
How Do Coupled File Changes Influence How
Developers Seek Help During Maintenance Tasks?

Jasmin Ramadani
University of Stuttgart

jasmin.ramadani@informatik.uni-stuttgart.de
ORCID: 0000-0001-7180-9964

Stefan Wagner
University of Stuttgart

stefan.wagner@informatik.uni-stuttgart.de
ORCID: 0000-0002-5256-8429

Abstract—Software repositories contain a lot of information
that can be transformed into suggestions other files they need to
modify during maintenance tasks (so-called “coupled changes”).
Existing studies however ignore developer feedback and their
influence on the developer strategy for getting help during
maintenance tasks. We used the Grounded Theory approach
to investigate screen capture videos from an experiment to
find which information sources developers use to find help
and what is their relevance. We compared the frequency as
well as the sequence patterns of used information sources both
for the developers using coupled change suggestions and those
not using them. We found a set of information sources where
the developers seek for help and identified two categories of
relevance. Also, we discovered that for the tasks using coupled
change suggestions, the developers used mostly the internal IDE
elements as an information source whereby the developers not
using coupled change suggestions often used external sources
like the documentation or the web. Coupled change suggestions
influence the strategy how the developers seek for help by
reducing the search for information on external locations which
makes the process of solving maintenance tasks more compact.

I. INTRODUCTION

Software development produces a rapidly increasing amount
of data related to the changes in the source code. It contains
valuable information which can be used to support develop-
ers in solving maintenance tasks. Software maintenance is
performed by maintenance programmers whereby members
leave and others join the team [19]. The new members
could use a support to successfully perform their tasks. They
need to understand how a specific software system has been
implemented [31].

Maintenance tasks on unfamiliar parts of the system require
additional knowledge which can lead to a situation where
developers cannot solve all tasks or need more effort to
understand them [38]. They usually seek for help to increase
their knowledge. Help seeking constitutes an important skill
in the strategies how to solve a problem [25].

Data mining represents a very popular technique for an-
alyzing software repositories. The investigations of software
repositories using data mining is known as mining software
repositories (MSR) [20]. Using it we can extract change cou-
plings which represent a set of files having the same commit
time, author and modification description [13]. Frequently
changed files can support developers in their maintenance tasks
when they are new on the project, the project started a long

time ago or if the developers do not have sufficient experience
in software development.

A. Problem Statement

There are many studies dealing with coupled changes and
data mining [4], [21], [45], [47]. However, they ignore the
feedback of developers and the impact on the developer
strategies for solving maintenance tasks.

B. Research Objective

The aim of our research is to explore how coupled change
suggestions influence how developers seek for help during
maintenance tasks. We investigate the developers’ informa-
tion sources using the Grounded Theory method [15] on
videos captured on the developer’s screen. We explore which
information sources are used by the developers and what
kind of information both the group not using coupled change
suggestions and the group using this kind of help look for.

C. Contribution

We present an exploratory study based on the data from
a controlled experiment where each of the 36 participants
try to solve 4 different maintenance tasks. The experiment
results show that the use of coupled file change suggestions
significantly increases the correctness of the solutions. The
original experiment analysis is available in [32]. In this study,
we found that the participants’ information sources choice and
search strategy differs depending on the use of coupled change
suggestions.

II. BACKGROUND

A. Coupled Changes

The changes in software repositories performed by various
developers on different occasion are usually stored in the
version history. These changes in particular source code areas
repeat with various frequency in different time periods. For the
first time logical couplings were introduced as evolutionary
couplings [1] or logical dependencies [12]. This kind of
dependencies can be detected by analyzing the version history
of the software. In a situation where the developer changes a
file and also changes another file shortly after, we say that we
have Coupled File Changes.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Publikationen der Universität Stuttgart

https://core.ac.uk/display/147556404?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


B. Data Mining

The term mining software repositories (MSR) describes
investigations of software repositories using data mining [20].
Using the data from the software repository of the system,
we extract coupled changes and build suggestions including
related attributes from the versioning system, the issue tracking
system and the documentation. For that purpose, we use an
algorithm for frequent item set discovery called FP-Tree-
Growth algorithm. It is fast algorithm which operates without
using candidate itemset generation [16]. This algorithm is
considered to be faster and more memory efficient than the
very often used Apriori algorithm. [17]. We also use a heuristic
that groups the changes committed by a single developer
meaning that the changes performed by the same developer
are considered as related [21].

