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Abstract

During the last years, the amount of data which can be represented and processed as
graph structured data has massively increased. To process these large data sets, graph
processing systems have been developed which distribute and partition a graph among
multiple machines. Due to an increase in processing power and data collection, machine
learning and especially neural networks have become very popular. Consequently,
machine learning systems like TensorFlow have emerged. Machine learning models
can be represented as dataflow graphs and often take days to train as the dataflow
graph is executed thousands of times. Graph partitioning determines how the graph
is divided and which node is placed on which device. Scheduling decides which node
should be computed next during execution. Smart partitioning and scheduling can
drastically reduce the total execution time. Most existing solutions do not consider
serveral important constraints like memory limitations, device or colocation constraints
which can be directly derived from the machine learning library TensorFlow. This thesis
presents and evaluates different partitioning and scheduling strategies meeting the
constraints required for a realistic environment. One of these developed partitioning
algorithms is based on a heuristic function considering execution time, memory and
traffic and tries to map time-critical nodes on fast devices. This partitioning algorithm
performed very well in combination with a scheduling strategy which schedules the
executable node first whose upwards path takes longest to compute. On the evaluated
graphs extracted from TensorFlow, this strategy was up to 75 % and at least 45% better
in terms of graph execution time than the slightly adapted popular HEFT algorithm
which is a common benchmark. In combination with the aforementioned scheduling
strategy a partitioning which aims to assign the critical path nodes to the fastest device
showed equally promising results.
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1 Introduction

During the last decade the collection of graph structured data as well as the processing
power massively increased. Due to these new possibilities distributed graph processing
systems like Pregel [MAB+10], PowerGraph [GLG+12], GrapH [MTLR16] or GraphCEP
[MMTR16] for large-scale graph computation emerged. A powerful application is
the execution of machine learning algorithms which are for example used for natural
language processing [CW08] or image classification [KSH12].

Machine learning models often consist of billions of parameters [DCM+12] and can be
represented as dataflow graphs. In order to shorten the training and execution time the
computation is distributed and therefore the graph is partitioned onto different machines.
Moreover, the graph could be too large to fit on a single machine which is another reason
for partitioning. Other possibilities to reduce the execution time are model replication
[NSB+15], pipelining [AC86] or computing a batch of input data at once [LZCS14] and
merge the results. This thesis focuses on the partitioning approach.

A graph can be partitioned by dividing its nodes into disjoint subsets, i.e. cut the edges
[CSCC15]. The classic k-way partitioning problem is to divide a graph’s node set in k
equal sized subsets in a way that the number of cut edges is minimized. This problem is
NP-complete [KK98]. When executing the graph, the node execution order is determined
by the scheduling for each device.

Clearly, minimizing the execution time as well as the network traffic is an important
challenge. The dataflow graph is executed multiple times and therefore runtime informa-
tion can be collected and later used for an improved partitioning. Furthermore, it takes
much time to execute the model in a similar manner over and over again [CZG+16].
Therefore, one might consider to spend more time on the partitioning and scheduling to
reduce the overall execution time.

In order to meet all the from TensorFlow derived criteria for the partitioning of machine
learning models the standard graph partitioning problem has to be extended. In par-
ticular, constraints like memory, device constraints or heterogenous devices have to be
considered when searching for a realistic graph partitioning solution.

However, the partitioning problem has to be investigated in combination with the
scheduling problem as a bad scheduling can increase the execution time drastically.
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1 Introduction

n₀
n₁

n₄

n₂ ...

n₅ n₆ ...

D0

D1

(a) Partitioned dataflow graph

Device 0

Device 1 n5

n0 n1 n2 … n4

n6 …

(b) Scheduling option 0

Device 0

Device 1 n5

n0 n1 n2 …n4

n6 …

(c) Scheduling option 1

Figure 1.1: Different scheduling algorithms influence the total execution time on the
same partitioning.

Consider the example of Figure 1.1 (a) depicting a dataflow graph which is partitioned
onto device 0 and device 1. In Figure 1.1 (b) the scheduling option 0 is visualized in
which n4 is executed only when n1 and all its successors are executed. This becomes
even worse the longer the execution of the direct and indirect successor nodes of n1
takes. Scheduling option 1 which is shown in Figure 1.1 (c) would be a better choice
as it enables parallel execution by executing n4 before n1 and thus shortens the total
execution time.

In this thesis, we developed multiple partitioning and scheduling algorithms considering
constraints which are derived from the machine learning library TensorFlow. We compare
and evaluate these algorithms which aim to reduce the overall execution time and
traffic.

1.1 Contributions

In particular, the thesis provides the following contributions:

1. We defined a system model which contains the constraints derived from the
machine learning library TensorFlow. Moreover, the scheduling and partitioning
problem was formulated considering the additional constraints.

12



1.2 Outline

2. To solve the modified partitioning problem, multiple partitioning strategies were
developed. Moreover, three scheduling strategies were implemented.

3. In order to evaluate the aforementioned combinations of scheduling and parti-
tioning algorithms an evaluation framework has been developed. The framework
is easily extendable and allows a quick integration and implementation of new
strategies.

4. We compared partitioning and scheduling algorithms with respect to their execu-
tion time and traffic. The results have been visualized.

1.2 Outline

Beyond the introduction chapter this thesis is structured as follows. In Chapter 2
TensorFlow is introduced, the system model is defined and the problem is formulated.
Chapter 3 presents an approach to solve the problem and describes multiple components
in the developed evaluation pipeline. The scheduling and partitioning problem is
described more detailed in Chapter 4 and 5. In these chapters multiple strategies are
presented and discussed. In Chapter 6 the generation of sample data is presented. These
data sets are used to compare and evaluate the partitioning and scheduling strategies in
Chapter 7. Related work is presented in Chapter 8 while future work and drawbacks
of the existing solutions are discussed in Chapter 9. The whole thesis is concluded in
Chapter 10.
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2 System Model and Problem
formulation

In the following sections the system model is defined and the problem is formulated.
Therefore, the machine learning library TensorFlow and its properties are described in
order to derive model properties. Beyond the model, the metrics execution time and
traffic are presented which are used to evaluate partitioning and scheduling algorithms
in chapter 7. An example illustrates how the execution time is calculated theoretically.
For clarity, we reduced the model complexity of TensorFlow as shown in Section 2.6.

2.1 TensorFlow™

The system model and the required constraints are derived from TensorFlow [MAP+15]
[ABC+16] [Sca16]. TensorFlow is a machine learning library which was developed
by Google and published as open source in November 2015. It has become one of the
most popular machine learning libraries since then. TensorFlow is widely used for deep
learning models (multi-layer neural networks) and has a C++, python and Java API. In
former times many researchers used a machine learning flexible library for research and
an efficient one for production. TensorFlow wants to combine both in order to deploy
models easily which have been developed during research.

To train a machine learning model in TensorFlow, a computational graph has to be
defined and executed. In this case, a computational graph is a stateful dataflow graph.
There are implicit data dependencies: A node can not be executed until all predecessor
nodes are executed and their computed tensor (multidimensional array) is transferred.

Computations make side-effects to variables (model parameters) which are used in
future runs and the results of the machine learning. During training, a forward pass
[CZG+16] with the current values of the model parameters is calculated. In supervised
learning, the result is compared with the true label and an error term is computed.
Afterwards, the results are backpropagated and the weights of the model parameters are
adjusted.

15



2 System Model and Problem formulation

2.1.1 Parallelism

Parallelism is an important concept in order to reduce the execution time. In TensorFlow,
model as well as data parallelism is possible.

For data parallelism, the model is replicated [NSB+15]. The input data is split and
different subsets of the data are trained on the replications of the model. The same
global model is updated e.g by taking the parameter average of the model replications.
These updates can be performed synchronously or asynchronously. In synchronous data
parallelism, the data is divided into batches and computed on x model replicas. After-
wards, the gradient is computed and the model is updated synchronously. Alternatively,
each replica updates asynchronously. Challenges for data parallelism are for example to
tolerate different processing speeds of the model replicas.

For model parallelism, the model is split on different devices [NSB+15] and can be
computed in parallel due to the placement on multiple devices. Two nodes can potentially
be executed in parallel if they are placed on different devices and there is no data
dependency between them.

2.2 Model

This section defines a system model in which the requirements derived from TensorFlow
are considered. Figure 2.1 shows the acyclic dataflow graph which has to be divided
on three machines. Each node represents a computation and has a unique id as well
as computation or operation costs #ops which represent the necessary number of
operations to compute the node’s result. A node can not be executed until all direct
predecessor vertices are computed. Furthermore, a vertex has a device constraint (CPU,
GPU, TPU or ALL) indicating on which device type the vertex can be executed. TPU
stands for Tensor Processing Unit [ABC+16] and is a custom chip developed by Google
for machine learning applications. The device condition might reduce the number of
feasible devices on which a vertex can be assigned. To store a vertex a defined amount
of memory is necessary which is provided in advance.

Each edge represents a tensor being transferred from one vertex to another. An edge has
a weight indicating the size of the transferred tensor. If a vertex has multiple outgoing
edges all outgoing edges have the same weight and the result is available after the vertex
is computed.

