz-expression {000}.
With unlimited long dz-expressions, arbitrary small subspaces can be defined, that better and
better approximate advertisements / subscriptions and especially events, which are just points
in the event space. However, the length of the dz-expression is constraint, since only a limited
amount of bits can be encoded in the flow entries. Bhowmik et al. proposed several meth-
ods, e.g. a workload-based indexing approach that try to provide a more expressive binary
encoding of advertisements / subscriptions than the simple spatial indexing aforementioned
[20]. The algorithms proposed by this work assume simple spatial indexing. However, the
proposed concepts can be directly adapted to other approaches, especially if they honor the

20

4.2 Encoding Dz-Expressions in Flows and Packets

containment constraints.

4.2 Encoding Dz-Expressions in Flows and Packets

PLEROMA encodes the dz-expressions in the IP header match field which allows prefix based
matching in order to support IP address matching based on Class-less Interdomain Routing
(CIDR). It’s possible to encode the dz-expression both in IPv4 and IPv6 match fields. For
IPv4, the 225.128.0.0/9 address space is used (i.e. 225.128.0.0/225.255.255.255). The first 9
bits of the IP address are fixed. The dz-expression is appended after the first 9 bits. When not
all of the 32 bit of the IPv4 address are used, the remaining bits are masked, i.e. they are set to
match anything (wildcard / *). Figure 4.2 shows the fixed prefix and the conversion of several
dz-expressions to IPv4 address ranges, displayed both in binary and CIDR-notation. The
dz-expression part of the result is marked in red in the binary representation. Using CIDR-
notation, dz-expression {110} is converted to the address space 225.224.0.0/12. Dz-expression
{1101000}, which is contained by {110}, has the CIDR-representation 225.232.0.0/16. Note
that all IP-addresses in range 225.232.0.0/16 are also contained within the 225.224.0.0/12
space. However, none of the IP-addresses that belong to dz {0011} (225.152.0.0/13) are part
of the subnet specified by dz-expression {110}. This confirms exactly the expectations of prefix
based matching. Respectively, the dz-expression of an event is encoded in the IP-destination
header of the packet that transmits it.

Instead of IPv4, it’s also possible to use IPv6 based matching. In this case, the IP-multicast
address space (ff00::/8) is used. Other than that, the procedure is equivalent to the IPv4
encoding [11].

Figure 4.2: Conversion of dz-expressions to IPv4 addresses

4.3 Installing Flow Entries

Hosts can announce new (un-) advertisements / (-un) subscriptions by sending them to a
special IP-address IPfix. No flow entry that matches IPfix will be installed on the switches,
thereby sending all packets that have this destination to the controller. In order for events
being routed from publishers to subscribers, flows need to be installed along the paths from

21

4 PLEROMA

publishers to subscribers in the network. PLEROMA maintains a dynamic set of spanning
trees. Each tree is responsible for a disjoint event subspace and connects every publisher
and subscriber that publishes or receives events of that subspace. Publishers and subscribers
can be part of multiple such dissemination trees. Flows whose dz-expression belongs to a
certain subspace can only be installed to the switches contained in the respective spanning
tree. Therefore, it’s not possible that events are routed in cycles.

This work uses a simplified model of PLEROMA, where only a single spanning tree is used.
The tree is thereby responsible for the whole event space and connects every publisher and
subscriber. All installed flows only forward events within his tree. However, the tree itself
can change over time when hosts join or leave the system. Whenever the controller receives a
new subscription (respectively advertisement) it performs the following steps:

1. It looks up all advertisers (subscribers) that have overlapping advertisements (subscrip-
tions) with the new subscription (advertisement). To achieve this, the controller keeps
track of all advertisements and subscriptions in the system.

2. For each identified relevant publisher (subscriber), the controller determines the route
from publisher to subscriber (there is only one route in a tree).

3. Along each of these routes route, the controller installs flows such that events matching
the advertisement and subscription are forwarded from the publishers to the subscribers.

In order to establish the flows along each route, PLEROMA tries to install a new flow on each
switch of the route whose dz-expression is the overlap between advertisement and subscription
of this path. If there are overlapping flows already installed on a switch, adjustments to the
new flow and/or existing flows may be necessary. The process is described in detail by
algorithm 1. In essence, if a flow fi partially covers another flow fj , then fj must, additional
to its own egress ports, also forward over the egress ports of fi. fj has to be deployed with
a higher priority. Hence, events that match fj (and therefore also fi) are forwarded by fj .
Events that match only fi are forwarded by fi.

4.4 Problem Statement

As previously discussed, existing SDN-based pub/sub systems achieve line-rate performance
and scalability by installing content-filters in the TCAM of network switches. However, these
systems in general and PLEROMA in particular lack means to limit the amount of flow
entries installed in TCAM. Nevertheless, constraining the number of flow entries is necessary
because TCAM is a scarce and expensive resource. Therefore, existing systems need to be
extended such that the number of flow entries installed on each switch can be constraint to an
upper limit. Reducing the number of entries available to the system typically results in a loss
of expressiveness, thereby increasing unnecessary traffic in the system. Therefore, the main
objective of this thesis is to propose algorithms that reduce the number of flows until a given
limit is respected, while keeping the increase of bandwidth wastage at a minimum. Bandwidth
wastage is measured in terms of network false positives. Whenever an event is forwarded over a

22

4.4 Problem Statement

Algorithm 1 Installing a new flow on a switch
1: procedure InstallFlow(flownew, switch)
2: if ∃flow ∈ switch.flows : flow fully covers flownew then
3: return
4: end if
5: for all flowexisting ∈ switch.flows do
6: if flowexisting partially covers flownew then
7: flownew.egressPorts← flownew.egressPorts

⋃
flowexisting.egressPorts

8: end if
9: if flownew partially covers flow then
10: flowexisting.egressPorts← flow.egressPortsexisting

⋃
flownew.egressPorts

11: end if
12: end for
13: delete newly fully covered flows
14: install flownew and modify all changed existing flows in TCAM
15: end procedure

link, although it shouldn’t, it counts as a network false positive. The proposed algorithms are
integrated into the PLEROMA pub/sub system and evaluated under a realistic workload.

23

Chapter 5

Enforcing Flow Limits on Switches
This chapter is dedicated to algorithms that enforce flow limits on switches within the
PLEROMA system. The approach thereby is twofold. Firstly, this work proposes a global op-
timization algorithm, that takes the network topology and the current set of advertisements
and subscriptions (respectively the corresponding flow entries on each switch generated by
PLEROMA) as input and produce a set of flow entries for each switch, such that:

1. The flow limit constraints of each switch are respected on each switch

2. All events are correctly delivered, i.e. no false negatives can occur

3. The amount of unnecessary traffic (false positives) is minimized, i.e. the flow configu-
ration is bandwidth-efficient

Since the global optimizer needs to produce the final flow set for every switch and has a
significant complexity, its execution time is in the order of (tens of) seconds. If advertisements
and subscriptions change rarely, one can get by with using only this algorithm, by running the
global optimizer whenever a new advertisement or subscription would violate the flow limit
constraints.

However, many pub/sub systems are highly dynamic and have to deal with constantly chang-
ing subscribers, publishers, subscriptions and advertisements. In this situation, it’s not feasible
to run the global optimizer every time a change would violate flow limit constraints due to
its slow execution time. This motivates a second class of algorithms termed local flow limit
enforcers. These algorithms will be executed whenever a change on a single switch would
violate its constraints and only perform merges on said switch. While these algorithms should
also make good decisions regarding the bandwidth-efficiency, their main design criterion is
execution time. This is because they need to run very often and also because new advertise-
ments/subscriptions should come into effect as fast as possible. Therefore, the execution time
of these algorithms is essential for the scalability of the system.

Both classes of algorithms cooperate well. The local flow limit enforcer ensures that flow
limits are respected at all time while the global optimizer can be executed periodically in the
background in order to optimize the current set of flows. While the optimizer is executed, the
system remains completely functional. Even new advertisements/subscriptions can be added
during the execution. They just need to be re-added after the global optimizer terminates
since they are not included in the start state of the optimizer.

25

5 Enforcing Flow Limits on Switches

The remaining part of this chapter is structured as follows: Firstly, some general concepts
and data structures that are relevant for all algorithms are introduced. Followed by an inves-
tigation of the forces that are at play when merging flows in a bandwidth-efficient manner.
Then, two flavors of the global optimization algorithm are presented, as well as two different
local enforcers. Finally, two complementary components are introduced. Firstly, a component
responsible for consistently deploying the flow changes induced by the aforementioned algo-
rithms without violating flow limit constraints and without temporally spiking false positives
(or false negatives). Secondly, a component that allows the pub/sub systems to determine the
ratio of network false positives on its own. With the help of this component, the system is
able to autonomously adapt parameters or trigger execution of the global execution algorithm
when the false positive ratio surpasses certain thresholds.

5.1 General Concepts

5.1.1 Merging Flows

All algorithms proposed in the thesis work on the basis of merging flows. This means, that
they start with a set of flows, that violates flow limit constraints, and then reduce the number
of flows by selectively combining them. The merge operation takes k flows f1, ..., fk as input
(with k ≥ 2) and produces a single flow fm as output such that fm fully covers all flows
f1, ..., fk (cf. chapter 4).

Note that it is only possible to merge flows that match on the same ingress port, since Open-
Flow only supports matching either a specific ingress port or any ingress ports (wildcard).

Performing a merge : f1, ..., fk → fm is done as follows:

1. Set the ingress port of fm equivalent to the ingress port of f1, ..., fk (they must be
identical).

2. Set the dz-expression of fm to the longest common prefix of all dz-expressions of f1, ..., fk.
If there is no common prefix set the dz-expression of fm to wildcard (*), i.e. match every
event.

3. Set the egress ports of fm to the union of the egress ports of f1, ..., fk

As an example, merging the two flows f1 = (1→ 0000→ 2,3) and f2 = (1→ 0011→ 3). The
resulting merged flow will be fm = (1 → 00 → 2,3). The dz-expression of fm is {00} is the
longest common prefix of the dz-expressions of f1 and f2: {0000} and {0011}. The merging
of these two dz-expressions in a two-dimensional event space is visualized in figure 5.1. The
areas highlighted in green show the parts of the event space covered by the dz-expressions of
f1 and f2. The area framed in red is the part of the event space covered by the dz-expression
of fm. On can easily see, that the dz-expression of fm covers more than just the sum of those
belonging to f1 and f2. We call this an imperfect merge.

26

5.1 General Concepts

A perfect merge on the other hand is a merge, where fm covers exactly the same part of the
event space as the sum of all the participating flows f1, ..., fk and every participating flow has
also the same egress port(s). This means, that all events matched by fm would have been
also matched by at least one of the flows f1, ..., fk and is forwarded to exactly the same egress
ports. For example, merging f1 = (1 → 000 → 2,3) and f2 = (1 → 001 → 2,3) is a perfect
merge whose result is the flow fm = (1 → 00 → 2,3)). Figure 5.2 depicts this merge in a
two-dimensional event space from the dz-expression perspective.

