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Zusammenfassung

Eine neuartige Materialklasse beschäftigt seit kurzem die Gemüter der Wissenschaft-

ler im Bereich der kondensierten Materie. Diese Materialklasse umfasst neben Gra-

phen auch topologische Isolatoren, d-Wellen Supraleiter, supraflüssiges 3He und erst

kürzlich entdeckte Familien dreidimensionaler Halbmetalle [1, 2]. Auf den ersten Blick

haben diese eben erwähnten Materialien wenig gemein. Sie teilen jedoch das funda-

mentale Merkmal, dass ihr niedrig energetisches fermionisches Quasiteilchenspek-

trum an bestimmten Punkten im reziproken Raum keine Energielücke besitzt und in

der Umgebung dieser Punkte mit dem Diracschen Hamilton-Operator beschrieben

werden kann, was sich markant von der sonst üblichen Schrödinger Beschreibung

von Fermionen in Festkörpern abhebt. Trotz all ihrer Unterschiede können diese

Materialien aufgrund der eben erwähnten Gemeinsamkeit unter dem Begriff ’Dirac

Materialien’ zusammengefasst werden.

Interessant aus fundamentaler Sicht, so wie auch im Hinblick auf mögliche Anwen-

dungen der Dirac Materialien, ist die topologisch nicht triviale elektronsiche Struktur,

die vielen dieser Materialien inhärent ist, was ebendiese a fortiori in den Vordergrund

der heutigen Festkörperforschung rückt [3, 4].

Für die vorliegende Arbeit sind insbesondere Materialien von Interesse, welche Be-

rührungspunkte von Valenz- und Leitungsband in ihrer Volumenbandstruktur (kon-

trär: Oberflächenbandstruktur) aufweisen. In der unmittelbaren Umgebung dieser

Berührungspunkte verlaufen die Bänder linear, weshalb die niederenergetischen An-

regungen als masselose, relativistische Quasiteilchen angesehen werden können. Es

gibt zwei Materialfamilien, die diese Voraussetzungen erfüllen. Zum einen, die Fami-

lie der Weyl Halbmetalle, welche sich durch die Existenz mindestens zweier Band-

berührungspunkte in der Brillouin Zone, welche als Weyl Punkte tituliert werden,

auszeichnet. Die elektronische Struktur in der Umgebung dieser Weyl Punkte wird

durch den 2 × 2 Weyl Hamilton-Operator beschrieben. Die Weyl Punkte selbst, so-

wie die linearen Bänder die von ihnen ausgehen, sind chiral, was hier bedeuted, dass

der (Pseudo-) Spin an die Richtung des Impulses gekoppelt ist. Diese Art der Weyl
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Bandkreuzungspunkte erfordern, dass entweder die Zeitumkehr- oder Punktspiegel-

symmetrie gebrochen sind.

In der zweiten Familie, den Dirac Halbmetallen, fallen zwei Weyl Punkte gegen-

sätzlicher Chiralität auf einen einzigen Punkt im reziproken Raum bei der selben

Energie. Damit sind die Bänder um diesen, als Dirac Punkt bezeichneten, Kreuzungs-

punkt entartet und werden nunmehr durch einen 4× 4 Dirac Hamilton-Operator be-

schrieben. Eine solche Situation bedarf einer erhaltenen Zeitumkehr und Punktspie-

gelsymmetrie, sowie einer zusätzlichen Symmetrie welche das öffnen einer Bandlücke

am Dirac Punkt verhindert.

Zur Untersuchung von Dirac und Weyl Halbmetallen werden weitläufig Techniken

wie winkelaufgelöste Photoelektronenspektroskopie oder Quantenoszillationen ange-

wandt, da sie Einblick in die Bandstruktur gewähren. Die winkelaufgelöste Photo-

elektronenspektroskopie ist jedoch
”
blind“ bei Energien oberhalb der Fermienergie

und erlaubt nur eine grobe Auflösung. Quantenoszillationen hingegen, erlauben le-

diglich einen Einblick bei Energien an der Fermikante.

Um ein vollständigeres Bild über Dirac und Weyl Halbmetalle zu erlangen, wird

deshalb in dieser Arbeit Infrarotspektroskopie, eine zu den letzteren beiden komple-

mentäre Technik, eingesetzt. Diese Technik ermöglicht einen Einblick in die elektro-

nische Struktur auch oberhalb der Fermienergie und ist ein mächtiges Instrument,

welches, kombiniert mit theoretischen Modellen, erlaubt, die effektive Bandstruk-

tur in der Umgebung der Dirac oder Weyl Punkte zu ermitteln, wie in dieser Ar-

beit dargelegt wird. Mit der Installation eines neuartigen experimentellen Aufbaus

für optische Messungen in hohen Magnetfeldern und bei tiefen Temperaturen eb-

net diese Arbeit darüber hinaus den Weg zur Beobachtung von außergewöhnlichen

Quantenphänomenen, wie der chiralen Anomalie in Weyl Halbmetallen, oder anderen

ungewöhnlichen Magnetfeld induzierten Effekten auch abseits der Dirac Materialien.

Im Rahmen dieser Arbeit werden vier verschiedene Materialien untersucht, wovon

zwei der Familie der Weyl Halbmetalle angehören und die anderen beiden Diracsche

Bandkreuzungspunkte aufweisen.

Die erstern beiden, NbP und TaAs, gehören zu einer kürzlich entdeckten Familie

von Monopniktiden mit gebrochener Punktspiegelsymmetrie, welche die zur Zeit

einzige Realisierung von Weyl Fermionen beherbergt [5, 6]. Dies ist insbesonde-

re faszinierend, da Weyl Fermionen auch in der Hochenergiephysik bis heute noch

nicht als Teilchen entdeckt wurden. Mit der Realisierung als Quasiteilchen in der
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o.g. Materialfamilie bietet sich somit die einzigartige Möglichkeit die Eigenschaften

von Weyl Fermionen in vergleichsweise einfachen experimentellen Aufbauten zu un-

tersuchen.

TaAs und NbP besitzen die gleiche Kristallstruktur mit einer tetragonalen Einheits-

zelle und fehlendem Spiegelzentrum. Die Brillouin Zone beinhaltet zwei, im Hinblick

auf die Symmetrie ungleichwertige, Spezies von Weyl Punkten W1 und W2. Beide

Verbindungen werden in dieser Arbeit mit Hilfe von Transport, Optik, Magneto-

Optik und im Fall von NbP aud mit Magneto-Transport untersucht. Die Modellie-

rung der ohne Magnetfeld aufgenommenen optischen Spektren mit einem Vier-Band-

Modell erlaubt es, die effektive Bandstruktur um die Weyl Punkte zu extrahieren,

wie exemplarisch für NbP in Fig. 0.0.1 dargestellt. Die sorgfältige Analyse erlaubt

es die einzelnen Übergänge, welche in Fig. 0.0.1 mit ωi (i = 1 − 5) bezeichnet sind,

einzelnen Signaturen in den Spektren zuzuweisen.

Abbildung 0.0.1: Die effektive

Dis-persionsbeziehung ǫeff,W1 and

ǫeff,W2 um die W1 und W2 Weyl

Punkte in NbP. Die Übergänge

zwischen den Bändern, welche für

feine Details in den Spektren ver-

antwortlich sind, sind mit Pfeilen

markiert und mit ωi (i = 1 − 5)

bezeichnet.
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In den Spektren, aufgenommen in hohen Magnetfeldern, finden sich klare Anzeichen

von Landau Level Übergängen die sich mit
√
B entwickeln, was die Linearität der

Bänder in NbP und TaAs beweist. Die erreichte Übereinstimmung aller Werte für

die Fermigeschwindigkeit und das chemische Potential, welche aus Daten verschie-

dener experimenteller Techniken (Optik, Magneto-Optik und Magneto-Transport)

extrahiert wurden, ist bemerkenswert und belegt die exzellente Konsistenz der Aus-

wertung.

In TaAs wird ein ungewöhnliches vierfaches Aufspalten des niedrigsten Landau Le-

vel Übergangs bei sehr hohen Magnetfeldern oberhalb von 20 T beobachtet. Dieses

hochinteressante Verhalten ist äusserst ungewöhnlich, da in einem Weyl Halbmetal

die Spin-Entartung der Energienieveaus für einen gegeben k-Punkt bereits aufgeho-

ben ist und damit das Aufspalten der magnetischen Unterniveaus augenscheinlich
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nicht mit dem Zeeman Effekt erklärbar ist. Das dennoch beobachte Aufspalten der

Übergänge in TaAs deutet auf eine schwach definierte Chiralität hin. Weitere Un-

tersuchungen dieses Sachverhalts sind von Nöten, um dessen Ursprung im Detail zu

klären.

Das erste der beiden hier untersuchten Dirac Halbmetalle ist Cd3As2, ein Material,

das schon viele Jahrzehnte als Halbleiter mit kleiner Bandlücke gehandelt wurde. Erst

kürzlich erlangte Cd3As2 neue Aufmerksamkeit, da sich eine 3D Dirac Bandstruk-

tur, in dem die Bänder linear entlang aller drei Richtungen des reziproken Raums

verlaufen, in diesem Material erhärtete [7, 8].

Abbildung 0.0.2: Schematische

Bandstruktur der Dirac Bänder

in Cd3As2. Die Bänder verjüngen

sich zu den Dirac Punkten hin und

erfahren einen Knick im Bereich

der Lifshitz Energie EL. Die Dirac

Interbandüberänge sind mit einem

pinken Pfeil markiert, wohingegen

die Übergänge zwischen den Lifs-

hitzpunkten mit einem lila Pfeil

gekennzeichnet sind.

Die Untersuchung dieses Materials in dieser Arbeit deckt neue Details der Bandstruk-

tur auf. Die zentrale Erkenntnis ist, dass die Bänder nicht linear, sondern tatsächlich

sub-linear verlaufen, d.h. ǫ(k) = k0.6, wie schematisch in Fig. 0.0.2 dargestellt. Die

Übergänge zwischen den zwei Lifshitz Punkten, in bisherigen Experimenten unent-

deckt, hinterlassen eine klare Signatur in den optischen Spektren.

Das zweite der Dirac Halbmetalle, FeSe, gehört zur Familie der eisenbasierten Su-

praleiter. Erst kürzlich wurden in diesem Material Dirac ähnliche Bänder bei tie-

fen Temperaturen entdeckt [9, 10]. FeSe erfährt einen strukturellen Übergang beim

Abkühlen unter Ts = 86 K, welcher die Symmetrie von tetragonal zu orthorhombisch

reduziert und mit einer deutlichen Änderung der Bandstruktur einhergeht, was sich

in den optischen Spektren niederschlägt. Die Dirac Physik in diesem Material stell-

te sich a posteriori als zwei dimensional, ähnlich wie in Graphen oder Graphit [11,

viii



12], heraus. Der deutlichste Hinweis, dass 2D Dirac Bänder vorliegen, findet sich in

der Schichtleitfähigkeit, welche über einen ausgedehnten Frequenzbereich konstant

ist und im Rahmen des Genauigkeit der Quantenleitfähigkeit G0 = e2

4~
entspricht,

wie in Fig. 0.0.3 dargestellt. Die Existenz der Dirac Bänder, welche kleine Ladungs-

trägertaschen bilden, wird durch Hinweise für die Formierung einer hoch mobilen

Ladungsträgerspezies in den Spektren unterhalb von Ts gestützt. Sowohl das che-

mische Potential, als auch die Fermigeschwindigkeit der Dirac Bänder kann aus den

Daten extrahiert werden.

Abbildung 0.0.3: Die Schicht-

leitfähigkeit von FeSe ist quasi

konstant über einen ausge-

dehnten Frequenzbereich und

entspricht im Rahmen des Feh-

lers der Quantenleitfähigkeit

G0 = e2

4~ = 6.08× 10−5Ω−1.

Dies entspricht der Erwartung

für die Schichtleitfähigkeit durch

Interbandübergänge zwischen

zweidimensionalen Dirac Bändern.

Der Fehlerbalken steht für den

absoluten systematischen Fehler

in den durchgeführten optischen

Experimenten.
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Die supraleitenden Eigenschaften von FeSe werden mit Hilfe eines Modells analy-

siert, das im Bereich der eisenbasierten Supraleiter häufig zum Einsatz kommt und

von zwei Energielücken ausgeht. Die Verhältnisse der extrahierten supraleitenden

Energielücken zur Energieskala, die der Sprungtemperatur entspricht, deuten dar-

auf hin, dass eine Energielücke in FeSe anisotrop ist, während die andere keinerlei

Anzeichen dafür zeigt.
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Abstract

Recently a novel class of materials is getting vivid attention of the condensed matter

community. This class of materials is comprising, next to graphene, also topological

insulators, d-wave superconductors, superfluid 3He and two very recently discovered

families of three dimensional semimetals [1, 2]. At first sight the commonalities of

the aforementioned materials are minor. However, they share the essential similar-

ity, that their low energy fermionic quasiparticle spectrum is gapless and can be

described by the Dirac Hamiltonian, instead of behaving like Schrödinger fermionic

spectrum. Even though all materials are vastly different, by this commonality this

collection of matter is dubbed ‘Dirac materials’.

Many of the Dirac materials host a topological non-trivial electronic structure, which

is interesting from a fundamental point of view and promising for applications, push-

ing them even more to the fore of condensed matter research [3, 4].

Of particular interest in this work are materials, that posses touching points of va-

lence and conduction bands in their bulk band structure. In the vicinity of these

touching points the bands disperse linear, and hence, the low energy excitations can

be viewed as relativistic, massless quasiparticles. There are two families that fulfill

this prerequisite. The family of Weyl semimetals is characterized by the existence

of at least two band touching points, dubbed Weyl nodes (or points), in the Bril-

louin zone. The electronic structure around these Weyl points is described by the

2 × 2 Weyl Hamiltonian. The Weyl nodes and the bands dispersing linearly from

this node are chiral, where chirality refers to the locking of the (pseudo) spin to the

momentum. The Weyl type band crossings require either time reversal or inversion

symmetry to be broken.

In the second family of Dirac semimetals two Weyl points happen to merge at a

single point in reciprocal space and at the same energy. Then the bands around the

crossing points, dubbed Dirac nodes, are degenerate and described by the 4×4 Dirac

Hamiltonian. This situation requires preserved time reversal and inversion symme-

try, as well as an additional symmetry that prevents a gapping of the Dirac point.
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In the field of Dirac and Weyl semimetals, techniques that are sensitive to the band-

structure, like angle resolved photoemission spectroscopy or quantum oscillations are

widely applied, to learn about their electronic structure. Angle resolved photoemis-

sion spectroscopy is, however, “blind” above the Fermi energy and only provides a

poor resolution. Quantum oscillations only allow to obtain information at the Fermi

energy. Experimental results of these two techniques are frequently reported and

plenty of information is available.

To get a more complete picture and add valuable information to the full picture of

Weyl and Dirac semimetals, in this work, infrared spectroscopy, a complementary

technique to the latter two, is applied. This technique allows to probe the electronic

structure also across the Fermi energy and, combined with theorethical models, it

is extremely powerful in determining effective band structures around the Dirac or

Weyl nodes, as will be demonstrated in this thesis. With the implementation of a

novel installation in the lab for optical measurements at low temperatures and high

magnetic fields, this work paves the way towards the observation of anomalous quan-

tum phenomena, as the chiral anomaly in Weyl semimetals, and further magnetic

field induced peculiarities, not only in the area of Dirac materials.

Four different materials are investigated in the framework of this thesis, two out of

the family of Weyl semimetals, and two where the band structure exhibits Dirac type

crossings.

The former two, NbP and TaAs belong to a recently discovered family of non-

centrosymmetric mono pnictides, which host the only confirmed realizations of a

Weyl fermions, yet [5, 6]. This is in particular fascinating, considering, that Weyl

fermions are lacking any realization as a particle in high energy physics to date.

Hence, the realization as quasiparticle in this material class offers the opportunity

to investigate Weyl fermions in comparably simple table top experiments.

NbP and TaAs share the same crystallographic structure with a tetragonal unit cell

which lacks an inversion center. The Brillouin zone hosts two symmetry inequivalent

species of Weyl nodes W1 and W2. Both compounds are investigated by the means

of transport, optics and magneto-optics, while NbP is also probed with magneto-

transport techniques. The modeling of the zero field optical spectra with a four-band

model yields the quantitative effective bandstructure around the Weyl nodes, exem-

plary depicted in Fig. 0.0.4 for NbP. The careful analysis allows the assignment of

the transitions labeled ωi (i = 1 − 5) to features in the optical spectra.

The observation of inter Landau level transitions depending on
√
B in the magneto
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Figure 0.0.4: The effective disper-

sions ǫeff,W1 and ǫeff,W2 around

the W1 and W2 Weyl nodes in

NbP. The transitions between the

bands responsible for subtle details

in the spectra are marked with ar-

rows and labeled ωi (i = 1− 5).
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optical experiments prove the linear dispersion in TaAs and NbP. The agreement of

all values for the Fermi velocities, as well as for the chemical potentials, deduced

from various techniques (optics, magneto-optics, magneto-transport) is remarkable

and demonstrates excellent self-consistency.

In TaAs an anomalous fourfold splitting of the lowest Landau level transition is ob-

served in very high magnetic fields above 20 T. The spin degeneracy of the energy

levels at a given k-point in a Weyl semimetal is already lifted. Therefore a Zeeman

term can not generate an additional gap at a given k-point. Therefore, the ob-

served behavior in TaAs is possibly arising due to a poorly defined chirality. Further

investigations are required to elucidate this issue.

Figure 0.0.5: Schematic bandstruc-

ture of the Dirac bands in Cd3As2.

The bands narrow towards the Dirac

nodes and exhibit a kink at an en-

ergy around EL. The onset of

the Dirac interband transitions is

marked with a pink arrow, while the

transitions at the Lifshitz transition

points are depicted in purple.

The first of the Dirac semimetals under investigation is Cd3As2 which is known for

decades as a narrow gap semiconductor, and was recently confirmed to be a 3D Dirac
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semimetal, with bands dispersing linearly along all three directions in reciprocal space

[7, 8]. The investigation of this material in this work unearths novel details on the

bandstructure. The key finding is, that the bands disperse sub-linear, i.e. ǫ(k) = k0.6,

schematically depicted in Fig. 0.0.5. The transitions between the two Lifshitz points,

undiscovered in previous experiments, are detected with the optical methods applied

in this work.

The second of the Dirac semimetals, FeSe, belongs to the family of iron based su-

perconductors, and was only recently found to host Dirac like bands at low temper-

atures [9, 10]. FeSe exhibits a structural transition from tetragonal to orthorhombic

at Ts = 86 K, accompanied by considerable bandstructure reconstruction, which is

directly reflected in the spectra. The Dirac physics in this material below Ts is found

a posteriori to be rather two dimensional, similar to the well known graphene or

graphite [11, 12]. The most striking evidence for the 2D Dirac bands is found in

form of a quasi constant sheet conductance of the order of the conductance quantum

G0 = e2

4~
in FeSe over a wide frequency range, as depicted in Fig. 0.0.6. The formation

of Dirac bands, forming small pockets below Ts is further supported by the emer-

gence of a high mobility carrier species found in the analysis of the low temperature

spectra. The chemical potential, as well as the Fermi velocity of the Dirac bands is

extracted from the data.

Figure 0.0.6: The sheet conduc-

tance of FeSe is quasi constant

over an extended frequency range

and of the order of G0 = e2

4~ =

6.08× 10−5Ω−1. This arises from

the Dirac interband transitions

and proves the two dimensional na-

ture of the Dirac bands in FeSe.

The errorbar indicates the system-

atic absolute error in the optical

experiments.
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The superconducting properties of FeSe are also analyzed in the framework of a two

gap model, which is widely applied to the iron based superconductors. The BCS gap

ratios indicate, that on gap is anisotropic and the other is not.
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1. Introduction

This chapter provides an introduction to the basic electronic structure of Dirac mate-

rials. Specifically a look is taken on three dimensional systems with a gapless energy

spectrum, and the classification of these systems into Dirac and Weyl semimetals

will be examined.

1.1 Dirac Materials

Analogies between high-energy particle physics and low-energy condensed matter

physics are generally very fruitful for both fields [13]. With the discovery of mass-

less fermions in graphene [11], that can be described by the Dirac equation, a new

chapter in modern physics was opened where exactly such close resemblance led to

fast breakthroughs towards a deep understanding [14].

This equation was published in 1928 by Paul Dirac on his search why there is the

necessity to artificially introduce a ‘spin’ to the quantum mechanical description of

the electron in order to explain experimental observations [15]. Ingeniously he in-

troduced Einstein’s theory of relativity to the quantum mechanics, which not only

yielded the spin but also led to the prediction of antimatter.

The discovery of graphene was only the starting point towards a whole new family

of materials, classified by the fermionic low-energy excitations that behave like Dirac

particles. This fastly growing family of so-called Dirac materials comprises next to

the archetypical graphene also topological insulators, d-wave superconductors, su-

perfluid phases of 3He and the only recently discovered three dimensional Dirac and

Weyl semimetals [1, 2].

In condensed matter systems, as for instance simple metals (such as Cu) and doped

semiconductors, usually the concept of nearly free quasiparticles that obey the Schrö-

dinger equation holds. The Schrödinger Hamiltonian HS = p2/2m∗, with the mo-

mentum operator p and the effective quasiparticle mass m∗, leads to an energy

spectrum that depends on the square of the momentum p2 = (~k)2 (see Fig. 1.1.1).
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Each band is described by a different Schrödinger Hamiltonian.

Figure 1.1.1: Schematic

representation of

Schrödinger type parabolic

bands. Each band

(conduction, blue; va-

lence=red) is described by

a Schrödinger Hamiltonian

with a different effective

mass parameter m∗.

k

E

E
F

In contrast to that, for the quasiparticles of Dirac materials the energy and mo-

mentum are directly proportional. This situation can be realized in a solid where

a conduction band crosses a valence band, and hence in the vicinity of the crossing

point the dispersion relation can be viewed as linear (see Fig. 1.2.1). Band cross-

ings have been viewed to be very unusual to occur, even though the possibility was

pointed out as early as 1937 [16], but are ubiquitously reported in materials of cur-

rent interest.

Many of the Dirac materials host a nontrivial topological electronic structure [17,

18], and are discussed to open new perspectives for applications as, for instance,

spintronics and quantum computing (see Refs. [1–4, 19, 20] for reviews).

1.2 3D Dirac and Weyl semimetals

For graphene, or similar two dimensional Dirac materials, the low energy effective

(Dirac) Hamiltonian has the form (following Ref. [1])

HD = ~vFσ · k +m∗v2Fσz, (1.2.1)

with the Pauli matrices σ = (σx, σy), σz and the Fermi velocity vF (which replaces

the speed of light). The bands touch at a single point when the mass vanishes, since a

gap ∆ in the spectrum and the effective mass m∗ of the quasiparticles are equivalent,

i.e. ∆ = 2mv2F. Hence, it is clear, that because of the second term in Eq. 1.2.1 the

2



1.2. 3D Dirac and Weyl semimetals

Dirac points1 are not robust and can be gapped.

In a three dimensional analogue of the above Hamiltonian (Eq. 1.2.1), the second

term is absent

HW = ~vFσ · k, (1.2.2)

because all three Pauli matrices are occupied in the first term [1, 21]. This Hamilto-

nian is the 2 × 2 Weyl Hamiltonian and has a gapless linear energy spectrum. The

massless quaiparticles described by the Hamiltonian in Eq. 1.2.2 are chiral, where the

chirality χ = ± is set by the sign of the velocity v = ±vFσ [1, 22].

k

E

E
F

Figure 1.2.1: Schematic

representation of a Dirac

or Weyl cone. Conduction

(blue) and valence (red)

bands are both described

by one Dirac Hamiltonian.

The bands touch at a single

Dirac or Weyl point.

The crossing points always appear in pairs of opposite chirality at two points k±,

and require either a broken time reversal or inversion symmetry to exist. Then, these

Weyl points are topologically protected and can not be gapped [1, 3]. The only way

for a Weyl point to disappear is, to annihilate with a Weyl point of opposite chirality,

which requires, that these two points are shifted to the same point in momentum

space [1, 18]. A material is a Weyl semimetal, when it hosts at least two band cross-

ing points in the vicinity of the Fermi energy, and when the low energy excitations

around these crossing points are described by the Weyl Hamiltonian (Eq. 1.2.2).

When an electron travels a closed loop in momentum space in a Weyl semimetal, its

wave function receives a geometrical (or Berry) phase, because the Weyl nodes are

sources or sinks of the Berry curvature and can be viewed as magnetic monopole-like

objects [3, 20, 23]. The edges of a Weyl semimetal in real space host exotic edge

1The crossing (or touching) points of the bands will be referred to as Dirac/Weyl points or

nodes. The linear dispersing bands, due to their conic shape, will be referred to as Dirac or Weyl

cones (just like in graphene).
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states, the Fermi arcs. They are open Fermi surface curves which connect the pro-

jections of the bulk Weyl points of opposite chirality to the surface Brillouin zone.

Another outstanding consequence of the 3D Weyl bandstructure is, that these mate-

rials exhibit the chiral anomaly in magnetic and electric fields applied to the material

parallel to each other [4, 24, 25]. Under these circumstances the charge of a given chi-

rality is not conserved, meaning the charges of a cone with one chirality are pumped

to the cone of opposite chirality. Experimentally this effect is resulting in a negative

longitudinal magneto resistance. The chiral anomaly is known in the high energy

physics context as the Adler-Bell-Jackiw anomaly.

The first theoretical suggestions for a Weyl semimetal state in a solid focused on the

time reversal symmetry broken case in systems with magnetic order, as pyrochlore

iridates [23], complicated stacks of magnetically doped topological insulators [26] or

ferromagnetic HgCr2Se4 [27]. However, all attempts for experimental confirmation of

a time reversal broken Weyl semimetal are yet inconclusive [20]. In contrast to that,

recently the realization of an inversion symmetry broken Weyl semimetal state was

theoretically predicted in the family of non-centrosymmetric mono pnictides around

TaAs [28, 29], which are also investigated in this work in form of TaAs and NbP.

The experimental confirmation followed soon, by the observation of Fermi arcs and

Weyl nodes in angle resolved photoemission experiments [5, 30], and a negative lon-

gitudinal magneto resistance, indicative for the chiral anomaly [6, 31]. Yet, there

is controversy in the community about the negative longitudinal magneto resistance

and its interpretation, since such behavior can be also induced by current jetting

effects [32].

As mentioned above, a Weyl semimetal requires the breaking of inversion or time

reversal symmetry. If both symmetries are preserved all bands are degenerate, and

the 4 × 4 Hamiltonian, describing this situation is of the form [1, 3]

HW =

(
~vFσ · k m

m −~vFσ · k

)
. (1.2.3)

This describes two Weyl points of opposite chirality at the same point in the Bril-

louin zone, and the mass entries m mix the two Weyl fermions and open a gap. The

case, when m = 0 is the situation that describes a 3D Dirac semimetal. At the Dirac

node, there is degeneracy of four bands, in contrast to the twofold degeneracy at a

Weyl node. The Dirac node is not protected by topology anymore, and to stabilize
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a 3D Dirac point with m = 0, an additional symmetry is needed.

To date there are only two 3D Dirac semimetals that are experimentally well con-

firmed by the means of ARPES [7, 8, 33, 34], and signatures of chiral quasiparticles

in magnetic fields [35, 36], namely Cd3As2, which is investigated in this work, and

Na3Bi. A gapped 3D Dirac state is discussed e.g. in ZrTe5 (see e.g. [37]).

In an increasing number of materials, though maybe known for quite some time,

Dirac and Weyl physics is discovered to be of relevance, for instance in iron based

superconductors in general [38, 39], and FeSe in particular [10, 40], which is investi-

gated in this work.

The latest suggestions for topologically interesting material classes in the field of

Dirac materials comprise type II Weyl semimetals, that break the Lorentz invariance,

and hence the Weyl cones are tilted [4, 41], and line node semimetals which host lines

of Dirac nodes [42].

1.3 Motivation and Outline

Despite their great potential for applications, there is a keen interest to investigate 3D

Dirac and Weyl semimetals from a fundamental point of view. There are three types

of fermionic particles in quantum field theory, Dirac, Weyl and Majorana fermions

(for a pedagogical review see Ref. [43]). Yet, Weyl and Majorana fermions are lacking

confirmation via the observation of the specific characteristics on a real particle in

high energy physics.

Now, at least Weyl fermions are realized in condensed matter systems as quasiparti-

cles, which enables investigations of their properties in table top experiments. The

existence of Weyl quasiparticles additionally paves the way towards a Majorana type

quasiparticle, which is predicted to exist in Weyl or topological insulator supercon-

ductors [44–46].

For experimental investigations on Dirac and Weyl semimetals a technique is desir-

able, which is sensitive to the bandstructure of the material. In this field widely

applied is the angle resolved photoemission spectroscopy (ARPES) (see e.g. Refs. [7,

30, 47]). Though, this technique is extremely powerful, it lacks any possibility to

apply magnetic fields, has only a rather poor energy resolution, and can not gather

any information of the bandstructure above the Fermi energy EF.
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Another technique, widely applied to probe the bandstructure, is the analysis of

quantum oscillations in high magnetic fields (see e.g. [48–50]). This technique only

allows the determination of the Fermi surface at the Fermi energy.

To add beneficial details on the full picture of the bandstructure of Dirac and Weyl

semimetals, in this work optical spectroscopy at infrared frequencies with and with-

out magnetic fields is applied, as a complementary technique to the latter discussed.

In contrast to the aforementioned, infrared spectroscopy allows to achieve extremely

high resolutions, giving access to subtle details of the bandstructure, and permits

to probe above EF. Combined with theoretical models for the optical response of

Dirac and Weyl semimetals, quantitative effective bandstructures around the Dirac

and Weyl nodes can be deduced.

After introducing the basic theoretical concepts and details of the experimental tech-

nique, four materials are explored in the course of this thesis.

• The 3D Dirac semimetal Cd3As2.

• Two Weyl semimetals, of the family of non-centrosymmetric mono pnictides,

with different amounts of spin orbit coupling, NbP and TaAs.

• The iron based superconductor FeSe, where the Dirac-like bands a posteriori

are found to be rather of two dimensional nature.

In the final chapter a summary of the key findings, and a future perspective for

further investigations will be given.
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2. Theoretical background:

Basic models for optical response

functions

Infrared optical experiments are a powerful tool in condensed matter physics to gain

insight into, and obtain understanding of the specific electrodynamic properties of

a material. Optical transitions of diverse origin can directly be identified from such

experiments. Since optical spectroscopy in the linear regime is nothing more than

the excitation of states by photons, the electrodynamic behavior of the specimen

under investigation is determined by the bandstructure of the material. Therefore,

from the outset, one can differentiate between intraband transitions within one band,

that can be excited by arbitrary small amounts of energy, and interband transitions

between two separate bands, where a certain energy threshold has to be overcome. If

the material undergoes a phase transition (e.g. structural, magnetic, superconduct-

ing), the optical response can be altered drastically at the transition. From these

changes, valuable information on the nature of the phase transition can be gained.

Commonly, optical experiments are performed at different temperatures down to

liquid-helium temperatures. Applying additionally high magnetic fields leads to the

splitting of the bands into magnetic sub-levels, namely the Landau levels. In some

cases the Landau levels are split further due to the Zeeman effect. For now the

Zeeman splitting will, however, be ignored.

The transitions between the Landau levels, seen in the optical spectra, can unveil

subtle details of the bands and their shape.

In real space, the conduction electrons experience restrictions of their motion under

the influence of a magnetic field by the Lorentz force. From the so called cyclotron

frequency of the circular movement, transport characteristics (e.g. the effective mass

of the carriers) can be deduced.
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Theoretical background:

Basic models for optical response functions

This chapter is dedicated to the basic theoretical concepts that describe the electro-

dynamics of the electronic sub-system in a solid with and without applied magnetic

fields. Focus will lie on models for the optical properties. In Secs. 2.1 and 2.2 the com-

plex response functions of solids to varying electromagnetic fields, and the relations

between the real and imaginary parts of these response functions are introduced. In

Secs. 2.3, 2.4 and 2.5 general models describing the optical properties arising from free

carriers, oscillatory phenomena, and the impact of the bandstructure on the optical

absorption process are introduced. In Sec. 2.6 theoretical models specifically for the

electrodynamic response of Weyl and Dirac semimetals are presented. Sec. 2.7 sums

up the magneto-optical effects, that are relevant for this work, and finally, Sec. 2.8

deals with the optical properties of a superconductor.

2.1 Light matter interaction

In this section the basic concepts of the interaction between light and matter shall

be briefly recapitulated. Secs. 2.1, 2.2, 2.3 and 2.4 are following Refs. [51] and [52].

The starting point are the Maxwell equations in presence of a medium. These read

as1:

∇× E +
1

c

δB

δt
= 0 (2.1.1a)

∇ ·B = 0 (2.1.1b)

∇×H +
1

c

δD

δt
=

4π

c
J (2.1.1c)

∇ ·D = 4πρ (2.1.1d)

Eqns. 2.1.1 connect the electrical current J and the charge density ρ with the mag-

netic and electric field strengths H and E, as well as to the material dependent

electric displacement field D and magnetic flux density B (c is the speed of light).

The electric displacement field D and the magnetic flux B are connected to the corre-

sponding electric and magnetic field strengths E and H via the material parameters

1The theoretical considerations will be done in Gaussian (cgs) units, as widely applied in optical

spectroscopy. In figures sometimes also mixtures between SI and cgs units will occur. At this point

the reader is referred to the useful conversion tables between units in Ref. [51].
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2.1. Light matter interaction

namely the dielectric constant ε1 and the magnetic permeability µ1.

D = ε1E = (1 + 4πχe)E = E + 4πP (2.1.2a)

B = µ1H = (1 + 4πχm)H = H + 4πM (2.1.2b)

The material equations 2.1.2 can be understood as follows: upon applying external

fields E and H, inside of the material, electrical and magnetic dipoles get oriented

leading to an electric polarization P and magnetization M. For small fields, in the

linear regime, constants of proportionality, namely the electric and magnetic suscep-

tibilities χe and χm can be utilized to characterize the response. These susceptibilities

directly relate to ε1 and µ1, respectively.

Note, that the magnetic susceptibility χm is orders of magnitude smaller than χe in

non-ferromagnetic materials, and therefore the magnetic response to electromagnetic

waves will henceforth be neglected in this work.

Assuming a harmonically oscillating displacement2 δD/δt = −iωD and assuming

Ohm’s law holds for the currents in the material (which states the proportional-

ity between electric field and current J = σ1E with the materials conductivity σ1),

Eq. 2.1.1c can be rewritten as:

c∇×H = −iωε1 + 4πσ1E (2.1.3)

Eq. 2.1.3 involves the complex dielectric function,

ε̂(ω) = ε1(ω) + i
4πσ1(ω)

ω
= ε1(ω) + iε2(ω) (2.1.4)

which accounts for the change of amplitude and phase shift between E and D. The

dielectric function can be related to the complex refractive index N̂(ω) = n(ω)+ik(ω)

with the real refractive index n(ω) and the extinction coefficient k(ω) as:

N̂(ω) =
√
ε̂(ω) (2.1.5)

For this thesis the quantities that are mainly discussed aside from the dielectric

function are the optical conductivity σ̂(ω) = σ1(ω) + iσ2(ω) which can be defined by

the complex dielectric function as

2This is reasonable since the electric field of the light E as obtained from the solution of the

Maxwell equations in vacuum is harmonic in time and space E(r, t) = E0e
i(qr−ωt).
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ε̂(ω) = 1 +
4πi

ω
σ̂(ω), (2.1.6)

and the reflection coefficient at the surface of a medium. Equal to the dielectric

function ε̂ (Eq. 2.1.4) the refractive index N̂ (Eq. 2.1.5) and the optical conductivity

σ̂, the reflection coefficient is also a complex quantity r̂ = r(ω)eiφr(ω). It consists

of an amplitude change r(ω) as well as a change in phase φr(ω) between incident

and reflected wave. The experimentally determined part of the complex reflection

coefficient r̂ is the square of the amplitude, from now on referred to as reflectivity3

R(ω) = r(ω)2. For the experimental approach employed in this thesis, the phase

φr(ω) is lost4.

In this work, the reflectivity at near normal incidence is measured. With this tech-

nique one can probe the bulk properties of a specimen due to the finite penetration

of the light.

For the reflection at a surface of a medium in vacuum the reflectivity R(ω) and phase

φr(ω) relate to the real and imaginary part of the complex refractive index N̂(ω),

namely n(ω) and k(ω), as:

R(ω) =
(1 − n(ω))2 + k(ω)2

(1 + n(ω))2 + k(ω)2
(2.1.7a)

φr(ω) = arctan

[ −2k(ω)

1 − n(ω)2 − k(ω)2

]
(2.1.7b)

It has to be noted, that in the most general case, the optical constants are tensors.

In this thesis, only a scalar response can be measured. However, all investigated

materials posses tetragonal symmetry5 and only the in-plane response is probed.

Hence, the observed response can basically be boiled down to the leading diagonal

element of the tensor.

3In the course of this thesis mainly the real parts of ε̂, σ̂ and the reflectivity are discussed.

These quantities will be simply referred to as dielectric function ε1(ω), optical conductivity σ1(ω)

and reflectivity R(ω), without emphasizing the fact, that these are the real parts of the complex

response functions.
4This is not true for all optical techniques. In ellipsometry, for instance, the real and imaginary

part of an optical response function can be measured.
5Except from FeSe, which is orthorhombic at low temperatures. However the orthorhombicity

is masked by the formation of twin domains.
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2.2. Kramers-Kronig relations

2.2 Kramers-Kronig relations

It is desired, to not only analyze the measured reflectivity R(ω). Especially the real

part of the optical conductivity σ1(ω) is of interest in this work. The Kramers-Kronig

transformation can be applied to calculate the imaginary part φr(ω) of the complex

reflection coefficient. Having both, real and imaginary part of any of the optical

constants, one can calculate all others.

For this thesis, the relation to obtain the optical constants from pure reflectivity

measurements connects the phase shift φr(ω) to the reflection amplitude r(ω) =√
R(ω) and reads as [51, 52]:

φr(ω) = −2ω

π
P
∫ ∞

0

ln r(ω′)

ω′2 − ω2
dω′ (2.2.1)

P denotes the Cauchy principal value.

The integration in Eq. 2.2.1 is performed from zero to infinity. For this reason it is

necessary to perform the measurements of R(ω) over a frequency range as wide as

possible. Nevertheless it is indispensable to extrapolate the data to high and low

frequencies. The extrapolation towards zero frequency is described in Sec. 2.3. To-

wards high frequencies an extrapolation method suggested by D. Tanner is applied

[53]. This method treats a solid as a linear combination of atoms, and computes a

reflectivity for frequencies from 10 eV ≈ 80 000 cm−1 up to 34 keV ≈ 2.7 × 108 cm−1

from the x-ray atomic scattering functions [54]. The only things needed to compute

this extrapolation are the chemical formula of the material and it’s density.