In addition to the set of vertices and edges a graph is defined by a set of colocations C.
Each colocation constraint contains two nodes which have to be assigned to the same
machine. The colocations are represented as red dots in Figure 2.1.
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2.3 Problem Formulation

The graph G has to be divided into n subgraphs and mapped on a set of devices D
= {d1, d2, ..., dn}. A device has a device type (CPU, GPU or TPU), memory size and
speed which is defined as number of operations per execution unit. Each device can
communicate with every other device which is important to be able to transfer tensors.
The communication speed between device x and y is defined by a transfer rate tx−y. In
our model only one node can be executed by a device at once. Once a node is executed
it can not be interrupted as non-preemptive scheduling is assumed.

d1 d2 d3t1-2 t2-3

t1-3

v₀

v₁
e₀

v₂e₁

v₅

e₅

v₃e₃

v₆
e₈

v₈

e₂

v₇

v₄e₄

e₆ v₁₀e₁₃

v₁₂e₁₁

e₉

v₉

e₁₀

e₁₂

e₇

e₁₆

v₁₁
e₁₄

e₁₅

Figure 2.1: The dataflow graph is divided onto three machines

2.3 Problem Formulation

In order to fulfil the requirements of the TensorFlow library, the standard partitioning
problem has to be adapted to consider multiple constraints.

A graph is defined by G = (V, E, C) in which V = {v0, v1, ..., vr} is a set of vertices,
E ⊂ (V × V × N) a set of weighted edges and C ⊂ (V × V ) a set of colocations. Each
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2 System Model and Problem formulation

tuple (vx, vy) ∈ C defines two vertices which have to be assigned to the same machine.
Bigger colocation groups are formed transitively. In our model the graph is a directed
acyclic graph.

The goal of graph partitioning is to split the set of vertices onto n machines. An edge cut
divides the graph by assigning vertices to different machines and thereby cutting edges.
Scheduling defines the vertex execution order. Both problems are further described in
Chapter 4 and 5.

The overall goal is to minimize two factors:

The first and more important one is the execution time or also called makespan. It is
defined as the first point of time on which every device has finished computation. This
relation is expressed in Equation 2.1. All abbreviations and function names are listed in
Table 2.2.

makespan = max
d∈D

exec(d) (2.1)

The other metric is the traffic which is defined as the sum of all cross-device edges’
tensor sizes. This is formulated in Equation 2.2.

traff ic =
∑

e∈CE

size(e) , CE = {(vx, vy, x) ∈ E ∧ d(vx) ̸= d(vy)} (2.2)

2.4 Insertion of Send and Receive Nodes

In this section the process of adding send and receive nodes is decribed. After partition-
ing, send and receive nodes are inserted for cross-device edges. If a vertex has multiple
successor nodes which are assigned to the same machine only one send-receive-node-pair
is inserted. This has the huge advantage of transmitting data only once. Furthermore, it
also makes a better code abstraction level possible as send and receive nodes can be the
only nodes responsible for inter-device data transfer.

Figure 2.2 (a) depicts a dataflow graph which is partitioned onto five devices. After
partitioning, the send and receive nodes are inserted. The resulting graph is shown in
Figure 2.2 (b). The new send nodes are coloured red and the new receive nodes are
green. Send node 14 and receive node 15 transfer the output data from node 8 only
once between device 3 and 4. If the output tensor size of node 8 is 50 bytes then this
amount of data is also transferred on the edges (8,14), (14,15), (15,4) and (15,9).
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2.5 Execution Time Calculation
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(b) Partitioned graph after inserting send and re-
ceive nodes

Figure 2.2: Post-processing to insert send and receive nodes after partitioning

2.5 Execution Time Calculation

Partitioning decides how the node set is split and which nodes are placed on which
device. The scheduling determines the nodes’ execution order. The overall goal is to
minimize the total execution time and reduce the network traffic if possible. How the
execution time is determined is illustrated in this section.

Figure 2.3 shows a partitioned graph. The nodes are labelled with their id and com-
putation costs #ops. The tensor sizes are written on the corresponding edges. The
abbreviation EU stands for execution unit. All abbreviations and function names are
listed and explained in Table 2.2. The device speed of device 0 is 10 Ops

EU
, the one of

device 1 is 30 Ops
EU

and device 2 is 40 Ops
EU

fast. The transfer rate between device 0 and 1
is 25

EU
while the transfer rate between device 0 and 2 is 50

EU
.

At first, the execution times for each node are calculated by dividing the node’s number
of operations with the device speed:

exec(n0) = #ops(n0)
speed(d0)

= 30 Ops

10Ops

EU

= 3 EU

exec(n1) = #ops(n1)
speed(d0)

= 50 Ops

10Ops

EU

= 5 EU

exec(n6) = #ops(n6)
speed(d0)

= 10 Ops

10Ops

EU

= 1 EU

exec(n8) = #ops(n8)
speed(d0)

= 10 Ops

10Ops

EU

= 1 EU

exec(n2) = #ops(n2)
speed(d1)

= 60 Ops

30Ops

EU

= 2 EU

exec(n3) = #ops(n3)
speed(d1)

= 30 Ops

30Ops

EU

= 1 EU
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2 System Model and Problem formulation
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1
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9
0

50

2
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4
40

50 5
80

50

3
30

20
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Figure 2.3: The graph is divided onto three machines. Each node has a node id (upper
value) and number of operations (lower value). The labels on the edges
represent the tensor size.

Table 2.1: Scheduling order per device
Device Order (in node ids)
0 0, 1, 6, 8
1 7, 2, 3
2 9, 4, 5

exec(n4) = #ops(n4)
speed(d2)

= 40 Ops

40Ops

EU

= 1 EU exec(n5) = #ops(n5)
speed(d2)

= 80 Ops

40Ops

EU

= 2 EU

The receive nodes take zero execution units to receive the data. Moreover, the required
time to transfer the computed results has to be taken into account:

transfer time(n6, n7) = weight(n6, n7)
transfer rate(d0, d1)

= 50
25

EU

= 2 EU

transfer time(n8, n9) = weight(n8, n9)
transfer rate(d0, d2)

= 50
50

EU

= 1 EU

The scheduling algorithm defines the execution order as shown in Table 2.1. The
resulting execution sequence is visualized in Figure 2.4. The computed data from node
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2.6 Simplifications

6 arrives at device 1 after 11 execution units. To finish processing device 1 needs
additional 3 units. At device 2 the data arrives after 11 execution units and it needs 3
units to finish processing. So the overall execution time is 14 execution units.

Device 0

Device 1

Device 2

N0

0 2 4 6 8 10 12

N1 N6 N8

N2

N4

14

N5

N3

Figure 2.4: Schedule of the sample graph shown in Figure 2.3

2.6 Simplifications

In order to reduce the model and problem complexity some less important parts are not
taken into account.

With respect to TensorFlow multiple properties could be additionally considered:

• Backpropagation: In order to adapt the model parameters, backpropagation is used
and information flows in the reverse direction of the dataflow graph [CZG+16]
[Sca16]. Backpropagation is very specific to machine learning and could be
modeled by inserting additional nodes and edges to the graph [MAP+15].

• Control flow nodes [MAP+15]: TensorFlow allows the usage of control flow nodes.
With control flow operators, it becomes for example possible to express iterations,
if-conditions or while-loops on dataflow graphs.

• Common subexpression elimination [MAP+15]: Redundant parts of the model
are eliminated and computed only once. This approach helps to avoid unnecessary
computation. If this procedure eliminates nodes and edges before partitioning, our
model can also take this into account.

• Model replication [MAP+15]: In order to allow data parallel training the model is
replicated. We can also express model replication by replicating the whole graph.
If only parts of the graphs are replicated some edges have to be inserted to connect
the "source" nodes of the replicated parts with its predecessors.
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2 System Model and Problem formulation

Table 2.2: Notation overview
G = (V, E, C) Graph with vertex set V, edge set E and colocations C
E ⊂ (V × V × N) Edge set consisting of tuples (start node, end node, weight)
D Device set
exec(nx) Execution units (time) necessary to compute node nx

#ops(nx) Number of operations necessary to compute node nx

speed(dx) Speed of device dx (in operations per execution unit)
transfer time(nx, ny) Transfer time to transfer tensor from nx to ny

weight(nx, ny) Weight of edge (nx, ny) (= tensor size)
transfer rate(dx, dy) Transfer rate between device dx and dy

d(nx) Device on which nx is placed by the partitioning algorithm.
Is equal to -1 if the node is not placed yet.

type(dx) Type of device dx, e.g CPU or GPU
device constraint(n) Device constraint of node n
memory size(d) Memory size of device d
Vdx Set of all nodes assigned to device dx

Vgx Set of all nodes being member of the colocation group gx

exec(d) Total execution time of device d
execmin(d) Minimal execution time possible if the device d would exe-

cute all nodes sequentially without any idle times
#ops(dx) Sum of all nodes’ operations assigned to dx

EU Execution unit
Ops Operations
size(e) Size of the edge e = (ny, nx).

Equal to the output tensor size of node ny

sizeest(n) Estimated size of a node n’s memory requirement. Sum of
memory demand, output tensor size and input tensor sizes.

pred(nx) Set of direct predecessor nodes of node nx

succ(nx) Set of direct successor nodes of node nx

makespan Time period from computation beginning until the last device
has finished execution.

assignment unit Colocation group or not colocated node (assigned as one unit
during partitioning).
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2.6 Simplifications

• Computation pipelining [MAP+15]. Smart pipelining would increase the benefits
of partitioning in most cases and has no impact in the worst case.