Figure 5.1: Merging of dz-expressions 0000 and 0011

Figure 5.2: A perfect merge of dz-expressions 000 and 001

5.1.2 Network False Positives

This section investigates the reasons why and how the merging of flows introduces new false
positives into the system. Consider the merging of f1 = (1 → 000 → 2,3) and f2 = (1 → 011

27

5 Enforcing Flow Limits on Switches

→ 3) into fm = (1 → 0 → 2,3). Figure 5.3 depicts this situation. Events that are matched
by none of the original flows f1, ..., fk but are matched by fm will produce a false negative on
every outgoing link that fm forwards to. In this specific example, every event that is located
in the red shaded part of the event space will trigger two false positives at this switch. E.g.
event1 will trigger two false positives because fm forwards it over port 2 and 3, while without
the merging the packet would have been dropped, since neither f1, nor f2 match it.

The situation gets trickier, when an event would have been matched by one or more of the
original flows. In case of event2 , no false positives will be introduced by the merge because
the egress ports of flow f1 that also matches event2 are identical to the egress ports of fm.
Therefore, event2 will be forwarded over port 2 and 3 no matter if the flows get merged or not.
However, for event3 the situation is different. Without merging, it would only be forwarded
over port 3. Yet, after merging, it is forwarded over port 2 and 3, thereby introducing one
new false positive into the system.

False positives introduced at one switch can lead to further false positives downstream.

Figure 5.3: False positives introduced due to merging

5.1.3 Merge Tree

This section introduces the merge tree data structure that is widely used by the algorithms
of this work, in order to efficiently identify possible merges and perform merges. A merge
tree is a radix tree [57] with flows as values and their respective dz-expression as keys. A
radix tree is a compact form of a prefix tree (also called trie)[58] where empty intermediary
nodes are merged into their parent nodes. Figure 5.4 depicts such a tree. The value of each
node (pictured as circles) is a dz-expression. More specifically, it’s the longest common prefix
of the value of its children. The boxes represent the flows that have been inserted into the
tree structure. A node can either be empty intermediaries as it is the case for nodes ’00’ and
’000’, or they can have a flow associated with them, e.g. nodes ’01’ and ’011’. Each of the
nodes represents a merge point. When merging at a specific node / merge point, all flows of

28

5.1 General Concepts

the subtree whose root is the merge point get merged, i.e. they get removed from the switch
and replaced by a single new aggregated flow fm. The dz-expression of fm is the value of the
merge point. For example, merging at node ’000’ will merge flows (1 → 00001011 → 2) and
(1 → 000111 → 4) into fm = (1 → 000 → 2,4). Merging at node ’01’ would merge all five
flows contained in this subtree. Figure 5.5 shows the same merge tree from figure 5.4 after
merging at the merge points ’000’ and ’011’.

The cardinality of a merge point is defined as the number of flows that it merges, i.e. by
merging a merge point with cardinality k, the number of flows on that switch is reduced by
k− 1 (k flows get deleted and one new flow is added). Since it is only possible to merge flows
with the same ingress port (as discussed above), the system maintains a separate merge tree
for every ingress port at each switch. Therefore, flows can be merged freely at every merge
point in the tree.The maximum depth of a merge tree corresponds to the maximum length of
a dz-expression.

0

000 01

0111→000111→41→00001011→2 1→010→2,3 1→011→2,3

1→01→3

1→011000→2,3,4 1→0111→2,3,6

Figure 5.4: A merge tree containing several flows
29

5 Enforcing Flow Limits on Switches

0

011→000→2,4

1→010→2,3

1→01→3

1→011→2,3,4,6

Figure 5.5: Merge tree after performing two merges

5.2 Forces

This section investigates the forces that are at play when trying to bandwidth-efficiently
merge flows. This means it identifies the criteria that influence the design of the algorithms
and describes how they influence the design

One major factor when looking at the causes of false positives is space expansion. As
described in section 5.1.2, fm may cover some parts of the event space that none of the
original flows covered before. Events that fall into this space will definitely introduce false
positives. We call the increase of covered event space due to a merge space expansion. It seems
like a sensible idea to minimize the size of this expansion. In order to investigate the influence
of space expansion in isolation, we assume all flows participating in the merge have the same
egress ports. Figure 5.6 depicts multiple merge options. The green area is respectively the
portion of the event space covered by the original flows. The red outlined part of the event
space covered by the resulting flow of the merge and the red shaded area is the problematic
’wrongfully’ covered area. Two factors are at play here. Figure 5.6a shows the effect of relative
size expansion. Merge number one seems to be preferable, since only a quarter of the space
covered by the merge result is ’wrongfully’ covered; compared to merge number two where the
ratio is split half and half. However, more important than relative size expansion is the total
space expansion as figure 5.6b illustrates. While merge number one has a bigger relative size
expansion, merge number two seems to be preferable. The reason is, that in case of merge

30

5.2 Forces

one only 2
64 of the total event space is ’wrongfully’ covered. The result of merge number two

on the other hand ’wrongfully’ covers 4
64 of the event space.

(a) Influence of relative space expansion (b) Influence of total space expansion

Figure 5.6: Influence of space expansion

Apart from the expansion of covered event space, the port expansion is also important. As
discussed before in section 5.1.2, flows that participate in a merge can have different egress
port sets. Events that fall into an area of the event space that is matched by fm but none of
the original flows always results in false positives being forwarded over all egress ports of fm.
But even if the event would have been matched by fi, false positives are still produced on the
egress ports that are part of fm but not of fi. Therefore, we consider the space expansion for
each egress port individually.

Another major force is the event distribution. Minimizing space and port expansion works
well if the events are distributed uniformly over the event space. However, if the event
distribution is skewed, a small ’wrongfully’ covered area can be responsible for a lot more false
positives than one would expect due to its size. This is illustrated in figure 5.7. Past events
are depicted as small stars. The majority of events occur in the lower right and the upper
left corner of the event space. Under these circumstances merge number two will introduce
a lot more false positives compared to merge number one. Although its size expansion is
much smaller, it causes exactly the part of the event space where most events occur to be
’wrongfully’ covered. Assuming that the event distribution does not change, merge number
one is therefore preferable. Skewed event distributions are not uncommon. For example a fire
detection system will frequently receive temperature data from sensors as events. Most events

31

5 Enforcing Flow Limits on Switches

will be in the range of normal room temperature and hopefully only very few events will be
in the ’fire range’.

Figure 5.7: Influence of the event distribution on merge decisions

Till now, all forces were focusing on the state of the switch on which the merging takes part.
However, we can not make good merge decisions in isolation since the quality of a merge
decision is heavily influenced by the flows deployed on other switches of the network. This
mutual influences between merge decisions on different switches adds major complexity to
the bandwidth-efficient merge problem. There are two factors that need to be considered
with regard to the global flow state. Firstly, it’s important what events can even reach the
switch. Therefore we look into the upstream paths of a switch, i.e. all paths from publishers
to the switch. Events that get filtered out at one of the upstream switches never reach the
switch on which we currently want to merge. In this regard, it’s also important what kind of
events the publisher can even produce (advertisements). In the situation depicted in figure
5.8 the two flows on each green switch can be merged into fm = (1 → 00 → 2) on all
green switches without introducing any false positives at all. All events that would fall into
’wrongfully’ covered subspace of the merge result (0001 / 0010) get filtered out at the red
switch and will never reach the green switches. Secondly, it’s important how far false positives
will be propagated into the network if they are not stopped at the current switch in question.
Therefore, we look into the downstream paths of a switch, i.e. all paths from the switch to the
subscribers. False positives that are passed through at the current switch may be completely
or partially filtered out again at some downstream switch. Or they are forwarded all the way
to the subscriber. In figure 5.9 either the two purple outlined flows or the two blue outlined
flows of the green switch should be merged. Both merge results will forward events from the
publisher that the subscriber is not interested in. However, the events wrongfully forwarded
by the result of the purple will be filtered out at the next switch (the red switch). In contrast,

32

5.2 Forces

an event wrongfully forwarded by the blue merge result will be propagated all the way to the
subscriber, causing four instead of one network false positives on its way.

1→0000→2
1→0011→2

adv={0}

sub={0000, 0011}

1 2

1 2

1 2

21

1→0000→2
1→0011→2

1→0000→2
1→0011→2

1→0000→2
1→0011→2

Figure 5.8: Influence of the upstream flows on merge decisions

adv={*}

sub={0000, 0011,
 1100, 1111}

1 2

1 2

1 2

21

1→*→2

1→*→21→0000→2
1→0011→2

1→11→2

1→0000→2
1→0011→2
1→1100→2
1→1111→2

Figure 5.9: Influence of the downstream flows on merge decisions

Lastly, especially for the local flow limit enforcement algorithms, execution time is a major
design factor. These algorithms are possibly executed whenever a flow is added to a switch due
to a new advertisement / subscription and many pub/sub systems are quite dynamic by nature.
Therefore, the execution time of these algorithms is an integral factor to the scalability of the
whole system. Furthermore, new advertisements / subscriptions should come into effect as
fast as possible. For the global algorithms, execution time is less important. But still, shorter
execution time means that the global algorithms can be executed more frequently and that
the system can adapt faster to changes.

33

5 Enforcing Flow Limits on Switches

5.3 Local Flow Limit Enforcement Algorithms

This section finally introduces two alternative algorithms of the local flow limit enforcement
class. The purpose of these algorithms is to ensure that the flow limit constraint is never
violated on any switch. The local flow limit enforcement algorithm is triggered whenever a
flow should be installed on a particular switch. This means that the addition of a single new
subscription or advertisement can trigger the execution of the local enforcement algorithm
many times throughout the network. While the minimization of false positives introduced
through merging is an important goal of these algorithms, their design is heavily constraint
by the high requirements regarding the execution time of the algorithms. Because of their
frequent execution and the desire that new subscriptions and advertisements come into effect
as fast as possible, a short execution time is vital for the scalability of the system. Hence, the
algorithms proposed in this section are rather simple.

5.3.1 Baseline Approach

This section proposes a simple flow limit enforcement algorithm. The algorithm is triggered
whenever a new flow should be installed on a switch. Firstly, the algorithm checks if adding
the new flow would violate the flow limit constraint of the switch. If not, the flow can be
deployed and the algorithm terminates. If the flow limit is violated, it can only be violated
by one, because the enforcement algorithm is triggered for every new flow. Therefore, it is
only necessary to perform a single merge of two flows. The new flow is first added to the
proper merge tree of the switch so that it is considered in the merge decision as well. Then,
a random merge point is chosen among the leaf merge points of all merge trees (one merge
tree per ingress port, cf. 5.1.3) of the switch. Leaf merge points are merge points that have
no other merge points as children. They have a cardinality two or three (depending if there
exists a flow with the same dz-expression as the merge point or not). Figure 5.10 shows a
merge tree for the ingress port one. The leaf merge points are m4, m5, and m6. After a merge
point has been chosen, the new flow (if it was not part of the merge) and the flow changes
of the merge are implemented in the switch (see section 5.5 for how to deploy flow changes
without violating flow limit constraints).

5.3.2 Minimum Space Cost Function

This section presents an alternative algorithm that is an extension to the base line approach.
The overall structure of the algorithm remains the same. However, instead of choosing a
random merge point of cardinality two or three, all merge points with that cardinality are
evaluated with a simple cost function. The merge point with the lowest cost is picked and
gets merged.