Sequential pattern mining is used to discover interesting
subsequences in a set of sequences. One of the measures
for their interestingness is the occurrence frequency of the
ordered elements [11]. For this purpose we use the Prefix-Span
algorithm, a fast and and memory efficient sequential pattern
mining algorithms [28]. It uses the pattern-grown paradigm
and outperforms fast algorithms like GSM or SPADE as well
as the BIDE algorithm for greater support levels [42].

C. Task Relevant Information Sources

Working on a maintenance task, when developers are facing
difficulty or need an additional help for a solution often
seek for a relevant information on various locations [22].
We can have several information sources like the IDE, in
our case, it is Eclipse with its functionalities like the search
function, the source code editor or the package explorer.
There are also other sources like the software documentation,
web search engines, source code examples or programming
tutorials. Developers can seek for source code to find files or
code locations for further modifications [34] or look for a code
description to better understand the part of the code they need
to edit based on a similar situation or a problem.

D. Grounded Theory

The Grounded theory data analysis approach has been
firstly described in [15]. To analyze the data and build the
theory, we use the following activities: open, axial and
selective coding [40]. Afterwards, we perform the theoretical
coding and create the conceptual model.

III. EXPERIMENTAL DESIGN

A. Study Goal

We perform our exploratory study using a mixed-method
approach on top of a maintenance tasks experiment where
the impact of coupled change suggestions on the time and
the effort needed to solve maintenance tasks has been inves-
tigated [32]. We define the goal of the study using the GQM
approach [3] and its MEDEA extension [6]. We analyze the
influence of coupled file change suggestions on the location
and the purpose the developers search for help. The objective

is to compare the information sources the developers access
for the tasks using coupled change suggestions and the those
without using them. The purpose is to evaluate how effective
are coupled file change suggestions related to the location of
the task relevant information, the relevance of the informa-
tion they look for, the frequency as well as the patterns of
information sources.

B. Research Questions

RQ1: Where do developers look for task relevant information?
We want to identify the information sources used for a
particular maintenance tasks solution. This will enlist the
usual locations to seek for help during the tasks.

RQ2: What kind of relevance have the information sources
for their tasks? The answer of this research question will
expose how information sources contribute to the tasks
solution.

RQ3: How do coupled file changes influence the search
for task relevant information during maintenance tasks?
We investigate their influence related to the following
subquestions:

RQ3.1: How frequently do developers use particular
information sources? We identify the most popular sources
for seeking help used by the developers in this study to
identify common information sources.

RQ3.2: What information sources patterns developers use
to find task relevant information? We explore if there are
patterns of information sources to identify the difference in
the strategy how developers seek for help.

C. Overview

1) Experiment Design: We use a counterbalanced experi-
ment design similar to the one presented by Ricca et al. [36].
It ensures that all subjects work on tasks without and with
coupled change suggestions. We split the subjects randomly
in two lab sessions having a maximum of two hours to solve
the tasks.

We distinguish two groups of maintenance tasks: the
first one includes tasks executed in Eclipse IDE without
using suggestions and the second one includes additional
coupled files suggestions and the corresponding attributes
from the repositories. In each session, the subjects work on
two tasks without coupled suggestions using only the task
description and on two tasks using suggestions consisted of
coupled file changes and the related attributes we deliver
together with the task description. The participants in the
second lab swap the order of the tasks used during the first lab.

2) Objects: The study object is A-STPA, an open source
Eclipse based Java tool for hazard analysis built at the



TABLE I
EXPERIMENT DESIGN

Lab Tasks

Lab 1 Tasks 1-2 Tasks 3-4
(without suggestions) (with suggestions)

Lab 2 Tasks 1-2 Tasks 3-4
(with suggestions) (without suggestions)

University of Stuttgart1 in 2013. It has been chosen for the
analysis because of the availability of the source code, the
git repository, the complete list of the issues and the project
documentation. The source code contains 16012 lines of code
and 178 classes organized in 37 packages. The Git repository
of the project contains 1106 commits from which we have
extracted 205 coupled changes.