2.2.1 Sum rules

From the Kramers-Kronig relations together with physical arguments some powerful

sum rules for the optical constants can be deduced. Of particular importance is

the so called f-sum rule, which relates the area below the real part of the complex

conductivity to the number of carriers involved in any kind of transition contributing

to the optical response. This means the total area below σ1(ω) can be related to the

total carrier density N in the material by:

∫ ∞

0

σ1(ω)dω =
ω2
p

8
=
πNe2

2m
(2.2.2)

Here m denotes the carrier mass. Note, that Eq. 2.2.2 is valid independent of the
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model or whether bound or free carriers are involved in the absorption process. Often

it is however used, to determine information on the plasma frequency ωp of the free

carrier response described in Sec. 2.3, by only integrating up to a cutoff frequency ωc

that is assumed to be sufficiently high to capture all carriers contributing to intra-

band absorptions.

2.3 Drude model

For a meaningful analysis of the data obtained in optical experiments, some models

are needed that give insight into the behavior of the optical constants in various

circumstances. The optical response of free carriers can be well described by the

phenomenological Drude model. The carriers of a metal are treated as a classical

gas of electrons. This means that each electron travels freely, until it experiences a

scattering event. This motion is characterized by the mean time between scattering

events, the scattering time τ , or its inverse, the scattering rate Γ = 1
τ
. If light hits

this free electron gas, the electrons are excited by the electric field E(t) = E0e
iωt,

with the amplitude E0, and the equation of motion becomes:

m
d2r

dt2
+
m

τ

dr

dt
= −eE(t) (2.3.1)

Note, that the italic e denotes the electron charge while e represents the Euler number

in the course of this thesis. The solution of Eq. 2.3.1 yields the frequency dependent

conductivity of the Drude model:

σ̂(ω) = σ1(ω) + iσ2(ω) =
Ne2τ

m

1

1 − iωτ
(2.3.2)

with the carrier density N . The real and imaginary parts can be represented as:

σ1(ω) =
ω2
pτ

4π

1

1 + ω2τ 2
(2.3.3a)

σ2(ω) =
ω2
pτ

4π

ωτ

1 + ω2τ 2
(2.3.3b)

In the zero frequency limit the real part of the optical conductivity corresponds to

the DC conductivity σDC, which relates to the plasma frequency ωp as:
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σ1(ω = 0) = σDC =
Ne2τ

m
=

1

4π
ω2
pτ (2.3.4)

To account for the fermionic nature of electrons and to get a more realistic treat-

ment of the interactions among them, the Sommerfeld extension of the Drude model

includes the concept of a Fermi surface. The mean free path l of an electron depends

under this conditions on the Fermi velocity vF, instead of the thermal velocity, and

can be expressed as l = vFτ . The interactions lead to a renormalization of the elec-

tron mass, hence an effective mass m∗ has to replace the mass m in Eqns. 2.3.1 to

2.3.4.

Fig. 2.3.1 (a) depicts the typical Drude reflectivity of a metal. Over a wide frequency

range, the reflectivity remains constant and close to unity. At the plasma frequency

νp = ωp

2πc
a sharp edge occurs, where the reflectivity rapidly drops to zero. At low

frequencies, ω ≪ γ = 1
2πcτ

, the electrodynamic response is dominated by the DC

conductivity σDC and the reflectivity can be approximated by the Hagen-Rubens

relation (Eq. 2.3.5) as displayed in the insert of Fig. 2.3.1 (a):

R(ω) = 1 −
√

2ω

πσDC

(2.3.5)

The Hagen-Rubens relation is utilized for the low frequency extrapolations in the

course of this thesis, if not stated else.

Panel (b) of Fig. 2.3.1 displays the real part of the optical conductivity σ1(ω). The

low-frequency response is nearly constant and adapts the value of σDC, until σ1(ω)

rolls off at higher frequencies, where the inflection point marks the scattering rate

γ. In panel (c) of Fig. 2.3.1, ε1(ω) is displayed, which exhibits large negative values

at low frequencies. The plasma frequency νp can be identified as the zero crossing

ε1(ω) = 0, as visualized in the insert of panel (c).

2.4 Lorentz model

The classical Lorentz oscillator model and its quantum-mechanical analogue can

be used to describe the optical properties of oscillating phenomena in solids. It

is often applied to model the optical response of lattice vibrations (phonons), as

well as electronic transitions, where the initial and final states lie in different bands

(interband transitions). In the classical Lorentz model, the starting point is the

equation of motion of electrons that are bound to ions by a restoring force, acting
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Figure 2.3.1: Optical properties of the Drude model in bulk reflectivity R(ω) (a), real part

of the optical conductivity σ1(ω) (b) and real part of the dielectric function ε1(ω) (c). The

plasma frequency νp can be identified in panel (a) as the sharp edge, where R(ω) drops to

zero, as well as in the inset of panel (c) as the zero crossing of ε1(ω). Scattering rate γ and

DC-conductivity σDC are revealed in panel (b) as the inflection point of σ1(ω) and the zero

frequency limit σ1(ω → 0), respectively. The inset of panel (a) enlarges the low frequency

reflectivity region, where R(ω) can be approximated by the Hagen-Rubens relation (see

text).
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like a spring. In presence of an oscillating electric field as in Sec. 2.3 the motion is

described by,

m
d2r

dt2
+
m

τ

dr

dt
+mω2

0r = −eE(t) (2.4.1)

where the term with Γ = 1
τ

can be interpreted as damping or scattering and ω0 is

the center frequency (or resonance frequency) of the oscillator. The solution yields

a complex optical conductivity,

σ̂(ω) =
Ne2

m

ω

i(ω2
0 − ω2) + ω/τ

(2.4.2)

which can be split into the real and imaginary parts σ1 and σ2:

σ1(ω) =
ω2
p

4π

ω2/τ

(ω2
0 − ω2)2 + ω2/τ 2

(2.4.3a)

σ2(ω) = −
ω2
p

4π

ω(ω2
0 − ω2)

(ω2
0 − ω2)2 + ω2/τ 2

. (2.4.3b)

Fig. 2.4.1 (a-c) display the optical response of a Lorentz oscillator in terms of R(ω),

σ1(ω) and ε1(ω). The reflectivity R(ω) is flat at low frequencies and starts to rise

around ν0. After a flat region at elevated amounts of reflection, R(ω) drops sharply

at the plasma frequency νp similar to the Drude reflectivity, see Fig. 2.3.1 (a). The

absorptive part of the optical conductivity σ1(ω) exhibits a peak at ν0. The full width

at half maximum of this peak corresponds to the damping γ. The dielectric function

ε1(ω) is positive at low frequencies, in contrast to the Drude behavior revealed in

Fig. 2.3.1 (c). ε1(ω) remains positive up to frequencies around ν0. Two zero crossings

are apparent in 2.4.1 (c), one in the vicinity of ν0 and another one at νp.

2.5 The impact of the bandstructure

2.5.1 Martix elements

The interaction of the electrons with the periodic potential of the ion cores in a

crystalline solid leads to the formation of Bloch bands (see any textbook on solid

state physics). The Drude and Lorentz models described above, though extremely

useful for the analysis of optical spectra, do not take into account any bandstruc-

ture, which, particularly for semiconductors, can have considerable impact on the
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Figure 2.4.1: Optical properties of a Lorentz oscillator in the reflectivity R(ω) (a), the real

part of the optical conductivity σ1(ω) (b) and the real part of the dielectric function ε1(ω)

(c). The plasma frequency νp can be identified the same way as in the Drude model: in

panel (a) as the sharp edge, where R(ω) drops to zero, and in panel (c) as a zero crossing

from negative to positive values of ε1(ω). The damping of the Lorentz oscillator γ is the

full width at half maximum of the peak in the optical conductivity σ1(ω) in panel (b). The

center frequency ν0 = ω0
2πc can be identified in R(ω) at the inflection point of the rise, in

σ1(ω) as the maximum of the peak and it can also be found in close vicinity of the first

zero crossing of ε1(ω) (positive to negative change in ε1(ω)).
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optical response at infrared frequencies. The main effects will be introduced here in

a nutshell following Refs. [51, 55–57].

The absorption of a photon by a solid can be treated with the time-dependent per-

turbation theory. With Hem = H ′, the perturbation operator of the electromagnetic

field, the probability per time wfi for an electron to perform a transition from an

occupied initial (i) to an unoccupied final (f) state is given (with certain approxi-

mations) by Fermi’s golden rule

wfi(~ω) =
2π

~

∣∣H ′
fi

∣∣2 δ(Ef − Ei − ~ω). (2.5.1)

Here, ~ω is the energy of the photon, Ei is the energy of the initial state and Ef the

energy of the final state.

H ′
fi = 〈ψf |H′|ψi〉 (2.5.2)

is the matrix element with the wavefunctions of the unperturbed initial and final

states, 〈ψf | and |ψi〉 (in a solid the Bloch functions for conduction band 〈c| and

valence band |v〉). The Hamiltonian for an electron in the electromagnetic field

(neglecting quadratic terms) is given by

Hem =
e

mc
A · p, (2.5.3)

with the vector potential of the electromagnetic radiation A = A·ê (ê = unit vector ‖
A) and the momentum operator p for the electrons.

In the electric dipole approximation (for small wavevectors q of the electromagnetic

radiation), the matrix element is given by:

|〈c|Hem|v〉|2 =
e2|A|2
m2

|〈c|ê · p|v〉|2 =
e2|A|2
3m2

|pcv|2. (2.5.4)

Often pcv = 〈c |p| v〉 is used as a k-independent matrix element.

The electric field amplitude E is connected to the vector potential amplitude via

A = E
2ω

[
ei(qr−ωt) + e−i(qr−ωt)

]
. With this, the electric dipole transition probability ℜ

for the absorption of a photon is

ℜ(~ω) =
2π

~

( e

mω

)2 ∣∣∣∣
E(ω)

2

∣∣∣∣
2

|pcv|2
∫

k

δ(Ec(k) − Ev(k) − ~ω)dk. (2.5.5)

Via the power loss per unit volume which is simply ℜ~ω when the integral in Eq. 2.5.5

runs over all allowed k in the unit volume of the crystal the expression for the
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imaginary part of the dielectric function can be obtained (and the real part via

Kramers-Kronig). These read

ε1(ω) = 1 +
4πe2

m

∫

k

2|pcv|2
m~ωcv

1

1 − ω/ωcv

dk (2.5.6a)

ε2(ω) =

(
2πe2

mω

)2

|pcv|2
∫

k

δ(Ec(k) − Ev(k) − ~ω)dk, (2.5.6b)

with ~ωcv = Ec(k) − Ev(k).

2.5.2 Critical points

The dispersion relation E(k) identifies, how the energy of a (quasi-)particle depends

on the k-vector. The quantity how many states are available at a given energy is

called density of statesD(E). Relevant for the optical transitions between conduction

and valence band edges is the joint density of states Dj(E), which defines, how many

states are available for a given transition with energy ~ω. This joint density of states

corresponds to the integration over the delta function δ(Ec(k) − Ev(k) − ~ω) in

Eq. 2.5.6 and can be converted to an integration over energy as

Dj(~ω) =
2

(2π)3

∫
dSk

|∇k(Ecv)|
, (2.5.7)

where Ecv = Ec − Ev, and Sk is the constant energy surface where Ecv(k) = const.

The factor 2 arises from the spin degeneracy. The critical points where the disper-

sions of conduction and valence bands are parallel and ∇k(Ecv) = 0 are called van

Hove singularities.

Since ε2(ω) is directly proportional to the joint density of states, the van Hove sin-

gularities leave prominent signatures in the optical response.

There are four types of van Hove singularities in three dimensions usually dubbed

M0-M3, where M0 refers to a minimum in band separation, M1 and M2 are saddle

points and M3 is a maximum in band separation. Each of the van Hove singularities

leaves a distinct signature in the optical response.

The shapes of ε1(ω) and ε2(ω) around the band edge with a M0 van Hove singularity

is schematically depicted in Fig. 2.5.1 (for direct transitions). For the shape of the

dielectric function in the cases of M1-M3, the reader is referred to Refs. [55, 56].
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Figure 2.5.1: Illustration of a M0-

type van Hove singularity in the

bandstructure (a). Conduction and

valence band exhibit a minimum gap

Eg. The shape of ε1(ω) and ε2(ω)

are schematically depicted in panel

(b). The dashed line marks the fre-

quency ωg corresponding to the gap

energy Eg.

2.6 Models for the optical response of

3D Dirac and Weyl semimetals

2.6.1 Model for a single cone

The linear dispersing bands in three-dimensional Dirac and Weyl semimetals give rise

to peculiar hallmarks in the optical constants. Interpretation of these characteristics

enable a deep insight into the band dispersions, and the energy scales, relevant for

Dirac or Weyl physics.

Soon after the discovery of graphene [58], in addition to transport investigations,

optical experiments became important for understanding its electronic properties

[12, 59–61]. The finding was, that the interband optical absorbance is independent

of frequency, and only determined by the fine structure constant α = e2/~c. The

universality and flatness of this response was assigned to the linear momentum de-

pendence of the 2D Dirac quasiparticle energy.

For two band systems, with quasiparticles possessing a (pseudo) spin degree of free-

dom, whose direction is solely determined by the direction of the momentum, Bácsi

and Virosztek derived an expression for the optical conductivity [62]. With a pseudo

spin locked to the momentum, the system possesses some generalized chirality. As a

consequence, the band dispersion has to have a powerlaw dependence, i.e. ǫ(k) ∝ kz.

Furthermore, the conduction and valence bands need to cross at the Fermi level

and there is no energy gap. Under such circumstances, their model not only cap-
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tures graphene, but can also be applied to more general cases. Utilizing the Kubo

formula, they arrive at an expression for the real part of the optical conductivity,

σ1(ω) ∝ ω
d−2
z , (2.6.1)

with the dimensionality of the system d and the dispersion exponent z.
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Figure 2.6.1: The interband optical conductivity σ1,IB(ω) according to Eq. 2.6.1 [62]. Panel

(a) displays the constant interband conductivity of a system with linear dispersing bands

in two dimensions as it is found in graphene. Panel (b) exhibits the ω-linear σ1,IB(ω) of

a 3D Dirac cone, while panel (c) reveals the optical response of a hypothetical 3D system

with parabolic bands touching at EF. Sketches of the respective bands are displayed as

insets in each panel.

It is clear, that for the graphene case, where the dispersion is linear and the dimen-

sionality is 2, i.e. z = 1 and d = 2, the proportionality given in Eq. 2.6.1 yields a

frequency independent σ1(ω) as depicted in Fig. 2.6.1 (a)6. In this work, systems

with d = 3 were investigated. For this case, Eq. 2.6.1 provides an optical conduc-

tivity σ1(ω), linear in frequency and starting from the origin (Fig. 2.6.1 (b)). In a

similar manner, one can think about bands with other shapes, and therefore different

optical conductivities arising from this model. An exemplary σ1(ω) for a 3D system

with parabolic bands touching at EF is displayed in Fig. 2.6.1 (c).

A linear or quasilinear optical conductivity was indeed observed in various com-

pounds and ascribed to the linearly dispersing bands [63–69]. To date, various the-

oretical studies on the electrodynamics of Weyl and Dirac semimetals are available

[70–76], each of those treating different models with subtle variations of the band

shapes and varying amounts of disorder. At this point, first a simple phenomeno-

logical analytic expression for the interband optical conductivity σ1,IB(ω) for three

dimensional systems with linear bands shall be introduced. This expression provides

a first insight into the hallmarks in the spectra arising from transitions between Dirac

6Actually, if d = 2, the band exponent z does not matter, in any case σ1(ω) ∝ ω0 will hold.
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or Weyl bands.

The simplest case of a 3D Dirac cone where the node is at the Fermi energy, is

treated in Refs. [75, 77, 78] with the Kubo formula. It is found, that the interband

conductivity can be represented as,

σ1,IB(ω) =
e2NW

24~2vF
ω. (2.6.2)

This includes the known ω-linear increase of σ1 with a slope inversely proportional

to the Fermi velocity vF. NW denotes the number of non-degenerate cones. For the

more general case, when the chemical potential ∆E (=distance Dirac node-Fermi en-

ergy)7 is not necessarily at the Dirac or Weyl node the interband optical conductivity

σ1,IB(ω) reads as [75],

σ1,IB(ω) =
e2NW

24~2vF

(ω − 2∆g)
2

ω
Θ(ω − max[2∆E, 2∆g]). (2.6.3)

In Eq. 2.6.3 a massless gap ∆g can be included. Generally, the possibility of having

a massless gap is questionable. It can probably be caused by self energy effects that

push the upper and lower cone apart [75], or by electron-electron interactions [79].

A frequency independent scattering γ can be included in Eq. 2.6.3 by replacing the

Θ-function, for instance with 1
2

+ 1
π
arctanω−2max[∆E,∆g]

γ
[68, 75].

Fig. 2.6.2 illustrates the interband optical conductivity σ1,IB(ω) for various circum-

stances according to Eq. 2.6.3. Sketches of the bandstructures are displayed in each

panel. When the chemical potential ∆E is zero, i.e. the nodes are at the Fermi energy

EF, and no gap ∆g is included (panel (a) of Fig. 2.6.2), Eq. 2.6.3 reduces to Eq. 2.6.2

and the conductivity is linear and starts from the origin, as it was already discussed

in regard of Eq. 2.6.1. It is obvious from the sketch in panel (b), that for finite chem-

ical potential, the interband transitions start at ω = 2 |∆E|, while the linear σ1,IB(ω)

still extrapolates to ω = 0. For increasing scattering γ, the sharp step gets smeared

out, indicated by the black arrows. For large scatterings (purple dash dotted line),

the deviations from the γ = 0 case (blue line) start to appreciably affect the linear

part.

In contrast, introducing a gap ∆g, as indicated in the left cone depicted in Fig. 2.6.2

(c), results in an intersection of σ1,IB(ω) at finite frequencies ω = |2∆g|, as long as

7Note, that traditionally the chemical potential is referred to as µ. However in this work the

notation ∆E will be used, to avoid confusion with the carrier mobility µ.
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Figure 2.6.2: The interband optical conductivity σ1,IB(ω) of Dirac (a-c) and Weyl (d)

semimetals according to Eq. 2.6.3 [75]. Panels (a) and (b) reveal the linear response in

case of zero and finite chemical potential, respectively. The finite chemical potential is

reflected in the step at ω = 2 |∆E|, which becomes smeared out by increased scattering

(dotted curves in panel(b)). Including a massless gap ∆g (i.e. a gap which preserves the

bands to deviate from linearity) leads to a finite intersection of the ω-linear conductivity

at ω = 2 |∆g| as long as |∆E| < |∆g|, otherwise a step appears in the spectrum (c). The

interband absorption of a Weyl semimetal depends on the kind of symmetry breaking

applied to the Dirac Hamiltonian in the simple model utilized in Ref. [75]. The broken

time reversal (TR) symmetry leads to the same response as for the Dirac cone, in case

of broken inversion (IV) symmetry, however, two steps are supposed to occur in σ1,IB(ω)

at 2 |∆E ± δ|, where 2δ denotes is the energy distance between the two nodes (d). The

respective bandstructures are sketched in each panel.
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the Fermi energy remains in the gap. Such behavior was indeed observed in various

compounds with Dirac physics [63, 66, 69]. While the massless-gap scenario phe-

nomenologically captures the behavior, the real physical origin remains unresolved

to date. The right cone in Fig. 2.6.2 (c) represents the situation, when the chemical

potential exceeds the gap. In this case, a step occurs at ω = 2 |∆E|, but the linear

part still extrapolates to a finite intersection with the abscissa. Note, that for all

aforementioned considerations the number of cones was set to NW = 2 since a Dirac

cone is twofold spin degenerate.

Breaking time reversal (TR) or inversion (IV) symmetry in the simple model of a

Dirac cone in Ref. [75], leads to degeneracy lifting. The emerging state corresponds

to two Weyl cones of opposite chirality (see Sec. 1). In the case of a broken TR

symmetry, the two Weyl cones are separated in momentum, while for broken IV

symmetry they are shifted in energy, as sketched in Fig. 2.6.2 (d). Therefore, in the

case of a broken IV symmetry, two steps must appear at 2 |∆E ± δ|, if one defines

∆E as the distance of Fermi energy EF from the center between the nodes. In case

of a broken TR symmetry, only one step occurs8.

The real part of the dielectric function arising from the Dirac interband transitions

ε1,IB(ω), is found to be logarithmically dependent on a cutoff energy Λ, beyond

which the Dirac bands are assumed to be not linear anymore [70, 72, 80]. A simple

expression for a qualitative treatment is satisfactory for the spectral analysis in this

thesis and reads as [80]

ε1,IB(ω) ∝ log

(
Λ2 − ω2

(2∆E)2 − ω2

)
. (2.6.4)

In Fig. 2.6.3 the important aspect of ε1,IB(ω) of the Dirac interband transitions is

highlighted. The cutoff is beyond the displayed range, and not of relevance here.

The onset of the Dirac interband transitions in Fig. 2.6.3 is marked by a cusp in

ε1,IB(ω) at ω = 2 |∆E|, corresponding to the step in σ1,IB(ω) discussed above.

8Strictly speaking, the effect of time reversal symmetry breaking can also lead to a nodal line

in the bandstructure depending on the exact nature of the TR breaking perturbation [17]. The

scenario discussed here is just the simpest one.
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Figure 2.6.3: The cusp in the inter-

band dielectric function, ε1,IB(ω),

of the Dirac cone at ω = 2 |∆E|
marks the onset of the interband

transitions.

0

 

 

1,
IB

Frequency 

2| E|

2.6.2 Four-band model

A more realistic bandstructure and the arising optical interband conductivity σ1,IB(ω)

of a Weyl semimetal are treated in Ref. [74] (see Appendix A). Instead of a single

Dirac or Weyl cone four particle-hole symmetric conduction and valence bands are

utilized for the calculations. The energy dispersion can be represented as

ǫs,s′(k) = s

√
m2 + b2 + (vF~k)2 + 2bs′

√
(vF~kz)2 +m2. (2.6.5)

The parameters m and b thereby introduce a mass gap and control the spacing be-

tween the bands, respectively. s = ± accounts for conduction and valence bands

while s′ = ± yields the lower and higher branches of the conduction and valence

bands (see Fig 2.6.4). For b = m = 0 a single fourfold degenerate cone is obtained,

whereas for finite m a mass gap is created leading to twofold degenerate massive

Dirac particles. The interesting range of parameters for this work are however the

cases, where b > m which yields the Weyl-type bandstructures. Resulting bands

for various values of m and b are displayed in Fig. 2.6.4 (a) in arbitrary units along

kz. In case of m = 0 but finite b, Eq. 2.6.5 yields two identical cones separated in k

symmetrically around kz = 0. Increasing m leads to a gapping of the band crossings

at kz = 0 and finite E, while the crossings at E = 0 persist. Further increase of

m urges the crossings of the s′ = − bands to shift towards kz = 0 and for m = b

the bands only have a single touching point left, similar to the situation displayed in

Fig. 2.6.1 (c). Further increasing m leads to a fully gapped bandstructure.

To highlight the key features of the optical conductivity arising for a bandstructure

as described by Eq. 2.6.5 the interband optical conductivity σ1,IB(ω) is computed

according to Eqns. A.0.4 and A.0.5 presented in Appendix A of this work and in
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Figure 2.6.4: Frame (a) displays the bandstructure of a Weyl semimetal with four bands

according to Eq. 2.6.5 for various values of m and b. The interband optical conductivity

for the same m and b values and the Fermi energy at the nodes ∆E = 0 (b), and for two

values of finite chemical potential ∆E 6= 0 (c). Only the two inner bands that exhibit a

crossing (s′ = − in Eq. 2.6.5) are taken into account in frames (b) and (c). The interband

conductivity for the full model with all four bands and ∆E = 0 is depicted in panel (d).

The inserts display schematic bandstructures and transitions. The transitions at the van

Hove singularities are marked with violet arrows, the onset of the transitions between the

outer trivial bands with green arrows.

Ref. [74]. Note, that all pre-factors were set to 1, therefore the resulting spectra are

in arbitrary units. The temperature T was kept constant close to zero. Increasing T

simply leads to a smearing out of the features described in the following9.

First, the ‘outer bands’ s′ = + are omitted, and only the s′ = − bands are taken into

account, because those are the relevant bands exhibiting the Weyl nodes. Fig. 2.6.4

(b) displays the σ1,IB(ω) spectra for the same values of m/b as in panel (a) and the

chemical potential at the nodes (or ∆E = 0). For m < b, the spectra consist of two

9Only the qualitative discussion is of interest here. The modeling of spectra in the course of the

thesis will, however, be performed with the full quantitative expressions in proper units.
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quasi linear regions. The part at lower energies, starting at the origin, corresponds

to the transitions marked with blue solid arrows in the schematic bandstructure

depicted as insert in the same panel. The frequency ωvH, where the kink in the

spectra occurs, corresponds to the apex of the bands, marked by the violet arrow (in

all panels). Since the bands are flat at this point, a van Hove singularity arises in

the density of states. For frequencies larger than ωvH, the conductivity increases still

linearly, however, much slower with a slope reduced by a factor of roughly 3.5 [74],

and hence, does not extrapolate to zero. This frequency range corresponds to the

transitions marked with a dashed blue arrow in the inset of Fig. 2.6.4 (b). For b = m

at the phase border between Weyl semimetal and gapped semimetal, σ1,IB(ω) sets in

at ω = 0 proportional to
√
ω in agreement with Fig. 2.6.1 (c), turns then, however,

linear.

For finite chemical potential, the spectra exhibit a jump at 2∆E, in the same manner

as in the single Dirac cone model discussed above in Sec. 2.6.1, as depicted for two

values of ∆E in Fig. 2.6.4 (c). Dependent on the position of the chemical potential,

2∆E < ~ωvH or 2∆E > ~ωvH, the van Hove kink in the spectra is visible or not.

Correspondingly those two cases are depicted in brown and orange, respectively, in

panel (c).

Fig. 2.6.4 (d) eventually displays the interband optical conductivity σ1,IB(ω) for the

full model, with all four bands, 0 < m < b and ∆E = 0. In addition to the van Hove

peak at ωvH, an onset of the transitions between the two trivial outer bands occurs

at ωt, marked with a green arrow.

2.7 Influence of magnetic field

Applying magnetic fields to (nonmagnetic) metals or semiconductors is known to

lead to various effects that are reflected in the measurable physical quantities. The

bending of the electron trajectories by the Lorentz force FL = ev ×B can lead to a

considerable magneto-resistance in very pure samples [81]. The formation of Landau

levels leads to quantum-oscillation phenomena in physical quantities, as, for instance,

magnetization or resistivity, i. e. to the de Haas-van Alphen and Shubnikov-de Haas

effects, respectively [82].

The influence of the magnetic field on the electronic properties of a solid is also

reflected in the optical spectra, and can be split into two major effects that are

relevant in the course of this thesis (following the notation in Ref. [83]). Both are

attributed to the splitting of the bands into sub-bands due to Landau quantization.
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The inter Landau level transitions within the conduction band are responsible for

the magneto plasma effect, while the transitions between magnetic sublevels of two

different bands are referred to as interband effects in the following. Brief overviews

are given, how those effects contribute to the optical response of Weyl semimetals,

which were investigated with magneto-optical methods in this work.

2.7.1 Magneto plasma effects

In real materials possessing a free carrier density N , e.g. in doped semiconductors, in

metals or in semimetals, the zero crossing of ε1(ω) shown in Fig. 2.3.1 for the Drude

model, can not be straightforwardly identified with the Drude plasma frequency

ω2
p = 4πNe2/m∗, if interband transitions appear for frequencies below ωp (and they

definetly do). The zero crossing of ε1(ω) in such cases occurs at the screened plasma

frequency [51, 83]

ω2
p,scr =

4πNe2

m∗ε∞
, (2.7.1)

which is renormalized by the high-frequency dielectric contributions ε∞. For small

scattering rates γ ≪ ωp,scr, the reflectivity R(ω) is close to unity and exhibits the

plasma edge at ωp,scr, where it sharply drops. In the following the optical response

and its alteration by magnetic fields for frequencies at and below ωp,scr will be dis-

cussed. Since the magneto-optical investigations in this work were only performed in

Voigt geometry (~k⊥ ~H), only this case will be considered. Furthermore, we assume

µ = 1 as above, and therefore H = B .

In the absence of scattering (γ = 0), the free-carrier absorption in the Drude model

is zero at finite frequencies, and the dielectric constant is real. For simplicity only

this lossless case will be treated, which is valid for ω ≫ γ. In presence of a magnetic

field B in Voigt geometry, two cases have to be distinguished. In case of the electric

field of the light parallel to the external magnetic field E ‖ B0 the motion of the

electrons is unaltered. For E⊥B0, however electrons perform a circular motion in a

classical picture. The dielectric constant for those two cases read [84, 85],

ε1,‖(ω) = ε∞

(
1 −

ω2
p,scr

ω2

)
(E ‖ B0) (2.7.2a)

ε1,⊥(ω) = ε∞

(
1 −

ω2
p,scr(ω

2
p,scr − ω2)

ω2(ω2
p,scr − ω2 + ω2

c )

)
(E⊥B0) (2.7.2b)
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with the cyclotron frequency ωc = eB/m∗. The reflectivity R(ω), obtained from

Eqns. 2.7.2 with Eqns. 2.1.5 and 2.1.7 with k = 0 since there are no absorptions,

is displayed in Fig. 2.7.1 for ωc = 0.5ωp. The solid black E ‖ B curve equals the

case where B = 0 (see also Fig. 2.3.1 (c)). For E⊥B, a resonance appears at ω =√
ω2
p + ω2

c in Eq. 2.7.2b, manifested by the divergence of the dielectric function. In

the reflectivity, this leads to the sharp increase to unity R(ω) = 1 from lower to

higher frequencies in the dashed red curve in Fig. 2.7.1. In the blue dotted curve,

corresponding to an unpolarized measurement, all features are visible, however not

as pronounced as in the E⊥B case.

Figure 2.7.1: Splitting of the

screened plasma frequency ωp,scr in

presence of a magnetic field B ac-

cording to Eq. 2.7.2b (red dashed

line) into two branches seperated

by ωc. The case of B = 0 cor-

responds to the case when E ‖
B in Voigt geometry (black solid

line). All features are also visible

with unpolarized light (blue dotted

line).
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The important thing to note here are the two minima, marked by the black arrows in

Fig. 2.7.1. They are the hallmarks of a plasma frequency splitting, since both appear

at zero crossings of the ε1,⊥(ω) function. These minima give indirect access to the

effective mass of the carriers, since the splitting equals the cyclotron frequency ωc in

first order approximation [84, 85].

2.7.2 Interband effects

Now the alteration of the interband optical conductivity σ1,IB(ω) due to the formation

of Landau levels will be discussed. The transitions between these magnetic sub-levels

generally can be observed in the optical constants and give access to subtle details

of the bandstructure [83].

For parabolic bands in a magnetic field, the Landau levels are equally spaced in

energy. For massless particles, however, this is not the case. The energy eigenvalues

of the Weyl Hamiltonian in presence of a magnetic field B = Bẑ are found to be of
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the form [86–88]

±En = ±
√

2n

l2B
+ k2z (n ≥ 1) (2.7.3a)

E0 = −kz, (2.7.3b)

where l2B = c/eB is the magnetic length. Eqns. 2.7.3 describe the magnetic sublevel

structure of a single Weyl node, dispersing along kz. The n = 0 level is chiral and

independent of magnetic field B. For the Weyl cone of opposite chirality the sign

in Eq. 2.7.3b needs to be changed. In Fig. 2.7.2 (a) the Landau level structure is

depicted. It is clear, that the transitions between these levels will be reflected in

the optical response. To obtain an expression for the optical conductivity the Kubo

formula needs to be fed with the Landau level basis wave functions and energy levels.

This calculation is nicely performed in Ref. [86].

The real part of the interband optical conductivity σ1,IB(ω) in presence of a mag-

netic field is consequently computed utilizing the equation from Ref. [86], which is

recited in appendix B of this work. Fig. 2.7.2 (b) displays the result for various

positions of the chemical potential ∆E. For zero chemical potential ∆E, displayed

as black solid lines in panel (a) and (b), the interband optical conductivity hosts a

series of asymmetric peaks that ride on the linear background discussed in Sec. 2.6.

The first peak of the series arises from the transition of the chiral n = 0 Landau

level L0 to the n = 1 level L1 or L−1 to L0, respectively, as indicated in Fig. 2.7.2

(b). The second peak comes from the L−1 → L2 and L−2 → L1 transitions, and

so on. In contrast to conventional parabolic band semiconductors, where the selec-

tion rules differ for intraband and interband transitions, for massless quasiparticles

one single selection rule is sufficient and transitions are allowed for Landau levels

where ∆n = |n| − |n′| = ±1 is fulfilled [89, 90]. The peaks occur at the frequencies

ωlB =
√

2n+ 1 +
√

2n, and are therefore proportional to
√
B, with the definition

of lB above 10. This behavior is reminiscent of the predictions for graphene, where

the peaks appear on a constant interband conductivity background [89, 91]. The√
B-development of signatures in optical spectra that could be attributed to Landau

level transitions, as well as the aforementioned characteristic frequency dependence

on the Landau level index n were recently reported in various materials where mass-

less quasiparticles are expected (i.e. graphene, topological insulators, 3D Dirac or

10For real units, the conversion l−1
B = 36.3vF

√
B × 10−9 eV is given in Ref. [86].
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Figure 2.7.2: The Landau levels of a Weyl cone are depicted in panel (a). Horizontal lines

schematically indicate various choices of the chemical potential utilized for the computation

of σ1,IB(ω) depicted in panel (b) in the same color code. The red vertical arrows in panel

(a) emphasize the splitting of the L0 → L1 and L−1 → L0 transitions for finite chemical

potential ∆E in the quantum limit. The transitions where L0 is not involved always

appear at k = 0 indicated with the blue arrow. The Landau level transitions are allowed

for ∆n = ±1. The spectra in panel (b) are computed utilizing Eq.B.0.2.
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Kane systems) [69, 90, 92–96].

For finite values of the chemical potential, additional peaks appear in the interband

optical conductivity σ1,IB(ω). These additional peaks exist for all values of the chem-

ical potential and always involve the zeroth Landau level. For a chemical potential

∆E the additional shoulders appear at ωlB = ∆ElB +
√

(∆ElB)2 ± 2 [86]. Such

case is depicted with the red dashed line in Fig. 2.7.2 (a) and (b), where the lowest

Landau transition gets split into two. When the Fermi energy EF approaches the

n = 1 Landau level and starts to cut it, the lower energy Landau peaks start to

disappear, and the spectral weight is transferred to a peak at low frequencies, while

at higher frequencies the peak structure remains the same (green dotted and blue

dashed-dotted lines in Fig. 2.7.2). This low energy peak comes from the transition

between magnetic sub-levels within one band.

The chiral anomaly (or Adler-Bell-Jackiw anomaly), which was predicted and re-

ported in Weyl semimetals [6, 24, 31, 97], is also supposed to leave a distinctive

signature in the optical response with applied magnetic and electric fields parallel

to each other [78]. During this work various attempts were made to observe the

predicted hallmarks in the optical spectra of TaAs and NbP, which were, however,

to date not successful. Therefore further discussions of the chiral anomaly in optical

experiments will be omitted.

2.8 Optical models for superconductors

In FeSe, which is investigated in this work, a superconducting state is found at low

temperatures (see Chap. 7). Therefore, the superconducting state and its optical

properties shall be discussed in a nutshell in this section.

There are two characteristic phenomena that identify the superconducting state. The

first hallmark to mention certainly is the vanishing of the electrical resistance be-

low the critical temperature Tc, that was first observed in Hg by Heike Kamerleingh

Onnes in 1911 [98]. The second peculiarity is the complete expulsion of magnetic

fields and therefore the perfect diamagnetism of the superconducting state discovered

by, and subsequently named after Meissner and Ochsenfeld in 1933 [99].

The microscopic understanding of superconductivity was reached by the development

of the BCS theory in 1957 (after J. Bardeen, L.N. Cooper and J. R. Schrieffer) [100].

The key point of the BCS theory is the pairing between two electrons (fermions) to
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Cooper pairs (bosons), that in turn condense into one single quantum ground state

(Bose condensate). The pairing of the electrons is possible by an effective attrac-

tive interaction among them, mediated by phonons. Normally the pairing electrons

possess opposing spins and momenta, and their condensation in the coherent ground

state leads to the opening of a gap in the density of states (see Fig. 2.8.2).

The BCS theory is strikingly successful in predicting the behavior of a class of ma-

terials, namely the conventional superconductors. Many superconductors that are of

current interest, as the cuprates discovered by J. Berdnorz and K. A. Müller [101],

the superconducting heavy-fermion materials discovered by F. Steglich et al. [102],

or the iron-based superconductors recently discovered by Kamihara et al. [103], are

however out of the ordinary. They can be not accurately described by the BCS-

theory, and, hence, are referred to as unconventional superconductors. In these, the

pairing is likely not phonon mediated and the order parameter described below does

not have to be isotropic.

Even though the expressions derived from the BCS theory for the optical conductiv-

ity are likely not the right tool to treat the iron based superconductors exactly [104],

for this work they are sufficient to obtain the approximate energy scales [105].

In the BCS-theory the superconducting gap acts as a complex order parameter:

∆SCe
iφ, where ∆SC is the amplitude and φ is a phase. The magnitude of the super-

conducting gap ∆SC at T = 0 is of the order of kBTc, where kB is the Boltzmann

constant [106]:

2∆SC(T = 0) ≈ 3.53kBTc. (2.8.1)

For finite temperatures, the energy gap ∆SC(T ) closes monotonically. For T ≪ Tc the

changes of ∆SC(T ) are small, in the vicinity of the critical temperature Tc, however

the changes are rapid and the closing of the gap ∆SC can be approximated by the

expression [106]:

∆SC(T )

∆SC(0)
≈ 1.74

√
1 − T

Tc
, (2.8.2)

which is the common behavior of mean-field order parameters. Eqns. 2.8.1 and 2.8.2

can also be utilized to describe the mean-field behavior of order parameters of other

broken-symmetry ground states of metals [51].

A basic description of the electrodynamic properties can be derived from the ap-

proach of the brothers F. and H. London [107]. In this classical approximation of

the superconducting state, the Drude lifetime, appearing in Eqns. 2.3.3, diverges
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(τ → ∞), however, any energy gap and quantum mechanical considerations are

neglected and T = 0 is assumed. This yields:

σ1(ω) =
π

2

Nse
2

m
δ(ω = 0) =

c2

8λ2L
δ(ω = 0) (2.8.3a)

σ2(ω) =
Nse

2

mω
=

c2

4πλ2Lω
(2.8.3b)

Here, Ns now denotes the density of electrons in the superconducting Bose conden-

sate, and

λL =

√
mc2

4πNse2
=

c

ωp,s

(2.8.4)

is the London penetration depth, that can be related to the inverse of the ‘supercon-

ducting plasma frequency’ ωp,s and to the square of the superfluid density, ρs = ω2
p,s.