Algorithm listing 2 describes the employed cost function. The idea is to minimize the space
expansion on each egress port (cf. 5.2). For this purpose, the size of the ’wrongfully’ covered
area of the event space is computed as fraction of the size of the total event space for each

34

5.4 Global Optimization Algorithm

m1

*

m2

000
m3

1

m6

11

1→10111→4

1→000111→2 1→011→2

1→11001→2,3 1→111→2,3,6

m5

101
m4

0000

1→1010→21→00001→4 1→0000010→4

Figure 5.10: Merge points considered by local flow limit enforcement algorithm

egress port of fm. The final cost of the merge point is the sum of the size expansion on all
ports.

Note that the algorithm does not take into account the two of the major forces identified be-
forehand. Namely, the event distribution and the global flow state. This makes the execution
of the algorithm fast but may lead to bad merge decisions.

5.4 Global Optimization Algorithm

A pub/sub system is fully functional and adheres to all flow limits by just using one of the
local flow limit enforcement algorithms introduced above. However, motivated by the possibly
bad decisions made by the local flow limit enforcement algorithm, this section proposes a
global optimization algorithm. The optimizer can be triggered at any point by the system.
The algorithm is global in a sense that it changes flows on every switch. Given the current
subscriptions and advertisements, it tries to find the best possible combination of flows on
each switch, possibly drastically changing the currently deployed flows on each switch. In
contrast to the local algorithms this algorithm considers all forces mentioned in section 5.2.

The optimizer assigns costs to possible merge points with a cost function. There are two
different cost functions proposed by this thesis. The main difference is how they incorporate

35

5 Enforcing Flow Limits on Switches

Algorithm 2 Minimum Space Cost Function
1: procedure ComputeMinimumSpaceCost(mp) . mp is a merge point
2: Flows← flows that are merged by mp
3: fm ← resulting flow of merging mp
4: cost← 0.0
5: for all port ∈ m.egressPorts do
6: Flowsport ← {f ∈ Flows | port ∈ f.egressPorts}
7: originalSpaceport ← event space covered by Flowsport

8: newSpaceport ← event space covered by fm

9: spaceExpansionport ← originalSpaceport − newSpaceport

10: cost← cost + size(spaceExpansionport) . size gives the size of the given space as
fraction of the total event space

11: end for
12: return cost
13: end procedure

the event distribution. The OpenFlow traffic based approach relies mostly on OpenFlow
counters to estimate the event distribution and assumes a uniform distribution in places
where the information gathered by OpenFlow are not sufficient. The event history based cost
function collects an event history in order to determine the event distribution. This allows
building a better model of the event distribution, but comes at the expense of the additional
overhead of collecting the history.

In the following the general structure and common parts of the optimization algorithm are
introduced. Afterwards, both cost functions are described in detail.

5.4.1 Basic Algorithm

The optimizer operates on the complete flow set, i.e it first recreates the flow set that the
system would like to deploy in the absence of flow limits on every switch. The flows are stored
in merge trees. Then, the algorithm processes switch by switch. It reduces the amount of flows
on the currently processed switch by selectively merging flows till the flow limit constraint is
met. After that, the resulting flow set on this switch is finalized and the algorithm moves on
to the next switch.

Processing Order of Switches

The merging decisions on one switch heavily depend on the decisions made on other switches.
Since the algorithm processes each switch only once (per optimizer execution), the order in
which the switches are processed is very important. When processing a switch, the algorithm
can only rely on the flow state of the already processed switches, because their final state is
certain. In contrast, the algorithm can only make assumptions about the final state of the

36

5.4 Global Optimization Algorithm

currently unprocessed switches. The optimizer, as described in algorithm listing 3, tries to
process the switches in such an order, that it has the maximum possible knowledge about the
upstream state when processing a switch. This means, that on every path that enters the
switch, as many upstream switches as possible should already be processed. This allows the
algorithm to judge, what events can reach the switch. To achieve this, the algorithm selects
switches in rounds. In the first round all switches that are directly connected to a publisher
are processed. In the second round all switches that are one hop away from a publisher are
processed and so on. Of course, one switch might be directly connected to one publisher and
much much farther down in the path from another publisher to some subscriber.

To establish ordering inside a group and resolve conflicts, a simple heuristic used. The heuristic
chooses the switch with the least number of unprocessed upstream switches, i.e. for every path
from some publisher to some subscriber through the switch, identify the upstream switches
and take the one with the lowest number of unprocessed upstream switches. The idea of this
heuristic is again to minimize upstream uncertainty.

Figure 5.11 depicts a scene with three switches. Black arrows show the paths on which events
travel from publishers to the subscriber in the system. Both the red and the green switch
are directly connected to a publisher and thereby in the group that is processed first. Since
the red switch has no unprocessed upstream dependencies it is processed before the green
one which has one unprocessed upstream dependency (namely the red switch). After the
red switch is processed, the green switch gets processed. The blue switch is processed. In
this simple example all upstream switches have already been processed when the algorithm
processes a switch. Of course, 100 percent upstream certainty is not always possible, as figure
5.12 shows for example. No matter if the algorithm starts with the green or with the blue
switch, there will always be two unprocessed upstream switches.

adv={00} sub={00, 11}adv={11}

1 2 3

Figure 5.11: Choosing the processing order of switches

Processing a Single Switch

37

5 Enforcing Flow Limits on Switches

Algorithm 3 Global Optimization Base Algorithm
1: procedure GlobalOptimization(mp) . mp is a merge point
2: U ← Set of all switches . unprocessed switches
3: i← 0
4: while U 6= ø do
5: currentGroup← {switch ∈ U | switch is i hops away from a publisher}
6: ProcessSwitchGroup(currentGroup)
7: U ← U \ currentGroup
8: i← i + 1
9: end while

10: end procedure
11:
12: procedure ProcessSwitchGroup(group) . process a group of switches all i hops

away from a publisher
13: while group 6= ø do
14: switch← switch with minimum upstream dependencies
15: ProcessSwitch(switch)
16: group← U \ {switch}
17: end while
18: end procedure

adv={0}
Sub={1}

adv={1}
sub={0}

1/2 3 1/2

Figure 5.12: Processing order without complete upstream knowledge

38

5.4 Global Optimization Algorithm

This section discusses how the optimizer makes merge decisions on a single switch (cf. al-
gorithm listing 4). Firstly, the algorithm computes the cost of each merge point. The cost
function is the central piece of the global optimizer logic. The two cost functions that are
proposed by this work are discussed in the following sections. After the cost assignment, the
algorithm proceeds by deciding which merge points to merge. For this purpose, the benefit
of each merge point is determined. The benefit equals the number of flows by which the flow
count of the switch is reduced when merging at this merge point, i.e. the cardinality of the
merge minus one. Based on that, the optimizer computes the cost per benefit = cost

benefit of
each merge point. The merge points are then selected using a greedy approach that merges
the merge points in the order of increasing cost per benefit, i.e. the merge point with the
lowest cost per benefit is merged first. However, merge points that would lower the number of
flows more than necessary are not considered. This approach works well, because any merge
points with a higher cardinality can also be achieved by a combination of merges with lower
cardinality at the same cost.

Algorithm 4 Optimization of a Single Switch
1: procedure ProcessSwitch(switch)
2: M ← Set of all merge points of all merge trees of switch
3: switch.flowCount← bla
4: switch.flowLimit← maximum number of flows allowed on this switch
5: for all m ∈M do
6: m.cost← CostFunction(m)
7: m.benefit← |m| − 1 . # of reduced flows = cardinality of m minus 1
8: m.costPerBenefit← m.cost

m.benefit
9: end for

10: while switch.flowCount > switch.flowLimit do
11: m ← m ∈ M s.t. m.costPerBenefit is minimal ∧ switch.flowCount −

m.benefit ≥ switch.flowLimit
12: switch.flowCount← updated flow count
13: end while
14: end procedure

5.4.2 Traffic Based Cost Function

The traffic based cost function as described in algorithm listing 5 takes a merge point as
input. The idea of the function is to directly reflect the number of false positives that would
be introduced by merging at this merge point. More specifically, the computed cost equals the
estimated number of false positives that would occur, because of this merge, based on past
traffic statistics, collected with OpenFlow. Thereby, a sliding window approach is employed.
Thus, only relatively up to date traffic statistics are used, allowing the system to adapt to
changing traffic patterns by periodically executing the optimization algorithm.

The cost function follows a path based approach. For every path from a publisher that enters
the switch through the ingress port of the merging flows, the cost is calculated individually

39

5 Enforcing Flow Limits on Switches

and then added together. The basic idea for computing the cost for a specific path (i.e. the
false positives that are caused by events coming over this path) is to multiply the following
three factors:

• Total amount of events published by the publisher

• Fraction of the total events that will cause false positives

• Number of network false positives a single false positive event causes, i.e. over how
many links the event gets forwarded after leaving the switch

The following paragraphs describe in detail, how the traffic based cost function determines
these three factors.

To determine the total amount of events published by the publisher, OpenFlow counters are
utilized. In particular OpenFlow requires, that a switch needs to maintain a counter for each
of its ports, which counts the number of received packets over this port. Every publisher is
connected to the pub/sub system through exactly one port of an OpenFlow enabled switch.
The publisher is exclusively responsible for all incoming traffic on this specific port. Therefore,
the optimizer can determine the total amount of events send by the publisher within a certain
window by periodically querying for the value of this counter.

In order to estimate the ratio of events that will cause false positives the algorithm determines
the subspace of the event space that is covered by advertisements (advertised space) and the
subspace of the advertised space whose events will cause false positives (fp-space). The algo-
rithm assumes, that publishers publish events uniformly over their advertised space. Under
this assumption, it can easily compute the fraction of events that will cause false positives
by dividing the size of the fp-space by the size of the advertised space. To determine the
fp-space, the algorithm first identifies the subspace of the advertised space whose events are
forwarded all the way from the publisher to the switch, i.e. which events that are published by
the publisher reach the switch (input space). Therefore, the algorithm follows the path from
publisher to the switch, observing which events are filtered out at each step. The fp-space
is the intersection between the ’wrongfully’ covered space of the merge result (cf. 5.2) and
the input space. Of course, this intersection needs to be done on a per egress port basis, as
described in the port expansion section, because the ’wrongfully covered’ space depends on
the egress port.

Lastly, the algorithm needs to estimate the number of network false positives that a single
false positive event can cause. Since the optimizer tries to process switches from publishers to
subscribers, naturally not many of the downstream switches will be processed when processing
a switch. This makes it hard to estimate how far false positive events forwarded by the current
switch will spread into the network. Therefore, the algorithms makes a worst case estimation
at this point. It assumes, that the event will be forwarded over every reachable downstream
link.

Example: Figure 5.13 depicts a scenario for computing the costs of a merge point that merges
two flows, namely f1 = (1→ 0000→ 2,3) and f2 = (1→ 0011→ 2). The result of this merge
is fm = (1 → 00 → 2,3) and it takes place on switch number 2. There are two paths that
connect relevant publishers with switch number 5.