3) Subjects: The participants are 36 undergraduate students
from the Introduction to Software Engineering course in their
1st and 2nd study year at the University of Stuttgart. The
students had the chance to apply for the experiment using
the first come first served principle. They have not been
related in any way with the software system investigated in
the experiment. The students have already passed the Java
programming and software development course and have
basic Java and Eclipse knowledge.

4) Environment, Materials: The participants worked on
a Windows PC with an Eclipse IDE. Their actions were
recorded using a full screen video capturing tool. We have
provided the source code, the technical documentation
for the software system as pdf document including the
data model and package descriptions, the instructions for
the experiment and the maintenance tasks free-text description.

5) Tasks: The maintenance tasks represent program fixes
needed to be performed by the participants according to
the maintenance requests [2]. All four maintenance tasks
are perfective and enhance the software usability without
influencing the system structure. The tasks are related to
simple changes of the user interface of the system. The
complete set of tasks and coupled changes is available
on-line2.

6) Coupled Files: We have provided a set of files which
changed together frequently to the group which uses coupled
file change suggestions. These coupled files do not represent
the solutions for a particular task in the experiment and
usually contain a subset of the solution file set. We have
joined to the coupled changes a set of attributes from the
versioning system, the issue tracking system and the project

1https://sourceforge.net/projects/astpa/
2https://peerj.com/preprints/2492/

documentation to build the suggestions. Using the related
information about the context of the change, the developers
can decide if the coupled files are suitable for their tasks.

7) Maintenance Activities: The maintenance tasks solving
process includes the following activities: task understanding
where the participants read the task description and the
instructions, change specification where they locate the
source code to be changed, change design where they
perform the modification and change testing where the
successfulness of the changes is tested.

8) Data Collection: The first data source we use is the log
data from the Git version control system. Git preserves the
changes in a single change set or a so-called atomic commit.
Here, the data is organized in a transaction form where every
transaction represents the files which changed together in a
single commit. The issue tracking system data source is used to
extract the issue related attributes. The software documentation
represents a rich information source related to the the data
model or the project structure.

We collected the data how developers search for help
using full screen video capturing of their actions during the
experiments including the mouse movement and the keyboard
input they performed. We have recorded the screen including
their actions when using the IDE they work with as well as the
applications and the documents the developers used or opened
on the screen.

D. Data Analysis

We analyze the captured videos to follow the information
sources the developers used during their search for help.

1) Information Sources: Before we use the Grounded
Theory method, we define the focus involving the locations
the developers use to search for help to avoid confusion
during the coding. We distinguish different actions related to
the locations where the information sources have been found.
We transcribe the captured videos to isolate the locations as
concepts. Afterwards, we start with the coding process to
identify the information sources.

2) Relevance of the Information: The relevance of the
information is important to determine what is the purpose
of the help search. We aim to find out how the task-relevant
information contributes to the solution. We differentiate
between resolving the source code location and the source
code description.

3) Frequency of Using Information Sources: We explore
how popular various information sources are. We analyze the
frequency of use of a particular source of help to see what
the developers find most useful as a task relevant information
source.



Fig. 1. Information Sources

Fig. 2. Information Sources Relevance

4) Patterns of Information Sources: Using sequential pat-
tern mining, we explore common patterns in the information
sources. We take all unique information sources for a particular
task as items and order them in subsets whereby the items in a
subset are not repeating. All subsets for a particular task build
a transaction. Analyzing the transactions, we explore the most
frequent patterns of information sources.

IV. RESULTS AND DISCUSSION3

A. Information Sources

1) Identified Sources: We identified a number of task
relevant information sources using open coding. The main
concepts were determined using a set of open codes. We
continued with the axial coding to relate the concepts and
their categories as well as the relations among them. Further,
using the theoretical coding, we established the relationships
between the categories and the subcategories and delivered the
information sources as concepts for the theory as presented in
Figure 1.

We identified a number of information sources categorized
in two categories: internal locations including the project
explorer, the source code editor and the search window in
Eclipse and external locations like the task description, the
documentation and the web search.

3The study results are available at: http://dx.doi.org/10.5281/zenodo.
291865.