In this work, the quantity that is derived from optical experiments λ(ω) =
√

c2

4πσ2(ω)ω

will be called penetration depth and only the T = 0, ω = 0 value will be referred to

as London penetration depth.

Eqns. 2.8.3 already contain valuable information on the optical response of the con-

densate. While the real part σ1(ω) is zero at finite frequencies and infinite at ω = 0,

as a consequence of the vanishing DC resistivity, the 1/ω divergence of the imaginary

part σ2(ω) directly reflects the response of the superfluid [106].

For a more accurate treatment of the optical properties of a superconductor, the

Mattis-Bardeen formalism is necessary [51, 106, 108]. In their theory, Mattis and

Bardeen not only included the energy gap ∆SC, but also accounted for the coher-

ence effects in the transitions between different states. These effects arise, because

the transition probabilities in case of the superconducting ground state are modified

compared to the probabilities in metals or semiconductors, as the transition possi-

bilities for various combinations of electron pairs with opposing momenta and spins

interfere.

The bulky expressions of the Mattis-Bardeen formalism can be parametrized to a

relatively simple form [109], which also allows to take into account the scattering

rate γ. Fig. 2.8.1 displays the optical constants R(ω), σ1(ω) and ε1(ω) of a super-

conductor for various temperatures. The scattering rate is set to be γ = 8∆SC(0)

(dirty limit). For T = 0, the reflectivity in panel (a) of Fig. 2.8.1 exhibits a sharp

upturn and equals unity for frequencies ω ≤ ∆SC(0)/~. The absorption at T = 0
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Figure 2.8.1: The development of the optical properties of the superconducting state for

various temperatures between T = 0 and T = Tc in the reflectivity R(ω) (a), the real

part of the optical conductivity σ1(ω) (b), and the real dielectric function ε1(ω) (c). The

scattering rate is set to γ = 8∆/~ (T -independent). The gap ∆SC at T = 0 or finite

temperatures below Tc can be identified as the kink in the minimum of σ1(ω) or in the

reflectivity also as a kink subsequent to a steep increase towards unity as ω → 0. In ε1(ω)

the gap feature is weak, however, the −1/ω2 divergence enables access to the penetration

depth and superfluid density via Eqns. 2.1.6 and 2.8.3b.
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is zero until the photon energy exceeds ~ω ≥ 2∆SC(0) and Cooper pairs can be

broken, meaning σ1(ω) is zero and starts to rise at ω = ∆SC/~ as depicted in panel

(b). In a single particle picture, this can be illustrated as in the lowest panel in

Fig. 2.8.2, where the quasiparticles need to be excited across the full gap 2∆SC(0).

The desity of states (DOS) is peaked at the gap edges for temperatures T ≤ Tc in

this picture. Note, that he response of the Cooper pairs itself is a Dirac δ peak at

ω = 0 in σ1(ω) in panel (b) of Fig. 2.8.1 and the Cooper pairs can not be illustrated

in Fig. 2.8.2. The gap signature in ε1(ω) is only a shallow kink, whereas the −1/ω2

divergence, expected from Eq. 2.8.3b, dominates the entire ε1(ω) at these frequencies.

Figure 2.8.2: Schematic illustration

of the superconducting state in a sin-

gle particle picture. For T > Tc

the states are occupied up to the

Fermi energy EF and a few car-

riers are thermally excited accord-

ing to the Fermi-Dirac-distribution

function (upper panel). For finite

temperatures below Tc a gap devel-

ops around EF and the single par-

ticle density of states is peaked at

the gap edges. The possible tran-

sitions are either across the gap

2∆SC(T ) or within the upper and

lower branches of the single particle

DOS, where thermal activation of

the states makes optical transitions

with arbitrary small energies possi-

ble (middle panel). At T = 0 the

gap 2∆SC(0) is fully opened, the sin-

gle particle DOS diverges at the gap

edges, and the only remaining pos-

sible transitions are across the gap

(lower panel).

For finite temperatures 0 < T < Tc, also the states above the the gap ∆SC(T ) are

occupied by thermally activated quasiparticles, as illustrated in the middle panel of

Fig. 2.8.2. Furthermore, the gap closes monotonically towards Tc, as stated above.
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The response of the optical constants can be separated into three parts, that are best

described in the optical conductivity σ1(ω). The first contribution arises from the

Cooper pairs, that still give an infinite response at ω = 0. The second contribution

appears at very low frequencies and stems from the thermal quasiparticles that can

be excited by arbitrary small photon energies. This gives rise to the narrow peak

at low energies in σ1(ω). The third contribution are the transitions across the gap

∆SC(T ). The gap ∆SC(T ) can now be identified as the minimum in σ1(ω) spectra.

In R(ω), the finite temperatures smear out the sharp jump to unity, while in ε1(ω)

the −1/ω2 response gets shifted to lower frequencies in the same manner as 2∆SC(T )

is getting smaller.

For temperatures T > Tc, the response of a normal metal is restored in the optical

constants in Fig. 2.8.1, and any gap is vanished in Fig. 2.8.2.

Note, that in the clean limit when the scattering rate is smaller than the gap

γ ≪ 2∆SC, the hallmarks of any superconducting gap can often not be resolved

in the optical spectra [110–112].

In Fig. 2.8.1 (b) it appears, as if some spectral weight is lost in the superconducting

state as compared to the normal state, challenging the f-sum rule in Eq. 2.2.2. This

‘lost’ spectral weight corresponds to the carriers, that have condensed into the ground

state, and therefore do not contribute to the response at finite frequency anymore.

This means, the spectral weight is transferred to the Dirac δ peak at ω = 0 as

schematically illustrated in Fig. 2.8.3.

Figure 2.8.3: Schematic illustration of the

FGT sum rule, that relates the area A be-

tween the superconducting spectrum σs and

the normal conducting spectrum at Tc σn to

the superfluid density ρs, which is responsible

for the Dirac δ peak at ω = 0.

This fact is utilized in the so called Farrel-Glover-Tinkham (FGT) sum rule that

relates the area A between normal conducting spectrum σ1,n and the superconducting

spectrum σ1,s to the superfluid density ρs and therefore to the penetration depth,

since λ = c/
√
ρs [51, 106]. In this sense, the FGT sum rule equals the f sum rule
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for the particular case of a superconductor in the superconducting state, and can be

expressed as:

8A = 8

∫ ∞

0+

[σ1,n − σ1,s] dω = ρs (2.8.5)
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To obtain the frequency dependent optical response functions of solids, nowadays

one can pick from a large variety of experimental approaches [51, 57]. The choice of

the technique strongly depends on the energy scales where interesting effects are ex-

pected to be seen in the investigated material. In correlated electron materials, high

temperature superconductors, and also in narrow gap semiconductors or semimetals

the infrared frequency range (≈ 300 GHz−750 THz corresponding to photon energies

of approximately 1 meV − 2 eV) contains manifold information on lattice properties,

carrier dynamics and on the condensate in case of superconductors [113–115]. In this

range of photon energies there are three main types of spectrometers that are widely

applied: Fourier transform spectrometers, grating spectrometers and ellipsometers.

The latter two spectrometer types are in particular very powerful at higher infrared

frequencies (IR), in the visible (VIS) and ultra-violet (UV) frequency ranges, but

they have difficulties to reach the deeper infrared region. However, since exactly

this range is highly desired for the investigations performed during this thesis, the

applied technique is the Fourier transform infrared spectroscopy (FTIR), which has

significant advantages at low frequencies.

At this point it is expedient to split up the relatively crude definition of ‘infrared

frequency range’ according to the ranges that were measured with different settings

and at different setups as presented in Table 3.0.1.

Name/Abbreviation ν̃(cm−1) ν(1012 Hz) λ(µm)

far-infrared/FIR 10–1000 0.3–30 1000–10

mid-infrared/MIR 700–8000 21–240 14–1.2

near-infrared/NIR 2000–12000 60–360 5–0.8

visible/VIS 9000–25000 270–750 1.1–0.4

Table 3.0.1: Definitions of the frequency ranges from far-infrared to visible

In this section the experimental technique as well as the setups will be discussed. In

39



Experimental Techniques

Sec. 3.1 a brief introduction into the main principles of FTIR-spectroscopy will be

given. Secs. 3.2 and 3.3 introduce the experimental techniques for measurements in

the far-infrared (FIR) and at higher frequencies (MIR, NIR, VIS), respectively. The

main focus of this chapter will be the magneto-optical setup (Sec. 3.4), which was

designed, assembled and characterized in the framework of this thesis. Hence, for this

setup a detailed discussion of the design and a complete characterization concerning

stability and performance will be presented. For the other setups references to the

theses, where correspondent characterizations are disclosed, will be given. In Sec. 3.5

further techniques applied in this work will be addressed briefly.

3.1 Fourier transform infrared spectroscopy

There is a large number of dedicated literature presenting detailed concepts for spec-

troscopy at infrared frequencies (e.g. Refs. [116, 117]). Furthermore, brief introduc-

tions to various spectroscopic principles can be found in every textbook on optical

or solid state spectroscopy (e.g. Refs. [51, 57]). For this thesis, only the fundamental

concept of FTIR spectroscopy will be reviewed in the following.

The centerpiece of a FTIR-spectrometer is a Michelson type interferometer, schemat-

ically depicted in Fig. 3.1.1. The light of a source S, carrying spectral information

in the form S(ν) (meaning the power of the light at the frequency ν) gets separated

into two beams by a beam splitter BMS. Both beams are reflected at a mirror, M1

and M2, respectively. After recombination of the two beams at the beam splitter

the interfering light hits the detector D. The intensity of the interfering light is in

general dependent on the difference of the optical path δ between the two beams.

One of the mirrors, in case of Fig. 3.1.1 M2, is dynamically moving. The information

entering the detector is consequently now I(δ), the intensity as a function of path

difference δ, and is called interferogram. This process can be viewed as a mechanical

Fourier transform and the spectral information can be regained by numerically back

transforming the signal recorded by the detector.

Fig. 3.1.2 displays examples for the signals I(δ) recorded by the detector. In case of

a monochromatic source as in panel (a), the interferogram is simply a (cos)2 function

which transforms into a single Dirac-δ-peak at the frequency of the emitted light,

seen in panel (d), upon applying fast Fourier transform (FFT). For a source emitting

more frequencies, I(δ) is a pattern with a maximum at the position of equal optical

paths in both arms of the interferometer δ = 0, as demonstrated for three discrete
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Figure 3.1.1: Schematic represen-

tation of a Michelson-type interfer-

ometer as employed in FTIR spec-

trometers. Light from the source S

gets separated by a beam splitter

BMS into two beams. One beam

gets reflected at a fixed mirror M1,

while the other hits the moving

mirror M2. The light recombines

at the BMS and hits the detector D

after being reflected at, or passing

through, the sample (or the refer-

ence, see text).

frequencies with a finite line width in Fig. 3.1.2 (b). Consequently the FFT yields

the three Lorentz shaped peaks shown in panel (e). The finite line width of the

frequencies is the cause for the exponentially decaying envelope of the interferogram

pattern in Fig. 3.1.2 (b).

Finally Fig. 3.1.2 (c) illustrates the interferogram of a continuous black body radiator

as it is used in FTIR spectrometers. The main maximum of I(δ) is located at

δ = 0 and decays rapidly to larger mirror displacements. It is important to note,

that the interferogram is not a straight line for large δ but still exhibits a small

oscillating pattern from the interfering light, which is not visible on the scale of

Fig. 3.1.2 (c). This small deviations from a straight line, extending theoretically

to an infinite optical path difference between the two interferometer arms, carries

most of the spectral information. The regions for large mirror displacements in the

interferogram get in particular important for measurements where a high spectral

resolution ∆ν is desired, since ∆ν is inversely proportional to the maximal mirror

displacement ∆ν ∝ 1/δmax. The corresponding spectrum after FFT, depicted in

panel (f) of Fig. 3.1.2, is a typical spectrum recorded in the MIR with a Globar light

source, a KBr beam splitter and a photovoltaic detector (see Sec. 3.3).

This power spectrum displayed in Fig. 3.1.2 (f) shows a pronounced frequency depen-

dence which is set by the type of source, the beam splitter and other optical elements,

like windows etc., utilized in the measurement setup, as well as the sensitivity of the
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Figure 3.1.2: Interferograms I(δ) of a perfectly monochromatic source (a) and a source

emitting three frequencies with finite line widths (b). The fast Fourier transform of the

interferogram I(δ) yields the power spectra S(ν) of the two aforementioned hypothetical

sources displayed in (d) and (f), respectively. Panel (c) depicts a real interferogram as

recorded in the MIR with a globar source, a KBr beam splitter and a photovoltaic detector

(see Sec. 3.3). The resulting power spectrum after FFT is plotted in panel (f). All axes are

in arbitrary units.
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detector in use. This circumstance makes it necessary to conduct reference measure-

ments in order to obtain final transmittance or reflectance spectra of a sample. The

standard procedure is as follows: First, a spectrum is recorded with a sample placed

in the beam between interferometer and detector (as sketched in Fig. 3.1.1), where

the signal entering the detector got either transmitted through, or reflected at, the

sample. The resulting spectrum Ssample(ν) is obtained by FFT. Subsequently, the

measurement is repeated without sample to record the reference Sreference(ν). In case

of a transmission measurement this means, that the light only travels through free

space, where it passed the sample before. For a reflection measurement, the light is

reflected on a mirror that possesses a flat, frequency independent reflectivity close

to unity in the frequency range of interest. The final frequency dependent transmit-

tance T (ν) or reflectance R(ν) is then obtained by normalizing the sample spectrum

to the reference spectrum R(ν), T (ν) =
Ssample(ν)

Sreference(ν)
.

To get R(ν) and T (ν) quantitatively correct in a real measurement, it is important

to make sure, that the light collected by the detector is commensurate for both, the

sample and the reference measurement runs. This is done with ease by the use of an

aperture in transmission measurements. In this work, only reflectivity measurements

were conducted. The methods that were applied to obtain the absolute reflectance

spectra will be discussed in the two following sections.

3.2 Far-infrared technique

3.2.1 The spectrometer

All optical measurements in the FIR were performed with a Bruker IFS 113v spec-

trometer. Fig. 3.2.1 displays a schematic sketch of the spectrometer with the relevant

beam path highlighted. During a measurement the whole system is pumped to a pres-

sure of p ≈ 7 mbar to avoid absorptions from air molecules. In the source chamber
❧1 one of three light sources can be selected by a switchable mirror. Three sources

are available: A glowing SiC bar (Globar), a mercury arc lamp (Hg-lamp), and a

tungsten wire bulb. For FIR measurements only the former two are suitable. The

light subsequently enters the Michelson interferometer, which is arranged in a pecu-

liar geometry in this spectrometer. This so-called Genzel arrangement [118] holds

some advantages against the conventional rectangular arrangement of the Michelson

interferometer shown in Fig. 3.1.1. First of all, the light is focused on the beam

splitter illustrated at ❧2 in Fig. 3.2.1. This allows the use of small beam split-
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ters arranged on a wheel, which enables changing the beam splitter in situ without

venting the spectrometer. Several Mylar beam splitters, with thicknesses depend-

ing on the measured frequency range, were applied in the FIR measurements (see

Tab. 3.2.1). The second peculiarity of the Genzel geometry is the fact, that, after

passing the beam splitter, the two branches of the light get reflected on the same

scanning element, which has mirrors on the front and back, illustrated at ❧3 . Thus,

while for one branch the optical path is shortened, for the other branch the path is

elongated. Therefore, this geometry provides a twofold optical path difference for the

same mirror displacement as compared to the conventional Michelson interferometer,

and hence, a twofold higher resolution. The position of the scanner is determined

from the zero crossings of the interference fringes of a He-Ne laser, that passes a

small separate Michelson interferometer, which utilizes the same scanning mechanics

(also illustrated in Fig. 3.2.1 at ❧3 ).

Figure 3.2.1: The Bruker IFS 113v spectrometer. The light from a source ❦1 is focused

via a couple of optical elements on the beam splitter ❦2 . The two branches of the light get

reflected on the front and back side of the same scanning mirror ❦3 . This arrangement of

a Michelson interferometer is called Genzel geometry (see text). The recombined light is

then guided to, and focused on a sample, sitting in a cryostat ❦4 . The incident angle is

ϕ ≤ 8◦. Adapted from [119].

After recombination at the beam splitter, the light is guided to the sample com-

partment. Here, it is focused by the in situ adjustable mirror A1 on the sample,
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which sits on a cone inside a continuous flow cryostat ❧4 . Thereafter the light

reflected from the sample is focused by the second in situ adjustable mirror A2 on

the detector. In this work, various silicon based bolometers containing different low

pass filters and operating at different temperatures were utilized as summarized in

Tab. 3.2.1. It is important to note, that the angle of incidence of the light to the

surface normal of the sample is ϕ ≤ 8◦. For such a small angle the reflectivity can

be approximated as the response at normal incidence , and hence, the application of

Kramers-Kronig relations (see Sec. 2.2) to the obtained reflectivity data is justified

[51].

Name ν̃ (cm−1) BMS Detector Source Window

FIR 70–1000 Mylar/Ge 6µm Si bolometer @ 4.2 K Globar PP

F2IR 20–300 Mylar 23µm Si bolometer @ 1.3 K Hg-lamp PP

F3IR 10–60 Mylar 50µm Si bolometer @ 1.3 K Hg-lamp PP

Table 3.2.1: Frequency ranges and the corresponding experimental parameters in FIR

measurements performed at the Bruker IFS 113v during this work. The Mylar/Ge 6µm

contains a thin Germanium coating. PP denotes polypropylene and Si is the chemical

symbol for silicon.

3.2.2 The cryostat

The cryostat for zero field FIR measurements ( ❧4 in Fig. 3.2.1) was implemented in

the lab as a supplementary project in this work. The basic component is a CryoVac

Spectro A continuous flow cryostat operating at temperatures between 300 K and

3 K. The customized cryostat, housing, window flanges, sample holder etc. were all

built by CryoVac.

The cryostat is attached to a linear translator, and can be moved vertically, driven

by a stepping motor. The sample holder provides three spots to mount a sample

or a mirror, which is important for the measurement procedure, as described in

Sec. 3.2.3. There is an additional feed through in the housing for a gold evaporation

unit, meaning simply two contacts, connected by a tungsten spiral, which is equipped

with gold wire pieces (see Fig. 3.2.2). The ability to vertically move the whole cryostat

allows each spot on the sample holder to be placed either in front of the window or

the gold evaporation unit and, beyond that, the compensation of thermal shrinking-

effects.

An extensive characterization of the cryostat and the whole measurement system,
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performed by J. Merz and A. Baumgartner, was supervised during this work. Hence

for detailed descriptions of the cryostat and the characterization the reader is referred

to Refs. [120, 121] at this point.

3.2.3 The measurement

To accurately measure the absolute reflectance of small, mm-sized, opaque samples

at low infrared frequencies one has to overcome the following obstacles:

• Low frequency means large wavelength1, therefore, microscope based tech-

niques as described in Sec. 3.3 are not an appropriate option, because of diffrac-

tion problems.

• Thermal radiation sources only provide a weak intensity at these frequencies,

thus the collection of as much light reflected by the sample as possible is desired.

• To obtain the absolute reflectivity one also has to measure a reference as already

stated in Sec. 3.1. The use of an aperture in front of the sample and a mirror

would grant the comparability of sample and reference measurements, because

the light had hit the same area each time. However, for such an approach the

plane parallel adjustment of sample and mirror is crucial, which is, depending

on the sample geometry, often rather difficult.

• Samples often have imperfect and structured surfaces leading to scattering and

diffraction. As a result artifacts appear in the final spectra.

The in situ gold coating of the sample elegantly overcomes the aforementioned issues

[122]. The measurement scheme is depicted in Fig. 3.2.2. The light spot of the in-

coming radiation IR is chosen larger than sample and reference mirror. The sample

S as well as the mirror M in column ❧1 are mounted on a cone. Accordingly, only

the light hitting the sample or mirror is reflected back, while other portions get de-

flected. Advantageously, this setting maximizes the signal and minimizes diffraction.

The measuring procedure is as follows: Sample S and mirror M both are measured

at all desired temperatures as depicted in column ❧1 and ❧2 of Fig. 3.2.2. Subse-

quently, the sample is coated by a gold layer (column ❧3 ). This has to be done at

room temperature by applying a large current to the tungsten helix, equipped with

ringlets of gold wire, in order to evaporate the gold. After waiting a sufficient time to

1ν̃ = 20 cm−1 ≡ λ = 0.5mm
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Figure 3.2.2: Illustration of the

gold evaporation measurement

principle. First the sample S and

mirror M are measured at all de-

sired temperatures ( ❦1 , ❦2 ). The

mounting on the cone guarantees,

that only IR light reflected on S

and M is captured. Subsequently,

the sample is gold-coated by the

gold evaporation unit Au ❦3 . Af-

terward the measurement of S and

M is repeated at all temperatures.

get a thick enough gold layer2, the measurement of the henceforth gold coated sample

and the reference mirror is repeated at all previously measured temperatures. It has

to be noted, that the vacuum inside the cryostat housing should be p = 10−5 mbar

of magnitude, in order to get a high quality gold coverage of the sample3.

In principle, the sample is used as its own reference. Consequently there are no

worries about size or angle mismatch between sample and reference, and most of

the scattering effects from the surface structure should cancel out [122]. The final

reflectivity spectra are calculated as:

R =
S
M

S̃Au

M̃

=
S ·M · ∆

SAu · ∆ ·M =
S

SAu

(3.2.1)

In Eq. 3.2.1 S and M represent the sample and reference mirror spectra, respectively.

S̃Au and M̃ are the spectra recorded after gold evaporation on the gold coated sample

and the mirror. The tilde denotes, that the whole experimental setting could have

underwent a drift in signal, caused by fluctuations in source intensity or detector

sensitivity, since between the two measurement runs before and after gold evapo-

2Thick enough means a multiple of the skin depth of gold, see Sec. 3.4.4.
3Further gold evaporation parameters used in this work are: current I ≈ 1.7A; evaporation

time t ≈ 70 s; common resistance of the gold evaporation unit measured on the leads at the power

supply R ≈ 1.2Ω (R ≈ 0.7Ω measured directly at the leads of the gold evaporation unit). The

reference mirrors, utilized in this work, were mostly gold coated glass substrates. However, also

aluminum or silver mirrors are fine. Even polished stainless steel can be used, since the signal of

reference mirror will cancel out when calculating the final reflectivity spectra with Eq. 3.2.1. See

also Refs. [120, 121].
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ration a long time possibly has passed. Those drifts are commonly reflected by a

multiplicative factor ∆. Hence, this factor and the mirror spectra cancel out, and

the absolute reflectivity of the sample is obtained.

3.3 Setup for mid-infrared,

near-infrared and visible

3.3.1 The spectrometer

The optical measurements at higher infrared frequencies presented in this thesis,

meaning MIR, NIR and VIS, were conducted at a Bruker HYPERION infrared mi-

croscope, attached to a Bruker VERTEX 80v FTIR spectrometer. Fig. 3.3.1 schemat-

ically illustrates the 80v spectrometer and highlights the relevant beam path. As in

the 113v (Sec. 3.2.1) the centerpiece is the interferometer. Contrary to the 113v,

the 80v hosts a Michelson interferometer with indeed tilted, but still conventional

geometry. This allows only lower resolutions as in the 113v, though there are other

advantages, e.g. the actively aligning optics and the highly precise scanner, enabling

measurements up to UV frequencies.

Figure 3.3.1: The Bruker Vertex 80v Adapted from [123].

As internal sources, a Globar as well as a tungsten source are installed. From the

sources the radiation is guided through an aperture AP and an optional optical filter
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wheel OF to the interferometer. The beam is then led through a window out of the

spectrometer compartment. Here it enters the HYPERION IR microscope and gets

strongly focused on the sample. The achievable spot size of the light on the sample

ranges from 20µm to 250µm. It has to be noted, that unlike the spectrometer, the

microscope is not under vacuum. To prevent atmospheric absorptions it is, however,

continuously flushed with nitrogen gas. For different frequency ranges, particular

experimental parameters were used, which are summarized in Tab. 3.3.1.

Name ν̃ (cm−1) BMS Detector Source Window

MIR 700–8000 KBr MCT @ 77 K Globar KBr

NIR 2000–12000 CaF2 InSb @ 77 K Tungsten KBr

VIS 9000–25000 CaF2 Si-diode @ 300 K Tungsten KBr/Quartz

Table 3.3.1: Frequency ranges and the corresponding experimental parameters in measure-

ments at MIR, NIR and VIS frequencies conducted at the 80v during this work. MCT

denotes mercury cadmium telluride, which is the detector material. KBr, CaF2, InSb and

Si are the chemical prescriptions for potassium bromide, calcium fluoride, indium anti-

monide and silicon, respectively. For the detectors also the operating temperatures are

stated.

3.3.2 The cryostat

For the measurements at the IR microscope the Konti Micro, a contiouos flow cryo-

stat by CryoVac, was utilized. The accessible temperature range reaches from 300 K

to 10 K at the sample position. The sample holders mounted to the cryostat were

designed by S. Kaiser [124] and A. Baumgartner [121], respectively. The general idea

of the sample holders is, to provide two stages that can separately be tilted, to be

able to align each, the sample as well as the reference mirror independently (see

Sec. 3.3.3). For a more detailed description and characterization of the setup com-

bining FTIR spectrometer and IR microscope, the reader is referred to Refs. [121,

124].

3.3.3 The measurement

Compared to the measurement principle in the FIR as described in Sec. 3.2.3, the

approach in the microscope is much less complicated. As already stated above the

light is strongly focused. This is accomplished by a Schwarzschild objective in the

HYPERION [125], schematically illustrated in Fig. 3.3.2. The spot size is chosen
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Figure 3.3.2: Schematic illustration of the

measurement principle in MIR, NIR and

VIS. The IR light is strongly focused by the

Schwarzschild objective of the HYPERION

on the sample or the mirror, respectively

[125]. The spectra of mirror ❦1 and sample
❦2 are recorded with the same spot size. The

ratio of sample to mirror spectrum straight-

forwardly yields the final reflectivity of the

sample.

such, that it covers a flat area free from distinctly visible defects on the sample, and

as large as possible. Aligning sample and mirror plane parallel is most crucial for

reliable absolute values of reflectance spectra in the microscope, hence much care was

taken regarding this issue in this work. The reflectivity is recorded with the same

spot size on mirror (step ❧1 in Fig. 3.3.2) and sample (step ❧2 in Fig. 3.3.2). The

final reflectivity of the sample is then straightforwardly calculated as,

R =
S

M
(3.3.1)

where S denotes the sample spectrum and M the mirror spectrum.

3.4 Magneto-optical setup

One main issue of this work was to design, construct, assemble and characterize a

setup for infrared optical measurements in high magnetic fields. The outcome is a

combination of an Oxford Instruments 7 T Spectromag (SM4000) with the Bruker

IFS 113v. In Fig. 3.4.1 two opposing bird’s eye views of the magnet and the relevant

attached parts are displayed. Some of the components used, e.g. the transmission op-

tics, could be recycled from a previously existing magneto-optical setup, which was

discharged because of a lack of accuracy, particularly in reflection measurements.

The design, eventually realized, adapts the gold evaporation technique described in

Sec. 3.2.3 for reflectivity measurements. This requires the use of an external cryostat

that is in high vacuum. A similar approach for a magneto-optical FTIR setup, de-
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scribed in Ref. [126], is realized in the lab of Dimitri Basov in San Diego4, and was

a valuable source of inspiration for the design presented here.

The aim was to construct the setup as versatile as possible and leave room for pos-

sible future modifications. In the following Secs. 3.4.1-3.4.3 the relevant details will

be presented. In Sec. 3.4.4 the characterization regarding reproducibility and stabil-

ity, as well as common values of various parameters are given. It should be pointed

out, that all parts manufactured for the magneto-optical installation, are made from

‘non-magnetic’ metals, i.e. brass, aluminum, stainless steel or copper, to avoid pos-

sible complications from strong forces caused by stray fields of the superconducting

magnet.

3.4.1 The magnet

The magnet installed in the magneto-optical setup is an Oxford Instruments Spec-

tromag 4000-7T manufactured in the year 1993. It belongs to the family of super-

conducting split coil magnets. Compared to the other Spectromag systems available,

which can even reach higher fields up to 11 T, the SM4000-7T has a big advantage for

the intended use, since the bottom bot, depicted in Fig. 3.4.2 ❧1 , possesses nearly

square dimensions. This symmetry enables a straightforward design of the setup

with the ability to turn the magnet from Faraday to Voigt geometry5 without the

necessity to change the optical elements.

The window elements are accordingly the same for all four sides of the bottom pot

of the recipient. While Fig. 3.4.2 ❧1 displays the pot with the mounted window el-

ements and various attached accessory parts, ❧2 depicts one window element itself.

The front part B is mounted on the outside of the recipient housing, while the back

part A counters from the inside. Vacuum tightness is accomplished by an o-ring seal

on the backside of part B.

On the outer parts of the window elements (B in Fig. 3.4.2), various accessory parts

can be mounted, dependent on the desired magnet geometry (Faraday or Voigt) and

frequency range to measure. The adapter from the window to a DN63 CF6 flange in
❧3 is utilized as joint for the cryostat. At the DN40 KF adapter displayed in ❧4 the

whole system is pumped to a high vacuum with a combination of turbo molecular

4Basov Infrared Laboratory, Department of Physics, University of California, San Diego
5Faraday geometry: external field parallel to ~k of light ~B ‖ ~k; Voigt geometry: ~B⊥~k
6DN63 = nominal width, CF = Conflat flange, KF = Klein flange
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Figure 3.4.1: Two opposing bird’s eye views of the magneto-optical setup developed in this

work. The pictures are rendered from the original construction file. Individual components

are marked in the images.
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Figure 3.4.2: The bottom pot of the SM4000 with attached window elements and accessory

is displayed in ❦1 . The window element consists of a part A that is on the inside of the

pot and counters the screws holding part B on the outside of the pot. ❦3 , ❦4 and ❦5
depict the DN63 CF adapter, the DN40 KF adapter and an example for a tilted window

frame, respectively.

pump and rotary pump, as indicated schematically in Fig. 3.4.6. In ❧5 an example

of a window frame is displayed. Various tilted and non tilted frames are available for

FIR and MIR, NIR. In the FIR a 270µm thick PP foil is utilized. The comparably

thick foil is necessary, since the window diameter is rather large. For MIR and higher

frequencies a tilted KBr window is available. It consists of a 5 mm thick crystal with

a diameter of 70 mm glued to a window frame with an epoxy resin7. The tilting of the

crystal window, and also of the PP window, avoids that a parasitic signal reflected

on the window surface enters the detector.

Apart from the custom build windows, yet another modification of the SM4000 is

established. In the standard configuration all Spectromags are equipped with a vari-

able temperature insert (VTI), that offers space for a sample stick, that can be

inserted from the top of the whole magnet vessel. Since the installation described

here takes advantage of a horizontally inserted cold finger cryostat, the VTI had to

be dismantled. The capillary that connects the helium bath of the Spectromag with

the VTI for the purpose of cooling in a conventional SM4000 cryostat was detached,

and blocked with a brass cap and an indium sealing inside the recipient.

Removing the VTI bears the aditional advantage, that the light focused on a sample

only has to pass one window, namely the outer cryostat window, which increases the

yield of signal from the sample, since each passed window absorbs a portion of the

7Emerson & Cuming ECCOBOND 286
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light.

For the operation of the Spectromag an Oxford Instruments Mercury IPS power

supply is set up for the magneto-optical installation, as indicated in Fig. 3.4.6 . It

has to be noted, that the ‘common’ switch heater of the SM4000 is broken, hence

the ‘spare’ heater has to be utilized to run the field (see Ref. [127]).

3.4.2 The optics

The optics for measurements in the magneto-optical setup was completely new de-

signed and is depicted in Fig. 3.4.3. To avoid any influence of magnetic stray fields

from the cryo-magnet on possibly magnetic or moving parts of the spectrometer, the

whole installation is located more than 1 m away from the IFS 113v. A connector

pipe between the optical box and the spectrometer grants the propagation of the

IR radiation in vacuum all the way to the magnet. The beam catcher stage that

parallelizes the beam and reflects it to the optical box, as well as the connector pipe

could be recycled from the previously installed magneto-optical setup. This is also

true for the mirrors M5, M6, M7 and the transmission box in Fig. 3.4.3, which are

used for transmission measurements.

For transmission, the parallel beam arriving from the spectrometer, is simply de-

flected on mirror M5, which focuses on the sample, as indicated with dashed lines in

Fig. 3.4.3. Subsequently after passing the sample the light is focused on the detector

via M6 and M7.

On the reflection mirror stage, the beam possesses a focal point, which is advanta-

geous for two reasons:

• The image quality is rather poor after the light traveled the long path through

the connector pipe, which can be corrected by focussing the light.

• An additional aperture or a polarizer can be placed in the optical box. This

is in particular necessary, if one needs a well defined polarization state. After

the spot inside the spectrometer, where a polarizer can be placed, the light

undergoes many reflections, which could smear out the polarization. By placing

an additional polarizer right in front of the detector, also measurements with

crossed polarizers are possible.

After the focal point, the light is deflected, focused on the sample by M3 and, sub-

sequent to the reflection at the sample, focused on the detector by M4. The incident
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Figure 3.4.3: Schematic representation of the beam path in the magneto-optical setup.

The course of the beam in reflection mode is illustrated in orange, while the transmission

path is indicated with dashed lines. The incident angel of the light to the sample normal is

φ ≈ 6◦. The relevant focusing mirrors, dubbed M1-M7 are specified in Tab. 3.4.1. Further

substantial parts are named in the image. Bruker schematics adapted from [119].
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angle of the light to the sample normal is φ ≈ 6◦. Therefore, the obtained data can be

viewed as normal incidence reflectance. Both M3 and M4 are assembled on custom

designed mirror mounts that can be adjusted in vacuum via the handles depicted in

Fig. 3.4.4 ❧1 . All other mirror mounts of the reflection stage are purchased from

Radiant Dyes Laser Accessories GmbH. The mirrors of the reflection stage are made

from highly polished massive aluminum purchased from Kugler GmbH. The relevant

focal lengths and specifications of the mirrors M1-M7 are listed in Tab. 3.4.1

Name Type Focal length (mm) Diameter (mm)

M1 spherical R500 70

M2 parabolic 17◦ 409 75

M3, M4 parabolic on axis 204.5 75

M5 parabolic 45◦ 250 80

M6 parabolic 45◦ 250 50

M7 parabolic 45◦ 180 50

Table 3.4.1: Focussing mirrors that come to use in the magneto-optical installation. The

R in the focal length of the spherical mirror M1 stands for the radius of the sphere.

The optical box itself is designed in a modular concept, to permit potential future

modifications. The core, made of cast aluminum, is manufactured by the Albert

Braach GmbH. On this frame various cover plates can be assembled, as illustrated in

Fig. 3.4.4. At ❧1 the cover with the wobble sticks for in situ adjustment of mirror

M3 and M4 is attached. At ❧2 a cover containing three DN25 KF flanges, one

connecting to the transmission box via a flexible hose, is installed. The detector can

be mounted to the cover at ❧3 . All the cover plates are sealed with o-rings. The top

of the box can be closed with an aluminum plate possessing an acrylic glass window

to be able to see the joints between M3/M4 and the wobble sticks.

3.4.3 The cold finger

The cold finger cryostat and linear translator are from the HVK-ST series provided

by VAb Vakuum-Anlagenbau GmbH, and were previously used in a different work

[128]. The mounting of the cold finger and linear translator on a bench were per-

formed prior to this work by a student assistant8.

For accurate positioning of the cryostat, the linear translator was modified and

8Stefan Wolf
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Figure 3.4.4: Representation of the

optical box with it’s modular con-

cept. At ❦1 a cover with four

handles for mirror alignment is

mounted. The covers at ❦2 and
❦3 provide space for vacuum feed

through and detector, respectively.

equipped with a VRDM stepping motor from Berger Lahr9 that is recycled from

a discharged setup described in Ref. [129]. The motor is powered by TLC 411 power

supply, which can be controlled with the TwinLine control tool on the lab PC. With

this arrangement highly accurate horizontal positioning within ±50µm or even bet-

ter is possible10. Furthermore the cryostat can be turned 360◦. Since the turning

motion is carried out manually, a laser pointer reflected on a small mirror on the

outside of turning feed through can be utilized for highly accurate reproducibility.

The Cryostat housing is equipped with a chamber for the gold coating of the sample,

indicated in Figs. 3.4.1 and 3.4.3. The basic operating principle is the same as de-

scribed in Sec. 3.2.3. In detail, however, it is necessary to move the gold evaporation

unit, which is mounted on rods, towards the sample for the evaporation process.

Afterward it needs to be pulled out again, before actuating a linear movement of

the cryostat, else cryostat and gold evaporation unit will collide. This chamber also

provides access to the sample holder. Therefore, by separating the cryostat from the

magnet vacuum (by valve V6, see Fig. 3.4.6), an easy sample exchange is possible

without the necessity to warm up and vent the whole magnet.

Fig. 3.4.5 displays the two available sample holders for reflection and transmission

measurements in the magneto-optical installation. The reflection sample holder of-

fers space for two cones11, one for a sample, the other for a reference mirror. The

transmission sample holder can be equipped with various frames, each containing

three aperture holes. The sample holders can be mounted directly to the cold head

9at present a part of Schneider Electric
10Note: 500 steps of the motor correspond to approximately 0.1mm of cryostat movement
11identical to those utilized in the zero field cryostat described in Sec. 3.2.3
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of the cryostat. To guarantee good thermal conduction both holders are made from

(untreated) copper.

Figure 3.4.5: Illustration of the re-

flection and transmission sample

holders for the cold finger cryostat.

The location, where the tempera-

ture sensor S2 is inserted in each

case is indicated in the image.

Two temperature sensors permit the readout of the cryostat and sample temperature.

Both sensors are of the Cernox type, to avoid large influence of the magnetic field

on the temperature read. The sensor S1, located at the cold head of the cryostat, is

only utilized for stabilizing the temperature. The temperature of the sample is read

by a sensor S2 12, that is mounted at the sample holder as indicated in Fig. 3.4.5.

Tab. 3.4.2 summarizes the specifications of the two sensors. A 30 Ω heater close to

the cold head enables proportional-integral-derivative (PID) controlled temperature

stabilization with a Lakeshore temperature controller.

Sensor Location Type Curve

S1 cold head Cernox 1050, SD package CX-1050-SD-X67661

S2 sample holder Cernox 1050, AA package CX-1050-AA-X75450

Table 3.4.2: Specifications and locations of the temperature sensors inside the cold finger

cryostat. Note, that owing to the unfavorable packaging of S1, the accuracy of the tem-

perature reading of this sensor at low temperatures is poor. Therefore this sensor should

only be used for stabilizing purposes. The sample temperature is read with high accuracy

by S2 (see Sec. 3.4.4).