40

5.4 Global Optimization Algorithm

Algorithm 5 Traffic Based Cost Function
1: procedure CostFunction(m) . m is a merge point
2: fm ← flow at merge point
3: dzm ← dz-expression at merge point
4: switchm ← Switch to which fm should be deployed
5: P ← Set of all publishers
6: cost← 0
7: for all publisher ∈ P do
8: path← Path from publisher to switchm

9: if path enters switchm through fm.ingressPort then
10: cost← cost + CostOnPath(path)
11: end if
12: end for
13: end procedure
14:
15: procedure CostOnPath(path) . compute cost on a particular path
16: Flowsm ← flows that are merged by m
17: inputSpace←

⋂
switch∈path

(
⋃

flow∈{f∈switch.flows|f.ingressP ort∈path∧∃p∈f.egressP orts:p∈path}
flow.dz)

18: publisherpath ← publisher associated with path

19: advertisedSpace←
⋃

adv∈publisherpath.advertisements

adv.dz

20: traffic← measured incoming traffic at the connection port of publisher
21: costOnPath← 0
22: for all port ∈ fm.egressPorts do
23: Flowsport ← {f ∈ Flowsm | port ∈ f.egressPorts}
24: affectedLinksport ← number of links reachable in the subnet connected to port

25: wrongfullyCoveredSpaceport ← dzm −
⋃

f∈F lowsport

f.dz

26: fpSpace← inputSpace
⋂

wrongfullyCoveredSpace

27: fpRatio← size(fpSpace)
size(advertisedSpace)

28: costOnPath← costOnPath + (traffic ∗ fpRatio ∗ affectedLinksport)
29: end for
30: return costOnPath
31: end procedure

41

5 Enforcing Flow Limits on Switches

The first path starts at the upper publisher with advertisement {00}. The upstream path from
the perspective of the switch contains the switches 1, 2 and 4. The advertised space of this
path is {00}. Next, the algorithm computes what is forwarded over the path, i.e. the input
space. Switch 2 and 4 forward the complete advertised space, i.e. {00}. However, switch 1
only forwards events matching {0000,0011}. This means, that events covered by 0010 or 0001
are filtered out at switch 1 and cannot reach switch 5, where the merge takes part. The input
space of this path is therefore {0000,0011}. Next, the algorithm determines the fp-area for
each egress port of fm. For port 2, the area wrongfully covered by fm is {0010,0001}. There
is no overlap with the input space and therefore no false positives coming over this path
will be forwarded. For egress port 3 the wrongfully covered subspace additionally contains
{0011}, since f2 does not forward over port 3. The overlap between input and wrongfully
covered space, i.e. the fp-space for this port is therefore {0011}. The number of affected links
amounts to 1. This means that every event sent by the publisher and covered by {0011} will
cause exactly 1 network false positive. Since the fp-space {0011} covers on quarter of the total
advertised space {00} we estimate, that 25% of the published events will cause false positives.
Assuming that the publisher sent 1000 during the current window, the cost on that path is
calculated as 1000 ∗ 25% ∗ 1 = 250.

The input space of the second path, starting from the lower publisher and containing the
switches 3 and 4, is {00}. The fp-space on port 2 equals {0001,0010} which covers 25% of
the advertised space {0}. The worst case number of affected links when forwarding over port
2 amounts to 3. Assuming the publisher has published 200 events in the current window,
the costs for port 2 for this path amount to 200 ∗ 25% ∗ 3 = 150. For egress port 3, the
fp-space is 0010,0001,0011 which covers 37.5% of the advertised space. This results in costs
of 200 ∗ 37.5% ∗ 1 = 75. Ergo, the total cost on this path amounts to 150 + 75 = 225. The
total cost of the merge point is calculated as the sum of the cost over each path and equals
475 for this particular merge point.

5.4.3 Event History Based Cost Function

This section introduces the second cost function as described in algorithm listing 6. Instead
of assuming that each publisher publishes events with a uniform distribution, this approach
collects a history of actual events. The event history allows the optimizer to determine the
actual event distribution. The consideration of the history is based on a sliding window
approach, i.e. only the events published within the current window are considered in the
history. In order to build the event history, each published event is also sent to the controller
(or some separate event history component). This of course introduces a lot of traffic to
the controller / the event history component. It may not be feasible to collect every single
event in the history. Therefore, a configurable sampling factor, a value between 0 and 1, is
introduced. The sampling factor equates to the probability of an event being sent to the
collection service. The optimizer estimates the event distribution based on the event history
samples and the sampling factor. The tradeoff between performance and the accuracy of the
estimated distribution when choosing the sampling factor is discussed later in the evaluation
section.

42

5.4 Global Optimization Algorithm

adv={0}

sub={0000,
 0011}

21
3

1→0000→2,3
1→0011→2

adv={00}

sub={0000}

sub={0000,
 0011}

0000,0011

00

0
0

0
0

00

1 2

3

4 5 6

Figure 5.13: Computing the cost of a merge point

Other than that, the general structure of this cost function is similar to the traffic based
function. The cost function again follows the path based approach and computes the cost on
each path as the product of total number of events, the ratio of how many of those will cause
network false positives and how many network false positives a single event can cause.

In order to estimate the total number of events, published by the publisher of some path,
the algorithm just counts the events in the event history of said publisher (adjusted for the
sampling factor if necessary). It no longer needs to rely on OpenFlow statistics.

In order to compute the ratio of events that will cause false positives, the traffic based approach
compared the size of the fp-space with the size of advertised space. Assuming a uniform event
distribution and a significant number of events, this will approximate the real false positive
ratio well. This approach doesn’t need to make assumptions about the distribution since
it knows the actual event history. To determine the false positive ratio, the algorithm can
simply count the number of events that are covered by the fp-space and divide that by the
total number of published events.

The calculation of the number of affected links, over which a false positive event is forwarded,
remains the same.

Let’s now look again at the same example scenario as previously in the section introducing
the traffic based cost function, depicted in figure 5.13. The event based cost function follows
the same path based approach, starting with the upper path. For egress port 2, the fp-space is
empty and the associated cost is thereby 0. For egress port 3, the fp-space is again 0011. Now,

43

5 Enforcing Flow Limits on Switches

Algorithm 6 Event History Based Cost Function
1: procedure CostFunction(mp) . mp is a merge point
2: fm ← flow at merge point
3: dzm ← dz-expression at merge point
4: switchm ← Switch to which fm should be deployed
5: P ← Set of all publishers
6: cost← 0
7: for all publisher ∈ P do
8: path← Path from publisher to switchm

9: if path enters switchm through fm.ingressPort then
10: cost← cost + CostOnPath(path)
11: end if
12: end for
13: end procedure
14:
15: procedure CostOnPath(path) . compute cost on a particular path
16: Flowsm ← flows that are merged by m
17: affectedLinksport ← number of links reachable in the subnet connected to port

18: inputSpace←
⋂

switch∈path

(
⋃

flow∈{f∈switch.flows|f.ingressP ort∈path∧∃p∈f.egressP orts:p∈path}
flow.dz)

19: publisherpath ← publisher associated with path
20: publishedEvents← events published by publisherpath in current window
21: receivedEvents← {e ∈ publishedEvents | inputSpace contains e ∧ dzm contains e}
22: traffic← |receivedEvents|
23: costOnPath← 0
24: for all port ∈ fm.egressPorts do
25: Flowsport ← {f ∈ Flowsm | port ∈ f.egressPorts}
26: receivedEventsfp ← {e ∈ receivedEvents | @f ∈ Flowsport : f contains e}
27: fpRatio← |receivedEventsfp|

traffic
28: costOnPath← costOnPath + (traffic ∗ fpRatio ∗ affectedLinksport)
29: end for
30: return costOnPath
31: end procedure

44

5.5 Flow Limit Compliant Flow Deployment

instead of dividing the size of the fp-space by the advertised space as the traffic based cost
function does, the history based function consults the event history. It matches every event
published event against the advertised space and the fp-space. If for example the advertised
space covers 500 events and the fp-area (which is a subspace of the advertised space) covers
100 of those events, the algorithm computes the fp-ratio as frac100500 = 20%. The cost for
this port and path are thereby 500 ∗ 20% ∗ 1 = 100. The cost of the other path is computed
equivalently.

5.5 Flow Limit Compliant Flow Deployment

Previous sections discussed how to deal with situations in which the number of flows on a
switch exceed the allowed flow limit by selectively merging them. However, the flow limit
constraints also need to be considered when changing an existing flow set without necessarily
increasing the total number of flows.

The problem can be defined as follows: On a switch, we want to move from the current set
of flow entries Fcurrent to a new set of flows Fnew. Set Fnew may contain a combination
of new flows and flows that were already present in set Fcurrent. Neither of the flow sets
violates the flow limit constraint of the switch. In order to migrate from Fcurrent to Fnew the
system needs to delete some flows from Fcurrent (Fdelete) and add some new flows (Fadd), i.e.
Fnew = (Fcurrent − Fdelete) ∪ Fadd.

During the migration from Fcurrent to Fnew:

• The flow limit constraint should not be violated

• No false negatives should be introduced

• False positives should be kept at a minimum

This is trivial to achieve when the sum of the number of existing flows and the number of
new flows is lesser or equal than the flow limit (|Fcurrent|+ |Fadd| ≤ flow limit). In this case,
the system can just deploy all flows from Fadd first and afterwards delete the flow entries that
need to be deleted.

However, this work focuses on the flow changes induced by the local enforcement and especially
the global optimization algorithms. In these cases, often both Fcurrent and Fnew contain as
many flows as the flow limit allows. The proposed algorithm is tailored to deploy flow changes
induced by the global and local algorithms introduced in this work and will not necessarily
be applicable for the migration between two arbitrary flow sets.

A first naive approach would be to first delete all flows of Fdelete and afterwards add the flows
of Fadd. While this proposal honors the flow limit, it also opens the system to the possibility of
false negatives. For example, the system wants to merge two flows f1, f2 with dz-expressions
0000 and 0011 into a new flow fm with dz-expression 00. It is Fdelete = {f1, f2}, Fadd = {fm}.
If we first remove f1 and f2 (or just one of them) before deploying fm, events that arrive at

45

5 Enforcing Flow Limits on Switches

the controller after the removal and before the deployment, that would have been matched
by f1 or f2, will be dropped instead.

The dilemma is solved by keeping space for one additional flow per switch, i.e. setting the
flow limit constraint on each switch by one lower than it is in reality. In case of the changes
induced by the local enforcement algorithms the problem is easily solvable now. The pays
out as follows: |Fcurrent| = flow limit and one new flow f should be added to the switch.
The local flow enforcement algorithm picks a merge point m, that merges two or three flows
and provides the merge result fm. f may or may not be involved in this merge point. The
deployment algorithm first deploys fm into the empty extra spot. Then it removes the flows
that have been merged into fm. Finally, if f did not participate in the merge, f is deployed.

In case of changes induced by a global optimization algorithm the situation is more complex,
but the same logic can be applied. A naive approach would be to deploy a wildcard flow
that forwards every event over every port but the one it was received over into the empty
flow entry spot. Then remove all flows of Fdelete and deploy all flows of Fadd. Finally, remove
the wildcard flow again. Although this approach cannot cause any false negatives, it would
drastically increase the false positive rate during the migration phase. An important insight
is that changes induced by the optimizer either replace multiple flows through the resulting
flow of merging, or expand a formerly merged flow, i.e. replace a merged flow by (some of)
the parts it was aggregated from. This motivates algorithm 7:

In phase one deploy all the merges one by one. For that purpose first install some flow fm

resulting from a merge, then remove all flows fully covered by fm (the flows that have been
merged). This operation temporally requires space for one flow entry more than the current
number of flows on the switch. But after the completion of the operation, the number of flows
on the switch will be lower than before.