TABLE II
INFORMATION SOURCES FREQUENCY

Information Source ID No Suggestions With Suggestions
Source Freq. % Freq. %
Task description 1 65 100 67 100
Project explorer 2 65 100 67 100
Documentation 3 21 32.31 7 10.44
Eclipse search 4 26 40 28 41.79
Web search 5 11 16.92 1 1.49
Source code 6 65 100 67 100

2) Relevance of Information Sources: Using the Grounded
Theory method, we have defined two general categories of
information relevance:

• Source code location: Here the developers try to locate
the part of the source code they have to edit like packages,
classes or methods.

• Source code description: The information the developer
try to find to understand particular functionality or code
segment.

We use a relevance matrix as presented in Figure 2 to
demonstrate the relation of the information sources and their
relevance for the task solution similar to the maintenance
matrix presented in [8].

The internal task relevant information sources like the
project explorer and the Eclipse search are used to find the
source code location to be modified. However, the source code
window can be also used to find code comments, classes,
methods or other parts of the source code related to the
task solution. The external sources of information like the
documentation and the web search have been used in both
cases: to find the source code location to be edited and to find
additional information or examples for the task solution.

The task description and the coupled changes are used to
understand the tasks. Coupled file change suggestions can
be also used to identify the files as locations where the
code modifications need to be performed. This exposes that
the developers use the various information sources for their
strategy, by excavating the search for additional information
and the search for the source code to modify.



TABLE III
INFORMATION SOURCE PATTERNS

Support Sequence patterns without suggestions (Source ID) Sequence patterns using suggestions (Source ID)

0.1
1 2, 1 2 4, 1 2 4 6, 1 2 3, 1 2 6, 1 3, 1 2 3 4, 1 2 3 4 6,1 2 3 6,
1 2 5, 1 4, 1 4 6, 1 3, 1 3 4, 1 3 4 6, 1 6, 2 4, 2 3, 2 3 4, 2 3 4 6,
2 3 6, 2 5, 2 6, 2 4 6,2 5 6, 3 6, 3 4 6, 4 6, 4 5, 5 6,

1 2, 1 2 4, 1 2 4 6, 1 2 3, 1 2 6, 1 4, 1 4 6, 1 6, 2 6, 3 6, 4 6

0.2
1 2, 1 2 6, 1 2 4, 1 2 4 6, 1 2 4, 1 6, 1 4, 1 4 6, 1 5, 2 4, 2 6,
2 4 6, 2 5, 3 6, 4 6

1 2, 1 2 6, 1 4, 1 4 6, 1 6, 2 4, 2 6

0.4 1 2, 1 2 6, 1 6, 1 4, 2 6 1 2, 1 2 6, 1 6, 2 6

B. Influence of Coupled Change Suggestions

1) Frequency of Use of Information Sources: Table II
presents how frequently each of the information sources has
been used by the developers for the tasks both using coupled
file change suggestions and without using these suggestions.
We identify that the task description, the project explorer
and the source code have been used for all the tasks in the
experiment in both groups. The documentation has been used
three times more for the tasks not using coupled change
suggestions than for the tasks using the suggestions. The
Eclipse search has been almost equally used in both groups.
The web search has been used ten times more by the group
without using coupled change suggestions than by the group
not using them.

The results unveil that we have two different situations
describing the influence of coupled change suggestions on
information sources being used during the maintenance tasks.
The first one sets out that coupled change suggestions do not
influence the use of the internal information sources, both
groups used almost equally the Eclipse functionalities. Very
frequently they used the task description. This means that
coupled change suggestions do not affect how the developers
use the IDE and do not reduce the need for the task description.
Moreover, the tendency of the group without coupled change
suggestions is to use more external help like the documentation
or search for help on the web using Google search, Stack
Overflow, tutorials and videos.

This demonstrates that the developers not using the
suggestions tried to find help outside their workspace. For
the tasks using coupled change suggestions, developers used
mostly the internal source code locations and made very little
use of the documentation and almost no use of web search
for their tasks. This indicates that using coupled change
suggestions, the developers do not spread out their search for
help on locations outside the IDE.

2) Patterns of Information Sources: We have extended our
investigation of the used task relevant information sources
by looking for patterns of information sources both for the
tasks when using coupled change suggestions and those not
using the suggestions. The results in Table III show the pattern
sequences for both groups and various support values which
represent the frequency of occurrence of these patterns. Here,
the source code locations are represented by their IDs as
described in Table II.