3.4.4 Setup operation and characterization

Magnet operation and common parameters

In this section, the performance and common parameters that are to be expected in

normal operation of the magneto-optical installation are specified. Since the magnet

12Both sensors were calibrated by student assistant Katja Parkkinen.
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was modified (VTI removal, new windows; see Sec. 3.4.1) it is of interest to verify the

vacuum tightness of the magnet recipient with attached cold finger cryostat. The

whole system is pumped to a high vacuum (HV) by the magnet HV pump stage

displayed in Fig. 3.4.6. This pump stage is connected via a long DN40 KF flexible

hose to one of the window elements at the bottom of the magnet. The long tube is

necessary, to guarantee a sufficient distance of the fast spinning turbo pump from

the magnet, since eddy currents from magnetic stray fields could else cause severe

damage to the pump. The pressure of the system is monitored at the top of the

magnet at S1 in Fig. 3.4.6 by a full range gauge. This gauge can be detached from

the vacuum via the valve V1, for routinely necessary gauge cleaning. To pump the

system, valves V1, V5 and V6 need to be opened, while V7 needs to be closed.

Usually pressures of the order of p ≈ 3 × 10−5 mbar are achieved upon pumping the

system for 3 days starting at ambient conditions, which is sufficient to fill cryogenic

liquids in the magnet [127]. Note, that valve V5 should be closed after filling the

magnet with liquid He, to avoid a back flow of residual gas from the pump to the

magnet, since the cryo pumping effect is stronger than the turbo pump13.

For a magnet cool down, the He tank of the cryomagnet needs to be pumped and

flushed with He gas several times prior to filling liquid helium (L-He). For this pur-

pose a rotary pump (magnet - He pump in Fig. 3.4.6) is attached at valve V4 and

a He cylinder or the exhaust from a L-He vessel is connected to V2. During this

process the He recovery line valve V3 needs to be closed. The pressure of the system

was not affected by this procedure at any time, proving, that the indium sealing of

the He capillary, discussed in Sec. 3.4.1, is tight.

The cold finger cryostat can be detached from the magnet vacuuum by valve V6 to

exchange samples or restore the gold evaporation unit. To re-establish the connection

to the magnet vacuum, the cold finger needs to be evacuated first to a sufficient low

pressure (p ≤ 1 × 10−4 mbar), before opening V6 again14. Pumping the cold finger

cryostat separately can be accomplished with another HV pumping station attached

to V7 in Fig. 3.4.6. The pressure can then be read by a second full range gauge at

S2. Note, that the pumping system at V7 is venting automatically after switch off,

hence the valve V7 should be closed before.

Fig. 3.4.6 furthermore displays the rotary pump, that is utilized to pump He from

13see pressure of the system at 4.2K in Tab. 3.4.3
14This is in particular important when the magnet contains cryogenic liquids, since the magnet

vacuum is then at p ≈ 1× 10−7 mbar and opening V6 with the cold finger at ambient pressure

would cause huge L-He and L-N2 boil-off.
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Figure 3.4.6: Schematic representation of the magneto-optical installation showing all

valves, pressure gauges and pumps attached. All connected electrical devices are indi-

cated. Special care should be taken when operating valves V6 and V7.

a L-He vessel trough the cold finger cryostat (cold finger - He pump). The lowest

temperatures that were achieved at the sensor S1 were T ≈ 5 K for the reflection

holder and T ≈ 6 K for the transmission holder. Note, that the lowest possible tem-

peratures at the sample holders require the best possible thermal coupling between

cold head and sample holder and can only be reached when the cold finger is moved

inside the magnet which is filled with L-He.

All relevant electrical connections are also displayed in Fig. 3.4.6. The electrical parts

and their purpose are listed below.
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• Mercury IPS: power supply for the SM4000 and He level monitor

• Allen Bradley: resistor on top of the coil for cool down monitoring

• TLC 411: power supply for the stepping motor

• Lakeshore: temperature controller for the cold finger cryostat

• Source Au evaporation: current source for the gold evaporation unit

Common parameters expected during a cool down of the magnet are summarized in

Tab. 3.4.3.

Temperature (K) system pressure (mbar) Allen Bradley (Ω)

300 ≈ 3 × 10−5 ≈ 151.5

77 ≈ 6 × 10−6 ≈ 176

4.2 ≈ 1 × 10−7 ≈ 1016

Table 3.4.3: Common values of pressures and Allen Bradley resistances in the magnet at

various temperatures.

In this work the magnet was mainly used in the F2IR, FIR and MIR, and nice data

was obtained between roughly 40 cm−1 and 3500 cm−1. Towards higher frequencies,

the 113v spectrometer was not stable enough to provide reliable data.

To perform measurements in the MIR, the MCT detector, usually located inside the

113v, needs to be assembled outside of the optical box with a special adapter, at the

same spot like the bolometers. A KBr window is available for this frequency range.

Reproducibility and error bars

Having characterized the parameters of the magnetic field related apparatus, it is of

most vital interest to estimate the accuracy of the whole installation in a real reflec-

tion measurement. To do so, several test measurements were conducted. First the

reproducibility of the movements of the cold finger cryostat shall be assessed. For

this purpose, a measurement was conducted in the FIR at 300 K to exclude thermal

shrinking effects. An Al coated glass substrate acted as sample. The stability is best

exposed by dividing the spectra recorded under different circumstances by an initial

spectrum. Fig. 3.4.7 summarizes the results of this characterization measurement.

Panel (a) displays an initial 1-line, meaning two spectra recorded in succession di-

vided by each other, while panel (b) reveals the stability of the setup, when no
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movements were carried out and only some time has passed (≈ 10 min). In panel

(c) the cold finger cryostat was moved to different positions, before returning to the

sample position and recording the spectrum. In panel (d) the cryostat was moved

horizontally and additionally turned. A laser pointer was utilized to reproduce the

initial position in the turning motion15. From Fig. 3.4.7 it is clear, that the error

arising from the cryostat movements can be estimated as ≤ ±0.3%.

Note, that the presented characterization data is measured with a Mylar/Ge 6µm

beam splitter and the Globar light source. Measurements at lower frequencies, utiliz-

ing a pumped bolometer and corresponding optical settings (see Tab. 3.2.1), as well as

at higher frequencies utilizing a MCT detector and KBr beam splitter revealed, that

the accuracy stated above holds roughly from 40 cm−1 to 2500 cm−1. At even higher

frequencies measurements are in principle possible with the magneto-optical setup.

The limiting factor here turned out to be the stability of the 113v spectrometer.

To evaluate the error, when additionally a magnetic field is applied, another test

measurement was performed, again at 300 K in the FIR. Two differently sized gold

mirrors acted as sample and reference mirror, respectively. The spectra of the sample

and the mirror were measured at different fields and the reflectivity was subsequently

calculated according to Eq. 3.3.1. In Fig. 3.4.8 (a), (b), (c) the reflectivity recorded

at 0 T, 3 T and 7 T normalized to an initial reflectivity recorded at 0 T are displayed.

These panels reveal, that the error remains roughly the same as above without ap-

plied magnetic field. In the panels (d), (e) and (f), in principle the same normalized

spectra are displayed, but this time the reference mirror was left out of the calcu-

lation, meaning sample spectra at field are directly divided by the initial sample

spectrum. Those panels reveal first of all a slight magnetic field dependence of the

bolometer signal. Furthermore strong oscillations occur in the 7 T normalized spec-

trum in panel (f). Those oscillations are however independent of magnetic field.

They were also observed in spectra where no field was applied, but a long time

passed between the individual measurements that were divided by each other16. The

periodicity (≈ 13 cm−1) of the oscillations is known from spectra recorded in other

cryostats possessing the same 270µm PP foil as windows. Hence they can be ascribed

to interference effects in the window material that do not cancel out completely un-

15Dependent on the side of the magnet where the cold finger cryostat is attached, the turning

motion is not needed for a reflection measurement with the gold coating technique. To exclude this

possible source of error, for the magneto-optical measurements on NbP and TaAs, conducted in

this work, the cold finger was attached such, that no turning motion of the cryostat was needed to

coat the samples with gold.
16Choosing a smaller aperture helps to reduce these oscillation patterns in the spectra.
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Figure 3.4.7: Reproducibility of the spectra after cold finger movements in the magneto-

optical installation. Panel (a) displays an initial 1-line, meaning two divided spectra Si

recorded directly after each other. The other panels display spectra Sm, after (b) nothing

was done, (c) linear translation of the cryostat, and (d) linear translation and turning of

the cryostat divided by the initial spectra Si.

der some circumstances (time definitely plays a crucial role). However, panels (a)-(c)

proof, that applying careful referencing enables measurements with a satisfying ac-

curacy and an error of ≤ ±0.3%.

Again, also with magnetic fields applied, the reproducibility and error bars in the

F2IR and in the MIR for frequencies below 2500 cm−1 are comparable to those pre-

sented above in the FIR.

Gold evaporation parameters

Having knowledge of the error, it is important to figure out parameters that result in

sufficiently thick gold coatings in the evaporation process. Sufficiently thick means,

the thickness should significantly exceed the skin depth of gold in the FIR. The

classical skin depth δ0 of a metal can be calculated as [51],

δ0 =

√
c2

2πωµ1σ1
, (3.4.1)

where c denotes the speed of light, ω the angular frequency of the light, µ1 the per-
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Figure 3.4.8: Reproducibility of the spectra in the magneto-optical setup with applied

magnetic fields. Panels (a),(b) and (c) display the reflectivity at different fields calculated

according to Eq. 3.3.1 divided by an initial 0T reflectivity. In panels (d),(e) and (f) the

sample spectra are directly normalized to the initial sample spectrum.

meability and σ1 the conductivity. Straightforwardly, the permeability of gold can

be assumed to be unity: µ1 = 1. The lowest frequency we can achieve is roughly

20 cm−1 and the resistivity of gold at room temperature is ρ = 1
σ1

= 2.35µΩcm [130].

Inserting these values into Eq. 3.4.1 we find δ0 ≈ 100 nm.

Fig. 3.4.9 displays the thickness of two gold layers determined with a Dektak pro-

filer17. The gold layers were evaporated in the magneto-optical installation with

different parameters on glass substrates. For the thickness determination the Au-

layer from one half of the substrate was removed with sticky tape. The Dektak

17The Dektak measurements were performed in the clean room facilities of the 4. Physikalisches

Institut (PI4), Universität Stuttgart with technical assistance of Monika Ulb from the PI4.
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profiler utilizes a thin tip that is moved over the surface to record the height pro-

file. The parameters utilized for panels (a) and (b) of Fig. 3.4.9 are summarized in

Tab. 3.4.4.

Figure 3.4.9: Gold layer thick-

nesses obtained in the magneto-

optical setup with different param-

eters given in Tab. 3.4.4 determined

with a Dektak profiler. Both gold

layers are adequate for measure-

ments in the FIR.

Panel in Fig. 3.4.9 (a) (b)

No. of Au ringlets 6 5

No. of W wire convolutions 13 11

RAu-unit/Rpower-supply(Ω) 0.8 / 1.2 0.6 / 1.1

Evaporation time t(s) @ Current I(A) 60 @ 1.7 60 @ 1.7

Table 3.4.4: Parameters used for the gold coatings displayed in Fig. 3.4.9. RAu-unit and

Rpower-supply refer to the resistance measured directly at the gold evaporation unit leads

and at the leads at the power supply, respectively.

The gold layers are roughly 400 nm thick with the parameters utilized in panel (a)

and 300 nm for the parameters in panel (b). Comparing these values with the skin

depth δ0 of gold calculated above shows, that both sets of parameters lead to thick-

nesses of the Au-layers that are sufficient for measurements down to lowest possible

frequencies. Note, that the applied parameters are comparable to those that have

been proven to be suitable for the zero field gold evaporation cryostat described in

Sec. 3.2.3 [120].
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Comparison zero-field setup, magneto-optics

At last, reflectivity measurements were conducted at zero field in the magneto-optical

setup and compared with the spectra obtained in the 0-field cryostat. Fig. 3.4.10 (a)

depicts the FIR reflectivity of the Weyl semimetal NbP at T = 10 K recorded in

the magneto-optical setup (blue) and the 0-field cryostat (red). Both curves coin-

cide fairly well. This indicates, that apart from the lower signal-to-noise ratio in

the magneto-optical installation, the spectral quality is comparable for both setups.

Panel (b) of Fig. 3.4.10 displays the reflectivity at T = 8 K normalized to the re-

flectivity at the critical temperature Tc = 20 K R(8 K)/R(Tc) of the iron pnictide

superconductor Ba0.6Eu0.4(Fe0.9Co0.1)2As2 in the same manner. Again those relative

reflectivity spectra exhibit a good agreement and show the opening of the supercon-

ducting gap below 150 cm−1.
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Figure 3.4.10: A comparison of the absolute reflectivity of NbP obtained in the magneto-

optical setup (blue) and in the 0-field gold evaporation cryostat (red) is displayed in panel

(a). The quality of the spectral information gained is comparable apart from a lower

signal-to-noise ratio in the magneto-optical installation. Panel (b) depicts the relative

reflectivity of Ba0.6Eu0.4(Fe0.9Co0.1)2As2 with the same color code. Both spectra exhibit a

superconducting gap of the same magnitude.
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3.5 Further techniques applied

In the framework of this thesis some samples were also characterized by magnetiza-

tion and resistivity measurements. The magnetization measurements were conducted

with a Quantum Design MPMS 7 T magnetometer. The MPMS is a commercial ma-

chine, hence the reader is referred to Ref. [131] for a detailed description.

The temperature dependent resistivity data were obtained in standard 4-contact

measurements in a home built setup (briefly described in Ref. [121]).

3.6 Data treatment and errors

In the course of this thesis, most of the presented data are not smoothed. This is in

particular the case for all zero-field optical data, the transport data as well as the

magnetization data. The relative reflectivity spectra measured in the novel magneto-

optical setup up to 7 T are moderately smoothed with the adjacent averaging over 20

data points, which is sufficient to remove the noise without perturbing the magnetic

field induced changes in the spectra. The relative reflectivity spectra measured in the

high field magnet laboratory in Nijmegen require a little bit more radical smoothing

due to a larger noise level. Hence, these spectra are smoothed with an adjacent

averaging over 30 data points.

In the analysis of the relative reflectivity spectra, the frequency positions of the

features are read out by eye. Hence, depending on the width of these signatures in

the spectra the error at low fields up to 7 T is estimated to be roughly ±10 cm−1,

while in the high field measurements the errors are larger due to broader features and

an increased noise level, and can be stated to be roughly ±30 cm−1 (see Secs. 5.2.3,

6.2.3).

The fitting accuracy of phonon peak positions is limited by the choice of the spectral

resolution of 1 cm−1 (see Secs. 4.2.2, 7.2.2).

The fits applied to the zero field optical spectra should be considered as models

describing the data in the picture of Dirac and Weyl semimetals in Secs. 4.2.2, 5.2.2

and 6.2.2. In Sec. 7.2.2 an established model in the field of iron based superconductors

is applied. Cross-correlations of the model parameters were not investigated in this

work.

67



Experimental Techniques

68



4. The Dirac semimetal Cd3As2

In this chapter, the optical properties of the Dirac semimetal Cd3As2 are discussed.

Sec. 4.1 will give a brief introduction to the material properties. In Sec. 4.2 the

analysis of transport and optical data is presented. Conclusions will be drawn in

Sec. 4.3, and the findings will be summarized.

Parts of the data and analysis presented in this chapter are published in Ref. [68].

4.1 The material

Cd3As2 is well known for decades as a non-cubic II-V semiconductor. The interest

in this compound in the last century was mainly triggered by the observation of a

high electron mobility [132, 133], a small bandgap [133–135] and a large magneto

resistance [134, 136]. The exact bandstructure of Cd3As2 was, and still is, a matter

of lively discussion [95, 137, 138]. Possible applications of Cd3As2 and related alloys

as infrared lasers or ultrafast broadband photodetectors were discussed [139–142].

Very recently, Cd3As2 regained broad interest, encouraged by the prediction that the

bandstructure hosts a pair of 3D Dirac points in the bulk, protected by symmetry

[22]. The existence of the Dirac points in Cd3As2 was in the meantime well confirmed

by ARPES, magneto-transport, scanning tunneling spectroscopy, as well as refined

bandstructure calculations [7, 8, 33, 36, 48, 143–145].

Below 475 ◦C, Cd3As2 has a tetragonal centrosymmetric crystal structure with the

space group I41/acd (No. 142). The unit cell depicted in Fig. 4.1.1 (a) counts 32

formula units and has the lattice constants a = 12.633 Å and c = 25.427 Å [145].

The structure can be viewed as Cd cubes, stacked in a corkscrew along the c-axis.

Two edges on one face of these cubes are vacant, which leads to a distortion. The

As ion is located in the centers of these cubes.

The bandstructure calculated in Ref. [145] utilizing this centrosymmetric crystal
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structure is depicted in Fig. 4.1.1 (b). Along Γ-Z, a bandcrossing stabilized by the

tetragonal symmetry occurs. Because of the preserved inversion and time rever-

sal symmetries, there is no spin splitting and all bands are twofold degenerate.

This degeneracy was lifted in earlier bandstructure calculations utilizing a non-

centrosymmetric crystal structure for Cd3As2 (I41cd) [22]. The overall appearance

of the electronic structure is, however, rather similar for both structures [22, 145].

The electronic dispersion around the Dirac points is illustrated in Fig. 4.1.1 (c) [7,

33, 144]. Valence and conduction branches are depicted in red and blue, respectively.

The dispersions along kx and ky are rather similar, while along kz the Fermi velocities

are lower [8]. The exact amount of anisotropy was found to depend on the position

of the Fermi energy [33]. The Lifshitz transition points (the apices between the Dirac

nodes) are located at Γ. The “Lifshitz gap” between these points is yet not reliably

determined [144].

Generally, the Dirac points are not at the Fermi energy EF. Depending on the doping,

the Dirac bands will form small electron or hole pockets, as illustrated in Fig. 4.1.1

(d) with the positions of EF in blue and red, respectively. The corresponding Fermi

surfaces are small ellipsoids along the Γ-Z line as illustrated in Fig. 4.1.1 (e) [7, 33,

48]. Typically, Cd3As2 is electron doped because of As vacancies [144].

4.2 Cd3As2: Results and Discussion

In the following the results obtained on high quality single crystals of Cd3As2 in the

course of this work are presented. The samples were provided by Dr. Alex Nateprov,

from the IAP Moldova1. Transport data were contributed by Anja Löhle from PI12.

The optical measurements were conducted by the author.

4.2.1 Transport properties

The investigated samples were synthesized and annealed for decades at room tem-

perature as described in Ref. [147]. With this treatment, usually a low carrier density

of N = 6 × 1017 cm−3 (T independent) and high mobility of µ = 8 × 104 cm2 V−1 s−1

(at T = 12 K) is achieved [147]. The sample is n-doped, meaning the charge carriers

are electron like.

The temperature dependent resistivity ρ(T ) of Cd3As2 was measured in the isotropic

(001) plane in a standard four-contact geometry. The resulting ρ(T ) is depicted in

1Institute of Applied Physics, Chisinǎu, Moldova.
21. Physikalisches Institut - Universität Stuttgart
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Figure 4.1.1: The unit cell of Cd3As2 drawn with VESTA [146] utilizing the crystallo-

graphic data from Ref. [145] (a). The bandstructure (b) hosts a band crossing along Γ-Z.

A schematic illustration of the dispersion around the Dirac points is depicted in panel (c)

[7, 33, 144]. The position of the Fermi energy EF (d) for electron doping (blue) and hole

doping (red). The resulting electron or hole Fermi surface ellipsoids are located on the Γ-Z

line in the Brillouin zone (green) (e) [7, 33, 48]. Panel (b) reprinted from Ref. [145] with

permission. Copyright (2014) American Chemical Society.
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Fig. 4.2.1 (a). The resistivity is overall metallic and for T ≥ 100 K it increases

linearly in temperature, emphasized by the orange line in panel (a). In metals, such

behavior is indicative for a predominant electron-phonon scattering mechanism. The

inset reveals a residual resistivity of ρ0 ≈ 0.27 mΩ cm. With this, the investigated

sample has a residual resistivity ratio of RRR = ρ(300 K)/ρ0 = 5.5. Panel (b) of

Fig. 4.2.1 displays ∆ρ = ρ(T ) − ρ0 on a double logarithmic scale. The orange line

in this panel reveals that ∆ρ ∝ T 1.6 for T . 100 K. This behavior is far off the

expectations for simple metals (∝ T 5) or a Fermi liquid (∝ T 2). The slopes of ρ(T )

at low temperatures, the RRR, and the mobility were found to vary dramatically

even for crystals of the same boule in Ref. [148]. The record residual resistivity ratio

RRR = 4100 and mobility µ ≈ 9 × 106 cm V−2 s−1 are reported there. However,

comparing our transport results to a crystal with similar mobility (sample A4 in

Ref. [148]), and taking into account the differences in carrier concentrations, the

overall appearance is similar, even though a different crystal growth technique is

applied in Ref. [148].

4.2.2 Optical experiments

The temperature dependent optical response of Cd3As2 was obtained in the (001)

plane for frequencies ω = 40 − 25 000 cm−1. The light was polarized along the [100]

and [010] directions. The (001) surface was polished prior to optical measurements.

For extrapolation at high frequencies, reflectivity data between 3 eV ≈ 25 000 cm−1

and 12 eV ≈ 100 000 cm−1 from Refs. [135, 149] were utilized, additionally to the

method described in Sec. 2.2.

Panel (a) of Fig. 4.2.2 displays the reflectivity spectra at T = 10 K with light polar-

ized along [100] and [010], respectively. The spectra are identical, confirming that the

response of the isotropic (001) plane is probed. Since the response is independent of

the polarization, henceforth all presented spectra will be averages of both measured

polarizations.

The temperature dependent reflectivity is depicted in Fig. 4.2.2 (b). Above 2000 cm−1,

the spectra are T -independent. Below 2000 cm−1, only weak changes are observed.

A number of sharp dips in R(ω) in the FIR arise from a series of optical phonons.

At ω ≈ 400 cm−1, a steep downturn of the reflectivity marks the screened plasma

frequency ωp,scr. After passing a minimum, the reflectivity remains roughly constant

over a wide frequency range, ω = 2000−8000 cm−1. The highest diplayed frequencies

above 10 000 cm−1 are dominated by a broad peak. Note the good agreement of the
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Figure 4.2.1: The temperature de-

pendent resistivity ρ(T ) of Cd3As2

is displayed as blue circles in panel

(a). The orange line emphasizes

the T-linear behavior for T ≥
100K. The inset reveals a resid-

ual resistivity of ρ0 ≈ 0.27mΩcm.

Panel (b) depicts ∆ρ = ρ(T ) − ρ0

on a double logarithmic scale. The

orange line in this panel reveals

the power law ∝ T 1.6 below 100K.

Note, that the tiny step in the data

in panel (a) around 120K is an ar-

tifact from the measurement.

reflectivity data presented in Fig. 4.2.2 with previous [149–151] and recent [80, 95]

reports.

The optical conductivity σ1(ω) in Fig. 4.2.2 (c) can be separated into three parts. The

low energy region in the FIR is dominated by a Drude-like response superimposed

with a series of phonons. Between 200 cm−1 and 1500 cm−1, temperature depen-

dent structures dominate. With decreasing temperature, the conductivity around

1300 cm−1 gets strongly suppressed and vanishes completely in a narrow frequency

region, which was previously interpreted as an optical gap [133]. The third region

appears linear in the double logarithmic plotting style of Fig. 4.2.2 (c), corresponding

to a powerlaw increase of the optical conductivity, σ1(ω) ∝ ω1.6, emphasized by the

dashed gray line. This region is dominated by the interband transitions between the

peculiar shaped Dirac bands in Cd3As2, as will be discussed later. The step, preced-

ing the powerlaw increase of σ1(ω), marks the onset of these interband transitions

at 2∆E ≈ 1700 cm−1.
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Figure 4.2.2: Optical response functions of Cd3As2 over a wide frequency range on a

logarithmic scale. The reflectivity at 10K for light polarized along [100] and [010] in panel

(a) confirms the isotropic nature of the (001) plane. The temperature dependence of R(ω)

(b) reveals a relatively sharp plasma edge and a wide range of temperature independent

roughly constant reflectivity. This range of constant R(ω) turns up as an increase ∝ ω1.6

of σ1(ω) (c) after Kramers-Kronig. The onset of this interband conductivity crops up in

ε1(ω) (d) as a peak at 2∆E. The screened plasma frequency ωp,scr is found at the zero

crossing of ε1(ω).

The dielectric function ε1(ω) depicted in Fig. 4.2.2 (d) is peaked at 2∆E in agreement

with the theoretical considerations in Sec. 2.6. At low frequencies, ε1(ω) takes large

negative values because free charge carriers are present in the system. In the apex

at 2∆E, the dielectric function takes a value of ε1 ≈ 17. The zero crossing marks the

screened plasma frequency, ωp,scr = 400 cm−1.

In the following, a closer look will be taken, first, on the powerlaw interband part,

second, on the intraband conductivity and the lattice vibrations, and third, on the

intermediate region where most of the temperature dependent dynamics are observed

in the spectra.
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4.2. Cd3As2: Results and Discussion

Before diving deeper into the analysis, one important remark regarding the Kramers-

Kronig transform and extrapolation needs to be made. As it was pointed out above,

for the high frequency extrapolation reflectivity data obtained with synchrotron radi-

ation from Refs. [135, 149] is utilized. The data in these references includes the peak

at ω ≈ 15 000 cm−1, that is also observed in Fig. 4.2.2 (a,b) validating the data in

the present work. However, an additional strong peak at ω ≈ 30 000 cm−1 observed

in Refs. [135, 149] is important to be included in the extrapolation. The powerlaw

observed in σ1(ω) is altered for different extrapolations and reduces down to ω1.4, if

only a free electron decay ∝ ω−4 is utilized beyond the measured range (see appendix

C).

Interband conductivity

Eq. 2.6.1 states, that the exponent of the interband optical conductivity for crossing

bands equals d−2
z

with the dimensionality of the crossing point d and the exponent

of the band dispersion z. Utilizing Eq. 2.6.1 with the observed powerlaw (ω1.6) and

the 3-dimensional nature of Cd3As2 straightforwardly yields, that the dispersion for

energies larger than ∆E is sublinear, i.e., ǫ(k) ∝ |k|0.6. The exponent of sublinear

dispersion needs to be considered as a mean value. Optical experiments average over

all k-directions, and a possible asymmetry of conduction and valence branches of the

Dirac bands is not included in Eq. 2.6.1. Both, anisotropic cones and an asymmetry

of conduction and valence bands are evident in Cd3As2 [7, 8, 144].

Fig. 4.2.3 (a) depicts the optical conductivity for 300 K and 10 K on a linear fre-

quency scale. The gray dashed line represents the powerlaw ω1.6. The green line is a

linear approximation, which describes the spectra quite well between 3000 cm−1 and

5000 cm−1. Utilizing Eq. 2.6.2 and the number of nondegenerate cones NW = 4, the

slope of this line corresponds to a Fermi velocity vF ≈ 2 × 105 m s−1. Note that the

green line has a positive intersect with the frequency axis. In Sec. 2.6 and Eq. 2.6.3,

such an intersect was discussed to arise from a massless gap driven by self-energy

effects. For Cd3As2, the scenario of cones narrowing towards the Dirac nodes pro-

vides, however, a much more realistic explanation.

Narrowing cones with sub-linear dispersion imply an energy dependent Fermi veloc-

ity, and Eq. 2.6.2 yields,

vF(ω) =
e2NW

24~2

(
δσ1
δω

)−1

. (4.2.1)
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The frequency dependence of vF for 10 K is displayed in Fig. 4.2.3 (d). The Fermi

velocity increases linearly towards lower frequencies for ω ≈ 8000 − 3000 cm−1, em-

phasized by the thin black line. Thereby, the gain is 1.03 × 105 m s−1 eV−1 towards

lower ω (slope −12.8 m s−1 cm on the scales of panel (d)). At 3000 cm−1, a kink

occurs and for lower frequencies the Fermi velocity grows much faster. The kink

coincides with the energy of the “Lifshitz gap” EL, as will be discussed in the next

paragraph. The hump in vF close to the kink is therefore likely related to the tran-

sitions around EL. The dashed red line represents a linear fit of the steep increase

of vF below 3000 cm−1. The slope of this fit is −190 m s−1 cm on the scales of panel

(d) which corresponds to an increase of 1.5 × 106 m s−1 eV−1 towards lower energies.

The zero frequency limit of this fit yields vF(ω = 0) = 7.6 × 105 m s−1. This can be

understood as the Fermi velocity of the Dirac bands near the nodes (assuming that

the bands do not change slope below ∆E), and is in excellent agreement with the

values from other reports [7, 8, 48, 95, 144, 148, 152].

Panels (b) and (c) of Fig. 4.2.3 depict enlarged views of ε1(ω) and σ1(ω), respectively,

around the onset of the Dirac interband transitions. Panel (b) reveals, that the cusp

in ε1(ω) attributed to the onset of the Dirac interband transitions has a sizable

temperature dependence and shifts to lower frequencies with lowering T , as shown

by the black arrow. In other words, the Dirac interband transitions start at lower

energies, when the temperature is lowered. Indeed, the temperature dependence of

the chemical potential, is expected to be of relevance in Dirac and Weyl semimetals.

Theory predicts, that the chemical potential shifts down with increasing the temper-

ature proportionally to T 2 [75]. The temperature dependence of ∆E, extracted from

ε1(ω) is depicted in Fig. 4.2.3 (e) and clearly deviates from this expectation. The

dashed black line represents a linear fit, revealing ∆E(T = 0) = 104 meV and a rise

in temperature with a slope of 0.115 meV K−1.

A T -linear development of the absorption edge in Cd3As2 was previously reported,

however, with a negative slope [153, 154]. The interpretation of the temperature de-

pendence in these works is discussed to arise from the T -dependence of a direct gap

in the Kane model [155], which is widely suggested for Cd3As2 [95, 153, 156, 157].

The origin of the unexpected increase of ∆E observed in this work is yet unresolved

and calls for further investigations.

For relativistic particles, the effective mass m∗ and the Fermi energy are propor-

tional to each other, EF = m∗v2F [95]. From the values above (∆E = EF = 104 meV,

vF(ω = 0) = 7.6 × 105 m s−1) the effective mass is estimated as m∗ ≈ 0.03me.
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Figure 4.2.3: Even though the interband optical conductivity (a) of Cd3As2 follows a pow-

erlaw ∝ ω1.6 (dashed gray), it can be approximated linearly (green). The slope corresponds

to a Fermi velocity of vF ≈ 2× 105ms−1. The frequency dependent Fermi velocity (see

text) reveals two linear regimes (d) and approaches vF ≈ 7.6× 105ms−1 at the nodes (as-

suming, the slope remains the same down to ω = 0). The kink in vF(ω) appears at the

Lifshitz transition energy EL which is also found as a hump in ε1(ω) (b). The onset of the

interband transitions between the Dirac bands at 2∆E is temperature dependent (b,e) and

∆E increases linear in temperature. Panel (c) depicts σ1(ω) and the features corresponding

to EL and 2∆E.
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In the dielectric function ε1(ω) in Fig. 4.2.3 (b) at EL ≈ 3000 cm−1, a second hump

is resolved at low temperatures. In the optical conductivity, at these frequencies a

weak anomaly can be identified. These features can be assigned to the van Hove

singularity in the density of states arising from the Lifshitz transition point between

the two Dirac nodes. Consequently, the energy between the two Lifshitz transition

points (the “Lifshitz gap”) is approximately 370 meV. Note the recent report of a

similar feature at the same energy in the reflectivity of Cd3As2 [80].

Figure 4.2.4: Schematic bandstruc-

ture of the Dirac bands as obtained

from the optical data. The bands

narrow towards the Dirac nodes and

exhibit a kink at an energy around

EL. The onset of the Dirac inter-

band transitions is marked with a

pink arrow, while the transitions at

the Lifshitz transition points are de-

picted in purple.

The findings above allow to draw a schematic bandstructure around the Dirac points

as depicted in Fig. 4.2.4. The blue branch represents the conduction band and the

red the valence band. The onset of the Dirac interband transitions is marked with

a pink arrow. The transition at the Lifshitz point marked with a purple arrow is

responsible for the second hump in ε1(ω), as discussed above. At energies around the

Lifshitz points the bands are bent and continue to flatter towards higher energies,

but are still sub-linear in k.

Intraband conductivity and lattice vibrations

The intraband conductivity of Cd3As2 can be nicely fit with a single Drude term, as

depicted in Fig. 4.2.5 (a). The low frequency limit of the Drude terms σDrude(ω → 0)

was roughly anchored at the σDC values for all measured temperatures. The phonon

contributions are accounted for by a series of Lorentz-type oscillators. The inverse

of zero frequency limit of the Drude conductivity 1/σDrude(ω → 0) is depicted in

Fig. 4.2.5 (b) together with the DC-resistivity ρDC and the Drude scattering rate γ.
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4.2. Cd3As2: Results and Discussion

The temperature dependence of γ reveals the same shape as ρDC. Therefore, the

metallic decrease of ρ(T ) in Cd3As2 is solely driven by the decreasing scattering rate

(while N/m is constant; cf. Eq. 2.3.4).
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Figure 4.2.5: The intraband optical conductivity of Cd3As2 can nicely be fit with a single

Drude term (a). Additionally 23 Lorentz terms are included to account for phonons.

The inset of panel (a) depicts an enlarged view of σ1(ω) and reveals the highest phonon

frequency P23 around 350 cm−1. The temperature dependence of the scattering rate γ

of the Drude term (b) follows the DC-resistivity. The carrier density N calculated from

ωp of the Drude term with an effective carrier mass of m∗ = 0.0065(+0.004
−0.001)me is roughly

constant in temperature and of the order N ≈ 2− 3× 1017 cm−3.

From the low temperature mobility suggested for the investigated sample (µ =

8 × 104 cm2 V−1 s−1) and the relation of mobility to the scattering time µ = eτ
m∗

(where τ = 1/2πcγ) [158], the effective mass of the carriers can be estimated. Insert-

ing the value for the scattering time at 10 K obtained from the fit yields a very low

mass m∗ = 0.0065(+0.004
−0.001)me, lower by a factor of 3 − 5 than the cyclotron mass ob-

tained in magneto-transport and magneto-optical studies [48, 95, 152], and the value

obtained above from the interband conductivity. To test the self-consistency of this
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result, the plasma frequency of the Drude terms and m∗ can be utilized to calculate

the carrier density as N =
ω2
pm

∗

4πe2
. The result is depicted in Fig. 4.2.5 (c). The carrier

density is roughly constant in temperature and of the order of 2 − 3 × 1017 cm−3,

which agrees well with the low carrier density suggested for the investigated sample

(N = 6 × 1017 cm−3).

Lattice vibrational features are found in the spectra up to approx. 350 cm−1 revealed

by the enlarged view of σ1(ω) in the inset of Fig. 4.2.5 (a). This agrees well with a

previous infrared optical study on the phonons in the (112)-plane of Cd3As2 [151].

The feature with the highest frequency that safely can be interpreted as a phonon is

marked as P23 in the inset of Fig. 4.2.5 (a). The broad peak at 450 cm−1 in σ1(ω)

(gray dotted line) will be discussed in the next paragraph. The fit parameters of the

23 phonons found in the low temperature spectra are summarized in Tab. 4.2.1.

For the proposed centrosymmetric structure with the space group I41/acd (No. 142)

[145], Cd3As2 hosts 14A2u and 30Eu infrared active modes [159]. Even though the

present work reports the largest number of phonons so far [150, 151], not all Eu modes

(which should be visible when probing the in-plane infrared response) are observed.

This possibly arises from weak dipolar moments in the Cd3As2 structure [151], or

some modes may have very similar frequencies and, hence, are hard to resolve.

Intermediate region

In the range from 200 cm−1 to 2500 cm−1, between the Drude dominated frequencies

and the interband response, some temperature dependent structures appear in the

spectra. In a simple picture, where only the Dirac bands are at the Fermi level and

the chemical potential is finite (see Fig. 4.2.4), aside from the free carriers and the

interband response there should be no further structures. Hence the understanding

of these spectral features is not straightforward.

Fig. 4.2.6 (a) depicts the optical conductivity σ1(ω) below 2500 cm−1 for T = 300 K

and 10 K. The spectral weight, which is lost at low temperatures around 1500 cm−1,

appears to be transferred to lower as well as to higher energies, indicated with the

dotted black arrows. Note the unconventional temperature dependence in the fre-

quency range below 450 cm−1 (emphasized by the light blue circle). All attempts to

satisfactorily fit this temperature dependence failed. The fit of the 10 K spectrum

in Fig. 4.2.6 contains additionally to the Drude response and the phonons discussed

above, a Lorentz term (L) at 445 cm−1, an asymmetric Fano resonance term (F) at
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4.2. Cd3As2: Results and Discussion

Phonon ω0(cm−1) γ(cm−1) Ω = ω2
p(104 cm−2)

P1 98.9 9.6 2.29

P2 111.0 6.7 3.16

P3 120.8 5.8 1.92

P4 128.3 5.6 0.99

P5 137.9 12.4 2.71

P6 145.5 6.1 1.79

P7 152.7 4.2 11.4

P8 161.4 3.5 4.15

P9 168.3 3.1 2.37

P10 175.6 5.5 1.77

P11 179.2 3.0 0.76

P12 182.2 4.7 3.26

P13 188.5 3.1 0.26

P14 194.6 4.8 1.95

P15 209.0 4.1 0.83

P16 215.9 4.5 0.88

P17 220.5 3.2 0.87

P18 237.6 27.6 3.24

P19 263.2 43.1 4.87

P20 292.7 26.8 5.60

P21 309.0 9.8 0.45

P22 325.3 17.9 6.68

P23 340.9 20.6 1.90

Table 4.2.1: Center frequencies ω0, dampings γ and the oscillator strengths Ω = ω2
p (at

T = 10K) of the Lorentz terms utilized in the fits of the optical conductivity σ1(ω) of

Cd3As2 to model the phonons P1-P23.

1085 cm−1 with negative coupling q ≈ −13 and a Dirac interband term (D-IB) ac-

cording to Eq. 2.6.3 with NW = 4, vF = 3.7 × 105 m s−1, ∆E = 825 cm−1 = 102 meV.

The single contributions to the optical conductivity at 10 K are depicted in Fig. 4.2.6

3The asymmetric Fano line shape occurs when a discrete state couples to a continuum of excita-

tions at the same energy [160]. The optical conductivity of such a resonance minus the background

can be described as [161]: ∆σ1(ω) =
ω2

p

4πΓ
q2+2qz−1
q2(1+z2) with z = 2(ω−ω0)/Γ. Here, Γ is the linewidth, ω0

is the center frequency and ωp is the plasma frequency of the resonance. q denotes a dimensionless

coupling parameter. For q → ∞ the Lorentz shape is recovered.
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(f). Note, that the observation of Fano shaped modes was recently also reported in

other Dirac and Weyl materials as, TaAs [162] and Graphene [161, 163].

