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Symbols and Abbreviations

Latin le�ers
d dimension of the parameter domain Ω
FX cumulative distribution function of variable X
K hydraulic conductivity
L likelihood
n number of nodes
N number of Monte-Carlo realizations,

also number of discrete nodes of a distribution
p number of ansatz functions p = dimP,

also number of expansion terms
t number of test functions t = dimT
u model function
U random �eld describing u
x vector of nodes x = [x1, . . . ,xn] ∈ Ωn

X input parameter
Y model output Y = u (X )
Z observable data

Greek le�ers
ε measurement error
θ water content

Λ (P) Lebesgue constant of operator P
µ measure of X
ξ , ζ location (spatial coordinates)
πε probability density function (pdf) of random variable ε
π (without index): prior pdf of X
π̂ (without index): posterior pdf of X
τ time (temporal coordinate)
ψ pressure head
Ω parameter domain, Ω ⊆ Rd
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Symbols and Abbreviations

Stochastic operators
P [A] probability of event A
E [·] expected value of a random variable
Var [·] variance of a random variable
Cov [·, ·] covariance of two random variables

Spaces
P ansatz space
T test space
U space containing u

Distributions
N (

m,σ 2) normal distribution with meanm and variance σ 2

U (A) uniform distribution on the set A

Modifiers
π̂ hat posterior of π
x? star optimal x
x̃ tilde approximation of x

Abbreviations
BU Bayesian updating
cdf cumulative distribution function
DoE design of (computer) experiments
gpe Gaussian process emulator
i.i.d. independent and identically distributed (random variables)
MC Monte-Carlo
MCMC Markov-Chain Monte-Carlo
MLMC Multi-Level Monte-Carlo
OSC optimized stochastic collocation
PCE polynomial chaos expansion
pdf probability density function
QoI quantity of interest
SC stochastic collocation
UP uncertainty propagation
UQ uncertainty quanti�cation
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Abstract

Motivation and Goal

Computer simulations allow us to predict the behavior of real-world sys-
tems. Any simulation, however, contains imperfectly adjusted parameters
and simplifying assumptions about the processes considered. Therefore,
simulation-based predictions can never be expected to be completely ac-
curate and the exact behavior of the system under consideration remains
uncertain. The goal of uncertainty quanti�cation (UQ) is to quantify how
large the deviation between the real-world behavior of a system and its pre-
dicted behavior can possibly be. Such information is valuable for decision
making.
Computer simulations are often computationally expensive. Each simula-
tion run may take several hours or even days. Therefore, many UQ meth-
ods rely on surrogate models. A surrogate model is a function that behaves
similarly to the simulation in terms of its input-output relation, but is much
faster to evaluate. Most surrogate modeling methods are convergent: with
increasing computational e�ort, the surrogate model converges to the orig-
inal simulation. In engineering practice, however, results are often to be
obtained under time constraints. In these situations, it is not an option to
increase the computational e�ort arbitrarily and so the convergence prop-
erty loses some of its appeal. For this reason, the key question of this thesis
is the following:

What is the best possible way of solving UQ problems
if the time available is limited?

This is a question of optimality rather than convergence. The main idea of
this thesis is to construct UQ methods by means of mathematical optimiza-
tion so that we can make the optimal use of the time available.
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Abstract

Contributions

This thesis contains four contributions to the goal of UQ under time con-
straints.

1. A widely used surrogate modeling method in UQ is stochastic col-
location, which is based on polynomial chaos expansions and there-
fore leads to polynomial surrogate models. In the �rst contribution,
I developed an optimal sampling rule speci�cally designed for the
construction of polynomial surrogate models. This sampling rule
showed to be more e�cient than existing sampling rules because it
is stable, �exible and versatile. Existing methods lack at least one
of these properties. Stability guarantees that the response surface
will not oscillate between the sample points, �exibility allows the
modeler to choose the number of function evaluations freely, and
versatility means that the method can handle multivariate input dis-
tributions with statistical dependence.

2. In the second contribution, I generalized the previous approach and
optimized both the sampling rule and the functional form of a surro-
gate in order to obtain a general optimal surrogate modeling method.
I compared three possible approaches to such optimization and the
only one that leads to a practical surrogate modeling method requires
the modeler to describe the model function by a random �eld. The
optimal surrogate then coincides with the Kriging estimator.

3. I developed a sequential sampling strategy for solving Bayesian in-
verse problems. Like in the second contribution, the modeler has to
describe the model function by a random �eld. The sequential design
strategy selects sample points one at a time in order to minimize the
residual error in the solution of the inverse problem. Numerical ex-
periments showed that the sequential design is more e�cient than
non-sequential methods.

4. Finally, I investigated what impact available measurement data have
on the model selection between a reference model and a low-�delity
model. It turned out that, under time constraints, data can favor the
use of a low-�delity model. This is in contrast to model selection
without time constraint where the availability of data often favors
the use of more complex models.
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Abstract

Conclusions

From the four contributions, the following overarching conclusions can be
drawn.

• Under time constraints, the number of possible model evaluations
is restricted and the model behavior at unobserved input parame-
ters remains uncertain. This type of uncertainty should be taken
into account explicitly. For this reason, random �elds as surrogates
should be preferred over deterministic response surface functions
when working under time constraints.

• Optimization is a viable approach to surrogate modeling. Optimal
methods are automatically �exible which means that they are easily
adaptable to the computing time available.

• Under time constraints, all available information about the model
function should be used.

• Model selection with and without time constraints is entirely di�er-
ent.
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Kurzfassung

Motivation und Ziel

Mit Hilfe von Computersimulationen können wir das zukünftige Verhalten
von Systemen vorhersagen. In jeder Simulation stecken allerdings verein-
fachende Modellannahmen und die benötigten Eingabeparameter sind oft
nicht genau bekannt. Daher sind simulationsbasierte Vorhersagen niemals
exakt und das tatsächliche zukünftige Verhalten des betrachteten Systems
bleibt unsicher. Das Ziel von Unsicherheitsquanti�zierung (UQ) ist es die
mögliche Abweichung zwischen Vorhersage und tatsächlichem Verhalten
zu quanti�zieren.
Computersimulationen benötigen oft lange Rechenzeiten von mehreren
Stunden oder sogar Tagen. Daher verwenden viele UQ-Methoden Surrogat-
modelle. Ein Surrogatmodell ist eine mathematische Funktion, die sich be-
züglich der Input-Ouput-Beziehung so ähnlich verhält wie die eigentliche
Simulation, dabei aber viel schneller auswertbar ist. Die meisten Methoden
zur Konstruktion von Surrogatmodellen sind konvergent. Das heißt, dass
das Surrogatmodell mit steigendem Rechenaufwand gegen die Simulation
konvergiert. In der Praxis steht allerdings oft nur eine begrenzte Rechen-
zeit zur Verfügung und daher kann nicht jede beliebig hohe Genauigkeit
erreicht werden. Die zentrale Frage dieser Arbeit ist daher:

Wie sollten UQ-Probleme am besten gelöst werden,
wenn die Rechenzeit beschränkt ist?

Mit dieser Frage suchen wir also nach optimalen UQ-Methoden. Das Ziel
dieser Arbeit ist es UQ-Methoden mit Hilfe von mathematischer Optimie-
rung zu entwickeln, so dass die gegebene Zeit optimal ausgenutzt wird.
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Kurzfassung

Beiträge

Diese Arbeit liefert vier Beiträge zu dem genannten Ziel.
1. Eine der am weitesten verbreiteten Surrogatmodellmethoden ist die

stochastische Kollokation, beruhend auf der polynomiellen Chaos-
entwicklung. Im ersten Beitrag greife ich diese bestehende Methode
auf und optimiere einen Teil davon: die Samplingregel. Die entwi-
ckelte, optimale Samplingregel ist speziell dafür geeignet, polynomi-
elle Surrogatmodelle zu konstruieren. In numerischen Experimenten
erreicht sie eine bessere E�zienz als bestehende Samplingregeln.

2. Im zweiten Beitrag verallgemeinere ich den Ansatz aus dem ersten
Beitrag, so dass neben der Samplingregel auch noch die Funktions-
form des Surrogatmodells optimiert wird. Da hier mehr Spielraum in
der Wahl der Zielwertfunktion besteht, vergleiche ich drei verschie-
dene Formulierungen einer solchen Optimierung. Die einzige For-
mulierung, die zu einer praktikablen Surrogatmodellmethode führt,
setzt voraus, dass die Modellfunktion mit einem Zufallsfeld beschrie-
ben wird. Das optimale Surrogat, das sich dann ergibt, stimmt mit
dem Kriging-Schätzer überein, der aus der Geostatistik bekannt ist.

3. Im dritten Beitrag stelle ich eine sequentielle Samplingmethode für
die Lösung von Bayes’schen inversen Problemen vor. Wie im zwei-
ten Beitrag muss die Modellfunktion dazu mit einem Zufallsfeld be-
schrieben werden. Das sequentielle Design wählt dann im Parame-
terraum die Auswertungspunkte nacheinander so aus, dass jeweils
der erwartete Fehler in der Lösung des inversen Problems minimiert
wird. Das sequentielle Design erreicht in numerischen Experimenten
bei gleicher Rechenzeit genauere Ergebnisse als bestehende, nicht-
sequentielle Samplingmethoden.

4. Im vierten Beitrag gehe ich der Frage nach, welchen Ein�uss verfüg-
bare Messdaten auf die Modellwahl zwischen einem Referenzmodell
und einem vereinfachten Modell haben. Anhand eines In�ltrations-
problems zeige ich, dass unter Zeitbeschränkung die Verfügbarkeit
von Messdaten die Nutzung eines vereinfachten Modells begünsti-
gen kann. Dieses Ergebnis steht in einem interessanten Gegensatz
zu dem üblichen Modellwahlproblem ohne Zeitbeschränkung: Dort
ist die Tendenz oft anders herum und die Verfügbarkeit von mehr
Messdaten spricht eher für die Nutzung eines komplexeren Modells.
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Kurzfassung

Schlussfolgerungen

Aus den präsentierten Beiträgen können die folgenden Schlussfolgerungen
gezogen werden:

• Unter Zeitbeschränkungen ist die Anzahl der Modellauswertungen
beschränkt und daher ist das Verhalten des Modells für unbeobach-
tete Eingabeparameter unsicher. Diese Art von Unsicherheit sollte
explizit berücksichtigt werden, z.B. indem Zufallsfelder statt deter-
ministischer Surrogatmodelle verwendet werden.

• Mathematische Optimierung ist als Methode zur Konstruktion von
Surrogatmodellmethoden geeignet. Optimale Methoden sind auto-
matisch auch �exibel, d.h. sie lassen sich leicht an die gegebene Re-
chenzeit anpassen.

• Unter Zeitbeschränkungen ist es besonders wichtig alle verfügbaren
Informationen über die Modellfunktion zu verwenden.

• Unter Zeitbeschränkungen verhält sich das Modellwahlproblem kom-
plett anders als ohne Zeitbeschränkungen.
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Prologue
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1. Introduction

Computer simulations allow us to reproduce and predict the behavior of
real-world systems. Any simulation, however, contains simplifying as-
sumptions about the processes considered and, moreover, input parameters
are often not known precisely. Therefore, we can never expect simulation-
based predictions to be completely accurate. George E. P. Box captured this
fact in a statement that has become iconic among modelers [16, p. 424]:

Essentially, all models are wrong, but some are useful.

Every simulation is based on a model so, as a direct consequence, all sim-
ulation results are also wrong. With that said, the good news is that sim-
ulations can still be useful. To decide whether a speci�c simulation-based
prediction is useful, we need to have an idea about how wrong it is. This
is what the �eld of uncertainty quanti�cation (UQ) is about. The deviation
between the real-world behavior of a system and its predicted behavior is
uncertain, and ideally, we would like to quantify how large this deviation
can possibly be.
There is a number of sources for uncertainty and, throughout this thesis, I
will only consider one of them: parameter uncertainty. With this premise,
the two most important UQ tasks are uncertainty propagation and Bayesian
updating. In Section 1.1, I will give a short overview of the possible sources
of uncertainty, explain why parameter uncertainty is important and pro-
vide more details on these two tasks.
A very simple approach to UQ problems is to conduct a Monte-Carlo simu-
lation: instead of running a simulation only once, we run it multiple times
with di�erent input parameters. As a result, we obtain a collection of pre-
dictions and from these we can make a statement about the uncertainty in
the prediction. In practice, however, there is a catch: simulations are often
computationally expensive. That means that each simulation run takes sev-
eral hours or even days and so, it is practically impossible to run a proper
Monte-Carlo simulation with multiple thousands of individual simulation
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Chapter 1. Introduction

runs. More consequences of using expensive simulations are brie�y pre-
sented in Section 1.2. Unless noted otherwise, I will use the term “expen-
sive” not for monetary costs, but for computational costs which refer to the
computing time required.

When dealing with computationally expensive simulations in UQ, a com-
mon strategy is to use surrogate models. A surrogate model is a function
that behaves similarly to the simulation in terms of its input-output rela-
tion, but that is much faster to evaluate. I will give an overview of common
surrogate modeling methods in Section 1.3.

Most surrogate modeling methods focus on the property of convergence.
This means that, with increasing computational e�ort, the surrogate model
converges to the original simulation, and so the uncertainty can be quan-
ti�ed with any desired accuracy. In engineering practice, however, results
are often to be obtained under time constraints. In these situations, it is
not an option to further increase the computational e�ort and therefore
the convergence property loses some of its appeal. For this reason, the key
question of this thesis is the following:

What is the best possible way of solving UQ problems
if the time available is limited?

This is a question of optimality rather than convergence. The aspect of
optimality is central to this thesis and all of my contributions aim at op-
timality in one way or another. To my knowledge, time constraints and
optimality have not yet been explicitly considered in UQ.

In summary, my work is motivated by the need to quantify uncertainties
in simulation-based predictions. The goal is to develop surrogate modeling
methods that account for a possible time constraint. The approach is to con-
struct methods by means of optimization. In the following three sections
(1.1 to 1.3), I will provide more background information on the aspects of
uncertainty quanti�cation, expensive simulations and surrogate modeling.
Then, in Section 1.4, I will formulate three hypotheses about the conse-
quences of time constraints and, in Section 1.5, I will give an overview of
the structure of the thesis.
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1.1. Uncertainty �antification

1.1. Uncertainty �antification

To de�ne the scope of this thesis more precisely, it is useful to classify the
uncertainty under consideration in terms of its location and level. Both
terms go back to work by Walker et al. [153]. Afterwards, I provide a brief
description of the two UQ tasks named earlier: uncertainty propagation
and Bayesian updating.

Location of Uncertainty

The process of setting up a simulation involves multiple steps. The term
“location of uncertainty” refers to which of these steps causes uncertainty
(this is what I called source of uncertainty in the introductory section). A
typical simulation procedure consists of the following steps:

1. The modeler chooses what system to simulate and what aspects to
include in the simulation. These choices constitute the context.

2. The system at hand is described by mathematical equations or rela-
tionships. This de�nes the model structure.

3. All numerical parameter values in the model are speci�ed. Some au-
thors di�erentiate between model parameters (which are properties
of the system at hand, such as physical constants) and model input
(which are speci�c to one scenario or test case, such as external driv-
ing forces or material parameters) [153]. Throughout this thesis, I
will not make this di�erentiation and will call all of these numerical
values model inputs.

4. Finally, the mathematical equations are solved on a computer. In this
step, the original equations are typically discretized and then solved
using numerical schemes.

This list of steps is loosely based on the work of Walker et al. [153]. Each
of these steps is one potential source of uncertainty. If an error is made
in one of the steps, then the �nal simulation result will also be wrong. In
this thesis, I will only consider parameter uncertainty, i.e. uncertainties in
model inputs, see step 3 in the procedure above. The �nal vision of UQ as
a scienti�c �eld should, of course, be to consider all possible uncertainty
sources simultaneously. My contributions have to be understood as one
piece of the puzzle in this larger context. Once each individual source of
uncertainty is well understood and can be handled e�ciently, the next step
has to be to consider them together.
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Chapter 1. Introduction

To keep the terminology clear, I will summarize all numerical values re-
quired in a simulation with the term “(model) inputs”, and call those inputs
that are uncertain “parameters”.

Assuming that the other sources of uncertainty are negligible directly im-
plies the following three assumptions:

• all relevant aspects are included in the model;

• we know mathematical equations that describe the real-world sys-
tem exactly;

• we can solve these equations without errors.

These assumptions mean that, for a given input, the simulation at hand
returns the physically correct output and that the simulation itself is not
a source of additional uncertainty. We capture the input-output relation-
ship of the simulation in a mathematical function, called themodel function.
This function is a black-box function in the following sense: for any input,
the output can be computed by running the simulation, but we are not able
to write down the model function as a closed-form mathematical expres-
sion.

I argue that parameter uncertainty is an important source of uncertainty
because it is present in almost all simulations. Two examples are:

Material Parameters Material parameters are determined by measure-
ments. These, however, are subject to measurement errors and are
often monetarily expensive. It is especially di�cult to obtain a com-
plete description of a material’s parameters, when the material is not
homogeneous so that the material parameters vary over all three spa-
tial dimensions. Moreover, if the material is solid (such as soil in
the subsurface), then it is physically not always possible to measure
all material parameters without destroying the material itself. As a
result, the available knowledge about material parameters is often
sparse and not fully accurate.

External Driving Forces External driving forces, such as the precipita-
tion in a rainfall event, are often not under the control of the modeler.
Such driving forces are naturally uncertain.

Of course, there are more possible uncertain parameters, such as boundary
conditions, initial conditions or geometric speci�cations.

6



1.1. Uncertainty �antification

Determinism

Statistical Uncertainty

Scenario Uncertainty

Recognized Ignorance

Total Ignorance

Figure 1.1.: Levels of uncertainty, based on Walker et al. [153]

Level of Uncertainty

The level of uncertainty describes how much we know about a quantity
[153]. The di�erent levels range from determinism (“we know the quantity
exactly”) to total ignorance (“we know nothing about the quantity and we
are not even aware of our lack of knowledge”). All intermediate levels are
shown in Figure 1.1.
Throughout this thesis, I will assume that all uncertainty is on the level of
statistical uncertainty. That means that, for any parameter, we can state our
uncertainty about its value in terms of a probability distribution which is
basically a list of all possible values of the parameter together with prob-
abilities. Mathematically, parameters are then described by random vari-
ables. A more detailed discussion of the model parameters will be given in
Section 2.1.1. To keep the terminology clear, I will call a quantity uncertain
if it has a known probability distribution, and unknown if it does not have
a known probability distribution.
Parameters play such an important role in this thesis that I use the variables
x , y, z and X , Y , Z only for parameters, and denote spatial coordinates by
ξ and ζ (instead of the usual x and z).

Tasks

Under the premise of statistical parameter uncertainty, the two main tasks
in UQ are uncertainty propagation (UP) and Bayesian updating (BU).
Uncertainty Propagation Given uncertainty in the simulation inputs, UP

is the investigation of the model outcome uncertainty: how does the

7



Chapter 1. Introduction

Input

Model Function

Quantity of Interest Additional
Output

Measurement

Uncertainty
Propagation Inverse

Problem

General Bayesian
Updating

Figure 1.2.: The �ow of information in the main UQ tasks of uncertainty
propagation and Bayesian updating. The latter comes in the
two variants “inverse problem” and “general Bayesian updat-
ing”.

uncertainty propagate through the model function? Depending on
how sensitive the output is to the speci�c input parameters, prop-
agated uncertainty might be larger or smaller than the parameter
uncertainty. UP is also called forward propagation of uncertainties.

Bayesian Updating BU is the process of using measurement data or ob-
servations to update the knowledge about unobserved quantities. I
will distinguish between (Bayesian) inverse problems and general
Bayesian updating. In inverse problems, a measurement is used to
derive information about the simulation inputs. This procedure is
also called an inverse uncertainty quanti�cation. With the term gen-
eral Bayesian updating, I refer to the process of observing one output
quantity to draw conclusions about another output quantity.

Figure 1.2 shows the �ow of information in these two tasks. Mathematical
details of the UQ tasks are presented in Chapter 2.
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1.2. Expensive Simulations and Time Constraints

1.2. Expensive Simulations and Time
Constraints

I assume that the model function is computationally expensive, which means
that each function evaluation takes a considerable amount of computing
time. Moreover, I assume that all other calculations, such as pre- or post-
processing, are fast compared with the model function, so that their com-
putational costs can be neglected and the overall computational costs can
be measured purely in terms of the number of model evaluations.
The goal of this work is to develop UQ methods for expensive simulations
and then to test, whether they work as expected. A convenient conse-
quence of measuring computational costs in terms of model evaluations is
that we can do these tests without actually using expensive simulations. If
two simulations have similar properties in general and only di�er in terms
of their computational costs, then the e�ciency of a UQ method with re-
spect to the number of model evaluations will be the same for both simula-
tions. So for testing newly developed methods, there is no need to employ
an expensive simulation. The use of an expensive simulation would ac-
tually be disadvantageous for testing: to assess the performance of a UQ
method, we need to compare its solution to a reference solution. Such ref-
erence solution can only be computed if the simulation itself is fast. For
these reasons, all numerical examples in this thesis are based on relatively
fast simulations that have run times in the range of seconds.
Once a new method is tested, it should, of course, be applied to problems
with large computing times. With this goal in mind, we have to consider
two important aspects: time constraints and code uncertainty.

Time Constraints

In practice, the computing time available is limited, for example in the form
of a project deadline. We assume that the modeler knows in advance how
many function evaluations she can a�ord. She is interested in getting the
best result possible in the time available.
To provide a rough number, let us assume that the maximum number of
function evaluations is about 100 or fewer.
A �xed time constraint calls for �exible numerical methods. I call a method
�exible if the modeler can easily adapt the required run time to the time

9



Chapter 1. Introduction

available. An example of a �exible method is a Monte-Carlo simulation: the
modeler only needs to divide the time available by the time required for one
simulation to obtain the number of possible realizations. An example for an
in�exible method is the solution of a partial di�erential equation on a grid
discretization that can only be re�ned globally. Let us assume the solution
on a coarse grid takes 1 hour of computing time. If the grid is re�ned by
factor 2 in all three dimensions, then the new grid has 8 times as many
nodes as the coarse grid and the solution would take more than 8 hours. If
the time available is 7 hours, we could only calculate the solution on the
coarse grid, which means that the method would not make good use of the
available time.

Code Uncertainty

The assumption of an expensive, black-box model function together with
parameter uncertainty leads to a new type of uncertainty: code uncertainty.
It denotes the uncertainty about the input-output relationship of the model
function at points in the parameter space that have not been evaluated. The
term was �rst mentioned by Kennedy and O’Hagan [75]. It is not to be con-
fused with numerical uncertainty, which refers to uncertainty induced by
an inaccurate numerical solution of the model equations (which we neglect
according to our assumptions).
Code uncertainty does not exist in deterministic simulations with known
parameters: here, the simulation can simply be run for the known param-
eters and there is no uncertainty about the output. But with parameter
uncertainty, this is di�erent. The model function is to be evaluated on a
spectrum of possible parameter values, but we can only a�ord a �nite num-
ber of function evaluations. At all parameter values between those function
evaluations, the actual behavior of the model function remains uncertain.
For this reason, we may say that the response of the model function with
respect to changes in the input is uncertain. Some of the methods presented
in this work explicitly incorporate the notion of code uncertainty.

1.3. Surrogate Modeling

The idea of surrogate modeling is to replace the original simulation by a
function that behaves similarly, but is faster. This function is the surrogate
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model. In my work, I use three surrogate modeling methods as the main
tools for UQ: response surface methods, emulators and low-�delity models.
In this section, I give a short overview of these three methods and point out
their main di�erences from a practical point of view. In Chapter 3, I present
the mathematical aspects of the three methods.
Response Surface Methods A response surface is a mathematical func-

tion �tted to the response of the model function. First, the modeler
selects a class of parametric functions (e. g. polynomials of degree 2),
and then determines the function parameters (e. g. the polynomial
coe�cients) using the information from a �nite number of evalua-
tions of the model function. The model function is treated as a black
box and the response surface is constructed only from the input-
output pairs available from the evaluations. In that sense, response
surface methods are data-driven and nonintrusive. I only consider
linear methods, i. e., methods where the relationship between the
model function and the response surface is a linear operator. This
does not imply that the response surface has to be a linear function
of the model parameters. Existing response surface methods are, for
example, polynomial interpolation/regression, radial basis functions
[18] and arti�cial neural networks [13]. In UQ, the most commonly
used response surface method is stochastic collocation (SC), which
is a polynomial interpolation/regression method based on polyno-
mial chaos expansions (PCE). SC will be presented in detail in Sec-
tion 3.1.2.

Emulators When a random �eld is used as a surrogate model, then it is
called an emulator [109]. A random �eld is a stochastic description of
an uncertain function. It can be thought of as a collection of in�nitely
many functions together with probabilities, and the model function
is assumed to be one of these functions.
Emulators are data-driven as well: after a general shape of the ran-
dom �eld has been decided on, it is adapted to a number of input-
output pairs from the model function. This is done by keeping only
those functions in the emulator that interpolate the model response.
All other functions are removed. This step is called conditioning or
Kriging. Mathematical details will be provided in Section 3.2.
The collection of functions can be used to form a response surface
(by averaging them) or to express code uncertainty (by considering
the variance between the individual functions). As such, an emulator
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Chapter 1. Introduction

can be thought of as a response surface together with stochastic error
bars and these error bars are an expression of code uncertainty.

Low-Fidelity Models A low-�delity model is a reduced version of the
model function. Often, a simulation can be made faster by either re-
ducing the spatial or temporal resolution or neglecting some physi-
cal aspects in the model. Unlike the previous two surrogate modeling
methods, low-�delity models are not data-driven. The construction
of a low-�delity model is not done by observing the input-output
relation of the model function, but by choosing simpler model equa-
tions or faster numerical schemes.

Please note that I use the term “surrogate model” as an umbrella term for
any function that may replace a simulation. In the literature, this term is
sometimes more narrowly de�ned and only denotes what I call “response
surface” here. In my terminology, every response surface is a surrogate
model, but surrogate models also include emulators and low-�delity mod-
els.
Furthermore, the term “emulator” is adopted from O’Hagan’s terminology
in which an emulator is a random �eld that is used as a surrogate [109].
Other authors use the term “emulator” synonymously with “response sur-
face” or “surrogate model”.

Schematic Comparison

Figure 1.3 provides a schematic overview of the three surrogate modeling
methods.
In the upper left plot, a model function is shown. In this example, the
parameter on the x-axis is the height from which an object is dropped.
The model function returns the time until the object reaches the ground.
The underlying model assumes a drag force proportional to the squared
velocity. If the plot is rotated 90 degrees clockwise, it shows the trajectory
of a falling object (height as a function of time). For small heights, the model
function is a square root function because the drag force is negligible at
early times and so the trajectory is almost a parabola. For larger heights, the
trajectory becomes more and more linear, as the object reaches its terminal
velocity.
In the upper right plot, a polynomial response surface model of degree 2
is shown. It was constructed by interpolating the model response at three
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Model Function Response Surface

Emulator Low-Fidelity Model
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Figure 1.3.: Schematic comparison of the three tools

di�erent heights. Overall, the response surface very closely resembles the
model function. The only large deviation lies in the bottom left part of the
plot, where the surrogate becomes unphysical and predicts a positive time
even if the height is zero. This error shows that a polynomial response
surface is merely a mathematical tool which does not incorporate physical
knowledge.
In the lower left plot, an emulator is shown. It is conditioned to the same
three points as the surrogate in the second plot. The solid line indicates
the mean function and the shaded area delineates one standard deviation
around the mean. The mean function deviates from the model function
in some parts of the plot, but the method is aware of these deviations, as
indicated by the shaded area. Similar to response surfaces, emulators do
not necessarily include physical knowledge and therefore run the risk of
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predicting unphysical behavior.
Finally, the lower right plot shows the output from a low-�delity model.
In this example, the drag force is neglected, resulting in a purely parabolic
trajectory. For small heights, the low-�delity model is very accurate. How-
ever, with larger heights, the error grows as the e�ect of the neglected force
becomes more and more visible. Low-�delity models are often constructed
by careful modeling decisions and therefore contain at least an approxima-
tion of the available physical knowledge. In this example, the low-�delity
model correctly predicts a fall time of zero for a height of zero.

1.4. Hypotheses

As I mentioned earlier, the main novelty of my work is that I consider time
constraints in UQ. Regarding the consequences of time constraints, I pro-
pose the following three hypotheses.

1. Under time constraints, code uncertainty plays an important role. It
should be taken into account explicitly, for example by using emula-
tors.

2. Under time constraints, optimization is a viable approach to surro-
gate modeling. Optimal methods are �exible automatically.

3. Under time constraints, all available information about the model
function should be used.

At the end of this thesis, in Chapter 8, I will come back to these hypotheses
and discuss them in the light of the results presented throughout the thesis.

1.5. Structure of the Thesis

This thesis is divided into three parts: Prologue, Contributions and Epi-
logue.
Prologue Besides this introduction, the prologue contains an overview

of the two UQ tasks in Chapter 2 (“Tasks”) and an overview of the
di�erent surrogate modeling methods in Chapter 3 (“Tools”). The
prologue is mostly a summary of the state of the art and as such
contains almost no contributions from myself.
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Chapter 4

Chapter 5

Chapter 6

Chapter 7

Tasks

Uncertainty
Propagation

Bayesian
Updating

Tools

Response Surfaces

Emulators

Low-Fidelity Models

Figure 1.4.: Tasks and tools in the individual chapters

Contributions My own contributions to the overall goal of uncertainty
quanti�cation under time constraints are all presented in the second
part. There are four contributions altogether, the �rst two focusing
on uncertainty propagation and the last two on Bayesian updating.

• In Chapter 4, I have a look at polynomial response surface mod-
els, which are commonly used in stochastic collocation. Within
this pre-existing methodology, I present an optimal sampling
rule that is speci�cally adapted to the construction of polyno-
mial response surfaces.

• In Chapter 5, I generalize the approach from the previous chap-
ter and optimize both the sampling rule and the functional form
of a response surface model. This chapter reveals an interesting
connection between response surface models and emulators.

• In Chapter 6, I turn to Bayesian parameter inference problems
and present a sequential sampling strategy designed for the so-
lution of Bayesian inverse problems with emulators.

• Finally, in Chapter 7, I investigate what impact available mea-
surement data have on the model selection between a reference
model and a low-�delity model.

The tasks and tools are linked to the four chapters as shown in Fig-
ure 1.4.

Epilogue The �nal part contains a summary, conclusions and an outlook
on possible future work. Using my results from the second part, I
discuss and evaluate the three hypotheses formulated above.
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2. Tasks
In this chapter, I introduce the two basic tasks uncertainty propagation (see
Section 2.1) and Bayesian Updating (see Section 2.2). For both tasks, I also
provide a short discussion of quality measures. These are required to quan-
tify how accurate the two tasks are performed when numerical methods are
used.
In Figure 1.2 on page 8, I provided a schematic overview of the individual
tasks.

2.1. Uncertainty Propagation

Given a random variableX of input parameters and a model functionu, un-
certainty propagation (UP) is the investigation of the stochastic properties
of Y := u (X ). In other words: how does the uncertainty in X propagate
through model u? The relationship between X , u and Y is schematically
shown in Figure 2.1.
We might be interested in many di�erent aspects ofY , such as the expected
value or variance, the probability density function (pdf) or cumulative dis-
tribution function (cdf), exceedance probabilities or the sensitivity with re-
spect to X .
In the following two sections, I will introduce the two protagonists of this
thesis: the model parameters X (Section 2.1.1) and the model function u
(Section 2.1.2). Afterwards, I will present the L2-error as the appropriate
error measure for UP problems (Section 2.1.3) and outline two well-known
approaches to UP problems that are not applicable under the assumption
of an expensive model function (Section 2.1.4).