We can see that for the highest support value of 0.4 which
includes the patterns repeating in 40% of the tasks, a typical
pattern starts with the task description, continues with the
project explorer and the Eclipse search and ends with the
source code window. This seems to represent to be a common
pattern in most of the cases for both for not using and using
coupled change suggestions for the tasks.

For lower support values including 20% and 10% of the
tasks respectively, we have specific patterns for the group not
using coupled change suggestions where they start with the
task description, look up in the project explorer and jump for
the web search or use the documentation before they edit the
code in the source code window.

In summary, these results present that the most frequent
patterns are similar for both of the groups. However, in
many cases their strategy for looking for help during their
maintenance tasks varies. Some of the developers not using
coupled change suggestions extended their pattern of help-
seeking strategy with external sources before accessing the
source code they need to edit. This shows that without the
coupled change suggestions, the developers frequently need
more information sources and have a different strategy in help-
seeking than the group which uses coupled change suggestions
which concentrates on the IDE elements to accomplish the
source code modification.

V. THREATS TO VALIDITY

The main internal validity threat is that most of the anal-
ysis in this study is based on the subjective actions by the
researchers. Transcribing the videos and the coding process
can be error prone whereby the researchers can eventually
miss actions by the developers. For that reason, we include a
third party in the transcribing of the videos for a random set
of videos.

The work in a controlled experiment using inexperienced 1st

and 2nd year students instead of a real development process
in company represents a major threat to the external validity.
Perhaps, developers with more experience use other patterns
of help-seeking. Especially developers familiar with a system
might show a different behavior. We have designed simple
maintenance tasks to increase the generalization possibility.
We used an open source project for the study and a well
known data mining technique which can be performed on other
repositories.



VI. RELATED WORK

Various studies use some kind of data mining to investigate
software repositories [14], [18], [21], [37], [41], [45], [47].
However, they do not include the developers’ feedback on their
findings. Very often, the association rules technique has been
used to identify frequent changes in the system [21], [45], [47].
Most of the studies employ the Apriori [21], [47] or the FP-
growth algorithm [45]. In our study we also use the frequent
itemsets analysis with the FP-growth algorithm to extract the
coupled file changes.

Many studies investigated software repositories to find log-
ically coupled changes, e.g. [5], [10], [13]. Some of them
examined the couplings based on the file level [21], [33],
[45], other identified logical dependencies between parts of
files like classes, methods or modules [10], [20], [46], [47].
Our approach uses couplings on a file level.

The feedback on couplings has been investigated in various
studies. Revelle et al. [34] inspected a set of coupling metrics
on the structural and the semantic level where the developers
answered that feature couplings on a higher level of abstraction
than classes are useful. Bavota et al. [4] explored the develop-
ers’ perceptions of software couplings. The authors examined
how semantic and logical metrics align with the developers
perception of couplings. Here, the semantic couplings have
received the best rating of all types of couplings.

The interestingness of coupled changes is also studied by
Ying et al. [45]. They define interestingness categories related
to the source code changes based on expert knowledge and
not using developers’ feedback.

We investigated the feedback on the interestingness of
coupled file changes from software repository [33]. We also
performed an experiment on the usefulness of coupled file
change suggestions [32]. Based on the outcomes of this study,
we went beyond the interestingness of coupled changes and
explored their influence on the maintenance tasks. We did not
directly ask the developers to give their feedback on couplings;
we recorded their actions on the screen.

The fault localization as technique for finding the location
of defects given the program failures has been investigated in
many occasions. Kocchar et al. [23] explored the developers
expectations on fault localization. They reported the impor-
tance of data availability, granularity, reliability efficiency as
well as an IDE integration of fault localization techniques.
The study on the use of a spectra-based fault localization tech-
niques by Xia et al. [44] shows that it saves significantly saves
debugging time. Parnin et al. [27] empirically investigated the
usability of a technique for spectrum based fault localization,
with and without using this technique whereby the ranking
and the search for defects has been identified as important.

We do not localize faults or bugs, we provide suggestions
for potential file changes to solve an issue or a defined
maintenance task.

The program comprehension including the understanding of
the structure of a program and the functional dependencies has
been investigated by Perez et al. [30]. They proposed a tool-set

which improves the location of software components needed
to be inspected. In [29], they introduced a spectrum based
approach borrowed from fault localization technique. Based
on test case executions, it identifies important components
related to a given feature. Lawrence et al. [24] investigated
how developers navigate during debugging using modern pro-
gramming environment proposing to include the information
foraging theory when searching and fixing a bug. The use of
the same theory has been proposed by Fleming et al. [9] to
support developer activities for information seeking needed to
understand software engineering tasks.