• Subgraph execution [ABC+16]: Only parts of the model are executed. In our
model, we assume that all nodes are executed exactly once. However, subgraph
execution can be handled by treating the subgraph as a graph. Nevertheless, this
is only efficient if the executed subgraph does not change very often. If this is the
case, more dynamic partitioning approaches would be required.

The tensors sizes also depend on the input data [Sca16]. We assume that the tensor
sizes stay the same and to know them in advance. The TensorFlow developers also state
that their placement strategy does estimate fixed tensor sizes based on a cost model or
simulated execution [MAP+15].

Another simplification is that a node’s execution duration is computed by its number of
operations divided by the device speed. However, it could be different for each node
device pair.

23





3 Approach Overview

This chapter provides an approach overview to solve the problem presented in Chapter 2.
The first idea was to implement novel partitioning and scheduling algorithms within the
TensorFlow library and compare them with already existing TensorFlow partitioning and
scheduling algorithms. However, only a very simple placement algorithm is published
by Google for now. Every node is mapped per default on the same device unless the
user places the nodes manually. Additional factors like the cost model or memory
constraints are not considered in the code published by Google, although described in
the TensorFlow whitepaper [MAP+15]. The described scheduling strategy is also not
available. This is the reason why we decided to develop an evaluation framework in
Java.

3.1 Evaluation Framework

In order to be able to compare and implement partitioning and scheduling strategies
faster and consider all the required constraints an evaluation framework has been devel-
oped. In the following sections the components of this evaluation pipeline are described.
Figure 3.1 shows these components. At first, device and graph data is read and coloca-
tion groups are calculated. Some partitioning algorithms require certain preprocessing
steps which are executed during the partitioning preprocessing. Afterwards, the graph
is partitioned onto multiple devices and send and receive nodes are inserted during
partitioning postprocessing. Depending on the scheduling strategy, some preprocessing
steps are necessary. Subsequently, the scheduling is performed on each device. At the
end of the computation, the results are collected and visualized.

Every part of the framework can be implemented independently. Furthermore, partition-
ing and scheduling algorithms can be integrated and exchanged easily.
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3 Approach Overview
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Figure 3.1: Evaluation framework pipeline and its components

3.1.1 Device and Graph Reader

In order to evaluate the strategies, dataflow graphs are extracted from TensorFlow. On
top of that, sample synthetic graph and device data is created in order to test various
graph and device combinations. The properties of these graphs and devices are further
described in Chapter 6.

Within the evaluation framework a device reader is responsible for reading the device
data from a csv-file. A custom graph reader reads the graph information from a specified
file. It does not matter if the graph data is synthetic or extracted from TensorFlow: It is
stored in an equal structure as csv-file.
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Algorithmus 3.1 Calculate colocation groups

static int componentId = 0;
procedure READ_NODE(nx)

ColocationComponent component;
for all n ∈ col(nx) do

//colocationId -1 means that the node is not in any colocation group yet
if n.colocationId == -1 then

if component == null then
//when creating a new component it is stored in a set of components
component = new Component(componentId);
componentId ++;

end if
//in addNode the colocationId of n is also set
component.addNode(n);

else
if component == null then

component = ColocationComponent.getComponentForId(n.colocationId);
else

//union
component.merge(ColocationComponent.getComponentForId(n.colocationId));

end if
end if

end for
end procedure

3.1.2 Partitioning Preprocessing

When reading the graph data, colocation groups are calculated. Algorithm 3.1 shows the
algorithm which generates the colocation groups. Whenever a node nx is colocated all
its colocated nodes col(nx) are checked. If the node ny ∈ col(nx) is not in a colocation
group yet it is added to the colocation group of nx. If it is already in a colocation group
the two colocations groups are merged. If two colocation groups are merged or a node
is added to a colocation group the device constraint has to be checked. If member
nodes have contradictory device constraints the input data is invalid and an exception is
thrown. For a short and clear notation, we assume that nx is also a member of col(nx)
in Algorithm 3.1.

Depending on the partitioning strategy other preprocessing steps are taken. If this is
necessary for a partitioning strategy it is described more detailed in the partitioning
chapter 4.
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3.1.3 Partitioning

A partitioning algorithm splits the nodes on different devices and determines which
node is placed on which device. Some devices might not be feasible for a specific node.
To decide if a node can be placed onto a specific machine the following factors have to
be considered:

• Colocation constraints

• Device constraints: Can the node be executed on a specific device type?

• How much memory is left on a device

3.1.4 Partitioning Postprocessing

The required send and receive nodes have to be inserted for cross-device edges. When
a node is assigned during partitioning all direct predecessor and successor nodes are
checked if they are placed on a different device. If so, the node is added in a set of
nodes with cross-device edges. After partitioning new nodes are inserted by making use
of these sets. If a node has outgoing cross-devices edges to the same device only one
send-receive-node-pair is inserted as described in Figure 2.2 in Section 2.4.

3.1.5 Scheduling Preprocessing

Depending on the scheduling algorithm various preprocessing computations are neces-
sary. If this is the case, they are described in the scheduling chapter 5.

3.1.6 Scheduling

The scheduling algorithm determines which node is executed next. In the system model
only non-preemptive scheduling is supported which means that a node is executed
completely once started. The scheduling algorithm has to consider the data dependencies
in the dataflow graph. A node can only be executed when all its direct predecessor
nodes have finished computation.

A node’s calculated data is kept in RAM as long as its direct successor nodes have not
started computation. Therefore, a mechanism similar to reference counting has been
implemented to find out when the data is no longer needed and can be deleted. A
counter is initialized on the number of direct successors. This counter is decremented
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each time a direct successor node executes. If the counter reaches zero the result can be
deleted.

3.1.7 Evaluation

Multiple metrics are possible to evaluate the scheduling and partitioning strategies. The
first goal is to fulfil all the required constraints like device, colocation and memory
constraints as a violation leads to an invalid partitioning. To measure the quality of
the partitioning and scheduling algorithms, two metrics are taken into account: The
network traffic and execution time which were defined in Section 2.3 The results of a
computation are stored in csv-files and automatically visualized by matplotlib in python
scripts.

3.2 Timing Behaviour

When simulating the scheduling, synchronization and communication between the
devices’ local time has to be considered to ensure the correct simulation of an execution
pass. One approach might be to use the real world time as time synchronization
mechanism. Consequently, the whole simulation would have to be implemented in a
distributed system with all the programming overhead e.g. for message exchange. It
would also be difficult to run the graphs exactly with the specified values like the transfer
rate or to change certain values to evaluate different situations. Using real world time
as synchronization mechanism leads to another disadvantage: One has to run the node
computation in real time which could lead to a long evaluation duration.

For these reasons, a simulated timing behaviour is preferable. However, if each device
has its own local timestamp it is necessary to avoid messages arriving in the future which
would have had an influence on past decisions.

To illustrate this problem an example graph is provided in Figure 3.2. The node’s
upper value is the id and the lower value represents the node’s #ops. The edges are
labelled with their tensor sizes. In this example a parallel simulation is assumed without
any synchronization mechanisms. The transfer rates and device speeds are 1

EU
. The

simulation starts with device 2 and computes 50 EU as execution duration for node 7.
The data arrive time of node 7’s output tensor is computed to be at 80 EU. Device 1
becomes active in the simulation, executes node 5 and sets its local timestamp to 110
EU.
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Figure 3.2: Sample graph labelled with node id, #ops and edge weigths

However, device 0 has simulated the execution of node 1 and 2 with an execution
duration of 40 EU. The data is calculated to arrive at device 1 after 50 EU. The problem is
that the local timestamp of device 1 is already at 110 EU in the simulation. Nevertheless,
device 1 would have been able to execute node 3 after 50 EU if the simulation would
have been implemented correctly. This is the reason why it is very important to have
received all past data before making any scheduling decisions in the simulation.

To avoid making decisions without knowing all executable nodes at a specific timestamp
the local timestamp of each device is collected. The device with the lowest local
timestamp is selected to make the next scheduling decision. This algorithm has the
disadvantage that the simulated scheduling can not be ran in parallel but also avoids
the problem of making wrong scheduling choices or idle unnecessarily.
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In this chapter various partitioning algorithms are described as well as their corre-
sponding preprocessing steps. At first, the partitioning problem is defined formally.
Afterwards, multiple partitioning strategies and their corresponding preprocessing steps
are described.

4.1 Problem Formulation

A graph G = (V, E, C) consists of a set of vertices V = {v0, v1, ..., vr} and directed
weighted edges E ⊂ (V × V × N). As described in Section 2.2 a vertex is defined by
an id, operation costs and a device constraint. The in C ⊂ (V × V ) contained tuples
(vx, vy) ∈ C define vertices which have to be assigned to the same device.