In phase two all unmerges are performed one by one. To perform an unmerge, first deploy all
formerly merged flows f1,...,fk, then remove the corresponding fm. This operation increases
the number of flows on the switch and temporarily needs space for one more flow than the
present in the resulting flow set.

5.6 Self-Evaluation Component

This section introduces a component that enables the pub/sub system to estimate the cur-
rent network false positives rate during runtime. The system can use this information to
autonomously react if the false positive rate changes significantly. It can for example trigger
the global optimizer or adjust the sampling factor of the event history collection. The pro-
posed method works based on the collected event history as described in section 5.4.3. If the
history based algorithm is used, the history is available anyhow.

The heart of the component is a lightweight software based network emulation. It supports
forwarding of events based on the same flow entries deployed in the real network. The emulated
switches perform simple prefix tree based matching in software. The emulated network mirrors

46

5.6 Self-Evaluation Component

Algorithm 7 Consistent Deployment of Flow Change Sets
1: procedure Deploy(Fadd, Fdelete)
2: DeployMerges(a, b)
3: DeployUnmerges(a, b)
4: end procedure
5:
6: procedure DeployMerges(Fadd, Fdelete)
7: for all flowadd ∈ Fadd do
8: covered← {flow ∈ Fdelete | fadd fully covers flow}
9: if |covered| > 0 then

10: deploy flowadd to switch
11: remove all flow ∈ covered from switch
12: Fadd ← Fadd \ {fadd}
13: Fdelete ← Fdelete \ covered
14: end if
15: end for
16: end procedure
17:
18: procedure DeployUnmerges(Fadd, Fdelete)
19: for all flowdelete ∈ Fdelete do
20: covered← {flow ∈ Fadd | fdelete fully covers flow}
21: deploy all flow ∈ covered to switch
22: remove flowdelete from switch
23: Fadd ← Fadd \ covered
24: Fdelete ← Fdelete \ {fdelete}
25: end for
26: end procedure

47

5 Enforcing Flow Limits on Switches

the actual network. As depicted in figure 5.14, whenever the controller deploys a flow into
the real network, it also deploys the same flow in the emulated network.

Emulated Network

Real Network

(un-)advertisements/
(un-)subscriptions

flow entries

flow entries

Controller

Figure 5.14: Flows are deployed in a mirrored emulated network for self-evaluation

In order to determine network false positives, the system replays the event history in the
emulated network. Since it has full control over the network, it is easy to trace the route of
each event through the network. The system can check if an event, sent over some link, is a
false positive by checking if the link is part of any route from the originator of the event to any
of the subscribers that are interested in that event. With this technique, the exact number of
false positives based on the event history can be determined. Of course, the overall accuracy
of the result depends on the completeness of the event history, i.e. the used sampling factor.
This is equivalent to the tradeoff between sampling factor and accuracy of the optimizer
described in section 5.4.3.

The network emulation can easily be run in a service separate from the controller on another
machine. The overhead in the controller is minimal. It just needs to forward the flow changes
to the network emulation component. Though, the usage of this component is optional.

48

Chapter 6

Evaluation and Analysis
This chapter evaluates and analyses the properties of the proposed algorithms such as their
efficiency in minimizing network false positives and their execution time under a realistic,
large scale work load. Furthermore, the effect of the adjustable parameters, especially the
sampling factor is investigated. For this purpose, multiple experiments are conducted, using
a real SDN testbed as well as an emulated network infrastructure.

6.1 Evaluation Setup

The pub/sub system uses the open source Floodlight controller [37] in combination with
OpenFlow 1.3 to control the flow entries as switches.

Some of the experiments were conducted on a real SDN testbed using a Whitebox EdgeCore
switch. The topology of the testbed consists of a binary tree of depth three. Each switch of
the lowest layer is connected to two hosts. Hence, the network consists of 7 switches and 8
hosts. The hosts are executed on commodity hardware. The SDN controller is executed on a
machine with a 3.1 GHz processor and 40 cores.

In order to perform experiments with bigger topologies, the popular network emulation tool
Mininet [59] is used. Mininet allows for lightweight emulation of large scale networks on com-
modity hardware. The virtual switches provided by Mininet are OpenFlow enabled. There-
fore, the pub/sub system can deploy its flows in a same way that it deploys the flows to a
real system. The system isn’t even aware if it runs on Mininet or a real testbed. In order
to precisely measure the network false positives, the self-evaluation component introduced in
section 5.6 is utilized. These experiments use two machines. The controller is hosted on a
machine with 4 3.2 GHz cores and 8 GB RAM. Mininet runs on a separate machine using 2
3.5 GHz cores and also 8 GB RAM.

For the large scale experiments, two different topology types were used. Firstly, a regular tree
structure with a depth of 4 and a fanout of 5, i.e. starting from the root switch, each switch
has five child-switches. This means, that there are 156 switches in total. Each of the 125
switches of the lowest level is connected to seven hosts, i.e. the total number of hosts is 875.
The second topology is a random tree of varying size generated with algorithm 8. Instead of
connecting all the hosts to the lowest layer in the tree, they are connected to random switches

49

6 Evaluation and Analysis

all over the tree. The only requirement is, that no switch is linked to more than 24 entities,
i.e. 24-port switches. The largest topology used contains 300 switches and 4202 hosts.

The experiments are based on a real data set of daily stock closing prices by Yahoo! Finance
[60] as well as synthetically generated data sets. The synthetic data sets are generated over
a 6-dimensional event space using values from range [0, 4096] for each dimension. In order to
generate the data sets, both a uniform distribution and a zipfian distribution with 5 hotspots
are used. In particular, the following four configurations are used in the experiments:

• Uniform - synthetic data set where advertisements, subscriptions and events are uni-
formly distributed over the event space

• Zipfian - synthetic data set where advertisements, subscriptions and events follow the
same zipfian distribution

• Mixed - synthetic data set where advertisements and subscriptions are uniformly dis-
tributed while events follow a zipfian distribution

• Real Data - uniformly distributed subscriptions with real events stemming from Yahoo!
Finance stock data

Algorithm 8 Generating a random tree
1: procedure CreateRandomTree(#Switches, #hosts) . mp is a merge point
2: Switches← create #Switches switches
3: root← pick s ∈ Switches uniform random
4: Connected← {root}
5: Unconnected← Switches \ {root}
6: while Unconnected 6= ø do
7: switch← pick s ∈ Unconnected uniform random
8: partner ← pick s ∈ Connected uniform random s.t. s has at least one unused port
9: Connect(switch, partner)

10: Unconnected← Unconnected \ switch
11: Connected← Connected

⋃
switch

12: end while
13: for 1→ #hosts do
14: host← create host
15: attachmentPoint← pick s ∈ S uniform random s.t. s has at least one unused port
16: Connect(host, attachmentPoint)
17: end for
18: end procedure

6.2 Network False Positives

The main design criterion of the proposed algorithm is to minimize the increase in network false
positives introduced through merging. This section answers the question, to which degree the

50

6.2 Network False Positives

proposed algorithms achieve this goal under various conditions. It especially investigates the
effect of the number of subscribers and the merge factor on the network false positive rate.
The baseline for measuring network false positives is the original system without merging.
This is equivalent to setting the flow limit of infinity. We are only interested in how many
new false positives are introduced due to merging and therefore assume that there are no
false positives in the case of infinite flow limits. Whenever an event is forwarded over a link
although it shouldn’t, it counts as a network false positive. The network false positive rate
is the number of network false positives divided by the total number of forwardings of events
over any link.

This first set of experiments was conducted with a fixed set of advertisements and increasing
number of subscriptions. The subscriptions are distributed uniformly random over the hosts.
The flow limit is set to 400 flows per switch in case of the regular tree topology and 600 flows
per switch for the random tree topology. The event history based approach uses a sampling
factor of 1, i.e. every packet is collected. Figure 6.1 depicts the relationship between number
of subscriptions and false positive rate for both topologies using the uniform distribution
model. The false positive ratio increases with increasing number of subscription in all cases.
Generally, more subscriptions lead to a higher number of flows on each switch. Hence, more
merges are necessary and the overall expressiveness of flows decreases. The local base line
approach is clearly outperformed by the improved local minimum space approach, showing
that minimizing space and port expansion alone comes with a great benefit. Nevertheless, the
global approaches offer a further improvement, although not by up to 8 percentage points. It’s
notable, that both global approaches achieve almost identical results. This is due to the fact
that the traffic based approach makes the assumption that publishers publish events uniformly
over their advertised space. In this specific case, this assumption is perfectly true; thereby
the event based approach cannot gain any additional advantage by knowing the actual event
distribution.

 0

 5

 10

 15

 20

2k 3k 4k 5k 6k 7k

F
a

ls
e

 P
o

s
it
iv

e
 r

a
te

 [
%

]

of Subscriptions

LE-BL

LE-MS

GO-EH

GO-T

(a) Regular Tree

 0

 5

 10

 15

 20

 25

 30

 35

 40

1k 5k 10k 15k

F
a

ls
e

 P
o

s
it
iv

e
 r

a
te

 [
%

]

of Subscriptions

LE-BL

LE-MS

GO-EH

GO-T

(b) Random Tree

Figure 6.1: Number of subscribers to false positive rate with uniform distribution

51

6 Evaluation and Analysis

Figure 6.2 shows the result of the same experiments from a different angle. Instead of depicting
the number of subscriptions on the x-axis, it shows by how much the number of flows has
been reduced. This is depicted in terms of the merge ratio, defined as the average flow
reduction on each switch. For example, if the system would deploy 2000 flows on a switch in
absence of flow limits, but reduces the number of deployed 500 flows, the merge ratio would be
2000−500

2000 = 75%. The interpretation is similar to the one for figure 6.1. Increasing number of
merges lead to more coarse grained flows and therefore more network false positives. However,
it’s remarkable that even with a flow reduction as high as 70%, the false positive rate is only
at 10% in case of the global algorithms.

