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A�������
Software safety is a crucial aspect during the development of modern safety-
critical systems. However, safety is a system level property, and therefore,
software safety must be considered at the system-level to ensure the whole sys-
tem’s safety [Lev11]. In fact, making software safe is more than just identifying
software hazards. The software components in the systems need also to be
verified extensively against their safety requirements to ensure a high level of
system safety. The complexity of software systems makes it difficult to define
appropriate software safety requirements with traditional safety analysis tech-
niques such as FTA (Fault Tree Analysis) [Ves+81], FMEA (Failure Mode and
Effects Analysis) [Mil49]. To cope with complex systems, a new technique called
STPA (System-Theoretic Process Analysis)[Lev11] based on system and control
theory has been developed by Leveson.
In the software development process, formal verification and functional test-

ing are complementary approaches which are used to verify the functional
correctness of software; however, even perfectly reliable software could lead to
an accident [Won+10; Lev11]. The correctness of software cannot ensure the
safe operation of safety-critical software systems. Therefore, developing safety-
critical software requires a more systematic software and safety engineering
process that enables the software and safety engineers to recognize the potential
software risks. For this purpose, this dissertation introduces a comprehensive
safety engineering approach based on STPA for Software-Intensive Systems,
called STPA SwISs [AWL15], which provides seamless STPA safety analysis and
software safety verification activities to allow the software and safety engineers
to work together during the software development for safety-critical systems
and help them to recognize the associated software risks at the system level.
To explore and evaluate the application of the STPA SwISs approach, we

conducted a pilot case study and two industrial case studies based on automotive
software systems. The pilot case study was conducted during the development
of a software simulator of the Adaptive Cruise Control System (ACC) with a
stop-and-go function using a Lego-Mindstorms EV3 robot. The first industrial
case study was conducted on the Active Cruise Control System (ACC) at BMW
Group. The second case study was conducted on the fully Automated Driving
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system (AD) of autonomous vehicles at Continental. The results demonstrate
the effectiveness of the STPA SwISs approach and show that it is scalable and
applicable to real-world software systems.

We also developed a safety engineering platform called XSTAMPP to support
the application of STAMP methodologies and the STPA SwISs approach to help
software and safety engineers to identify the software safety requirements,
automatically verify their design and implementation against the STPA-generated
software safety requirements with model checking tools and automatically
generate safety-based test cases from STPA results.
As a conclusion, we believe that the combination of the STPA-based safety

analysis and the safety-based software verification activities is a practical and
effective way to recognize software risks and assure the quality of software. The
degree of automation added value to the proposed approach by allowing the
safety and software engineers to perform seamless safety analysis, software
safety verification and safety-based testing activities in one comprehensive ap-
proach. Furthermore, this dissertation opens doors for interesting opportunities
in software safety engineering.
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Z��������������
Software-Sicherheit ist ein entscheidender Aspekt bei der Entwicklung moderner
sicherheitskritischer Systeme. Er betrifft die Sicherheit des gesamten Systems
und muss daher auch auf Systemebene behandelt werden. Das Erkennen von
Software-Risiken allein reicht indes nicht aus, um die Sicherheit einer Software
zu gewährleisten. Vielmehr müssen die Software-Komponenten des Systems
auch umfassend gegen die Sicherheitsanforderungen des Gesamtsystems geprüft
werden, um ein hohes Maß an Systemsicherheit zu erreichen. Aufgrund der
Komplexität von Software-Systemen ist es schwierig, mit traditionellen Ana-
lyseverfahren wie FTA (Fault Tree Analysis) oder FMEA (Failure Mode and
Effects and Analysis) geeignete Software-Sicherheitsanforderungen zu definie-
ren. Ein neues Verfahren zur Analyse komplexer Systeme ist die 2004 von Nancy
Leveson entwickelte, auf einem systemtheoretischen Unfallmodell basierende
Systemtheoretische Prozessanalyse (STPA).

Bei der Software-Entwicklung sind formale Verifikation und Tests einander er-
gänzende Ansätze, um die funktionale Korrektheit von Software zu prüfen.
Doch könnte es bei selbst vollkommen zuverlässiger Software zu Unfällen
kommen. Selbst bei absolut korrekter Software ist kein sicherer Betrieb si-
cherheitskritischer Software-Systeme gewährleistet. Daher erfordert die Ent-
wicklung sicherheitskritischer Software einen systematischeren Prozess bei der
sicherheitstechnischen und der Software-Entwicklung, der die Entwickler be-
fähigt, potenzielle Software-Risiken zu erkennen. Die vorliegende Dissertati-
on stellt ein umfassendes, auf STPA für Software-intensive Systeme basieren-
des Software-Sicherheitsverfahren namens STPA SwISs vor. Dieses Verfahren
stellt verschiedene Maßnahmen für STPA-Sicherheitsanalysen und die Software-
Sicherheitsverifikation bereit, die es Software- und Sicherheitstechnikern ermög-
lichen, bei der Software-Entwicklung für sicherheitskritische Systeme zusam-
menzuarbeiten und die damit verbundenen Software-Risiken auf Systemebene
zu erkennen.
Um den Einsatz des STPA-SwISs-Verfahrens zu erforschen und zu bewer-