2.1.1. Model Parameters

Throughout this work, model parameters are de�ned as those model inputs
that are uncertain. Model inputs that are known with certainty are not
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Figure 2.1.: Uncertainty propagation example

regarded as model parameters, even when they are called parameters in
other works. Typical examples for model inputs that can be uncertain are
material parameters, boundary conditions, initial conditions or geometric
speci�cations. Location and time are usually regarded as system variables
or coordinates, not as model parameters.

The uncertainty in the model parameters is described by a random vari-
able (or random vector) X with values in the parameter domain Ω ⊆ Rd .
According to the assumption of statistical uncertainty, see Section 1.1, we
assume that the distribution of X is known, such that we can specify a pdf
or a probability mass function. This is an important and very strong as-
sumption because, in practice, a parameter may only be vaguely known in
terms of expert knowledge or in form of a small number of measurement
values. Such representations are less informative than a probability distri-
bution and one would have to select an appropriate distribution �rst. This
step is called uncertainty modeling. It is a big topic on its own, that falls
out of the scope of this thesis.
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2.1. Uncertainty Propagation

These considerations raise one important questions: what is the meaning
of the distribution of X? Under what condition is a distribution the cor-
rect distribution of a parameter? After all, the parameter is deterministic,
only its value is not known precisely. This is a philosophical topic and I
will only brie�y comment on it. Throughout this thesis I adopt a Bayesian
standpoint [9, 55]. That means that probabilities and probability distribu-
tions are not properties of the quantities under consideration, but proper-
ties of the knowledge or belief of the modeler. Therefore, di�erent modelers
may assign di�erent distributions to the same quantity. This assignment is
subjective. However, that does not mean that probability distributions are
arbitrary. Distributions of di�erent variables have to be consistent with the
relation between the variables themselves. If, for example, variable X1 is
assumed to be uniformly distributed on the interval [a,b], then the distri-
bution of another variableX2 := X1+1 follows immediately as the uniform
distribution on [a + 1,b + 1].
In this perspective, uncertainty propagation does not claim to provide the
correct distribution of some model output Y = u (X ) because there is no
such thing as a correct distribution. Instead, it provides the distribution
of Y that is consistent with the belief about X : if the modeler believes in
a certain distribution of X and if she is consistent in her belief, then her
belief about the distribution of Y follows directly and uniquely.
The model parameters I am using are assumed to be either continuous with
a known pdf or discrete with a �nite set of values. One operation that
is frequently used is the expected value operator (or integration over the
distribution of X ) [158]. Let f : Ω → R be a function. If X is a continuous
random variable with pdf π , then the expected value of f is de�ned as the
integral

E [f (X )] =
∫
Ω
f (x)π (x) dx ,

and if X is a discrete random variable, distributed on the values x1, . . . ,xN
with probabilities w1, . . . ,wN , then the expected value is de�ned as the
sum

E [f (X )] =
N∑
i=1

wi f (xi ) .

More generally, the expected value can then be written with a measure µ
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describing the distribution of X :

E [f (X )] :=
∫
Ω
f (x) dµ (x) . (2.1)

I will use this general formulation if the type of random variable (contin-
uous or discrete) is not important. But as I will not use any results from
measure theory, the notation with measure µ in Eq. (2.1) can just be thought
of as a shortcut to mean one of the other two de�nitions of the expected
value, and the term measure will just be used to describe the distribution
of X .
I will stick to the usual notation in which random variables are denoted by
upper case letters (X , Y , Z ) and their possible values are denoted by lower
case letters (x , y, z).

Statistical Dependence

Generally, the model parameters may be multivariate, having more than
one component. Then, the variable X is a random vector and the measure
µ describes the joint distribution of all components. To my knowledge,
almost all publications in UQ that deal with more than one input parameter
assume that the individual input parameters are independently distributed.
In this work, I explicitly do not make this assumption at any point.
The independence assumption is very convenient. Many methods can be
developed for the one-dimensional case and can then be generalized to the
higher-dimensional case by simply applying the method to each dimension
separately.
The classical justi�cation of making the independence assumption is that
possible dependencies between the model parameters can be removed by
applying a suitable transformation, such as the Rosenblatt-transform [123]
or the Nataf-transform [84, 90]. Imagine that the input parameter of the
model is a random vector X and that the individual components have de-
pendencies. Then, we can �nd a transform T , such that X̂ = T −1 (X ) is
a random vector with independently distributed components. Now, the
model function u (·) is replaced by the function u (T (·)) and X is replaced
by X̂ .
In my opinion, this approach is problematic. The transformation T intro-
duces a coupling between the input distribution and the model function

20



2.1. Uncertainty Propagation

because the new function u (T (·)) contains information about the origi-
nal parameter X . Conceptually, however, these are two separate questions:
“What values does the input parameter take?” and “How does the model re-
act to a certain input?” In a di�erent context, Daniušis et al. formulated
this idea as a postulate [38]: “If X causes Y , the distribution of X and the
function f mapping X to Y are independent since they correspond to in-
dependent mechanisms of nature.”
For two reasons, I believe it is advantageous to keep these two mechanisms
separated.

1. Later in our analysis, we might learn something new about X and
therefore change its distribution. The model functionu (·) itself would
remain as it is, while the function u (T (·)) would change according
to the change in the transformation T . If we had build a surrogate
model of u (·), then it would still be useful. A surrogate model of
u (T (·)), however, would become useless and we would have to build
a new one.

2. Furthermore, it is reasonable to expect that the composition of two
functions u (T (·))would introduce new irregularities (e.g. nonlinear
behavior) into the function instead of canceling irregularities. If we
were to expect cancellation e�ects, then u and T would not be in-
dependent and this would violate the aforementioned postulate. For
this reason, I expect the function u (·) to be easier to approximate by
a surrogate than u (T (·)).

In summary, while an independence assumption is convenient, a transfor-
mation to independent variables brings new problems. I decided to avoid
these problems by not making the independence assumption. All methods
I developed naturally work for dependent parameters.
If the components of X are independent, then the corresponsing measure
µ is called separable.

2.1.2. Model Function

The model function is a formal description of a simulation. It maps input
parameters to model output:

u : Ω → R.
In this notation, all simulation inputs that are known with certainty are
assumed to be captured by the model function u already.
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In practice, of course, the simulation output is not a scalar, but consists of
multiple physical quantities that vary over space and/or time. If this is the
case, then we regard the simulation output at each point in space and time
and for each output quantity as an individual model function.
The reason for treating space and time di�erent than the parameter domain
is that, in most simulations, the equations are coupled in space and time,
but are not coupled with respect to the parameters. It is possible to obtain
the model output for a speci�c value of the input parameters without con-
sidering other parameter values, but it is usually not possible to calculate
the model output at one point in the spatial or temporal domain without
calculating it in all other points as well.
As formulated in Sections 1.2, the model function is assumed to be compu-
tationally expensive.
Furthermore, we assume that the model function is square integrable with
respect to the measure µ. The space of all square integrable functions on Ω
with respect to µ is de�ned as

L2 :=
{
f : Ω → R

����
∫
Ω
f (x)2 dµ (x) < ∞

}
.

In full length, this function space would be called L2 (µ), but as we are only
considering one L2-space, we will simply call it L2. It is a Hilbert space,
equipped with an inner product [33]

〈f ,д〉L2 =
∫
Ω
f (x)д (x) dµ (x) , (2.2)

which induces a norm
‖ f ‖L2 =

√
〈f , f 〉L2 .

Again for brevity, we will omit the indices in the inner product and norm
and simply write 〈·, ·〉 and ‖·‖, as long as no confusion is to be expected.
Two functions f , д are called orthogonal if 〈f ,д〉 = 0.
In short, we assume thatu ∈ L2. From the de�nition of L2, it directly follows
that the model output u (X ) has a �nite variance.
Unfortunately, in one aspect, the space L2 is not a good description for
model functions: inL2, two functions f andд are regarded equal if ‖ f − д‖ =
0. This condition, however, does not imply, that f (x) = д (x) for all x ∈ Ω
because deviations in single points do not change the value of the integral.
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For this reason, functions that cannot be distinguished via the L2-norm are
summarized in equivalence classes, so that the space L2 becomes a space
of equivalence classes. The problem with these equivalence classes is that
point evaluations are not de�ned on them. For example, if we know that
a function f lies in the same equivalence class as the null-function, i. e.,∫
Ω
f 2 (x) dµ (x) = 0, then it does not necessarily follow, that f (x) = 0 for

all x ∈ Ω. The function f might even take arbitrary values in individual
points in Ω. Therefore, the value of f (x) for individual points x ∈ Ω is
unde�ned as long as we only know the equivalence class in which f lies.
The fact that point evaluations are not de�ned on L2 clearly contradicts the
idea of describing a simulation by a model function: the model function u
is de�ned by the input-output relationship of a black-box simulation in
the �rst place so it naturally can be evaluated in a pointwise manner. To
avoid this contradiction, I will assume that the model function u lies in
a space U ⊂ L2 on which point evaluation is de�ned. For example, if u is
known to be continuous, then we can de�neU as the space of all continuous
functions in L2. Of course, the model function does not necessarily have to
be continuous, so other de�nitions of U are possible, too. As we will see
in the later chapters, each method requires additional assumptions about
the model function anyways, so, at this point, we do not need to de�ne the
space U more speci�cally.
To summarize, we assume that the model function lies in a space U on
which point evaluation is de�ned and in which we can use the same norm
and inner product as in L2.

2.1.3. �ality Measure: L2-Error

As noted before, uncertainty propagation is the investigation of the stochas-
tic properties of Y := u (X ). As Y is a random variable due to its de�nition
via X , we are interested in all properties it has as a random variable. This
means that �nding the distribution of Y in terms of its pdf is not enough.
The pdf alone does not contain information about the dependency between
Y and other variables. Therefore, in UP problems, we have to understand
(and also approximate) Y as a function of X .
Using a numerical method, we obtain an approximation Ỹ ofY . Similar toY
itself, also Ỹ is a function ofX , so we write Ỹ = ũ (X ). The natural measure
for the accuracy of Ỹ is the L2-norm error of the di�erence between Y and
Ỹ , which is explained by the L2-norm error of the corresponding functions
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u and ũ, see Section 2.1.2:



Y − Ỹ

 = ‖u − ũ‖ = ∫
Ω
(u (x) − ũ (x))2 dµ (x) .

The L2-norm error is a general-purpose error type. It only becomes zero if
Y = Ỹ , so an error of zero guarantees that the probability of Y and Ỹ taking
two di�erent values is zero. Furthermore, if the L2-norm error is small, then
also all other possible error measures such as error in the pdf, in expected
value or in variance, become small as well. The converse is not true: two
random variables might have the same expected value, variance or even pdf
but that does not guarantee that the two random variables are the same.
For example, if Y is uniformly distributed on [0, 1], then Y ′ = 1 − Y is also
uniformly distributed on [0, 1], but clearly Y and Y ′ are di�erent random
variables. Therefore, error measures other than the L2-norm error should
only be used if there is a special reason for doing so (e. g. if the expected
value is the only quantity of interest). If we have not decided on a speci�c
quantity of interest, then we should use the L2-norm error.
The L2-norm error has the additional advantage that it is induced by the
inner product. Therefore, we can build methods on the concept of orthog-
onality.

2.1.4. Analytical Approach and the Monte-Carlo
Method

Let me brie�y outline two approaches to uncertainty propagation that can
generally solve uncertainty propagation problems, but that are impractical
under the assumption of an expensive black-box model function.
First, by the de�nition of the output Y , we can derive an expression for its
pdf πY via the so-called cdf method [158]. Assume that the input X has a
known pdf πX . The pdf of Y is the derivative of its cdf FY : πY (y) = F

′
Y (y),

where the cdf is de�ned as FY (y) := P [Y < y] . Now we de�ne the set
A (y) := {x ∈ Ω |u (x) < y}. The probability of Y < y is the same as the
probability of x ∈ A (y), so we �nd

FY (y) =
∫
A(y)

πX (x) dx ,
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and obtain the expression

πY (y) =
∂

∂y

∫
A(y)

πX (x) dx .

If both X and Y have scalar values and u is invertible, this expression can
further be simpli�ed with the transformation method [158]. We de�ne the
inverse function of u as v := u−1 and denote its derivative by v ′. Then the
pdf of Y is

πY (y) = πX (v (y)) · |v ′ (y)|
Both the cdf method and the transformation method are not of any practical
use if the model function u is an expensive black-box function: we do not
have an explicit expression for u, so we cannot invert or derive it.
Second, to calculate statistics of any function of X , the Monte-Carlo (MC)
method can be used. If we draw an independent and identically distributed
(i.i.d.) sample of the model parameters x1, . . . ,xN ∼ X , then f (x1) , . . . ,
f (xN ) is an i.i.d. sample of f (X ). We can estimate the expected value of
f (X ) via [89]

E [f (X )] ≈ 1
N

N∑
i=1

f (xi ) . (2.3)

The error between the expected value and its estimate is called stochastic er-
ror. With increasing sample size, it converges to zero at a rate of 1/

√
N [89].

This can be proved by calculating the standard deviation of the estimate.
Let Y1, . . . ,YN be i.i.d. random variables with a �nite variance. It follows

Var
[
1
N

N∑
i=1

Yi

]
=

1
N 2Var

[
N∑
i=1

Yi

]

=
1
N 2

N∑
i=1

Var [Yi ]

=
1
N
Var [Y1]

The standard deviation, being the square root of the variance, then decays
at a rate of 1/

√
N . This convergence rate is independent of the dimension

of the input domain and the MC method only requires the assumption of
�nite variance. If the model function is computationally expensive, how-
ever, then the Monte Carlo convergence rate can be regarded as too slow:
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for each digit of accuracy in the estimate, the sample size has to be increased
by a factor of 100.

Because of its wide applicability, we can regard the MC method as a base
line method: any other method can only be useful if it is faster than the
MC method.

2.2. Bayesian Updating

Bayesian updating (BU), also called Bayesian inference, is the process of
using measurement data or observations to update the knowledge about
unobserved quantities. An observation of the input parameters of a model
does not fall into this category because such observations can be handled
with uncertainty propagation methods presented in the previous section.
The interesting case is the assimilation of observations about model output
quantities. I di�erentiate between two di�erent types of BU problems: a
measurement of an output quantity may give us information about (1) the
input parameters or (2) other quantities of interest.

The �rst type of problem is called “(Bayesian) inverse problem” or “parame-
ter inference problem” [142]. To my knowledge, the second type of problem
does not have an own name, so I refer to it as “general Bayesian updating”.
The di�erent �ow of information in these two variants of Bayesian updat-
ing is schematically shown in Figure 1.2 on page 8. General BU problems
can be regarded as the composition of, �rst, an inverse problem (from the
measurement to the input) and, second, an uncertainty propagation prob-
lem (from the input to the quantity of interest) and it is possible to solve
them using this order.

The solution to an inverse problem is provided by Bayes’ theorem. In a gen-
eral form, it is presented for example by Stuart [137]. I will restrict myself
to two speci�c types of random variables: continuous random variables and
discrete random variables. For these two types of variables, Bayes’ theorem
takes di�erent forms, which are presented in Sections 2.2.1 and 2.2.2. As a
quality measure for numerical solutions of BU problem, I propose the use
of statistical distances. The two distances used in this work are presented
in Section 2.2.3.
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2.2.1. Bayes’ Theorem for Continuous Input
Parameters

Assume that the input parameters X have a pdf π . We describe the ob-
servable quantity by a random variable Z and assume a functional relation
betweenX andZ of the formZ = f (X , ε), where ε denotes additional noise.
Now Z is observed as Z = z and we are interested in �nding the posterior
pdf π̂ of X which is de�ned as the pdf of X conditional to the event Z = z,
i. e., π̂ (x) = πX |Z (x |z).
Bayes’ theorem provides a formula for the posterior distribution π̂ :

π̂ (x) = L (x)π (x)∫
Ω
L (x ′)π (x ′) dx ′

.

Here, L denotes the likelihood function. Before I provide a precise de�ni-
tion of the likelihood L, it is worth noting that the normalizing term in the
denominator

∫
Ω
L (x ′)π (x ′) dx ′ is independent of x and can be regarded

as a constant coe�cient. Many numerical methods do not require the cal-
culation of this coe�cient, so for brevity, we write

π̂ (x) ∝ L (x)π (x) .

In short, Bayes’ theorem scales the probability mass proportionally to the
likelihood.
The de�nition of the likelihood function depends on what type of random
variable Z is. If Z is a discrete random variable, then the likelihood is de-
�ned as the conditional probability of observing Z = z under the condition
that X = x ,

L (x) = P [Z = z |X = x] , (2.4)

and if Z is a continuous random variable, the likelihood is the conditional
probability density of the same event:

L (x) = πZ |X (z |x) . (2.5)

The speci�c functional form of L depends on the measurement model. The
most commonly used measurement model assumes an independent, addi-
tive measurement error

Z = u (X ) + ε, (2.6)
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where ε is a random error with known pdf πε . As discussed in Section 1.1,
the model functionu itself does not contain a model error, so the di�erence
between Z and u (X ) does only consist of measurement errors.
According to this measurement model, the likelihood reads

L (x) = πZ |X (z |x) = πε (z − u (x)) .

The computational bottleneck in calculating a posterior distribution π̂ lies
in the likelihood term. For each evaluation of L (x), the model response
u (x) has to be evaluated once.
Figure 2.2 exemplarily shows the relation between model function, data,
prior, likelihood and posterior. The x-axis is the parameter axis. The top
plot shows the model functionu and the measured data value z ± one stan-
dard deviation of the measurement error ε . In the bottom plot, the prior, the
posterior and the likelihood function are shown. The peak of the likelihood
is at the intersection of the model function with the data. The posterior is
the product of prior and likelihood, expressing a combination of the prior
knowledge and the �t between model and data. Therefore, its peak typi-
cally lies somewhere between the peaks of the prior and of the likelihood.

2.2.2. Bayes’ Theorem for Discrete Input Parameters

If the input parameters X are discretely distributed with values x1, . . . ,xN
and weights w1, . . . ,wN , Bayes’ theorem takes a slightly di�erent form.
The basic idea, however, is the same: the probability mass is scaled accord-
ing to the likelihood. The posterior weights ŵ i follow as

ŵi =
Liwi∑N
j=1 Ljw j

, (2.7)

or in short
ŵi ∝ Liwi .

With the additive measurement model from Eq. (2.6), the likelihood reads

Li = πε (z − u (xi )) .

For details on this formulation, see Smith and Gelfand [135].
In the setting of discrete input parameters, the solution of general Bayesian
updating problems becomes particularly simple. Let us assume that the
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Figure 2.2.: Bayesian inverse problem example

simulation returns both the observable quantity u (x) and a quantity of in-
terest QoI (x). After running the simulation for all possible parameter val-
ues, we obtain a complete collection of both quantities: u (x1) , . . . ,u (xN )
and QoI (x1) , . . .QoI (xN ). Using Bayes’ theorem and the measurable quan-
tity, we can compute the posterior weights ŵi via Eq. (2.7). If we attach
these posterior weights realization-wise to the samples of QoI (xi ), we get
the posterior distribution of the quantity of interest in form of a weighted
sample.

The discrete formulation of Bayes’ theorem is often used to draw a sample
from the posterior distribution ofX , even ifX itself is a continuous random
variable. Instead of calculating the posterior pdf ofX and drawing a sample
from this pdf, it is often much easier to draw a prior sample ofX and assign
each realization a weight according to Eq. (2.7). One can also obtain an
unweighted sample by means of rejection sampling [89].
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2.2.3. �ality Measure: Statistical Distances

The target quantity in Bayesian updating problems is the posterior distribu-
tion. To compare di�erent numerical methods in their ability to calculate a
posterior distribution, we need a measure for the distance between distribu-
tions, so called statistical distances. The L2-norm error used in uncertainty
propagation cannot be used as a quality measure in Bayesian updating be-
cause we are interested in the distance between di�erent measures and not
between di�erent random variables on the same measure. The two statisti-
cal distances used in this work are the Kullback-Leibler divergence and the
Earth Mover’s Distance. Other distance measures exist (e.g. Hellinger dis-
tance [149], total variation distance [124]), but are not further considered
here.
The Kullback-Leibler divergence (KL divergence) can be interpreted as the
loss of information if a pdf π is replaced by a di�erent pdf π̃ [79]. It is
de�ned as

DKL (π ‖π̃ ) :=
∫
Ω
π (x) · ln π (x)

π̃ (x) dx .

The KL divergence is not a metric in the strict sense, because it is not sym-
metric: DKL (π ‖π̃ ) , DKL (π̃ ‖π ). For that reason, it is called a divergence.
Usually the order of the two pdfs π and π̃ is chosen such that π is the ref-
erence or “correct” pdf and π̃ is its approximation.
The Earth Mover’s distance (EMD) has a very intuitive meaning: if a distri-
bution is thought of as a pile of earth, then the EMD between two distribu-
tions is the minimal work required to turn one distribution into the other
one [125]. In higher dimensions, the EMD is not easily computed, but for
one-dimensional distributions, the EMD between the distributions of two
random variables X1 and X2 is simply the area between their cdfs FX1 and
FX2[28]:

DEM
(
FX1 , FX2

)
=

∫
Ω

���FX1 (x) − FX2 (x)
��� dx .

The EMD has the advantage that it does not require the existence of a pdf. If
two random variables are discretely distributed (i.e. they are given in terms
of weighted samples), then their EMD can be calculated analytically (be-
cause the cdf functions are step functions), while the KL divergence would
require a pdf estimate �rst, which potentially introduces additional errors.
In those applications where I handle pdfs anyway, I will compare solutions
in terms of their KL divergence. Otherwise, I will use the EMD.
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To perform the two tasks of uncertainty propagation and Bayesian updat-
ing presented in Chapter 2, I use three main tools:

1. response surfaces,
2. emulators,
3. low-�delity models.

Recall that the purpose of all these methods is to �nd a function that be-
haves similar to the model function, but that is faster to evaluate. This
replacement function is called the “surrogate model”.
In the introductory section 1.3, I already gave an overview of these tools in
terms of their practical di�erences. In this section, I will present the tools
from a mathematical point of view and introduce my notation.

3.1. Response Surfaces

A response surface is a surrogate model in form of a mathematical function
�tted to the response of the model function. Once such a surrogate model
is constructed, all subsequent calculations can be accelerated by simply re-
placing the model function by its surrogate. We assume that the evaluation
of a response surface is so fast, that the computational costs of those sub-
sequent calculations can be neglected. Therefore, the overall costs only
consist of the construction of the response surface, as this step requires
evaluations of the model function, see Section 1.2. A response surface is
constructed from input-output pairs of the model function which we regard
as a black-box. Therefore, response surface methods are nonintrusive.
In my work, I restrict myself to linear response surface methods. A method
is linear if the operator that maps a model function to a repose surface is
a linear operator. This does not mean that the response surface itself is a
linear function. Response surface methods become non-linear if the ansatz
functions are chosen adaptively, such as in sparse PCE methods [74, 170].
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By restricting ourselves to linear methods, we exclude adaptive methods of
this kind.
In the two following sections, I �rst formulate a very general representa-
tion of linear, nonintrusive response surface methods, and then I present
the stochastic collocation (SC) method. SC is one of the most widely used
response surface methods in UQ [5, 47, 48, 97, 166, 168], and it is based on
polynomial chaos expansions [57, 160, 167, 169].

3.1.1. General Formulation

As before, we assume that the model function lies in the space U. A re-
sponse surface method can now be described as an operator P : U → U
that maps a model functionu to its surrogate ũ = Pu. Being a nonintrusive
method, the operator P internally consists of two steps: �rst, the evalua-
tion of the model function in a �nite number of points, and second, the
construction of the response surface from the model responses. Formally,
I suggest to write this operator in the following form:

P = ΦEx . (3.1)

Here, Ex denotes the evaluation operator that evaluates a function on a
given set of points. For an n-tuple of points x = (x1, . . . ,xn) ∈ Ωn it is
de�ned as

Ex : U→ Rn : f 7→ [a1, . . . ,an]> = [f (x1) , . . . , f (xn)]> .

Throughout this thesis, I will call the points at which the model function
is evaluated nodes.
The operator Φ maps a vector of n model responses to a linear combination
of functions Φ1, . . . ,Φn ∈ U. It is de�ned as

Φ : Rn → U : [a1, . . . ,an]> 7→
n∑
i=1

aiΦi .

The functions Φi can be thought of as unit response functions: if the evalu-
ation operator Ex returns a unit vector (1 in one component, 0 everywhere
else), then the operator Φ returns one of the unit response functions. In
loose notation, the operator Φ can be understood as a row vector contain-
ing the unit response functions Φ = [Φ1, . . . ,Φn]. The image of P is the

32



3.1. Response Surfaces

span of the unit response functions P := span {Φ1, . . . ,Φn} and we call this
space the ansatz space. Furthermore, we denote the space of all operators
of the form in Eq. (3.1) with n nodes as Pn .
Any linear, nonintrusive response surface method (including interpolation
and least-squares �t) can be represented in the form given in Eq. (3.1). Even
though I did a literature review, I did not see this kind of operator repre-
sentation elsewhere in the literature. Given that it is very much straight-
forward, however, I would expect that similar formulations already exists
in other �elds of mathematics or engineering.

3.1.2. Stochastic Collocation

We now turn to the perhaps most widely used response surface method in
UQ: stochastic collocation based on polynomial chaos expansions.

The Polynomial Chaos Expansion and its Properties

Under some assumption about the distribution ofX , the space of all polyno-
mials is a dense subspace of L2 [49]. If this is the case, then any model func-
tion u ∈ L2 can be represented by its polynomial chaos expansion (PCE)
[57, 160, 167, 169], which has this form:

u =
∞∑
i=1

ciΨi . (3.2)

The in�nite sum converges in the L2-sense. In this expansion, the ci are ex-
pansion coe�cients and the Ψi are polynomials that form an orthonormal
basis (ONB) of L2, i.e. any two polynomials Ψi and Ψj satisfy〈

Ψi ,Ψj
〉
= δi j , (3.3)

where δ is the Kronecker delta. With this property, a PCE is a generalized
Fourier series expansion (not with respect to a trigonometric basis, but with
respect to an ONB of polynomials) [167].
Typically, the polynomials satisfy additional conditions. The �rst polyno-
mial is usually the constant Ψ1 (x) = 1. Then, each following polynomial
Ψi contains one additional monomial that is not contained in the previ-
ous polynomials Ψ1, . . . ,Ψi−1. Very often, the polynomials are ordered by
(total) degree.
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From the orthonormality, we can derive a simple expression for the ex-
pected value of the basis functions. The �rst polynomial is the constant 1,
so we �nd

E [Ψi (X )] =
∫
Ω
Ψi · 1 dµ (x)

= 〈Ψi ,Ψ1〉 = δi1. (3.4)

If X is one-dimensional and the distribution of X is a very common one
(such as uniform or normal distribution), then the corresponding orthogo-
nal polynomials typically have their own name (such as Legendre polyno-
mials or Hermite polynomials) [2]. The orthonormal polynomials we are
using here di�er from these only in a normalizing factor. If the distribution
of X is not a common one, then orthonormal polynomials can still be con-
structed using orthonormalization algorithms. It is possible orthogonalize
via the Gram-Schmidt process [163], by solving a linear system [112] or by
using a three-term-recurrence relation [53]. I recommend to use the latter
because it is numerically more stable than the other two.
If X is higher-dimensional with independent components, then the multi-
variate orthonormal polynomials can be constructed by simply multiplying
the individual univariate polynomials for each dimension [81]. The result-
ing multi-variate polynomials will automatically be orthonormal. How-
ever, if the components of X are dependently distributed, see Section 2.1.1,
then it is not enough to simply combine the individual dimensions. Instead,
an additional orthogonalization step has to be done.
The expansion given in Eq. (3.2) has a number of convenient properties.
Thanks to the orthonormality of the basis polynomials, there is an analyt-
ical expression for the expansion coe�cients (which is typical for Fourier
expansions [167])

ci = 〈u,Ψi 〉 . (3.5)
This expression, however, is of little direct practical use, as the inner prod-
uct involves integration of u over Ω, see Eq. (2.2).
A PCE becomes a response surface if it is truncated after p terms:

u? =

p∑
i=1

ciΨi . (3.6)

This kind of response surface is appealing because the part of the series
that has been cut o� is orthogonal to u?. Therefore, the surrogate u? is the

34



3.1. Response Surfaces

orthogonal projection of u onto the ansatz space P = span {Ψ1, . . . ,Ψn},
and so u? is the best approximation of u in P [167]. In other words,

u − u?

 = inf

f ∈P
‖u − f ‖ . (3.7)

The error between the model function u and its best approximation u? is
called truncation error.
In practice, calculating the coe�cients c0, . . . , cn can only be done approx-
imately, which leads to an approximated polynomial

ũ =

p∑
i=1

c̃iΨi . (3.8)

The error between the best approximation u? and the actual surrogate ũ is
called approximation error.
The overall (or total) error between u and ũ can be split into the truncation
error and approximation error:

u − ũ︸︷︷︸
total error

= u − u?︸ ︷︷ ︸
truncation error

+ u? − ũ︸ ︷︷ ︸
approximation error

=

∞∑
i=p+1

ciΨi +

p∑
i=1
(ci − c̃i )Ψi .

Due to the orthonormality of the basis functions Ψi , the two errors are
orthogonal and their squared L2-norms add up

‖u − ũ‖2 =


u − u?

2 + 

u? − ũ

2

=

∞∑
i=p+1

c2i +

p∑
i=1
(ci − c̃i )2 . (3.9)

Another convenient property of a PCE is that the expected value and vari-
ance of ũ can be calculated directly from the coe�cients:

EX [ũ (X )] = c̃0,

VarX [ũ (X )] =
p∑
i=2

c̃2i .
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Figure 3.1.: Comparison of a tensor-grid space and total-degree space of
polynomials up to degree 4 in two dimensions. Each circle rep-
resents one basis polynomial Ψi included in the space.

Ansatz Spaces in Higher-Dimensional Problems

In one-dimensional problems, the choice of the ansatz spaces is restricted
to the choice of the polynomial degree. In higher-dimensional problems,
the modeler has some freedom in choosing the ansatz space because of the
many di�erent cross terms between the individual dimensions. The two
most common choices are tensor grid spaces and total degree spaces. In
a tensor grid space, each dimension is assigned a degree and the tensor
grid space consists of all possible cross terms up to these degrees. A total
degree space consists of all polynomials up to a maximum total degree. A
schematic comparison of these two types of spaces is shown in Figure 3.1.
The ansatz space does not necessarily have to be chosen by the modeler.
There are also sparse, adaptive methods that select the ansatz space de-
pending on the model response [14, 15]. These methods are not linear and
therefore not considered here.