The attempt to apply the same model to the 300 K spectrum works well for a wide

frequency range as revealed by panel (d) in the same figure. The fit depicted in this

panel contains the same terms as before. The coupling of the Fano term decreased

slightly to q ≈ −1.5 and the damping of the Dirac interband onset increased as did

∆E. In the range of the Lorentz term, where the anomalous temperature dependence

is observed (emphasized by the light blue circle), the fit does not describe the spectra

well. Even though all the phonons contributing in that range (P17-P23) are set to

zero oscillator strength, the fit overestimates the real conductivity.

To get further insight into the temperature dynamics in the intermediate spectral

range, the Drude and phonon contributions (dashed gray lines in Fig. 4.2.6 (b,d)) are

subtracted from the optical conductivity σ1(ω) at T = 300 K and 10 K. The resulting

spectra are depicted in Fig. 4.2.6 (c). From these spectra the spectral weight SW =∫∞

0
σ1(ω)dω is calculated. The normalized spectral weight SW (10 K)/SW (300 K)

displayed in Fig. 4.2.6 (e), then reveals the redistribution, without perturbations

from the Drude dynamics. From panel (e), it is evident, that a portion of charges (or

dipoles) get more mobile upon cooling, while another portion gets more localized.

At 2500 cm−1 the spectral weight is conserved, meaning all the dynamics happen

below this energy scale. It is hard to imagine, that the spectral weight of the same

electronic system is redistributed to lower and higher energies. In other words, to

understand the temperature dependent structures in the intermediate spectral range,

two subsystems need to be considered.

It is yet unresolved, which electronic excitations or transitions are responsible for

the features just discussed. A first candidate are the transitions between the trivial

bands found along N-Γ (see Fig 4.1.1 (b)). Even though the direct gap between

these bands in the bandstructure calculations of Ref. [145] appears slightly too high

≈ 100 meV ≈ 800 cm−1, aside from the Dirac bands, they are the only ones that are

found in a reasonable energy distance to EF.

Second, in the Kane model, extensively discussed for the bandstructure in Cd3As2 [95,

138, 144, 153, 156, 157], a heavy hole band illustrated as brown line in Fig. 4.2.7 has

two band touching points with the conduction band. The transitions from this hole

band to the conduction band (black arrow) would be candidates for the observed

structures in the optical conductivity between intraband and interband frequency
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Figure 4.2.6: In the intermediate frequency range, σ1(ω) exhibits an anomalous tempera-

ture dependence (see light blue circle) and unconventional spectral weight transfer (a,e).

While the 10K spectrum up to 2500 cm−1 can nicely be fit with a Lorentz term (L), a

Fano resonance (F) and a Dirac interband term (D-IB) additional to the interband Drude

and the phonons (gray dashed line) (b,f), this approach fails to capture the anomalous

temperature dependence below 450 cm−1 (d). The normalized spectral weight in frame (e)

is calculated from the Drude subtracted spectra (c).
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ranges. Then the ‘interband’ conductivity corresponds to the transitions from the

red valence to the blue conduction band. The question is, where in this situation the

second hump in ε1(ω) at EL stems from.

Hence, the exact model suitable to describe the bandstructure of Cd3As2 remains

puzzling. The origin of the anomalous temperature dependence and spectral weight

redistribution, as well as the details of the mechanism responsible for the appearance

of a Fano shaped resonance are also unresolved to date and further investigations

are necessary to clarify these issues.

Figure 4.2.7: Schematic bandstruc-

ture for Cd3As2 in the Kane model

with an additional heavy hole band

(brown) crossing the conduction

band. The transitions indicated

with black arrows are possible can-

didates for the structures observed

in σ1(ω) at intermediate frequen-

cies, while the transitions marked in

pink are responsible for the inter-

band part of σ1(ω).

4.3 Conclusions

In conclusion, the interband optical conductivity of Cd3As2 reveals Dirac bands with

a sub-linear dispersion. We find evidence that the “Lifshitz gap” is approx. 370 meV.

The intraband conductivity can be well described with a single Drude term. The

temperature dependence of the Drude parameters indicates scattering rate domi-

nated transport characteristics. The effective mass m∗ of the carriers is deduced

from the inter- and intraband optical conductivities (see Tab. 4.3.1). To fit the in-

traband part satisfactorily, 23 Lorentz terms are introduced to account for lattice

vibrational features.

In the intermediate frequency range, where neither the Drude nor the interband tran-

sitions between the Dirac bands contribute significantly to the optical conductivity

σ1(ω), the spectra reveal an anomalous temperature dependence and spectral weight

transfer. The analysis evidences, that two subsystems contribute to the conductivity

in this frequency range. The exact mechanisms remain, however, puzzling to date.
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4.3. Conclusions

Tab. 4.3.1 summarizes values of the characteristic quantities extracted in this work

and compares them with values found in literature.

RRR N

(1017 1
cm3 )

vF

(105 m
s
)

∆E

(meV)

m∗ (me) Ref.

5.5 ≈ 3 7.6

(@nodes)

106

(@10 K)

0.03 (IB)

0.0065 (ωp)

this, O, T

-

-

1

8

9.3

9.3

100

200

0.02

0.04

[95], MO,

O

- 52 15 (kx,y)

1 (kz)

200 - [33],

ARPES

781 91 9.3 232 - [148], MT

5.5 53 11 - 0.044 [48], MT

- 1.3 - 96 - [80], O

- 17 10 286 0.05 [152], MT

- 10 15 - 0.023 [164], MT

- 25 8.8 192 0.044 [36], MT

- - 7.6 150 - [7], ARPES

- - 13 (kx,y,l)

3.3 (kz,l)

7.6 (kx,y,u)

2.3 (kz,u)

- - [8], ARPES

Table 4.3.1: Summary of the characteristic quantities of Cd3As2 found in this work and ex-

tracted from references. The abbreviation (M)T, O, MO, and ARPES stand for (magneto)-

transport, optics, magneto optics, and angle resolved photoemission spectroscopy and point

out, which technique was used to determine the values. The (IB) and (ωp) denote the val-

ues extracted from the interband conductivity and Drude plasma frequency, respectively.

The kx,y,z denote the momentum direction where the Fermi velocities are determined, and

the indices l and u refer to the lower (valence) and upper (conduction) cones.

85



The Dirac semimetal Cd3As2

86



5. The Weyl semimetal NbP

In this chapter, first, the material NbP will be introduced in Sec. 5.1 and the state

of research will be reviewed. Second, in Sec. 5.2 the experimental results will be

presented. Finally, in Sec. 5.3 the findings will be concluded and discussed in the

context of published theoretical and experimental investigations.

5.1 The material

NbP belongs to a class of binary compounds which comprises, next to TaAs, TaP and

NbAs. All of these compounds share the same crystal structure, but feature subtle

differences in terms of fermiology, due to varying amounts of spin-orbit coupling. In

this sense, NbP and TaAs mark the corner stones of this novel material class, since

those two exhibit the least and largest amount of spin-orbit coupling, respectively, as

Nb and P are rather light elements compared to Ta and As. The spin-orbit coupling

plays an important role for the appearance of Weyl nodes in NbP (as well as the

other materials of this class) and will be further illuminated in this section. First,

however, the crystal structure of NbP will be discussed.

NbP crystallizes in a body centered tetragonal symmetry with the space group I41md

(No. 109), the lattice parameters are a = 3.3324 Å and c = 11.3705 Å [165]. The unit

cell is illustrated in Fig. 5.1.1 (a). It is important to note, that the structure is lacking

an inversion center. The corresponding bulk Brillouin zone hosts two mirror planes

marked blue and yellow in Fig. 5.1.1 (b).

The interplay of the broken inversion symmetry with the spin-orbit coupling generally

can lead to the splitting of the Bloch bands almost everywhere in the Brillouin zone

due to the lifting of the spin degeneracy [166].

This effect is observed in various calculations, comparing the bandstructure without

and with inclusion of the spin-orbit coupling in this family of non-centrosymmetric

mono pnictides [28, 167, 168]. In the following a review of the relevant results for

NbP, following these references will be presented.
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Figure 5.1.1: The unit cell of NbP drawn with VESTA [146] according to crystallographic

data from Ref. [165] (a). The niobium atoms are depicted as large green spheres, while

phosphorus has accordingly a smaller diameter and is depicted in gray. Note the lack of an

inversion center in the unit cell. Panel (b) depicts the corresponding bulk Brillouin zone

with the high symmetry points labeled [28]. Blue and yellow shaded planes represent the

mirror planes kx = 0 and ky = 0.

In the absence of spin-orbit coupling it is found, that the valence and conduction

bands cross, and form closed nodal rings bound to the mirror planes kx = 0 and

ky = 0 as illustrated in Fig. 5.1.2 (a) and (c). The rings depicted in panel (c) are in

the kx = 0 plane, while the rings in the ky = 0 plane can be found by performing a

C4 rotation. Away from the high symmetry lines, no accidental band crossings are

found.

With the inclusion of the spin-orbit coupling (SOC), in the generalized gradient

approximation (GGA) calculations, the band crossings disappear, and valence and

conduction band become fully gapped along the high symmetry lines (Fig. 5.1.2 (b)).

The nodal rings are consequently also gapped almost everywhere, but three pairs of

Weyl nodes per loop remain, illustrated as red dots in Fig. 5.1.2 (c). In total two

species of Weyl points, inequivalent by symmetry, are found away from the Fermi

energy EF, and away from the high symmetry planes.

The Fermi surfaces that are formed by the trivial hole (red) and electron (blue)

pockets are depicted in Fig. 5.1.2 (d). In their shape altogether the Fermi surfaces

are reminiscent of the nodal loops that appear, when spin-orbit coupling is absent.
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Figure 5.1.2: Bandstructure and Fermi surfaces of NbP from generalized gradient ap-

proximation calculations (GGA) with and without spin-orbit coupling (SOC) according

to Refs. [28, 167, 168]. Panels (a) and (b) emphasize the drastic effect of the spin-orbit

coupling on the bandstructure. The nodal rings get gapped and three pairs of Weyl nodes

emerge per loop, illustrated by the red solid circles in panel (c), when spin-orbit coupling is

included. The Fermi surfaces of the hole and electron pockets are depicted in panel (d) in

red and blue, respectively. The Weyl nodes W1 are enclosed in the electron Fermi surfaces,

while the W2 nodes sit in the hole Fermi surfaces [49]. Panels (a), (b), (d) are adapted

with permission from Ref. [167]; copyright (2015) by the American Physical Society. Panel

(c) is adapted with permission from Ref. [168]; copyright (2015) by the American Physical

Society. Panel (e) is adapted with permission from [49]; copyright (2016) by the American

Physical Society.
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The trivial hole pockets form flat banana shaped surfaces and the electrons flat half

circles. The interplay of the missing inversion center and the spin-orbit coupling

leads to the doubling of the Fermi surfaces, meaning each Fermi surface in Fig. 5.1.2

(d) encloses another one that is concentric, which is not seen in the figure. Note,

that since the Weyl points are not at EF, they will also form small Fermi surfaces.

The Weyl points are characterized by a chirality of ±1. Mirror images of Weyl nodes

possess opposite chirality, while those related by rotational or time reversal symme-

try have the same chirality. The two species of Weyl cones are commonly referred

to as W1 and W2. The W1 Weyl points are found within the electron-like Fermi

surfaces and the W2 nodes are enclosed in the hole-like Fermi surface, as depicted

as solid circles in Fig. 5.1.2 (e) [49]. The green and purple color denote the different

chirality of the Weyl nodes.

In total, 24 Weyl points are found in the Brillouin zone (meaning 12 pairs of nodes

with opposing chirality). The W1 Weyl points belonging to cones of opposing chiral-

ity are located in the kz = 0 plane separated by the Σ − Γ line close to the Σ point.

By the fourfold rotational symmetry it is clear, that there exist 8 W1 nodes in the

Brillouin zone, as illustrated in Fig. 5.1.3 (a) and (b). The W2 points are located at

a general ~k point off the kz = 0 plane, and in total 16 nodes are found. In the top

view, on the (001) pane in Fig. 5.1.3 (b) it is illustrated, that the k-splitting between

the mirror pairs of the Weyl nodes is larger for W2 than for W1 which is generally

the case in this family of non-centrosymmetric transition metal mono-pnictides [168,

169]. With increasing amount of spin-orbit coupling, the k-splitting increases for

both species of Weyl nodes, meaning in TaAs the nodes are separated further than

in NbP [47, 169].

It is evident from quantum oscillations studies, ARPES and theoretical calculations,

that the W1 nodes possesses lower energy than the W2 nodes, which is true for all

compounds of this family [28, 49, 167, 168, 170]. In particular in NbP it was found,

that the W2 nodes possess a small positive energy distance ∆E,W2 to the Fermi en-

ergy EF. For the W1 nodes, ∆E,W1 is much larger and negative, meaning they are

located below EF [49, 171]. The dispersions around W1 and W2 are schematically

illustrated in Fig. 5.1.3 (c).

As it was pointed out in Sec. 1, Weyl fermions should exhibit exceptional topological

surface states, namely the Fermi arcs, connecting Weyl nodes of opposite chirality

in the bulk via the crystal surface. In NbP the topological surface states were in
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Figure 5.1.3: Schematic representation of the locations of the 24 Weyl nodes in the Brillouin

zone (a) [28, 170]. The green and purple solid circles denote the Weyl nodes of opposite

chirality. The W1 nodes are located in the kz plane close to the Σ point, while the W2

nodes are found at a general k point. The top view on the Brillouin zone emphasizes the

different distances in k of W1 and W2 nodes which are related by mirror symmetry (b)

[28]. Panel (c) schematically illustrates the locations of W1 and W2 nodes with respect to

the Fermi energy EF [49].
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detail discussed in ab initio calculations and observed in ARPES measurements [47,

169, 171, 172]. The second remarkable prediction of a non-conserved chiral charge in

presence of parallel magnetic and electric fields, the chiral anomaly, was very recently

reported in Ga-doped NbP [173]. The Ga doping is thereby necessary, to shift the

Fermi energy EF closer to the Weyl nodes, in order to assure a well defined chirality

[49, 174].

Many Dirac and Weyl semimetals exhibit extremely high mobilities (e.g. Cd3As2

[148], Na3Bi [175]) which is ascribed to large Fermi velocities vF of the massless

particles and a suppressed back scattering probability. For the extremely high mo-

bility in NbP, possibly also the almost perfect electron-hole compensation plays an

important role [170, 176], which is also discussed to be responsible for the linear

non-saturating magneto-resistance and high mobility in the type II Weyl semimetal

candidate WTe2 [177].

5.2 NbP: Results and Discussion

In the following the results that were obtained on high quality single crystals of NbP

in this work will be presented. The samples were provided by Dr. Ralph Hübner,

of the FMQ at the University of Stuttgart1. Transport and magneto-transport data

were contributed by Anja Löhle from PI12. The optical and magneto-optical mea-

surements were performed by the author, except from the zero field measurements

in the MIR and NIR, which were conducted by Weiwu Li from the PI1.

5.2.1 Transport properties

T -dependent resistivity

First, the temperature dependent resistivity ρ(T ) in the isotropic (001) plane of

NbP will be discussed. The transport measurements were conducted in four-contact

geometry on a sample of the same batch as the sample utilized for the optical and

magneto-optical measurements. Fig. 5.2.1 (a) displays ρ(T ) from room temperature

down to liquid helium temperatures. A clear metallic behavior is observed. For T ≥
150 K the resistivity increases linear in temperature, emphasized by the orange solid

1Institut für Funktionelle Materie und Quantentechnologien - Universität Stuttgart
21. Physikalisches Institut - Universität Stuttgart
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line. This behavior is commonly expected for metals above the Debye temperature,

and indicative for predominant electron-phonon scattering. The inset of Fig. 5.2.1

(a) enlarges the low temperature region of the resistivity ρ(T ) and reveals a residual

resistivity of the order ρ0 ≈ 0.55µΩcm, which is of the same order as in other reports

[170, 176, 178]. The residual resistivity ratio RRR = [ρ(300 K)/ρ0] ≈ 40 of our

sample reaches only half of the best reported values [170, 176, 178]. This indicates a

larger impurity concentration in the sample investigated in this work. Interestingly,

the extremely high carrier mobility was found to be rather independent of the RRR

in NbP and persists even in samples with lower residual resistivity ratio [178].
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Figure 5.2.1: The temperature de-

pendent resistivity ρ(T ) of NbP is

displayed as blue circles in panel

(a). The orange line empha-

sizes the T-linear behavior above

T ≥ 150K. The insert reveals

a very low residual resistivity of

ρ0 ≈ 0.55µΩcm. Panel (b) depicts

∆ρ = ρ(T ) − ρ0 on a double log-

arithmic scale. The orange line in

this panel reveals the power law ∝
T 2.7 below 150K, which is indica-

tive for the importance of electron-

electron interactions and the tem-

perature dependence of the chemi-

cal potential in NbP.

Fig. 5.2.1 (b) displays ∆ρ = ρ(T )−ρ0 on a double logarithmic scale. The orange solid

line in this plot reveals a power law behavior of this reduced resistivity ∆ρ ∝ T 2.7

for T . 150 K in good agreement with the findings in Ref. [178]. A predominant

electron-phonon scattering in metals yields a resistivity ∝ T 5 at low temperatures.

Hence, there have to be limiting mechanisms. One aspect are the electron-electron
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interactions that are expected to play a non negligible role for 3D Weyl particles

[70]. As it is well known, in case of an interacting electron liquid (Fermi liquid) the

resistivity follows a T 2 behavior at low temperatures.

If correlations are important, the mass m of the carriers is renormalized (m →
m∗). The effective mass m∗, is in general temperature dependent (m∗(T )), as widely

observed in heavy fermion compounds (e.g. CeAl3 [179]).

In semimetals the chemical potential (or Fermi energy EF), is temperature dependent

in general [75], and in NbP in particular [167]. This means, that additionally to

the temperature dependent relaxation time τ(T ) and the temperature dependent

effective mass m∗(T ) the carrier density N , cannot be assumed to be constant but

enters as another temperature dependent factor in3

ρ(T ) =
m∗(T )

N(T )τ(T )e2
. (5.2.1)

Therefore, the interpretation of the temperature dependence of the resistivity ρ(T )

in NbP is highly non-trivial.

T -dependent resistivity in magnetic fields

To gain a deeper insight into the properties of the carriers in NbP, magneto-transport

measurements were performed. Fig. 5.2.2 (a) displays the temperature dependence of

the in plane resistivity ρxx(T ) at various magnetic fields applied along the c-direction

(B⊥(001), see inset). The resistivity was measured in the (001) plane. Already fields

as small as B = 0.1 T induce drastic changes in the resistivity ρ(T ). In magnetic

fields, NbP exhibits semiconducting behavior below an onset temperature T ∗ that

can be defined as the temperature, where the resistivity changes slope from positive

to negative. The onset temperature T ∗ grows monotonous, and exceeds the mea-

sured temperature range at fields larger than B = 4 T, and the resistivity behaves

like that of a semiconductor for higher fields. Note, that for the fields B ≥ 2 T at

low temperatures a second decrease in the resistivity is observed in our measure-

ments, which, however, is not consistent with the reports in Refs. [170, 176]. Similar

anomalies were observed for other compounds in this family of materials and other

high mobility compounds [6, 174, 180, 181]. These anomalies are likely arising from

current jetting effects [32, 174, 181]. Therefore the data in Fig. 5.2.2 (a) for B ≥ 2 T

is cut to avoid misleading impressions. Furthermore, cutting out the high field data

3with Eq. 2.3.4 and ρ = 1/σDC
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does not perturb the further analysis of the resistance in magnetic fields.

The crossover from metallic to semiconducting behavior with increasing magnetic

fields appears to be common in these non-centrosymmetric mono pnictides and is

reported for all compounds of the family [6, 170, 174, 176, 180]. The development

from metallic to an insulating characteristic of the resistivity with increasing mag-

netic fields is not unique to the Weyl semimetals, but was observed recently in various

large magneto-resistance and high mobility compounds [177, 181–186].

A first naive approach to elucidate the nature of this ‘metal to insulator transition’

is, to analyze the thermal-activation-like behavior in the semiconducting regime of

the ρxx(T ) curves, to extract the relevant energy scale. For semiconductors, the gap

energy Eg can usually be estimated, since the resistivity follows an Arrhenius type

temperature dependence [187]

ρxx(T ) = ρ0e
Eg

kBT , (5.2.2)

where ρ0 is a multiplicative factor, and kB denotes the Boltzmann constant. Note,

that the Eg in Eq. 5.2.2 is related to the band gap energy Ebg via Ebg = 2Eg. Ap-

plying the natural logarithm to Eq. 5.2.2 enables direct access to the gap energy Eg.

Therefore, Fig. 5.2.2 (b) displays ln ρxx versus the inverse temperature T−1, where the

thermal activated behavior according to Eq. 5.2.2 should appear linear. Indeed for

magnetic fields B 6= 0, Fig. 5.2.2 (b) reveals quasi linear sections, emphasized by the

red dotted lines. From the derivative d ln ρxx/dT
−1 in Fig. 5.2.2 (c) it is clear, that

the linearity is not well defined, since the curves do not exhibit constant values over

broader temperature ranges. The poor linearity could be ascribed to several bands

with different gaps that have to be taken into account. However, there is yet no final

conclusion in the community concerning the magnetic field induced gap-like behavior

depicted in Fig. 5.2.2 (b), and the overall unconventional magneto-transport proper-

ties discussed in the next paragraph. The maximum slope in ln ρxx(T−1) (Fig. 5.2.2

(b)) and equivalently the peak heights in Fig. 5.2.2 (c) can be interpreted as a max-

imum gap value. The magnetic field dependence of this maximum gap, determined

from the steepest slope of the curves in Fig. 5.2.2 (b), is depicted in Fig. 5.2.2 (d).

The red line represents a
√
B fit of Eg and is reminiscent of the behavior expected

for the magnetic Landau levels in the Weyl bands (see Sec. 2.7.2).

Aside from the development of Eg with the magnetic field B, Fig. 5.2.2 (c) also reveals

the development of the transition temperature T ∗ that shows up as zero crossings in

d ln ρxx/dT
−1. For the B ≥ 4 T curves an estimation of T ∗ can be made by extrap-
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Figure 5.2.2: The temperature dependent in-plane resistivity ρxx(T ) exhibits a transi-

tion from metallic to insulating behavior in magnetic fields applied along the c-axis (a).

The onset temperature T ∗, defined as the minimum, is increasing monotonous in field B.

The Arrhenius plot in panel (b) reveals the thermal activated characteristic as quasi lin-

ear regions of the displayed curves emphasized by dashed red lines. From the derivative

d ln ρxx/dT
−1 in panel (c) the maximum gap Eg is obtained. Eg exhibits a

√
B dependence

(d), reminiscent of the Landau level behavior in Weyl cones. The temperatures T ∗, corre-

sponding to the zero crossing in panel (c), and the height of the maxima, corresponding

to Eg, share a linear relation displayed in panel (e). Violet solid circles in (d) and (e)

correspond to data points, red lines to fits (see text).
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olating the curves linearly as indicated by the dashed black lines in Fig. 5.2.2 (c).

From Fig. 5.2.2 (e), the transition temperature T ∗ and the gap Eg can be related

linearly. The fit (red line) reveals, that the gap value does not extrapolate to zero

for T = 0. Nonetheless, the slope of the fit yields Eg = 1.1kBT
∗. The linear scaling

of T ∗ and Eg implies, that T ∗ evolves also with
√
B and either quantity defines the

relevant energy scale.

Note, that in highly oriented pyrolitic graphite the magnetic field induced insulating

behavior was ascribed to an excitonic insulator phase that gaps the quasiparticle

spectrum and creates a site-centered charge density wave [188]. Even though in the

proposed model the characteristic
√
B dependence of the gap as well as of the tran-

sition temperature occurs, it has to be dismissed in the present case of NbP, since

the chiral Weyl cones can not be gapped unless two cones of opposing chirality are

translated to the same position in the reciprocal space (see Sec. 1).

Hall effect and transverse magneto-conductivity

A far more common approach to analyze the magneto-transport properties, found

in literature, is the fitting of the field dependent diagonal and off-diagonal elements

of the Hall resistivity tensor ρxx(B) and ρxy(B) with a single, or multi band model.

Hence, following the lines of many other works (e.g. [170, 176, 178]), the data in

this work is also analyzed in this regard. Note, that the discussion above, about a

magnetic field induced gap, and the analysis in the following, in a picture of free

carriers, are contradicting each other, and yet none of them is fully satisfying.

The transverse magneto-resistance MR = [ρxx(B) − ρxx(B = 0)] /ρxx(B = 0) is dis-

played in Fig. 5.2.3 (a) and (b) for T ≤ 150 K and T ≥ 200 K, respectively. The

investigated sample exhibits an extremely high magneto-resistance at T = 4.5 K and

B = 6.5 T of MR = 1.4 × 103. This compares well with other reported values in

NbP at similar fields and temperatures [170, 176, 178]. Note, that sample to sample

variations reflecting the differences in the RRR are, however, evident in these refer-

ences. Though the MR is extremely large in NbP, the record is held by WTe2 [189],

which exhibits a MR of 3.1 × 104 at B = 10 T and low temperatures for highest

RRR samples [190], but still, also values of the MR are reported, that are an order

of magnitude lower [191]. Fig. 5.2.3 (a) also reveals pronounced Shubnikov-de Haas

(SdH) oscillations in the 4.5 K and 10 K curves. This agrees with the finding, that

the MR is sensitive to the RRR, but the SdH oscillation amplitude is barely af-
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fected in NbP [178]. Surprisingly, the magneto-resistance of the investigated sample

at T = 300 K and B = 6.5 T of MR = 3 (see Fig. 5.2.3 (b)) is even exceeding the

reported values of the samples with the highest RRR [170, 176].

In most of the compounds exhibiting extremely large, transverse magneto-resistance,

as for instance WTe2 [177], NbSb2 [185] or TaAs2 and NbAs2 [181], the MR increases

quadratically with the magnetic field. The MR in NbP (as well as in the other com-

pounds of the family [176, 192]) develops quasi linear in field as seen in Fig. 5.2.3 (a)

and discussed in Refs. [170, 176, 178]. Commonly for metals, however, a quadratic

saturating magneto-resistance is expected. The linear non-saturating behavior of the

MR in NbP was suggested to arise from mobility fluctuations [176, 192, 193]. This

effect is also discussed to be the origin for the linear magneto-resistance in the Dirac

semimetal Cd3As2 [164].

The Hall resistivity ρxy(B) displayed in Fig. 5.2.3 (c) reveals a change from positive

to negative slope, indicating a change from hole dominated to electron like trans-

port towards low temperatures. The temperature where this change in transport

characteristic happens can best be determined from the temperature dependent Hall

coefficient RH = ρxy(B)/B, which is depicted for B = 6.5 T in Fig. 5.2.3 (d). The

zero crossing of RH at T ≈ 125 K marks the crossover from hole to electron domi-

nated transport, in excellent agreement with other experimental reports, as well as

theoretical calculations [167, 170, 176, 178]. Therefore at least two carrier species

need to be considered.

According to Kohler’s rule, the magneto-resistance in case of two contributing carrier

types is

MR = m

(
B

ρ0

)β

, (5.2.3)

where m and β depend on the material and ρ0 = ρxx(B = 0), if both carrier types

have the same scattering rate 1/τ [158]. Fig. 5.2.3 (e) clearly demonstrates, that

Kohler’s rule is not satisfied in NbP. A change of the power β with temperature is

observed, as exemplified by the linear fits to the 300 K and 4.5 K. Furthermore, a

drastic change in slope is occurring at low fields. The deviation of the MR from

Kohler’s rule is evidence, that the two types of carriers are affected differently by

different scattering mechanisms [158]. Therefore, a single carrier treatment is not

appropriate, and a two-band-model needs to be applied for the further analysis of

the magneto-transport data.
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Figure 5.2.3: The magneto-resistance MR = [ρxx(B)− ρxx(B = 0)] /ρxx(B = 0) in NbP

adopts an extremely large value at T = 4.5K and B = 6.5T of MR = 1.4× 103 (a). At

room temperature, the resistivity at highest measured field still increases by a factor of 3

(b). The Hall resistivity ρxy(B) (c) and the Hall coefficient (extracted at 6.5T) RH (d)

reveal a change from hole to electron like transport below approx. 125K. Kohler’s rule

states that MR = m
(

B
ρ0

)β
if there is only one scattering rate 1/τ . The violation of this

rule (e) indicates, that a two band model is required for the further analysis of ρxx(B) and

ρxy(B)
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The entries of the Hall conductivity tensor

σ̂ =

(
σxx σxy

σyx σxx

)
(5.2.4)

relate to the measured transverse magneto resistivity ρxx(B) and Hall resistivity

ρxy(B) as,

σxx(B) =
ρxx(B)

ρxy(B)2 + ρxx(B)2
(5.2.5a)

σyx(B) = −σxy(B) =
ρxy(B)

ρxy(B)2 + ρxx(B)2
. (5.2.5b)

The diagonal and off-diagonal elements σxx(B) and σxy(B) of the field dependent

Hall conductivity tensor in a two carrier model are represented as (see e.g. [6, 158,

176, 181, 194, 195]):

σxx(B) =
Neµee

1 + (µeB)2
+

Nhµhe

1 + (µhB)2
(5.2.6a)

σyx(B) =eB

[
Nhµ

2
h

1

1 + (µhB)2
−Neµ

2
e

1

1 + (µeB)2

]
. (5.2.6b)

The indices e and h stand for the electron and hole like carriers, while N and µ

denote the respective carrier concentrations and mobilities.

Fig. 5.2.4 (a) and (c) display the fits of the conductivity with Eqns. 5.2.6 for selected

temperatures. For high temperatures decent fits (lines) to the data (symbols) are

obtained. At low temperatures, however the low-field data point density appears to

be too coarse to really judge the fit quality. In the inset of Fig. 5.2.4 (c), the measured

σxx(B = 0), as well as the total conductivity calculated from the fit parameters

as, σxx = e [µeNe + µhNh], are displayed. Large discrepancies are observed at low

temperatures for the values obtained by the fits of σyx(B) (solid blue circles), while

those from the fits to σxx(B) (open red circles) give a rather consistent picture. The

deviations of the total conductivity from the measured σxx(B = 0) are not surprising

considering the insufficient data resolution at low temperatures.

The four free parameters in Eqns. 5.2.6, further hamper the acquisition of reliable

absolute values from the fits, and hence the following discussions are to be taken

100



5.2. NbP: Results and Discussion

0

1x105

2x105

3x105

0

1x1019

2x1019

3x1019

4x1019

5x1019

6x1019

7x1019

0.0 0.2 0.4 0.6 0.8 1.0
0

1x105

2x105

3x105

4x105

5x105

0 50 100 150 200 250 300
103

104

105

0 100 200
0

1x106

2x106

3x106

(c)

(a)
Data    Fit

  300 K
  100 K
  50 K
  4.5 K  

 

xy
 (

-1
cm

-1
)

 

 N
 (c

m
-3
)

xy         xx 
    Ne (W1)
    Nh (W2)

(d)

(b)

 
 

xx
 (

-1
cm

-1
)

B (T)

xy         xx 
    e (W1)
    h (W2)

 
(c

m
2 V

-1
s-1

)

 

T (K)

xx
 (

-1
cm

-1
)

T (K)

 0 T

xy

xx

Figure 5.2.4: The fits to the σyx(B) and σxx(B) are presented in the panels (a) and (c),

respectively. The inset of panel (c) displays the σxx(T ) at B = 0T together with the values

calculated from the fit parameters via σxx = e [µeNe + µhNh], to evaluate the self consis-

tency of the fits. The carrier densities Ne and Nh are weakly temperature dependent and

of the order of 2× 1019 cm−3 (b). The mobilities µe and µh exhibit a strong temperature

dependence and increase by two orders of magnitude over the measured temperature range.

The hole mobility is on average higher than the electron mobility and takes values as high

as µh ≈ 5× 105 cm2V−1 s−1.
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with a grain of salt. Nonetheless, the fits allow determination of the approximate

magnitude and the temperature developments of carrier densities and mobilities of

the electrons and holes. Note, that the fits were applied over the whole field range.

Fig. 5.2.4 (b) depicts the carrier densities obtained from the fits of σxy(B) as filled

symbols. The densities obtained by the fits of σxx(B) are represented as open sym-

bols. The electron densities Ne, are depicted as triangles pointing upwards and the

hole densities Nh as triangles pointing downwards. Since it is evident, that the

trivial bands play a negligible role in the DC transport, the carrier densities and

mobilities can straightforwardly be assigned to the W1 cones in case of the electrons

and to the W2 cones in case of the holes. Both carrier densities are in the order of

Ne ≈ Nh ≈ 2 × 1019 cm−3 and show no pronounced temperature dependence within

the rather large uncertainties. Note that from the two band model of σxy(B) no

information about the electrons can be obtained above 125 K in the hole dominated

transport regime.

The mobilities µe and µh, displayed in Fig. 5.2.4 (d) in the same style as the car-

rier densities reveal a drastic increase with decreasing temperatures for both carrier

species. The hole mobility µh is roughly a factor of 2 to 5 larger than the electron

motility µe and exhibits very high values of µh ≈ 5 × 105 cm2 V−1 s−1.

The mobility is related to the transport relaxation time τ via τ = m∗

e
µ, where m∗

is the effective carrier mass. Here, the cyclotron mass mc = 0.02me found in the

magneto-optical measurements presented in Sec. 5.2.3, can be utilized for an esti-

mation. With the Fermi velocity vF = 3.0 × 105 m s−1 found above for W2 the

transport mean free path of the carriers lf = vFτ can be obtained. The calculation

yields lf,h = 1.7µm for the carriers of the W2 cone at T = 4.5 K. This value is large

compared to the mean free path, commonly found in metals (e.g. 9 nm in Nb [196]),

however, still an order of magnitude smaller than in Cd3As2 [148]. The high mobility

and large mean free path in the Dirac and Weyl semimetals are discussed to possibly

arise from a mechanism that prevents back scattering of the carriers from impurities

[148, 178].

5.2.2 Optical experiments

In this section the temperature dependent optical data of NbP without magnetic

field will be discussed. The optical response was acquired on the as grown (001)

surface of the crystal for frequencies ω = 40 − 25 000 cm−1. Fig. 5.2.5 displays the

reflectivity R(ω), the real part of the optical conductivity σ1(ω) and the real part of
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the dielectric function ε1(ω) in the panels (a), (b) and (c), respectively. For clarity

only the spectra of three temperatures, namely T = 300, 150, 10 K, are displayed

in the main panels. Note the logarithmic frequency axes in all panels, as well as

the logarithmic conductivity axis in frame (b). The reflectivity at high frequencies is

only weakly temperature dependent. In the MIR and FIR below 3000 cm−1, moderate

dynamics is observed. Two sharp features at 335 cm−1 and 369 cm−1 can be resolved.

These sharp modes are better seen in real part of the optical conductivity σ1(ω) in

Fig. 5.2.5 (b) and are accentuated with black arrows. The peak positions are almost

temperature independent, as revealed by the enlarged view in the inset of panel (b).

The dotted black lines act as guide to the reader’s eye. Both modes can be assigned

to optical phonons mainly involving in-plane displacements of the P-atoms in the

lattice [197, 198].

The metallic nature of NbP discussed in Sec. 5.2.1 manifests in a very high reflectivity

at low frequencies as well as a peak at ω = 0 in σ1(ω) narrowing with decreasing

temperature. The dielectric function ε1(ω) correspondingly exhibits large negative

values at low frequencies. The reflectivity exhibits a steep downturn at ω ≈ 450 cm−1,

reminiscent of plasma edge. In the same frequency range, the dielectric function ε1(ω)

in Fig. 5.2.5 (c) experiences a zero crossing. Hence, the screened plasma frequency

can be estimated as ωp,scr ≈ 700 − 800 cm−1. Looking closely at the steep downturn

of the reflectivity in frame (a), a shoulder-like structure can be identified at low

temperatures.

The optical conductivity reveals a gap-like feature where the shoulder appears in the

reflectivity, followed by a step towards higher frequencies. The permittivity ε1(ω)

also exhibits a kink-like structure (marked by a black arrow), which can be inter-

preted as a peak in the spectrum, that is superposed with the rapid decrease from

the free carriers. The step in σ1(ω), the peak in ε1(ω), as well as the shoulder in the

reflectivity all appear at the same frequency (emphasized by the vertical grey dotted

line), and are hallmarks of the onset of interband transitions within a Weyl cone in

case of finite chemical potential ∆E 6= 0 (see Sec. 2.6).

From the step towards higher frequencies a quasi linear increase of σ1(ω) is found

between 1000 cm−1 and 2200 cm−1 for all temperatures. This ω-linear increase is

emphasized by the dashed black line in Fig. 5.2.6, where σ1(ω) is depicted on a linear

scale. This supports the interpretation of the step in σ1(ω) as onset of Weyl cone

interband transitions.

The ω-linear part does not extrapolate to zero, indicating, that the simple model of

a single Weyl cone (Sec. 2.6.1) is not sufficient. Since it is yet unclear which cone(s)
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Figure 5.2.5: The temperature dependent reflectivity R(ω) (a), optical conductivity σ1(ω)

(b), and dielectric function ε1(ω) (c) for selected temperatures. The inset of frame (b)

highlights the temperature independence of the two phonons marked in the main frame

with black arrows at 335 cm−1 and 369 cm−1. The kink in the dielectric function (marked

with an arrow in panel (c)), comes along with a step in the optical conductivity and a

shoulder in the reflectivity. These features are reminiscent of the onset of the Weyl cone

interband transitions with finite chemical potential (see Sec. 2.6).
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contribute in the linear conductivity region, NW is unknown and it is not appropriate

to obtain a Fermi velocity from the slope of σ1(ω) with Eq. 2.6.3.

To get quantitative information, the spectra are fit with the four-band model pre-

sented in Sec. 2.6, which is, due to the spin orbit split bands in NbP, the most

appropriate of the available models. This model predicts distinct features in the

optical response related to certain transitions within the Weyl bands. Consequently,

prior to modeling, locating these subtle details of the spectra is crucial.

Before coming to that, one more comment: the optical response at higher frequen-

cies is dominated by structures that straightforwardly can be assigned to interband

transitions between lower valence and higher conduction bands. In the following, the

analysis of these high energy features will be omitted.
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Figure 5.2.6: The optical conduc-

tivity displayed on linear scale

reveals an ω-linear increase for

all temperatures between approx.

1000 cm−1 and 2200 cm−1. The

dashed black line acts as guide to

the readers eye. Note, that the lin-

ear conductivity does not extrapo-

late to ω = 0.