ten, wurden ein Pilotprojekt sowie zwei Fallstudien in der Industrie durchge-
führt, beide an Software-Systemen für die Automobilindustrie. Die Pilotstudie
wurde während der Entwicklung des Prototyps eines Software-Simulators des
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Abstandsregeltempomaten (ACC) mit Stop-and-Go-Funktion mit einem Lego-
Mindstorms-EV3-Roboter durchgeführt, die erste Fallstudie in der Industrie am
Abstandsregeltempomaten (ACC) bei der BMW Group. Die zweite Fallstudie
untersuchte das vollautomatische Fahrsystem (AD) selbstfahrender Fahrzeuge
bei Continental. Die Ergebnisse sprechen für die Leistungsfähigkeit von STPA
SwISs und zeigen, dass das Verfahren skalierbar und auf Systeme in der Praxis
anwendbar ist.
Ferner wurde eine Plattform namens XSTAMPP verwendet, die die Anwen-

dung von STAMP-Methoden und von STPA SwISs unterstützt und Software-
und Sicherheitstechnikern bei der Identifizierung von Sicherheitsanforderun-
gen hilft, indem sie deren Entwürfe und Implementierungen anhand der von
STPA generierten Sicherheitsanforderungen unter Einsatz von Model-Checking-
Werkzeugen überprüft und auf Basis der STPA-Ergebnisse automatisch Testfälle
generiert.
Unsere Schlussfolgerung lautet, dass die Kombination der Analyse auf STPA-

Basis mit den sicherheitstechnischen Software-Verifikationsverfahren eine zweck-
mäßige und effektive Möglichkeit bietet, Software-Risiken zu erkennen und
Software-Qualität zu gewährleisten. Der Automatisierungsgrad verbesserte den
vorgeschlagenen Ansatz, denn dadurch war es Software-und Sicherheitstech-
nikern möglich, die Sicherheitsanalyse, die Software-Sicherheitsverifikation
sowie Softwaretests mit demselben umfassenden Verfahren durchzuführen.
Darüber hinaus eröffnet diese Arbeit interessante Möglichkeiten in der Software-
Sicherheitstechnik.
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“ The primary safety problem in software-intensive
systems is not software “failure” but the lack of
appropriate constraints on software behavior. ”— N. L������

Given the rapid innovations in software and technology, many complex systems
are becoming software intensive. Software-intensive systems are systems in
which software interacts with other software, systems, devices, sensors and with
people [Wir+08]. Software has become an indispensable part of many modern
systems and often performs the main safety-critical functions. Software safety as
stated in [Alb+99] is practically concerned with the software causal factors that
are linked to individual hazards and ensured that the mitigation of each causal
factor is traced from software requirements to design, implementation, and test.
An unexpected behavior of software may lead to catastrophic results such as
injury or loss of human life, damaged property or environmental disturbances.
Therefore, it becomes essential to test the software components for unexpected
behavior before using them in practice [Min91]. The Toyota Prius, the General
Motors airbag and the loss of the Mars Polar Lander (MPL) mission [JPL00]
are well-known software problems in which the software played an important
role in the loss, although the software had been successfully verified against all
functional requirements. Recently, Google’s self-driving car and Tesla autopilot
are the two latest software-related accidents in the automotive domain.
Many different safety analysis approaches exist. The most widely practiced

safety analysis approaches are Fault Tree Analysis (FTA) [Ves+81], Failure Mode
and Effect Criticality Analysis (FMECA) [FME67] and Hazard and Operability
Analysis (HAZOP) [Tro68] which are developed over 50 years ago, before
computers were common in engineered systems. As a result, these safety analysis
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methods do not completely ensure safety in complex systems. In such systems,
the accidents are resulting when component failures, external disturbances,
and/or dysfunctional interactions among system components are not adequately
handled [Lev11]. A new trend is to advance safety analysis techniques using the
system and control theory rather than the reliability theory. STAMP (System-
Theoretic Accident Model and Processes) [Lev11] is a modern approach for
safety engineering that promises to overcome the problems of the traditional
safety analysis techniques. STPA (System-Theoretic Process Analysis) is designed
for safety analysis in the system development and operating stages; the goal
is to identify hazards existing in the system and provide safety constraints to
mitigate those hazards.