Calculating the Expansion Coe�icients

The main di�culty in constructing a PCE lies in the calculation of the
expansion coe�cients ci . Since the model function is assumed to be a
black-box function, we can only use nonintrusive methods for calculating
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these coe�cients. There exist also intrusive methods, such as the stochastic
Galerkin method [81, 167], but I will not go into details about such methods.
Nonintrusive PCE methods are also called stochastic collocation [67, 168].
The two most commonly used stochastic collocation methods are direct
calculation by a quadrature rule and calculation by least-squares approxi-
mation. I refer to these two approaches as the quadrature approach and the
least-squares approach, respectively. Both approaches rely on quadrature
rules. A quadrature rules consists of nodes x1, . . . ,xn ∈ Ω and weights
w1, . . . ,wn ∈ R such that an integral can be approximated by a sum [61]:∫

Ω
f (x) dµ (x) ≈

n∑
j=1

w j f
(
x j

)
. (3.10)

�adrature Approach The �rst approach starts with the analytical ex-
pression for the coe�cients ci = 〈u,Ψi 〉 [Eq. (3.5)], and inserts a
quadrature rule directly [58, 82, 121]. We obtain

c̃i =
n∑
j=1

w ju
(
x j

)
Ψi

(
x j

)
. (3.11)

In the literature, this approach is also called “nonintrusive spectral
projection” (NISP) [121] or “discrete expansion”[131].

Least-Squares Approach The second approach uses the fact that the ex-
act polynomial u? minimizes the L2-norm error between u and u?,
see Eq. (3.7). TheL2-norm contains an integral and inserting a quadra-
ture rule here, we obtain a least-squares problem [25, 66, 70, 138, 165]:

ũ = argmin
f ∈P

n∑
j=1

w j
[
u

(
x j

) − f
(
x j

) ]2
. (3.12)

Inserting the approximate polynomial [Eq. (3.8)], we can obtain the
coe�cients as the solution of a linear least-squares system which
can be solved via normal equations or a pseudo-inverse. Further-
more, if the number of nodes n is equal to the number of basis func-
tions n, then the least-squares approximation becomes an interpo-
lation. Even though I introduced the least-squares approach as an
application of quadrature rules, it can also be understood as a least-
squares functional approximation without the notion of quadrature
rules. Therefore, I will refer to the method of choosing nodes and
weights as a sampling rule, rather than a quadrature rule.
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In the literature, the quadrature approach [121, 166] and the least-squares
approach [11, 23, 44, 68] are mostly treated separately and I am not aware
of any work attempting to compare these two approaches. In my view, both
approaches are special cases of a more general formulation. Note that both
the quadrature approach and the least-squares approach result in a linear
relationship between the model responsesu

(
x j

)
and the coe�cients c̃i . For

this reason, I propose the following formulation:
[
c̃1, . . . , c̃p

]>
= A [u (x1) , . . . ,u (xn)]> ,

where A is a p × n matrix encoding the calculation rule of the coe�cients.
This formulation includes all possible linear relationships between model
responses and coe�cients. We obtain the quadrature approach by selecting
Ai j = w jΨi

(
x j

)
(compare with Eq. (3.11)), and the least-squares approach

by solving Eq. (3.12) via the normal equations.
This general approach can be expressed with the following operator

P = ΨAEx . (3.13)

I am not aware of any other scienti�c work that uses an operator represen-
tation like this.
The operator Ψ maps a vector of coe�cients to a linear combination of
the basis functions Ψi (Ψ

[
c1, . . . , cp

]
=

∑p
i=1 ciΨi ) and, as before, Ex is the

evaluation operator. This general approach has more degrees of freedom
than the quadrature approach or least-squares approach: matrix A has np
entries, while the other two approaches have n weights each.
This formulation is very similar to the general formulation P = ΦEx pro-
vided earlier in Eq. (3.1). The main di�erence is that we regard the operator
Ψ as constant and given, so that we can only change A and x , while in the
general formulation, the operator Φ can freely be changed. So, for a �xed
Ψ, the space of all operators ΨAEx is a subspace of the operators of the
form ΦEx .
The accuracy of the expansion coe�cients relies heavily on the choice of an
appropriate quadrature or sampling rule (i.e. the choice of x andw or x and
A). In the one-dimensional case, Gaussian quadrature rules are regarded
optimal (with respect to the polynomial order) [139, 151]. These, however,
can not be easily generalized to higher-dimensional cases [61, 71]. A gen-
eralization to higher-dimensional cases is only possible if the components
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of X are independently distributed. As stated in Section 2.1.1, we gener-
ally do not assume that this is the case. But even in those cases where the
components are independently distributed, the higher-dimensional gener-
alizations of Gaussian quadrature rules have a downside: The number of
nodes is the product of the numbers of nodes for each individual dimen-
sion. This means that the number of nodes cannot be chosen freely and,
therefore, the quadrature rules are not �exible. As I mentioned ealier, it is
desirable to use �exible methods. For these reasons, one of my contribu-
tions is devoted to the selection of nodes and weights via optimization, see
Chapter 4.

3.1.3. The Lebesgue Constant and Operator Norms

As we saw in the previous sections, a response surface method can be ex-
pressed as an operator P on the space U. In this section, I introduce two
possible ways of measuring how good an operator is as a response surface
method: the Lebesgue constant and operator norms.

The Lebesgue Constant

The Lebesgue constant is a common measure for the accuracy of interpola-
tion methods, but it can equally well be used for response surface methods
other than interpolation [148]. Let P be an operator that maps a functionu
to a response surface Pu, and de�ne the ansatz space as P := Im (P). As be-
fore, we de�ne the best approximation ofu in P asu? := argminf ∈P ‖u − f ‖
and we assume that u is known to lie in a space U. The Lebesgue constant
relates the achieved error (the total error) with the smallest possible error
in P (the truncation error). The Lebesgue constant of the operator P is the
smallest number Λ (P), so that for any model u ∈ U it holds [122, 148]

‖u − Pu‖ ≤ (1 + Λ (P))


u − u?

 . (3.14)

Eq. (3.14) has to hold for any model u ∈ U, so the Lebesgue constant satis-
�es

Λ (P) = sup
u ∈U

‖u − Pu‖
‖u − u?‖ − 1. (3.15)

In the original de�nition of the Lebesgue constant, the norm ‖·‖ in Eq. (3.14)
is the in�nity norm ‖ f ‖∞ := sup {| f (x)| : x ∈ Ω}, but the concept of com-
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paring the total error with the truncation error is also useful for other de�-
nitions of the norm. I will use the L2-norm, but still callΛ (P) the “Lebesgue
constant”.

Operator Norms

Closely related to Lebesgue constants are operator norms. Let V andW be
two normed vector spaces with their norms ‖·‖V and ‖·‖W. The space of
all bounded linear operators from V to W is denoted by L (V,W). For an
operator A ∈ L (V,W), the operator norm is de�ned as [33]

‖A‖L(V,W) = sup
f ∈V\{0}

‖A f ‖W
‖ f ‖V

. (3.16)

From this de�nition, it follows immediately, that operator norms are sub-
multiplicative: for any element f ∈ V the following inequality holds

‖A f ‖W ≤ ‖A‖L(V,W) ‖ f ‖V . (3.17)

An operator is called bounded if it has a �nite operator norm. To show
that an operator is not bounded, it is enough to �nd a sequence of elements
f1, f2, · · · ∈ V such that limi→∞ ‖ fi ‖V = 0, but limi→∞ ‖A fi ‖W , 0. This
can only happen if V is in�nite dimensional.
If the norms in the two spaces V and W are L2-norms (as they are in the
context of UQ), then the operator norm can practically be calculated as
follows. By representing the elements of V and W as coordinate vectors
with respect to orthonormal bases, the operatorA can be represented as a
matrix A. The operator norm of A is equal to the largest singular value of
the matrix A.

3.2. Emulators

An emulator is a stochastic description of an uncertain function. Math-
ematically, an emulator is a random �eld over the parameter domain. In
the following, we will use the terms emulator and (random) �eld synony-
mously. A one-dimensional random �eld is also called a stochastic process
or random process.
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A random �eld is a probability distribution over functions. So in analogy
to random variables that can be thought of as a list of real numbers to-
gether with probabilities, a random �eld can be thought of as a collection
of functions together with probabilities. To be useful as a surrogate model,
a random �eld must have the property that the original model u is a real-
ization of it.
Using random �elds, we have to juggle multiple probability spaces: the
one for the input parameters and the one for the random �eld. To avoid
confusion, stochastic operators (E, Var, Cov) are equipped with indices to
indicate over which probability space they are to be applied. For example,
EX denotes the expected value over input parameter X , while EU denotes
the expected value with respect to the �eld U .
Very often, the construction of a random �eld consists of the following
three steps.

1. A parametric class of random �elds is selected, from which u could
be a realization. The parameters of such classes often include corre-
lation length parameters and smoothness parameters and I refer to
these parameters as meta-parameters.

2. One random �eld from this class is selected, in other words, the meta-
parameters are �xed. This is done by using expert knowledge or by
evaluating the model function on a small space-�lling set of nodes
X ⊂ Ω and selecting the �eld parameters according to the model re-
sponses, e. g. via the maximum likelihood method [93]. The random
�eld obtained in this step is called the a priori �eld which we denote
by U0. The a priori �eld encodes the knowledge about the structure
of the model function, but not yet the actual function.
Some authors recommend a validation of the a priori �eld [73]. Al-
ternatively, instead of �xing the meta-parameters, one could model
the meta-parameters as random variables themselves. The resulting
random �eld will be a more complex mathematical object (compared
to the �eld with �xed meta-parameters), but at the same time will
be more �exible. In geostatistics, this approach is called Bayesian
geostatistics [41, 76, 92, 106].

3. The a priori �eld is conditioned on model evaluations of the model
function. These model evaluations include the initial space-�lling set
of nodesX as well as nodes selected later on. Conditioning on model
evaluations means that only those �eld realizations are kept that in-
terpolate the model responses. The result is an a posteriori random
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�eld, which we denote by Un , where n is the number of nodes.
The most frequently used emulators are Gaussian process emulators (gpe) [8,
20, 36, 91, 107, 109, 128, 159]. A random �eld U0 is a gpe if, for any �nite
number of points x1, . . . ,xn ∈ Ω, the joint distribution of the random vari-
ables U0 (x1) , . . . ,U0 (xn) is a multivariate normal distribution.
A gpe is fully described by its �eld mean function m0 and the covariance
function C0:

m0 (x) := EU0 [U0 (x)]
C0 (x ,x ′) := CovU0 [U0 (x) ,U0 (x ′)] , (3.18)

for any points x ,x ′ ∈ Ω. A common a priori choice is a second-order
stationary �eld. Stationarity means that m0 is constant and that C0 is a
function only of the di�erence between two points: C0 (x ,x ′) = C0 (x − x ′)
[50]. The variance VarU0 [U0 (x)] = C0 (x ,x) is a representation of code
uncertainty as a function of the input parameter x .
The covariance function expresses a smoothness assumption about the ran-
dom �eld. For example, the realizations of a �eld with a Gaussian covari-
ance function are in�nitely di�erentiable, while an exponential covariance
function leads to continuous, but non-di�erentiable realizations. A useful
family of covariance functions is the Matérn family: it contains a smooth-
ness parameter that determines how often the realizations are di�erentiable
[42, 43, 63] and both the Gaussian and the exponential covariance function
are special cases from the Matérn family.
If U0 is a gpe, then the conditioned �eld Un is again a gpe with updated
mean and covariance function [50]. Let x1, . . . ,xn ∈ Ω be a list of n nodes
in the parameter domain and let u (x1) , . . . ,u (xn) be the corresponding
model responses. De�ne the residual vector

r = [u (x1) , . . . ,u (xn)]> − [m0 (x1) , . . . ,m0 (xn)]> ,

the covariance matrix Q with

[Q]i j = C0
(
xi ,x j

)
and, for a point x ∈ Ω, de�ne the vector

q (x) := [C0 (x1,x) , . . . ,C0 (xn ,x)] .
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The mean function and covariance function of the conditioned gpe Un are
given by:

mn (x) = m0(x) + q (x)Q−1r
Cn (x ,x ′) = C0 (x ,x ′) − q (x)Q−1q (x ′)> . (3.19)

In geostatistics, the procedure of conditioning a gpe is called Kriging and
has a slightly di�erent interpretation. While the conditioning step implic-
itly is the application of Bayes’ theorem to a random �eld, Kriging inter-
prets the same step as an estimation procedure. More precisely, the Krig-
ing estimator is de�ned as the best linear unbiased estimator (BLUE). Both
interpretations (conditioning and estimation) lead to the same result, pre-
sented in Eqs. (3.19). The Kriging variant presented here classi�es as simple
Kriging [24, 152]. Strictly speaking, simple Kriging requires the random
�eld under consideration to have a zero mean. We obtain Eq. (3.19) if we
apply the simple Kriging method to the residual function u (x) − m0 (x)
(because this residual function has a zero mean).
The conditioning of a random �eld also has a close connection to interpo-
lation with radial basis functions: in some cases, both approaches result in
the same surrogate model [100].
In connection with emulators, the set of nodes x1, · · · ,xn is often called a
design of computer experiments [128] because each evaluation of the model
function is regarded as an experiment, in which the behavior of the model
function is observed. In the context of emulators, I will use the term “de-
sign” and, in the context of response surface methods, I will use the term
“sampling rule”. Aside from the di�erent contexts, both terms simply refer
to the selection of nodes.
Similar to response surface models, we assume that the mean function and
covariance function of an emulator are so fast to evaluate, that the only
computational costs lie in the evaluation of the model function required to
form the residual vector r . The overall computational costs are therefore
determined by the number of nodes n.
If required, the mean function of an emulator can be used as a surrogate
model. This approach is called plug-in approach. That way, however, one
loses the variance and covariance information of the emulator. As I men-
tioned earlier, the variance of an emulator is an expression of code uncer-
tainty, and as we will see later, it is bene�cial to use this information.
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Chapter 3. Tools

3.3. Low-Fidelity Models

The computational costs of a model function can often be reduced if some
of the model �delity is sacri�ced. This can be done by reducing the spatial
or temporal resolution of the simulation or by neglecting some physical
aspects in the model. Therefore, I will call low-�delity models also reduced
models. This term is not to be confused with reduced-order models [117,
129], which are not considered here. A reduced model can be thought of as a
physically motivated surrogate model. Assuming that the model function is
the correct, error-free representation of the processes under consideration,
see Section 1.1, a reduced model introduces a model error.
Reduced models are faster than their high-�delity counterpart (the original
model function), but are usually not as fast as response surface models or
emulators as presented in the previous two sections. Therefore, we cannot
neglect the computational costs of a reduced model. Instead, we assume
that a reduced model is faster than the model function by some �xed fac-
tor. Due to this speed up, we can a�ord larger sample sizes in any kind of
sampling-based method and thereby reduce the stochastic error, see Sec-
tion 2.1.4. In that perspective, the use of a reduced model is a trade between
stochastic error and model error. Whether this trade is bene�cial depends
on the magnitude of both errors.
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4. Optimal Sampling for
Polynomial Response
Surfaces

Most of the results presented in this chapter have been published in the In-
ternational Journal for Uncertainty Quanti�cations under the title An Optimal
Sampling Rule for Nonintrusive Polynomial Chaos Expansions of Expensive Mod-
els [132]. I am reusing parts of the text and �gures from this publication by
kind permission of the publisher Begell House.

In this chapter, I present the optimized stochastic collocation method (OSC).
It is an optimal sampling rule for the calculation of PCE coe�cients via
stochastic collocation. As I stated in Section 3.1.2, the performance of a
stochastic collocation method strongly depends on the chosen sampling
rule.
My main goal behind OSC was to construct an e�cient sampling rule in
the sense that it should achieve an accurate response surface at a small
computational e�ort. While e�ciency is the �nal goal, it turned out to be
useful to have a closer look at the following three aspects in the comparison
of sampling rules:
Stability Polynomials are subject to the Runge phenomenon [126]: if nodes

are distributed equidistantly in the domain, then the polynomial in-
terpolant on these nodes tends to oscillate between the nodes. There-
fore, nodes for a stable polynomial interpolation have to be more
dense in the outer parts of the domain. The same e�ects holds for
quadrature rules. Quadrature rules that are speci�cally adapted for
the integration of polynomials (e. g. Gaussian Quadrature) typically
have a higher node density in the outer parts of the domain. A good
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sampling rule should avoid oscillations in the response surface be-
cause otherwise an increasing computational e�ort does not guar-
antee an increasing accuracy.

Flexibility Since the model function is expensive, the sampling rule should
be �exible in the number of nodes. This is similar to the choice of
the ansatz space, see Section 3.1.2. A modeler can relatively freely
select an ansatz space to control the number of required expansion
coe�cients. The modeler should have the same freedom in the num-
ber of nodes, as these are directly related to the computational costs.
Higher-dimensional sampling rules often stick to certain structures
(e. g. grids) and are therefore mostly not �exible in the number of
nodes.

Versatility Since the input parameters might have statistical dependen-
cies (see Section 2.1.1), the sampling rule should be able to handle
these dependencies directly, without transforming the input param-
eters to statistically independent parameters.

Outside this chapter, the three terms stability, �exibility and versatility are
usually not used with this speci�c meaning. I chose to given them these
de�nitions so that the discussion in this chapter becomes more precise and
easier to follow. But even more importantly, these three terms turned out
as useful for formulating the shortcomings of existing sampling rules. As
we will see in the numerical results later in this chapter, the reason why
OSC is more e�cient than other sampling rules is that it is stable, �exible
and versatile, while all existing sampling rules lack at least one of these
properties.
PCE coe�cients can be calculated via the quadrature approach, the least-
squares approach or possibly even other approaches, see Section 3.1.2. In
all cases, I will call the points at which the model function is to be evaluated
nodes and the method of choosing nodes (and weights) sampling rule.

4.1. Existing Sampling Rules and Their
Shortcomings

Before I introduce my own sampling rule, let me present existing sampling
rules and discuss them with respect to the three criteria stability, �exibility
and versatility. I grouped the existing sampling rules into three groups:
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grid-based rules, cubature rules and random or quasi-random rules.
Strictly speaking, a sampling rule is only complete if it is associated with
a rule for calculating the expansion coe�cients, see e. g. the quadrature
approach and least-squares approach in Section 3.1.2. In the following de-
scriptions I will shortly comment on the calculation rules that are com-
monly associated with the sampling rules.
Recall that the dimension of the parameter domain Ω is denoted by d .

4.1.1. Tensor Grids, Sparse Grids and PCM

Tensor grids and derived methods require that the set of admissible parame-
ter values is a Cartesian product of one-dimensional sets, Ω = Ω1×· · ·×Ωd ,
and that the components of X are independently distributed. For each
individual one-dimensional set Ωi ⊆ R, nodes are determined accord-
ing to a one-dimensional sampling rule. Then, all possible combinations
of the nodes for the individual parameters are formed. If we select ni
nodes along each dimension i ∈ {1, . . . ,d}, then the tensor grid consists of∏d

i=1 ni nodes. If the one-dimensional sampling rules are chosen to be sta-
ble (e. g. nodes from Gaussian Quadrature, Chebyshev nodes,...), then also
the resulting tensor grid is stable. Tensor grids can be used both with the
quadrature approach or the least-squares approach. If the one-dimensional
quadrature rules are from Gaussian quadrature, then both approaches even
lead to the same coe�cients. The main downside of tensor grids is that they
are not �exible and not versatile.
A sparse grid is a combination of multiple tensor grids, such that features
of the model function in each coordinate direction can be captured well,
while keeping the number of nodes lower than in the full tensor grid [7, 56].
The lower number of nodes is achieved by investing fewer nodes in cross-
terms between the coordinates. For a �xed dimension and with increasing
number of nodes, sparse grids have almost the same convergence behav-
ior for integration as full tensor grids. However with increasing dimen-
sion, sparse grids of low order have increasingly large errors. This means
that sparse grids in high dimensions are well suited only if the number of
nodes is high as well. Sparse grids have been used as sampling methods
for PCE [103, 168]. They are typically used with the quadrature approach.
However, recent work shows that, rather than writing the PCE approxima-
tion as an integration problem and computing the integrals by a sparse grid
quadrature, it is better to apply the sparse grid construction to the projec-
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tion operator directly [32]. Similar to tensor grids, sparse grids are stable,
but not �exible and not versatile.
The PCM is a heuristic, based on the full tensor grid [69, 70, 147, 156]. Be-
cause of its simplicity it is widely used [85, 87, 110, 139]. Aiming for an
approximation of u with p terms [Eq. (3.8)], the PCM selects n = p nodes
from the full tensor grid, namely those with the highest weights in the asso-
ciated full-grid quadrature rule, and performs a polynomial interpolation.
In the selection of the nodes, it also has to be taken into account that the
polynomial interpolation must be well-posed on these nodes. PCM is �ex-
ible, but generally not stable (we will see this in the numerical examples in
this chapter). It is probably possible to use PCM in a versatile way (taking
account of input dependencies), but I am not aware of any publication in
which this has been done.

4.1.2. Monomial Cubature Rules

As a non-grid-based method, sampling based on monomial cubature rules
has been proposed [140, 157]. The idea is to select nodes according to mul-
tidimensional quadrature rules with high polynomial degree. Wei et al.
[157] present four di�erent quadrature rules. These are of order 5 and 7
and are restricted to normally distributed input variables. These sampling
rules are stable, but they are not �exible: the modeler can choose one of
the four presented quadrature rules, but has no further control over the
number of nodes. Furthermore, the sampling rules are not versatile as they
are restricted to normally distributed variables.
The OSC sampling rule presented in this chapter follows the same general
idea as monomial cubature rules. However, instead of presenting a �xed
collection of quadrature rules, I developed a method for generating optimal
quadrature rules for any order and for arbitrary distributions.

4.1.3. Random Sampling and �asi Monte Carlo

As opposed to the deterministic methods stated above, it is also possible to
sample randomly or quasi randomly. Random samples are commonly used
with a least-squares approach.
Random sampling simply means that the nodes are drawn from the distri-
bution of the input parameters, similarly to a Monte Carlo simulation [66].
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Random sampling is �exible and versatile, but not stable unless the model
function is oversampled (i. e. the number of nodes is chosen much larger
than the number of coe�cients to calculate) [66].
As a variance reduction method for random sampling, it is also possible to
apply quasi Monte Carlo methods, such as Hammersley sampling [62, 66].
The Hammersley points generally have a lower discrepancy than randomly
selected points. However, as we will see in the numerical examples, a lower
discrepancy does not necessarily improve the stability of random sampling.
Hammersley points are �exible, but not versatile being de�ned only for the
uniform distribution on hyper-cubes of arbitrary dimension.

4.2. OSC - The Optimized Stochastic
Collocation Method

In this section, I present the optimized stochastic collocation method (OSC).
Based on the idea of monomial cubature rules, it is a method for generating
quadratures for any polynomial order and for arbitrary distributions. The
OSC method is formulated as an optimization problem with an objective
function that is adapted to the e�cient approximation of PCE coe�cients.

4.2.1. Method Formulation

From Eq. (3.10) in Section 3.1.2, recall that a quadrature rule is of the form∫
Ω
f (x) dµ (x) ≈

n∑
j=1

w j f
(
x j

)
.

We de�ne the exact integral operator I with respect to the measure µ:

I : U→ R : f 7→
∫
Ω
f (x) dµ (x) . (4.1)

Now we try to �nd the quadrature formula that is closest to I in some
sense. For a given list of nodes x = (x1, . . . ,xn) ∈ Ωn and weights w =
(w1, . . . ,wn), we de�ne the discrete quadrature operator

Q(x ,w ) : U→ R : f 7→
n∑
j=1

w j f
(
x j

)
. (4.2)
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A similar representation of integration and quadrature as operators has
�rst been given by Xiu [166].
The key idea behind OSC is to �nd nodes and weights such that the quadra-
ture operator Q(x ,w ) resembles the exact integration operator I as closely
as possible. To do so, we measure the distance between the two operators
with the operator norm of their di�erence.
The operator norm for I − Q(x ,w ) is only de�ned if these operators are
bounded. On the full spaceU, boundedness is not guaranteed, so we restrict
both I and Q(x ,w ) to a �nite-dimensional test space T, a subspace of U.
Recall from Section 3.1.3, that linear operators on �nite-dimensional spaces
are always bounded and we can then introduce the desired operator norm
on L (T,R). In Section 4.2.3, I will explain how this operator norm can be
evaluated in practice.
We are now ready to formulate the OSC method. The procedure for deter-
mining optimal nodes x? and weights w? by OSC is:

1. Choose a �nite-dimensional test space T ⊆ U and the number of
nodes n.

2. Determine the optimal nodes and weights according to
(
x?,w?)

= argmin
x ∈Ωn

w∈[0,∞]n



I − Q(x ,w )

2L(T,R) . (4.3)

We can immediately make the following observations.
• This approach does not require us to discretize the optimization.

While in the �eld of optimal spatial design, similar optimization prob-
lems are usually discretized and solved on a grid of candidate points,
we regard the problem as a continuous optimization problem.

• The objective function is a multivariate polynomial. The functional
form will be discussed in more detail in Section 4.2.3. The smooth-
ness of the objective function suggests the use of gradient-based op-
timization algorithms.

• Minimizing the squared norm in step 2 is equivalent to minimizing
the norm itself because the norm is nonnegative. By considering the
square, the objective function becomes a sum of squares. This struc-
ture can be exploited by optimization algorithms, see Section 4.2.3.

• It may seem that, when the multi-dimensional integration problem is
transferred into a multi-dimensional optimization problem, the level
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of di�culty remains the same. However, the optimization can be
done without evaluating the model function. Under the assumption
that the model function is computationally expensive, the optimiza-
tion can still be bene�cial. This will be further discussed in Section
4.2.5.

• The optimization has n (d + 1) degrees of freedom. For a �xed poly-
nomial degree and increasing dimension, the number of degrees of
freedom grows faster than the number of polynomial terms. This is
an important aspect in the discussion in Section 4.2.5.

• The ansatz space P is not entering the optimization procedure di-
rectly. However, the choice of T and n can only be done in a mean-
ingful way if P is selected �rst. This is discussed in Section 4.2.2.

• The weights are forced to be non-negative. This has two reasons.
First, the least-squares approach does only make sense if the weights
are non-negative. Otherwise the squared residuals at some points in
the parameter domain would be maximized rather than minimized.
Second, numerical tests showed that if we allow negative weights,
then the objective function has many local minima that are trouble-
some for the appropriate choice of optimization algorithms. The so-
lutions in these local minima often have two or more nodes very
close together with weights of large magnitude and opposite sign.
By enforcing non-negative weights, the nodes are forced to spread
in the domain.

• The nodes in the optimization are constrained to Ωn . If Ω is just the
support of the measure µ, then it might have an irregular shape. In
this case, and if the numerical software behind u admits it, it is ad-
vantageous to select Ω larger, such that it is a Cartesian product of
intervals Ω = Ω1 × · · · × Ωd . In the following, I call this an aug-
mented support of µ. This augmentation has two advantages. First,
the constraints are easier to implement in an optimization algorithm.
Second, a bigger domain Ω potentially allows a smaller minimum in
the optimization, and may help to increase the degree of the quadra-
ture rule for the given the number of nodes1.

1Here is a simple example to show that one can increase the degree of a quadrature rule
by setting Ω to a larger set than the support of µ . Let µ be the uniform distribution on
[−2, −1] ∪ [1, 2]. We seek to construct a quadrature rule that is exact for all linear poly-
nomials u (x ) = ax + b . If we select the domain to be just the support of µ , namely
Ω = [−2, −1]∪[1, 2], then at least two nodes are needed. Additionally, an optimization on
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I do not address the issues of existence and uniqueness of the optimum. In
practice, we will often be su�ciently satis�ed if we achieve a suitably low
value of the error norm.
Please note that a similar approach to constructing quadrature rules has
been taken by Charushnikov in the 1970s [22]. The di�erence of my work
is that I suggest the use of numerical optimization methods, while older ap-
proaches tried to �nd the optimum in Eq. (4.3) analytically. To my knowl-
edge, it is only possible to obtain optimal weights analytically, but not the
nodes.

4.2.2. Choice of Test Space and Number of Nodes

As noted before, the choice of T and n has to be adapted to the structure of
the ansatz space P. I suggest the use of a polynomial test space T. By ap-
proximating the model function by its PCE in the �rst place, we already as-
sume that it can be well approximated by polynomials. Therefore, it makes
sense to also construct the sampling rule to work well with polynomials.
Before we discuss how to select the dimension of T, let me provide some
basic considerations on relations between T and n. A trivial lower bound
for the number of nodes is n ≥ p, with p = dimP. Otherwise, the image of
the discretized projection operator is only a lower-dimensional subspace
of the ansatz space P, and the n nodes are not even enough to distinguish
the p di�erent ansatz functions. This would lead to an e�ect called internal
aliasing, which means that not even the elements of P can be projected
correctly [30]. A trivial upper bound for the number of nodes is n ≤ t , with
t := dimT. With t nodes it is always possible to reduce the error norm in
Eq. (4.3) to zero [34, 136].
In practice, we can select n much smaller than this upper bound. This is
made plausible by the following consideration. In order to reduce the ob-
jective function Eq. (4.3) to zero, one has to satisfy t equations. The number
of degrees of freedom in the OSC optimization is n (d + 1). If we choose T
and n, such that

t = n (d + 1) , (4.4)
we can hope to just have enough nodes to be able to satisfy all t con-
ditions. In the following, I call Eq. (4.4) the degrees of freedom condition

such a domain is tedious. If, however, we select Ω = [−2, 2] and if u can be evaluated ev-
erywhere on this interval, then we can �nd a quadrature rule with only one node, namely
the expected value, which is 0 here.
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(DOF-condition). This condition, however, has to be understood as a rule
of thumb. Both cases exist where n has to be chosen greater or can be
chosen smaller2.
I suggest one of the two following approaches for choosing the test space
and n. I call these approaches the rigorous approach and the minimal ap-
proach.
Rigorous Approach Let us assume that the model function itself lies in

the ansatz space, u ∈ P. Then, it is reasonable to require that the
surrogate model is exact, i. e. ũ = u. Inserting this requirement into
either the quadrature approach [Eq. (3.11)] or the least-squares ap-
proach [Eq. (3.12)], we obtain integrals over products of two ansatz
functions. Roughly speaking, this means that a quadrature rule must
be exact up to twice the degree of u in order to guarantee that inter-
nal aliasing does not occur. As a result, we de�ne the test space to be
the span of all products of two ansatz functions:

T = span
{
ΨiΨj | 1 ≤ i, j ≤ p

}
. (4.5)

We then selectn large enough so that the operator norm is reduced to
zero. A practical procedure is to �rst select n according to the DOF-
condition [Eq. (4.4)] and numerically perform the optimization. If the
smallest found value of the objective function is not small enough,
then n can gradually be increased until it is large enough to reduce
the objective function to a su�ciently low value.

Minimal Approach We set the number of nodes to the trivial lower bound:
n = p. Then we select an appropriate test space. Now the quadrature
rule is, in general, not able to calculate all necessary integrals exactly.

2The following two examples show that the DOF-condition can both under- and overesti-
mate the number of nodes required for exact integration.

The �rst example is described by Radon [118]. For a uniform distribution with d = 2
and T = span

{
1, x1, x2, x 2

1, x1x2, x
2
2
}
, it is t = 6 and the DOF-condition suggests choos-

ing n = 2. However, no matter where the two nodes are placed in the domain, there
always exists one strictly non-negative function in T that is zero in both nodes. Thus, no
quadrature rule with n = 2 exists that is exact for all functions in T.

For the second example, assume a two-dimensional tensor product of Gaussian quadra-
ture rules with two nodes in each direction on a separable measure, d = 2, n = 4 and the
DOF-condition suggests that such a quadrature rule is exact for a test space of dimension
n (d + 1) = 12. In fact this quadrature rule is exact for all polynomials up to order 3 in
each coordinate direction, which yields t = 16, a higher order of accuracy than the DOF-
condition suggests. Tensor products of Gaussian quadrature rules have the property to be
exact for t = n · 2d test functions because the factor of 2 multiplies for each dimension.
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The test space can be chosen either as in Eq. (4.5) or according to the
DOF-condition [Eq. (4.4)]:

T = span
{
Ψ1, . . . ,Ψn(d+1)

}
. (4.6)

The former treats all coordinate directions of Ω according to their
importance in P. The latter simply cuts o� the ONB after n (d + 1)
terms, which means that some coordinate directions are slightly pre-
ferred over others. The word minimal in minimal approach refers to
the minimality of n, not of T.