A close look on the spectra reveals various faint features. The first two are found in

the FIR and will be referred to as ω1 and ω2. They are highlighted with pink and

purple arrows in Fig. 5.2.7 (a) and (b), which display enlarged views of the reflectivity

R(ω) and optical conductivity σ1(ω) in the FIR range. The spectra for different

temperatures are shifted for clarity. These two humps are subtle, however, they are

well within the FIR spectral range. There, the relative measurement accuracy is

high, and hence these structures can assumed to be real, unlike the kink at 100 cm−1

that simply arises from the merging of FIR and F2IR spectral ranges.

It is surprising that the feature at ω2 appears to get broader with decreasing tem-

perature, which is especially evident in the conductivity spectra in panel (b).

Another, more prominent detail is the step in the optical conductivity, already dis-

cussed above as an obvious onset of Weyl interband transitions, marked with an

violet arrow and labeled ω3 in Fig. 5.2.7 (c). The sharp kink, after the step preceding

the linear increase of the optical conductivity, is labeled with ω4 and marked with a
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Figure 5.2.7: The subtle features at ω1 and ω2 in NbP can be traced in the reflectivity

R(ω) (a) and the optical conductivity σ1(ω) (b). These two features appear well within

the FIR measurement range, where the relative accuracy is high. The feature at 100 cm−1,

arises from the merging of FIR and F2IR. More pronounced features at higher frequencies

are marked in the optical conductivity σ1(ω) in panel (c) and labeled ω3, ω4 and ω5. The

spectra in all panels are vertically offset for clarity.
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brown arrow.

One more aspect of the spectra needs to be highlighted, although it is only clearly

resolved at low temperatures. In Fig. 5.2.7 (c) the green arrow labeled ω5 marks an

inflection point in the low temperature spectra, that can be attributed to details of

the bandstructure in NbP.

Having identified all the spectral details, the four-band model introduced in Sec. 2.6

can be applied to fit the interband optical conductivity. Two separate terms are

introduced to account for the W1 and W2 interband transitions. The free carrier

response can be accounted for by Drude terms (see Sec. 2.3). The magneto-transport

data discussed in Sec. 5.2.1 indicates two carrier species with high mobilities. Hence,

two Drude terms with low scattering rates γ are utilized to model their response4.

In the fitting process, a third Drude term with much larger γ and low conductivity

σDC needs to be introduced to fit the optical conductivity σ1(ω) satisfactorily. This

term can straightforwardly be assigned to carriers of the trivial pockets.

Note, that only the real part of the optical conductivity σ1(ω) could be fit by the

analytical expressions given in Ref. [74], since there is yet no expression for the imag-

inary part σ2(ω) available. The high frequency interband transitions and spectral

features for ω ≥ 2500 cm−1 were ignored in the fitting process.

Fig. 5.2.8 (a) and (b) display the optical conductivity of NbP at 300 K and 10 K as

red and blue stars, respectively. The corresponding fits are depicted as solid black

and gray lines. Both fit curves contain the three Drude terms, for the W1 carriers (D-

W1), the W2 carriers (D-W2) and the carriers of the trivial pockets, that are mostly

hole like (D-TH) [170]. Two terms (W1-IB and W2-IB) are included to model the

Weyl interband response.

The sum of conductivities in the zero frequency limit σ1(ω → 0) of the Drude terms

was anchored at the measured DC-condudctivity, as depicted in Fig. 5.2.8 (c). In

this panel, the small red open circles represent the measured DC-conductivity σDC

and the purple solid circles the sum of the Drude conductivities at zero frequency

in the fit. The highly mobile Weyl carriers posses a scattering rate γ in the order

of 10 cm−1, which places most of their Drude spectral weight outside the measured

frequency range. Thus, the constraint of the Drude terms by the DC-conductivity

is necessary to guarantee consistency of optical and transport data, and reduce the

4The response of the two high mobility carrier species can be also approximated by a single

Drude term.
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free parameters of the Drude terms.

Fig. 5.2.8 (d) displays the temperature dependence of the scattering rates of the three

carrier types (same color scheme as in panels (a) and (b)). All scattering rates reduce

with lowering the temperature, as expected for a metal. The carriers with the lowest

scattering rate can be assigned to the hole-like W2 carriers, and the other species

with low scattering rate to the electron-like W1 carriers.

The scattering rate γ relates to the carrier mobility µ via

γ =
e

m∗µ
. (5.2.7)

Utilizing the cyclotron mass of mc = 0.02me as m∗, (see Sec. 5.2.3) and inserting

the mobilities of the W1 and W2 carriers deduced in the magneto-transport at 10 K

(see Sec. 5.2.1), yields scattering rates γW1 ≈ 18 cm−1 and γW2 ≈ 6 cm−1. The scat-

tering rates γ of W1 and W2 at low temperatures deduced from optics, depicted in

Fig. 5.2.8 (d), are of the same order, which demonstrates the excellent consistency of

the presented analyses.

Fig. 5.2.8 (e) displays the total carrier density Ntot calculated from the Drude terms

as

Ntot =
m∗ω2

p,tot

4πe2
, (5.2.8)

with the total plasma frequency ωp,tot =
√
ω2
p,W1 + ω2

p,W2 + ω2
p,TH and the effective

carrier mass m∗ approximated with mc = 0.02me as before. The total carrier

densities Ntot = Ne + Nh obtained from σxx(B) and σxy(B) in Sec. 5.2.1 are de-

picted as open and solid triangles, respectively, while the values obtained from σ1(ω)

are represented as purple solid circles. All carrier densities are of the same order

(≈ 5 × 1019 cm−3), further proving the trustworthiness of the analyses.

Regarding the interband part, all spectral features labeled with ωi (i = 1 − 5) dis-

cussed above are captured qualitatively in the fit. The fits to spectra below 300 K

contain an additional Lorentz oscillator (L) at ≈ 200 cm−1, which is indicated in

light gray in panel (b). There are two possible explanations for this feature. Ei-

ther it arises from a low energetic interband transition between trivial bands in the

complicated bandstructure of NbP, which is overdamped at room temperature, and

hence not visible in the 300 K spectrum. Or, since it appears in the close vicinity to

ω2, it might also be related to the van Hove singularity of the W2 bandstructure. The
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Figure 5.2.8: The fit (black solid line) to the optical conductivity σ1(ω) at 300K (red

stars) consists of three Drude terms D-W2, D-W1 and D-TH to account for the free carrier

response of the W2 cone, the W1 cone and the trivial bands, respectively. The Weyl

interband transitions are modeled with two terms W2-IB and W1-IB utilizing the four-

band model presented in Ref. [74]. The fit (gray solid line) to the optical conductivity

σ1(ω) at 10K (blue stars) contains an additional Lorentz term L (light gray) (as do all

other spectra at tempertures below 300K). Panel (c) demonstrates the consistency of the

fit in the ω → 0 limit with the σDC data. The scattering rate γ of the trivial carriers

is at least an order of magnitude larger compared to the Weyl carriers (d). The total

carrier density Ntot obtained in the optical analysis is in good agreement with the densities

deduced from magneto-transport data in Sec. 5.2.1, which is another evidence for a decent

self-consistency of the presented analyses.
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model presented in Ref. [74] does not allow to introduce different mass parameters

m for the four different bands. Hence, if one of the ‘inner’ bands is more flat than

the other, possibly the corresponding spectral feature is stronger.

The deviations of the fit from the linear portion of σ1(ω) at low temperatures, clearly

seen in Fig. 5.2.8 (b), can be understood in a similar fashion. The model does not

allow to introduce different Fermi velocities vF, for the single bands. Since the devia-

tions appear at frequencies, just above the onset of the interband transitions between

the ‘outer’ bands of W1, corresponding to ω5, this would mean, that these ‘outer’

bands possess actually a larger vF than set in the fit parameters for all four bands.

Figure 5.2.9: For a satisfactory fit

of σ1(ω), the Fermi velocity vF of

the W1 term (green solid circles)

needs to possess a temperature de-

pendence, while for the W2 term

it is constant (violet solid circles).

The dashed red line is a linear fit

and reveals a linear decrease of

vF,W1 with 310m s−1K−1.
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Another peculiarity of the interband response is, that the W1 term needs a tem-

perature dependent Fermi velocity vF to obtain satisfactory fits. In Fig. 5.2.9, the

temperature dependence of the Fermi velocities are displayed. Clearly vF,W1 decreases

towards lower temperatures, while vF,W2 is constant. The red dashed line in this plot

represents a linear fit that reveals a decrease of vF,W1 with a slope of 310 m s−1 K−1.

The observation of a linearly decreasing Fermi velocity is intriguing, however yet

not understood. Note, that a similar temperature dependent Fermi velocity was re-

ported very recently in YbMnBi2 [199], where this observation is discussed to arise

from a combination of temperature dependent chemical potential, bandstructure and

self energy effects. However, in case of NbP, possibly also a temperature dependent

trivial interband transition, that contributes at the same frequencies as the W1 in-

terband response could be the origin such behavior in the fit parameters.

Irrespective of the temperature dependence of the W1 Fermi velocity, the extracted

values of vF,W2 = 1.6 × 105 m s−1 and vF,W1 of the same order ≈ 105 m s−1, are in

excellent agreement with the value extracted from the magneto-transport data in
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Sec. 5.2.1 as well with the values reported in Refs. [167, 168, 170, 178]. For a mean-

ingful comparison, the momentum averaging nature of optical experiments needs to

be remembered.

The Weyl fit parameters m, b and ∆E remain constant in temperature and are

summarized in Tab. 5.2.1. The knowledge of vF, m, b and ∆E for the Weyl cones,

enables to plot a quantitative bandstructure around the Weyl nodes according to

Eq. 2.6.5. Since optics is a momentum averaging probe, the resulting bands are

‘effective’ dispersions averaged over kx, ky and kz. Furthermore, as already discussed

above, the four-band model of Ref. [74] does not account for possible asymmetries.

The energy scales are, however, adequate. Fig. 5.2.10 displays the resulting effective

dispersions ǫeff,W1 and ǫeff,W2 around the W1 and W1 Weyl nodes, respectively. The

W1 dispersion is thereby plotted with the Fermi velocity at 150 K. The transitions

between the bands, responsible for the subtle details of the optical conductivity, are

illustrated with arrows and labels ωi (i = 1 − 5) in the same colors as in Figs. 5.2.7

and 5.2.8.
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Figure 5.2.10: The effective disper-

sions ǫeff,W1 and ǫeff,W2 around

the W1 and W2 Weyl nodes ac-

cording to Eq. 2.6.5. The transi-

tions between the bands respon-

sible for the subtle details in the

spectra are marked with arrows

and labeled ωi (i = 1− 5).

A remarkable finding in Fig. 5.2.10 is the fact that, the k-splitting of the W1 nodes

of opposing chirality (∆k ≈ 0.08 Å
−1

) is larger than the k-splitting of the W2 nodes

(∆k ≈ 0.05 Å
−1

). However, the extraction of the k-splitting from the momentum av-

eraged optical data has to be treated very cautiously. Nevertheless, the approximate

value of the k-splittings in Fig. 5.2.10 are in good agreement with the findings in an

ARPES study [47].
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Cone m(meV) b(meV) ∆E(meV) vF(105 m s−1)

W1 20.6 35.0 27.6 1.0 (@ 150 K)

W2 11.9 29.3 12.9 1.6

Table 5.2.1: The parameters of the Weyl interband terms utilized to fit σ1(ω) as depicted

in Fig. 5.2.8. The displayed Fermi velocity vF of the W1 cone corresponds to the fit at

150K.

5.2.3 Results: Magneto-Optics

Low field measurements

This section is dedicated to the analysis of the optical properties of NbP in high

magnetic fields. The spectra up to B = 7 T were measured in the setup described

in Sec. 3.4 for frequencies ω ≈ 80 − 2000 cm−1. The field range was extended up to

B = 30 T in the HFML in Nijmegen5 in the FIR ω ≈ 30 − 900 cm−1. All magneto-

optical measurements were conducted in Voigt geometry with field applied in the

(001) plane of the crystal and the optical response of the selfsame was measured

with unpolarized light. While in the measurements in the setup built in this work

absolute spectra were obtained with the gold evaporation technique, in the HFML

only relative reflectivity spectra could be gathered.

First, the spectra in fields up to B = 7 T will be discussed. Fig. 5.2.11 (a) depicts the

reflectivity measured in the magneto-optical setup at fields of B = 0 T and B = 7 T

and a temperature of T = 7 K as thick blue and orange lines. For comparison, also

the spectrum measured in the zero field gold evaporation cryostat at T = 10 K is

displayed as a thin black line. Some small, field induced changes are clearly visible

already in the absolute reflectivity. The most pronounced feature occurs around the

plasma edge and the changes are accentuated with the violet arrows. The shifting of

the reflectivity to lower and higher frequencies in magnetic fields at these frequen-

cies can straightforwardly be assigned to the magnetic field induced splitting of the

screened plasma frequency ωp,scr discussed in Sec. 2.7.1. In the relative reflectivity

R(7 T)/R(0 T) in Fig. 5.2.11 (c), this magneto plasma effect turns up as two minima,

separated by a maximum, indicated again by violet arrows. The dashed violet lines

act as guide to the reader’s eye. In panel (c) the relative spectra of two independent

measurement runs (M1 and M2) are displayed, to emphasize the reproducibility of

the features discussed in the following, and to set them apart from noise.

5High Field Magnet Laboratory, Nijmegen, The Netherlands
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Frame (b) of Fig. 5.2.11 depicts the optical conductivity σ1(ω) in the same style as in

frame (a). For the Kramers-Kronig transformation, the 10 K zero field spectrum is

utilized to extrapolate the spectra measured in the magneto-optical setup. A series

of asymmetric peaks appears in field in agreement with the expectations for Weyl

Landau level transitions (see Sec. 2.7.2). To prevent confusion, the phonon already

discussed in Sec. 5.2.2 is marked with a black arrow.

The peaks that can unambiguously be resolved in the optical conductivity σ1(ω) are

marked with arrows pointing downwards and labeled λi (i = 3, 4, 5) in panel (b). The

dotted lines reveal, that the peaks in σ1(ω) correspond to minima prior to maxima,

or better, the positive slopes in the relative reflectivity in panel (c). Knowing this,

further features can be determined in R(7 T)/R(0 T), which is the quantity that is

most sensitive to field induced changes. These features, found in R(7 T)/R(0 T),

are marked with arrows pointing upwards and labeled λi (i = 1, 2, 7) in panel (c).

The dotted lines reveal, that also these features belong to peaks in σ1(ω) which are

perturbed by noise in case of λ1,2 and fall in the range of a maximum arising from

the magneto plasma effect in case of λ7. Further support for the interpretation of

these features is obtained by considering the complete field dependence in the next

paragraphs.

To trace down the field dependence of the signatures that can a priori be assumed

to arise from Landau level transitions, as well as the development of the plasma

edge splitting, the relative reflectivity spectra R(B)/R(0 T) for fields up to B = 7 T

are displayed in Fig. 5.2.12 (a). For clarity the spectra are stacked along the y-axis.

This figure reveals a rich structure of field induced changes to the reflectivity for all

measured fields. The development of the features labeled with λi in Fig. 5.2.11, is

indicated by the symbols displayed in the background of the spectra. One additional

signature of a Landau level transition is found between λ5 and λ7 at fields B ≤ 6 T,

which is masked by the large spectral changes arising from the plasma frequency

splitting. In Fig. 5.2.12 (a) this feature is labeled with λ6. All marked details labeled

with λi (i = 1 − 7) exhibit a shift to higher frequencies with increasing fields. The

exact field dependence of this characteristic behavior will be discussed later.

First, light will be shed on the splitting of the plasma edge in field. The violet stars in

Fig. 5.2.12 (a) mark the approximate positions of the minima that can be assigned to

the splitting of ωp,scr. Especially the minimum at higher frequencies is perturbed by

some field dependent processes. At 1 T, for instance, it appears as if a broad hump is

overlaying the minimum. Furthermore, a weak hump shifting through the minimum
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Figure 5.2.11: The absolute reflectivity R(ω) (a) and optical conductivity σ1(ω) (b) of NbP

measured in the magneto-optical setup at B = 0T and B = 7T. The spectra obtained

in the zero field cryostat are additionally displayed as thin black lines. A clear splitting

of the plasma frequency ωp,scr is observed in the reflectivity (purple arrows) which turns

up as two dips in the relative reflectivity R(7T)/R(0T) (c). Multiple features that can be

attributed to inter Landau level transitions are labeled with λi (i = 1−7) in frame (b) and

(c). The relative reflectivities of two independent measurements M1 and M2 reveal large

reproducibility of these features (c).
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is resolved for B ≥ 5 T. The frequency distance of these minima corresponds to

the cyclotron frequency ωc as discussed in Sec. 2.7.1. The field dependence of the

cyclotron energy Ec = ~ωc is displayed in Fig. 5.2.12 (b) as violet stars. Additionally

displayed, as green solid circles in this panel, is the field dependence of the ‘gap

energy’ Eg that was extracted from the resistance measurements in magnetic fields

in Sec. 5.2.1. Both quantities display stunning agreement. This indicates, that the

development of the ‘gap energy’ in the magneto transport data is likely related to

the localization of carriers on Landau orbits. Moreover this demonstrates excellent

self-consistency of the data sets and their analysis. The cyclotron energy Ec (or

energy distance between two adjacent Landau levels in a Weyl cone) follows [86, 95,

200]

Ec = En+1 − En = vF
√

2e~B
(√

|n+ 1| −
√
|n|
)
, (5.2.9)

The red line is the fit of the cyclotron energy Ec where n = 0 is assumed. This yields

a Fermi velocity of vF = 3.1 × 105 m s−1 as a lower limit (because of the choice of

n = 0).

The observation of the
√
B-dependence of Ec challenges the statement, that the

cyclotron frequency of massless particles also scales linear with the magnetic field

just like for conventional massive particles of parabolic bands [69, 201, 202]. This

putative objection is easily resolved considering the fact, that the expectation of a

B-linear ωc only holds in the semi-classical limit. In other words, NbP is in the quan-

tum limit already at very low fields. Note, that Ec in Fig. 5.2.12 (b) could also be

approximated linear, however the resulting positive intercept with the y-axis would

be unphysical.

Nevertheless, approximating the cyclotron frequency at each field with the linear re-

lation ωc = eB/mc leads to a field dependent cyclotron mass mc ranging from 0.01me

at 1 T to 0.025me at 7 T. In average the effective cyclotron mass mc = 0.02me, uti-

lized in the sections above, is obtained as a rough estimate.

Another intriguing aspect of the spectra in Fig. 5.2.12 (a) is found between 800 cm−1

and 900 cm−1. The hump in this frequency range is not moving in field, similar to the

maximum separating the two minima arising from the plasma frequency splitting.

Therefore as an interpretation of this feature a second split of the plasma frequency

could be discussed, which would confirm the dispersive nature of the Landau levels

of the Weyl cones and the consequential existence of a distribution of resonance fre-

115



The Weyl semimetal NbP

200 400 600 800 1000

0 1 2 3 4 5 6 7
0

10

20

30

(a)  c

1

2

3

4

5

6

 7

 7 T
 6 T
 5 T
 4 T
 3 T
 2 T
 1 T

 

 

R
(B

)/R
(0

T)

Frequency (cm-1)

(b)

0.01

 
 Ec

Eg (transport)
 Fit

E
 (m

eV
)

B (T)

Figure 5.2.12: The relative reflectivities R(B)/R(0T) for fields from B = 1T to B = 7T

in 1T steps (a) obtained in the magneto-optical setup. For clarity, the spectra are stacked

vertically. The field dependence of the features labeled with λi can be traced nicely, as

indicated by the open symbols. The splitting of the plasma frequency is marked with

violet open stars, and the correspondent cyclotron energy Ec is displayed in panel (c). An

excellent agreement of Ec and Eg (found in magneto-transport, Sec.5.2.1) is obtained.
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quencies [83]. However, the minima accompanying this hump do not appear to split

further in field, rather the opposite is the case. Hence, at this point the interpreta-

tion of this feature remains unclear and further investigations are needed to clarify

its origin.

Note, that the frequencies exceeding the displayed range in Fig. 5.2.12 (a), which

were also measured in magnetic fields, did not reveal any significant changes and are

consequently not shown. Furthermore, it has to be mentioned, that the determina-

tion of the features depicted in Fig. 5.2.12 (a) was crosschecked with the appearance

of peaks in the absolute optical conductivity in field σ1(B) as well as with peaks in

the relative optical conductivity σ1(B)/σ1(0 T), to achieve the best possible confi-

dence in the trustworthiness of the features.

High field measurements

To further trace the developments of the spectral features in magnetic field, the

measurements up to 30 T are displayed in Fig. 5.2.13 (a) in a stacked manner. Three

of the dips, namely λ1, λ2 and λ3 are found in the displayed frequency range, and

hence, can also be traced for the higher magnetic fields. The noise in the high field

measurements is larger, but also the features get more pronounced with increasing

the field. The transitions labeled with higher indices i = 4, 5, 6, 7 can not be resolved.

Anyway, these are expected to move out of the frequency window at moderate fields

already. The black arrow emphasizes the lower frequency dip, that belongs to the

plasma frequency splitting. At B = 12 T this dip has vanished due to a maximum

that moves in the same frequency range. The development of this plasma edge

splitting at low fields nicely confirmes the observation in Fig. 5.2.12 (a).

In the B = 20 T spectrum a new dip λ8 appears at a frequency below λ1. Also

this feature develops in field, and hence, can be assumed to arise from another inter

Landau level transition. A useful way to figure out the transitions responsible for

the optical signatures λi is, to examine the ratios between their frequencies. The

frequencies of λ1 : λ3 : λ4 : λ5 : λ6 : λ7 relate like 1 : 2.2 : 3.1 : 3.3 : 4.0 : 4.4. These

ratios compare reasonably well with the ratios expected for the signature frequencies

of inter Landau level transitions for Weyl cones discussed in Sec. 2.7.2 which would

be: 1 : 1 +
√

2(≈ 2.4) :
√

2 +
√

3(≈ 3.1) :
√

3 +
√

4(≈ 3.7) :
√

4 +
√

5(≈ 4.2) :√
5 +

√
6(≈ 4.7).

The features at λ8 and λ2 fall out of this scheme. However, these two themselves
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relate as λ8 : λ2 ≡ 1 : 2.36.

The frequencies labeled with the λi can accordingly be assigned to the interband

Landau level transitions L−n → Ln+1 and L−(n+1) → Ln as indicated in Fig. 5.2.12

(b) and summarized in Tab. 5.2.2. Fitting the field dependence of the transitions

in Fig. 5.2.12 (b) with the equations introduced in Sec. 2.7.2 or Eq. 5.2.9, respec-

tively, yields average Fermi velocities of vF,W2 = 1.78 × 105 m s−1 and vF,W1 =

1.25 × 105 m s−1. These values excellently agree with the values obtained from the

fits to the optical conductivity σ1(ω) at zero field. The values of the single fits are

displayed in Tab. 5.2.2, and exhibit only a small scattering around the averages just

stated.

The assignment of the transitions to the cones W1 and W2 in Tab. 5.2.2 is obvious

by comparison of the values of the Fermi velocities vF obtained from the fits, with

those gathered from the zero field spectra. Furthermore, the fact, that the W1 node

is further away from the Fermi energy, and therefore, only enters the quantum limit

at fields as high as B = 20 T, while for W2 cone already clearly the case at B = 5 T,

supports the assignment of the transitions as stated in Tab. 5.2.2.

Note, that the λ3 frequency can be interpreted as the L−1 → L2 (L−2 → L1) tran-

sition of the W2 cone or as L−2 → L3 (L−3 → L2) transition of the W1 cone, since

both approximately coincide for the Fermi velocities vF,W1 and vF,W2 stated above.

The other transitions can, however, be assigned unambiguously.

Label Cone Transition vF(105 m s−1)

λ1 W2 L0 → L1; L−1 → L0 1.86

λ3 W2 L−1 → L2; L−2 → L1 1.69

λ4 W2 L−2 → L3; L−3 → L2 1.85

λ5 W2 L−3 → L4; L−4 → L3 1.70

λ6 W2 L−4 → L5; L−5 → L4 1.75

λ7 W2 L−5 → L6; L−6 → L5 1.80

λ8 W1 L0 → L1; L−1 → L0 1.21

λ2 W1 L−1 → L2; L−2 → L1 1.29

Table 5.2.2: Assignment of the features labeled with λi to the inter Landau level transitions

L−n → Ln+1; L−(n+1) → Ln of the W1 and W2 Weyl cones. The Fermi velocities vF are

obtained by fitting the field dependence of the features.

6Note, that the stated experimental ratios are averaged over the ratios at all fields where the

corresponding transitions are visible.
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Figure 5.2.13: The relative reflectivities R(B)/R(0T) at T ≈ 1.4K for fields from B = 2T

to B = 30T in 2T increments (a) obtained in the HFML in Nijmegen. For clarity, the

spectra are stacked vertically. The field dependence of the features labeled with λ1, λ2 and

λ3 is traced as indicated by the corresponding open symbols. At B = 20T an additional

feature appears labeled λ8. The black arrow emphasizes the lower frequency branch of the

plasma frequency splitting. The frequencies of the features labeled λi are plotted versus

magnetic field B in panel (b). The solid lines correspond to fits yielding Fermi velocities vF

as summarized in Tab. 5.2.2. In the gray shaded area excessive noise arising from a signal

minimum of the utilized beam splitter was cut out.
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Fig. 5.2.14 displays a contour plot of the relative reflectivity spectra. The color code

therein represents the relative change with field. Additionally, expected positions

of the inter Landau level transitions for the W2 and W1 cones, computed with the

average Fermi velocities vF,W1 and vF,W2 are displayed. The n = 1 transition of the

W1 cones is represented as black solid line, while the transitions of the W2 cones are

drawn in white. All lines nicely follow the structures evolving in the contour plot

with increasing the magnetic field.
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Figure 5.2.14: The relative reflectivity R(B)/R(0T) as a contour plot, where the color

represents the amplitude of relative change. The solid lines represent the theoretical field

and frequency dependencies of inter Landau level transitions for the W1 and W2 cones

computed utilizing the average Fermi velocities stated in the text. The solid lines nicely

follow the
√
B- dependence of the colored contours. In the gray shaded area excessive noise

arising from a signal minimum of the utilized beam splitter was cut out.
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Landau level dispersion

Concerning the appearance of the peaks arising from the inter Landau level tran-

sitions it is noticeable, that especially for the W1 cone, these appear below the

onset of the linear conductivity in zero field. In Sec. 2.7.2 it was discussed, that the

peaks in the optical conductivity arising from Landau level transitions sit on the

linear interband background of the Weyl cones. Hence, the appearance of Landau

level transitions at frequencies below the onset of the Weyl interband transitions is

not trivial. In NbP this observation arises from the interplay of the Landau level

structure with the chemical potential. In Sec. 5.2.2 it was deduced from the zero field

spectra, that the bandstructure around the Weyl points in NbP can be approximated

with Eq. 2.6.5, as displayed in Fig. 5.2.10. For such a bandstructure, the Landau level

spectrum is described by [203]

ǫs,s′(k,B,n) = s

√
2e~v2FB +m2 + b2 + (vF~k)2 + 2bs′

√
(vF~kz)2 +m2; (n > 0)

(5.2.10a)

ǫs′(k) = −b− s′
√

(vF~kz)2 +m2; (n = 0), (5.2.10b)

if Zeeman terms are neglected. Note, that Eq. 5.2.10b also contains the characteristic√
B dependence of the Landau levels.

Utilizing the parameters for m and b obtained from the zero field optical data and

stated in Tab. 5.2.1, as well as the average Fermi velocities vF,W2 = 1.78 × 105 m s−1

and vF,W1 = 1.25 × 105 m s−1, the Landau level dispersion is plotted in Fig. 5.2.15 for

levels Ln with n = 0 − 6. The Landau levels of W1 in panel (a) are displayed for

B = 20 T, where the data in Fig. 5.2.13 indicates, that this cone enters the quantum

limit. To capture this experimental observation, the absolute value of the chemi-

cal potential needs to be reduced from the value found in the zero field spectra to

|∆E| = 20 meV. Then the transition L0 → L1 marked with the brown arrow agrees

well with the appearance of the dip in the spectra (see Fig. 5.2.13). It is clear, that

also transitions with lower energies from L0 to L1 are possible as indicated with the

dotted brown arrows (the same is true for slightly larger energies). The appearance

of the dip at the frequency of the solid brown arrow can be attributed to the fact,

that the L1 level gets flat there, and therefore a van Hove singularity should appear

in the density of states. The lower/higher energy transitions should provide a broad-

ening of the mode observed in the spectra, in agreement with the experimental data

in Fig. 5.2.13, where all features extend over more than 100 cm−1 at B = 20 T.
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Figure 5.2.15: Landau level structure of NbP, assuming a 4-band model as in Sec. 5.2.2 of

the W1 (a) and W2 (b) cones. The plots are generated with Eq. 5.2.10b [203], utilizing the

parameters b and m found in the zero field measurements summarized in Tab. 5.2.1, and the

average Fermi velocities found in the magneto-optical experiments stated in the text. The

absolute values of the chemical potentials∆E of both cones need to be reduced as compared

to the zero field values to merge the transitions involving the L0 level in the quantum limit.

The energies of the transitions are in good agreement with the experimentally observed

frequencies.
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Note, that also the transitions L−1 → L2 and L−2 → L1 marked with the cyan ar-

rows in Fig. 5.2.15 (a) agree quantitatively with the experimental frequency of these

transitions.

In the same manner, the Landau levels of W2 are displayed in Fig. 5.2.15 (b) at

B = 7 T, where this cone is also in the quantum limit. Again the chemical potential

is adjusted to merge the L0 → L1 transition, an this yields |∆E| = 3 meV. All ob-

served transitions of the W2 cone at 7 T (see Figs. 5.2.12, 5.2.13) agree well with the

characteristic energy distances in Fig. 5.2.15 (b). The transitions from L0 to L1 and

between the levels with n = ±1,±2 are indicated with light purple and dark blue

arrows, respectively.

Note that the L−1 → L0 transition in the W1 cone according to Fig. 5.2.15 roughly

coincides in energy with the L−1 → L2 and L−2 → L1 transitions and hence, is not

observed separately in the spectra. In the W2 cone, since the chemical potential is

so small the L−1 → L0 transition possibly contributes to a broadening of the mode

in the spectra.

In magnetic fields, the chemical potential needs to be adjusted to lower absolute

values for both cones. This behavior is also discussed for Cd3As2, TaP and for Weyl

semimetals in general, and it was found, that in the quantum limit ∆E ∝ B−1 [95,

204, 205].

5.3 Conclusions

The data presented in this chapter leaves no doubt, that the transport, as well as

the optical response up to the MIR is dominated by relativistic massless carriers.

The analyses of the magneto-transport, optical and magneto-optical data yield a

stunning agreement, and by this strongly support the picture drawn here on NbP.

The analysis of the zero field data allows to illuminate the subtle details of the Weyl

bands. With the
√
B-behavior of the inter Landau level transitions linearity of these

bands in NbP is proven. Furthermore, the combination of the knowledge from zero-

field and B-field data allows to elucidate the magnetic sub-level structure. Tab. 5.3.1

summarizes the quantities characterizing the Weyl cones. For comparison, published

values are also stated. The findings of this work are in excellent agreement with the

predictions of theory, as well as the other published experimental works.
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RRR Ntot

(1019 1
cm3 )

µ

(105 cm2

Vs
)

vF

(105 m
s
)

∆E

(meV)

mc (me) Ref.

40 ≈ 5 ≈ 5 3 10.2 - this, MT

40 ≈ 7 ≈ 2 W1: 1.0

(@150 K)

W2: 1.6

W1: 27.6

W2: 12.9

- this, O

40 - - W1: 1.2

W2: 1.7

3.1 (ωc)

- 0.02 this, MO

115 0.18 50 4.8 - 0.076 [170],

MT

95 0.2 100 1.8 W2: 15 W1: 0.1

W2: 0.06

[178],

MT

- - W1:

0.076

W2: 0.26

- W1: 42.2

W2: 3.7

W1:

0.086

W2:

0.048

[206],

dHvA

- ≈ 2.5 - - W1: 57

W2: 5

0.05 [49],

dHvA,

BS

- ≈ 1.3 - 3.7 - - [167], BS

- ≈ 1.5 - W1:

vx = 3.7

vy = 1.5

vz = 0.0

W2:

vx = 2.1

vy = 2.1

vz = 3.8

W1: 53.4

W2: 25.9

W1:

0.086

W2:

0.048;

[168], BS

Table 5.3.1: Summary of the characteristic quantities of NbP found in this work and

extracted from references. All mobilities µ and total carrier densities Ntot are for low

temperatures. The abbreviation MT, O, MO, dHvA and BS stand for magneto-transport,

optics, magneto-optics, de Haas-van Alphen and bandstructure calculations, respectively

and point out, which technique was used to determine the values. The ωc indicates the

value of vF obtained from the plasma frequency splitting.
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6. The Weyl semimetal TaAs

This chapter is dedicated to the Weyl semimetal TaAs, a sister compound of NbP

(see Chap. 5). First, the material will be intoduced in Sec. 6.1, then the experimen-

tal results will be discussed in Sec. 6.2. In Sec. 6.3, summaries of the experimental

findings and concluding remarks are given.

6.1 The material

TaAs belongs to the same family of non-centrosymmetric transition metal mono-

pnictides like NbP. Compared to NbP, TaAs exhibits much larger spin orbit coupling.

This has considerable consequences for the band structure and Fermi surfaces.

TaAs crystallizes in a tetragonal structure with the space group I41md (No. 109).

The lattice parameters are a = 3.438 48 Å and c = 11.641 Å, respectively [28]. The

structure is displayed in Fig. 6.1.1 (a). Band structure calculations without the inclu-

sion of spin orbit coupling reveal a clear band inversion and several band crossings

near the Fermi level. These band crossings lead to the nodal rings discussed in

Sec. 5.1 [28, 29, 168].

The band structure is drastically changed when spin orbit coupling is included.

Fig. 6.1.1 (b) displays the band structure of TaAs along the high symmetry lines

with spin orbit coupling included [28]. All band crossings are gapped. The gap

between the bands 2 and 3 in Fig. 6.1.1 (b) is, however, very small (≈ 3 meV) as

revealed in the inset [28].

Just like NbP, TaAs hosts 12 pairs of Weyl nodes. The W1 nodes are located in

the kz = 0 plane and the W2 are found at more general k-points (see Fig. 5.1.3).

The k-splitting of the Weyl nodes in TaAs is larger as compared to NbP, as a direct

consequence of the larger spin orbit coupling [47, 169]. Fig. 6.1.1 (c) and (d) depict

the Fermi surfaces arising from the trivial hole pocket in red (band 2 in panel (b))

and the W2 pockets in blue, which can be electron like or hole like depending on the

position of the chemical potential [31]. Recent studies also revealed banana shaped
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electron like Fermi surfaces enclosing the W1 nodes [31, 50]. The W1 nodes are

lower in energy than the W2 nodes, just like in NbP. The exact energy distance of

the nodes from the Fermi energy EF was found to vary noticeably from sample to

sample [31].

Figure 6.1.1: The unit cell of TaAs (a) is the same as the one of NbP, however, with

different lattice parameters. The band structure (b) is gapped almost everywhere around

the Fermi energy EF. There is only one small hole pocket from band 2. Therefore the Fermi

surface (c, d) consists of banana shaped trivial hole like sheets. The W1 and W2 nodes

are enclosed by small Fermi surfaces, due to non zero chemical potential. (a) drawn with

VESTA [146] with crystallographic data from Ref. [28]. (b) reprinted from [28] licensed

under CC BY 3.0. (c, d) modified from [6] licensed under CC BY 3.0.
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6.2. TaAs: Results and Discussion

6.2 TaAs: Results and Discussion

The results presented in the following were obtained on high quality single crystals

of TaAs. The samples were provided by the group of Prof. Dr. C. Felser of the MPI-

CPfS1. All optical and magneto-optical measurements were performed by the author

in Stuttgart and Nijmegen. The transport data was contributed by Anja Löhle from

the PI1.

6.2.1 Transport properties

The temperature dependent resistivity ρ(T ) of TaAs was measured in the (001) plane

in a standard four contact geometry. The resulting ρ(T ) is depicted in Fig. 6.2.1 (a).

For T ≥ 170 K, the resistivity increases linear in temperature, emphasized by the

orange line. This indicates the prominence of electron-phonon scattering processes

in this temperature regime. The inset of Fig. 6.2.1 (a) displays an enlarged view of

ρ(T ) at low temperatures. The dotted black arrow marks the residual resistivity

ρ0 ≈ 7µΩcm. This value is an order of magnitude larger compared to the ρ0 of NbP.

The carrier densitiy of TaAs is expected to be at least a factor of 10 lower than of

NbP [168]. Accordingly, ρ0 can be expected to be larger in TaAs, if the scattering

processes are assumed to be comparable.

The residual resistivity ratio of the investigated sample is RRR ≈ 16 and falls well

in the spread of other reported values [50, 207].

Frame (b) of Fig. 6.2.1 depicts ∆ρ = ρ(T ) − ρ0 on a double logarithmic scale. The

orange line in this panel reveals that ∆ρ ∝ T 4.2 for T . 30 K. This finding places the

temperature dependence of the resistivity in TaAs close to the behavior expected for

simple metals, in contrast to NbP. The lower carrier density in TaAs likely reduces

the importance of Coulomb interactions that are predicted to play a role in Weyl

and Dirac semimetals [70].

Unfortunately an elaborate analysis of the transport characteristics in the investi-

gated TaAs sample is not possible, since no magneto-transport data is available.

Published data indicates similar behavior as presented in Sec. 5.2.1 for NbP. The

temperature dependent resistivity ρ(T ) in magnetic fields was found to also exhibit

a crossover from metallic to semiconducting behavior [6]. The analysis of the Hall

data reveals two carrier species, electrons and holes. The electrons possess a higher

mobility of the order µe ≈ 105 cm2 V−1 s−1 at low temperatures, while the holes are

less mobile µh ≈ 104 cm2 V−1 s−1 [6, 31]. Note, that this is the opposite in NbP, where

1Max Planck Institute for chemical physics of solids, Dresden.
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Figure 6.2.1: The temperature de-

pendent resistivity ρ(T ) of TaAs is

displayed as blue circles in panel

(a). The orange line emphasizes

the T-linear behavior above T ≥
170K. The insert reveals a resid-

ual resistivity of ρ0 ≈ 7µΩcm, an

order of magnitude larger than in

NbP (see Sec. 5.2.1). Panel (b) de-

picts ∆ρ = ρ(T ) − ρ0 on a dou-

ble logarithmic scale. The orange

line in this panel reveals the power

law ∝ T 4.2 below T ≈ 30K, which

places the resistivity of TaAs (un-

like NbP) close to the expected T 5

behavior of a simple metal.
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the electrons are less mobile. Carrier densities in the order of N ≈ 1017 − 1019 cm−3

are reported [6, 31, 50].