1.1. Problem Statement

Safety is a system level property and, hence, needs to be analysed on the
system level. Therefore, the software must fully satisfy the corresponding safety
requirements which constrain the software from these behaviors that violate the
safety of the whole system. Ensuring the safe operations of software involves
that software must deal with hazardous behaviors which are identified by safety
analysis at an early stage. STPA has been developed to derive detailed safety
requirements for complex systems. However, STPA has not yet been placed into
the software development process of safety-critical systems, and the current
software engineering methods do not explicitly incorporate STPA safety activities.
STPA safety analysis is often handled separately by the safety engineers, while
software developers are usually not familiar with system safety analysis processes.
Therefore, there is a gap between the software and safety engineering processes.

Moreover, the complexity of safety-critical software makes exhaustive software
testing impossible. Therefore, we need to make sure that safety is sufficiently
considered. Yet, many existing testing approaches and tools do not incorporate
information from safety analysis. In case they do, they rely on traditional safety
analysis techniques such as FTA and FMECA which focus on component failures
instead of component interaction failures. A software safety testing approach
integrated with alternative systems-theoretic safety analysis approaches such as
STPA has been missing.
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1.2. Research Objectives

This dissertation aims to fill the aforementioned gap to place STPA in the soft-
ware engineering process to help software and safety engineers in deriving the
appropriate software safety requirements, formally verifying them, generating
safety-based test cases to recognize the associated software risks, and reduce
them to a low level. Therefore, this dissertation has three main objectives. The
first objective is to develop a comprehensive safety engineering approach which
integrates the STPA safety analysis activities with the software verification activi-
ties in a software engineering development process such as the V-Model [FM91]
to offer seamless safety analysis and verification. The second objective is to
develop algorithms to automate the safety-based formal verification and testing
activities of the proposed approach. Finally, this dissertation aims also at devel-
oping an open source tool to support the application of STAMP methodologies
as well as the software verification activities based on the information derived
during an STPA safety analysis.

1.3. Contributions

The thesis provides four contributions:

• Developing a comprehensive safety engineering approach based on
STPA to derive software safety requirements at the system level [AWL15;
AW14b; AW15a], formally verify them at the design and implementation
levels, and generate safety-based test cases from the STPA results. The
proposed approach has the following contributions: (1) We develop an
algorithm based on STPA to derive unsafe software scenarios and automat-
ically translate them into software safety constraints and specified them
into a formal specification in LTL (Linear Temporal Logic) [Pnu77]. (2)
We explore how to build a Safe Behavioral Model (SBM) based on the
STPA control structure diagram and the process model. (3) We develop an
algorithm to automatically extract the Safe Test Model (STM) from SBM
model and check its correctness by automatically transforming it into a
formal model such as an SMV (Symbolic Model Verifier) [McM93] and
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verify it against the STPA-generated safety requirements using the NuSMV
model checker [Cim+00].

• Providing formal definitions and algorithms for automation support
to the proposed approach (STPA SwISs), especially the document of STPA
safety analysis results, automatically generate unsafe software scenarios
based on the process model variables as well as automatically verify STPA
software safety requirements and generate safety-based test cases.

• Developing an open-source tool called XSTAMPP to support the appli-
cation of the STAMP methodologies as well as the STPA SwISs approach
and enable the software and safety engineers to derive software safety
requirements, automatically verify their software implementation and
design against the STPA results and automatically generate safety-based
test cases directly from the STPA results.

• Evaluating the application of the STPA SwISs approach. We conducted
three case studies. The first case study is a pilot case study, which was
conducted at our institute during developing a safe software simulator
of the Adaptive Cruise Control (ACC) system with stop-and-go function
to explore the application of the STPA SwISs approach during the devel-
opment process of a safety-critical software. The second case study was
conducted as an industrial case study at the German company BMW Group.
We applied the proposed approach to BMW active cruise control system
with stop-and-go function of the new car model G11. The case study
was performed in the headquarter of BMW Group in Munich, Germany.
The third case study was conducted as an industrial case study at the
German company Continental. We first applied the STPA approach to the
current project of the fully automated vehicle to evaluate and assess the
architecture design of the fully automated vehicle. Then, we explored the
application of the STPA SwISs approach at the software level of the fully
automated vehicle to derive software safety requirements, automatically
generate the unsafe software scenarios, translate them into software safety
requirements and formalize the software safety requirements into formal
specification in LTL to evaluate the architecture of the fully automated
vehicles.
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1.5. Outline