We do not use testing or debugging, we provide the coupled
files based on the changes in the version history.

Several studies explored how developers seek for help
during their development or maintenance tasks. Singer et
al. [38] examined software engineering work practices of
developers. Li et al. [25] identified a number of help-seeking
activities in software engineering both from static and dynamic
perspective as well as relying on human factors. Ko et al. [22]
defined various activities of seeking, relating and collecting
developers perform to understand unfamiliar code. Wang et
al. [43] investigated the actions, phases and patterns to locate
the source code for a feature in maintenance tasks. Revelle
et al. [35] introduced a combination of textual, dynamic and
static analysis of feature location that needs to be implemented
in the source code.

We use a similar approach by identifying the help-seeking
activities, sources of information and patterns from a static
perspective to describe how the developer seek for help for
the maintenance tasks.

Various studies involve maintenance tasks related experi-
ments. Nguyen et al. [26] describe the assessment and es-
timation of software maintenance tasks. De Lucia et al. [7]
investigate the effort estimation for corrective software main-
tenance. We use a similar experiment design and investigation
in our study.

A number of studies involve analysis of screen capturing
videos. Developer actions in the investigation of help-seeking
studies have been described in [22], [25]. Salinger et al. [39]
identifies the problems in the coding of video data using
Grounded Theory for qualitative analysis. They recommend
practices to support video data analysis like perspectives and
concepts. We follow the suggestions and focus the search on
the information sources before we transcribe the videos.

VII. CONCLUSION

A. Summary

Coupled change suggestions demonstrate that they influ-
ence the strategy of inexperienced developers for searching
task relevant information sources by reducing the variety of
information sources. Our study shows that developers using
coupled change suggestions mostly concentrate on the IDE
features like the project explorer, the source code window
and the Eclipse search. Without using this kind of help,
developers often accessed also external information sources
like the product documentation or searched for code examples



or descriptions to find the needed information for their task
solution on the web.

B. Impact/Implications

The main effect of coupled change suggestions is that it
makes the process of help-seeking compacter by reducing
the need for additional sources of information related to the
concept location and the source code comprehension. The
suggestions influence the strategy of using various information
sources and help the developers to reduce the effort for solving
maintenance tasks.

C. Future Work

Our next research steps will be to expand the analysis
on several projects using a larger number of maintenance
tasks and participants to perform a deeper investigation of
the influence of coupled change suggestions on the choice of
information sources during maintenance tasks.

REFERENCES

[1] T. Ball, J. min Kim, A. A. Porter, and H. P. Siy. If your version control
system could talk, 1997.

[2] V. R. Basili. Viewing maintenance as reuse-oriented software develop-
ment. IEEE Software, 7(1):19–25, Jan. 1990.

[3] V. R. Basili, G. Caldiera, and H. D. Rombach. The Goal Question Metric
Approach. Wiley, 1994.

[4] G. Bavota, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk, and
A. De Lucia. An empirical study on the developers perception of
software coupling. In Proceedings of the 2013 International Conference
on Software Engineering, ICSE ’13, pages 692–701, 2013.

[5] J. Bieman, A. Andrews, and H. Yang. Understanding change-proneness
in oo software through visualization. In Proceedings of the 11th IEEE
International Workshop on of the Program Comprehension, pages 44–
53, 2003.

[6] L. Briand, S. Morasca, and V. Basili. An operational process for
goal-driven definition of measures. IEEE Transactions on Software
Engineering, 28:1106–1125, 2002.

[7] A. De Lucia, E. Pompella, and S. Stefanucci. Effort estimation for cor-
rective software maintenance. In Proceedings of the 14th International
Conference on Software Engineering and Knowledge Engineering, pages
409–416, 2002.

[8] F. Deissenboeck, S. Wagner, M. Pizka, S. Teuchert, and J. F. Girard. An
activity-based quality model for maintainability. In Proceedings of the
2007 IEEE International Conference on Software Maintenance, pages
184–193, 2007.