The transverse magneto resistance in TaAs, with current applied perpendicular to

the magnetic field I⊥B, increases linear in field and takes values of MR = 0.8 × 103

at T = 1.8 K and B = 10 T [6]. The longitudinal magneto resistance in TaAs, with

the current and field applied parallel I ‖ B, becomes negative. This behavior is as-

cribed to the chiral anomaly [6, 31], but could also arise from current jetting effects

[32].

6.2.2 Optical experiments

The temperature dependent reflectivity of TaAs was measured in the isotropic (001)

plane for frequencies ω = 20 − 25 000 cm−1. The surface for the optical experi-

ments was polished prior to measurements. The resulting reflectivity spectra R(ω)

are displayed in Fig. 6.2.2 (a) over a wide frequency range for T = 300, 150, 10 K.
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For frequencies above 800 cm−1, R(ω) is basically temperature independent. Below

800 cm−1 the temperature dependence is weak and only below 300 cm−1 pronounced

changes are observed.
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Figure 6.2.2: The reflectivity R(ω) of TaAs for T = 300, 150, 10K on a logarithmic fre-

quency scale (a). An enlarged view of the FIR range is displayed in (b) on a linear scale.

The black arrows mark the faint features that can be assigned to phonons, better seen in

the magnified view in the inset of panel (b). The features marked with colored arrows and

labeled ωi (i = 1, 2, 3) are related to the Weyl interband transitions and will be discussed

later.

In Fig. 6.2.2 (b) an enlarged view on the FIR range is depicted. Two phonons are
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marked with black arrows at 233 cm−1 and 263 cm−1 in this panel and the inset.

They can be assigned to in plane vibrations of As-atoms, just like the two phonons

observed in NbP (see Sec. 5.2.2) [197, 198]. The vibrational frequencies are lower

than in NbP due to the higher atomic mass of As. In TaAs these phonons only leave

a very weak signature in the spectra, as compared to the strong features in NbP.

The reason is likely, that the TaAs (001) surface was polished, while that of NbP

was not.

Possibly a third infrared active phonon is resolved at 106 cm−1, marked by the down-

wards pointing black dotted arrow in Fig. 6.2.2 (b). The reported vibrational fre-

quency of this phonon in Raman experiments is slightly higher [197, 198], and below

100 cm−1 the noise level in the spectra starts to increase towards lower frequencies.

Hence, the interpretation of this feature as a phonon is speculative, even though it

appears in the spectra of all temperatures at the same position.

In panel (b) of Fig. 6.2.2 three additional features are marked. ω1 marks a sharp

kink in the reflectivity. ω2 and ω3 mark two humps, that can not be assigned to

lattice vibrations. These features correspond to distinctive signatures of transitions

between the Weyl bands in the four-band model (see Sec. 2.6), as will be discussed

later.

Further insight into the electrodynamic properties of TaAs is gained by examining

the optical conductivity σ1(ω) and the dielectric function ε1(ω) depicted in Fig. 6.2.3.

The optical conductivity σ1(ω) in frame (a) reveals two pronounced humps around ω1

and ω3. The hump around ω3 thereby consists of two smaller peaks, that correspond

to the features labeled with ω2 and ω3 in the reflectivity in Fig 6.2.2 (b). Towards

higher frequencies the optical conductivity σ1(ω) increases linear in frequency be-

tween 3500 cm−1 and 8000 cm−1. This linearity is emphasized by the black dashed

line in Fig. 6.2.3 (c), which displays σ1(ω) on a linear scale. Two further character-

istic features are marked in panel (c). At ω4 and ω5 the spectra experience a slight

kink. Note also the broad bulge in the spectra between ω4 and ω5, which arises from

a trivial interband transition, as discussed later.

The dielectric function ε1(ω) exhibits two peaks at low temperatures at the frequen-

cies marked with ω1 and ω3 in Fig. 6.2.3 (b). These peaks overlay with the strong

decrease of ε1(ω) to large negative values at low frequencies arising from the free

charge carriers. It was discussed in Sec. 2.6 that the onset of Weyl interband transi-

tions is marked by peaks in the dielectric function ε1(ω). Identifying the two features
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Figure 6.2.3: In the optical conductivity σ1(ω) (a) and the dielectric function ε1(ω) (b)

on logarithmic frequency scale the onsets of the Weyl interband transitions are marked

with ω1 and ω3. The linear frequency scale in panel (c) reveals a linear increase of σ1(ω)

between 3500 cm−1 and 8000 cm−1. Two kinks in the optical conductivity are labeled with

ω4 and ω5 in frame (c). The screened plasma frequency ωp,scr ≈ 1400 cm−1 is marked in

panel (d) at the zero crossing of ε1(ω).

in Fig. 6.2.3 (b) with the onsets of transitions within the W2 and W1 cones yields

∆E,W2 ≈ 30 cm−1 ≡ 4 meV and ∆E,W2 ≈ 70 cm−1 ≡ 9 meV.

It can safely be assumed, that the W1 nodes are located below the Fermi energy EF.

Therefore the W2 nodes are likely located 4 meV above EF in the investigated sam-

ple, because the energy distance between W1 and W2 nodes is around 13 − 14 meV

[5, 31].

The zero crossing of the dielectric function at the screened plasma frequency, is

marked in Fig. 6.2.3 (d). From this ωp,scr ≈ 1400 cm−1 is found.

For a quantitative analysis the optical conductivity is fit in a similar fashion as it

was done in Sec. 5.2.2 for NbP. A narrow Drude term accounts for the highly mobile
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carriers of the Weyl cones, while another, much broader, Drude term arises from the

trivial hole band. The interband response of the Weyl cones is modeled utilizing two

terms of the 4-band model reported in [74]. Additionally, for a satisfactory fit, four

Lorentz terms need to be introduced.
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Figure 6.2.4: The fit of the optical conductivity σ1(ω) (a, b) contains two Drude com-

ponents; D-T for the trivial hole carriers and D-W for the highly mobile Weyl carriers.

Three Lorentz terms L2 - L4 are introduced to account for trivial interband transitions.

The origin of L1 is yet not clear (see text). The interband response of the Weyl cones is

modeled by two terms after the four-band model in Ref. [74]. The anchoring of the low

frequency limit of the fit σ1(ω → 0) at the measured DC-conductivity σDC guarantees

self-consistency of the two independently obtained data sets (c). The scattering rates of

both Drude components follow a T 2 behavior at low temperatures (dashed lines in panel

(d)). The total carrier density Ntot ≈ 5× 1018 cm−3 is roughly temperature independent

(e).

The resulting fits are displayed in Fig. 6.2.4 for the conductivity spectra at 300 K

(a) and at 10 K (b). For all temperatures the spectra are described well by the

fits. The narrow Drude term D-W, which describes the highly mobile Weyl carriers,

has most of it’s spectral weight below the accessible measurement range. Therefore
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the zero frequency conductivity σ1(ω → 0) of the fit is anchored at the measured

DC-conductivity σDC. This assures the consistency of these two sets of data as de-

picted in Fig. 6.2.4 (c). The scattering rate of the broad Drude term D-T, describing

the carriers of the trivial hole pocket is at least an order of magnitude higher than

that of D-W. This was also observed in NbP. The scattering rates γ of both Drude

components follow a T 2 behavior at low temperatures up to T = 100 − 150 K. The

dashed lines in Fig. 6.2.4 (d) are fits of the scattering rates with γ(T ) = γ0 +A · T 2.

The zero temperature limit γ0 is 595 cm−1 for D-T and 3.5 cm−1 for D-W, and the

prefactors are A ≈ 0.01 and A ≈ 0.001, respectively. Note, that a scattering rate

γ ∝ T 2 was also reported in another optical study on TaAs [67], and is in agreement

with theoretical predictions for Weyl semimetals [77]. The kinks in the temperature

dependence of the scattering rates in Fig. 6.2.4 (d) around T = 100− 150 K coincide

with the temperatures where a kink in the temperature dependence of the electron

and hole mobilities µe and µh were reported [31]. These anomalies are possibly re-

lated to the change of sign of the Hall coefficient, meaning with the change from hole

type to electron type conduction from high to low temperatures [6].

To estimate the total carrier density Ntot, the total plasma frequency is calculated

as ωp,tot =
√
ω2
p,D-W + ω2

p,D-T + ω2
p,L1. Here, the carriers contributing to the lowest

lying Lorentz term are included, since the spectral weight of L1 is basically solely in

the range of the Drude terms. The contribution of L1 to the total plasma frequency

is, however, minor. With the effective carrier mass found in the magneto-optical

experiments m∗ = 0.004me (see Sec. 6.2.3) the total carrier density Ntot =
m∗ω2

p,tot

4πe2

is calculated and displayed in Fig. 6.2.4 (e). The carrier density is roughly constant

in temperature and in the range of Ntot ≈ 5 × 1018 cm−3, and therefore an order of

magnitude lower than in NbP.

Figure 6.2.5: Enlarged detail of the band-

structure of TaAs. The transitions related to

the Lorentz terms L2, L3 and L4 are marked

with colored arrows. Modified from [28] li-

censed under CC BY 3.0

The origin of the Lorentz terms L2, L3 and L4 can be found, looking at the band-

structure introduced in Sec. 6.1. The center frequencies ω0 of these terms correspond

to energies E0 = ~ω0, that match transitions across the Fermi energy EF. Fig. 6.2.5
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depicts an enlarged detail of the bandstructure of TaAs (See also Fig. 6.1.1 (b)). The

transitions, related to the terms L2, L3 and L4 are marked with colored arrows in

the figure. For L1 no suitable transitions are found in Fig. 6.2.5. Possibly the cause

for this Lorentz term is found in the Weyl bands, since its center frequency roughly

coincides with the onset of the W2 interband transitions. Tab. 6.2.1 summarizes the

parameters of the Lorentz terms.

Lorentz term ω0(cm−1) E0(meV)

L1 56 7

L2 200 25

L3 700 87

L4 2120 262

Table 6.2.1: Center frequencies ω0 and energies E0 of the Lorentz terms utilized in the fits

of the optical conductivity σ1(ω) of TaAs.

Now the interband response of the Weyl cones remains to be discussed. The onsets

of the Weyl interband transitions were found in the dielectric function ε1(ω), and

correspond to the features that were marked with ω1 and ω3. The other prominent

signatures of transitions in the Weyl bands are displayed and labeled in Fig. 6.2.6.

Note, that for a satisfactory fit, the ‘outer’ bands of the W2 cone are missing. There-

fore, the parameters m and b of this term are not unique, and only the difference

m− b is well defined. The fit parameters of the 4-band Weyl terms are summarized

in Tab. 6.2.2. Unlike in NbP, all fit parameters of the Weyl interband response are

temperature independent. The Fermi velocities vF are found to be larger in TaAs as

in NbP.

The separation in k of the nodes in Fig 6.2.6 is smaller than in NbP, in contradic-

tion with the theoretical calculations and reports from ARPES [47, 168]. As already

discussed in Sec. 5.2.2, the momentum averaging nature of the optical experiment

prevents a reliable determination of ∆k by modeling the data with the effective

four-band model.

Cone m(meV) b(meV) ∆E(meV) vF(105 m s−1)

W1 69 124 10.7 7.2

W2 148 157 4 4.8

Table 6.2.2: The parameters utilized to fit the Weyl interband response of TaAs with the

4-band model of Ref. [74].
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6.2.3 Results: Magneto-Optics

The magneto-optical measurements on TaAs up to B = 7 T were performed in

Stuttgart for frequencies ω ≈ 20−2000 cm−1. The sample temperature was T = 7 K.

Further measurements were performed at T = 1.4 K up to B = 30 T in the HFML

in Nijmegen. All magneto-optical measurements were performed in Voigt geometry

with unpolarized light and the field applied in the (001) plane. The measurements

in Stuttgart were conducted with the gold evaporation technique. In Nijmegen only

relative spectra were recorded.

First, the low field data up to B = 7 T will be discussed. In the same style as it

was presented for NbP (Sec. 5.2.3), Fig. 6.2.7 (a) displays the absolute reflectivity

R(ω) measured at T = 7 K in the magneto-optical setup as blue line at 0 T and

as orange line at 7 T. Note that only the FIR range is displayed. The thin black

line corresponds to the 10 K spectrum recorded in the zero field gold evaporation

cryostat. The data obtained in the two different setups agree well, and the main

features discussed above in the zero field spectra are also found in the measurement

at 0 T inside the magnet. While in NbP a large variety of field induced changes

were observed, in TaAs only below 200 cm−1 a dramatic change of the reflectivity is

apparent.

The magnetic field induced changes in the reflectivity lead to an enormous peak in

the conductivity displayed in Fig. 6.2.7 (b). In the apex this peak reaches a conduc-

tivity twice as large as the zero field value. The suppression of conductivity left and

right of the large peak assures that the f-sum rule (Eq. 2.2.2) holds. In the relative

reflectivity in Fig. 6.2.7 (c), the maximum in the conductivity corresponds to the

middle of the positive slope. This first dramatic feature is labeled with λ1. The field
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Figure 6.2.7: The absolute reflectivity R(ω) (a) and optical conductivity σ1(ω) (b) of

TaAs measured in the magneto-optical setup at B = 0T and B = 7T. The spectra

obtained in the zero field cryostat are additionally displayed as thin black lines. Below

200 cm−1 the B field induces drastic changes in the reflectivity which manifest themselves

as a pronounced asymmetric peak in the optical conductivtiy σ1(ω) (b). In the relative

reflectivity R(7T)/R(0T) (c) the peak position corresponds to the steep positive slope,

emphasized by the dotted line labeled with λ1.
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dependence of λ1 (and other features) will be discussed later.

In NbP, the most pronounced changes in the low field spectra were found to arise from

the plasma frequency splitting. The large feature at λ1 found for TaAs in the FIR is

however far-off the screened plasma frequency ωp,scr ≈ 1400 cm−1 determined from

the zero field optical measurements. Fig. 6.2.8 (a) displays the relative reflectivity

spectra R(B)/R(0 T) in 1 T steps for frequencies around ωp,scr. The spectra are

stacked for clarity.
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Figure 6.2.8: In the frequency range of the screened plasma frequency ωp,scr ≈ 1400 cm−1

slight changes appear in magnetic fields (a). The relative reflectivity spectra R(B)/R(0T)

in panel (a) are displayed in steps of 1T, vertically shifted for clarity. Dotted black lines are

Gauss fits. The width of the blue structure in the contour plot (b) clearly broadens up to

3T (black arrows). The field dependence of the cyclotron energy Ec extracted as described

in the text is displayed in (c) as solid squares. The fit (red line) yields vF = 1.5× 106ms−1.

Indeed some faint field induced changes are observed around 1400 cm−1. Fig. 6.2.8 (b)

depicts a contour plot of the relative reflectivity. This panel reveals spectral changes

broadening with increasing field more clearly. For B ≥ 4 T the spectral changes diss-
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apear. It can be assumed, that the width of the spectral changes correspond roughly

to the magnetic field induced plasma frequency splitting. With this assumption, the

splitting is approximated by fitting Gauss curves to the relative spectra in Fig. 6.2.8

(a), which are depicted as dotted black lines. The full width at half maximum of

the Gauss fits is utilized as an estimate of the cyclotron frequency ωc (see Sec. 2.7.1).

Fig. 6.2.8 (c) depicts the cyclotron energy Ec = ~ωc versus the magnetic field. In the

same fashion as in NbP, Ec is best fit with Eq. 5.2.9, since any linear fit would result

in an unphysical finite cyclotron energy at B = 0 T. The
√
B dependence of Ec is a

direct consequence of the linear dispersing bands and furthermore it indicates, that

TaAs is in the quantum limit already at B ≈ 1 T. The fit depicted as a red line in

frame (c) yields a very large Fermi velocity of vF = 1.5 × 106 m s−1. For the average

cyclotron mass, calculated the same way as for NbP in Sec. 5.2.3, mc ≈ 0.004me is

obtained.

To trace down the magnetic field dependence of the feature labeled with λ1, Fig. 6.2.9

(a) displays the relative reflectivity R(B)/R(0 T) for B = 1 − 7 T in 1 T steps. The

spectra are offset vertically for clarity. In addition to the extremely strong feature

λ1, a series of signatures from Landau level transitions are found towards higher

frequencies. All dips are marked with colored symbols which are labeled with λi

(i = 1− 5). The field dependence of the λi is depicted in Fig. 6.2.9 (b). To elucidate

the Landau level transitions, responsible for the features found in the spectra, the

frequency ratios are calculated. It is found that λ1 : λ2 : λ3 : λ4 relate roughly as

1 : 2.6 : 3.4 : 3.8. The transitions between Landau levels from linear bands are found

at the signature frequencies dependent on
√
n+

√
n+ 1 with the Landau level index

n. Hence, it is evident, that the λi (i = 1 − 4) can be assigned to the transitions

L−n → Ln+1 and L−(n+1) → Ln as summarized in Tab. 6.2.3. From the fits of the

field dependence of the Landau level transitions, displayed in Fig. 6.2.9 (b) as solid

lines, the Fermi velocities are obtained (see Tab. 6.2.3).

The feature at λ5 falls out of the scheme of the signature frequencies. Hence, this

feature is assigned to a Landau level transition of a different cone.

The comparison of the Fermi velocities obtained from the field dependence of Lan-

dau level transitions with the Fermi velocities deduced from the fit of the zero-field

optical conductivity suggests, that λ1−4 can be assigned to W2 and λ5 to W1.

In average, the values of Tab. 6.2.3 yield vF,W1 = 6.68 × 105 m s−1 and vF,W2 =

1.34 × 105 m s−1. The consistency of vF,W1 with the value from the zero field op-
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Figure 6.2.9: The relative reflectivities R(B)/R(0T) of TaAs for fields from B = 1T to

B = 7T in 1T steps in the FIR range (a). For clarity, the spectra are stacked vertically.

The field dependence of the features labeled with λi can be traced nicely, as indicated

by the open symbols. The frequencies of the features labeled with λi are plotted versus

magnetic field B in panel (b). The solid lines correspond to fits yielding Fermi velocities

vF as summarized in Tab. 6.2.3. In the gray shaded area the spectra are perturbed by a

feature from the beam splitter.
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Label Cone Transition vF(105 m s−1)

λ1 W2 L0 → L1; L−1 → L0 1.25

λ2 W2 L−1 → L2; L−2 → L1 1.37

λ3 W2 L−2 → L3; L−3 → L2 1.40

λ4 W2 L−3 → L4; L−4 → L3 1.33

λ5 W1 L0 → L1; L−1 → L0 6.68

Table 6.2.3: Assignment of the features labeled with λi to the inter Landau level transitions

L−n → Ln+1; L−(n+1) → Ln of the W1 and W2 Weyl cones. The Fermi velocities vF are

obtained by fitting the field dependence of the features.

tical conductivity is remarkable, while for vF,W2 there is a discrepancy, since the zero

field data yield a Fermi velocity larger by a factor of 3.5.

The broad peak between λ1 and λ2 in the relative reflectivity Fig. 6.2.9 (a) continues

to broaden for higher fields up to 30 T, very well seen in the contour plot in Fig. 6.2.10.

The white lines mark the theoretical development of the L0 → L1 (L−1 → L0) and

L−1 → L2 (L−2 → L1) transitions, computed for the W2 Fermi velocity vF,W2 =

1.34 × 105 m s−1. The line for the L−1 → L2 (n=1) nicely follows the structure in

the contour plot. The same is true for the line representing the L0 → L1 (n=0)

transition, however only up to approximately 8 T, indicated with the black dotted

vertical line. For higher fields, the red structure appears to broaden, and starts to

expand to lower frequencies. Such behavior is very unusual.

To explore the unconventional field dependence of the structure related to the n=0

transition in Fig. 6.2.10, the optical conductivity σ1(ω) of the high field measure-

ments is calculated. To obtain σ1(ω) from the relative reflectivity of the high field

measurements, the absolute reflectivity at zero field is multiplied by the relative re-

flectivity at finite field. The Kramers-Kronig of the resulting spectrum yields the

absolute optical conductivity at finite field.

The relative optical conductivity σ1(B)/σ1(0 T) for selected fields is displayed in

Fig. 6.2.11 (a). The spectra are vertically shifted. The peak, arising from the

L0 → L1 (L−1 → L0) transition of the W2 cone is located around 100 cm−1 at

6 T. Towards higher fields, this peak first broadens and then splits into four sub-

peaks, clearly resolved at 26 T. The splitting is emphasized by the black and gray

arrows in Fig. 6.2.11 (a) and the sub-peaks are enumerated 1 − 4 .

The underlying mechanism, responsible for the anomalous behavior towards high

magnetic fields is likely the Zeeman splitting of Landau levels. A similar four fold

splitting was reported in a magneto-optical study of the semimetal ZrTe5, which
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correspond to the theoretical de-

velopment of the L0 → L1 (L−1 →
L0) and L−1 → L2 (L−2 → L1)

transitions of the W2 cone nicely

follow the structures in the con-

tour plot of the relative reflectiv-

ity R(B)/R(0T) up to 8T. For

higher fields this is only true for the

L−1 → L2 (L−2 → L1) transition.

For fields beyond the black dotted

vertical line, an anomalous devel-

opment of the structures to lower

frequencies with increasing field is

observed, emphasized by the black

arrow.

hosts massive Dirac particles. There, the splitting was also discussed in the Zeeman

context [93].

Adding a Zeeman term to the Weyl Hamiltonian is known to shift the Weyl nodes in

k-space [2, 17, 93, 208]. Landau levels with Landau level index n 6= 0 from cones of

opposing chirality become shifted in k in opposite directions. The n = 0 Landau lev-

els are lowered (or lifted) in energy in the same direction [93]. In the effective 4-band

model widely utilized in this work to approximate the low energy physics of NbP and

TaAs, a Zeeman term can be included by replacing the parameter b in Eq. 5.2.10b

with b ± gµBB [203]. Here, g denotes an average g-factor for the conduction and

valence band and µB is the Bohr magneton. The scenario is schematically depicted

for one Weyl cone in Fig. 6.2.11 (c). The black solid line is the n = 0 Landau level of

the cone. The purple lines are the n = ±1 Landau levels that are shifted to the left

by the Zeeman term, while the green lines belong to the cone of opposing chirality

and hence shifted to the right (emphasized by the arrows of corresponding color).

The observation of four peaks is well explained by the finite chemical potential in

the investigated sample, and the transitions between the n = 0 Landau level and the

n = ±1 levels, indicated in Fig. 6.2.11 (c). The transitions 1 and 2 in this picture will

produce stronger peaks since they occur between levels of the same chirality. The

transitions 3 and 4 are only allowed, if the Landau levels are not purely of one spin

species. In this case the intensity of these transitions are expected to be strongly
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Figure 6.2.11: The relative optical conductivity σ1(B)/σ1(0T) exhibits a clear fourfold

splitting of the lowest peak (a) numbered with 1− 4 . This can be understood considering

a Zeeman term, which shifts the Landau levels with n 6= 0 of opposite chirality in opposite

k directions, schematically depicted in panel (c). The green and purple arrow emphasize

the direction of the k shift. The transitions responsible for the four peaks are indicated

in panel (c). Identifying the frequency distance of the peaks with the Zeeman energy

EZ = gµBB allows a rough estimation of the g-factor (b).

suppressed [93], which is in good agreement with the experimental facts in Fig. 6.2.11

(a). Therefore, the chirality of the Weyl cones in our sample is likely not well defined.

Identifying the energy splitting of the Landau levels with the Zeeman energy EZ =

gµBB allows to extract an effective g-factor g from the energy distances between 1

and 3 or 2 and 4. The frequency differences versus the magnetic field are displayed

in Fig. 6.2.11 (b). The solid lines are fits according to the Zeeman energy with g ≈ 6

for 3 − 1 and g ≈ 5 for 4 − 2, respectively. The extracted g factors compare well to

the values found in the sister compound TaP (≈ 2 − 7 ) [209].
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The above analysis of the Zeeman splitting is clearly only a superficial approximation.

For a more detailed treatment the low energy Hamiltonian of TaAs with additional

Zeeman term needs to be solved and the optical conductivity needs to be computed.

Certainly theoretical input is needed regarding this issue.

6.3 Conclusions

In conclusion, the presented transport, optical and magneto-optical study of TaAs

gives deep insight into the electrodynamics and bandstructure of this compound.

The low energy zerofield optical conductivity can be described with two Drude com-

ponents representing the Weyl and trivial carriers, respectively. Additionally, three

Lorentz oscillators account for trivial interband transitions, while the interband re-

sponse between the Weyl bands can be approximated by an effective four-band model

for each speciecs of Weyl cones. A fourth Lorentz oscillator of unknown origin is

needed at very low frequencies for a satisfactory fit.

The magneto-optical response reveals a series of Landau level transitions developing

with
√
B. This is a direct hallmark Landau levels evolving from linear bands. At

very high fields an anomalous splitting of the lowest peak likely arises from a Zeeman

splitting of the Landau levels in TaAs.

Tab. 6.3.1 summarizes the relevant quantities extracted from the fits in this work.

For comparison, values found in literature are also presented.

Compared to NbP (see Chap. 5), TaAs exhibits larger Fermi velocities for the Weyl

carriers. Additionally, the Weyl nodes are closer to the Fermi energy. Especially the

low chemical potential makes TaAs a promising candidate for observing the chiral

anomaly in optical experiments [174].

The finding of the Zeeman splitting of Landau levels in TaAs requires, however, that

the chirality is not well defined, which in turn would prevent the observation of the

chiral anomaly. The fact that a Zeeman splitting is found in TaAs, but not in NbP is

intriguing itself. Possibly, the stronger spin-orbit coupling in TaAs leads to a mixing

of spin up and spin down components, and therefore prevents a well defined chirality.

The question arises then, why the chiral anomaly was clearly observed in magneto-

transport experiments on TaAs [6, 31]. Further investigations and theoretical input

are certainly needed to clarify this issue.
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RRR Ntot

(1018 1
cm3 )

vF

(105 m
s
)

∆E

(meV)

mc (me) g Ref.

16 ≈ 5 W1: 7.1

W2: 4.8

W1:-10.7

W2:+4.0

- - this, O

16 - W1: 6.7

W2: 1.3

12 (ωc)

- 0.004 5-6 this, MO

10 35 W1: 2.96

TH: 7.55

W1:-20

W2:-8

0.01-0.1 - [50], MT,

dHvA,

BS

- ≈ 2 1.16 W1:-11.5

W2:+1.5

0.15 - [31], MT,

BS

- ≈ 0.6 W1:

vx = 2.5

vy = 1.2

vz = 0.2

W2:

vx = 2.4

vy = 3.5

vz = 34.3

W1: -

22.1

W2: -8.9

- - [168], BS

2-6.7

(TaP)

[209],

MT

Table 6.3.1: Summary of the characteristic quantities of TaAs found in this work and

extracted from references. The abbreviation MT, O, MO, dHvA and BS stand for magneto-

transport, optics, magneto-optics, de Haas-van Alphen and bandstructure calculations,

respectively and point out, which technique was used to determine the values. The ωc

behind the Fermi velocity in column three refers to the value obtained by the plasma

frequency splitting.
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7. The iron based superconductor

FeSe

In this chapter the optical properties of the iron based superconductor FeSe will be

presented. In the framework of this thesis, special attention will be payed to the

Dirac like dispersion, evident in this material, and to its signatures in the optical

response. This chapter is slightly off the topic of the previous chapters, since a pos-

teriori it is clear, that the Dirac physics in FeSe is rather 2D than 3D.

First, some general introductory remarks concerning the material and the contempo-

rary research will be made in Sec. 7.1. Then, the results of the transport and optical

experiments will be discussed in Sec. 7.2, and conclusions will be drawn in Sec. 7.3.

7.1 The material

The discovery of the iron based superconductors in 2008 by Kamihara et al. [103],

triggered enormous research efforts, resulting in thousands of publications within

a few years (see e.g. Refs. [210–214] for reviews). Among the iron based supercon-

ductors, FeSe has the simplest crystal structure. However, not only because of its

simplicity FeSe is of special interest, but also, because a very high superconducting

transition temperature Tc ≈ 100 K was reported recently, on FeSe films of only one

unit cell thickness [215]. Additionally, FeSe is very susceptible to pressure, and a

superconducting transition temperature of Tc ≈ 37 K can be achieved by pressurizing

bulk crystals [216].

Aside from the high Tc, the evidence for non-trivial topological aspects related to the

superconducting state, as well as the suggested proximity to the BCS-BEC crossover

(Bardeen Cooper Schrieffer - Bose Einstein Condensate) of FeSe and related com-

pounds are of special interest in the contemporary research on these systems [217–

219]. The evidences for Dirac like dispersing bands in FeSe are of special interest in

the framework of this thesis [9, 10, 40, 220, 221].
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The iron based superconductor FeSe

Figure 7.1.1: The room temperature unit cell of β-FeSe drawn with VESTA [146] utiliz-

ing the crystallographic data from Ref. [222] (a). The structural transition which lowers

the symmetry of FeSe from tetragonal to orthorhombic has considerable impact on the

bandstructure and Fermi surfaces (b,c). Panel (b) depicts the Fermi surface obtained with

ARPES above (left) and below (right) Ts. Left panel of (c): bandstructure of FeSe cal-

culated with LDA (local density approximation) methods. Middle and right panel of (c):

the ARPES result above (middle) and below (right) the structural transition. The bands

at the M-point experience a drastic splitting at Ts which leads to Dirac like band crossings

(right panel (c)). Panel (b) reprinted from Ref. [223] with permission. Copyright (2015)

by the American Physical Society. Panel (c) reprinted from Ref. [220] with permission.

Copyright (2016) by the American Physical Society.
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7.1. The material

FeSe can crystallize in various phases of different symmetries [222]. The β phase with

the tetragonal P4/nmm (No. 129) crystal structure at room temperature depicted in

Fig. 7.1.1 is the one, that is hosting the superconducting and topological properties

stated above. Recent advances in the crystal growth technique made high quality

crystals of this β-FeSe available [224]. The β phase FeSe will henceforth simply be re-

ferred to as FeSe, since only crystals of this structure were investigated in this work.

The lattice parameters of the tetragonal unit cell are a = 3.77 Å and c = 5.52 Å

[222]. At T ≈ 90 K FeSe undergoes a structural transition that lowers the symme-

try to orthorhombic (space group Cmma) [224]. The low temperature orthorhombic

state is often refered to as ‘nematic’, since the electronic in plane anisotropy by far

exceeds the structural distortion [223]. Unlike other iron based superconductors,

where the structural transitions are accompanied by a spin density wave ordering of

the Fe moments [225], in FeSe no magnetic order is observed [226, 227]. However,

the strong spin fluctuations [228], as well as the appearance of magnetic ordering un-

der pressure [229–231] indicate, that FeSe still is close to a magnetic instability [232].

The structural transition has a substantial impact on the bandstructure and Fermi

surface of FeSe. The unusually large discrepancies between the bandstructure, cal-

culated with local density approximation methods (Fig. 7.1.1 (c) left panel), and the

band dispersion determined with ARPES, especially around the M-point (Fig. 7.1.1

(c) middle panel), are still puzzling [220]. Note that the band touching point of

the quadratic bands above the structural transition temperature Ts in the ARPES

result, depicted in the middle panel, is ≈ 25 meV from EF at the M-point, while

in the calculated bandstructure in the left panel the corresponding energy scale is

≈ 250 meV. Below Ts when the C4 rotational symmetry is broken, the bands at the

M-point get drastically split and Dirac point like crossings appear slightly below EF,

as depicted in Fig. 7.1.1 (c) right panel. The crossing points are slightly gapped by

spin orbit coupling [220].

Also the hole bands at the Γ-point are affected at the structural transition, however,

the effects are less pronounced compared to the massive splitting at the M-point

[223, 233].

Above the structural transition, the Fermi surface consists of a shallow hole pocket

at the Brillouin zone center and one or two even smaller electron pockets at the zone

corners, as depicted in Fig. 7.1.1 (b) [218, 223]. Below the structural transition the

hole and electron pockets form elongated ellipses. In the case of a crystal with twin

domains, two ellipses appear rotated 90◦ to each other (see Fig. 7.1.1 (b) right panel).
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The iron based superconductor FeSe

The elongated Fermi surfaces cause the strong electronic anisotropy of the nematic

state.

The low temperature Fermi surfaces of FeSe are found to be rather two dimensional.

Very recent angular dependent magneto resistance data indicate, that the Dirac like

dispersion discussed above is likely also of 2D nature [234].

7.2 FeSe: Results and Discussion

In the following, the results obtained on stoichiometric high quality single crystals

of FeSe will be presented. The samples were provided by Dr. Thomas Wolf of the

IFP at the KIT1. The resistivity measurements were contributed by MSc Baharak

Heydari of the PI1. The optical and magnetization measurements were performed

by the author, except from the NIR and VIS measurements, which were conducted

by MSc Stephan Ludwig of the PI1.

7.2.1 Transport properties

First the temperature dependent resistivity ρ(T ) measured with the standard four

probe technique in the (001) plane of FeSe will be discussed. Fig. 7.2.1 (a) depicts

ρ(T ) over the whole measured temperature range. The overall appearance of the

resistivity is metallic. The full temperature range view already allows to identify

two anomalies. Between 100 K and 50 K a small kink in ρ(T ) marks the structural

transition, and below 10 K the resistivity exhibits a steep drop to zero when FeSe

enters the superconducting state. The inset of panel (a) displays an enlarged view

of ρ(T ) around the superconducting transition temperature Tc. The very narrow

superconducting transition in the resistivity reflects the high quality of the samples

and the transition temperature is found to be Tc = 8 K. The transition tempera-

ture of the structural transition Ts = 86 K can be determined from the pronounced

minimum in the temperature derivative δρ/δT depicted in Fig. 7.2.1 (b) and marked

with a violet arrow. The pronounced minimum at T ∗ = 20 K marked with a black

arrow was previously interpreted as the temperature scale, where superconducting

fluctuations start to enhance the normal state conductivity. These fluctuations ap-

pear at temperatures that are more then twice of the transition temperature Tc. The

unusual strong superconducting fluctuations in FeSe were interpreted as an indica-

tor for preformed Cooper pairs and a pseudogap [218]. The analysis of the optical

1Institut für Festkörperphysik, Karlsruher Institut für Technologie, Karlsruhe, Germany
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7.2. FeSe: Results and Discussion

data presented in this chapter indicates, that additional to strong superconducting

fluctuations, the emergence of a Dirac like carrier species with high mobility leads

to an enhancement of the conductivity below Ts.
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Figure 7.2.1: The temperature de-

pendence of the resistivity ρ(T )

(blue circles in (a)) can be nicely

fit with a temperature power law

T 1.26 for Tc < T < Ts (orange

line). The superconducting tran-

sition at Tc = 8K is well resolved

in the enlarged view in the inset

of frame (a). The structural tran-

sition at Ts = 86K can be iden-

tified in the derivative δρ/δT (b).

The minimum marked with T ∗ =

20K in panel (b) was previously as-

signed to the energy scale of strong

superconducting fluctuations [218].

The preformed Cooper pair scenario and pseudogap phase are usually evolving out of

a non Fermi liquid state, characterized by a T -linear ρ(T ). For Tc < T < Ts, the re-

sistivity can be nicely fit with ρ(T ) = ρ0 +AT n with the extrapolation of the normal

state resistivity to zero temperature ρ0, a fit parameter A and the power of the tem-

perature n. The fit is depicted as orange line in panel (a) and yields ρ0 = 24µΩcm,

A = 6.1 × 107 Ω cm K−n and the power n = 1.26 in good agreement with Ref. [218].

The deviation from the Fermi liquid theory exponent n = 2 is indicating, that FeSe

is fairly close to a non Fermi liquid state.

The residual resistivity ratio of the investigated samples is RRR = ρ(300K)/ρ(T &

Tc) ≈ 20. For a more elaborate analysis of the resistivity of the investigated FeSe
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The iron based superconductor FeSe

samples and its evolution with pressure see Ref. [235].

For further characterization of the samples, measurements of the static magnetic

susceptibility χDC were performed. In Fig. 7.2.2, the molar susceptibility measured

with an applied field of B = 1 mT is depicted for temperatures around Tc. The

zero field cooled (ZFC) measurement exhibits a sharp decrease at Tc = 8 K and a

strong diamagnetic signal for temparatures T < Tc. The sharp transition and strong

diamagnetic signal is further confirming the excellent quality of the samples. The

field cooled (FC) curve exhibits only a weak diamagnetic signal, due to the trapped

flux inside the sample, since FeSe is a type II superconductor.

Figure 7.2.2: The sharp transi-

tion and strong diamagnetic sig-

nal in the ZFC measurement of the

static susceptibility χDC confirm

the high quality of the FeSe sam-

ples as well as the superconducting

transition temperature Tc = 8K.
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7.2.2 Optical experiments

The reflectivity of FeSe was measured from the F3IR to the VIS frequency range

(10−25 000 cm−1) for temperatures T = 3.4−300 K in the (001)-plane. The samples

were cleaved prior to the optical measurements.

Qualitative discussion

First the spectra will be discussed on a qualitative level, in order to get an overview

over the complex temperature dependence of the optical response of FeSe. Fig. 7.2.3

(a) displays the reflectivity R(ω) for temperatures above the structural transition at

Ts = 86 K.

A continuous increase of the reflectivity in the FIR is observed, while in the MIR

R(ω) is suppressed. The two ranges of opposite spectral evolution are separated

by an isosbestic point at roughly 500 cm−1, where the reflectivity is temperature
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Figure 7.2.3: The reflectivity of FeSe over a wide frequency range for temperatures above

(a) and below (b) the structural transition Ts. The temperature dynamics of the spectra

for T < Ts is completely different from the dynamics for T > Ts, as emphasized by the

black arrows. The inset in panel (b) depicts an enlarged view of the FIR where a sharp

phonon mode (P) is found. A second strong FIR mode is marked with a purple arrow in

the inset. The reflectivity at T = 3.4K increases steeply to unity below 30 cm−1 which is

the signature of a dirty limit superconducting state in the reflectivity in FeSe.
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independent for T > Ts. This leads to the windmill like dynamics of the spectra

emphasized with the black arrows.

The reflectivity below Ts depicted in Fig. 7.2.3 (b) does not follow the same trend.

In the MIR the spectra for T ≤ 100 K fall on top of each other, and the metallic

increase at low frequencies below Ts are small compared to the changes at higher

temperatures. Instead, the reflectivity is suppressed in a range between 150 cm−1

and 700 cm−1 where the isosbestic point was located before.

At around 250 cm−1 a sharp phonon feature is resolved, marked with a green arrow

and labeled with P in the inset of Fig. 7.2.3 (b). By symmetry considerations it is

found that FeSe only hosts one infrared active Eu phonon mode that is visible in the

in-plane geometry [159]. This phonon can be ascribed to in-plane displacements of Fe

and Se atoms and was also reported in other optical studies on FeSe [236, 237], and

is generally observed in the in-plane optical response of iron based superconductors

(see e.g. [238–240]).