The remainder of this dissertation is organised as follows: In Chapter 2, we
present the background of this dissertation, including software safety challenges,
traditional and modern safety analysis techniques and software verification and
testing approaches. The state of the art is presented in Chapter 3. In Chapter 4,
we presented our proposed approach for software safety engineering based on
STPA including software testing and verification activities. Chapter 5 presents
the automation support to the proposed approach. The tool support of the
proposed approach is presented in Chapter 6. Chapter 7 presents the empirical
validation, which introduces three cases studies on evaluating the application of
the proposed approach: pilot case study and the two industrial case studies. In
Chapter 8, we conclude the dissertation and present the future work.
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“ It’s hard enough to find an error in your code when
you’re looking for it; it’s even harder when you’ve
assumed your code is error-free. ”— S���� M�C������

2.1. Software Safety Challenges

Software is an integral and increasingly complex part of modern safety critical
systems (as shown in Figure 2.1). Therefore, it is essential to analyse software
safety in a system context to gain a comprehensive understanding of the roles
of software and to identify the software-related risks that can cause hazards
in the system. Leveson [Lev91] noted that software by itself is not hazardous
and cannot directly cause damage to human life or the environment; it can only
contribute to hazards in a system context. Software can create hazardous system
states through erroneous control of the system or by misleading the system
operators when taking actions [Lev11]. Software has no random failures and it
does not wear out like hardware components [Lev91; Jaf+91]. Flaws in software
are systematic failures which stem from flawed requirements, design errors or
implementation flaws [Lev91; Jaf+91]. System hazards related to software
are caused by software flaws, software specification errors and uncontrolled
interactions among different components forming the system, rather than failures
of single components [Har10].

Ensuring the safe operation of systems requires that the potential risks associ-
ated with increased reliance on software be well understood, so that they can
be adequately controlled. To develop safe software, therefore, we first need

31



2.2 | Safety Analysis Techniques 2 | Background

Figure 2.1.: Software is an integral part of system

to identify and analyse software-related hazards and the unsafe scenarios and
develop the corresponding software safety requirements at the system level.
To assure that these software-related unsafe scenarios cannot occur in a sys-
tem, safety verification activities are required which include a demonstration of
whether the software design and implementation meet those software safety
requirements [NAS10]. However, the software safety requirements are written
in natural languages. Therefore, to enable the software verification activities
(e.g. testing and formal analysis), these requirements should be specified into a
formal specification in Linear Temporal Logic (LTL).

2.2. Safety Analysis Techniques

Over the past seventy years, the most basic models of accident causation are the
sequential models. The Domino model (sequential accident model) by Heinrich
[Hei31] is one of the earliest accident causation models, proposed in 1931. The
Domino model describes an accident as a chain of discrete events which occur
in a particular temporal order [Fer88]. There are five safety factors which are
addressed by the Domino model: 1) social environment, 2) fault of the human,
3) unsafe acts or conditions, 4) accident and 5) injury [Qur08]. Epidemiological
accident models [Isk62] are meant to explain the accident causation in complex
systems. These models are valuable because they provide a basis for discussing
the complexity of accidents that overcomes the limitations of sequential models
[Hol04]. The epidemiological models consider the events leading to accidents as
analogous to the spreading of a disease. The epidemiological accident model can
also be used to study causal relationships between environmental factors and
accidents or diseases. An accident is conceived as the outcome of a combination
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of factors in this model. Some of the factors manifest and some are latent, but
they happen to exist together in time and space [Rau13]. A famous example of
epidemiological models is the Swiss Cheese model: It was proposed by Reason in
the 1990’s [Rea90] and emphasises the concept of organisational safety and how
protection barriers may fail. The Swiss cheese model [Rea97; RHP06] views
accidents much like the spreading of disease and describes the combination of
latent conditions present in the system for some time and their role in unsafe
acts made by operators.

2.2.1. Traditional Safety Analysis Techniques

There are over 100 different hazard analysis approaches in existence [Eri05].
Many of these approaches, however, are not widely practiced. Fault Tree Analysis
(FTA), Failure Mode and Effect Analysis (FMEA) and Hazard and Operability
Analysis (HAZOP) are most commonly used by system safety analysts. These
approaches are known as traditional hazard analysis techniques in the academic
literature, which rely on accident causation models which are sequential or
epidemiological.