The goal is to divide the graph’s nodes onto n devices D = {d1, d2, ..., dn} into disjoint
subsets. Devices are defined by an id, device type (CPU, GPU, TPU), memory size and
speed. Abbreviations and functions are listed in Table 2.2. An assignment a: V → D has
to be created by the partitioning algorithm meeting the following constraints:

1. ∀(vx, vy) ∈ C : d(vx) = d(vy)

2. ∀v ∈ V : type(d(v)) = device constraint(v) ∨ device constraint(v) = ALL

3. ∀d ∈ D : ∑
v∈Vdx

sizeest(v) < memory size(d)

and minimizes together with the scheduling algorithm the following parameters:

1. execution time (previously defined in Equation 2.1)

2. network traffic (previously defined in Equation 2.2)

In the following, we call a colocation group or a not colocated node an assignment unit.
Colocated nodes have to be mapped to the same device which is why we will assign
them in one pass. Colocation groups and a not colocated nodes share the properties of a
device constraint and memory demand.

A device is feasible for an assignment unit if:
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1. The assignment unit’s device constraint is equal to the device type or no device
constraint exists.

2. The device has enough memory to be able to assign the whole assignment unit.

4.2 Hashing

Hashing is a very simple, well-known and fast placement strategy. Because of the
colocation groups, memory and device constraints it is slightly modified to the following
algorithm:

Iterate over colocation groups and try to assign them. For each colocation group a hash
value is calculated based on the number of already assigned colocation groups modulo
the number of devices. The device whose id is equal to the hash value is checked to be
feasible or not. If a device is not feasible, search iteratively for the next feasible device
and assign every node of the colocation group. After all colocation groups are assigned
iterate over not colocated nodes and assign them to a feasible device in the same manner
as the colocation groups.

4.3 HEFT

The Heterogeneous Earliest Finish Time (HEFT) [THW02] algorithm maps nodes to
devices iteratively. It consists of two phases: The task prioritizing phase and the processor
selection phase.

In the task prioritizing phase, the nodes are ranked due to their upward rank which
describes the computation costs and data transfer costs from the given node to the
"last" sink node. As soon as the upward ranks are computed the tasks are sorted in a
descending order. In this order the tasks are assigned to processors within the processor
selection phase.

In the processor selection phase the earliest finish time of a node for each device is
computed in an insertion based manner. The maximum of the predecessor nodes’ finish
time and the required transfer time is taken as the earliest point of time in which the
task can possibly start executing. Starting at this computed time each device is checked
in order to find a time slot which is big enough to insert the task into. The node is
assigned to the device with the lowest earliest finish time.

In order to meet the special constraints (e.g. colocation or device constraints) the
HEFT algorithm was slightly modified. The earliest finish time is only computed on the
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feasible devices, as a node can not be assigned to the other devices anyway. If the node
is colocated, all colocated nodes have to be assigned to the same device. However, their
predecessor nodes might not be assigned yet which is why the earliest finish time can
not be computed for these nodes. So their computing time slot is only defined and added
to the devices’ time schedule when it is their turn due to the task prioritizing list.

4.3.1 Upward Rank

The upward ranks are an essential element in the task priorization phase. In the
evaluation framework they are calculated in the partitioning preprocessing phase. The
upward rank of a node ni is defined as the average computation costs ω̄i plus the
maximum of the successors’ upward ranks and average communication costs ¯ci,j of the
edge from ni to nj (see [THW02]):

ranku(ni) = ω̄i + max
nj∈succ(ni)

( ¯ci,j + ranku(nj)) (4.1)

The upward rank of a sink node ns is equal to ω̄s. In the paper the average execution cost
ω̄i for task i is calculated in a slightly different way, as they have estimated execution
times for each task-processor pair. We define the average computation costs ω̄i as #ops(ni)

speedavr
,

while speedavr is defined as the following:

speedavr =

∑
d∈D

speed(d)

|D|
(4.2)

The calculation of the average communication cost is quite similar. The transferred data
between two nodes is divided by the average transfer rate. The startup communication
cost is considered in the computation costs of a send node. However, it is not processor
specific at the moment. These average values are used as the placement decisions are
not made yet.

4.4 Batch Split

In the Batch Split partitioning the graph’s set of nodes is divided into different ranges. For
each node the operations source rank as well as the operations sink rank is computed.
The operations rank is used to sort the nodes in a descending order. The nodes of
the critical path which should not be delayed are very likely to be all in the highest
range. The nodes are assigned to the devices (also sorted based on their speed) with an
assignment of the nodes of the highest range to the fastest device. Clearly, this is not
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possible if a device is not feasible. Therefore, each node is assigned to the next feasible
device which can be found in a similar way like in hashing. If a colocated node is in a
range and is not already assigned yet, the whole colocation group is assigned as one
unit.

The complexity of this algorithm is O(n × log(n)) as the whole node set has to be sorted.
The assignment of the nodes and calculation of the operations rank is possible in linear
time.

4.4.1 Operations Rank

The operations rank is defined as sum of operations sink rank and operations source
rank and is used to rate the “importance“ of a node.

Operations source rank counts the number of operations required to reach the given
node from a source node and be able to execute it. This is expressed in Equation 4.3.

operations source rank(ni) = max
nj∈pred(ni)

(operations source rank(nj) + #ops(nj)) (4.3)

Operations sink rank counts the number of operations required to execute the current
node and the longest path to a sink node which is formulated in Equation 4.4.

operations sink rank(ni) = ( max
nj∈succ(ni)

operations sink rank(nj)) + #ops(ni) (4.4)

4.5 Iterated Critical Path

The basic idea for the Iterated Critical Path (ICP) strategy is to assign paths iteratively to
devices as one unit. Thereby, we want to keep especially the first extracted critical path
on the same device. This is only possible as long as there are no contradicting memory,
device or colocation constraints. If so, the path has to be split.

This strategy is more computationally expensive than the other ones. The current critical
path can be found in linear time but this procedure has to be repeated till no edge is
left.

1. Get the critical path:

a) Start at the source nodes and compute for each node the operations source
rank. Extend the algorithm to set a path predecessor node for each node
which is the one the maximum operations source node value is taken from.
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b) Iterate over the sink nodes and take the one with the maximum operations
source rank. This sink node is on the critical path.

c) Create a new path. Add the sink node to this path and follow the path
predecessor nodes adding them to the path as well. Continue till there is
no path predecessor node left which means that the whole path is traversed.
Generate subpaths while adding nodes to the path based on already assigned
nodes or contradicting device constraints. If a node is already assigned, it is
not added to any subpath and finishes the current created subpath.

d) Remove the path’s edges. Add the newly created sink or source nodes to the
sink or source node sets.

2. For each subpath, check feasible devices and choose the device which has the
minimum possible execution time execmin so far. As shown in Equation 4.5
execmin(d) is equal to the number of operations assigned to device d divided by
the device speed. Consequently, it stands for the minimal execution time possible
if all nodes are executed sequentially without any idle times.

execmin(d) = #ops(d)
speed(d) (4.5)

If there is no feasible device further split the subpath in order to reduce the memory
demand.

3. Continue until all nodes are assigned.

4.6 Critical Path

The Iterated Critical Path strategy is quite computationally intensive. It might not be
necessary, to split the graph into paths until no path is left. For the above reason, the
partitioning strategy Critical Path (CP) is introduced:

Compute the critical path based on upward ranks in the same manner as at the Iterated
Critical Path partitioning. Assign the nodes of this path (as well as the nodes which are
colocated with these nodes) on the fastest feasible device. Take the other nodes and
assign them iteratively to the feasible device with the minimum possible execution time
execmin.

In comparison to the Iterated Critical Path, this strategy is much faster. Depending on
the graph, many evaluations showed that there is a long critical path and all the other
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extracted paths are pretty short. In these cases, it could be worth to save partitioning ex-
ecution time, only assign the first extracted critical path and switch to a computationally
less intensive method afterwards.

4.7 MITE

The idea of the partitioning strategy MITE is to consider multiple factors and use a
heuristic function to assign the nodes. MITE stands for the different factors Memory,
Importance speed boost, Traffic and Execution time. These factors aim to minimize
the transferred data and the overall execution time. Moreover, devices which have
proportionately much free memory in comparison to their total memory are preferred.
Important nodes (based on their effect on the overall execution time) should be located
on faster devices.

At first, the colocation groups are assigned and after that the not colocated nodes are
placed. All feasible devices are checked and the assignment unit a (colocation group or
not colocated node) is assigned to the device which minimizes the following function
shown in Equation 4.6

heu(dx, a) = traffic(dx, a) ×
execution time(dx, a) ×
memory(dx) ×
importance speed boost(dx, a)

(4.6)

The traffic component is supposed to minimize the transferred data size, whereas the
factor execution time should lead to a low overall execution time. The factor memory is
supposed to favor devices with not much memory used, while importance speed boost
influences important nodes to be mapped on faster devices. These factors are now
explained more detailed.

As shown in Equation 4.7, traffictemp depends on the node to be assigned and the device
dx to be checked as potential assignment device. The edge weight is divided by the
transfer rate as a transfer of large data sizes is far worse for the execution time on a
slow connection than on a high speed connection.