4.2.3. Implementation Details

If the test space is chosen to be a polynomial space, a relatively simple ex-
pression for the squared operator norm



I − Q(x ,w )

2L(T,R) can be derived.
As before, we de�ne t = dimT and represent the elements of T as coordi-
nate vectors with respect to the ONB Ψ1, . . . ,Ψt . Trivially, R is a space of
dimension 1 and its elements are represented as themselves. Formally, the
corresponding basis is 1, which also constitutes an ONB. Accordingly, both
operators I and Q(x ,w ) can be represented as 1 × t matrices. We denote
the matrix representation of an operatorA with respect to basis Ψ as ΨA.
Since we represent everything with respect to ONBs, the operator norm in
L (T,R) can be computed as the 2-norm of its matrix representation, which
is degenerated to a vector in this case.
For the matrix representation of I with respect to Ψ, we make use of the
relationship in Eq. (3.4) to �nd

IΨ1 = 1
IΨi = 0, for i > 1. (4.7)

Therefore,
ΨI = e1 = (1, 0, . . . , 0) . (4.8)

By the de�nition of Q(x ,w ) [Eq. (4.2)], we �nd

Q(x ,w )Ψi =
n∑
j=1

w jΨi
(
x j

)
(4.9)

and then
ΨQ(x ,w ) = (Ψ (x)w)> . (4.10)
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with the t × n matrix

Ψ (x) :=

Ψ1 (x1) . . . Ψ1 (xn)
...

...
Ψt (x1) . . . Ψt (xn)


We can calculate the squared operator norm of I − Q(x ,w ) with



I − Q(x ,w )

2L(T,R) = 

e1 − (Ψ (x)w)>

22 , (4.11)

which is a sum of squares. Together with the fact that the objective function
is a multivariate polynomial and therefore smooth, this structure can e�-
ciently be exploited with Gauss-Newton type optimization algorithms. An
analytical implementation of the partial derivatives of the objective func-
tion can be used to further accelerate the optimization.

4.2.4. Properties of the Method

In this section we address two properties of the OSC method. First, with
OSC it is straightforward to recycle nodes to form nested sampling rules.
Second, OSC is a generalization of some existing and well-known quadra-
ture rules.

Recycling of Nodes
With OSC it is possible to recycle nodes in the sense of nested integra-
tion rules. Assume we have already performed some model evaluations
in earlier work. A �xed list of nodes x1, . . . ,xn and the model responses
u (x1) , . . . ,u (xn) are given. Next we want to add m more nodes xn+1, . . . ,
xn+m , such that the quadrature rule with all n + m nodes is an optimal
extension of the given n nodes.
The reuse of nodes by OSC is straightforward. We use exactly the same
objective function as before [Eq. (4.3)], only we �x the �rst n nodes in the
optimization. The number of degrees of freedom is now n+m (d + 1): each
of the new nodes has d + 1 degrees of freedom, while the recycled points
are free only in their weights. By recycling nodes we can increase the order
of the quadrature rule, but the contribution of recycled nodes (in terms of
degrees of freedom) is reduced from n (d + 1) to n. Therefore, recycling of
nodes becomes less e�ective in higher dimensions. The test space T can be
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selected analogously to the suggestions in Section 4.2.2. In this case, the
DOF-condition has a slightly di�erent form:

t = n +m (d + 1) (4.12)

Two possible applications for the reuse of nodes are:
1. The test space T changes. For example, a lower-order PCE can be

used as part of an error estimator, to predict whether a higher-order
PCE is necessary. In this approach, polynomial response surfaces of
increasing degree are constructed until an error estimator indicates
that the degree is high enough. For these methods, it is highly desir-
able to reuse nodes. This idea is analogous to nestedness in quadra-
ture rules. By reusing nodes, we construct a set of nested quadrature
rules.
A possible application is in sparse PCEs. For example, Blatman and
Sudret propose an adaptive sparse polynomial chaos approximation,
using a sequential experimental design [15]. Such sequential de-
sign could be improved by incorporating information about previous
nodes in each iteration.

2. The measure µ of the parameter distribution changes. This is the
case, for example, when Bayes’ theorem is applied for parameter in-
ference, see Section 2.2. After incorporating measurement data into
the prior knowledge of the distribution, one obtains a posterior dis-
tribution that di�ers from the prior. The old nodes are generally not
placed optimally with respect to the new measure and it is desirable
to add more nodes if the modes of prior and posterior lie far apart
[111]. Other situations where the applied measure changes are, for
example, the so-called shifted PCE and the windowed PCE [113], or
simply a change of mind in the de�nition of the prior.

OSC as a Generalization of Known �adrature Rules
A couple of known quadrature rules are special cases of OSC: they mini-
mize the objective function in Eq. (4.3) for certain choices of the test space.
I present a selection of three such known types of quadratures rules. In
numerical tests, which are not further reported here, I was able to con�rm
that these quadrature rules are not only theoretical minima of the objective
function, but can also practically be found by numerical optimization.
Gaussian �adrature (GQ) GQ rules are one-dimensional quadrature

rules with the highest possible integration order [39, 60]. With n
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nodes, they integrate the �rst 2n monomials 1,x ,x2, . . . ,x2n−1 ex-
actly. This number of monomials satis�es the DOF-condition. To
reproduce the nodes and weights of a GQ rule via OSC, we select
a number n and then choose the test space according to the DOF-
condition. By de�nition, the nodes of GQ minimize the objective
function in Eq. (4.3). We do not have to restrict ourselves to a spe-
ci�c GQ rule, e. g. Gauss-Legendre, Gauss-Hermite, etc. Instead, the
measure µ can be chosen freely, as long as the ONB of the test space
can be constructed. OSC is also capable of reproducing tensor prod-
ucts of Gaussian quadrature if the underlying measure is separable
and the ansatz space is chosen to be a tensor product polynomial
space. For non-separable measures (i. e., for statistically dependent
input parameters), OSC deviates from GQ rules, and provides more
problem-adapted non-tensor clouds of nodes, see Section 4.3.3. In
this sense, OSC is a generalization of GQ.

Kronrod Extensions and Gauss-Kronrod Rules Given a one-dimension-
al quadrature rule with n nodes, its Kronrod extension is the nested
quadrature rule with additional n+ 1 nodes that has the highest pos-
sible degree [115]. A Gauss-Kronrod quadrature rule is a Kronrod
extension of a GQ rule. When constructing a Kronrod extension,
there are 3n + 2 degrees of freedom. Each old node yields one de-
gree of freedom, namely its weight, while the n + 1 new nodes are
free in location and weights and thus have two degrees of freedom
each. To construct a Kronrod extension with OSC, we make use of
the ability to recycle nodes. Starting from an n-node integration rule,
we select T = {Ψ1, . . . ,Ψ3n+2}, which is according to the modi�ed
DOF-condition [Eq. (4.12)] withm = n + 1. If the Kronrod extension
exists, then, by de�nition, it globally minimizes our objective func-
tion [Eq. (4.3)]. Newtons method has already been used to numeri-
cally �nd Gauss-Kronrod rules [21] and general Kronrod extensions
[54]. OSC coincides with the approach in these two papers if a Gauss-
Newton algorithm is used for the minimization of Eq. (4.3). The main
di�erence is that OSC is formulated for arbitrary dimensions and ar-
bitrary numbers of additional nodes, while Kronrod extensions are
one-dimensional by de�nition and always add n + 1 nodes to an n-
node quadrature rule. Thus, it is justi�ed to call OSC a generalization
of Kronrod extensions.
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General Multi-Dimensional Monomial �adrature Rules Last, any gen-
eral multi-dimensional monomial quadrature rule is a special case of
the OSC method. A monomial quadrature rule is a quadrature rule
that exactly integrates polynomials up to a certain degree. Research
on such rules goes back to Radon in 1948 [118] and Stroud in 1971
[136]. By construction, a monomial quadrature rule attains an oper-
ator norm of 0 in Eq. (4.3) if the test space is chosen correctly. This
means that if the numerical optimization is successful, then OSC can
either reproduce these quadrature rules from literature, or we would
�nd a quadrature rule that is di�erent, but achieves the same polyno-
mial degree with the same number of nodes. Numerical tests within
my study revealed that in some cases there exists a continuum of
quadrature rules that minimize the operator norm to 0, e. g. when
the stochastic domain Ω and the measure µ are rotationally symmet-
ric.

4.2.5. Limitations

The OSC has an important limitation: to obtain the nodes and weights, we
need to solve a high-dimensional optimization problem. The dimension-
ality of the optimization problem is n (d + 1), and so increases with both
the dimension of the parameter domain and the number of nodes. The
applicability of OSC is restricted by the availability of e�cient and robust
optimization algorithms.
It is worth pointing out that, for a �xed polynomial degree and increasing
dimension, the dimensionality of the optimization grows faster than the
number of needed nodes. That means, no matter how expensive the model
function is, with increasing dimension, there will be a point at which the
optimization becomes more time consuming than additional model evalu-
ations.
In such case, it might be more e�cient to use a simpler integration rule and
accept a non-minimal number of nodes. Most other rules, like sparse grid
rules, are much simpler in their construction than OSC and the set of nodes
can be determined explicitly and easily.
Another issue is the practical problem of �nding the global minimum. The
objective function is a multivariate polynomial and it can be expected to
have local minima. The problem of local minima can be tackled by using
multi-start optimization algorithms or global search algorithms. However,
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OSC Method Tensor Grid PCMMethod

Random Hammersley

Figure 4.1.: Nodes generated by di�erent sampling rules for the uniform
distribution on [−1, 1]2

even if the optimization is repeated a couple of times, there is no guarantee
that the global optimum has been found, unless the objective function has
been reduced to its lowest attainable value, i. e., zero. In Section 4.3.5, I re-
port an experiment about the practical computing time of the optimization
and the necessary number of multistarts.

4.3. Numerical Experiments

The following numerical experiments are meant to demonstrate that the
OSC method is stable, �exible and versatile. In all experiments, polynomial
coe�cients were calculated using the least-squares approach, see Eq. (3.12).
The results from the quadrature approach [Eq. (3.11)] are not shown in this
chapter. In almost all experiments, the least-squares approach was equally
accurate or better than the quadrature approach, regardless of the used
sampling rule.
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4.3.1. Flexibility

The �rst couple of experiments demonstrate the �exibility of OSC. Recall
that the modeler is relatively free in choosing a speci�c polynomial basis for
the expansion of the model function. By my de�nition, a sampling method
is called �exible if it o�ers the same freedom in selecting the number of
nodes.
In this experiment we consider a uniform distribution on the domain Ω =
[−1, 1]2. I discretized this distribution with a discrete uniform distribution
on a regular 100× 100 grid. Please note that this discretization does not in-
troduce any discretization errors because all of the computations involved
(i. e., orthonormalization of the polynomial basis, calculation of the refer-
ence solution and of the errors) were performed on this discrete distribu-
tion. So instead of solving the original problem (on the continuous dis-
tribution) with errors, we solve a slightly di�erent problem (on a discrete
distribution) exactly.
We compare the following �ve sampling rules.

1. OSC,
2. tensor grids constructed from the Gauss-Legendre quadrature,
3. PCM,
4. random sampling and
5. Hammersley sampling.

To give a visual impression, Figure 4.1 shows nodes according to these �ve
sampling rules for the construction of a two-dimensional polynomial of
total degree 4. The tensor grid for this task has 25 nodes, while all other
sampling methods require only 15 nodes.

Constant Polynomial Degree

We consider the model function u (x1,x2) = exp (x1 + x2) and approximate
the model function by a polynomial of total degree 4, so the expansion has
p = 15 terms. With each sampling method, we construct sampling rules of
di�erent sizes and calculate the approximation error for the 15 coe�cients.
The approximation errors are shown in the upper plot in Figure 4.2.
First of all, the three sampling methods PCM, random sampling and Ham-
mersley sampling converge at a slower rate than OSC and the tensor grid.
The OSC method and the tensor grid show a faster convergence behavior.
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The only di�erence is that OSC starts with a smaller minimal sample size
than the tensor grid: here, 15 nodes instead of 25.
If we compare the total error (=approximation error plus truncation error)
of the OSC method and the tensor grid, see Figure 4.2, lower plot, we can
see that the small approximation error of the tensor grid becomes invisible
compared to the relatively large truncation error of the degree 4 polyno-
mial. Choosing a sample with more than 30 nodes does not signi�cantly
improve the accuracy. Since the tensor grid is not �exible enough to pro-
vide a sample smaller than the 25 nodes, it follows that the two best samples
for this test case are the two smallest OSC samples with 15 and 21 nodes,
respectively.

Increasing Polynomial Degree

In practice, it does not make much sense to increase the number of nodes
without increasing the number of expansion terms as well. Otherwise, the
truncation error dominates the total error as seen in the lower plot in Fig-
ure 4.2. For a reasonable result, the polynomial degree has to be increased
together with the number of nodes. Therefore, we repeat the previous ex-
periment but increase both the number of expansion terms p and the num-
ber of nodes n. The total polynomial degree in this experiment varies be-
tween 1 and 8. In two dimensions, a total degree polynomial of degree д
has p = (д + 1) (д + 2) /2 terms. For PCM, random sampling and Hammer-
sley sampling, the minimal number of nodes n = p is chosen. The OSC is
constructed with the rigorous approach (see Section 4.2.2), which results
in slightly more nodes than the minimum. The minimal tensor grid has
(д + 1)2 nodes, which is approximately twice as many as there are terms in
the expansion.
The approximation error and the total error observed in this experiment
are shown in Figure 4.3. Now, the approximation error of the individual
data points in the plot are not directly comparable, as each expansion has
a di�erent number of terms. If we compare data points that belong to the
same degree of expansion (e. g. the last data point of each plot) then we see
that tensor grid rules are much more accurate than other methods (an error
of 10−9 versus 10−6) but also need more nodes. The behavior of the total er-
ror (Figure 4.3, lower plot) shows that the OSC overall is more useful. This
is because the high approximation accuracy of the tensor grid rule is com-
promised by the relatively large truncation error: while each tensor grid is
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Figure 4.2.: Approximation error and total error for the approximation of
the function u (x1,x2) = exp (x1 + x2) by a polynomial of con-
stant degree 4 over a uniform distribution
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very accurate by itself, the total error is always dominated by the trunca-
tion error. Therefore, the additional nodes in the tensor grid are spent on
an additional approximation accuracy that does not signi�cantly improve
the overall accuracy.
These experiments show that the only reason why tensor grid rules per-
form worse than the other rules, is that they are not �exible. OSC and the
other three methods are �exible.

4.3.2. Stability

In this experiment, we test the di�erent sampling rules for their stability.
We repeat the previous experiment, but with a di�erent model function
u (x1,x2) = 1/(1 + 5x21 + 5x22 ) . This function can be thought of as a two-
dimensional version of the Runge function. The Runge function is a typical
example for a function that, on an equidistant set of nodes, cannot be inter-
polated by polynomials in a stable way [126]. The total errors are shown in
Figure 4.4. While OSC and the tensor grid method improve their accuracy
with an increasing sample size, the three other sampling rules (PCM, ran-
dom sampling and Hammersley sampling) have an increasing error. This
is in line with the fact that the Runge function is di�cult to interpolate.
The nodes are not well-spread in the domain to reliably approximate the
growing number of coe�cients. These three sampling rules are �exible,
but not stable if used with the minimal number of nodes. The OSC method
and tensor grids are both stable. This experiment shows that stability is an
absolute requirement for a sampling rule: if a sampling rule is not stable, it
should be avoided altogether.

4.3.3. Versatility

We now compare the di�erent sampling rules in their ability to handle de-
pendent input parameters. We select the following distribution:

X =

[
X1
X2

]
=

[
R · cos (θ ) − 1
R · sin (θ ) − 1

]
(4.13)

with two random variables R ∼ U ([1, 2]) and θ ∼ U ([0,π/2]). The values
of X are again in the interval [−1, 1]2, and the support of the distribution
is a quarter of a ring around the point (−1,−1)with radii 1 and 2. Similarly
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Figure 4.3.: Approximation error and total error for the approximation of
the function u (x1,x2) = exp (x1 + x2) by polynomials of de-
grees between 0 and 8 over a uniform distribution
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Figure 4.4.: Total error for the approximation of the Runge-type function
u (x1,x2) = 1/(1 + 5x21 + 5x22 ) by polynomials of degrees be-
tween 0 and 8 over a uniform distribution

to the previous experiments, the distribution was discretized by a sample
of size 10 000, and all calculations were done one this discrete distribution.
Therefore, we do not get additional discretization errors.

For a visual impression, Figure 4.5 shows the nodes determined by the
di�erent sampling rules for a polynomial of total degree 5. The tensor
grid was constructed by ignoring the joint distribution altogether. One-
dimensional quadrature rules we constructed from the two marginal dis-
tributions and then all possible combinations were used. The PCM nodes
were constructed similarly. OSC can take full account of the dependency.
Therefore, the nodes of OSC all lie within the support of the distribution of
X , expect for one outlier. This is noteworthy because, in the optimization,
no explicit constraints were imposed, following the idea of an augmented
support for the integration (see last remark in Section 4.2.1). The outlier
can be explained by the fact that the functions of the test space T are de-
�ned outside the support as well. Since the functions are smooth, even
nodes outside the support are informative about the model function u.
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OSC Method Tensor Grid PCMMethod Random

Figure 4.5.: Nodes generated by di�erent sampling rules for a depen-
dent distribution. The gray area indicates the support of the
distribution.

As before, we de�ne the model function u (x1,x2) = exp (x1 + x2), and ap-
proximate it with polynomials up to a total order of 6. The total errors are
shown in Figure 4.6. Again, OSC is the most e�cient sampling rule.
There is one important di�erence between this convergence plot and the
previous ones. Previously, OSC was about equally accurate as the tensor
grids, but more e�cient, due to the smaller sample sizes. In this exper-
iment, OSC is both more accurate and faster than the tensor grids. This
demonstrates that OSC is more versatile than tensor grids.
In this example, the dependency in the parameter distribution could be
removed by transforming the model function to the (R,θ )-space. This is
not done here for the reasons discussed in Section 2.1.1.

4.3.4. Nested Sampling Rules

To demonstrate how OSC is able to produce nested node sets, we mimic a
case of Bayesian updating by using two di�erent distributions. In the �rst
step, we generate a set of nodes for a prior distribution, which we select
to be N (0, 1) for both parameters independently. In the second step, we
add more nodes using a �ctitious posterior distribution N (

1, 0.52
)
. These

distributions are selected by hand, but they could occur when Bayes’ the-
orem is applied to a linear model with normally distributed measurement
errors. In Figure 4.7, the two distributions are indicated by the gray shad-
ing. The distributions are chosen such that some of the prior nodes lie in
the high-probability region of the posterior, which means that some inter-
actions between the prior and the posterior node cloud can be expected.
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Figure 4.6.: Total error for the approximation of the function u (x1,x2) =
exp (x1 + x2) by polynomials of degrees between 0 and 6 over a
distribution with dependencies

We generate twelve nodes for the prior with a test space of polynomials
up to degree 7. For the posterior, we add eleven nodes with a test space of
polynomials up to degree 8. The nodes are shown in Figure 4.7. On the left,
the twelve prior nodes are shown. On the right, the prior nodes are shown
in white and the newly added nodes are shown in black.
As expected, the newly added nodes interact with the prior nodes and leave
gaps around them. It is clear that the 23-node rule is not the best integration
rule one can obtain with 23 nodes, but it is the best possible extension of the
preset twelve nodes. If the posterior distribution was known beforehand,
then we could have generated a 15 node rule with the same test space. By
recycling the old nodes, we only had to add 11 new nodes, saving 4 nodes.

4.3.5. Optimization E�ort and Robustness

The dimension of the optimization problem is n (d + 1), and increases with
both dimension d and number of nodes n. To provide a rough idea about
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Figure 4.7.: Nested sampling rules: prior (left) and posterior (right) distri-
bution and accordingly placed nodes

Number of Degrees of Optimization
Dimension Degree nodes freedom time [s]

1 1 2 4 0.02
5 6 12 0.07
10 11 22 0.21

2 1 3 9 0.03
5 21 63 0.26
10 66 198 2.14

5 1 6 36 0.29
5 252 1 512 4 020.80

10 1 11 121 51.17
2 66 726 2 171.10

Table 4.1.: Optimization time for OSC for di�erent polynomial degrees in
di�erent numbers of dimension.
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the computing time, we perform the optimization in di�erent dimensions
(number of random input variables) and for various numbers of nodes

For all of the following calculations, we assume a uniformly distributed
input X in a d-dimensional unit cube [−1, 1]d . For various dimensions,
we construct ansatz spaces of di�erent total degrees. An ansatz space of
polynomials up to total degree д in d dimensions has a basis of

p =
(d + д)!
d!д! (4.14)

ansatz functions [81]. For each case, we perform optimizations with the
minimal number of nodes n = p and the test space according to Eq. (4.5)
(see Section 4.2.2). To get a robust estimate, the computing time is aver-
aged over 10 optimization runs for each case. The initial sample for each
optimization is drawn randomly from the distribution ofX . Our implemen-
tation uses the objective function as derived in Section 4.2.3. Additionally,
the partial derivatives of the objective function are implemented analyti-
cally. For the optimization, Matlab’s function lsqnonlin was used. It is an
implementation of an interior trust region algorithm which uses a second-
order Taylor expansion of the objective function [29]. The optimization
was performed on one core of a desktop computer with 3.10 GHz. Results
are summarized in Table 4.1 and Figure 4.8 shows a plot of the optimization
time in terms of degrees of freedom. Data points from di�erent dimensions
are put together in this plot. In the range of up to 100 degrees of freedom,
the optimization time increases approximately linear (with a slope of ap-
proximately 1 in the log-log-plot). Beyond that point, the slope increases,
indicating roughly a quadratic or faster increase. However, our data are
sparse in this area.

In the explored range, the optimization time is in the order of seconds,
and only one of the cases takes more than one hour. Recall that, in the
introduction, I made the assumption that the model function is so expensive
that the computational costs of preprocessing steps can be neglected. For
the cases considered here, with a relatively low dimension of the parameter
domain and a moderate polynomial degree, this assumption seems to be
justi�ed. If, however, the parameter domain is higher-dimensional and if
the polynomial degree is further increased, the optimization will take more
time and the assumption should be reconsidered.
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Figure 4.8.: Optimization time in terms of degrees of freedom.

Robustness

Finally, we investigate the numerical robustness of the optimization. How
sensitive is the optimization result to the random initial conditions? We
compare three cases, all of dimension 2 and all with a test space of poly-
nomials up to degree 8. In the �rst case, the underlying distribution is uni-
form on the unit square. In the second case, we select a bimodal Gaussian
mixture distribution: with a probability of 50/50 the random parameter is
sampled from one of two normal distributions N((0, 0), I ) and N((3, 3), I ).
In the last case, the parameters are again uniformly distributed, but this
time we generate 6 random points and insert them into the optimization as
�xed nodes for node recycling (see Section 4.2.4).
For each of the three cases, we repeat the optimization 1000 times and
record the optimization time and the achieved value of the objective func-
tion. Figure 4.9 shows scatter plots of these data. In the left plot, we can
see that the objective function has three distinct local minima. The number
of runs that reached the global minimum is 420 out of 1000. In the second
case, the objective function seems to have many more local minima and
the number of successful runs is 278 out of 1000. In the third case, very
many runs did not �nd the global minimum and only 55 out of the 1000
runs reached the optimal point.
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These results indicate that, for multimodal distributions and with node re-
cycling, the optimization becomes practically more di�cult. Local search
algorithms as the one used here do not guarantee to �nd the global mini-
mum. Consequently, the computational e�ort for �nding optimal nodes is
the product of the average optimization time and the number of necessary
multistarts. Furthermore, in practice we have to accept that we can not
always �nd the optimal quadrature rule. For a practical approach it might
be su�cient to use a di�erent sampling rule as the initial guess for the op-
timization. The resulting sample might not be the optimal sample, but it is
guaranteed to be better than the initial guess, or at least equally good.
In all three cases reported in Figure 4.9, the computing time varied mainly
within one order of magnitude with a few outliers in case 2 and 3, which
are slower by a factor of about 100 compared to the fastest run.

4.4. Beyond �adrature and Least Squares

As an outlook for future research, I will formulate a possible generalization
of the OSC method. Unlike the rest of the chapter, this content has not been
published in the International Journal for Uncertainty Quanti�cation.
In the current formulation, the OSC method has a conceptual downside:
the method �nds nodes and weights, but does not provide a clear rule for
how to calculate the PCE coe�cients from these. The modeler still has to
decide between the quadrature approach and the least-squares approach
and, as I mentioned in Section 3.1.2, I am not aware of any scienti�c work
that provides a practical aid in this decision by directly comparing these
two approaches.
This downside can be avoided by the following procedure. The OSC method
is based on optimization anyway, so we can use the optimization procedure
itself to determine the optimal calculation rule for the PCE coe�cients. In
Eq. (3.13) in Section 3.1.2, I provided a general formulation of all possible
linear calculation rules: P = ΨAEx . If we take this formulation as a start-
ing point, we only need to �nd a suitable objective function and then the
resulting optimization problem will able to �nd both the optimal nodes x
and the optimal calculation rule A. Such an optimal calculation rule might
either coincide with one of the known approaches (quadrature or least-
squares) or might be entirely new. In the following, I will provide some
mathematical details and propose two possible objective functions.
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Figure 4.9.: Scatter plot of achieved value of the objective function versus
optimization time
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From Section 3.1.2 recall that a general form of a response surface operator
with a �xed ansatz space is ΨAEx , see Eq. (3.13). The matrix A encodes
the rule for calculating the PCE coe�cients from the model responses. The
quadrature approach and the least-squares approach are special cases of
this operator in the sense that the matrix A can be chosen such that the
whole operator coincides with either of the two approaches. Starting with
this general form of an operator, we can optimize both the nodes x and
the calculation rule A so that the operator ΨAEx becomes as similar to the
best-approximation operator as possible.
We de�ne the operator that maps a function to its best approximation in P
as

P? : U→ P : u 7→
p∑
i=1
〈u,Ψi 〉 Ψi .

We obtain this operator by inserting the analytical expression for the ex-
pansion coe�cients [Eq. (3.5)] into the truncated expansion [Eq. (3.6)]. The
best approximation operator is to be approximated by an operator of the
form

P(x ,A) : U→ P : u 7→ ΨAExu .
We regard the nodesx and the matrixA as parameters of this operator. Note
that the output of these two operators are functions and not scalars as in the
integration and quadrature operator [Eqs. (4.1) and (4.2)]. To measure the
di�erence between P? and P(x ,A), I suggest two possible error measures.

1. The �rst one is similar to the OSC approach. We approximate P? by
minimizing the operator norm of P? − P(x ,A). Like in the OSC ap-
proach, the operators might be unbounded, so that the operator norm
is not de�ned onU. Therefore, we introduce a �nite-dimensional test
space T and the objective function becomes(

x?,A?)
= argmin

x ∈Ωn
A∈Rn×n



P? − P(x ,A)



L(T,P) .

2. The second possible error measure is the Lebesgue constant:(
x?,A?)

= argmin
x ∈Ωn

A∈Rn×n

Λ
(P(x ,A))

For the Lebesgue constant to be de�ned, we again have to restrict it
to a test space T, so the Lebesgue constant is the smallest number
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Λ
(P(x ,A)) satisfying

u − P(x ,A)u

 ≤ (

1 + Λ
(P(x ,A)) ) 

u − P?u




for all u ∈ T.

These two error measures are, of course, not the only possible ones. I
selected these two speci�cally because both the operator norm and the
Lebesgue constant are well known concepts in functional analysis and ap-
proximation theory, see Section 3.1.3.
On the one hand, this generalization of the OSC method can potentially
lead to better sampling rules: the search space is larger than the one in the
OSC method (from optimizing nodes and weights to optimizing nodes and
the calculation rule) and the objective function is more closely adapted to
the task of �nding a response surface method. On the other hand, the opti-
mization itself becomes more di�cult: the output of the involved operators
are functions, not scalars, so the evaluation of the objective function itself
is more involved than for the OSC method. Furthermore, the dimension of
the optimization problem is increased from n (d + 1) to n (d + p), where n
is the number of nodes, p is the number of expansion terms and d is the
dimension of the parameter domain.
Whether the potential bene�ts are worth the additional optimization e�ort
remains an open question for future research. I was able to obtain some
preliminary results for the Lebesgue constant. These are presented in Ap-
pendix A.

4.5. Conclusions

In this chapter, I presented OSC, a sampling rule for the e�cient, nonintru-
sive construction of polynomial response surfaces. The method is adapted
to the task of calculating PCE coe�cients and is formulated as an optimiza-
tion problem. The nodes can be used with the quadrature approach or the
least-squares approach and are not generally of tensor grid structure. By
reusing nodes from previous calculations, nested integration rules can be
constructed.
Numerical examples demonstrated that OSC sampling rules are stable, �ex-
ible and versatile. Stability means that nodes are distributed such that os-
cillations between the nodes (according to the Runge phenomenon) are
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avoided. Flexibility means that the number of nodes can be chosen rel-
atively freely. Versatility means that input parameters with statistical de-
pendencies can be handled directly, without transforming the input param-
eters to statistically independent parameters. With these properties, OSC
showed to be the most e�cient sampling rule among the ones compared in
the numerical experiments.
Being formulated as an optimization problem, OSC depends on the avail-
ability of e�cient optimization algorithms. In high dimensions, the opti-
mization for �nding the integration rule can take a considerable amount of
time itself. Therefore, the OSC method is best applicable with parameter
domains of dimension 10 or less. In higher-dimensional cases, the optimiza-
tion time might become comparable to the computing time of the model
function and then it might be overall more bene�cial to use a non-optimal
sampling method.
Last, I brie�y outlined two variants of the OSC method that are more closely
adapted to the task of building a polynomial response surface, but at the
same time are more di�cult to implement. A detailed analysis of these
variants is an open topic for future research.
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5. Towards Optimal Response
Surface Modeling

In this chapter, we attempt to �nd an optimal response surface method for
uncertainty propagation. While in the previous chapter, we only optimized
the sampling rule for response surfaces of a certain type (namely polyno-
mials), we now consider the optimization over all nonintrusive, linear re-
sponse surface methods. This means that we optimize both the sampling
rule and the functional form of the response surface. That way, we allow
the ansatz space P to be chosen arbitrarily. The goal of this generalization
is to determine the ansatz space via optimization, so that the practitioner
does not have to choose it.

Central to any optimization is the objective function. The main concern of
this chapter is the question of how to de�ne an appropriate objective func-
tion that measures how good a response surface method is. I expect three
bene�ts from de�ning an objective function. First, once two practitioners
have agreed on one objective function, then this solves any possible dispute
over which method is better. Second, with an objective function in place,
we can apply formal optimization methods to �nd the best possible method.
Third, in formulating an objective function we are forced to state all of our
assumptions explicitly. Depending on the type of objective function, such
assumptions could come in form of a test space which is assumed to con-
tain the model function, or in form of a random �eld from which the model
function is assumed to be a realization. Making all assumptions explicit
helps gain a better understanding of when to apply what method.