[9] S. D. Fleming, C. Scaffidi, D. Piorkowski, M. Burnett, R. Bellamy,
J. Lawrance, and I. Kwan. An information foraging theory perspective
on tools for debugging, refactoring, and reuse tasks. ACM Transactions
on Software Engineering and Methodology, 22:14:1–14:41, 2013.

[10] B. Fluri, H. Gall, and M. Pinzger. Fine-grained analysis of change
couplings. In Proceedings of the fifth IEEE International Workshop on
Source Code Analysis and Manipulation, pages 66–74, 2005.

[11] P. Fournier-Viger, J. C.-W. Lin, R. U. Kiran, and Y. S. Koh. A survey
of sequential pattern mining. Data Science and Pattern Recognition,
1(1):54–77, 2017.

[12] H. Gall, K. Hajek, and M. Jazayeri. Detection of logical coupling
based on product release history. In Proceedings of the International
Conference on Software Maintenance, pages 190–, 1998.

[13] H. Gall, M. Jazayeri, and J. Krajewski. Cvs release history data for
detecting logical couplings. In Proceedings of the sixth International
Workshop on Principles of Software Evolution, pages 13–23, 2003.

[14] D. M. German. Mining cvs repositories, the softchange experience.
In Proceedings of the 1st International Workshop on Mining Software
Repositories, pages 17–21, 2004.

[15] B. Glaser and A. Strauss. The Discovery of Grounded Theory: Strategies
for Qualitative Research. Observations (Chicago, Ill.). Aldine Publishing
Company, 1967.

[16] C. Győrödi and R. Győrödi. A comparative study of association rules
mining algorithms, 2004.

[17] J. Han, J. Pei, Y. Yin, and R. Mao. Mining frequent patterns without
candidate generation: A frequent-pattern tree approach. Journal of Data
Mining and Knowledge Discovery, 8(1):53–87, Jan. 2004.

[18] L. Hattori, G. dos Santos Jr, F. Cardoso, and M. Sampaio. Mining
software repositories for software change impact analysis: A case study.
In Proceedings of the 23rd Brazilian Symposium on Databases, pages
210–223, 2008.

[19] A. Hutton and R. Welland. An experiment measuring the effects of
maintenance tasks on program knowledge. In Proceedings of the 11th
International Conference on Evaluation and Assessment in Software
Engineering, EASE’07, pages 43–52, 2007.

[20] H. Kagdi, M. L. Collard, and J. I. Maletic. A survey and taxonomy of
approaches for mining software repositories in the context of software
evolution. Journal of Software Maintenance and Evolution, 19(2):77–
131, Mar. 2007.

[21] H. Kagdi, S. Yusuf, and J. I. Maletic. Mining sequences of changed-
files from version histories. In Proceedings of the 2006 International
Workshop on Mining Software Repositories, pages 47–53, 2006.

[22] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung. An exploratory
study of how developers seek, relate, and collect relevant information
during software maintenance tasks. IEEE Transactions on Software
Engineering, 32(12):971–987, Dec. 2006.

[23] P. S. Kochhar, X. Xia, D. Lo, and S. Li. Practitioners’ expectations on
automated fault localization. In Proceedings of the 25th International
Symposium on Software Testing and Analysis, ISSTA 2016, pages 165–
176, 2016.

[24] J. Lawrance, C. Bogart, M. Burnett, R. Bellamy, K. Rector, and
S. D. Fleming. How programmers debug, revisited: An information
foraging theory perspective. IEEE Transactions on Knowledge and Data
Engineering, 39:197–215, 2010.

[25] H. Li, Z. Xing, X. Peng, and W. Zhao. What help do developers
seek, when and how? In 2013 20th Working Conference on Reverse
Engineering (WCRE), pages 142–151, 2013.

[26] V. Nguyen, B. Boehm, and P. Danphitsanuphan. A controlled experiment
in assessing and estimating software maintenance tasks. Information and
Software Technology, 53(6):682–691, June 2011.

[27] C. Parnin and A. Orso. Are automated debugging techniques actually
helping programmers? In Proceedings of the 2011 International Sym-
posium on Software Testing and Analysis, ISSTA ’11, pages 199–209,
2011.

[28] J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal,
and M.-C. Hsu. Mining sequential patterns by pattern-growth: The
prefixspan approach. IEEE Transactions on Knowledge and Data
Engineering, 16(11):1424–1440, Nov. 2004.