The transferred tensor size of all direct predecessor and successor nodes is considered,
as long as they are already assigned and not located on the same device. One might
also consider nodes which are not assigned yet. At the moment a not assigned node
leads to zero increase in the traffic but is definitely worse than a node located on the
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same device which also results in a zero increase. There are different possibilities how a
not assigned node can be handled. At the moment the best case placement (the one on
the same device) is assumed. Another option would be the worst case placement which
would be on the device with the slowest connection on which no send-receive-node-pair
for this data transfer exists yet. Moreover, one could take simply the average.

traff ictemp(dx, ni) =
∑

nj∈pred(ni)
d(nj )̸=dx

d(nj )̸=−1

( weight(nj, ni)
transfer rate(d(nj), dx) × condpred(nj, dx))

+
∑

nj∈succ(ni)
d(nj )̸=dx

d(nj) ̸=−1

( weight(ni, nj)
transfer rate(dx, d(nj))

× condsucc(ni, d(nj)))
(4.7)

However, the aggregation of send and receive nodes has to be considered for the traffic
which is the reason for condpred(nj, dx) and condsucc(ni, dj).

The idea of condpred(nj, dx) (as shown Equation 4.8) is that only the weights of edges
with predecessor nodes matter which have not already another successor node on the
device dx. If there is another successor on dx, there was already a send-receive-node-pair
inserted and no additional data would have to be transferred.

condpred(nj, dx) =


0 , if predecessor node nj has already another successor node on

device dx

1 , otherwise
(4.8)

condsucc(ni, dj) (as shown Equation 4.9) checks if there is already another successor
node of ni on device dj. If so, no additional send-receive-node-pair is needed.

condsucc(ni, dj) =

0 , if another successor node of ni is on device dj

1 , otherwise
(4.9)

If a is a colocation group the sum of the member nodes’ traffic has to be taken as
expressed in Equation 4.10.
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traffictemp(dx, a) =


traffictemp(dx, ni) , if a is the not colocated node ni∑
ni∈Vg

traffictemp(dx, ni) , if a is the colocation group g
(4.10)

However, traffictemp(dx, a) can not be used directly as it has to be normalized. This is
achieved by dividing by the maximum traffictemp of all feasible devices. Obviously, this
can only be done if the maximum traffic is not zero. If traffictemp is zero, the traffic
(as shown in Equation 4.11) is set to a very small number in order to avoid that all
other factors in Equation 4.6 are not considered anymore. We define t̂ as the maximum
traffictemp value of all feasible devices.

traffic(dx, a) =


0.000001 , if traffictemp(dx, a) = 0 ∧ t̂ ̸= 0

1.0 , if t̂ = 0
traffictemp(dx,a)

t̂
, otherwise

(4.11)

The factor execution time shall minimize the overall execution time. Therefore, the
number of already assigned operations is taken in addition to the number of operations
of the checked assignment unit. The sum is divided by the device speed and the result is
the minimal execution time of this device if the assignment unit would be on this device.
This is expressed in execution timetemp as shown in Equation 4.12. The idea is that the
overall execution time is minimized if the maximum execution time of all devices is
minimized.

execution timetemp(dx, a) =


#ops(dx)+

∑
ni∈Vg

#ops(ni)
speed(dx) , if a is the colocation group g

#ops(dx) + #ops(ni)
speed(dx) , if a is a not colocated node ni

(4.12)

For normalization, the execution timetemp has to be divided by the maximum execution
timetemp ê of all devices. If this ê is zero, the execution time is set to 1.0 as shown in
Equation 4.13.

execution time(dx, a) =

1.0 , if ê = 0
execution timetemp(dx,a)

ê
, otherwise

(4.13)

As devices with not much memory used should be favored, the factor memory(dx) simply
calculates the portion of used memory for device dx. If there is no memory used on
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device dx yet, memory(dx) is set to one tenth of the minimal non zero memory portion
m̃ of all devices as expressed in Equation 4.14. m̃ is initialized to 1.

memory(dx) =


m̃

10.0 , memory portion of dx = 0
used memory of dx

memory size(dx) , otherwise
(4.14)

The factor importance speed boost shall lead to the assignment of important nodes
on fast devices. The more important the node or the colocation group is the closer
is importance(a) (shown in Equation 4.16) to 1. The faster a device is the closer is
speed(dx) divided by the speed f̂ of the fastest feasible device to the maximum of 1. As
the device which minimizes the Function 4.6 is used for the assignment, the product
has to be subtracted by 1 as shown in Equation 4.15. In general, faster devices should
be favored by this factor which is why we did not simply take the absolute value of the
difference between the importance and speed factor.

importance speed boost(dx, c) = 1 − (importance(c) ∗ speed(dx)
f̂

) (4.15)

The importance differs if a is a colocation group or a not colocated node and is defined
in Equation 4.16. The importance of a node is given by its operations rank and divided
by the maximum operations rank ô which is given by nodes on the critical path.

importance(a) =



∑
ni∈Vg

operations rank(ni)

ô×|Vg | , if a is the colocation group g

operations rank(ni)
ô

, if a is a not colocated node ni

(4.16)

4.8 Depth First Search

Another partitioning strategy is Depth First Search (DFS) partitioning. The idea behind
this strategy is to traverse the graph in a depth first search and assign the nodes based
on a heuristic function.

The algorithm performs the following steps:

Sort the source nodes in a decreasing order based on their operations rank. Traverse the
graph in depth first search starting at the beginning of the sorted list. Consequently, the
algorithm starts with a source node which is on the critical path.
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Perform the depth first search with the help of an already-visited-boolean and a recursive
function. If a node is not assigned yet, assign the whole assignment unit. Place the
assignment unit on the device minimizing the product of execution time and traffic
which was defined in the MITE strategy.

40



5 Scheduling

As illustrated in Chapter 1, scheduling plays an important role in minimizing the overall
execution time. In this chapter we define the scheduling problem and present three
scheduling algorithms.

5.1 Problem Formulation

A scheduling algorithm defines the execution order for each device. The function
ex_order : Vd → S maps all the device’s vertices on natural numbers which define the
order of execution. The set S does not contain duplicates and is defined as S = {n ∈
N| n ∈ S ∧ y ∈ S → n ̸= y}.

For a correct scheduling the following criteria have to be fulfilled:

1. A node is executed only once.

2. Each node is executed.

3. Each device can execute at most one node simultaneously.

4. Once a device has started to execute a node, it can not be interrupted.
(→ non-preemptive scheduling)

5. A node n can be only executed as soon as all tensors of its direct predecessor nodes
are computed and transferred to the device d(n). When all data is available, the
node is called an executable node.

6. A device can only execute nodes which are placed on this device. A node can not
be on multiple devices.

7. A device can only compute nodes if there is an executable node on this device.
Idling is possible.
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The overall goal is to minimize the makespan as defined in Equation 2.1. The graph
is already partitioned when the scheduling starts. As the scheduling algorithm has no
influence on the number of cross-device edges and every node is executed exactly once,
the traffic parameter is independent from the chosen scheduling strategy.

5.2 FIFO Scheduler

For each device, the nodes which can be executed are stored in a collection. Whenever,
a new node becomes executable it is added to the collection and is removed as soon as it
was executed. At First In First Out (FIFO) scheduling the collection is a queue. Devices
execute the nodes in the same order the nodes have been added to the queue.

5.3 PCT Scheduler

The upwards Path Computation Time first (PCT) scheduler executes the node first whose
longest path of direct and indirect successors takes most time to compute. This can be
achieved by selecting the executable node with the maximum upwards path computation
time. The (upwards) path computation time (PCT) is calculated starting from the sink
nodes as shown in Equation 5.1. The path computation time value of a sink node
ni is the time it takes to execute ni on the device it was assigned to. If the node is
not a sink node one has to consider the maximum of the time to transfer the data to
one of its successor nodes as well as the path computation time of the same successor
node additionally. The transfer time is 0, if both nodes are placed on the same device.
Otherwise, it is the edge weight divided by the transfer rate between the two devices.

PCT(ni) = max
nj∈succ(ni)

(PCT(nj) + transfer time(nj, ni)) + #ops(ni)
speed(d(ni))

(5.1)

The path computation time is calculated once in linear time during the scheduling
preprocessing.

5.4 MSR Scheduler

The PCT scheduler only considers the path computation time for its scheduling decisions.
However, if a lot of nodes depend on a specific node it could be better to schedule this
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Figure 5.1: Scheduling strategies

node first even if another one has a larger path computation time. This is especially the
case if another idle device becomes active as a successor node becomes executable.

Schedules created by two different scheduling strategies on the same graph are illustrated
in Figure 5.1. The assumed device speed is 50 Ops

EU
, while the transfer rate is 10

EU
. Figure

5.1 (a) shows the dataflow graph annotated with node and edge weights. In Figure
5.1 (b) the nodes are labelled with their path computation time values. The schedule
created by the PCT scheduler is visualized in 5.1 (c). Clearly, the schedule in Figure 5.1
(d) would be better as the overall execution time is much smaller.