 0

 5

 10

 15

 20

 15 20 25 30 35 40 45 50 55

F
a

ls
e

 P
o

s
it
iv

e
 r

a
te

 [
%

]

Ratio of merged Flows [%]

LE-BL

LE-MS

GO-EH

GO-T

(a) Regular Tree

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 20 30 40 50 60 70 80

F
a

ls
e

 P
o

s
it
iv

e
 r

a
te

 [
%

]

Ratio of merged Flows [%]

LE-BL

LE-MS

GO-EH

GO-T

(b) Random Tree

Figure 6.2: Merge ratio to false positive rate with uniform distribution

The next set of experiments is similar to first set, with the difference that this time the mixed
distribution model is used in order to generate advertisements, subscriptions and events.
Similar to the figures seen before, figure 6.3 shows the relationship between subscriptions
and false positives, while figure 6.4 shows the relationship between merge ratio and false
positives. The most interesting characteristic of the mixed distribution model is that there is
a big mismatch between the distribution of the subscriptions and the distribution of events.
While subscriptions and advertisements cover the event space mostly uniformly, events are
concentrated around a few hotspots. This makes merging a lot more interesting because the
potential for very good and for very bad merges exists. In fact, the event history based global
optimizer is able to enforce the flow limit while causing almost no false positives at all. Due to
its knowledge of the actual event distribution it can primarily merge flows that forward events
in low traffic regions of the event space. Thereby, it can outperform the traffic based optimizer.
The traffic based optimizer also tries to differentiate high and low traffic subspaces. However,
it only sees the total traffic produced by a publisher. So when a publisher advertises only in
high or low traffic regions, the estimations should be quite good. When the advertisements
of a publisher on the other hand span both high and low traffic areas it loses some precision
because it averages the traffic over the whole advertised area. Nevertheless, the traffic based

52

6.2 Network False Positives

global optimizer is still significantly better than the local approaches. The difference between
the best approach, i.e. the event based global optimizer and the baseline approach is up to
30 percentage points.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

2k 3k 4k 5k 6k 7k

F
a

ls
e

 P
o

s
it
iv

e
 r

a
te

 [
%

]

of Subscriptions

LE-BL

LE-MS

GO-EH

GO-T

(a) Regular Tree

 0

 5

 10

 15

 20

 25

 30

 35

 40

1k 5k 10k 15k

F
a

ls
e

 P
o

s
it
iv

e
 r

a
te

 [
%

]

of Subscriptions

LE-BL

LE-MS

GO-EH

GO-T

(b) Random Tree

Figure 6.3: Number of subscribers to false positive rate with mixed distribution

The next set of experiments again use the same conditions apart from the workload distribu-
tion. This time, the pure zipfian distribution model is used, i.e. advertisements, subscriptions
and events follow the same zipfian distribution. Figure 6.5 plots the number of subscribers
against the false positive rate. Again, the event based optimizer provides the lowest false posi-
tive rate while the baseline approach produces the worst one. All algorithms have higher false
positive rates than in the previous distributions, because in this model, the advertisements,
subscriptions and events are all crammed into small parts of the event space. This makes it
hard to make good merge decisions. Within the small subspaces where most advertisements
and events are situated, the events are relatively uniformly distributed over the advertise-
ments. Therefore, the event history based optimizer also cannot offer much improvement over
the traffic based approach. Figure 6.6 shows the relationship between the ratio of merged
flows and false positive rate. The graph is in accordance to the results of figure 6.5 and the
interpretation follows the aforementioned arguments.

Figure 6.7 depicts the evaluation of the complete system in a dynamic setting. Chapter 5
proposes to use a local enforcement algorithm in combination with periodically executing
the global optimizer in order to deal with constantly changing subscribers and publishers. To
evaluate this scenario, subscriptions are continuously added to the system at a fixed rate while
enforcing flow limits with the local minimum space enforcer. Every 3000 subscriptions the
global optimizer is executed. The figures illustrate how the false positive rate pans out. Figure
6.7a shows the traffic based optimizer in combination with the minimum space local enforcer.
Figure 6.7b shows the history based optimizer again with the minimum space local enforcer.
Both figures also plot the false positive rate when using only the MS local enforcer. For these
experiments, a random tree topology with 200 switches and the mixed distribution model is

53

6 Evaluation and Analysis

 0

 5

 10

 15

 20

 15 20 25 30 35 40 45 50 55

F
a

ls
e

 P
o

s
it
iv

e
 r

a
te

 [
%

]

Ratio of merged Flows [%]

LE-BL

LE-MS

GO-EH

GO-T

(a) Regular Tree

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 20 30 40 50 60 70 80

F
a

ls
e

 P
o

s
it
iv

e
 r

a
te

 [
%

]

Ratio of merged Flows [%]

LE-BL

LE-MS

GO-EH

GO-T

(b) Random Tree

Figure 6.4: Merge ratio to false positive rate with mixed distribution

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

2k 3k 4k 5k 6k 7k

F
a

ls
e

 P
o

s
it
iv

e
 r

a
te

 [
%

]

of Subscriptions

LE-BL

LE-MS

GO-EH

GO-T

(a) Regular Tree

 0

 10

 20

 30

 40

 50

1k 5k 10k 15k

F
a

ls
e

 P
o

s
it
iv

e
 r

a
te

 [
%

]

of Subscriptions

LE-BL

LE-MS

GO-EH

GO-T

(b) Random Tree

Figure 6.5: Number of subscribers to false positive rate with pure zipfian distribution

54

6.3 Execution Time

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 35 40 45 50 55 60 65 70 75 80

F
a

ls
e

 P
o

s
it
iv

e
 r

a
te

 [
%

]

Ratio of merged Flows [%]

LE-BL

LE-MS

GO-EH

GO-T

(a) Regular Tree

 0

 10

 20

 30

 40

 50

 60

 40 45 50 55 60 65 70 75 80 85

F
a

ls
e

 P
o

s
it
iv

e
 r

a
te

 [
%

]
Ratio of merged Flows [%]

LE-BL

LE-MS

GO-EH

GO-T

(b) Random Tree

Figure 6.6: Merge ratio to false positive rate with pure zipfian distribution

used. In both cases, the false positive rate increases while new subscriptions are introduced
and merged with the local algorithm. Whenever the global optimizer is applied, the false
positive rate drastically decreases only to slowly increase again. However, the false positive
rate never reaches the level of the local only approach again after the first optimization.
Even executing the global optimizer as seldom as every 3000 subscriptions yields a significant
improvement over using only the local enforcement algorithm - no matter which cost function
is used for the global optimizer. However, the history based approach still outperforms the
traffic based approach, especially in the presence of many subscriptions. The history based
approach is able to reduce the false positive rate to almost zero every time, while the false
positive rate after applying the traffic based optimizer increases with increasing subscriptions.
This is the same behavior we saw in the earlier experiments pictured in figure 6.3 which were
conducted with similar conditions.

6.3 Execution Time

This section is dedicated to the influence of various factors on the execution time of the
algorithms, in particular of the global optimization algorithms.

Figure 6.8 plots the execution time of both variations of the global optimization algorithm
against the number of subscribers. The experiment is conducted in the regular tree topology.
With increasing subscriptions, the execution time for both algorithm increases roughly at the
same rate. This comes as no surprise, since both algorithms need to calculate the cost for
every merge point. More subscriptions result in a higher number of flows on each switch and
thereby more possible merge points that need to be considered. The difference between the
two variations is how they compute the cost of each merge point. The traffic based approach

55

6 Evaluation and Analysis

 0

 5

 10

 15

 20

3k 6k 9k 12k 15k

F
a

ls
e

 P
o

s
it
iv

e
 r

a
te

 [
%

]

of Subscriptions

LE-MS+GO-T

LE-MS

(a) Traffic based GO + Local Enforcer

 0

 5

 10

 15

 20

3k 6k 9k 12k 15k

F
a

ls
e

 P
o

s
it
iv

e
 r

a
te

 [
%

]

of Subscriptions

LE-MS+GO-EH

LE-MS

(b) Event history based GO + Local Enforcer

Figure 6.7: Local Enforcer with and without periodic global optimization

is faster in this experiment than the event history based one. However, the execution time of
the history based approach also depends on how many events are part of the history, i.e. on
the sampling rate and the rate at which events are published. This is discussed in more detail
in the sampling section. For this experiment, a sampling factor of 1 is used. Note that the
history based approach also comes with the overhead of collecting the event history, which is
not depicted here as it is done separately from running the optimizer.

Figure 6.9 shows the relationship between the size of the topology, especially the number
of switches and execution time. To achieve this, the optimization algorithm is executed in
increasingly large random tree topologies with up to 300 switches. While the number of
switches increases, the number of publishers, subscriptions and the flow limits remains the
same. As expected, the execution time increases with the topology size, since a) the algorithm
has to compute the best flow set for every switch and b) when calculating the flow set, the
algorithms have to look at various up and down stream switches whose number also increases
with topology size. However, after the network reaches a certain size (around 100 switches),
the increase of execution time significantly decreases. This is due to the fact in larger networks
the constant number of subscriptions is more spread out which leads to a lower average number
of merge points per switch. The traffic based approach again outperforms the history based
one in these experiments.

Lastly, the average execution times of the local enforcement algorithms have been evaluated.
Since they are only executed locally for a single switch, their execution time is independent
from the number of switches in the network. In average, the base line approach takes around
0.2 milliseconds. The minimum space approach has a higher execution time since it has
to evaluate the possible merge points with a simple cost function. Its average execution
time amounts to 0.5 milliseconds. Note that a single new subscription can trigger the local
enforcement algorithm on many switches. However, the execution of the enforcer can be done

56

6.3 Execution Time

 0

 5

 10

 15

 20

1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

E
x
e
c
u

ti
o
n

 t
im

e
 [

s
]

of Subscriptions

GO-EH

GO-T

Figure 6.8: Influence of subscription quantity on global optimization execution time

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 50 100 150 200 250 300

E
x
e
c
u
ti
o
n
 T

im
e
 [
s
]

of Switches

GO-EH

GO-T

Figure 6.9: Influence of the topology size on global optimization execution time

57

6 Evaluation and Analysis

in parallel for each switch.

6.4 Sampling

This section investigates the effect of the sampling factor, i.e. which percentage of events that
are considered in the event history. The system can freely choose and adjust this parameter.
When choosing the sampling factor, there is a general tradeoff between accuracy and overhead.
The higher the sampling factors should be better to approximate the event distribution, but
higher sampling factor also means that more events have to be collected and processed. This
section focuses on the overhead when processing events during the execution of the global
optimizer.

Figure 6.10a depicts the network false positive rate when using the event history based global
optimizer at different sampling factors ranging from 1% to 100%. The experiment was con-
ducted in a random tree topology with 200 switches and more than 4000 hosts using the mixed
distribution model. As expected, the false positive rate continuously decreases with increas-
ing sampling factor. The gradient of the decrease also decreases quickly and continuously.
Increasing the the sampling factor from 1% to 10% reduces the false positive rate by ca. 3
percentage points. Increasing the rate from 10% to 20% only reduces the false positive rate
by about 0.5 percentage points. Setting the sampling factor higher than 50% yields negligible
improvements. The difference in false positives between sampling at 50% and 100% is less
than 0.15 percentage points. Furthermore, the figure shows the false positive rate of the traffic
based approach. This approach doesn’t use the event history and is therefore unaffected by the
sampling factor. The history based approach outperforms the traffic based one when using a
sampling factor of approximately 2.5% or higher. All in all, this shows that the history based
approach can make good estimations about the event distribution with a sampling factor as
low as 20%-30% and considerably outperforms the traffic based approach.

Figure 6.10b shows a similar experiment using the real stock data and uniformly distributed
subscriptions. The events in this data set are even more concentrated around few hotspots
than in case of the zipfian distribution. Therefore, the event based global optimizer can even
better exploit low traffic areas when merging. This is reflected in the figure. With sampling
factor 0.2 or better, the false positive ratio is almost zero, proofing the effectiveness of the
history based approach in a realistic scenario. This experiment also includes sampling at the
rate of 0.1%. However, sampling at this rate leads to a high false positive rate, since the
algorithm can easily draw wrong conclusions about the event distribution with such a small
sample.