In the following section, I propose three possible objective functions, dis-
cuss them in terms of practicality and, if possible, derive their optimal
method. Afterwards, I provide mathematical proofs and �nish the chap-
ter with a conclusion.
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5.1. Objective Functions

We start with the general formulation given in Section 3.1.1. Any non-
intrusive, linear response surface methods can be written as an operator
P : U → U, with P = ΦEx , consisting of an evaluation operator Ex
and an operator Φ mapping the model response back to a function. The
space of all such operators with n function evaluations is called Pn . It is
parametrized by n nodes x = (x1, . . . ,xn) and n unit response functions
Φ1, . . . ,Φn .
Given the input parameters X and the model function u, we obtain Y =
u (X ). Applying the response surface operator, we get ũ = Pu and then
Ỹ := ũ (X ). The goal is to minimize theL2-error between the model function
and the response surface, see Section 2.1.3:



Y − Ỹ

 = ‖u − ũ‖
= ‖Iu − Pu‖
= ‖(I − P)u‖ ,

where I is the identity operator on U. The operator (I − P) maps a func-
tion u to its total error u − ũ.
The L2-error ‖(I − P)u‖ itself is not useful as an objective function be-
cause it depends on the unknown or uncertain model function u. So in-
stead we design the operator P such that the error ‖(I − P)u‖ is small for
a class of functions. The purpose of the objective function is to formally
de�ne what is meant by “a small error on a class of functions”. In the fol-
lowing sections, I examine three possible objective functions: the Lebesgue
constant, the operator norm, and the expected squared error. All three ob-
jective functions are centered around the minimization of the L2-error, but
di�er in the way they consider di�erent possible shapes of u.
The discussion of the Lebesgue constant is very short because as it turns
out the Lebesgue constant is not applicable for an optimization over Pn .
For each of the other two objective functions, I discuss two aspects:
Optimal Operator Is there an optimal response surface operator with re-

spect to the objective function?
Practicality How useful is the objective function in practice? How real-

istic are the underlying assumptions?
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5.1.1. Lebesgue Constant

The �rst objective function is the Lebesgue constant Λ (P). Recall that
the Lebesgue constant relates the achieved error ‖u − Pu‖ with the best
possible error



u − u?

 in a certain space u? ∈ P. It is the smallest number
Λ (P), such that for all u ∈ U it holds

‖u − Pu‖ ≤ (1 + Λ (P))


u − u?

 ,

see Section 3.1.3. In the formulation that I provided in that section, the
reference space P is de�ned as the image of the considered operator: P =
Im (P).
Now each operator in Pn may have a di�erent image. Therefore, di�erent
operators relate their achieved error ‖u − Pu‖ to di�erent reference errors

u − u?

, which makes the comparison of the Lebesgue constant of oper-
ators with di�erent images meaningless. As an extreme example, consider
the null operator: for any model function u, it follows Pu = 0 and also the
best approximation in the image of the null operator is u? = 0. Therefore,
the null operator achieves a Lebesgue constant of 0 (which is the best pos-
sible value), even though it clearly does not yield a useful response surface.

This example shows that it only makes sense to compare operators in terms
of their Lebesgue constant if the Lebesgue constant is calculated with re-
spect to the same reference space P. The only reference space that contains
the images of all operators in Pn is U itself. The choice P := U, however,
does not lead to a useful Lebesgue constant either because the best approx-
imation of any model functionu inU isu? = u itself, so the reference error
follows as



u − u?

 = 0 and the right hand side in the de�nition of Λ (P)
vanishes. The Lebesgue constant can only be �nite if also the achieved er-
ror ‖u − Pu‖ on the left hand side is zero. This is only the case for the
identity operator, which generally does not lie in Pn .

I conclude that the Lebesgue constant is not applicable as an objective func-
tion if we want to optimize over the space Pn because it does not help us
identify good unit response functions. If, however, the ansatz space is �xed
beforehand, then the Lebesgue constant can be a useful objective function
for �nding optimal nodes x as I demonstrated in Section 4.4 in the previous
chapter.
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5.1.2. Operator Norm

The second objective function is the operator norm of (I − P), see Sec-
tion 3.1.3. The operator norm ‖I − P‖L(U,U) over the whole space U is
unde�ned because operator P involves the evaluation operator Ex , which
is unbounded. Therefore, similarly to the procedure in Chapter 4, we in-
troduce a test space T ⊂ U, such that ‖I − P‖L(T,U) is de�ned for at least
one non-trivial choice of P. This can, for example, be achieved by making
T �nite-dimensional. The objective function then reads

f (P) := ‖I − P‖L(T,U) .

Recall that the operator norm is de�ned via a supremum over the elements
of T. Therefore, this objective function can be thought of as a worst-case
error, similar to the∞-norm for functions or sequences.
For this objective function, the optimal operator is not di�cult to obtain.
However, as I will discuss in the practicality section below, this approach
is unpractical in most cases.

The Optimal Operator

The optimal operator with respect to the �rst objective function is either
the identity operator or the null operator, depending on the dimensionality
of space T as stated in the following theorem.

Theorem 1
Let T be a subspace of U and de�ne t := dimT (possibly including the case
t = ∞).
Then, the minimum of the objective function f (P) = ‖I − P‖L(T,U) overPn
is

min
P∈Pn

‖I − P‖L(T,U) =
{
0 if t ≤ n,

1 otherwise.

This minimum is achieved by operator P? with

P? =

{
I if t ≤ n

0 otherwise.
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A proof is provided separately in Section 5.2.1.
If the number of nodes n is larger or equal to the dimension of T, then we
are able to identify all elements of T and therefore we can reconstruct all
elements with zero error. If, however, the dimension of T is larger than n,
then there will always be at least one non-zero element in T that is mapped
to zero, so with respect to the worse-case objective function, no operator
can be better than the null operator.

Practicality

The main use of an operator norm is its submultiplicativity property, which
yields an upper bound for the total error [Eq. (3.17)]. For all u ∈ T, it is

‖u − ũ‖ ≤ ‖I − P‖L(T,U) ‖u‖ .
For this bound to be useful, two conditions have to be satis�ed. First, the
test space must be chosen such that it contains the model function. Oth-
erwise the upper bound does not hold. Second, the operator norm must
be smaller than 1. Otherwise the total error can be as large as the model
function itself.
According to the theorem, the second condition can only be met ifT is �nite
dimensional. So for this approach to be useful, we need to know a �nite-
dimensional space that is guaranteed to contain the model function. This
is a requirement which I believe is not met in most applications. Overall,
I conclude that this objective function does not lead to a useful response
surface method.
This analysis reveals two more interesting aspects:
First, all that matters about the test space T is its dimension and not the
smoothness of its elements. As the theorem shows, the smoothness of the
model function does not matter if we consider a worst-case error. In the
following section we will see that this is di�erent if we consider an average
error instead.
Second, if the requirements of the theorem are met and the dimension of T
is smaller than n, then the actual placement of the nodes is almost irrele-
vant. As an example, if T is a space of polynomials up to degree n − 1, then
any set of n distinct nodes allows us to construct the identity operator. Of
course, di�erent node sets might lead to a more or less stable reconstruc-
tion, but the operator norm objective function does not capture the aspect
of stability.
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5.1.3. Expected Squared Error

The third objective function is the average squared error over a set of func-
tions, similarly to a 2-norm error. For the notion of average over a set of
functions, we need to equip the set of functions with a measure. In other
words, we have to describe the possible shapes of the model function u
by a random �eld U . A similar approach has been used previously to �nd
optimal approximations for functionals such as integration [98, 108, 114].
Let U be a random �eld over Ω, with U ∈ U almost surely. The objective
function for an operator P is then

f (P) := EU
[‖(I − P)U ‖2] .

For each realization u of U , (I − P)u is an element of U, so the norm ‖·‖
in this de�nition is the L2-norm.

The Optimal Operator

Finding the optimal operator with respect to the second objective function
is a bit more involved than for the previous objective function. The anal-
ysis is split into two parts. First, I determine the optimal unit response
functions Φ1, . . . ,Φn under the assumption that the nodes x1, . . . ,xn are
given. Then, in the second step, I set up a criterion for the optimality of the
nodes themselves.

Optimal Unit Response Functions for Given Nodes

At �rst, we derive the optimal set of unit response functions Φ1, . . . ,Φn
for the case that the nodes x1, . . . ,xn are given. The following results and
derivations are well known in the context of Kriging and geostatistics [77].
For �xed nodes, we can explicitly solve for the optimal operator P:

Theorem 2
Let U be a random �eld over Ω, with known and �nite raw second mo-
ments function C (x ,x ′) = EU [U (x)U (x ′)] for any x ,x ′ ∈ Ω. Let x =
[x1, . . . ,xn] ∈ Ωn be a vector of nodes such that the n × n matrix Q with
entries [Q]i j = C

(
xi ,x j

)
is non-singular.

Then, there is an optimal operator of the form P? = Φ?Ex that minimizes
the objective function f (P) = EU

[‖(I − P)U ‖2] overPn . The unit response
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functions Φ? of the optimal operator satisfy

Φ? (x) = q (x)Q−1, (5.1)

where q (x) = [q1 (x) , . . . ,qn (x)] is the vector containing the functions qi :
Ω → R : x 7→ C (xi ,x).
Furthermore, the minimal pointwise expected squared error for a parameter
value x ∈ Ω is

EU
[ ( (I − P?)

U
) (x)2] = C (x ,x) − q (x)Q−1q (x)> , (5.2)

and the minimal value in the objective function is

EU
[

(I − P?)

U


2] = E

[‖U ‖2] − ∫
Ω
q (x)Q−1q (x)> dµ (x) . (5.3)

The proof is given separately in Section 5.2.2. Note, that this theorem does
not assumeU to be a Gaussian random �eld. It only requires a �nite second
moment function.
The result in Eq. (5.1) shows that the optimal response surface is the unique
linear combination of the functions qi that interpolates u in the nodes. The
resulting response surface model P?u is the Kriging estimator and the ex-
pected squared pointwise error [Eq. (5.2)] is known from Kriging in exactly
this form, see Eq. (3.19) in Section 3.2. In the literature, the Kriging estima-
tor is known as the best linear unbiased estimator (BLUE) [77], so Theo-
rem 2 is simply a restatement of the fact that the optimal response surface
method is the best linear unbiased estimator. But Theorem 2 is interest-
ing for a di�erent reason: it reveals a connection between response surface
models and random �elds. Earlier, in Chapter 3, I introduced these two con-
cepts as two di�erent tools. Now it turns out that under certain conditions,
the mean of a random �eld is the best possible response surface.
Note that for �xed nodes, the optimal operator in Eq. (5.1) does not de-
pend on the measure µ of the parameters, but only on the random �eld U ,
namely on the second moment function C . The same holds for the point-
wise expected squared error [Eq. (5.2)]. Only the expected squared L2-error
[Eq. (5.3)] depends on µ.
It is worth pointing out one di�erence to the common Kriging methodol-
ogy: by forcing P to be a linear operator, the method is centered around
zero. Therefore, we have to consider the raw second moments instead of
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the central second moments (covariances). If the model has a known mean
m (x) = EU [U (x)], then one would rather consider a�ne operators of the
form P = ΦEx +T . Inserting this approach into the same optimality con-
dition, one �nds that the optimal operator satis�es Pu = ΦEx (u −m)+m.
The basis functions Φ would still satisfy the condition in Eq. (5.1), only that
the raw second moment function C would be replaced by the covariance
function C (x ,x ′) = Cov [U (x) ,U (x ′)]. This approach would lower the
expected error in Eq. (5.3) even further. This demonstrates that choosing
a linear operator for P is only appropriate, when U is assumed to have a
zero mean. Details on Kriging and a derivation are provided, for example,
by Kitanidis [77].

Finding Optimal Nodes

In the expression for the expected error in Eq. (5.3), the �rst term on the
right-hand side is independent from the nodes, so �nding optimal nodes is
a matter of maximizing the last term:∫

Ω
q (x)Q−1q (x)> dµ (x) .

This problem is known in the �eld of geostatistical optimal design of ex-
periments. The criterion is called integrated mean squared error [99, 128].
The only di�erence from optimal design for standard Kriging methods is
that the integral over the parameter domain is weighted via the measure
µ, whereas standard Kriging methods consider a uniformly weighted inte-
gral. If µ is a discrete measure, then the optimality criterion reduces to the
A-criterion [99, 104].
The further derivation of speci�c criteria for the optimality of a set of nodes
is problem dependent and out of the scope of this thesis. For some choices
of random �elds U and underlying measure µ, the optimal nodes can be
found analytically [4]. Otherwise, one can try to �nd nodes via numerical
optimization.

Practicality

The role of specifying the random �eldU is the same as modeling the input
parameters by a random variable X . In Section 2.1.1, where I introduced X
as the model parameters, I already mentioned that it is a strong assumption
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to assume that we can specify a distribution for X . The same holds for the
random �eldU . However, I believe it is a much weaker assumption than the
one in the previous section, where the practitioner is required to specify a
�nite-dimensional space T that contains u.
The meaning of the random �eldU can be interpreted in two di�erent ways.

• In the �rst interpretation, the random �eld is an expression of the
belief about the model function u in the Bayesian sense. In this in-
terpretation, the practitioner has a belief about the model function
anyways, she just needs to write it down as a random �eld. The re-
sulting response surface method is then the optimal one according to
the practitioners belief: if someone believes in random �eld U , then
it is only rational to use the corresponding optimal response surface
method. There is no guarantee, however, that the resulting surrogate
Pu is close to u because the belief might be wrong in the �rst place.

• According to the second interpretation, specifying U is a matter of
modeling. After all, the main downside of the Bayesian approach is
that it is not fully clear what is meant by “just writing down ones
belief as a random �eld”. Labeling the choice of U as a modeling
question and giving some practical guidelines might overall be more
useful than requiring the practitioner to express her belief in form of
a random �eld.

As a practical aid, let me brie�y outline two possible modeling approaches
for setting up a random �eld U according to the second interpretation.
First, it is possible to modelU as a stationary Gaussian random �eld. Such
�eld is completely described by the �eld mean m and covariance function
C , see also Section 3.2. As I already mentioned, the covariance function can
express a smoothness assumption about model function. For example, the
Matérn covariance function has a smoothness parameter that is directly
related to how often the realizations of the random �eld are di�erentiable
[42, 43, 63].
Second, any model function in L2 can be expanded via its PCE (see Sec-
tion 3.1.2)

u =
∞∑
i=1

ciΨi .

Since u has a �nite variance, the sequence of coe�cients ci converges to
zero. The convergence rate depends on the smoothness of u [96]. This
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motivates to model the random �eld as

U =
∞∑
i=1

λiXiΨi .

Here, λi ∈ R+ is a sequence converging to zero at a certain rate based on
the knowledge about u. The Xi ∼ N (0, 1) are i.i.d. normally distributed
random variables. This �eld U is a Gaussian random �eld, but it is not
stationary. The advantage of this type of random �eld is that it clearly
and explicitly re�ects a smoothness assumption about the model function
and allows the model function to have a trend. A disadvantage is, that it
introduces a conceptual dependency between the measure µ and the �eld
U because the basis polynomials Ψi are orthonormalized with respect to µ.
Let us return to the discussion of the practicality of describing the model
function by a random �eld. Once we accept the assumption that the model
function is a realization from a given random �eld, the optimal operator
according to Theorem 2 has a number of convenient properties.

• The optimal response surface Pu coincides with the Kriging mean.
Kriging is a well-known and well-understood method and software
solutions are easily available to practitioners.

• The random �eld U is not required to be a Gaussian random �eld.
We can equally well handle non-Gaussian random �elds. Such �elds
would occur, for example, if the model function is known to be dis-
continuous with an uncertain jump location.

• If the �eldU is Gaussian, then the pointwise expected squared error
EU

[ ( (I − P?
)
U

) (z)2] coincides with the posterior estimation vari-
ance of �eld U conditioned to the model responses. It quanti�es the
residual uncertainty in the response surface Pu. Previously, I was re-
ferring to this as the accuracy of the response surface, but since this
approach is Bayesian, I would rather call it certainty or uncertainty,
more precisely, code uncertainty. Together with the expected error,
the optimal response surface becomes an emulator. As presented in
Chapter 3, an emulator contains more information than a response
surface.

• The response surface model Pu is optimized in a pointwise way: the
value of Pu (x) was chosen optimally for each x ∈ Ω individually.
As a result, the optimal response surface is independent of the mea-
sure µ. In stochastic collocation methods, the functional form of the
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response surface is restricted to a certain class of functions (to poly-
nomials). Such a restriction necessarily leads to local errors between
the surrogate and the model function. The measure µ dictates how
the local errors are distributed over the domain. So in stochastic col-
location, the response surface modelPu is in�uenced by the measure
µ. As I discussed in Section 2.1.1, it is desirable to not couple the sur-
rogate model with the measure.

One last important aspect is that the second-moment function C directly
in�uences how good a response surface method can be. This can easily be
understood with the two possible extreme cases. The one extreme case is
when the second-moment for all points is constantC (x ,x ′) = const. Then,
one model evaluation is enough to reduce the expected squared error to
zero (see Eq. (5.3)) because each realization of the random �eldU would be
a constant function. The other extreme case is when the model response
at all points is completely uncorrelated: C (x ,x ′) = const · δxx ′ . Then, a
point evaluation does not give any information about the model response
at other points and so the expected squared error can only be reduced if
the underlying measure µ is a discrete measure (and if the nodes lie ex-
actly on the discrete points of the measure). If the measure is continuous,
then the expected squared error cannot be reduced at all. To summarize,
the stronger the random �eld is correlated, the easier it is to design good
response surfaces. The smoothness of the random �eld is closely related to
the correlation structure, so if the model function is known to be smooth,
then one can generally expect it to be well approximated using a response
surface method.
Figure 5.1 shows this relation schematically. On the left, a stationary prior
�eld is shown with its variance (gray shaded area). The center plot and
the right plot show two di�erent conditioned �elds, both with an Gaussian
covariance structure, C (x ,x ′) = exp

[− (x − x ′)2 /l2] , but with di�erent
correlation lengths. The center plot has a correlation length of one-tenth
of the parameter domain, while the right plot has a correlation length of
half of the domain.
This relation between the smoothness of a random �eld and the perfor-
mance of a response surface method is conditional to the fact that the model
function is a realization of the random �eld. This is important. Otherwise
one might by mistake come to the conclusion that it is always better to se-
lect highly smooth random �elds. This conclusion is incorrect: if the ran-
dom �eld is very smooth, but the model function is not, then the resulting
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Figure 5.1.: In�uence of the correlation function on the residual code un-
certainty (shown as gray shaded area). Left: situation before
any model evaluations. Center and right: situation after two
model evaluations (circles) with di�erent correlation lengths.

response surface will be overcon�dent and possibly misleading.

5.2. Proofs

This section contains the proofs of Theorem 1 and Theorem 2. The proofs
are provided for completeness and are not required for the discussion at the
end of the chapter. A reader who is mainly interested in the results and the
discussion may safely skip this section and proceed with the conclusions
in Section 5.3.

Unless noted otherwise, I developed these proofs on my own. I am fairly
sure, though, that similar theorem already exist in other �elds.

5.2.1. Theorem 1

We begin with the following auxiliary lemma which is used in the proof of
Theorem 1.
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Lemma

Let f1, . . . , fn be linearly independent functions. Then there exist pointsx1, . . . ,
xn ∈ Ω, such that the n × n matrix

An =


f1 (x1) . . . f1 (xn)
...

...
fn (x1) . . . fn (xn)


is non-singular.

I developed the following proof on my own, but I would not be surprised
if this or similar lemmas have already been proved in the mathematical
literature.1

Proof of Lemma

We prove by induction.
For n = 1, we select any point x1, such that f1 (x1) , 0. Such point exists
because, otherwise, f1 = 0, which is linearly dependent.
Now assume that there exist points x1, . . . ,xn , such thatAn is non-singular.
De�ne the row vectors vi := [fi (x1) , . . . , fi (xn)] for i = 1, . . . ,n + 1. The
�rst n vectorsv1, . . . ,vn form a basis of Rn and we can expand the n+ 1-th
vector as

vn+1 =
n∑
i=1

aivi .

The basis functions fi are linearly independent, and so rn+1 := fn+1 −∑n
i=1 ai fi , 0. Therefore, there exists a point xn+1, such that rn+1 (xn+1) , 0.

Inserting this pointxn+1 intoAn+1, we may replace the last row [fn+1 (x1) , . . . ,
fn+1 (xn+1)] by the row [rn+1 (x1) , . . . , rn+1 (xn+1)] = [0, . . . , 0, rn+1 (xn+1)]
without changing the determinant of An+1. Developing the determinant of
An+1 with respect to the last row yields detAn+1 = rn+1 (xn+1) · detAn , 0
and, therefore, An+1 is non-singular. �

Now we come to the proof of Theorem 1.

1I asked several mathematicians, where in the literature I could �nd a proof for this or a
similar lemma. One of them, Prof. (em.) Dr. Robert Schaback, kindly replied that a proof
by induction would be so simple that developing an own proof would be faster than �nding
a literature reference.
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Proof of Theorem 1
In the �rst part of this proof, we show that the minimal operator norm is
zero for t ≤ n and then, in the second part, we prove that it is 1 otherwise.

1. It is already possible to achieve an operator norm of zero with t = n.
If n is even larger, then any further nodes can be chosen arbitrar-
ily. To prove that the minimal operator norm is zero if t = n, let
F = [f1, . . . , ft ], such that the functions f1, . . . , ft form a basis of T.
We now construct the operator P such that I = P on T.
Let u ∈ T be any function. We can expand it as u =

∑t
i=1 ci fi = Fc ,

with a column vector c = [c1, . . . , ct ]>. Select nodesx = [x1, . . . ,xt ] ∈
Ωt such that the t × t matrix A with [A]i j = fi

(
x j

)
is non-singular,

according to the previous lemma. Inserting these points into u we
obtain for any j = 1, . . . , t : u

(
x j

)
=

∑t
i=1 ci fi

(
x j

)
; in vector-matrix

notation this is Exu = Ac , where Exu = [u (x1) , . . . ,u (xt )]> and c =
[c1, . . . , ct ]>. SinceA is non-singular, we can rearrange: c = A−1Exu.
Now

u = Fc

= FA−1Exu
= [Φ1,Φ2, . . . ,Φt ] Exu
= Pu,

where we de�ne the functions Φi via [Φ1, . . . ,Φt ] := FA−1, and then
P = [Φ1, . . . ,Φt ] Ex . It is Pu = u = Iu for all u ∈ T, and so the
operator norm of I − P is zero.

2. We now prove the second part of the theorem: if t > n, then the
minimal operator-norm is 1. First, I show that the minimal operator-
norm cannot be smaller than 1 and then I show that the value of 1
can be achieved.
Assume that t > n. The image of P is the span of the unit response
functions Im (P) = span {Φ1, . . . ,Φn}, therefore for the dimension
of the image it follows dim [Im (P)] ≤ n. According to the rank-
nullity-theorem [88], dimT = dim [Im (P)]+dim [Ker (P)], it follows
that dim [Ker (P)] = dimT − dim [Im (P)] > 0. So the kernel of P
contains at least one non-trivial function u, and it holds Pu = 0.
Applying the operator leads to ‖(I − P)u‖ /‖u‖ = ‖u‖ /‖u‖ = 1.
This constitutes a lower bound for the operator norm of (I − P).
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The minimal value of 1 is achieved by the null-operator. By setting
P = 0, we obtain ‖I − P‖L(T,U) = ‖I‖L(T,U) = 1.

This concludes the proof. �

5.2.2. Theorem 2

This proof is heavily based on the derivations by Kitanidis [77]. Only two
aspects are changed from the original work: �rst, the notation is adapted,
and second, in this proof, the unbiasedness condition from Kriging is not
needed, so that the �nal result has a slightly di�erent form.

Proof of Theorem 2

We construct the optimal operator by pointwise optimization. If an opera-
tor P minimizes

EU
[((I − P)U ) (x)2] (5.4)

in each point x ∈ Ω and lies in the search space by having the form P =
ΦEx , then it also minimizes EU

[‖(I − P)U ‖2] because

EU
[‖(I − P)U ‖2] = EU

[∫
Ω
((I − P)U ) (x)2 dµ (x)

]

=

∫
Ω
EU

[((I − P)U ) (x)2]︸                      ︷︷                      ︸
pointwise minimal

dµ (x) . (5.5)

We now insert the form P = ΦEx into the pointwise minimization in
Eq. (5.4). The inner part PU (x) becomes

PU (x) = [Φ1 (x) , . . . ,Φn (x)] ExU

=

n∑
i=1

Φi (x)U (xi ) .
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It follows

((I − P)U ) (x)2 =

(
U (x) −

n∑
i=1

Φi (x)U (xi )
)2

= U (x)2 − 2
n∑
i=1

Φi (x)U (xi )U (x)

+

n∑
i=1

n∑
j=1

Φi (x)Φj (x)U (xi )U
(
x j

)
.

The expected value with respect to U is

EU
[((I − P)U ) (x)2] = C (x ,x) − 2

n∑
i=1

Φi (x)C (x ,xi )

+

n∑
i=1

n∑
j=1

Φi (x)Φj (x)C
(
xi ,x j

)
(5.6)

We derive this expression with respect to Φk (x)

∂EU
[((I − P)U ) (x)2]
∂Φk (x)

= −2C (x ,xk ) + 2
n∑
i=1

Φi (x)C (xi ,xk ) .

For �nding the minimum with respect to Φk (x), we set the derivative to
zero and obtain a system of equations for the optimal unit response func-
tions Φ?:

n∑
i=1

Φ?
i (x)C (xi ,xk ) = C (x ,xk ) .

In vector notation with [Q]i j = C
(
xi ,x j

)
andq (x) = [C (x ,x1) , . . . ,C (x ,xn)],

we get
[
Φ?
1 (x) , . . . ,Φ?

n (x)
]
Q = q (x)[

Φ?
1 (x) , . . . ,Φ?

n (x)
]
= q (x)Q−1 (5.7)

Φ? (x) = q (x)Q−1.

The matrix Q is invertible by assumption.
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For the pointwise error, we insert Eq. (5.7) into Eq. (5.6) and use the fact
that Q−1 is symmetric:

EU
[ ( (I − P?)

U
) (x)2] = C (x ,x) − 2

n∑
i=1

Φ?
i (x)C (x ,xi )

+

n∑
i=1

n∑
j=1

Φ?
i (x)Φ?

j (x)C
(
xi ,x j

)
= C (x ,x) − 2Φ? (x)q (x)>
+Φ? (x)QΦ? (x)>

= C(x ,x) − 2q (x)Q−1q (x)>
+

(
q (x)Q−1) Q (

Q−1q (x)>)
= C(x ,x) − q (x)Q−1q (x) .

Finally, using Eq. (5.5), we obtain

EU
[

(I − P?)

U


2] =

∫
Ω
EU

[ ( (I − P?)
U

) (x)2] dµ (x)

=

∫
Ω
C(x ,x) − q (x)Q−1q (x)> dµ (x)

= EU
[‖U ‖2] − ∫

Ω
q (x)Q−1q (x)> dµ (x) . �

5.3. Conclusions

In this chapter, I applied the idea of optimality to the construction of re-
sponse surface methods for uncertainty propagation. I compared and dis-
cussed three possible objective functions for measuring the quality of a
method. If possible, I derived the optimal method according to these objec-
tive functions:

1. The �rst objective function, the Lebesgue constant, is not applica-
ble for an optimization over all possible nonintrusive linear response
surface methods because it requires the ansatz space to be �xed be-
forehand.

2. The second objective function, the operator norm, results in an op-
timal method with a very strong property: a response surface con-
structed by such method has a guaranteed error bound. However,
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this objective function requires very strong assumptions about the
model function: the user of the method has to be able to specify a
�nite-dimensional space that contains the model function. I consider
this assumption too strong for practical purposes.

3. The third objective function, the expected squared error over a ran-
dom �eld, leads to an optimal surrogate modeling method that coin-
cides with Kriging. For this approach, the user is required to specify
a random �eld from which the model function is a realization. This
is a lower requirement than for the previous objective function, but
in return the result is a bit weaker: the optimal method only pro-
vides an error bound for the expected total error. Furthermore, the
correlation function C has direct in�uence on the expected squared
error that can be achieved. A �eld with strong correlations (for exam-
ple a very smooth �eld) generally leads to a better error than a �eld
with almost no correlations, as shown in Figure 5.1 on page 90. This
shows that if we make more assumptions about the model function
and these assumptions are valid, then we are able to achieve better
results.

This conclusion is very similar to the No Free Lunch (NFL) theorems for
optimization. The NFL theorems state that on average over all possible
optimization problems, all optimization algorithms perform equally well
[164]. In consequence, an optimization algorithm can only perform better
than a random search if additional knowledge about the problem at hand is
available. The same holds for response surface methods: a method can only
be better than the null-operator if additional knowledge about the model
function is available.
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6. Sequential Design of
Computer Experiments for
Bayesian Inverse Problems

The content of this chapter has �rst been published in the article Sequential
Design of Computer Experiments for the Solution of Bayesian Inverse Problems
[133] in the Journal on Uncertainty Quanti�cation in 2017, published by the
Society for Industrial and Applied Mathematics (SIAM). Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited. I am reusing parts of
the article by kind permission of the publisher SIAM.

In this chapter, we turn to Bayesian inverse problems. Under the assump-
tion of an expensive model function, the overall goal is to solve Bayesian
inverse problems with as few function evaluations as possible. Bayesian in-
verse problems di�er from uncertainty propagation problems in one very
important aspect: in Bayesian inverse problems, we do not know before-
hand, which parts of the parameter domain are most important. This is a
chicken and egg situation. The parts most important for Bayesian inverse
problems are those with a large posterior probability mass, so if possible,
we would like to sample the model function most densely there. However,
to �nd those parts in the parameter domain, we need to sample the model
function �rst.
A possible approach is to simply ignore the fact that di�erent parts of the
domain are more important than others, and therefore sample according to
the prior distribution. If the prior is completely covered, then one would
expect that also all relevant parts for the posterior are covered. This is in-
deed true: if a sequence of response surface models converges to the model
function (with respect to the prior) and we insert these response surfaces
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into Bayes’ theorem, then (under certain assumptions) the sequence of ap-
proximate posterior distributions converges to the true posterior [35, 96].
Following this approach, however, we miss the opportunity to learn about
the model function after each function evaluation and therefore end up
with a method that is convergent but not optimal. For this reason, I propose
a sequential design of computer experiments. Recall that in the context of
emulators, the selection of nodes is often called a “design”, rather than a
“sampling rule”. In a sequential design, the nodes are selected one at a time,
and for each selection the knowledge from all previous model evaluations
is used to identify the point in the parameter domain that promises the
most bene�t.
The contribution of this chapter lies in the intersection of two disciplines:
uncertainty quanti�cation (UQ) and design of computer experiments (DoE).
As pointed out in the introduction, Bayesian parameter inference is a stan-
dard UQ problem. Usual approaches are either Markov-Chain Monte-Carlo
methods (MCMC) [51, 64] or response surface methods. For the problem
setting at hand, MCMC methods require too many function evaluations,
which makes them unfeasible. The most common response surface method
is stochastic collocation, see Section 3.1.2. Response surface models are
widely used for solving Bayesian inverse problems, mostly by directly plug-
ging the response surface into Bayes’ theorem [31, 72, 78, 94, 95, 96, 171].
There are also approaches that approximate the posterior distribution itself
by a response surface [172].
Some research e�ort has been made in constructing sequential sampling
rules for polynomials in order to sample the model function most densely
in areas with high posterior probability [86, 111]. These approaches rely
on polynomial response surfaces, which have two disadvantages in this
context:

1. Polynomial interpolation is subject to the Runge phenomenon [126].
This means that the interpolant can oscillate in between the nodes if
the nodes are not placed with special care. This causes trouble in se-
quential sampling methods because poorly selected new points can
potentially deteriorate a response surface by introducing oscillations.
As an example, in the iterative procedure proposed by Li and Mar-
zouk [86], nodes from earlier iterations are ignored. This approach
avoids oscillations at the cost of wasting information from previous
nodes.