Therefore, the new scheduling strategy Maximum Successor Rank first (MSR) is intro-
duced in which nodes are selected based on the function successor rank in Equation
5.2. Each direct successor node of ni increases the successor rank by one. ni gets an
additional point for each successor node which is not assigned to the same machine
and another one for each successor becoming executable after computing ni. This is
formulated by prednotex(n) which contains the not executed predecessor nodes of n.
After executing the last not executed predecessor node, the node becomes executable.
The last term is an increase of 5 for each successor which becomes executable on an
idle device. This is rewarded by so many points as a device becomes active again and
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thereby probably reduces the overall execution time. The function idle(d) is 1 if device
d is idle when making the scheduling decision. If not, it is 0.

successor rank(ni) =
∑

nj∈succ(ni)
( 1

+ 1 ∗ (d(nj) ! = d(ni))
+ 1 ∗ (|prednotex(nj)| == 1)
+ (idle(d(nj)) ∧ (|prednotex(nj)| == 1)) ∗ 5 )

(5.2)

The idea is to favor the execution of nodes whose successor nodes can be executed
afterwards and especially if it leads to a device becoming active. If all the rank values
are equal, the path computation time is used as a tie breaker.

An obvious disadvantage of this strategy is that we have to check if another device is
idle or not. This requires additional device communication while scheduling.
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6 Sample Data

In order to evaluate partitioning and scheduling strategies sample data has to be
collected. In this chapter typical model types of TensorFlow are described. Furthermore,
extracted graph and cost models are analysed in order to generate realistic synthetic
data.

Two kinds of graphs are used for the evaluation:

1. Real-world dataflow graphs extracted from TensorFlow and extended by required
constraints.

2. Synthetic dataflow graphs

6.1 Typical Examples in TensorFlow

Typical machine learning models can be expressed in TensorFlow. In order to get a
TensorFlow dataflow graph, a model has to be defined and exported [Sca16]. A typical
model type is a linear model which is a weighted sum of variables assuming a linear
relation between its input variables and output variable. It can be used to predict
continuous values or to classify. In comparison to multi-layer networks, it can be quicker
debugged and trained and works well with many features.

Another typical model type are convolutional neural networks. Convolutional neural
networks suit well for data which can be structured as a grid in a way that related values
are next to each other. Therefore, they are often used for image classification [CZG+16]
[KSH12] and contain convolutions as the name suggests. Convolution is a mathematical
operation that takes two functions as an input and provides another function as output.
Practically, one can think of a convolution for example as sliding a kernel over the pixels
of an image.

Recurrent neural networks are another typical model type and are for example used
for language modeling [MAP+15] [CW08]. They often consist of multiple layers with
recurrent connections.
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6.2 Data Generation and Sample Data

To evaluate partitioning and scheduling algorithms, sample data has to be collected.
Therefore, different models in TensorFlow are generated and the graph as well as
the cost model is extracted. Different configuration options have to be set that the
cost model can be extracted. Information about the graph can be received by calling
“tf.get_default_graph().as_graph_def()“ in python.

The extracted graph data contains the name and id of existing nodes, how these nodes are
connected (“input: “Variable_1“ “) and which nodes are colocated (“loc:@Variable_1“).
The cost model contains information about the compute costs. TensorFlow also collects
information about the nodes’ memory sizes or edges’ tensor sizes but they are not easily
extractable yet. For the evaluations the data is extended by the tensor sizes, #ops, device
constraints and RAM demand.

As the TensorFlow sample models are not that large yet (~5000 nodes) other data
sources were required. A random graph generator was implemented in order to create
directed acylic graphs provided with the required characteristics. These characteristics
include the id, incoming and outgoing edges, colocated nodes, the tensor size of the
output tensor, #ops, RAM demand and the device constraint for each node. A graph is
generated in levels. As an edge is always from a node of a lower level to a node of a higher
level cycles are avoided. Multiple ways to generate the edges were implemented:

When a new level was generated each node of the former levels is linked with a defined
probability to each node in the new level. The drawback of this approach is the following:
With each new level all existing nodes are linked to the latest inserted nodes with a
defined probability. Hence, the lower the level the higher the probability for a node
to have many edges. To get a more realistic distribution of edges, a limitation on the
levels can be added e.g no edge can be between nodes with a distance higher than 5
levels. Alternatively, a function can be used to lower the probability of having an edge
drastically the more distant two nodes are in terms of levels. In order to allow long
range edges a method was implemented which randomly selects two nodes and adds an
edge from the node with the lower level to the node with the bigger one. The edge is
only added if the edge has not existed yet.

These typical graph characteristics depend on multiple input parameters: The number of
levels as well as the minimum and maximum number of nodes per level. Furthermore,
the minimum and maximum RAM demand to store a node can be defined. In order to
set the size of a node’s output tensor the minimum and maximum tensor size can be
provided. The number of operations for a node are set to be in a certain range as well.
A node’s probability to have a GPU or CPU constraint is provided. Depending on how
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6.2 Data Generation and Sample Data

(a) Convolutional network 1 (b) Recurrent network 2

(c) Dynamic recurrent neural network 3

Figure 6.1: Size and number of colocation groups

the edges are generated the edge probability, an edge level limit or a function defining
the edge probability can be set.

In order to add realistic colocation constraints we analysed the colocation groups in the
graphs extracted from TensorFlow.

1https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_
NeuralNetworks/convolutional_network.py (last followed on 28.02.2017)

2https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_
NeuralNetworks/recurrent_network.py (last followed on 28.02.2017)

3https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_
NeuralNetworks/dynamic_rnn.py (last followed on 28.02.2017)
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6 Sample Data

Figure 6.1 shows the size and number of colocation groups in three different graphs
extracted from TensorFlow. These graphs consist of many small colocation groups with
just a few member nodes, while there are only few groups with many colocated nodes.

For the evaluations, the edge weights are set randomly in a range of 1 and 100 as well as
the number of operations per node. The memory demand of a node is also set randomly
within this range.

The device data is also stored in a csv-file. Each device consists of a device id, available
RAM, speed (number of operations per execution unit), the device type as wells as a
transfer rate to all other devices. The transfer rate is encoded as an upper triangular
matrix as the transfer rate of a device with an other device is bidirectional and a device
has zero costs to communicate with itself.

When generating the device data, the number of devices can be set as wells as the device
type probability. For the evaluations, the probability to be a CPU device is 60 % and
being a GPU device is 40 %. The device speed is in a random range of 10 and 100
operations per execution unit. The faster a device is the less memory it has. The transfer
rate between the devices is set to a random number in the range of 10 and 60.
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7 Evaluation

In this chapter the partitioning strategies are evaluated in combination with the afore-
mentioned scheduling algorithms. At first, the algorithms are executed on synthetic
sample graphs and later on three graphs extracted from TensorFlow. Further evaluations
are done on only seven devices. For these executions, we analysed the device utilization
in order to investigate the reason for differences in the total execution time.

7.1 Synthetic Graph Evaluations

Various synthetic graphs were generated in order to evaluate combinations of scheduling
and partitioning strategies. The properties of these graphs are listed in Table 7.1. The
graph’s edges were generated on two different modes: The level based approach and a
random method to allow long range edges. These techniques were further described in
Chapter 6. The graphs vary for example on their number of nodes, density or portion of
colocated nodes. The reason for these variations is that a strategy might perform well
on certain graphs but worse on others.

Six different partitioning strategies were executed in combination with three different
scheduling strategies on 100 devices. Some of the strategies are non-deterministic as
e.g. the order of nodes being assigned might differ. In order to avoid false conclusions
the visualized execution time is the average of 10 executions and the standard mean
deviation is shown as a grey line on each bar.

Table 7.1: Properties of six synthetic graphs

Graph #nodes
#edges
(total)

#random
edges

#level
based
edges

#levels
Minimum
nodes per

level

Maximum
nodes per

level

Edge level
limit

Average
node degree

#colocated
nodes

1 36319 16076 8003 8073 300 50 200 20 0,44 5200
2 18168 25148 5015 20133 300 20 100 20 1,38 2762
3 7475 49510 0 49510 1000 5 10 3 6,62 263
4 9899 42486 21099 21387 200 20 80 10 4,28 1945
5 10440 47414 23535 23879 200 20 80 10 4,54 4768
6 26887 107144 53423 53721 500 10 100 20 3,98 4214
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7 Evaluation

Figure 7.1 shows the simulated execution time of these scheduling and partitioning
combinations. If the partitioning and graph combination stays the same, the FIFO
scheduling strategy performs almost always the worst. In few cases the Maximum
Successor Rank first (MSR) scheduling is slightly worse. The upwards Path Computation
Time first (PCT) scheduling outperforms the other two scheduling strategies in almost
all cases. Only in combination with MITE and Hashing, the MSR scheduler showed
minimal better results in some runs on graph 1 and 2. We keep in mind that the path
computation time value is used as a tiebreaker in the MSR strategy. However, this could
be an explanation for equal results but not for the better ones. Probably, the partitioned
graphs 1 and 2 contain sections like shown in Section 5.4 which is why MSR performs
sometimes better. A reason why it only performs sometimes better can be a varying
placement created by Hashing or MITE. The node placement of these strategies depends
on the node assignment order which is not deterministic in the evaluation framework.

On closer examination of the partitioning strategies, Batch Split and Hashing were in
general the worst strategies on all sample graphs. On graph 1 and 2 the execution time
of MITE was about two times higher than HEFT, Critical Path and Iterated Critical Path.
On graph 5 and 6 the execution time of MITE was almost the same and even smaller on
graph 3.