Another pronounced mode marked with a purple arrow is resolved below 100 cm−1 in

the enlarged view of the reflectivity in the inset in Fig. 7.2.3 (b). In a recent optical

study on FeSe single crystals any comparable feature was absent [237]. The origin of

this low frequency mode in the optical data is likely not intrinsic, as will be discussed

later.

The reflectivity at T = 3.4 K exhibits a steep increase to unity below 30 cm−1 which

is a direct hallmark of the superconducting state in FeSe. The manifestation of the

superconducting state in the optical response of FeSe and its analysis will be dis-

cussed later in this chapter in a dedicated paragraph.

For frequencies above 8000 cm−1 the reflectivity is temperature independent.

The optical conductivity σ1(ω) for T > Ts is displayed in Fig. 7.2.4 (a). At low

frequencies below 200 cm−1 the conductivity increases strongly towards lower tem-

peratures. This behavior can be attributed to a growing Drude peak. This Drude

peak is superposed by two distinct modes, one around 50 cm−1, and the second at

150 cm−1. At 200 cm−1, in the vicinity of the sharp phonon peak, σ1(ω) also re-

veals an isosbestic point. For higher frequencies the spectra exhibit a temperature

dynamics, that is typical for iron based superconductors. In the MIR the spectral

weight is suppressed and transfered to high frequencies. This unconventional spectral

weight redistribution in iron based superconductors is ascribed to the localization of

itinerant carriers by Hund’s rule coupling effects (see e.g. [241–243]).
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Figure 7.2.4: The optical conductivity above the structural transition at Ts (a) shows a

similar behavior as is commonly observed in iron based superconductors. The low frequency

part of the spectra exhibit a Drude like increase towards lower temperatures, while in the

MIR the spectra get suppressed and the spectral weight gets transferred to higher energies.

For T < Ts σ1(ω) diminishes in a range below 500 cm−1, while for higher frequencies the

spectra are roughly temperature independent. The different energy scales of spectral weight

suppression above and below the structural transition are emphasized in the normalized

spectral weight nSW = SW (T̃ )/SW (T > T̃ ) depicted versus cutoff frequency Ω in the

inset of panel (b).
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The spectral weight redistribution from low to high energies is nicely uncovered by

the normalized integrated spectral weight nSW = SW (T̃ )/SW (T > T̃ ) , where

the spectral weight SW =
∫ Ω

0
σ1(ω)dω of a given temperature T̃ is normalized to

the SW at a higher temperature. The inset of Fig. 7.2.4 (a) depicts the nSW for

SW (100 K)/SW (300 K) versus the cutoff frequency Ω as green line. The black arrow

marks the energy scale (≈ 3000 cm−1), where the maximum loss of spectral weight

is reached, and the spectra start to regain weight towards higher frequencies. At

roughly 8000 cm−1 most of the lost spectral weight is recovered. The relevant energy

scale in the BaFe2As2 compounds in the paramagnetic state is of the same order

[243, 244]. Therefore the Hund’s rule coupling energy J in FeSe can assumed to be

comparable to the values found for the BaFe2As2 system (J = 0.6−0.9 eV [243, 244]).

Just like in the reflectivity discussed above, the temperature dynamics of σ1(ω)

changes gears for T < Ts. The spectra for temperatures below the structural tran-

sition are roughly the same as the spectra at T = 100 K for frequencies larger than

500 cm−1. For lower frequencies the optical conductivity gets drastically suppressed,

emphasized by the black arrow in Fig. 7.2.4 (b). These dynamics can straightfor-

wardly be assigned to the Fermi surface reconstruction below the structural transi-

tion.

The nSW for SW (10 K)/SW (100 K) depicted in the inset of frame (b) as dark cyan

line, reveals that the energy scale ≈ 300 cm−1 of this spectral weight redistribution

marked with a purple arrow is much lower than the scale found for the Hund’s rule

correlations discussed above. The spectral suppression below Ts is reminiscent of the

behavior found in the parent compounds of the 122-pnictides in the antiferromag-

netic state [240, 243]. However, there the spectral suppression is always accompanied

by a pile up of spectral weight around 1000 cm−1 which is completely absent in the

data of FeSe presented in Fig. 7.2.4 (b).

The normal state

In order to analyze the optical data more quantitatively, the normal state spectra

are fit with a series of Drude- and Lorentz terms. The fitting was conducted simul-

taneously on σ1(ω), ε1(ω) and R(ω).

The model that accounts best for all features in the spectra is depicted in Fig. 7.2.5

and contains two Drude terms (a narrow Drude ND and a broad Drude BD) and

a series of Lorentz terms (L1-L7). The phonon (P) is also modeled with a Lorentz

term and the temperature independent part of the spectra at high frequencies (HF)
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Figure 7.2.5: The Drude-Lorentz fit of σ1(ω) (a), ε1(ω) (b) and R(ω) (c) at 10K. The fit

contains two Drude terms and 7 temperature dependent Lorentz terms, as well as a series

of T -independent high frequency Lorentzians. The single components are decomposed in

frame (a).
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by a series of Lorentzians. Panels (a-c) display the fit of σ1(ω), ε1(ω) and R(ω) at

T = 10 K. The applied model nicely describes the spectra of these three optical

response functions at all temperatures in the normal state, irrespective if T > Ts or

T < Ts. In Tab. 7.2.1 the center-frequencies ω0 of the Lorentz terms L1-L7 at 10 K

are listed.

Lorentz L1 L2 L3 L4 L5 L6 L7

ω0(cm−1) 40 186 628 1038 1416 2284 4433

Table 7.2.1: The center frequencies ω0 of the Lorentz oscillators in the fit of the optical

response functions at 10K.

The comparably large number of Lorentz terms included in the fit to account for the

all features in the spectra of FeSe calls for a closer look to identify their origin. The

most pronounced temperature dependent absorption band L7 is generally observed

in optical experiments on iron based superconductors (at slightly varying positions

depending on the compound) [237, 240, 245–247]. In K-doped BaFe2As2 this ab-

sorption band was assigned to transition from Fe-d and As-p bands into Fe-d bands

[245].

The relatively weak absorptions L4, L5 and L6 are reminiscent of low energy inter-

band transitions found in the optical response of the 122-pnictides [248, 249]. The

fact, that these aforementioned transitions L4-L7 are also found in the spectra of

FeSe indicate, that on this energy scale the bandstructures of FeSe and 122-pnictides

are similar.

The resonance frequency of L7 is temperature dependent, and the temperature evo-

lution of ω0 is depicted in Fig. 7.2.6 (f). The shift of L7 to higher energies follows

the previously discussed transfer of spectral weight to high frequencies induced by

Hund’s rule coupling correlations. This effect is most prominent at temperatures

T > Ts, where L7 shifts from 3960 cm−1 to 4400 cm−1. Below Ts the position of L7

remains rather constant.

Aside from L7, there are two more Lorentz terms that experience pronounced shifts

of their resonance frequencies with temperature (the phonon is excluded here and

will be discussed in a separate paragraph). The center frequency ω0 of the absorp-

tion mode dubbed L3 remains constant down to 100 K as depicted in Fig. 7.2.6 (e).

Below Ts in the spectra for T ≤ 75 K this mode experiences a considerable blue-shift.

This is firm evidence, that mode L3 is related to interband transitions around the

M-point, where the bands encounter substantial shifts at the structural transition

[223, 250].
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In contrast to L3, the lowest frequency mode L1 experiences a continuous red-shift

when the temperature is lowered (see Fig. 7.2.6 (d)). Similar behavior of very low fre-

quency modes was recently reported in Eu based 122-pnictides [112]. Following the

interpretation of Ref. [112], the mode L1 is likely arising from impurity-localization

effects. This interpretation is supported by the observation of a ferromagnetic im-

purity phase in our samples [235].

The origin of the remaining unidentified Lorentz-term L2 is yet unresolved.

In the zero frequency limit, the sum of the conductivities of the two Drude compo-

nents should equal the measured DC-conductivity (σ1,ND(ω → 0) + σ1,BD(ω → 0) =

σDC). Fig. 7.2.6 (a) displays measured DC-conductivity σDC as blue solid line and

the sum of the two Drude components in the zero frequency limit σ1,D(ω → 0) as

orange filled circles. For temperatures above Ts the agreement of the low frequency

limit of the fit and the measured DC-conductivity is excellent. Below the struc-

tural transition, however a growing discrepancy between σ1,D(ω → 0) and σDC is

observed. This is strong evidence, that below Ts a new highly mobile carrier species

emerges, with a scattering rate well below the lowest measured frequency. Similar

observations were recently reported in magneto-transport data on FeSe [9, 40]. In

accordance with reported experimental and theoretical evidence for Dirac carriers

in FeSe [9, 10, 40, 220, 221, 234] the emergent high mobility carrier species in the

present work can straightforwardly be assigned to arise from the Dirac like pockets

around the M-point in the Brillouin zone.

To quantify the properties of this high mobility Dirac carriers the missing conduc-

tivity ∆σ = σ1,D(ω → 0)− σDC is depicted as green stars in Fig. 7.2.6 (a). An upper

limit of the scattering rate is obtained by adding a third Drude term (Dirac-Drude

DD) with the DC-conductivity ∆σ in the model presented in Fig. 7.2.5 for T < Ts.

All parameters of the model found before at each temperature are kept fixed. Only

the scattering rate of the DD-term is increased as far as possible, without decreasing

the overall the fit quality. The temperature dependence of the scattering rates γ of

all three Drude terms are summarized in Fig. 7.2.6 (b). The BD-term has a scattering

rate of the order γ ≈ 400 cm−1 which is roughly temperature independent. Similar

quasi constant scattering rates on the broad Drude component was also reported in

122-pnictides [251, 252]. Note the large error bars, that arise because the BD-term

shares a lot of spectral weight with the L3 Lorentz term.

In contrast the scattering rate of the narrow Drude exhibits a clear metallic be-

havior and decreases strongly upon cooling. The pink line in Fig. 7.2.6 (b) denotes

a fit to the scattering rate of the narrow Drude according to γ(T ) = γ0 + AT 2
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Figure 7.2.6: The fit parameters of the broad (BD) and narrow (ND) Drude components.

The comparison of low frequency Drude conductivity σ1,D(ω → 0) and measured DC-

conductivity σDC reveals the emergence of third carrier species (DD) for T < Ts with

large conductivity ∆σ (a) and low scattering rate γ (b). The spectral weight development

indicates, that the emergent carriers gain weight from the FIR below 500 cm−1. The center

frequencies of the Lorentz terms L1, L3 and L7 are temperature dependent (d-f).
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7.2. FeSe: Results and Discussion

(γ0 = 19 cm−1, A = 2.42 × 10−3 cm−1 K−2). The fit describes the T -dependence

fairly well, indicating Fermi liquid behavior of the electronic subsystem described

by the ND-component. The carriers described with the DD-term possess a very low

scattering rate. As for the ND-term the T -dependence of the DD-term scattering rate

can nicely be fit with the T 2 powerlaw (γ0 = 1 cm−1, A = 2.54 × 10−3 cm−1 K−2).

Fermi liquid behavior of the Dirac carriers is predicted in for 2D [253], as well as for

3D linear dispersing bands [254]. Hence, the evolution of the DD-scattering rate is

in line with the Dirac carrier interpretation.

The temperature dependence of the spectral weight of the Drude components SW =
ω2
p

8
∝ N

m∗
, where ωp is the plasma frequency, N the carrier density and m∗ the

effective carrier mass (see Sec.2.2), is depicted in Fig. 7.2.6 (c). The SW of the

ND and BD components remains roughly temperature independent. This means,

the carrier densities of these electronic subsystems remain constant (making the

assumption that m∗ is roughly T -independent). For T < Ts the spectral weight of

the DD component appears and strongly increases towards lower temperatures. The

green open stars denote the spectral weight that is lost in the range in the FIR,

where the spectra are stronly suppressed below Ts (see Fig. 7.2.4 (b)), calculated as

∆SW =
∫ Ωc

0
[σ1(100 K) − σ1(T < Ts)]. Here Ωc denotes the cutoff frequency where

the spectra merge together at high frequencies and is set to 500 cm−1. The loss of

spectral weight ∆SW goes hand in hand with the emergence of the DD-SW. This is

evidence, that the carriers of the Dirac Drude previously contributed to the optical

response above Ts as weakly bound carriers the range in the FIR below 500 cm−1.

The Dirac bands

To further elucidate the evidence for Dirac like carriers found above, it is desirable to

trace down the Dirac interband transitions. The interband optical conductivity for

2D Dirac cones is well known from investigations on the flagship 2D Dirac material

Graphene [12, 59–61, 255]. For a finite chemical potential, a step in σ1,IB(ω) at

|2∆E| marks the onset of the Dirac interband transitions, just as for the 3D case

(see Sec. 2.6). Instead of increasing linear in frequency, for 2D Dirac materials the

interband optical sheet conductivity G1,IB(ω) is frequency independent and solely

determined by the conductance quantum G1,IB(ω) = G0 = e2

4~
= 6.08 × 10−5 Ω−1.

Since in FeSe the Dirac like band crossings only appear below Ts, an anomaly should

appear in the σ1(ω) spectra for T < 100 K. In the enlarged view of σ1(ω) in Fig. 7.2.7

(a), a kink like structure is observed in the 10 K spectrum, encircled in orange, which
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The iron based superconductor FeSe

is absent in the 100 K spectrum. The difference spectra ∆σ1(T ) = σ1(100 K)−σ1(T )

accentuate this anomaly as a pronounced peak structure, clearly visible for T =

50, 25; 10 K. For T = 75 K, close to Ts, the feature is strongly broadened, and shifted

to higher frequencies.

From this spectral feature, the value for the distance of the Fermi energy EF to the

Dirac nodes is obtained as ∆E = 31 cm−1 = 3.8 meV. This compares well with the

report of ∆E ≈ 10 meV in an ARPES study on FeSe thin films [10].

Figure 7.2.7: The σ1(ω) spectra

for T < Ts exhibit a kink-like

feature, associated with the onset

of the interband transitions within

the Dirac bands at 2∆E , which

is absent in the spectra above

the structural transition (a). In

the subtracted spectra ∆σ1(T ) =

σ1(100K)−σ1(T ) this onset is well

resolved as a sharp peak at 2∆E =

62 cm−1 (b).
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For 2D Dirac carriers the chemical potential scales with the 2D carrier density N2D as

∆E = ~vF
√
πN2D [255, 256]. From a mobility spectrum analysis a low carrier density

of N3D ≈ 1018 cm−3 is found for the high mobility carriers evolving below Ts in

Ref. [9]. To extract the 2D carrier concentration per conducting sheet, the inter-layer

distance (or lattice constant c = 5.52 Å) of FeSe is utilized N2D = N3D ·c, which yields

N2D = 5.52 × 1010 cm−2. With N2D and ∆E the equation stated above yields a Fermi

velocity for the Dirac bands in FeSe of vF ≈ 1.38 × 105 m s−1, in good agreement with
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7.2. FeSe: Results and Discussion

the value reported in Ref. [40] (9.1 × 104 m s−1) and the value that can be estimated

from the Dirac dispersion reported in Ref. [10] (≈ 0.45 eV Å = 6.8 × 104 m s−1).

As stated above, for 2D Dirac fermions the interband conductivity is constant and

adapts an universal value. To elucidate this issue in FeSe, the sheet conductance per

layer is calculated as G1(ω) = cσ1(ω), where c is the interlayer distance as before

[12]. The resulting G1(ω) is depicted in Fig. 7.2.8 in units of G0 = e2/4~. The sheet

conductance is roughly constant between 100 cm−1 and 500 cm−1 and of the order

of G0. The error bar points out the inaccuracy of the absolute value arising from

the systematic uncertainty of the optical experiment and the data extrapolation. At

frequencies below 100 cm−1 the interband sheet conductance is clearly perturbed by

the steep increase arising from the intraband conductivity and the localization mode.

Nevertheless, this quasi constant G1(ω) in the FIR is striking evidence that 2D Dirac

physics are of relevance in FeSe.
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Figure 7.2.8: The sheet conduc-

tance of FeSe G1(ω) = cσ1(ω) with

the inter-layer distance c = 5.52 Å

is quasi constant over an extended

frequency range and of the order of

G0 = e2

4~ = 6.08× 10−5Ω−1. This

reflects the two dimensional nature

of the Dirac bands.

Phonon dynamics

The strong Eu phonon already discussed above exhibits a pronounced temperature

dependence. Fig. 7.2.9 (a) depicts a stacked view of the optical conductivity around

the phonon frequency. The clear blue shift of the center-frequency emphasized by

the black arrow indicates sizable lattice hardening towards low temperatures in FeSe.

Further insight into these dynamics is gained by plotting the resonance frequency ω0

of the phonon Lorentz term versus the temperature (see Fig. 7.2.9 (b)). This reveals

that ω0 only shifts to higher frequencies for temperatures above Ts (dashed vertical

violet line), while for T < Ts ω0 remains roughly constant. This is in stark contrast

to the behavior of the Eu FeAs phonon in 122 iron pnictides which experiences
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The iron based superconductor FeSe

a jump in ω0 at the magneto-structural transition in these compounds [238, 240].

Interestingly, the phonon frequency at 25 K in Fig. 7.2.9 (b) appears at a higher

frequency. However, any interpretation of this behavior is rather speculative, because

the shift in frequency (≈ 1 cm−1) is just on the edge of the chosen frequency resolution

in the FIR (1 cm−1).

The FeAs phonon in 122 pnictides was found to drastically gain oscillator strength

Ω = ω2
p below the magneto-structural transition [238]. In contrast, the temperature

dependence of the oscillator strength Ω of the phonon Lorentz term in FeSe, depicted

in Fig. 7.2.9 (c), exhibits a decrease for T < Ts. Note, that neither ω0 nor Ω is

affected, when the sample gets superconducting.

These observations indicate, that aside from the absence of magnetism, FeSe is also

different from the other iron based superconductors in a structural point of view

[224].

Figure 7.2.9: The Eu phonon iden-

tified in the spectra exhibits a con-

siderable temperature dependence

(a). The center frequency ω0 is

monotonously increasing towards

lower temperatures and remains

constant for T < Ts (b). The os-

cillator strength reveals an anoma-

lous decrease below the structural

transition (c).
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The superconducting state

Finally, the optical signatures of the superconducting state in FeSe will be dis-

cussed in this paragraph. Fig. 7.2.10 (a,b,c) depict the reflectivity R(ω), the rel-

ative reflectivity R(T < Tc)/R(10 K) and the optical conductivity, respectively, for

T = 3.4 − 10 K. The reflectivity in panel (a) exhibits the typical behavior of a

dirty limit superconductor (where the normal state scattering rate is larger than

the superconducting gap γ ≫ 2∆), meaning R(ω) exhibits a sharp upturn towards

unity at low frequencies. Note, that the data is displayed as measured, and not

smoothed. The relative reflectivity in panel (b) emphasizes the gradual development

of the deviation from the normal state reflectivity with decreasing temperature.
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Figure 7.2.10: The reflectivity R(ω) (a) and relative reflectivity R(T < Tc)/R(10K show

clear signatures of a dirty limit superconductor when FeSe is cooled below Tc. The optical

conductivity is suppressed at low frequencies (c).
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For low frequency extrapolation of the reflectivity in the superconducting state the

Hagen-Rubens (see Sec. 2.3) is not applicable. The spectra at T = 5; 7 K were instead

extrapolated using [1 − R(ω)] ∝ ω4 and the reflectivity of the T = 3.4 K spectrum

was set to R(ω) = 1 below the frequency, where it hits unity.

The resulting optical conductivity after Kramers-Kronig transformation, depicted in

Fig. 7.2.10 (c), is suppressed below 100 cm−1. As discussed in Sec. 2.8, this loss of

spectral weight is connected with the formation of a condensate.

Figure 7.2.11: The frequency de-

pendent penetration depth λ(ω) in

the zero frequency limit and the

penetration depth obtained from

the FGT sum rule (symbols at ω =

0) are in excellent agreement (a).

Dotted gray lines represent the ex-

trapolations. The concave devel-

opment of the superfluid density

(b) indicates the multiband na-

ture of the superconducting state

in FeSe.
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The loss of low frequency spectral weight can be utilized to calculate superfluid den-

sity ρs and penetration depth λ via the FGT sum rule (see Sec. 2.8). The symbols

at zero frequency in Fig. 7.2.11 (a) denote these values of λ for FeSe. The frequency

dependent penetration depth λ(ω) = c/ [4πσ2(ω)]2 calculated from the imaginary

part of the optical conductivity is also displayed in this panel. The gray dashed lines

represent the extrapolations. The values obtained from both methods reveal an ex-

cellent agreement, demonstrating the self consistency of the analysis. For T = 3.4 K
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7.3. Conclusions

the penetration depth is λ = 642 nm, which compares well with previous reports

[217, 257].

Fig. 7.2.11 (b) depicts the superfluid density ρs = ω2
p,s = c2/λ2 versus the reduced

temperature T/Tc. The flat, almost concave development of ρs, emphasized with the

red arrow, is a hallmark of the multiband superconductivity in FeSe [257, 258].

For an estimation of the superconducting gap(s), the superconducting spectra are

modeled. The two Drude terms that were utilized in the normal state are therefore

replaced by two parametrized Mattis-Bardeen terms [109]. The parameters of all

Lorentz terms were kept the same as in the normal state, as were the scattering rates

and plasma frequencies. This reduces the free fit parameters down to two supercon-

ducting gaps ∆1 and ∆2.

The resulting fit for the T = 3.4 K optical conductivity and reflectivity is depicted

in Fig. 7.2.12 (a) and (b), respectively. The fit is decomposed into the two BCS

terms and the background that was kept fixed from the normal state in panel

(a). The evolution of the superconducting gaps with the temperature is depicted

in panel (c). The temperature dependence of the energy gaps is fit (solid lines)

by an expression that approximates the exact BCS temperature evolution 2∆(T ) =

2∆(0) tanh{1.82
[
1.018(Tc

T
− 1)

]0.51} [257, 259]. From the fit the gaps at zero tem-

perature are estimated as 2∆1(0) ≈ 12 cm−1 ≈ 1.5 meV and 2∆2(0) ≈ 34 cm−1 ≈
4.2 meV, which is well in the spread of other reported values [217, 257, 260–262].

The gap ratios 2∆1(0)/kBTc ≈ 2.2 and 2∆2(0)/kBTc ≈ 6 indicate, that the smaller

gap ∆1 is likely anisotropic (but nodeless [258, 261, 263]), while the larger gap ∆2

indicates strong coupling.

7.3 Conclusions

In conclusion, the intraband conductivity of the iron based superconductor FeSe

indicates the emergence of a highly mobile carrier species below the structural tran-

sition at Ts. This carrier species is attributed to the Dirac pockets evolving in the

bandstructure in the orthorhombic phase. The intraband transitions between the

Dirac bands are found to start around 62 cm−1, which sets the chemical potential to

∆E = 3.8 meV. The sheet conductance is quasi constant over an extended frequency

range in the FIR and of the order of G0. This indicates the 2D nature of the Dirac

physics in FeSe.
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Figure 7.2.12: The optical response functions in the superconducting state can be nicely

fit by replacing the two Drude components of the normal state with two BCS terms. The

fit of the optical conductivity σ1(ω) is decomposed into the background and the two BCS

terms (a). The quality of the fit of the reflectivity is excellent (b). The values of the

superconducting gaps 2∆1 and 2∆2 are following a BCS temperature dependence only

very coarsly (lines) (c).
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7.3. Conclusions

In the superconducting state the spectra demonstrate a behavior that is typical for

dirty limit superconductors. The fit with two BCS terms gives access to the gap

sizes. The BCS ratios 2∆/kBTc indicate, that the smaller gap has to be considered

anisotropic, in agreement with previous reports [258, 261, 263].

Tab. 7.3.1 summarizes the values relevant for the Dirac bands and the supercon-

ducting state found in this work. For comparison, published values for the same

quantities are also listed.

RRR Ts/Tc

(K)

vF

(105 m
s
)

∆E

(meV)

2∆1/2∆2

(meV)

Ref.

20 86/8 1.38 3.8 1.5/4.2 this, O, T,

M

33 86/9 0.91 - - [40], MT

- 125/− 0.68 10 - [10], thin

film,

ARPES

40 90/9.5 - - 5/7 [217], MT,

STS

- 87/8.5 - - 2.19 [264], MT,

STS

- −/9.4 - - 0.8/6.6 [257], M

- −/8.1 - - 2.2/2.6 [261], SH

- −/12 - - 1.4/5.4 [265], poly-

crystal, AR

Table 7.3.1: Summary of the characteristic quantities of FeSe found in this work and

extracted from references. The abbreviation (M)T, O, M, STS, SH, AR and ARPES stand

for (magneto)-transport, optics, magnetization, scanning tunneling spectroscopy, specific

heat, Andreev reflection and angle resolved photoemission spectroscopy, and point out,

which technique was used to determine the values.
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8. Summary and Outlook

The achievements of this work are dichotomous. First of all, the implementation of a

novel installation in the lab enables to perform infrared spectroscopic measurements

in reflection or transmission at high magnetic fields up to B = 7 T, low temperatures

down to T = 5 K in a frequency range ω = 40 − 2500 cm−1 on an everyday basis.

The measurement accuracy in this range of frequencies in the new setup is excellent.

It is comparable to the accuracy achieved in zero field measurements in the lab of

the PI1, where the beam has a much shorter propagation path and the alignment is

much easier.

Second and most important from the scientific point of view, the optical and magneto-

optical investigations of Dirac and Weyl semimetals presented in this thesis enable

a deep insight into the subtle details of the bandstructures of these materials. Four

compounds have been investigated, and the key findings are listed in the following.

• Careful analysis of the interband optical conductivity of the 3D Dirac semimetal

Cd3As2 reveals a peculiar shape of the Dirac bands in this materials. The Dirac

cones narrow towards the nodes with a sublinear dispersion ǫ(k) ∝ |k|0.6. The

Fermi velocity at the nodes, estimated from the optical data is vF = 7.6 m s−1.

The chemical potential in the investigated, electron doped crystals with a car-

rier concentration of N ≈ 3 × 1017 cm−3 and a residual resistivity ratio of

RRR = 5.5 is found to be situated at ∆E = 106 meV at low temperatures.

The “Lifshitz gap” is directly seen in the spectra, and can be estimated as

EL ≈ 370 meV. The effective carrier mass is very small and of the order of

m∗ ≈ 0.03me. 23 of the 30 Eu phonon modes are resolved in the in-plane

spectra at low temperatures. In the intermediate frequency range, where nei-

ther Dirac interband transitions, nor the Drude intraband conductivity play

a significant role, the anomalous spectral weight development indicates, that

there must be two electronic subsystems contributing to the optical response.

The exact origin of these contributions remains to be resolved.
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• For the Weyl semimetal NbP, an excellent agreement between magneto-transport,

optics, and magneto-optics is achieved. The carrier densities for the two car-

rier species (electrons and holes) deduced from the magneto-transport and

optical data in the investigated samples with RRR = 40 are of the order

Ne = Nh ≈ 3 × 1019 cm−3. The extremely high mobility of the holes reaches

µh ≈ 5 × 105 cm2 V−1 s−1 at low temperatures and is larger than the elec-

tron mobility. From the zero-field optical spectra and from the inter Landau

level transitions, the Fermi velocities of the two Weyl cone types W1 and W2

are found to be vF,W1 ≈ 1.2 m s−1 and vF,W2 ≈ 1.7 m s−1, and the positions

of the nodes relative to the chemical potential are ∆E,W1 = 27.6 meV and

∆E,W2 = 27.6 meV. The
√
B-dependence of all observed Landau level transi-

tions proves the linearity of the bands in NbP. From the splitting of the screened

plasma edge in magnetic fields, the cyclotron mass of the carriers is estimated

as mc ≈ 0.02me. In the high magnetic field data indications are found, that

the W1 cone enters the quantum limit only at 20 T, while the W2 cone is in

the quantum limit already at very low fields.

• In TaAs, even though it belongs to the same family as NbP, the optical spectra

look completely different. Nevertheless, a similar analysis as in NbP can be

applied, which yields vF,W1 ≈ 6.8 m s−1 and vF,W2 ≈ 1.3 m s−1 for the Fermi

velocities of the two types of Weyl cones. The Weyl nodes are closer to the

Fermi energy as in NbP, and ∆E,W1 = 10.7 meV and ∆E,W2 = 4 meV are

deduced from the fits of the spectra. The linearity of the Weyl bands in TaAs

is also proven by the
√
B-dependence of the Landau level transitions. The

cyclotron mass is estimated from the splitting of the screened plasma frequency

in magnetic fields as mc ≈ 0.004me. An anomalous fourfold splitting of the

lowest Landau level transition in high magnetic fields is observed. This can

tentatively be assigned to the Zeeman splitting of the magnetic sub-levels in

TaAs. From this splitting the effective magnetic g-factor is estimated to be

g ≈ 5 − 6. For an in-depth understanding of this anomalous splitting in high

magnetic fields, theoretical input is needed.

• For FeSe, strong evidence for 2D Dirac physics is found in the optical data.

The investigated samples exhibit a transition from tetragonal to orthorhombic

at Ts = 86 K and enter a superconducting state at Tc = 8 K. One indicator

for the development of Dirac bands, that form small pockets below Ts, is the

emergence of a high mobility carrier species in the orthorhombic state evident
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in the optical spectra. The quasi constant sheet conductance over a wide

frequency range in the FIR of the order of the conductance quantum G0 is the

manifestation of the 2D type Dirac interband conductivity. From the spectra

the chemical potential, ∆E = 3.8 meV, and the Fermi velocity, vF = 1.38 m s−1,

of the Dirac bands are extracted. Below Tc, FeSe exhibits the typical behavior

of a dirty limit superconductor. The penetration depth at 3.4 K is λ = 642 nm.

From the BCS fit two gaps are extracted, with the magnitudes 2∆1 = 1.5 meV

and 2∆2 = 4.5 meV. The gap ratios 2∆1/kBTc ≈ 2.2 and 2∆2/kBTc ≈ 6

indicate, that the smaller gap ∆1 is likely anisotropic, while the larger gap ∆2

is isotropic and points out a strong coupling mechanism.

The work presented here demonstrates the relevance of optical and magneto-optical

techniques for investigations on Dirac and Weyl semimetals, to gain a deep in-

sight into the material properties and extract valuable information. The great self-

consistency archived in the analysis of the zero field optical data, the Landau level

transitions in magneto-optical spectra, and the magneto-transport data, yields the

excellent agreement of all information extracted from data of different experimental

origin.

Apart from the contribution of this thesis towards the understanding of Dirac and

Weyl semimetals, this work paves the way for further experimental investigations

in this field. The new upcoming materials dubbed Weyl type II semimetals, where

the Weyl cones are strongly tilted due to a broken Lorentz invariance, are excellent

candidates for further investigations in zero field, as well as in the novel installation

for infrared optical measurements in high magnetic fields. Beyond the Weyl type II

semimetals, it remains to be seen, which exotic quasiparticles emerging in theoretical

suggestions for band crossings in multiple linear and quadratic fashions will eventu-

ally be realized in the form of crystalline materials [266].

Aside from the novel materials that are already existing or will be realized in the

future, there also remain questions in the field of ‘conventional’ Dirac and Weyl

semimetals. The observation of the Zeeman splitting in TaAs, for instance, calls for

theoretical input and further investigations.

Finally, the ‘Holy Grail’ to observe the chiral anomaly in Weyl semimetals in par-

allel magnetic and electric fields with optical techniques is feasible with the novel

magneto-optical installation in the PI1 lab. Technically still challenging, attempts

to observe this purely quantum mechanical phenomenon are nevertheless highly de-

sired. The pay-off in the form of information on scattering mechanisms and spectral

weight redistribution is very valuable for the understanding of this anomaly [78].
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A. Interband optical conductivity

in the four-band model

In this chapter, the corner stones of the derivation of the interband optical conduc-

tivity σ1,IB(ω) in the four-band model (see Sec. 2.6.2) are presented. For the full

derivation and argumentation see Ref. [74].

The starting point is the low energy Hamiltonian [17, 74, 93, 203]

Ĥ = ~vFτ̂xσk +mτ̂z + bσ̂z (A.0.1)

with the material dependent Fermi velocity vF, mass parameter m and intrinsic

Zeeman-like term b. σ and τ are 3D vectors of Pauli matrices, for the spin degree

of freedom and for the pseudo-spins (e.g. sublattices, atomic orbitals), respectively

[203].

The diagonalization yields the four energy bands with a dispersion as stated in

Eq. 2.6.5.

To obtain the optical conductivity, Ref. [74] utilizes the real part Kubo formula at

finite frequency in the one-loop approximation, which reads

σαβ(Ω) =
e2π

~2Ω

∫ ∞

−∞

dω[f(ω)−(ω+Ω)]

∫
d3p

(2π)3
Tr[v̂αÂ(p, ω)v̂βÂ(p, ω+Ω)]. (A.0.2)

f(ω) = [exp(β[ω − µ]) + 1]−1 is the Fermi function with β = 1/T . Note, that here

the usual notation for the chemical potential µ is utilized, in contrast to the rest

of this work, to stay in line with the nomenclature in Ref. [74]. The velocity opera-

tor relates to the Hamiltonian as v̂α = ∂Ĥ/∂pα and the spectral function Â relates

to the Green’s function via Ĝ(p, z) =
∫∞

−∞
Â(p,ω)
z−ω

dω , where Ĝ−1(p, z) = Îz − Ĥ

(Î = identity matrix).
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Utilizing the Hamiltonian Eq. A.0.1 and evaluating the elements of the spectral ma-

trix Â the expression for the interband optical conductivity

σ1,IB(Ω) =
e2v2Fπ

~2

∑

s′=±

∫ ∞

−∞

dω
[f(ω) − (ω + Ω)]

Ω

∫
d3p

(2π)3

[
1 + v2F

p2z − p2

2ǫ2+s′

]

×[δ(ω − ǫ+s′)δ(ω + Ω + ǫ+s′)][δ(ω + ǫ+s′)δ(ω + Ω − ǫ+s′)]

(A.0.3)

is obtained in Ref. [74] (kB = 1).

In the end, after evaluating the sum and the integrals an analytic expression for

σ1,IB(Ω) is obtained. The expression for the case where b > m, which describes a

Weyl semimetal and is utilized in this work, reads

σ1,IB(Ω) =
e2

16π~2vF

1

Ω

sinh(βΩ/2)

cosh(βµ) + cosh(βΩ/2)
[
G+



√(

Ω

2
− b

)2

−m2


Θ

(
Ω

2
− b−m

)

+G−



√(

Ω

2
+ b

)2

−m2




−G−



√(

Ω

2
− b

)2

−m2


Θ

(
b−m− Ω

2

)]

(A.0.4)

where,

G±(x) =

[
Ω +

4

Ω
(m2 + b2)

]
x+

4

Ω

x3

3

±4b

Ω

(
x
√
m2 + x2 +m2 ln

∣∣∣∣∣
x+

√
x2 +m2

m

∣∣∣∣∣

)
.

(A.0.5)

Note that Ω is the frequency in units of energy.
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B. Magneto optical conductivity

for a single isolated Weyl cone

This chapter, quotes the magneto-optical conductivity σ1(ω,B) for a single isolated

Weyl cone (see Sec. 2.7.2) from Ref. [86]. For the full derivation and argumentation

see Ref. [86].

The starting point is the low energy Hamiltonian for an isolated Weyl point in a

magnetic field, which reads

Ĥ =
[
−i∇ +

e

c
A
]
, (B.0.1)

with the electron charge e and the speed of light c. Any Zeeman splitting is neglected

in Eq. B.0.1. The Field is considered along z direction, and the gauge Ay = Az = 0,

Ax = −By is used. Furthermore units are chosen such that, ~ = kB = vF = 1 and

the magnetic length l2B = c
eB

is introduced.

Solving the eigenvalue problem Ĥψ = Eψ leads to the energy spectrum stated in

Eqns. 2.7.3 and depicted in Fig. 2.7.2 (a).

The dynamical conductivity tensor is obtained in from the Kubo formula, and the

real part of the diagonal element Reσxx = σ1 is obtained in scales where: ω = lBω,

T = lBT (T=temperature), µ = lBµ (again µ denotes the chemical potential to stay

consistent with the nomenclature in Ref. [86]), and reads

σ1(ω) =
e2

8πlB

[
sinh

(
2+ω2

2ωT

)

cosh
(
µ

T

)
+ cosh

(
2+ω2

2ωT

) −
sinh

(
2−ω2

2ωT

)

cosh
(
µ

T

)
+ cosh

(
2−ω2

2ωT

)
]

[
(ω2

−2)2

8ω2

]

∑

n=0

[
|2(2n+ 1) − ω2|

ω
√
ω4 − 4ω2(2n+ 1) + 4

Θ(|
√

2 − ω|)
]
.

(B.0.2)
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C. Influence of the extrapolation

in Cd3As2

The influence of high frequency extrapolation on the powerlaw increase of the optical

conductivity in Cd3As2 is presented in Fig. C.0.1. In panel (a) the high frequency

extrapolations of the R(ω) are depicted up to 1 × 105 cm−1. The black dotted line

represents the case as described in Sec. 4.2, utilizing synchrotron data from from

Refs. [135, 149] and the x-ray atomic scattering functions as described in Sec. 2.2

and Ref. [53]. The magenta line represents a simple free electron decay ∝ ω−4 for

frequencies beyond the accesible measurement range. Neglecting the spectral weight

of the features above the measured range in the reflectivity, reduces the powerlaw in

the optical conductivity σ1(ω) from ω1.6 to ω1.4 as depicted in panel (b).
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Influence of the extrapolation in Cd3As2
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Figure C.0.1: Panel (a) depicts the reflectivity R(ω) of Cd3As2 measured at 10K. Above

22 000 cm−1 spectra are extrapolated once as described in the text in Sec. 4.2 (black dotted

line), and once with a free electron decay ∝ ω−4 (magenta solid line). Neglecting the

spectral weight in R(ω) in the second case, results in a decrease of the powerlaw in the

optical conductivity σ1(ω) from ω1.6 to ω1.4, respectively.
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D. Magneto-optical setup - details

In this chapter relevant technical drawings, where crucial measures can be read out,

as well as o-ring sizes (see Tab. D.0.1) of the magneto-optical installation are docu-

mented.

Part Size (mm×mm)

Spectromag Windows

seal to magnet 105 × 3

seal to window/adapter flanges 70 × 2.5

seal to optical box 120 × 3

Optical box

front plate 254 × 4

side covers 348 × 4

top cover 651 × 5

wobble stick to front plate 18 × 2

wobble stick inside 5 × 1.75

KF- adapters on side covers 34 × 2

acrylic glass cover 175 × 4

Goldevaporation unit 52 × 2.5

Table D.0.1: O-ring sizes for the magneto-optical setup

177



Magneto-optical setup - details
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Figure D.0.1: Window adapter outside of Spectromag in split direction.
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pot in split direction.
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Figure D.0.3: Window adapter outside of Spectromag in bore direction.
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Magneto-optical setup - details

A-A ( 1 : 1 )
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Magneto-optical setup - details
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