Figure 6.11 looks at the relationship between sampling factor and network false positives from
a different angle. Instead of looking at the false positive rate in the whole network, it only
considers the events that reach the subscribers. Furthermore, this experiment is executed on
the real SDN testbed with the mixed distribution model. The figure shows the average false
positive rate at the subscribers for different sampling factors ranging from 0.1% to 100%.
The false positive rate at subscribers follows the same trend as the network false positive

58

6.5 Adapting to Changing Event Distributions

 1

 2

 3

 4

 5

 6

 0 0.2 0.4 0.6 0.8 1

F
a

ls
e

 P
o

s
it
iv

e
 r

a
te

 [
%

]

Sampling Factor

GO-EH

GO-T

(a) Mixed distribution model

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 0.2 0.4 0.6 0.8 1

F
a

ls
e

 P
o

s
it
iv

e
 r

a
te

 [
%

]
Sampling Factor

GO-EH

GO-T

(b) Stock data set

Figure 6.10: Influence of the sampling factor on network false positives

rate before. With increasing sampling factor the false positive rate quickly decreases in the
beginning and then only improves slightly.

Finally, figure 6.12 depicts the relationship between sampling factor and the execution time of
the event history based global optimization algorithm. Unsurprisingly, the execution time in-
creases almost proportionally with increasing sampling factor. This is due to the fact that the
algorithm has to match every event in the history many times against different dz-expressions
in order to check if it would cause false positives or not. While keeping previous figures in
mind, this clearly demonstrates the tradeoff between execution time and bandwidth efficiency
when choosing the sampling factor. In this experiment sampling factors ranging from 1% to
100% and the stock data event distribution where used.

6.5 Adapting to Changing Event Distributions

This section evaluates, how the event history based optimizer adapts to changing event distri-
butions. In this model, the events are generated using a zipfian distribution with 5 hotspots.
In this particular experiment, the hotspots are randomly shifted by up to 10% every 10,000
events. The advertisements and subscriptions remain the same during the whole experiment.
The event based global optimizer is run periodically. Figure 6.13 depicts the course of the
experiment. The false positive rate initially amounts to ca. 0.5%. Due to the shifting of the
hotspot locations, earlier made merge choices are not optimal anymore and the false positive
rate increases. The farther the hotspots move away from their original position, the higher
the false positive rate climbs. Till, at some point, the optimizer is executed again and the
false positive rate drops back to 0.5%. Then, the process begins anew. This experiment was
conducted in a random tree topology containing 200 switches.

59

6 Evaluation and Analysis

 0

 5

 10

 15

 20

0.2 0.4 0.6 0.8 1

F
a
ls

e
 p

o
s
.

ra
te

 a
t

s
u
b

s
c
ri
b
e

rs
 [
%

]

Sampling Factor

GO-EH

Figure 6.11: False positive rate at subscribers in real testbed

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

0.2 0.4 0.6 0.8 1

E
x
c
e
c
u
ti
o
n
 T

im
e
 [
s
]

Sampling Factor

GO-EH

Figure 6.12: Influence of the sampling factor on execution time

60

6.6 Flow Limit Compliant Deployment

 0

 1

 2

 3

 4

 5

 6

 7

 8

100k 200k 300k 400k

F
a

ls
e

 P
o

s
it
iv

e
 r

a
te

 [
%

]

of Events

GO-EH

Figure 6.13: Adapting to a changing mixed distribution

6.6 Flow Limit Compliant Deployment

Section 5.5 introduced a mechanism to deploy the flow changes caused by the global optimizer
(and to a lesser extend the local enforcement algorithms) without introducing false negatives.
This has been tested in on the real test bed as well as the emulated Mininet environment.
Therefore, events were published at a constant rate while the flow changes were deployed.
None of the experiments introduced false negatives, proving the correctness of the proposed
method for flow limit conform deployment of flows.

61

Chapter 7

Conclusion and Future Work
In order to address the limited TCAM space in current OpenFlow-enabled switches, this work
offers mechanisms to constrain to number of flow entries to a specific limit in the context of
SDN-based pub/sub systems. By selectively merging flow entries, this can be achieved without
introducing any false negatives in the system. The proposed algorithms have been integrated
into PLEROMA, an existing content-based pub/sub system. By combining a continuously
acting local enforcement algorithm and a periodically executed global optimization algorithm,
the system is able to adhere to the flow limits while keeping the increase in network false
positives at a minimum - even in highly dynamic systems. In fact, in many situation, the
global optimizer is able to reduce the number of flows by more than 70% without increasing
the false positive rate significantly. The effectiveness of the proposed algorithms has been
demonstrated consistently under various workloads using synthetic data sets as well as data
derived from the real world. The evaluations were conducted on multiple toplogies using a
real SDN testbed as well as popular network emulation tools.

In total this thesis proposed two local algorithms that both enforce the flow limit at all times.
In addition to that, a global optimization algorithm has been introduced that can tries to find
the best possible configuration of flows that a) adheres to the flow limit and b) minimizes the
increase in false positives. The Optimizer comes in two flavors. A traffic based approach that
relies on statistics provided by OpenFlow and an event history based approach. The event
history based approach was shown to be more bandwidth-efficient at the expense of additional
overhead due to the collection of an event history. Furthermore, an algorithm for applying the
modifications to the flow tables suggested by the optimizer without violating flow constraints
has been introduced. Finally, this work also proposed a component that enables the system
to autonomously determine its current false positive rate. However, there is still room for
improvement.

While it was shown that the proposed algorithms can adapt to changing event distributions by
periodically executing the global optimizer and thereby employing a sliding window approach,
this is a purely reactive approach. In the meantime between a significant change of the event
distribution and the next optimization round the false positives will be increased. Future
work could try to build predictive statistical models of the event distribution based on the
collected event histories and traffic data. This would allow the optimizer to proactively adapt
the flow configuration before the event distribution changes and therefore keeping the false
positive rate constantly low.

63

7 Conclusion and Future Work

Furthermore, this thesis proposes two local enforcement algorithms, the base line approach
as well as the minimum space heuristic which has shown to be a major improvement over
the base line approach. However,the main focus of this work was the global optimization
problem. The design of the local enforcement algorithms is quite constraint due to the hard
time requirements. Nevertheless, future work could investigate more sophisticated algorithms
for continuously enforcing flow limits on a local basis. These algorithms could for example
also take the event distribution into account.

The evaluation sections showed demonstrated the tradeoff between overhead and accuracy
when choosing the sampling factor. However, choosing a sampling factor is not integrated into
the system. The current implementation uses the same statically set sampling factor for all
publishers. Future work could look into dynamically adapting the sampling rate, individually
for ever publisher, for example based on the amount of traffic they generate. Furthermore,
the false positive rate gathered with the proposed self-evaluation component could come at
play here. Another related design parameter that hasn’t been discussed at all is the size of
the sliding widow employed by the global optimizer.

Finally, the current solution assumes a single dissemination tree. However, PLEROMA nor-
mally uses multiple dissemination trees, for example in order to better spread out the traffic
over the whole network. Future work could adapt the the current implementation to support
multiple trees. Possible approaches are to either define and enforce flow limits individually
for each tree (e.g. a switch that is part of multiple dissemination trees has a separate flow
limit constraint for flows of each tree) or to define and enforce a global flow limit across all
trees.

64

Bibliography
[1] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The many faces of

publish/subscribe,” ACM computing surveys (CSUR), vol. 35, no. 2, pp. 114–131, 2003.

[2] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, “Design and evaluation of a wide-area
event notification service,” ACM Transactions on Computer Systems (TOCS), vol. 19,
no. 3, pp. 332–383, 2001.

[3] G. Mühl, L. Fiege, and P. Pietzuch, Distributed event-based systems. Springer Science
& Business Media, 2006.

[4] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, “Design and evaluation of a wide-area
event notification service,” ACM Trans. Comput. Syst., vol. 19, no. 3, pp. 332–383, Aug.
2001.

[5] H.-A. Jacobsen, A. K. Y. Cheung, G. Li, B. Maniymaran, V. Muthusamy, and R. S.
Kazemzadeh, “The padres publish/subscribe system.” Principles and Applications of Dis-
tributed Event-Based Systems, vol. 164, p. 205, 2010.

[6] B. Segall and D. Arnold, “Elvin has left the building: A publish/subscribe notifica-
tion service with quenching,” Proceedings of the I997 Australian UNLX Users Group (A
UUG’I997), pp. 243–255, 1997.

[7] B. Segall, D. Arnold, J. Boot, M. Henderson, and T. Phelps, “Content based routing
with elvin4,” in Proceedings AUUG2k, 2000.

[8] G. Mühl, “Large-scale content-based publish-subscribe systems,” Ph.D. dissertation,
Technische Universität, 2002.

[9] M. A. Tariq, B. Koldehofe, S. Bhowmik, and K. Rothermel, “Pleroma: A sdn-based
high performance publish/subscribe middleware,” in Proceedings of the 15th International
Middleware Conference. ACM, 2014, pp. 217–228.

[10] S. Bhowmik, M. A. Tariq, B. Koldehofe, F. Dürr, T. Kohler, and K. Rothermel, “High
performance publish/subscribe middleware in software-defined networks,” IEEE/ACM
Transactions on Networking, 2016.

[11] B. Koldehofe, F. Dürr, M. A. Tariq, and K. Rothermel, “The power of software-defined
networking: line-rate content-based routing using Openflow,” in Proceedings of
the 7th Workshop on Middleware for Next Generation Internet Computing, ser.
MW4NG ’12. New York, NY, USA: ACM, 2012, pp. 3:1–3:6. [Online]. Available:
http://doi.acm.org/10.1145/2405178.2405181

65

http://doi.acm.org/10.1145/2405178.2405181

Bibliography

[12] S. Bhowmik, M. A. Tariq, B. Koldehofe, A. Kutzleb, and K. Rothermel, “Distributed con-
trol plane for software-defined networks: A case study using event-based middleware,” in
Proceedings of the 9th ACM International Conference on Distributed Event-Based Sys-
tems. ACM, 2015, pp. 92–103.

[13] K. Zhang and H.-A. Jacobsen, “Sdn-like: The next generation of pub/sub,” arXiv preprint
arXiv:1308.0056, 2013.

[14] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, and J. Turner, “Openflow: enabling innovation in campus networks,” ACM
SIGCOMM Computer Communication Review, vol. 38, no. 2, pp. 69–74, 2008.

[15] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and S. Banerjee,
“Devoflow: Scaling flow management for high-performance networks,” ACM SIGCOMM
Computer Communication Review, vol. 41, no. 4, pp. 254–265, 2011.

[16] A. X. Liu, C. R. Meiners, and Y. Zhou, “All-match based complete redundancy removal
for packet classifiers in tcams,” in INFOCOM 2008. The 27th Conference on Computer
Communications. IEEE. IEEE, 2008, pp. 111–115.

[17] S. Bhowmik, M. A. Tariq, L. Hegazy, and K. Rothermel, “Hybrid content-based rout-
ing using network and application layer filtering,” in Distributed Computing Systems
(ICDCS), 2016 IEEE 36th International Conference on. IEEE, 2016, pp. 221–231.

[18] N. Kang, Z. Liu, J. Rexford, and D. Walker, “Optimizing the one big switch abstraction
in software-defined networks,” in Proceedings of the ninth ACM conference on Emerging
networking experiments and technologies. ACM, 2013, pp. 13–24.

[19] A. Vishnoi, R. Poddar, V. Mann, and S. Bhattacharya, “Effective switch memory man-
agement in openflow networks,” in Proceedings of the 8th ACM International Conference
on Distributed Event-Based Systems. ACM, 2014, pp. 177–188.

[20] S. Bhowmik, M. A. Tariq, J. Grunert, and K. Rothermel, “Bandwidth-efficient content-
based routing on software-defined networks,” in Proceedings of the 10th ACM Interna-
tional Conference on Distributed and Event-based Systems. ACM, 2016, pp. 137–144.