Figure 7.2 shows the traffic generated when performing the strategies on the six synthetic
sample graphs. In general, graph 1 has the lowest traffic while it is slightly higher on
sample graph 2. On graph 3, 4 and 5 there is also more traffic, while the generated
traffic of graph 6 is the highest by far. The reason for this observation is pretty obvious
when looking at the number of edges in Table 7.1. Graph 2 (with ~25 000 edges) has
about twice the number of edges than graph 1, while graph 3, 4 and 5 have about twice
the number of edges than graph 2. Graph 6 has the highest number with 107 144 edges.
Clearly, the number of edges has an influence on the traffic as more edges increase the
probability of having cross-device edges.

When analysing the traffic results one also notices that the traffic stays the same as long
as the graph and the partitioning strategy stay the same. The traffic is independent from
the scheduling strategy as it only depends on the used cross-device edges and all nodes
are scheduled exactly once for sure.

For every graph Hashing, HEFT and Critical Path partitioning performed the worst in
terms of traffic. This is no surprise as Hashing simply distributes the nodes on different
machines and HEFT only aims to reduce the overall execution time. Thereby, it does not
try to minimize the size of transferred data. After the critical path is assigned, Critical
Path partitioning only takes care of the execution time minimization in its assignment
decision. This is the reason why this strategy showed these traffic results. Batch Split
partitioning leads to lower traffic as the mapping of nodes of the same ranges might
result in neighbouring nodes to be mapped to the same device. Obviously, this approach
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Figure 7.1: Execution time of scheduling and partitioning strategies on synthetic graphs

produces less cross-device edges resulting in lower traffic. When using MITE and DFS
partitioning, a traffic factor is part of the assignment decision process. Therefore, it is
logical that those two strategies performed well at the traffic evaluation.

The number of milliseconds it takes to partition the graph is shown in Figure 7.3.
Executing HEFT took the longest by far. The differences in the execution duration of
the HEFT algorithm correlates with the graphs’ number of nodes as an insertion gap
is searched for each node. Graph 1 has 36 319 nodes, graph 6 is the second largest
with 26 887 nodes and graph 2 has 18 168 nodes. The next smaller ones are graph 4
and 5 and the least number of nodes has graph 3. The exact same ordering is given
when looking at the partitioning execution times of the HEFT algorithm. MITE and
DFS took comparatively long to partition graph 6. Normally, one would expect that the
partitioning execution time of these strategies strongly depends on the number of nodes
and number of devices, as the Function 4.6 is calculated for each assignment unit and
device pair. However, Graph 6 is characterized by many edges. The traffic factor has
to be computed in the Function 4.6. The time it takes to compute this factor highly
depends on the number of edges.
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Figure 7.2: Traffic of scheduling and partitioning strategies on synthetic graph data

Table 7.2: Sample graphs extracted from TensorFlow

Graph #nodes #edges
Average

node degree
#colocated

nodes
Additional remarks

convolutional
_network

347 531 1,53 104
Convolutional network,

extracted from TensorFlow
recurrent
_network

3069 5533 1,80 533
Recurrent network,

extracted from TensorFlow

dynamic_rnn 5271 9214 1,75 1356
Dynamic recurrent neural network,

extracted from TensorFlow

7.2 TensorFlow Graph Evaluations

The strategies were also compared on graphs directly extracted from TensorFlow. Table
7.2 lists the used graph data and shows graph characteristics like number of nodes,
edges or colocations. These graphs are the same as used in Chapter 6 for the colocation
visualization.
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Figure 7.3: Partitioning execution time of scheduling and partitioning strategies on
synthetic graph data

As the PCT scheduling leaded to the lowest execution time for all the partitioning
strategies on every graph only this strategy is visualized in Figure 7.4. The computation
was simulated for 50 devices. To avoid false conclusions based on randomness the
average of 100 runs was taken as a result.

In Figure 7.4 the graph execution time is visualized. Clearly, Hashing performed the
worst on all graphs. MITE and Critical Path partitioning showed the best results. DFS
partitioning leaded to slightly worse results. It is very surprising that Iterated Critical
Path is worse than Critical Path partitioning on each of the graphs. Critical Path only
considers the critical path, while Iterated Critical Path splits the whole graph until
each node was assigned to a path. The reason for the difference in the execution time
performance might be the different path assignment strategies. Critical Path partitioning
maps the critical path on the fastest device possible, while Iterated Critical Path takes
the device with the minimal number of operations divided by the device speed. At the
beginning, this value is zero for all devices. As the first extracted path is the critical one,
this procedure might lead to the mapping of the critical path on a slow device. HEFT

53



7 Evaluation

convolutional_network dynamic_rnn recurrent_network
Graphs

0

1000

2000

3000

4000

5000

E
xe
cu
ti
o
n
 t
im

e

Execution time per strategy and graph

BatchSplit + PCT
CP + PCT

DFS + PCT
HEFT

Hash + PCT
ICP + PCT

MITE + PCT

Figure 7.4: Execution time evaluation of partitioning and scheduling strategies for three
graphs extracted from TensorFlow

was up to 75% and at least 45% worse than the results of the combination of MITE and
PCT scheduling.

Figure 7.5 shows the traffic depending on the different strategies for each of the three
graphs. Similar to the synthetic graphs, Hashing and HEFT performed the worst. Critical
Path partitioning leaded to lower traffic. Iterated Critical Path showed better traffic
results than Critical Path partitioning as all paths are computed and tried to be mapped
to the same devices. As a path contains neighbouring nodes the repetition of this
path assignments resulted in lower traffic. MITE, Batch Split and DFS partitioning
performed best in terms of traffic. Batch Split showed better traffic results on the
extracted TensorFlow graphs than on the synthetic ones. A reason for this could be a
difference in the graph structure leading to more cross-device edges when running Batch
Split on the synthetic graphs. Due to their assignment decision process, MITE and DFS
partitioning performed very well as already mentioned before.

Another interesting evaluation parameter is the time required to partition the graph.
This parameter is visualized in Figure 7.6. Clearly, Iterated Critical Path partitioning
is the most computationally intensive strategy as all paths have to be computed and
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convolutional_network dynamic_rnn recurrent_network
Graphs

0

50000

100000

150000

200000

250000

300000

350000

400000

Tr
a
ff
ic

Traffic per strategy and graph

BatchSplit + PCT
CP + PCT

DFS + PCT
HEFT

Hash + PCT
ICP + PCT

MITE + PCT

Figure 7.5: Traffic of partitioning and scheduling strategies for three graphs extracted
from TensorFlow

assigned. Searching for a gap to insert a node into is also computing intensive. This
is the reason why the HEFT algorithm has the second largest partitioning time. In
comparison to the evaluations on the synthetic graphs the partitioning execution time
of HEFT was comparatively low. This observation can be explained by the number of
nodes which is far less in the TensorFlow sample graphs. Clearly, Hashing is quite fast as
it partitions the node set based on a simple hash function. One might expect the Batch
Split to be slower than MITE and DFS partitioning as all nodes are sorted depending on
their operations rank. However, the size of the three sample graphs is not really large
and the assignment decision is way faster in Batch Split partitioning. At MITE and DFS
partitioning each device is checked for each assignment unit and various factors have to
be computed for the feasible devices.

7.3 Evaluation on Few Devices

During the development of the partitioning and scheduling strategies the visualization
of the device utilization provided much insight in how to improve the strategies. For a
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Figure 7.6: Partitioning execution time of partitioning and scheduling strategies for
three graphs extracted from TensorFlow

better overview the next evaluations are only done on seven devices. The sample graphs
2 and 3 as well as two graphs extracted from TensorFlow are evaluated. At first, we
compare the simulated execution time and visualize the results in Figure 7.7. Graph 2
was selected as MITE performed comparatively bad on this graph during the evaluations
on the synthetic graphs. To further investigate the reason for this, we will take a closer
look on the device utilization later.

Figure 7.7 reveals no surprises with respect to the execution times of the strategies.
One of the few differences to the aforementioned evaluations is that the Batch Split
performed comparatively worse on the dynamic_rnn for 7 devices than on 50. As
Batch Split cuts the node set in equal sized parts for each device the number of devices
can have a big impact on the performance of this strategy. Therefore, it is not really
suitable for real-world usage as we do not know a good number of devices beforehand.
The performance of other strategies is more robust to the arbitrary device number
specification.

Graph 3 shows a similar distribution as before. Remarkable is the fact that the execution
time is much lower in comparison to graph 2. This was the other way round in the
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Figure 7.7: Execution time of scheduling and partitioning strategies on 7 devices

evaluation on 100 devices. Graph 2 has about twice the number of nodes than 3,
but graph 3 is has about twice the number of edges. Graph 3 is a narrow but long
dataflow graph. All these observations reveal that the executions on graph 2 can be
better parallelized. This is the reason why the computation took longer on 7 devices but
was faster on 100 devices in comparison to graph 3. Nevertheless, one can see in Figure
7.8 that the traffic on graph 3 is higher as it has much more (cross-device) edges.

Figure 7.9 (a) shows the utilization of the individual devices when performing the
different partitioning and scheduling strategies on graph 2. Figure 7.9 (b) does the same
for graph 3. Each time a node executes it is displayed as a bar. The length of the bar
reveals the computation duration of the node. White gaps mean that the device was idle
at this time period.