2. Polynomial interpolation methods do not have an explicit error model
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for the deviation between surrogate and reference model as a func-
tion of the model input. As we will see, such an error model is es-
sential for a sequential sampling method. New nodes can only be
selected e�ciently if we can pinpoint those areas in the parameter
domain that cause the largest errors.

In the �eld of DoE, there is a number of publications on sequential designs
for speci�c goals, such as exceedance probabilities [6, 10, 12], contour es-
timation [116, 120], sensitivity indices [141] and optimization [73, 80, 162].
The approaches all have in common that they explicitly consider code un-
certainty, see Sections 1.2 and 1.3, by describing the model function with an
emulator, see Section 3.2. Recall that I use the term “emulator” according
to O’Hagan: an emulator is a random �eld used as a surrogate [109].
Since the goals are often local features in the parameter domain (e. g. con-
tour estimation would only require function evaluations close to the con-
tour), sequential designs are potentially more e�cient than space-�lling de-
signs. Sequential designs are based on so-called �gures of merit. These �g-
ures give an estimate of the potential value of knowing the model response
in a speci�c point. Figures of merit have to make a meaningful trade-o�
between re�ning areas that are known to be important for the goal (e. g.
close to the contour) and exploring areas that still have a large code un-
certainty [73, 130]. The �gure of merit used in this work is the Bayes risk,
which measures the expected loss over the possible shapes of the model
function. A precise de�nition will be given below in Section 6.1.1. The
Bayes risk has been successfully applied to other goals, such as exceedance
probabilities [10].
The current work is the �rst application of sequential design of experi-
ments methods on the goal of solving a Bayesian inverse problem, i. e., on
calculating a posterior distribution. Emulators have been used in combi-
nation with Bayes’ theorem [75, 161], but to the best of my knowledge, a
sequential design of experiments has not been developed yet.
From Chapter 2, recall that the posterior distribution is proportional to the
product of prior and likelihood π̂ ∝ L (x)π (x) and that the likelihood reads
L (x) = πε (z − u (x)), where πε denotes the pdf of the additive error in the
error model Z = u (X ) + ε . Throughout this chapter, I will add an extra
argument to the likelihood function to indicate the model function that
has been used in the measurement model: L (x |u). Inserting a random �eld
instead of a function, we obtain L (x |U ), which itself is a random �eld (for
each realization of U , we obtain a corresponding likelihood function).
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This chapter is structured as follows. In Section 6.1, the sequential design
is presented. Then, in Section 6.2, numerical experiments are shown to
demonstrate that the sequential design works as expected and achieves a
better e�ciency than non-sequential methods. Finally, Sections 6.3 and 6.4
provide a discussion and conclusions.

6.1. Sequential Design

A sequential design consists of two components: a strategy and an estima-
tor [10]. A strategy is a rule that selects a new node based on the previous
nodes and the corresponding model responses. An estimator is a function
that makes an estimate of the target quantity using only model responses
at the nodes currently available. The strategy and the estimator have to be
adapted to each other and to the overall goal statement.
The estimator and the strategy I present here are designed to minimize the
Bayes risk, which is de�ned as the average loss over a random �eld that
describes the possible shape of the model function. The loss is evaluated
via a loss function, which in this work is chosen to be the squared L2-error
in the likelihood estimate.

6.1.1. Loss Function and Bayes Risk

To evaluate the performance of a sequential design, we de�ne a loss func-
tion `. It measures the distance between two likelihood functions f and
д:

` (f ,д) :=
∫
Ω
(f − д)2 (x) dµ (x)

= EX
[(f (X ) − д (X ))2] . (6.1)

This is the squared prior-weighted L2-norm of the di�erence f − д. In the
following, this loss function is used to compare likelihood functions. In
other words, we do not compare estimators in their ability of estimating
the posterior pdf, but in estimating the likelihood function, weighted with
the prior. This is justi�ed because a small error in the likelihood can be
expected to lead to a small error in the posterior. This approach has two
advantages over comparing posterior pdfs directly. First, the mathematical
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derivations become much simpler. For example, the multiplicative constant
in Bayes’ theorem is never needed. And second, this approach does not re-
quireX to be a continuous random variable. All that is required ofX is that
one must be able to integrate over the measure µ. If X were a discrete ran-
dom variable, the approach would be the same, only the integral in Eq. (6.1)
would turn into a sum. For future work it would be interesting to compare
whether other loss functions perform better. For example one could try the
Hellinger distance [149] or KL divergence [79] between estimated posterior
and true posterior.
Having the loss function in place, we de�ne the �gure of merit as the Bayes
risk. Assume that the model function has been evaluated in n nodes and
let Un be the emulator conditioned to these model responses. Let L̃n be
an estimator for the likelihood that only uses the information from the
n model evaluations. If the model function u were known, then the loss
`
(
L (·|u) , L̃n (·)

)
would be an error measure for the estimator L̃n . But since

all we know is that u is a realization of Un , the best we can do is calculate
the average loss over the �eld. This is exactly the de�nition of the Bayes
risk:

rn := EUn
[
`
(
L (·|Un) , L̃n (·)

)]
. (6.2)

Note that, in this expected value, only the likelihood L (·|Un) is random,
while the likelihood estimator L̃n (·) is constant. The Bayes risk can only
become small if both the estimator L̃n is chosen well and the uncertainty in
the �eldUn is reduced in the right way (which is done by selecting nodes via
the sampling strategy). Therefore, we can use the Bayes risk as an objective
function for optimizing both the estimator and the sampling strategy.
In the following, I will �rst derive the optimal estimator L?n , i. e. the estima-
tor that minimizes the Bayes risk in Eq. (6.2) for a �xed set of nodes. Then
I will describe a sampling strategy that minimizes the expected Bayes risk
in each iteration.

6.1.2. Estimator

With respect to the quadratic loss function [Eq. (6.1)], the best estimator

L?n := argmin
L̃n

[rn]
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can be found analytically. Inserting the loss function into Eq. (6.2) and
changing the order of integration leads to the expression

rn = EXEUn
[(
L (X |Un) − L̃n (X )

)2]
.

The expected value overX becomes minimal if the inner expression is min-
imized for each x ∈ Ω individually. So we obtain

L?n (x) = argmin
a∈R

EUn
[(L (x |Un) − a)2

]
.

For a �xed x , the likelihood expression L (x |Un) becomes a random vari-
able. The number minimizing the mean squared deviation from a random
variable is the expected value of this variable, so the minimizing estimator
is the average likelihood function

L?n (x) = EUn [L (x |Un)] . (6.3)

With the best estimator, the Bayes risk becomes the variance of L (x |Un)
(with respect to Un ), averaged over the parameter domain Ω with weight
π (x):

rn = EXEUn
[ (
L (x |Un) − L?n (x)

)2]
= EXVarUn [L (X |Un)] (6.4)

Note that the best estimator L?n is di�erent from the estimator according to
the plug-in approach:

L
plug-in
n (x) = L (x |mn) = L

(
x |EUn [Un]

)
. (6.5)

The plug-in approach calculates the likelihood of the �eld average, while
the best estimator L?n yields the average of all likelihood functions over
the �eld. The likelihood is a non-linear function, so these two approaches
di�er strongly.

Alternative Meaning of the Best Estimator

Besides minimizing the average loss, the estimator L?n has a second, very
intuitive meaning. We return to the measurement model Z = u (X ) + ε
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[Eq. (2.6)], but instead of inserting the model function u, we fully acknowl-
edge the uncertainty about u and insertUn instead. We obtain a new mea-
surement model

Znew = Un (X ) + ε . (6.6)
The deviation between a mean emulator prediction mn (x) and the mea-
surement value z is now the sum of the measurement error ε and the code
uncertainty in Un : we decompose the random �eld into its mean mn (x) =
EUn [Un (x)] and deviation Dn (x) = Un (x) −mn (x), and for any x ∈ Ω de-
�ne the random variable ν (x) := Dn (x) + ε . Then, the new measurement
model leads to the likelihood function

Lnew (x) = πν (x ) (z −mn (x)) . (6.7)

Applying the law of total probability, we can show that this likelihood co-
incides with the best estimator L?n :

πν (x ) (z −mn (x)) = EDn (x )πε (z −mn (x) − Dn (x))
= EUn (x )πε (z −Un (x))
= EUnL (x |Un) = L?n (x)

So L?n is not only the best estimator for the reference likelihood L, it is
also the exact likelihood of a slightly di�erent inference problem, namely
the one that explicitly acknowledges the uncertainty due to not knowing
the response of u over the whole parameter domain: L?n = Lnew. That
means that if we stop sampling the model function after n evaluations,
compute the best estimate likelihood L?n and insert it into Bayes’ theo-
rem, π̂?

n (x) ∝ L?n (x) · π (x), then the posterior π̂?
n correctly represents

our knowledge about the input parameter. This is an important property
of the best estimator because it allows us to stop the calculations after any
number of functions evaluations and still provide a meaningful posterior
distribution of the input parameters.
If the emulator is Gaussian with mean function mn and covariance func-
tionCn and if the measurement error is assumed to be normally distributed
ε ∼ N (

0,σ 2
ε
)
, then we �nd ν (x) ∼ N (

0,Cn (x ,x) + σ 2
ε
)
, which is a conve-

nient way of evaluating the best estimator likelihood via Eq. (6.7) without
numerically evaluating an expected value operator, see Eq. (6.3).
To illustrate the di�erence between the best estimator and the plug-in es-
timator, a simple example is given in Figure 6.1. The x-axis shows a one-
dimensional parameter domain. In the top plot, the unknown model func-
tion is shown in black. It is evaluated in the two points marked with circles
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Figure 6.1.: Schematic comparison of the three likelihoods (reference L (x),
best estimator L?2 (x) and plug-in L

plug-in
2 ).

and the resulting emulator is shown with its mean (red line) and ± one
standard deviation (blue shaded area). The bottom plot shows the correct,
but unknown likelihood (black), the best-estimate likelihood L?2 (blue) and
the plug-in likelihood L

plug-in
2 (red). Note that the best-estimate likelihood

spans the whole region, in which the shaded areas of the emulator and the
data intersect, while the plug-in likelihood is biased, being overly con�dent
in the wrong place.

6.1.3. Sampling Strategy

The sampling strategy presented here classi�es as a greedy one-step look
ahead strategy [10]. In each iteration, the new node is selected as if it were
the last one. Each node is selected to minimize the expected Bayes risk
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under the current knowledge about the model function.
As before, we denote the emulator conditioned to the �rst n model evalua-
tions byUn . Let x̂ be a candidate point for sampling and assume that ŷ is the
hypothetical, but uncertain model response at the candidate point. Next,
we de�ne the emulator U x̂,ŷ

n as the emulator Un conditioned to Un (x̂) =
ŷ. Then, EXVarU x̂,ŷ

n

[
L

(
X |U x̂,ŷ

n

)]
is the Bayes risk after the hypothetical

model evaluation U (x̂) = ŷ (compare to Eq. (6.4)). The model response ŷ
is, of course, not known beforehand, so we de�ne a random variable de-
scribing all possible values of the model response, Ŷ = Un (x̂), and de�ne
the objective function as the expected Bayes risk over Ŷ :

r̂n (x̂) := EXEŶVarU x̂,Ŷ
n

[
L

(
X |U x̂,Ŷ

n

)]
. (6.8)

In the following we will refer to r̂n (x̂) as re�nement criterion because its
minimum de�nes the next node. If the random �eld Un is Gaussian and
if the measurement error is normally distributed, then parts of the re�ne-
ment criterion can be evaluated analytically. A brief outline of possible
simpli�cations is given below in Section 6.1.5.

6.1.4. Algorithm

The sequential sampling strategy can be summarized as follows.
1. De�ne an initial random �eld U0 and set counter n := 0.
2. Find the new node: xn+1 := argmin

x̂ ∈Ω
r̂n (x̂) .

3. Evaluate the model function at the new node: yn+1 := u (xn+1).
4. Build the new random �eld Un+1 by conditioning Un to (xn+1,yn+1).
5. Increase the counter n by 1.
6. Jump back to step 2 until an exit condition is met.
7. Output L?n .

Possible exit conditions are a maximum number of function evaluations or
a threshold for the Bayes risk rn .

6.1.5. Simplifications for Gaussian Process Emulators

The main di�culty in applying the presented sequential sampling strategy
lies in the calculation of the re�nement criterion r̂n [Eq. (6.8)] in order to

105



Chapter 6. Sequential Design for Bayesian Inverse Problems

�nd its minimum. In this section, I brie�y outline two possibly ways of sim-
plifying the calculation of the re�nement criterion. These simpli�cations
can be made if the random �eld is Gaussian and the measurement error is
normally distributed.

First, the two inner integral operators EŶVarU x̂,Ŷ
n
[. . . ] in Eq. (6.8) can be

evaluated analytically by using the following three properties: (1) the pdf
of the measurement error ε is a Gaussian curve, (2) at any point x , the em-
ulator responseU x̂,Ŷ

k (x) is normally distributed and (3) the relationship be-
tween a possible model response Ŷ and the mean of the emulator response
at a di�erent point U x̂,Ŷ

n (x) is linear, see the Kriging system [Eq. (3.19)].
These three properties turn the two inner integrals into integrals over the
product of Gaussian curves, which can be calculated analytically.

Second, it is possible to reformulate the minimization problem to an equiv-
alent maximization problem and eliminate one of the integrals on the way:
by applying the law of total variance we �nd

VarUn [L (x |Un)] = EŶVarU x̂,Ŷ
n

[
L

(
x |U x̂,Ŷ

n

)]
+ VarŶEU x̂,Ŷ

n

[
L

(
x |U x̂,Ŷ

n

)]
. (6.9)

The left hand side term is independent of x̂ , so the two terms on the right
hand side (as functions of x̂ ) add up to a constant. The �rst term on the
right hand side is the inner part of the re�nement criterion r̂n(x̂). If we
replace it by the second term on the right hand side, we obtain a function
whose maximum is at the same point as the minimum of the re�nement
criterion. This replacement is possible also for non-Gaussian emulators. If
the emulator is Gaussian, then additionally the inner expected value with
respect toU x̂,Ŷ

n can be eliminated: it has the same form as the best estimator
[Eq. (6.3)] and can therefore be calculated using an expression analogous
to Eq. (6.7). After this step, only the variance operator remains, which in
the Gaussian case can be calculated analytically.

To summarize: in the Gaussian case, only the integral operator over X re-
mains and needs to be evaluated numerically. In the general, non-Gaussian
case, we can at least eliminate one of the three integral operators if we are
able to �nd the pdf of the deviation ν (x), see Eq. (6.7)
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6.2. Numerical Experiments

In this section, I demonstrate the sequential design in a couple of test cases.
The �rst two test cases use Gaussian process emulators, while the third test
case uses a non-Gaussian emulator that includes a discontinuity. The gpe
used in the �rst two examples are of a certain kind. They are the mix of
two random �elds:

U0 (x) = αP (x) + (1 − α) S (x) , (6.10)

with α ∈ [0, 1].
The �rst part, P , is a truncated polynomial chaos expansion with random
coe�cients (see Section 3.1.2)

P (x) =
p∑
i=1

λiXiΨi (x) .

Here, the functions Ψi form an orthonormal basis of polynomials. The coef-
�cients λi form a decaying spectrum and the Xi are i.i.d. random variables
Xi ∼ N (0, 1). In the following examples, I chose the basis of polynomials
to form a total degree space of degree д. Furthermore, the spectrum is cho-
sen, such that λi is a function only of the degree of Ψi , so it can be fully
speci�ed as a (д + 1)-sized vector. The decay rate of the spectrum re�ects
a smoothness assumption of the model function u.
The second part, S , is a zero-mean stationary �eld with a Gaussian-type
correlation function: mS = 0 and CS (x ,x ′) = exp

(
− 1

2 ‖x − x ′‖2 /l
)
, where

l is the correlation length.
The two parts P and S are assumed to be independent so the �eld mean and
covariance of the two parts add up. To fully describe a �eld of this type,
one needs to specify α , д, λ and l .

6.2.1. Synthetic One-Dimensional Gaussian Random
Field

In this example, we examine a problem with one input parameter and one
model output quantity. To isolate the performance of the sequential design
from possible modeling issues, the random �eldU is de�ned �rst and then
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the model functionu is de�ned by drawing one realization fromU . In prac-
tice, of course, the process works in reverse: a model function is given and
the modeler has to specify a random �eld from which this model function
could be a realization.
We de�ne the input parameter domain as Ω = [−1, 1] and let the parameter
be uniformly distributed on Ω. The random �eld is modeled as given in
Eq. (6.10), with the parameters α = 0.99, д = 50, λi = e−i and l = 0.1.
The measurement data value z is generated by drawing a sample from the
input distribution and inserting it into the measurement modelZ = u (X )+ε
[Eq. (2.6)]. The measurement error ε is normally distributed with zero mean
and variance σ 2

ε = 0.001. For calculating r̂n and for �nding its minimum,
the domain Ω is discretized by 501 equispaced points.
A plot of the iterative sampling procedure is shown in Figure 6.2. Each
group of plots shows the current emulator mean and standard deviation
together with the data and the nodes (left), the current estimated posterior
in comparison to the reference posterior (top right) and the re�nement cri-
terion r̂n (bottom right). The �gure shows the results after 1, 3, 6 and 12
model evaluations.
The �rst model evaluation is done exactly in the center of the domain. After
that step, the re�nement criterion is symmetric and the point on the right
is selected by random choice. By coincidence, this is also the area where
the model crosses the data. Next, the third node is spent on re�ning this
area. The following three nodes (4, 5 and 6) lie in the area of the second
mode of the posterior. After that, also the parts further away are explored.
In the last plot, there is still considerable uncertainty in the emulator, but
only in those parts that are far away from the data and therefore do not
have a large impact on the posterior.
Note that the re�nement criterion is discontinuous in the points that have
already been evaluated. Evaluating in a single node twice has no bene�t
and therefore does not decrease the expected Bayes risk. Evaluating in two
di�erent nodes that are very closely together, however, yields a gradient in-
formation, which is useful information no matter how close the two nodes
are to each other.
We now compare the performance of the sequential design with two non-
sequential methods: �rst, an emulator conditioned on equidistant nodes
and, second, a polynomial response surface. In this comparison, all meth-
ods use 12 model evaluations. For the emulator, we use the same prior �eld
as the iterative method above, but we use 12 equidistant nodes instead of
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Figure 6.2.: Iteration procedure for synthetic 1d-example, results after 1, 3,
6 and 12 model evaluations. All plots: x-Axis is the parameter
domain [−1, 1]. Left: emulator ± one estimation standard de-
viation (blue) and measurement data ± measurement standard
deviation (green). Right top: estimated posterior (blue shaded)
and true posterior (dashed line). Right bottom: re�nement cri-
terion r̂n (vertically normalized to �t into the box).
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Emulator
sequential design

Emulator
uniform grid

Polynomial
Response Surface

Legendre points

−0.4 −0.2 0 0.2

Figure 6.3.: Posteriors calculated with (i) the presented sequential design,
(ii) the emulator with equidistant nodes and (iii) a polynomial
response surface. The true posterior is shown as a dashed line
for comparison. The plots are clipped to show only the relevant
parts of the parameter domain Ω.

sequentially chosen ones. Then, the best estimate posterior is calculated.
For the polynomial, we use the nodes of a 12-point Gaussian quadrature
rule, in this case the Legendre points, and interpolate the model response
with a polynomial of degree 11. The polynomial is compared in terms of
its plug-in posterior. Figure 6.3 shows the posterior distributions obtained
with the di�erent methods. The sequential design clearly performs best.
Both other methods produce errors in the shape of both peaks.
In summary, the sequential sampling strategy works well in this test prob-
lem, being more e�cient in calculating the posterior distribution than the
two non-sequential methods.

6.2.2. Heat Equation

As a second example, we examine a simulation-based problem with a two-
dimensional parameter space and an 18-dimensional output. This is the
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same problem as examined by Li and Marzouk [86]. Recall that the spatial
coordinate is denoted by ξ (here two-dimensional) and time is denoted by τ .
We consider the two-dimensional heat equation on the unit square [0, 1]2:

∂θ

∂τ
= ∇2θ (ξ ,τ ) + s (ξ ) ,

where θ is temperature, s is a heat source term and ∇2 is the Laplace oper-
ator. The source term is given as

s (ξ ) = s0
2πh2 exp

(− |X − ξ |2
2h2

)
,

with an uncertain heat source location X . We select a uniform prior for
the source location: X ∼ U([0, 1]2). The parameter domain of X and the
spatial domain of ξ are the same in this example. The other parameters are
deterministic with s0 = 2 and h = 0.05 and the initial condition is set to
θ (ξ , 0) = 0. On the boundary, we impose no-�ux boundary conditions.
The model function u consists of the temperature θ at two time steps τ1 =
0.1 and τ2 = 0.2, evaluated at 9 points in the domain, resulting in a total of
18 output values. The 9 positions are {0, 0.5, 1}2. For each measurement,
i = 1, . . . , 18, an additive and independent normally distributed error εi ∼
N (

0, 0.12
)

is assumed leading to the measurement model Zi = ui (X ) + εi .
A vector of virtual measurement data is generated by setting the source
position X = (0.25, 0.25), solving the model equation and adding random
noise according to the error model. In the forward model, the heat equation
was solved on a spatial 512 × 512 grid and, for time integration, the solver
used the Euler forward method for the source term and an analytic solution
on the Fourier domain for the di�usion term.
The reference posterior is calculated on a 101 × 101 grid. Note that the
computational domain of the heat equation and the parameter domain of
the source location are equal by coincidence only. In principle, they are
independent and they are therefore discretized with di�erent resolutions.
The reference posterior is unimodal with its peak close to the true source
position (0.25, 0.25).
We now apply the sequential design method to this problem. The initial
random �eld is again a mix of a stationary �eld and a polynomial with
uncertain coe�cients. The exact parameters are given in Table 6.1 in the
row called hybrid. The optimization problem of �nding the minimal r̂n was
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Name l д λ α
hybrid 0.2 10

(
10, e−1, e−2, . . . , e−10

)
0.95

polynomial − 10
(
10, e−1, e−2, . . . , e−10

)
1

small-l 0.1 − − 0
large-l 0.3 − − 0
uncertain mean 0.1 0 (10) 0.5
linear trend 0.1 1

(
10, e−1

)
0.5

Table 6.1.: Parameters of the various random �elds.

solved by complete enumeration on a 101 × 101 grid. Figure 6.4 shows the
sequence of nodes for this �eld together with the location of the posterior
peak indicated by contour lines. Note that the diagrams only show the
subdomain [0, 0.75]2 because all nodes are contained in this area. The sam-
pling starts in the center of the domain and from there moves towards the
posterior peak within the �rst six evaluations. From then on, many nodes
are spent on re�ning around the posterior peak. Only later after about 20
evaluations, some nodes are spent on exploring the more remote parts of
the parameter domain. As we will see below, this is also the moment that
we obtain a new increase in accuracy.
Contour lines of the reference posterior and of the estimated posterior after
40 evaluations are shown in Figure 6.5. The only visible deviation lies in
the right part of the plot. By close inspection of Figure 6.4, we can see that
this is also a part where only few function evaluations are placed.

Sensitivity to the Choice of Random Field

In this section, we investigate the sensitivity of the result to the choice
of random �eld. We compare six di�erent random �elds. The individual
parameters are given in Table 6.1. The case hybrid is the one already used
above. It is a mix of a polynomial with a stationary part that has a medium
correlation length. Then, case polynomial is the same �eld, but without
the stationary part. This results in a random �eld whose realizations are
polynomials. Kriging with this �eld is not to be confused with polynomial
interpolation. The two cases small-l and large-l are purely stationary �elds
with di�erent correlation lengths. Finally, the two �elds uncertain mean
and linear trend are the same as small-l but include additional constant and
linear trend parts.
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0

0.25

0.5

0.75
Nodes 1 – 20

0
0

0.25

0.25

0.5

0.5

0.75

0.75
Nodes 20 – 40

Figure 6.4.: Sequence of nodes for random �eld of type hybrid. Top: nodes
1 to 20. Bottom: nodes 20 to 40 (and nodes 1 to 20 in gray). The
peak of the posterior is indicated by red contour lines. Both
diagrams are restricted to the subdomain [0, 0.75]2 because all
nodes lie within this area.

113



Chapter 6. Sequential Design for Bayesian Inverse Problems

0.15 0.4
0.2

0.4

Figure 6.5.: Comparison of the true posterior (black, dotted contours) and
the estimated posterior after 40 model evaluations (red, solid
contours).

The error behavior is shown in Figure 6.6. The upper plot shows the error
in terms of the loss function between reference likelihood and estimated
likelihood `

(
L (·|u) ,L?n (·)

)
and the bottom plot shows the error in terms

of the KL divergence between reference posterior and estimated posterior,
see Section 2.2.3. Recall that, ultimately, we are interested in achieving
small errors in the KL divergence, but the sequential design is constructed
to minimize the loss function instead. We can see that overall, these two
goals align well and, in both plots, the individual data lines are roughly
in the same order. The main di�erence is that the loss function converges
monotonically, while the KL divergence in some cases shows an increasing
error �rst before the error �nally decreases.
It turns out that the three �elds that assume a higher smoothness converge
fastest, namely the cases hybrid, polynomial and large-l. However, due to
the smoothness assumption, Kriging becomes increasingly instable with
an increasing number of nodes. Therefore, the data line for the case poly-
nomial and large-l stop early. If the correlation length is increased further,
then the method breaks down even earlier. Gaussian-type correlation func-
tions are known for producing ill-conditioned Kriging systems [1].
After a stagnation phase, the hybrid �eld and the polynomial �eld have
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Figure 6.6.: Error behavior of di�erent random �elds in comparison. Upper
plot: errors in terms of the loss function. Lower plot: errors in
terms of the KL divergence to the reference posterior.
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a second phase of improved accuracy, which happens at about 24 nodes.
This is roughly the iteration in which the sampling method stops re�ning
around the peak and starts exploring the rest of the parameter domain.
The �elds with smaller correlation lengths are a bit less e�cient, requiring a
larger number of evaluations to reach a comparable accuracy. Interestingly,
all o� the error plots drop from an error of 101 to 10−3 within relatively few
function evaluations and have a plateau before and after this drop. This is
the phase during the iteration, in which the sampling method has found
the posterior peak and evaluations are spent on re�ning this peak.
It is interesting to compare the cases small-l, uncertain mean and linear
trend. These all have the same stationary part in the �eld, but di�erent
polynomial parts: the �rst one has no polynomial part, the second one has
a large constant and the third one a constant and a linear part. As seen
in the error plot, these polynomial parts improve the e�ciency. With the
polynomial parts, the method is able to �nd the posterior peak earlier. This
is because the additional polynomial parts allow the method to extrapo-
late to some extent, while purely stationary random �elds can only make
statements close to the nodes. As a result, the �eld small-l takes the small-
est steps in the parameter domain and therefore reaches the posterior peak
later than the other �elds.
All of the error plots stagnate at some point, the best one reaching an error
of 10−5. At this point, the numerical stability of the Kriging procedure
hinders the further improvement of accuracy.
In a test that is not further reported in the error plot, I tested the perfor-
mance of a random �eld with an exponential correlation function: C (x ,y) =
exp [− |x − y | /l]. This �eld lead to very bad results because of the lack of
a smoothness assumption. While the heat equation is expected to behave
smoothly with respect to the position of the source term, the realizations
of a random �eld with an exponential covariance function are continuous
but not di�erentiable. Therefore and without surprise, such a random �eld
is not an appropriate description of the model function.
But even if it were appropriate, and the model function were not di�eren-
tiable, then point evaluations would provide very little information about
the actual shape of the model function. Therefore, a very large number of
model evaluations would be required. In the case of a non-di�erentiable
model function, other surrogate methods such as polynomial chaos expan-
sions would struggle as well because the expansion coe�cients would de-
cay only slowly.

116



6.2. Numerical Experiments

This comparison of di�erent random �elds demonstrates that the perfor-
mance of the sequential sampling strategy is sensitive to the choice of ran-
dom �eld. For demonstration purposes, the di�erent random �elds were
picked by hand and compared. In practice, of course, the choice of the ran-
dom �eld should be done in a less subjective manner. Possible approaches
for doing so are given below in the discussion in Section 6.3.2.

Comparison to Other Sampling Methods

Next, we compare the performance of the sequential design with the two
non-adaptive methods we already used in the �rst test case (gpe and poly-
nomial response surface). For the polynomial, we sample the model func-
tion on a grid constructed from the zeros of Legendre polynomials. The
numbers of nodes are therefore 22, 32, . . . . For the gpe, we use a greedy
sampling strategy, each step minimizing overall code uncertainty, which
in terms of the estimation variance is

∫
Ω
Cn (x ,x)π (x) dx , using the condi-

tional covariance functionCn , see Eq. (3.19). The conditional covarianceCn
is independent of the actual model response (see Eq. (3.19) in Section 3.2),
so this sampling strategy is e�ectively non-adaptive.
Figure 6.7 shows the error behavior in terms of the KL divergence. The
data point with 9 nodes for the polynomial failed to calculate a �nite KL di-
vergence, possibly because the corresponding likelihood was numerically
rounded to zero somewhere in the domain. Therefore, this point is omitted
from the plot.
In the investigated range of nodes, both methods yield signi�cantly worse
results compared to the sequential design method.

6.2.3. Jump-Detection Problem

Finally, we examine an example where a non-Gaussian �eld is a suitable
emulator. For demonstration purposes, I chose the example such that all
integrals in the re�nement criterion r̂n can be calculated analytically. The
model function u is known to have the shape of a Heaviside function, yet
with unknown jump location. Let Ω = [0, 1] be the parameter domain and
T ∼ U (Ω) be a random point in this domain. We de�ne the random �eld
as

U0 (x) =
{
0 if x < T
1 if x ≥ T .
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Figure 6.7.: Error behavior of di�erent sampling methods in comparison.

This �eld is non-Gaussian. We assume that the input parameter X is uni-
formly distributed on Ω and the measurement model is Z = u (X ), i. e.,
without measurement error. Note that X is not the jump location, but the
parameter inserted into the model function. But since the random �eld is
e�ectively one-dimensional, being parametrized by the jump location T ,
knowing T is equivalent to knowing the posterior of X . As we will see
below, the resulting sequential design is independent of the value of the
measurement Z .
The functional form of criterion r̂n can be derived analytically. The deriva-
tion is given in Appendix B and here I only present the result. Assume
that, at some point in the iteration, the model has been evaluated at nodes
x1, . . . ,xn . We de�ne the two existing nodes closest to the jump as

a = max {xi |u (xi ) = 0}
b = min {xi |u (xi ) = 1} .

These two act as bounds for the value of T because T ∈ [a,b]. Next we
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Figure 6.8.: Third step of the iterative sampling process. Model function
(black) with nodes (circles) and the re�nement criterion for the
next step (red). The points a and b are the two nodes closest to
the jump.

de�ne a normalization function hab

hab (x) :=


0 if x < a
x−a
b−a if x ∈ [a,b]
1 if x > b .