[21] M. Franklin and S. Zdonik, ““data in your face”: push technology in perspective,” in
ACM SIGMOD Record, vol. 27, no. 2. ACM, 1998, pp. 516–519.

[22] J. Bates, J. Bacon, K. Moody, and M. Spiteri, “Using events for the scalable federation of
heterogeneous components,” in Proceedings of the 8th ACM SIGOPS European workshop
on Support for composing distributed applications. ACM, 1998, pp. 58–65.

[23] W. W. Terpstra, S. Behnel, L. Fiege, A. Zeidler, and A. P. Buchmann, “A peer-to-peer
approach to content-based publish/subscribe,” in Proceedings of the 2nd international
workshop on Distributed event-based systems. ACM, 2003, pp. 1–8.

[24] G. F. Coulouris, J. Dollimore, and T. Kindberg, Distributed systems: concepts and design.
pearson education, 2005.

66

Bibliography

[25] G. Mühl and L. Fiege, “Supporting covering and merging in content-based publish/sub-
scribe systems: Beyond name/value pairs,” IEEE Distributed Systems Online (DSOn-
line), vol. 2, no. 7, pp. 224–238, 2001.

[26] T. H. Harrison, D. L. Levine, and D. C. Schmidt, “The design and performance of a
real-time corba event service,” ACM SIGPLAN Notices, vol. 32, no. 10, pp. 184–200,
1997.

[27] M. Altınel and M. J. Franklin, “Efficient filtering of xml documents for selective dissem-
ination of information,” in Proc. of the 26th Int’l Conference on Very Large Data Bases
(VLDB), Cairo, Egypt, 2000.

[28] D. Gelernter, “Generative communication in linda,” ACM Transactions on Programming
Languages and Systems (TOPLAS), vol. 7, no. 1, pp. 80–112, 1985.

[29] M. A. Tariq, G. G. Koch, B. Koldehofe, I. Khan, and K. Rothermel, “Dynamic pub-
lish/subscribe to meet subscriber-defined delay and bandwidth constraints,” in European
Conference on Parallel Processing. Springer, 2010, pp. 458–470.

[30] M. A. Tariq, B. Koldehofe, G. G. Koch, and K. Rothermel, “Distributed spectral cluster
management: A method for building dynamic publish/subscribe systems,” in Proceedings
of the 6th ACM International Conference on Distributed Event-Based Systems. ACM,
2012, pp. 213–224.

[31] A. K. Y. Cheung and H.-A. Jacobsen, “Load balancing content-based publish/subscribe
systems,” ACM Transactions on Computer Systems (TOCS), vol. 28, no. 4, p. 9, 2010.

[32] O. Papaemmanouil and U. Cetintemel, “Semcast: Semantic multicast for content-based
data dissemination,” in Data Engineering, 2005. ICDE 2005. Proceedings. 21st Interna-
tional Conference on. IEEE, 2005, pp. 242–253.

[33] L. Opyrchal, M. Astley, J. Auerbach, G. Banavar, R. Strom, and D. Sturman, “Exploiting
ip multicast in content-based publish-subscribe systems,” in IFIP/ACM International
Conference on Distributed systems platforms. Springer-Verlag New York, Inc., 2000, pp.
185–207.

[34] Y. Rekhter, T. Li, and S. Hares, “A border gateway protocol 4 (bgp-4),” Internet
Requests for Comments, RFC Editor, RFC 4271, January 2006, http://www.rfc-editor.
org/rfc/rfc4271.txt. [Online]. Available: http://www.rfc-editor.org/rfc/rfc4271.txt

[35] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and T. Turletti, “A survey
of software-defined networking: Past, present, and future of programmable networks,”
IEEE Communications Surveys & Tutorials, vol. 16, no. 3, pp. 1617–1634, 2014.

[36] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J. Wanderer,
J. Zhou, M. Zhu et al., “B4: Experience with a globally-deployed software defined wan,”
ACM SIGCOMM Computer Communication Review, vol. 43, no. 4, pp. 3–14, 2013.

[37] “Project floodlight - open source software for building software-defined networks,” http:
//www.projectfloodlight.org/floodlight, accessed: 2017-04-19.

67

http://www.rfc-editor.org/rfc/rfc4271.txt
http://www.rfc-editor.org/rfc/rfc4271.txt
http://www.rfc-editor.org/rfc/rfc4271.txt
http://www.projectfloodlight.org/floodlight
http://www.projectfloodlight.org/floodlight

Bibliography

[38] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and S. Shenker, “Nox:
towards an operating system for networks,” ACM SIGCOMM Computer Communication
Review, vol. 38, no. 3, pp. 105–110, 2008.

[39] A. Shalimov, D. Zuikov, D. Zimarina, V. Pashkov, and R. Smeliansky, “Advanced study
of sdn/openflow controllers,” in Proceedings of the 9th central & eastern european software
engineering conference in russia. ACM, 2013, p. 1.

[40] K. Pagiamtzis and A. Sheikholeslami, “Content-addressable memory (cam) circuits and
architectures: A tutorial and survey,” IEEE Journal of Solid-State Circuits, vol. 41, no. 3,
pp. 712–727, 2006.

[41] F. Yu, R. H. Katz, and T. V. Lakshman, “Gigabit rate packet pattern-matching using
tcam,” in Network Protocols, 2004. ICNP 2004. Proceedings of the 12th IEEE Interna-
tional Conference on. IEEE, 2004, pp. 174–183.

[42] A. J. McAuley and P. Francis, “Fast routing table lookup using cams,” in INFOCOM’93.
Proceedings. Twelfth Annual Joint Conference of the IEEE Computer and Communica-
tions Societies. Networking: Foundation for the Future, IEEE. IEEE, 1993, pp. 1382–
1391.

[43] P. Jokela, A. Zahemszky, C. Esteve Rothenberg, S. Arianfar, and P. Nikander, “Lipsin:
line speed publish/subscribe inter-networking,” ACM SIGCOMM Computer Communi-
cation Review, vol. 39, no. 4, pp. 195–206, 2009.

[44] A. Broder and M. Mitzenmacher, “Network applications of bloom filters: A survey,”
Internet mathematics, vol. 1, no. 4, pp. 485–509, 2004.

[45] IBM TJ Watson Research Center, “Gryphon: Publish/subscribe over public networks,”
http://www.research.ibm.com/distributedmessaging/gryphon.html, accessed: 2017-04-
19.

[46] M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and T. D. Chandra, “Matching
events in a content-based subscription system,” in Proceedings of the eighteenth annual
ACM symposium on Principles of distributed computing. ACM, 1999, pp. 53–61.

[47] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R. E. Strom, and D. C. Stur-
man, “An efficient multicast protocol for content-based publish-subscribe systems,” in
Distributed Computing Systems, 1999. Proceedings. 19th IEEE International Conference
on. IEEE, 1999, pp. 262–272.

[48] H. Parzyjegla, D. Graff, A. Schröter, J. Richling, and G. Mühl, “Design and implemen-
tation of the rebeca publish/subscribe middleware,” in From active data management to
event-based systems and more. Springer, 2010, pp. 124–140.

[49] G. Mühl, “Generic constraints for content-based publish/subscribe,” in International
Conference on Cooperative Information Systems. Springer, 2001, pp. 211–225.

[50] N. Katta, O. Alipourfard, J. Rexford, and D. Walker, “Infinite cacheflow in software-
defined networks,” in Proceedings of the third workshop on Hot topics in software defined
networking. ACM, 2014, pp. 175–180.

68

http://www.research.ibm.com/distributedmessaging/gryphon.html

Bibliography

[51] ——, “Cacheflow: Dependency-aware rule-caching for software-defined networks,” in Pro-
ceedings of the Symposium on SDN Research. ACM, 2016, p. 6.

[52] H. Zhu, H. Fan, X. Luo, and Y. Jin, “Intelligent timeout master: Dynamic timeout
for sdn-based data centers,” in Integrated Network Management (IM), 2015 IFIP/IEEE
International Symposium on. IEEE, 2015, pp. 734–737.

[53] K. Kannan and S. Banerjee, “Flowmaster: Early eviction of dead flow on sdn switches,”
in International Conference on Distributed Computing and Networking. Springer, 2014,
pp. 484–498.

[54] Y. Kanizo, D. Hay, and I. Keslassy, “Palette: Distributing tables in software-defined
networks,” in INFOCOM, 2013 Proceedings IEEE. IEEE, 2013, pp. 545–549.

[55] M. Moshref, M. Yu, A. B. Sharma, and R. Govindan, “Scalable rule management for
data centers.” in NSDI, vol. 13, 2013, pp. 157–170.

[56] H. Samet, “Applications of spatial data structures,” 1990.

[57] R. Ahuja, R. Illingworth, H. Kanakia, and B. Shah, “System and method for locating a
route in a route table using hashing and compressed radix tree searching,” Aug. 31 1999,
uS Patent 5,946,679.

[58] J.-I. Aoe, K. Morimoto, and T. Sato, “An efficient implementation of trie structures,”
Software: Practice and Experience, vol. 22, no. 9, pp. 695–721, 1992.

[59] R. L. S. de Oliveira, A. A. Shinoda, C. M. Schweitzer, and L. R. Prete, “Using mininet
for emulation and prototyping software-defined networks,” in Communications and Com-
puting (COLCOM), 2014 IEEE Colombian Conference on. IEEE, 2014, pp. 1–6.

[60] Middleware Systems Research Group, University of Toronto, “Yahoo! finance stock quote
data set,” http://www.msrg.org/datasets/acDataSet, accessed: 2017-04-19.

69

http://www.msrg.org/datasets/acDataSet

Bibliography

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources and
references than the listed ones. I have marked all direct or
indirect statements from other sources contained therein as
quotations. Neither this work nor significant parts of it were
part of another examination procedure. I have not published
this work in whole or in part before. The electronic copy is
consistent with all submitted copies.

place, date, signature

71

	Abstract
	Introduction
	Thesis Organization

	Background
	Publish/Subscribe Paradigm
	Pub/Sub Models
	Event Delivery Mechanisms

	Software-Defined Networking
	OpenFlow
	Content-Addressable Memory

	State of the Art
	Pub/Sub Systems Survey
	SIENA
	LIPSIN
	Gryphon
	Rebeca

	Addressing TCAM Limitations
	Hybrid Content-Based Filtering
	Flow Entry Eviction
	Optimized Rule Placement

	PLEROMA
	Converting Events and Filters to Dz-Expressions
	Encoding Dz-Expressions in Flows and Packets
	Installing Flow Entries
	Problem Statement

	Enforcing Flow Limits on Switches
	General Concepts
	Merging Flows
	Network False Positives
	Merge Tree

	Forces
	Local Flow Limit Enforcement Algorithms
	Baseline Approach
	Minimum Space Cost Function

	Global Optimization Algorithm
	Basic Algorithm
	Traffic Based Cost Function
	Event History Based Cost Function

	Flow Limit Compliant Flow Deployment
	Self-Evaluation Component

	Evaluation and Analysis
	Evaluation Setup
	Network False Positives
	Execution Time
	Sampling
	Adapting to Changing Event Distributions
	Flow Limit Compliant Deployment

	Conclusion and Future Work
	Bibliography