When comparing Figure 7.9 (a) with 7.9 (b) one notices that there are much more
gaps at the execution of graph 3. Due to the narrow structure of graph 3 there are less
nodes executable when the scheduler makes the decision which node is computed next.
This leads to idle devices as they have to wait for nodes to become executable. This
hypothesis can be confirmed by Figure 7.10 plotting the number of executable nodes for
each device before making the decision which node is executed next. For every strategy
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Figure 7.8: Traffic of scheduling and partitioning strategies on 7 devices

there were far more executable nodes on graph 2 when making the scheduling decision.
Clearly, a lot of scheduling options is an indicator for less idle times on the devices as it
is less likely that there is no executable node. Furthermore, this is an indicator that the
dataflow graph computation can be parallelized.

In the utilization plot of Figure 7.9 (a) we also can find the reason for the bad perfor-
mance of the MITE partitioning. Clearly, the computation load is not distributed well.
Device 0 has to perform a lot of computations. Within the heuristic function of MITE
neither the memory nor the execution time factor can be the reason for this as they
have a positive impact on the computation and memory balance. Importance speed
boost can not be the reason either as device 0 is the slowest of the three GPU devices.
Therefore, the only possible reason for this imbalanced computation is the traffic factor.
It is possible that a larger colocation group was assigned to device 0 influencing the
assignment of even more nodes to this device by the traffic factor.
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(a) Scheduling options for graph 2

(b) Scheduling options for graph 3

Figure 7.10: Number of executable nodes per device before making the decision which
is node is executed next
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8 Related work

Graph partitioning and scheduling strategies have been researched in the last decades.
A lot of strategies have been investigated considering multiple constraints and sys-
tem models. In this chapter the work which is particularly relevant to our work is
presented.

The TensorFlow whitepaper [MAP+15] presents a placement strategy which is not
published in the open source code yet. Their placement algorithm takes a cost model
as an input. This cost model contains for example estimates of tensor sizes or the
computation time for each node and is created based on heuristics or collected statistics
from earlier executions. Starting with the source nodes the graph execution is simulated.
Each node is greedily assigned to the feasible device on which it would finish its
computation earliest. This heuristic function takes the communication costs as well
as computation costs into account. Colocation constraints are considered by grouping
nodes and intersect the feasible device sets. Our first plan was to use this strategy as
a benchmark algorithm for our work. Unfortunately, the code for this algorithm is not
published yet and the description is not precise enough to be able to reimplement it.

The placement algorithm has the same role as the partitioning in our model. Our
partitioning algorithms also place nodes on devices, while the TensorFlow placement
algorithm implicitly splits the node set by placing the nodes on different devices. The
placement algorithm in TensorFlow is work in process according to the paper [MAP+15].
They propose to further investigate the use of machine learning to let the system learn
how to make good placement decisions.

Topcuouglu et al. [THW02] addressed the static task scheduling problem with the
HEFT algorithm. This algorithm places tasks (equal to nodes) on processors and defines
the order of the executed tasks. They also aim to minimize the makespan (overall
completion time), consider edge weights as wells as various possibly heterogenous
transfer rates. The time to transfer data is also calculated by dividing the edge weight
with the transfer rate and contains additionally the communication startup costs of a
processor. In contrast, the task execution time can not be computed by dividing the
number of operations with the device speed but is provided for each task-processor pair.
Colocation constraints, device constraints, send-receive node aggregation and memory
limitations are not considered. Another difference is that the node execution order is
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8 Related work

defined before the execution starts in an insertion based policy. Although the HEFT
strategy is rather old it performs quite well in terms of makespan and robustness when
compared to twenty other heuristic based strategies [CJS+08]. This is the reason why it
was used as a benchmark algorithm in our evaluation framework.

The HEFT algorithm can be extended to dHEFT [CRB+15] which shall solve the dynamic
task scheduling problem and still aims to minimize the overall execution time. dHEFT
and CATS are used as a benchmark for the strategies CPATH and HYBRID [CRC+16].
CATS, CPATH and HYBRID divide tasks in critical tasks and non-critical tasks, whereas
the critical tasks should be assigned to a fast processor and the non-critical ones to a
slow processor. The criticality-aware task scheduler (CATS) [CRB+15] considers task
critical or not based on the bottom level. The bottom level is defined as the longest
path (measured in the number of tasks) from the current node to a sink node. In this
metric the fact that nodes can have heterogenous weights is not taken into account.
This concept is extended in the critical path scheduler CPATH in which the criticality is
evaluated based on task execution time. It calculates the so-called bottom cost. The
Hybrid Criticality scheduler HYBRID considers the bottom level as well as the bottom
costs for its decisions.

In comparison to our work, these approaches also have the concept of nodes become
ready as soon as the results of all predecessors are conveyed. However, ready nodes
are inserted in a non critical or critical ready queue. This is also the main difference to
our approach: The node placement is not done until a processor is idle and takes a new
task out of a ready queue. Another difference is that the required transfer time for the
computation results is not taken into account in all the suggested dynamic solutions.

COLA [KHP+09] is an interesting iterative graph partitioning approach. This method
also aims to minimize traffic and balances computation. Thereby, it reduces the overall
execution time. COLA also supports heterogenous hosts and capacity limits. More-
over, it enables multiple user-defined constraints like colocation or even exlocation
constraints.
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9 Discussion

In this chapter we discuss possible future work as well as the drawbacks of the existing
solutions.

For the creation of the colocation groups the whole graph data is read and kept in RAM.
If we read the whole graph data anyway more information about the graph like number
of nodes, number of edges or node degree could be collected. These information could
be considered in a smarter partitioning or scheduling.

Another weakness of our model is that we assume to have knowledge about the com-
putation costs and tensor sizes before partitioning. However, this knowledge has to
be somehow collected. In the case of TensorFlow the number of possible operations is
rather limited and therefore the computation costs could be estimated based on data
collected in the past. If this is not possible, a simulated execution could generate the
data but would lead to additional overhead.

Furthermore, we assume that all machines are inter-connected. In some settings some
devices might not be able to communicate with each other. However, one simple
modification might be to extend the definition of feasibility in a way that a device is
only feasible for node placement if the direct predecessor and successor nodes can
communicate with this device. Another option is to use certain devices as relay if two
devices can not communicate directly.

In order to make the evaluations of the synthetic graphs more independent of random
graph structure the sample graphs should be generated automatically in a larger number
and generic way. If the strategies are executed on a large set of graphs we need different
metrics like the Schedule Length Ratio [THW02] to still be able to compare them.

It is possible that the system is exposed to a lot of changes. For example the transfer
rate might change or a connection could be lost completely. In TensorFlow, it is also
possible that the set of nodes to be executed depends on varying variables. In these
cases, it might be better to consider more dynamic solutions. Another advantage of
dynamic approaches is that we could also perform a first partitioning based on unprecise
estimations and adapt the node distribution during runtime. One example how this
dynamic partitioning could be realised is the graph processing system Mizan [KAA+13].
It extends Pregel [MAB+10] for dynamic load balancing and introduces a dynamic
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9 Discussion

partitioning algorithm consisting mainly of monitoring and node migration planning in
a distributed system.
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10 Conclusion

In this thesis, we developed multiple partitioning and scheduling techniques. The goal
was to reduce the overall execution time and traffic and consider constraints which were
derived from real-world requirements of the machine learning library TensorFlow. Later,
we compared and evaluated the developed algorithms.

At first, we developed a system model which conforms to the constraints derived from
TensorFlow. Machine learning models can be represented as dataflow graphs. As these
models can be very large they are often executed in a distributed system. Therefore,
they have to be partitioned onto different devices. On these devices, it is necessary to
define a node execution order during computation. These challenges were formulated in
the modified scheduling and partitioning problem aiming to reduce the network traffic
and the total execution time.

Multiple partitioning and scheduling strategies have been developed matching the
additional constraints defined in the system model. To investigate the effects of various
partitioning and scheduling strategies on the total execution time we implemented an
evaluation framework to simulate the execution. Thereby, our results clearly showed
that the combination of scheduling and partitioning strategies is quite important as a
bad scheduling strategy can destroy the effects of a smart partitioning and the other way
round.

In combination with almost every partitioning algorithm, the scheduling strategy up-
wards Path Computation Time first (PCT) outperformed the other investigated scheduling
strategies by far in terms of the execution time. The idea behind this scheduling strategy
is to compute the executable node first which has the most time-consuming path to a
sink node.

Together with the PCT scheduler, the partitioning strategies Critical Path, MITE and
DFS partitioning performed in particular well on the sample graphs extracted from
TensorFlow. Critical Path partitioning aims to map the nodes of the critical path to
the fastest feasible device. MITE makes use of a heuristic function to place the nodes
and considers the factors memory, traffic and execution time. It also favors important
nodes on fast devices. DFS partitioning traverses the graph in depth-first search and
maps the nodes also based on a heuristic function. These three partitioning strategies
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10 Conclusion

needed significantly less time to execute the graphs extracted from TensorFlow than the
benchmark algorithm HEFT.

As the demand for fast machine learning libraries as well as the collection of graph
structured data is constantly growing, it is essential to think about the computation
and processing of these graphs. Obviously, distributed systems can have a huge impact
on minimizing the total execution time by parallelizing. Efficient scheduling and par-
titioning plays a major role in executing graphs in an acceptable time. Therefore, we
believe that it is definitely worth to do more research in scheduling and partitioning
algorithms.
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