Then the criterion r̂n has the analytical form

r̂n (x̂) = C −
1
3 (b − a) · hab (x̂) (1 − hab (x̂)) ,

whereC is a constant that is independent from x̂ . Surprisingly, the criterion
is independent of the actual value of Z .
Figure 6.8 shows the third step in the iterative re�nement procedure, where
the jump location was set to t = 0.77. The model function is shown in black.
It is evaluated in the three nodes shown as circles. The red line shows the
re�nement criterion r̂3 for the next iteration. The re�nement criterion is
constant outside the interval [a,b] and a symmetric parabola inside the
interval. Therefore, the next node is placed in the center (a + b) /2. This is
true for every iteration, so the sequential sampling procedure is equivalent
to the bisection method.
This example shows that the method works in an intuitively plausible way,
even for non-Gaussian random �elds. Furthermore, the speci�c example
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of jump detection indicates that our method could also e�ectively work for
model functions with discontinuities.
Functions with discontinuities typically cause di�culties for UQ methods
because they cannot e�ciently be approximated with polynomials, and if
the position of the discontinuity is unknown, a Gaussian process emulator
is not an appropriate representation for such a function, either.
While in the given example, the discontinuity could simply be described
by one parameter, a parametrization of the possible shape of a discontinu-
ity becomes more complex if the parameter domain is higher dimensional.
This complicates both the choice of a suitable random �eld and the practical
calculation of the integrals involved in the re�nement criterion. In sum-
mary, the idea of describing discontinuous functions with non-Gaussian
�elds is conceptually elegant, but more research is needed to overcome the
technical di�culties and to make this approach practical.

6.3. Discussion

In this section, we discuss limitations and possible extensions of the pre-
sented sequential design.

6.3.1. Limitations

The presented sequential design has two numerical di�culties.
First, calculating the re�nement criterion r̂n involves three integrals. If the
random �eld is Gaussian, then two of them can be evaluated analytically.
But in the general non-Gaussian case, the calculation of r̂n would be tedious
and would possibly involve sampling of the random �eld. In practice, one
might face situations, where the use of a non-Gaussian �eld is desired. For
example, if the correlation length of the model function is not known, then
one could include the correlation length as an uncertain meta-parameter
(instead of selecting the maximum likelihood value). For a given correla-
tion length, such �eld would be conditionally Gaussian, but, as a whole, it
would be non-Gaussian. In geostatistics, the approach of including uncer-
tain meta-parameters is called Bayesian geostatistics [41, 76, 92, 106]. An-
other example of a naturally occurring non-Gaussian random �eld would
be a model function with a jump discontinuity at an uncertain position as
presented in the third numerical example.
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Second, for very large numbers of nodes, the Kriging system in Eq. (3.19)
becomes ill-conditioned. The second numerical experiment above is an
example for this problem. With a straightforward implementation of the
Kriging system, the two very smooth �elds in Figure 6.6 could not be condi-
tioned to more than 33 nodes. This is purely a numerical problem caused by
the high smoothness in the assumed covariance function [1]. Analytically,
the Kriging equations have a unique solution, as long as the random �eld
has positive variance. In the �eld of geostatistics, a valid approach to im-
proving the condition of the Kriging system is to introduce a measurement
error [40]. In the case of a computer experiment, however, the model out-
put is deterministic, so a measurement error cannot be justi�ed. I have two
more ideas for improving the condition of the Kriging system, but have not
implemented or tested these: First, it might be possible to solve the Kriging
system more stably using an iterative Levenberg-Marquard type solver as
proposed in a similar fashion by Nowak and Cirpka [105]. Second, it might
be helpful to add nodes to the design that are more evenly spread over the
parameter domain. These nodes would not be optimal with respect to the
goal of solving an inverse problem, but they might help improve the con-
dition of the Kriging system.
The possible bad condition in Kriging is qualitatively di�erent from the
Runge phenomenon for polynomials. According to the Runge phenomenon,
polynomials that interpolate certain points exhibit strong oscillations be-
tween the points [126]. The problem with the Kriging system is that the
actual interpolant is di�cult to calculate. Oscillations between the nodes
are not expected.

6.3.2. Possible Extensions

The loss function introduced in Section 6.1.1 was only applied to the likeli-
hood term, not to the full posterior distribution. While this simpli�es many
calculations, one could argue that a proper loss function should rather com-
pare posteriors, not likelihoods. One possible problem could be seen in the
second numerical experiment. In Figure 6.6, the loss decreases monotoni-
cally, while the KL divergence shows a slow increase in error at early times.
For future research it would be interesting to investigate, whether it is pos-
sible to use the KL divergence of the posterior distribution directly as the
loss function and whether this is enough to avoid a non-monotonic error
behavior.
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Furthermore, the second numerical example showed that the sequential
design is sensitive to the choice of random �eld. As an aid for the mod-
eler I suggest two possible approaches to make the choice of random �eld
less subjective. The �rst approach is to add an initial sampling phase be-
fore the sequential design. In this phase, the model function is evaluated
on a space-�lling set of points. The �eld parameters (correlation length,
smoothness parameters,...) of the a priori �eld are then estimated using
these evaluations, e. g. via the maximum likelihood method [93]. Further-
more, Jones et al. recommend to validate the resulting random �eld [73].
The second possible approach is to model the �eld parameters as random
variables themselves. The resulting random �eld would be non-Gaussian
in general. The identi�cation of the �eld parameters is not done in a sep-
arate phase, but during the sequential sampling. In the sequential design,
the knowledge about the �eld parameters would be updated automatically
and only to that extent that is important to the �nal goal, the solution of
the Bayesian inverse problem. In geostatistics, this approach is known as
Bayesian geostatistical design [41, 92, 106]. This approach, of course, has
the downside that non-Gaussian random �elds have to be handled.

6.4. Conclusions

In this chapter, I presented a sequential design of computer experiments
for solving Bayesian inverse problems. The design explicitly accounts for
code uncertainty by describing the model function as an emulator. The
sampling strategy classi�es as a greedy one-step look ahead method and
selects the nodes to minimize the expected Bayes risk based on a quadratic
loss function. The likelihood estimator fully acknowledges code uncer-
tainty. Therefore, at any iteration, the sequential sampling can be stopped
and the result will be a meaningful posterior distribution.
The design was tested in three numerical examples. The �rst two examples
demonstrate that the presented method is more e�cient than space-�lling
designs. Furthermore, the second example shows that the performance of
the design is sensitive to the choice of emulator. This suggests that reliable
methods for choosing emulator parameters are required. Finally, the third
example showed that the proposed method even works for non-Gaussian
random �elds. This last example also indicates that the method can poten-
tially handle model functions with discontinuities.
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7. The Use of Low-Fidelity
Models in Bayesian Updating

The content of this chapter has �rst been published in the article Impact of
Data Assimilation on Cost-Accuracy Tradeo� in Multi�delity Models [134] in the
Journal on Uncertainty Quanti�cation in 2015, published by the Society for
Industrial and Applied Mathematics (SIAM). Copyright © by SIAM. Unautho-
rized reproduction of this article is prohibited. I am reusing parts of the article
by kind permission of the publisher SIAM.

In this chapter, we have a closer look at the use of low-�delity models for
the task of Bayesian updating.
As stated in the introduction in Section 1.1, we assume that for a given
simulation problem, we have a model that describes the physical processes
correctly: a model without model error. Within this chapter, we call this
model the reference model. Furthermore, we assume that a low-�delity
model for the same problem is available, i. e., a reduced version of the ref-
erence model. Such a reduced model can be obtained by either coarsening
the time- or space-discretization or by simplifying the physical represen-
tation of the underlying problem, i. e., by making simplifying assumptions
or by neglecting less important physical processes. Due to these simpli�-
cations, a reduced model is typically much faster than the reference model,
but introduces a model error. This is particularly interesting in stochas-
tic applications, where the model function is evaluated repeatedly, such
as a Monte-Carlo simulation. Under time constraints, a reduced model al-
lows a larger number of model evaluations, resulting in a smaller stochastic
error (e. g., Monte-Carlo error, see Section 2.1.4). In some cases, the sim-
pli�ed form of the reduced model even allows the derivation of a close-
form expression for the uncertainty propagation problem, eliminating the
stochastic error completely [144, 150, 154]. The balance between model
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error and stochastic error leads to the following model-selection problem:
which model achieves the smaller total error (=model error plus stochastic
error)? Leube et al. discussed this question under the term optimal alloca-
tion of computer resources [83]. It is basically an optimization problem over
a set of two options.
This is a very speci�c view on model selection and it di�ers from much
of the existing literature on model selection and model averaging. Let me
brie�y outline the di�erences. The �eld of model selection is well estab-
lished [17, 19, 26]; it it applied in various areas such as psychology [173],
hydrology [52], ecology [3] and sociology [119]. The main focus of such
studies is to identify a model with highest accuracy or best predictive power,
without considering computational costs. In this chapter, we pose a di�er-
ent question: given constraints in computing time, what model should be
used? This is a question of e�ciency rather than accuracy. The e�ciency
aspect of model selection also lies outside the scope of Bayesian model av-
eraging (BMA) [45, 65, 102], and multilevel Monte Carlo (MLMC) simula-
tions [27, 59]. BMA assigns a weight to each model, which is equal to its
probability of predicting given data, without considering the cost-accuracy
tradeo�. In our analysis the �delity of individual models is known a pri-
ori. MLMC uses multiple models in a hierarchical way to increase the ef-
�ciency of stochastic calculations. Throughout this chapter, I will use the
terms model selection and model-selection problem only with respect to the
e�ciency aspect explained above.
When measurement data are available, Bayesian updating adds another
aspect to the model-selection problem. This is best explained with Fig-
ure 7.1, which shows the general work�ow used within this chapter. We
start with the input parameters X , which are the same for both the refer-
ence model u and the reduced model ũ. Both models yield an output, Y
and Ỹ , respectively. From the output we can derive two further quantities:
the measurement data, which is a function of the output and random noise,
Z = f1 (Y , ε); and a quantity of interest (QoI), which is a function of the out-
put, QoI = f2 (Y ). In the updating step, we assimilate measurement data to
update the knowledge about the QoI.
We do not attempt to update the knowledge about the input parameters X
(which would be an inverse problem). Knowing that the reduced model ũ
contains a model error, we would only obtain e�ective parameters, and not
the true posterior distribution of X . Since we only consider the relation-
ship between the output, the measurement and the QoI and use the same
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X

Output
Y = u(X )

Measurement
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Ỹ = ũ(X )
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Z̃ = f1(Ỹ , ε)
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Q̃oI = f2(Ỹ )

Reference Model

Reduced Model

Bayesian
Update

Bayesian
Update

Figure 7.1.: Flow of information for the numerical experiments in this chap-
ter.

functions f1 and f2, the functional relation between the measurement data
and the QoI is not a�ected by the model error of ũ.
In this setup, the distributions ofY and Ỹ can be regarded the prior distribu-
tions. In that respect, we obtain two di�erent Bayesian updating problems:
they have the same measurement model and the same observations, but
two di�erent priors.
Coming back to the model-selection problem, we can expect the amount
of measurement data to have an in�uence on both the model error and the
stochastic error:
If more and more data become available, the likelihood of the measurement
becomes more and more narrow, so that the signi�cance of the prior is
expected to diminish. This means that the in�uence of the model selection
becomes smaller and therefore the e�ect of the model error decreases.
Moreover, the calculation of a posterior distribution becomes increasingly
sampling intensive as the amount of available data increases. As more data
become available, the percentage of realizations that match the data de-
creases and therefore larger sample sizes are required. Or, if the sample
size is kept constant, the stochastic error increases.
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In summary, we can expect Bayesian updating to decrease the model error
of a reduced-complexity model and to increase the stochastic error of all
calculations. These two e�ects change the balance between the model er-
rors and stochastic errors and, therefore, a�ect the optimal model selection.
The aim of this chapter is to understand the e�ect data has on the optimal
model selection. Furthermore, we will investigate whether we can derive
practical model selection guidelines from these observations.

This chapter is structured around one numerical example. I will �rst de-
scribe the numerical setup in detail and present its results. Only afterwards,
a more general approach is taken to the model-selection problem.

7.1. Simulation Setup

As the exemplary model-selection problem, we consider an in�ltration pro-
cess. The geometrical setup is shown in Figure 7.2. We consider a two-
dimensional domain D = [−1, 1] × [0 ×∞]. The two spatial coordinates
are denoted by ξ (horizontal) and ζ (vertical, positive axis pointing down-
wards). In the initial state, the domain is �lled with dry soil. The in�ltration
is driven by a constant pressure headψ0 of ponding water at the soil’s sur-
face (ζ = 0). Uncertainty lies in the soil properties. The soil is assumed to
be inhomogeneous, so the material properties vary over ξ and ζ . The QoI
is the total amount of in�ltrated water after 30min of in�ltration.

To decrease the uncertainty in the prediction of the QoI, measurement data
from soil moisture sensors are collected and used for Bayesian updating.
This is a general Bayesian updating problem as presented in Figure 1.2 in
Section 1.1. The measurements are taken at time τ = 30min and the sensors
are located 10 cm below the soil surface. The number of sensors varies over
the di�erent experiments.

Such an in�ltration process can be described by two alternative models:
the Richards equation, which we regard as the reference model, and the
Green-Ampt model, which is a reduced version of the reference model. In
the following two sections, I provide details about these two models. After
that, I brie�y comment on the numerical implementation of both models,
as well as the updating procedure.
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2m

10 cm

ponding water

dry soil

wet soil

sensor

we�ing frontξ

ζ

Figure 7.2.: Problem setup.

7.1.1. Richards Equation

At any point (ξ , ζ )> in the �ow domain D, the temporal evolution of water
content θ (ξ , ζ ,τ ) : D×R+ → [θi,ϕ] and pressure headψ (ξ , ζ ,τ ) : D×R+ →
R are described by the Richards equation [155]

∂θ

∂τ
= ∇ · (K∇ψ ) − ∂K

∂ζ
, (7.1)

where K(ξ , ζ ,θ ) is the soil hydraulic conductivity. The water content θ
lies in the interval between the irreducible water content θi and the poros-
ity ϕ. The Richards equation is supplemented by two constitutive rela-
tions K = Ks(ξ , ζ )Kr(ξ , ζ ,ψ ) and θ = f (ψ ), where Ks and Kr are the sat-
urated and relative hydraulic conductivities, respectively. We employ the
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van Genuchten constitutive model [155],

Kr =

[
1 −ψmn

d

(
1 +ψn

d

)−m ]2
(
1 +ψn

d

)m/2 , (7.2)

θ − θi
ϕ − θi

=
1

(1 +ψn
d )m
,

ψd = α |ψ | ,
m = 1 − 1

n
.

The shape parameters α > 0 andn > 0may vary in space, re�ecting the soil
heterogeneity. Equations (7.1) and (7.2) are subject to initial and boundary
conditions:

θ (ξ , ζ , 0) = θinit, (7.3)
ψ (ξ , ζ = 0,τ ) = ψ0,

θ (ξ , ζ →∞,τ ) = θinit,

∂ψ

∂ξ
(ξ = ±1, ζ ,τ ) = 0.

The numerical values for these are θinit = 0.2 andψ0 = 0.01m.
As noted earlier, the Richards equations is regarded as the reference model:
we assume that solutions of the presented equations have no model error.

Model Parameterization

Among all the model parameters, saturated hydraulic conductivity Ks and
soil parameterα vary most and exhibit the highest degree of uncertainty [127,
145, 154]. In line with this observation, we treat Ks(ξ , ζ ) and α(ξ , ζ ) as ran-
dom �elds, while assuming the remaining parameters to be constant (in
space and time) with the following known values: n = 1.81, ϕ = 0.42 and
θi = 0.13. These values are the mean values provided by Russo and Bou-
ton [127, Table 3a].
We assume that the natural logarithms of Ks and α are statistically inde-
pendent, second-order stationary Gaussian random �elds. The soil data

128



7.1. Simulation Setup

µ σ 2 λ1[m] λ2[m]
lnKs -3.58 0.89 0.7840 0.2123
lnα -3.01 0.63 0.2554 0.1117

Table 7.1.: Statistical properties of Ks and α : mean µ, variance σ 2 and cor-
relation lengths λ1, λ2 [127, Table 3a].

analyzed by Russo and Bouton [127] and various subsequent studies sug-
gest the use of an anisotropic exponential covariance function

C (d1,d2) = σ 2 exp [−s] ,
s =

√
(d1/λ1)2 + (d2/λ2)2,

where σ 2 is the variance, d1 and d2 are the horizontal and vertical distances
between two points, and λ1 and λ2 denote the horizontal and vertical corre-
lation lengths. The speci�c �eld parameters used in this chapter are again
taken from Russo and Bouton [127, Table 3a]. The values are summarized
in Table 7.1.

Computation of the �antity of Interest

Solving Eqs. (7.1)–(7.3) yields realizations of the state variable θ (ξ , ζ ,τ ). To
compute the QoI (the total amount of in�ltrated water), we �rst calculate
the in�ltration depth ζf (ξ ) at each point in the domain. We are only inter-
ested in the state at time τ = 30min, so in the following we omit the time
argument τ . The expression for the in�ltration depth is

ζf (ξ ) =
∫ ∞

0

θ (ξ , ζ , 30) − θinit
ϕ − θinit

dζ .

Note that the in�ltration depth is only a conceptual quantity. In reality,
the water content along a vertical slice transitions smoothly from the fully
saturated state (θ = ϕ) to the dry state (θ = θinit). There is no sharp wetting
front as shown in Figure 7.3. The in�ltration depth ζf can be understood
as the hypothetical position of the wetting front if there were a sharp front
and if the area under both curves were the same.
From the in�ltration depth, the total amount of in�ltrated water Q follows
as

Q = (ϕ − θinit)
∫ 1

−1
ζf (ξ ) dξ . (7.4)
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Figure 7.3.: The water content θ over a vertical slice in the domain:
Richards equation (blue) versus a sharp front (green).

The considered problem is two dimensional, so the unit of Q is m2.

7.1.2. Green-Ampt Model

The Green-Ampt model provides a simpli�ed solution to the Richards equa-
tion for in�ltration processes. It makes the following additional assump-
tions:

1. Soil parameters are homogeneous in the vertical direction.
2. Water �ows only vertically, from the soil surface downwards, which

means that there is no liquid exchange between di�erent vertical
slices in the domain. The Green-Ampt model itself is a one-dimen-
sional model (over the coordinate ζ ). To solve our two-dimensional
in�ltration problem, the model is evaluated separately for each ver-
tical slice. As a consequence, the horizontal coordinate ξ does not
occur in any of the following equations.

3. There is a sharp wetting front at depth ζf , which separates the dry
soil (θ = θinit) from the wet soil (θ = ϕ), such that

θ (ζ ,τ ) =
{
ϕ for ζ < ζf (τ )
θinit for ζ ≥ ζf (τ ) .

This is exactly the sharp front shown in Figure 7.3.
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For our in�ltration problem, the Green-Ampt model has an implicit solu-
tion for the depth of the wetting front ζf (τ ) [101, 154, 155]:

ζf (τ ) − (ψ0 −ψf ) ln
(
1 + ζf (τ )

ψ0 −ψf

)
=

Ks
ϕ − θi

τ , (7.5)

where the pressure head at the in�ltration front, ψf , is set to a capillary
drive [101, 154],

ψf = −
∫ 0

ψi

Kr (ψ ) dψ .

The pressure head in the dry soil, ψi, is related to the corresponding irre-
ducible water content θi by the van Genuchten model [Eq. (7.2)].
As before, we are only interested in the state at τ = 30min. By setting
τ = 30min and solving Eq. (7.5) once for each vertical column, we obtain
the wetting front as a function of the horizontal coordinate: ζf (ξ ). This
wetting front has the same form as the prediction of the Richards equation,
so the QoI can similarly be calculated using Eq. (7.4).

Model Parametrization

While the deterministic parameters from the Richards equation (n,ϕ and θi)
can immediately be used in the Green-Ampt model, the two random �elds
for Ks and α require some pre-processing: due to the assumption of homo-
geneity in vertical direction, we have to replace the two-dimensional ran-
dom �elds for Ks and α by a collection of homogeneous one-dimensional
isolated �ow tubes, labeled by their horizontal position ξ . This parametriza-
tion is known as the Dagan-Bresler parametrization [37]. To obtains the Ks
and α values for each column, we need to take vertical averages over the
two-dimensional �elds. A conceptual di�culty here is that the depth over
which the average is to be taken is not known a priori. It would be desir-
able to average from the soil surface down to the wetting front (i. e., over
the interval [0, ζf ]), so that exactly those soil properties are included, that
are actually involved in the in�ltration process. The in�ltration depth, of
course, is not known before the calculations. Therefore, we use the fol-
lowing procedure to get an estimate of ζf . First, we draw a sample of Ks
and α from their respective distributions. The underlying random �elds
are stationary, so the distribution is the same at any point in space. We
then pretend that the drawn values were constant over the whole domain
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(even though, in reality the drawn values are point values in space), and in-
sert these into the Green-Ampt solution in Eq. (7.5) to obtain an in�ltration
depth. We repeat this process until we obtain a large sample of in�ltration
depth estimates ζf . From this sample, we construct an empirical cumula-
tive distribution function F (ζ ) = P [ζf < ζ ]. This function transitions from
F (0) = 0 to F (ζ →∞) = 1. Finally, the parameters Ks and α are averaged
vertically using a weighted mean with weights proportional to 1 − F (ζ ).
The conductivity Ks is averaged with a harmonic mean (analogous to mul-
tiple resistors in a series connection) [146], and the shape parameter α is
averaged arithmetically.

7.1.3. Numerical Implementation

The Richards equation is solved using the USGS software package vs2dt,
which can be downloaded at http://water.usgs.gov/software/ (as of
April 2016). Horizontally, the domain is discretized with 50 equally spaced
cells. Vertically, it is discretized with 30 cells and a grid re�nement towards
the top boundary. While the conceptual domain D is in�nitely deep, the
numerical model is cut o� at a depth of 2m. Some preliminary calculations
showed that, within the �rst 30min, the in�ltrated water would never reach
a depth larger than this.
The Green-Ampt model is solved using the Matlab function fzero, which
uses a combination of bisection, secant, and inverse quadratic interpolation
methods. One simulation run solves Eq. (7.5) for all 50 soil columns de�ned
by the discretization of the Richards equation.

7.1.4. Bayesian Updating

To compare the two models in a meaningful way and to isolate the e�ect
of the model error, we can only assimilate data from quantities that can be
predicted by both models. Soil-moisture sensors provide point-wise mea-
surements of the water content θ (ξ , ζ ,τ ). While these data can be assimi-
lated into predictions obtained with the Richards equation, the Green-Ampt
model predicts only the in�ltration depth ζf (ξ ). We therefore need to con-
vert measurements of θ (ξ , ζ ,τ ) into “measurements” of ζf (ξ ), which means
that the measurement quantity Z must be a function of ζf (ξ ). To this end,
I developed the following simpli�ed measurement model.
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Let (ξ , ζ ) denote a sensor’s position. We model the sensor’s output Z as

Z (ξ , ζ ) =
{

dry if ζf (ξ ) < ε · ζ
wet otherwise,

(7.6)

where ε represents a measurement error, introducing random noise. This
sensor model does only have the two possible measurement values “dry”
and “wet”. If it were ε = 1, this sensor model would represent a perfect
sensor. We assume ε to be log-normally distributed with ln ε ∼ N (0,σε ),
so that in some cases, the measurements can be wrong, especially if the
sensor is very close to the wetting front (ζ ≈ ζf (ξ )). In our numerical
examples, we set σε = 0.1.
With the measurement model in place, we can now derive an expression for
the likelihood term. Assume that a wetting front ζf is given (as a function
over ξ ). By solving the measurement model [Eq. (7.6)] for ε and inserting
into the cumulative distribution function (cdf) of the normal distribution
FN , we obtain the conditional probability of getting the measurement “wet”
in terms of the sensor’s position (ξ , ζ ), conditional to the wetting front, as

P
[
Z (ξ , ζ ) = wet

��� ζf ] = FN

(
σ−1ε ln ζf (ξ )

ζ

)
.

The conditional probability of measuring “dry” is, of course, the comple-
ment

P
[
Z (ξ , ζ ) = dry

��� ζf ] = 1 − P
[
Z (ξ , ζ ) = wet

��� ζf ] .
If multiple sensors are present, we assume their measurement errors to be
independent. The probability of measuring values at multiple sensors is
then the product of the probabilities of the individual measurements. For
a number of sensor positions (ξ1, ζ1) , . . . , (ξn , ζn) and measurement values
z1, . . . , zn with zi ∈ {dry,wet}, we obtain

P
[
Z (ξ1, ζ1) = z1, . . . ,Z (ξn , ζn) = zn

��� ζf ] = n∏
i=1

P
[
Z (ξi , ζi ) = zi

��� ζf ] .
Recall, that this term is the likelihood of the measurement z1, . . . , zn , see
Eq. (2.4) in Section 2.2.
All experiments are performed with virtual measurements. That means
that one realization of the input parameters is selected as the virtual truth.
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From this realization, the virtual data are generated via the measurement
model in Eq. (7.6). In some cases, the whole procedure is repeated multiple
times, selecting multiple truths and averaging the errors in order to obtain
more stable and robust results.

Stochastic Discretization

As described earlier, the input uncertainty for the experiment is given in
terms of the two random �elds for Ks and α . To evaluate errors in a mean-
ingful way, we need to have a reference solution with which all approxi-
mate solutions can be compared. Given the high stochastic dimensionality
of Ks and α , such reference solution cannot be obtained exactly. We there-
fore replace the original random �elds by a discrete distribution on a �nite
sample, which we call base sample. As a result, we obtain a slightly di�er-
ent problem, which we de�ne as the reference. All subsequent calculations
are done for the newly de�ned reference problem. The consequences of
this approach are these:

First, we are able to calculate the reference solution exactly. To do so, we
simply insert the full base sample into the model equations and solve for
the QoI. The resulting sample of the QoI is the reference prior distribution
of the QoI. A reference posterior distribution can be obtained by giving
each realization a weight proportional to its likelihood, see Section 2.2.2.

Second, for applying the Monte-Carlo method to the problem, we have to
draw realizations from the base sample with replacement. That way, we can
obtain sample sizes that are larger than the base sample, and still observe
the typical Monte-Carlo convergence behavior with a rate of O

(
N −1/2

)
.

With this property, our approach for error calculation is highly similar to
the bootstrapping method [46]. The main di�erence is that in this experi-
ment, we de�ne the base sample as the reference, while the bootstrapping
method uses the base sample to make statements about the original distri-
bution, from which the base sample was drawn (in our case the two random
�elds).

In the experiment we draw a base sample of size 104. For the Monte-Carlo
simulations we draw samples of sizes between N = 1 and N = 106.

134



7.2. Simulation Results

7.2. Simulation Results

Recall that the QoI is the total amount of in�ltrated water Q . The aim of
all calculations is to �nd the (prior or posterior) distribution of Q . The
reference solution can be obtained by inserting the full base sample into
Richards equations. To measure the accuracy of any approximation, we
use the earth movers distance (EMD) from the reference. As noted in Sec-
tion 2.2.3, the EMD can be calculated directly because all distributions are
given in form of samples. So in the following discussion, the term error
always refers to the EMD between an approximation and the reference so-
lution.
To emphasize the di�erence between the model error and stochastic error,
I will use the following notation: all errors are written in the form DN

M,n .
The subscript M ∈ {R,G} denotes the used model. It is either the Richards
equation (M = R) or the Green-Ampt model (M = G). The second subscript
n denotes the number of soil moisture sensors used (n = 0 for the prior).
Finally, N is the number of realizations used in the Monte Carlo simula-
tions. In the convergence analysis, N is varied from 1 to 106 and, according
to the bootstrapping approach, samples are drawn with replacement. A
special case are simulations with the full base sample without replacement:
these calculations do not have a stochastic error, so the error represents the
pure model error. Such cases are marked with the superscript star ?. For
example D?

G,0 denotes the prior model error of the Green-Ampt model.

7.2.1. Infiltration Depth

Figure 7.4 shows the spatial variability of the prior and posterior distribu-
tions of the in�ltration depth ζf (ξ ) for one speci�c virtual truth. The pos-
terior was calculated with data from seven equidistant moisture sensors.
The �gure also shows the virtual truth from which the data are generated
via the measurement model, see Eq. (7.6). The plots were generated using
the full base sample. Therefore, there is no stochastic error in these calcu-
lations, and all discrepancies between the two results are due to the model
error.
The prior computed with the Green-Ampt model overestimates the in�l-
tration depths on average by 0.005m, which corresponds to the relative
error of about 5%. The distribution’s width is slightly underestimated. In
the posterior distributions, the Green-Ampt model again underestimates
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Figure 7.4.: Prior and posterior statistics of the in�ltration depth ζf (ξ ) at
τ = 30min. Colored lines: ensemble mean. Shaded areas:
pointwise 10th and 90th percentiles. Black line: virtual truth.
Circles: moisture sensors, wet - black, dry - white. Both ζf and
ξ are displayed in [m]. All diagrams show the same part of the
domain.
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Figure 7.5.: Prior and posterior density estimates of the total amount of in-
�ltrated water Q for the two models.

the distribution’s width: the shaded area is smaller than its reference. The
virtual truth leaves the shaded area in about one third of the domain.

Figure 7.5 shows density estimates (using the Matlab function ksdensity1)
of the QoI Q , see Eq. (7.4). Again, the full base sample was used. This plot
con�rms the previous observations. In the prior, the reduced model slightly
overestimates the water content. In the posterior, the means of both models
almost align. For a quantitative comparison, the model errors of the Green-
Ampt model are D?

G,0 = 1.87 · 10−3 m2 and D?
G,7 = 1.60 · 10−3 m2, which

means that the posterior error is slightly smaller than the prior error.

1The kernel width was chosen automatically with the support option set to positive.
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7.2.2. Computing Times and Convergence Behavior

We now return to the model-selection problem: given limited computa-
tional resources, which model has the smallest total error? We compare the
total errors (model error plus stochastic error) of both models as a function
of computing time.
We employ the setup with seven soil moisture sensors again and use the
same virtual measurement values as in the previous section. Figure 7.6
shows the prior (n = 0) and posterior (n = 7) convergence plot of DN

M,n for
both models (M ∈ {R,G}) in terms of the sample size (between N = 1 and
N = 106). For each data point the error was averaged over 250 di�erent
random samples to ensure that the results are robust against sampling arti-
facts. One realization of the Richards equation takes about 56 s to compute,
while one realization of the Green-Ampt model takes 0.087 s. This is a ratio
of more than 600 : 1.
Since the Richards equation represents the reference model, its error con-
verges to zero,D?

R,n = 0, by de�nition. The convergence rate isO(N −1/2), as
expected. The error of the Green-Ampt model solution does not converge
to zero, but to D?

G,0 and D?
G,7, respectively.

The model-selection problem can be solved directly from the convergence
plot. For both the prior and the posterior there exists a computing time
thresholdTn that marks the time after which the models should be switched.
If the modeler has less than this time available, the Green-Ampt model
should be used, otherwise the Richards equation yields better results. For
the prior this threshold is T0 = 1.1 · 104 s ≈ 3 h, for the posterior it is
T7 = 6.3 · 105 s ≈ 174 h. This means that if the available computation time
is betweenT0 andT7, then the optimal model selection depends on whether
the prior or the posterior is to be calculated. The availability of data favors
the use of the reduced model.
A comparison of the two convergence plots in Figure 7.6 suggests that this
result could be caused by two e�ects:

1. Available data reduce the model error, D?
G,7 < D?

G,0.
2. Available data increase the stochastic error. While the asymptotic

convergence behavior of the Richards equation isC/
√
N in both cases,

the posterior convergence has a larger multiplicative constantC and
therefore reaches the same accuracy later than the prior does.