[29] A. Perez and R. Abreu. A diagnosis-based approach to software
comprehension. In Proceedings of the 22Nd International Conference
on Program Comprehension, ICPC 2014, pages 37–47, 2014.

[30] A. Perez and R. Abreu. Framing program comprehension as fault
localization. Journal of Software Evolution and Process, 28:840–862,
2016.

[31] M. Petrenko, V. Rajlich, and R. Vanciu. Partial domain comprehension
in software evolution and maintenance. In Proceedings of the 16th
IEEE International Conference on Program Comprehension, pages 13–
22. IEEE, June 2008.

[32] J. Ramadani and S. Wagner. Are coupled file changes suggestions
useful? In PeerJ Preprint, 2016.

[33] J. Ramadani and S. Wagner. Are suggestions of coupled file changes
interesting? In Proceedings of the 11th International Conference on
Evaluation of Novel Software Approaches to Software Engineering,
pages 15–26, 2016.

[34] M. Revelle, M. Gethers, and D. Poshyvanyk. Using structural and textual
information to capture feature coupling in object-oriented software.
Empirical Softw. Engg., 16(6):773–811, Dec. 2011.

[35] M. Revelle and D. Poshyvanyk. An exploratory study on assessing
feature location techniques. In Proceedings of the 17th International
Conference on Program Comprehension, pages 218–222, 2009.

[36] F. Ricca, M. Leotta, G. Reggio, A. Tiso, G. Guerrini, and M. Torchiano.
Using unimod for maintenance tasks: an experimental assessment in
the context of model driven development. In Proceedings of the 4th
International Workshop on Modeling in Software Engineering, pages
77–83, 2012.



[37] J. Shirabad, T. Lethbridge, and S. Matwin. Mining the maintenance
history of a legacy software system. In Proceedings of the 2003 Inter-
national Conference on Software Maintenance, pages 95–104, 2003.

[38] J. Singer, T. Lethbridge, N. Vinson, and N. Anquetil. An examination of
software engineering work practices. In Proceedings of the 1997 Con-
ference of the Centre for Advanced Studies on Collaborative Research,
pages 21–, 1997.

[39] L. P. Stephan Salinger, Laura Plonka. The mann-whitney u: A test for
assessing whether two independent samples come from the same distri-
bution. Human Technology: An Interdisciplinary Journal on Humans in
ICT Environments, 4(1):9–25, 2008.

[40] A. Strauss and J. M. Corbin. Basics of Qualitative Research : Techniques
and Procedures for Developing Grounded Theory. SAGE Publications,
September 1998.

[41] F. van Rysselberghe and S. Demeyer. Mining Version Control Systems
for FACs (frequently Applied changes). In Proceedings of the Interna-
tional Workshop on Mining Repositories, 2004.

[42] J. Wang and J. Han. Bide: Efficient mining of frequent closed
sequences. In Proceedings of the 20th International Conference on Data
Engineering, ICDE ’04, pages 79–, 2004.

[43] J. Wang, X. Peng, Z. Xing, and W. Zhao. An exploratory study of feature
location process: Distinct phases, recurring patterns, and elementary
actions. In Proceedings of the 27th IEEE International Conference on
Software Maintenance. IEEE, 2011.

[44] X. Xia, L. Bao, D. Lo, and S. Li. Automated debugging considered
harmful: A user study revisiting the usefulness of spectra-based fault
localization techniques with professionals using real bugs from large
systems. In Proceedings of the 2016 IEEE International Conference on
Software Maintenance and Evolution, pages 267–278, 2016.

[45] A. T. T. Ying, G. C. Murphy, R. T. Ng, and M. Chu-Carroll. Predicting
source code changes by mining change history. IEEE Transactions on
Software Engineering, 30(9):574–586, 2004.

[46] T. Zimmermann, S. Kim, A. Zeller, and E. J. Whitehead, Jr. Mining
version archives for co-changed lines. In Proceedings of the 2006
International Workshop on Mining Software Repositories, pages 72–75,
2006.

[47] T. Zimmermann, P. Weisgerber, S. Diehl, and A. Zeller. Mining
version histories to guide software changes. In Proceedings of the
26th International Conference on Software Engineering, pages 563–572,
2004.