In the following two sections, we investigate these two e�ects in more de-
tail.
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7.2.3. Impact of Data on the Model Error

To check the extent to which measurements can reduce the model error,
we vary the sampling density (i.e., the number of sensors n) and calculate
the model error D?

G,n . One would expect the in�uence of the prior to di-
minish and the model error to decrease as the number of sensors increases.
The horizontal positions of the sensors are selected via Hammersley sam-
pling [62]. This sampling method allows us to spread out the sensors as
equidistantly as possible while, at the same time, generating a nested set of
sampling locations.
Figure 7.7 on shows the model error D?

G,n as a function of the number of
sensors n = 1, . . . , 31. The error is averaged over 100 repetitions, in which
a di�erent realization was selected to represent the virtual truth for gen-
erating the measurement data. One can see that the model error decreases
at �rst until a minimum is reached with 3 sensors. Then the error gradu-
ally increases. The error with 7 sensors is on average larger than the error
without measurements. That means that the decrease observed previously
in Figure 7.6 was speci�c to the precise data used in that section and cannot
be expected on average.
The increase in the model error for a large number of sensors shows that,
among the base sample of 104 Green-Ampt solutions, there are no realiza-
tions that fully resemble the true wetting front. In the situation with data
from more than 5 sensors, the model complexity of the Green-Ampt model
is too low to keep up with the increasing number of sensors. The exact
number of sensors that achieve a minimal model error is, of course, prob-
lem dependent. As a technical side node, a sampling density of 31 sensors
on a domain of 2m length is already unrealistically high for a real mea-
surement campaign.
I conclude that the initial conjecture was incorrect: additional measure-
ments do not, in general, lower the model error. The relationship between
the number of sensors and the model error is a nonmonotonic function.

7.2.4. Impact of Data on the Stochastic Error

Finally, we investigate the extent to which the number of sensors a�ects
the stochastic error. The upper plot in Figure 7.8 shows the convergence of
the Monte Carlo solution with the Richards equation with 0 to 16 moisture
sensors. At the right end of the plot, where the asymptotic convergence be-
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Figure 7.7.: Model error of the Green-Ampt model as a function of the num-
ber of sensors.

havior is attained, the individual data lines are perfectly ordered according
to the number of sensors.
The lower plot in Figure 7.8 shows the rightmost data points from the upper
plot (the data points for sample sizes of 106) as a function of the number of
sensors. This �gure con�rms the previous observation that the stochastic
error increases with the number of measurements.

7.3. An Approach to Model Selection

In this section, we recap the �ndings from the previous section and for-
mulate a possible approach to the model-selection problem. Solving the
model-selection problem is a matter of determining the time threshold Tn .
Once it is known, the modeler can decide which model to use.
The convergence behavior shown in Figure 7.6 gives rise to two observa-
tions:

1. If a reduced-complexity model is much faster to solve than its high-
�delity counterpart, then, given su�cient computing time, the sam-
pling error in the solution of the reduced-complexity model is negli-
gible relative to its model error. In other words, the total error of the
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Figure 7.8.: Top: convergence of the Monte Carlo simulations with the
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Richards equation is the reference, the error shown is a pure
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R,n ), shown as a function of the number of sensors n.
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reduced-complexity model at the time threshold Tn is constant and
equal to D?

G,n .
2. The computing timeTn is su�cient to enable the high-�delity model

to reach the asymptotic convergence behavior of the form Cn/
√
N .

Let τs denote the computing time necessary to evaluate the high-�delity
model once. Then, the time threshold Tn is found by equating the two
errors, D?

G,n = Cn/
√
N , which yields

Tn = τsN = τs

(
Cn

D?
G,n

)2
. (7.7)

This general result holds for any QoI and any error measure, as long as the
QoI estimate converges with the rate of O(N −1/2).
Figure 7.9 shows the dependence of the computing time threshold Tn esti-
mated with Eq. (7.7) on the number of sensors n. The increase in the sam-
pling error, quanti�ed by the factorCn (Fig. 7.8), outweighs the increase in
the model error D?

G,n (Fig. 7.7), such that the time threshold Tn increases
with the number of sensors n. These results are averaged over the data
from 100 di�erent virtual truths. Therefore, the e�ect is not as strong as in
the example given in Section 7.2.2, which represented a single realization
of the virtual truth and by coincidence had a stronger e�ect.
Equation (7.7) reveals the di�culty in solving the model-selection prob-
lem a priori. To do so, one needs to determine both the model error of
the reduced model, D?

G,n , and the multiplicative constant Cn in the con-
vergence behavior of the complex model. These two quantities depend on
the amount of available measurements n, as shown in the previous two
sections.
The constant Cn could possibly be estimated using the reduced model if
one assumes that the reduced model converges to its limit with the same
constant as the complex model does (in terms of number of realizations,
not in terms of computing time). For the estimation of the model error
D?
G,n , however, I am not able to provide a general approach: while in the

absence of measurements one could compare a small number of realizations
of both models to get an estimate of D?

G,n , the presence of measurement
data changes the model error; this change is nonmonotonic in the amount
of available data (Fig. 7.7). Overall, these factors make it di�cult if not
impossible to get an a priori estimate of the time threshold Tn .
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Figure 7.9.: Dependence of the time thresholdTn , see Eq. (7.7), on the num-
ber of sensors n.

7.4. Conclusions

In this chapter I studied the interplay between Bayesian updating and the
model-selection problem in multi-�delity modeling. The study is centered
around an exemplary in�ltration problem, which can be solved by either
the Richards equation or the Green-Ampt model.
A modeler can often choose between an accurate, but slow model (the refer-
ence model) and a faster, but less accurate model (the reduced model). This
choice is especially interesting in stochastic computations which require
repeated evaluations of the model function. If the computing time avail-
able is limited, then the faster model allows to evaluate the model function
more often, leading to a smaller stochastic error (e. g., Monte-Carlo error).
Overall it is not a priori clear which of the two models results in the smaller
total error (= model error plus stochastic error). These considerations, of
course, are all under the premise that the modeler wants to use only one
of the two models. There are also approaches, such as MLMC, that use
both models together to obtain even more accurate results. These are not
considered here.
Our study showed that in a very tight time constraint, the stochastic error
dominates the total error and therefore the reduced model tends to per-
form better. At the other extreme, without a time constraint, the reference
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model, of course, leads to a smaller total error. Between these two extremes
there exists a time threshold T that marks the time at which the model
should be switched. This time threshold answers the model-selection prob-
lem: if the modeler has less time thanT , then the use of the reference model
is not justi�ed and the reduced model should be used. If more time than T
is available, the reference model leads to the overall better results.
The availability of measurement data for Bayesian updating has an in�u-
ence on the model error of the reduced model and on the stochastic error
of both models. In this study we found that, indeed both types of errors
change when data become available. Overall, the errors change in favor of
the reduced model. Within the tested range, the time thresholdT increases
almost monotonically with the number of measurements. This increase is
rather drastic, changing by a factor of 8.
Furthermore, the study showed that it is di�cult if not impossible to cal-
culate the time threshold T a priori.
Overall, our analysis suggests that the availability of data favors the use of
reduced models. However, this study does not lead to a practical guideline
for the model-selection problem because of the di�culty in calculating the
time threshold T . In addition, all results are obtained from one speci�c in-
�ltration problem, so the generality of these �ndings for other phenomena
remains an open question.
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8. Summary, Conclusions and
Outlook

In this �nal chapter, I will summarize the �ndings from the previous four
chapters, discuss these �ndings to formulate overarching conclusions, and
present follow-up questions for future research.

8.1. Summary

In this thesis, I considered uncertainty quanti�cation (UQ) problems under
time constraints. If we know in advance that the computing time is lim-
ited, then we are interested in �nding the best result possible in the time
available. This is a question of optimality, so I approached the construction
of numerical methods via mathematical optimization. This thesis provides
four contributions:

1. In Chapter 4, I developed a sampling rule for the optimal construc-
tion of polynomial response surfaces. Such response surfaces are
commonly used in UQ within the methodology of stochastic colloca-
tion for polynomial chaos expansions. The sampling rule I developed
is called optimized stochastic collocation (OSC). With OSC, optimal
nodes and weights are found by mathematical optimization of an op-
erator norm.
In a numerical experiment, I compared the performance of OSC with
other commonly used sampling rules, such as tensor grids, random
sampling and PCM. Among the sampling rules compared, OSC turned
out to be the most e�cient one because it is stable, �exible and ver-
satile. All other sampling methods lack at least one of these prop-
erties. Stability guarantees that the response surface will not oscil-
late between the nodes, �exibility allows the modeler to choose the
number of function evaluations freely, and versatility means that the
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method can handle multivariate input distributions with statistical
dependence.

2. In Chapter 5, I investigated under what conditions optimal response
surface methods for uncertainty propagation exist. As opposed to
the approach in Chapter 4, I formulated this as an optimization prob-
lem to determine both the optimal nodes and the optimal functional
form of the response surface. I compared three di�erent objective
functions for the optimization: the Lebesgue constant, an operator
norm and the expected squared error.
It turned out that only the third objective function leads to a practical
and useful response surface method. This method requires the mod-
eler to describe the unknown model function as a random �eld and,
as I was able prove, the optimal response surface method coincides
with the Kriging method that is well-known in geostatistics.
This analysis showed that an optimal response surface method un-
der time constraints can only exist if the modeler makes additional
assumptions about the shape of the model function.

3. In Chapter 6, I developed a sequential design for Bayesian inverse
problems. Bayesian inverse problems di�er from forward uncertainty
quanti�cation problems in that the region of interest in the param-
eter domain is not known beforehand. For this reason, I chose a se-
quential design (of computer experiments) for the selection of nodes.
Nodes are chosen one at a time. The model response at all previous
nodes is used to determine the new point that promises the most
bene�t for the overall goal of solving an inverse problem. The sam-
pling method relies on an explicit model for code uncertainty which
is realized via a random �eld.
Numerical experiments showed that the sequential design is able to
identify the important parts of the parameter domain quickly, and
so achieves a better e�ciency than non-sequential methods. The
method is able to handle both Gaussian and non-Gaussian random
�elds. A simple one-dimensional example showed that, with this
property, the sequential design is generally able to handle discon-
tinuous model functions with uncertain jump locations.

4. In Chapter 7, I investigated the use of low-�delity models for Bayesian
updating. Whether a slow (but accurate) or a fast (but inaccurate)
model is preferable, is a problem of model selection. Classical model
selection methods only compare models in terms of their accuracy,
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but do not consider computational costs. In UQ problems, time con-
straints have an important in�uence on the model selection problem
because, in a given time, a slow model can only be evaluated a few
times, and this leads to a large stochastic error (e.g. Monte-Carlo er-
ror). Therefore, the choice between a high-�delity model and a low-
�delity model is a trade-o� between model error and stochastic error.
For such trade-o� situations, I investigated what in�uence the amount
of available data in Bayesian updating has on the optimal model se-
lection. It turned out that the amount of data has an in�uence on
both the model error and the stochastic error and therefore also in-
�uences the optimal model selection. In the numerical example, the
general tendency was that a larger amount of data favors the use of
the reduced model.

Overall, these four chapters make valuable contributions to uncertainty
quanti�cation in practical applications. All the methods I developed con-
sider time constraints right from the start, and so allow the practitioner to
make e�cient use of the time available.

8.2. Discussion and Conclusions

I will now discuss the results presented in the thesis in a broader context
and draw overarching conclusions. Altogether, there are four important
conclusions I would like to formulate. The �rst three of these are directly
related to the three hypotheses I proposed in the introduction in Section 1.4.
Recall that the hypotheses were the following.

1. Under time constraints, code uncertainty plays an important role. It
should be taken into account explicitly, for example by using emula-
tors.

2. Under time constraints, optimization is a viable approach to surro-
gate modeling. Optimal methods are �exible automatically.

3. Under time constraints, all available information about the model
function should be used.

I use O’Hagan’s de�nition of the term “emulator”: it denotes a random �eld
used as a surrogate [109].
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Do not create models, falsify models!

In the commentary paper “Popper, Bayes and the inverse problem” [143],
Albert Tarantola writes:

Data are not to be used to create a model, but, instead, to falsify models.

Tarantola attributes the core idea of this suggestion to Karl Popper and
therefore calls it “a modi�ed version of the Popperian paradigm”. More
precisely, he suggests the following steps for solving inverse problems.

1. Using everything known about the system beforehand (the a priori
information), create a collection of all possible models for the system.
These might be in�nitely many.

2. For each model, solve the forward problem and make a prediction
about the data.

3. Compare the observed data with the predictions and, according to
some rule, reject all those models that did not predict the observa-
tions well enough.

4. The solution to the inverse problem consists of all models that were
not rejected in the previous step.

Note that this solution consists of possibly in�nitely many models. In con-
trast, many methods for inverse problems and calibration try to create a
model based on the observed data, for example by a least-squares �t. The
solution in such methods consists of only the one model that is believed to
be the best explanation for the observation.
Now let us regard the handling of an expensive model function under time
constraints as an inverse problem. Due to code uncertainty, we do not
know the input-output relationship of this function. The best we can do is
observe the model response at a �nite number of model inputs. If we under-
stand these observations as “data” about the model function, then �nding
the model function itself is an inverse problem. For this kind of inverse
problem, Tarantola essentially suggests that we should use emulators and
not response surface methods.

• A response surface method creates a model.
• An emulator is a collection of possible models, and when an emulator

is conditioned to observations, some of these models are falsi�ed.
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Emulators do have the concept of code uncertainty built into them, while
response surfaces do not. If we want to follow Tarantola’s suggestion, we
have to take code uncertainty into account.

Looking back at Chapters 5 and 6, we can see that Tarantola’s suggestion
is not just a philosophical argument, but actually has direct practical con-
sequences and can lead to better numerical methods. In Chapter 5, where
I derived optimal response surface methods, the only approach that actu-
ally resulted in a useful method was the approach via emulators. I would
even argue that it would be best not only to use the resulting response sur-
face (the �eld mean), but the conditioned emulator as a whole. This is also
in line with Tarantola’s suggested procedure, where the solution of an in-
verse problem consists of a collection of models. Then, in Chapter 6, the
whole concept of a sequential design hinges on an explicit model for code
uncertainty, which is realized by describing the model function as a ran-
dom �eld. Furthermore, the likelihood estimator presented in that chapter
includes the uncertainty in the random �elds, so that at any point in time,
the iterative sampling procedure can be stopped and the result will be a
meaningful posterior distribution.

Intuitively, one might think that an emulator is a more blurry representa-
tion of a function and therefore makes less informative predictions. That is
indeed true in the following sense: if the true model function u is the mean
of the random �eld U , u = EU [U ] and we compare the two random vari-
ables Y = u (X ) and Y ′ = U (X ), then, by the law of total variance, Y ′ has a
strictly larger variance than Y , as long asU has a positive variance. It may
seem that a larger predicted variance is undesirable because it makes a pre-
diction less informative. I argue that this larger variance is, in fact, desirable
because it is a more correct representation of the available knowledge. As
long as we have not evaluated the model function in all points, there will
be code uncertainty. In the worst case, replacing the uncertain model func-
tion by a response surface can produce misleading results in the sense that
the image of the response surface does not even contain the true model
output. Such a response surface would be inappropriate for uncertainty
quanti�cation because it would claim that the actual real-world behavior
of the system under consideration would be impossible and would assign
it a probability (and probability density) of zero. An example for this ef-
fect is shown in Figure 6.1 in Chapter 6. There, the response-surface-based
likelihood (the plug-in likelihood) is overly con�dent and biased, while the
emulator-based likelihood (the best estimator) provides an adequate repre-
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sentation of the knowledge about the input parameter. Overall, I suggest
modelers to take care when using potentially misleading UQ methods.
Of course, even if the general idea of using emulators is conceptually very
clean, it still has practical problems: how do we specify an emulator such
that the unknown model function is a realization of it? If we fail in this
step and the model function is not a realization of the �eld, then all results
might again be misleading.
Finally, I would like to emphasize that time constraints make an essential
di�erence in this discussion. If we do not have time constraints and we are
interested in the convergence behavior of a method, then using response
surface methods is a viable approach. If a sequence of response surfaces
converges to the model function, then also the degree to which the response
surfaces are misleading will decrease. In a convergence analysis, it is not a
problem if intermediate response surfaces are misleading.
To sum up, the �ndings in my work and the “modi�ed version of the Pop-
perian paradigm” as formulated by Tarantola [143] both support the �rst
of my three hypotheses: code uncertainty should be taken into account
explicitly. When working in UQ under time constraints, I recommend the
use of emulators over the use of response surfaces. In convergence-based
analyses, response surfaces, of course, are valuable tools.

Optimization is a viable approach to surrogate modeling and
flexibility follows naturally.

All four of my contributions demonstrate that surrogate modeling can be
successfully approached via optimization. This was my second hypothesis.
Moreover, the resulting methods are automatically �exible, in the sense that
the modeler can easily adapt the run time of a method to the time available.
This is because the number of function evaluations enters the optimization
process as part of the problem setting instead of coming out of the opti-
mization as a result. Both OSC in Chapter 4 and the Kriging-like method
presented in Chapter 5 allow the modeler to select the number of function
evaluations n freely. The sequential design strategy presented in Chapter 6
is �exible by its sequential nature. The iterative procedure can be stopped
at any desired time and, as I argued in that chapter, the best-estimate like-
lihood in any iteration is a valid solution to the inverse problem if code
uncertainty is considered. Finally, the model selection problem in Chap-
ter 7 has the concept of �exibility built into the problem description: if a
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certain amount of time is available, the goal was to select the model that
allows us to use this time most e�ciently.

All available information about the model function should be
used.

My third hypothesis states that, under time constraints, all available infor-
mation about the model function should be used. The results of Chapters 5
and 6 actually lead to an even stronger conclusion: if we pursue optimal-
ity instead of convergence, then additional assumptions about the model
function are not just desirable, they are essential.
It is often possible to prove the convergence of a method for a relatively
large class of model functions. For example, under many probability dis-
tributions, polynomials are dense in L2 [49]. Therefore, it is possible to
approximate any function in L2 arbitrarily accurately by polynomials and
we do not need to make smoothness assumptions about the function.
Optimality, in contrast, can only be achieved if we make additional assump-
tions about the model function. The two theorems in Chapter 5 are basi-
cally statements about the relationship between possible objective func-
tions and the assumptions required to formulate them. For example, if the
expected squared error is used as an objective function, then the model
function has to be described by a random �eld. And as shown by the second
theorem in Chapter 5, the performance of a response surface method de-
pends directly on the correlation function of the random �eld. If the model
response is assumed to be completely uncorrelated, then a model evalu-
ation will not provide any useful information about the behavior of the
model response elsewhere, and response surface modeling will not make
sense. Therefore, we have to make the assumption that the random �eld
has a non-zero correlation. Such an assumption is the price we have to pay
if we aim for optimality.
Furthermore, my results showed that the achievable performance of a re-
sponse surface method is “monotonous” with respect to the “strength of the
assumptions”: a random �eld with a large correlation length will generally
achieve a better value in the objective function than a �eld with a small
correlation length. The same general behavior was found in the results in
Chapter 6. There, I compared various random �elds for the description of
the response of the heat equation. The �elds with stronger smoothness
assumptions generally achieved a better accuracy in solving the inverse
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problem. The additional assumptions, of course, have to be valid. As I
already mentioned in the previous section, the model function must be a
realization of the used random �eld.
In the �eld of optimization, the so-called No Free Lunch theorems are well
known [164]. They state that, on average over all possible optimization
problems, all optimization algorithms perform equally well. An optimiza-
tion algorithm can only perform better than a random search if additional
knowledge about the optimization problem is available and used correctly.
The same holds true for surrogate modeling: we can only create good sur-
rogate models if we have additional knowledge about the model function
and make proper use of it. The achievable accuracy depends directly on
the amount of available knowledge.

Model selection with and without time constraints is entirely
di�erent.

For a fourth conclusion, it is interesting to compare the model selection
problem under time constraints, see Chapter 7, with classical model selec-
tion approaches.
Most modelers agree that complex models should only be used if enough
data are available because otherwise one runs the danger of over�tting the
model. In other words, the presence of data favors the use of more complex
models. This viewpoint only considers the predictive power of a model, but
not its computational costs.
In contrast, under time constraints, the reverse can be true: in the numeri-
cal example in Chapter 7, I found that the availability of data in fact favors
the use of the simpler model.
We can learn two things here: �rst, it makes a big di�erence whether we
work under time constraints or not. In our case, the presence of time con-
straints even turned some common knowledge into the opposite. Second,
when using a simple rule of thumb such as “the presence of data favors the
use of more complex models”, one should have a clear understanding of
what it means and when it applies.
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Summary

In summary, my main four conclusions are these:
• under time constraints, emulators should be preferred over response

surface methods;
• optimization is a viable approach to surrogate modeling and leads to

�exible methods;
• if we aim for optimality instead of convergence, we have to make

additional assumptions about the model function;
• model selection methods should consider time constraints right from

the start.

8.3. Outlook

In this �nal section, I present a couple of ideas for future research.
• I believe it is worthwhile to follow the idea of the “modi�ed Poppe-

rian paradigm” more consistently. After all, the main idea of UQ is
to admit that certain information is not known precisely. It would be
foolish to claim that a simulation coincides with reality. However, by
using a response surface as a UQ method, we might fall into the same
trap. It would be equally foolish to claim that the response surface
coincides with the simulation. For this reason, I think that emulators
with their explicit notion of code uncertainty have a great advan-
tage over plain response surfaces. In future work, I would like to see
more UQ methods that take code uncertainty into account and that
make direct use of the additional information an emulator provides.
This idea is directly connected to the notion of overcon�dence which
I think should also be explored more in the future.

• In the end of Chapter 4, I brie�y outlined variations of the OSC
method that are more directly adapted to the task of creating a re-
sponse surface than OSC, but that lead to more di�cult optimiza-
tion problems. As a follow-up project, it would be interesting to in-
vestigate whether these methods are worth the additional e�ort and
whether they actually result in better response surfaces.
In this context, it is also interesting to investigate which of the ex-
isting approaches (quadrature and least squares) leads to better re-
sponse surfaces.
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• The sequential design in Chapter 6 is centered around the minimiza-
tion of the squared error in the likelihood estimate, even though the
overall goal is to achieve a small error in the posterior. It still remains
open, whether an optimization of the error in the posterior (for ex-
ample via the KL divergence) would result in an even better sampling
method.

• In Chapter 7, I brie�y commented on the di�erences between the
model selection problem under time constraints and the classical one.
In future work, these two di�erent approaches should be combined.
While my approach made the possibly wrong assumption that the
reference model is known beforehand, the classical approach ne-
glects computational costs altogether. In future work, the aspect
of computational costs should be incorporated into Bayesian model
averaging (BMA) methods. As my analysis showed, computational
costs can result in additional uncertainty, so it seems to me that BMA
methods already “speak the right language” to take computational
costs into account.

• In the introduction, I argued that, optimal surrogate methods are
more relevant for engineering practice than convergent methods. My
reasoning was that, under time constraints, the computational e�ort
cannot be increased arbitrarily. Aside from this practical reasoning,
I believe that optimality is a stronger property than convergence in
the sense that a sequence of optimal methods is automatically con-
vergent. I do not have a formal proof for this conjecture so, in future
work, it would be interesting to further explore the relationship be-
tween optimality and convergence.

• And last, I suggest a possible combination of emulators and low-
�delity models. Having a low-�delity model available, we could write
the reference model as the low-�delity model plus a model error:
uref = ulow + εmodel. If we now describe all three terms as emu-
lators, then the emulator of the reference and the emulator of the
low-�delity model will have a non-zero cross-covariance. Using this
cross-covariance, the emulator of the reference model can now be
conditioned to function evaluations of the low-�delity model. We
then might be able to design a mixed sampling strategy that com-
bines samples from both the reference model and the low-�delity
model to reduce the uncertainty about the reference model.
In a Bayesian inverse problem as shown in Chapter 6, for example, it
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might be possible to use a space-�lling design with the low-�delity
model �rst to explore the parameter domain and identify the high-
likelihood regions. Then, the reference model could be used to fur-
ther re�ne the most important part of the domain. Ideally, such a
strategy could be realized as a sequential design with an objective
function that takes into account both the expected information gain
of each evaluation and the di�erent computational costs of the two
models. Such a method would also be able to decide when to use
which of the two models, so that the modeler does not have to divide
the overall procedure manually into an exploration phase and a re-
�nement phase. Such phases should emerge automatically from the
optimization: at early times, the reference model is highly uncertain
and each evaluation of the low-�delity model helps reduce this un-
certainty at low computational costs. But later, when the uncertainty
in the reference model becomes smaller, the possible contribution of
the low-�delity model diminishes and a further reduction of the un-
certainty can only be achieved by using the reference model itself.
The approach of decomposing the overall response uref into multiple
smaller parts is similar to multi-level Monte-Carlo methods.
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A. Beyond �adrature and
Least Squares: Preliminary
Results

In this Appendix, I present preliminary results for the generalization of
OSC presented in Section 4.4. These results were obtained using the Lebesgue
constant as an objective function as shown in that section. Under some ad-
ditional assumptions, the Lebesgue constant can be calculated relatively
easily. Recall that the Lebesgue constant is the smallest number Λ

(P(x ,A)) ,
such that 

u − P(x ,A)u

 ≤ (

1 + Λ
(P(x ,A)) ) 

u − P?u




for all u ∈ T. If u ∈ P, then it is P?u = u and so the right-hand side
becomes zero. The Lebesgue constant can only be �nite if, for all u ∈ P,
also P(x ,A)u = u. If the dimension of P is the same as the number of nodes
(p = n), then it follows that P(x ,A) has to be the interpolation operator on
the nodes x . In other words, if p = n, then the optimal matrix A is already
uniquely de�ned. This reduces the dimension of the optimization problem
because we only have to �nd the optimal nodes x . The following results
are obtained using this shortcut.

OSC Method
Minimal

Lebesgue Constant

Figure A.1.: Nodes generated by a generalization of OSC.
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Appendix A. Beyond �adrature and Least Squares: Results
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Figure A.2.: Total error for the approximation of the function u (x1,x2) =
exp (x1 + x2) by polynomials of degrees between 1 and 8 over
the uniform distribution on [−1, 1]2. OSC in comparison with
its generalization.

Figure A.1 shows the optimal sampling rules of sample size 15 for a uniform
distribution on the domain [−1, 1]2. The left diagram shows the result of the
OSC method (this sample was already shown in Figure 4.1 in Chapter 4) and
the right diagram shows the result of the generalization via the Lebesgue
constant. While the precise node locations are di�erent in both samples,
they have in common that the points are most dense around the edges.
Figure A.2 shows the error behavior of the two approachs in compari-
son. The underlying experiment is the same as presented in Section 4.3.1
under the subheading “Increasing Polynomial Degree“: The parameter is
uniformly distributed on [−1, 1]2 and the model function is u (x1,x2) =
exp (x1 + x2). The polynomial degree is increased together with the number
of nodes. As shown in the plot, both methods have the same convergence
behavior for this problem. Whether there are problems in which these two
methods di�er, is an open question for future research.
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B. The Refinement Criterion in
the Jump-Detection Problem

In this Appendix, I will show the derivation of the re�nement criterion used
in the Jump-Detection Problem, see Section 6.2.3.
We start with the second simpli�cation described in Section 6.1.5, see Eq. (6.9).
As noted there, this simpli�cation is also possible for non-Gaussian emu-
lators. Applying the simpli�cation directly, leads to the expression

r̂n (x̂) = C − EXVarŶEU x̂,Ŷ
n

[
L

(
X |U x̂,Ŷ

n

)]
, (B.1)

where C is a constant that is independent from x̂ . The shape of the model
function is fully de�ned by the jump location T . Therefore, we replace the
expected value overU x̂,Ŷ

n by an expected value overT and keep in mind that
the distribution ofT depends on the value of Ŷ and on the model response
of the n function evaluations. The chain of operators becomes

EXVarŶET [L (X |T )] .

For now, we ignore the expected value operator with respect to X and as-
sume a �xed value X = x . Later, the resulting expression will be inserted
into the corresponding integral over the values ofX . The following expres-
sions are all functions of x . Next, we derive the distribution of Ŷ . Like in
Section 6.2.3, we de�ne the two nodes that are closest to the jump:

a = max {xi |u (xi ) = 0}
b = min {xi |u (xi ) = 1} ,

and de�ne the normalization function

hab (x ′) =


0 if x ′ < a
x ′−a
b−a if x ′ ∈ [a,b]
1 if x ′ > b .
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Appendix B. Refinement Criterion in the Jump-Detection Problem

Since the prior of T is U ([0, 1]) and the only constraints are given by a
and b, the conditional distribution of T after the �rst n model evaluations
isU ([a,b]) and it follows, that the cdf of T is hab . The random variable Ŷ
is 1 if T < x̂ , so the distribution of Ŷ follows from the cdf of T :

Ŷ =

{
1 with probability hab (x̂)
0 with probability 1 − hab (x̂) .

The random variable Ŷ can be seen as a Bernoulli trial with probability
p = hab (x̂). As the variable Ŷ does only take two possible values, also the
inner term ET [L (x |T )] can only take one of two values, which we call v0
(for Ŷ = 0) and v1 (for Ŷ = 1). Both v0 and v1 are still functions of x and x̂ .
With these two values, we can calculate the variance as VarŶET [L (x |T )] =
(v1 −v0)2 p (1 − p). This is the variance of a standard Bernoulli trial p(1−p)
[158] multiplied with the squared spread of the distribution (v1 −v0)2 to
account for scaling. In the following we derive the values of v0 and v1 as
functions of x and x̂ .
If the new node x̂ is not in the interval [a,b], then Ŷ is not random and the
variance term is zero anyways (because eitherp = 0 or 1−p = 0). Therefore,
the values of v0 and v1 are not relevant in this case. In the following, we
assume x̂ ∈ [a,b]. The distribution ofT conditional to the �rstn evaluations
and the value of Ŷ is the following:

• If Ŷ = 1, then T ∼ U ([a, x̂])
• If Ŷ = 0, then T ∼ U ([x̂ ,b])

The expected value with respect toT has to be calculated according to these
two cases. Similar to X we now assume a �xed value T = t and insert the
result into an integral over the values of T .
Finally we can have a look at the innermost term, the likelihood L (x |t). Its
value depends on x and t , as well as the measured valueZ (which is either 0
or 1). Recall, that we assume a measurement model without measurement
errors, so

L (x |t) =




1 if Z = 0 and x < t

0 if Z = 0 and x < t

0 if Z = 1 and x ≥ t

1 if Z = 1 and x ≥ t .

Now, turning back to the expected value over T , we �nd
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• If Z = 0, then v0 = hx̂b (x), v1 = hax̂ (x)
• If Z = 0, then v0 = 1 − hx̂b (x), v1 = 1 − hax̂ (x)

In both cases, we obtain (v1 −v0)2 = (hx̂b (x) − hax̂ (x))2, which means that
the resulting re�nement criterion is independent from the observation Z .
Inserting into the variance term (v1 −v0)2 p (1 − p) and integrating over x ,
we �nd

r̂n (x̂) = C − hab (x̂) [1 − hab (x̂)] ·
∫ 1

0
(hx̂b (x) − hax̂ (x))2 dx .

Even though the two functions hx̂b and hax̂ are dependent on x̂ , it turns
out that the integral is constant:

∫ 1

0
(hx̂b (x) − hax̂ (x))2 dx = 1

3 (b − a) ,

so we �nally obtain

r̂n (x̂) = C −
1
3 (b − a) · hab (x̂) [1 − hab (x̂)] .
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