2.2.1.1. FTA

The Fault Tree Analysis Approach (FTA) [Ves+81] was developed at Bell Lab-
oratories in the early 1960’s under a U.S. Air Force contract to analyse the
Minuteman missile system. FTA is a top-down approach to identify critical
failure combinations. FTA is based on the chain of event accidents model. It
is widely used to discover design defects during the development of a system
and to investigate the causes of accidents or problems that occur during system
operations [LN05; Lev82; LH83b]. The input of FTA is a known hazard, failure
or accident, and a design description of the system under analysis. The FTA
process can be divided into four main steps: 1) identify the root node (hazard
or accident or failure); 2) identify the combination of events or conditions that
caused the root node and combine them by using Boolean logic operators; 3)
decompose the sub-nodes until events determined are basic (leaf nodes); and 4)
identify minimum cut sets which are the smallest sets of basic events that cause
the root node to occur.

2.2 | Safety Analysis Techniques 33



2.2 | Safety Analysis Techniques 2 | Background

2.2.1.2. FMEA and FMECA

The Failure Mode, Effects and Analysis Approach (FMEA) [Mil49] was first
introduced by the U.S. military for weapons systems in 1949 as a systematic,
procedure for evaluating and discovering the potential failures, their potential
cause mechanisms and the risks designed into a product or a process. By the early
1970s FMEA was used in civil aviation and the automotive industry [FME67].
FMEA helps to identify where and how the component might fail and to assess
the relative impact of different failures. FMEA is, similar to FTA, based on the
chain of events accidents model. FMEA is a bottom-up, structured, table-based
process for discovering and documenting the ways in which a component can
fail and the consequences of those failures. The input to FMEA is a design
description of the system and component. The FMEA process can be divided
into four sub-tasks: 1) establish the scope of the analysis, 2) identify the failure
modes of each block; 3) determine the effect of each potential failure mode
and its potential causes; and 4) evaluate each failure mode in terms of the
worst potential consequences and assign the relative values for the assumed
severity, occurrence and chance of detection to calculate the risk priority number.
Ultimately, the analyst has to develop the recommended action required to
reduce the risk associated with potential causes of a failure mode [LN05].
An extension of FMEA called FMECA (Failure Mode, Effects and Criticality

Analysis) [FME67] was developed by reliability engineers to evaluate the effect
of single component failures. FMECA is adopted and used as a hazard analysis
in different domains such as space, nuclear and automotive industries.

2.2.1.3. HAZOP

The Hazard and Operability Study (HAZOP) [Tro68] was initially developed
by imperial chemical industries in 1964 and published in 1974. HAZOP is a
structured hazard analysis technique to identify risks and operability problems in
a given system and develop appropriate safeguards to prevent accidents. HAZOP
was originally developed to be used in the chemical industry to identify the
potential deviations in chemical processes which can lead to accidents, however,
it has been used to identify hazards in different systems in the different domains
(e.g. computer systems, software systems) [McD+95]. HAZOP can be applied
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Figure 2.2.: A general feedback control structure

on existing system or during the system design phase before the system has been
implemented. The HAZOP process provides guide-words combined with process
parameters (e.g. flow, pressure, time, etc.) to help the analysts in identifying
possible hazards in a system. These guide-words are used to systematically
consider the possible deviations from normal operations of systems like “No", or
“more" or “less" or “as well as " or “part of" or “Reverse" or “other than".

2.2.2. System-Theoretic Safety Analysis

The nature of accident causation has, however, become more complex over
time. Twenty years ago, accidents causation theory was developed further to
capture this increased complexity and a new class of models emerged based
on a holistic and systematic approach [Lev04a]. Furthermore, the prevailing
chain-of-failure-events models provide the basis for almost all of today’s hazard
analysis techniques and the probabilistic risk assessment based on them. All
of these analysis and design techniques focus on hardware component failures
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and thus reliability theory [Lev11]. These methods assume that accidents are
caused by component failures. However, they are not enough to explain accident
causation in the more complex systems.
The development of accident causation models and safety analysis from for-

merly sequential models to systemic models shows the evolution of safety analysis
for complex systems. We must emphasis that traditional analysis types, like
FMEA or FTA have been designed for simpler systems than nowadays being
created in the industry. The integration of technological, software system compo-
nents stretches the limits of safety analysis. Therefore, new methods are needed
which can actually cope with today’s complex systems.

To overcome the limitations of the traditional hazard analysis, a recent coun-
termeasure is to advance safety analysis techniques by system and control theory
rather than reliability theory. The STAMP (System-Theoretic Accident Model and
Processes) [Lev04a] accident model developed by Leveson, which uses system
theory and treats safety as a control problem. Hence, it describes the system as a
whole as opposed to linear cause effect relationships or epidemiological factors
within the system. STAMP also continues corresponding hazard and accident
analysis methods. Within this method, accidents are considered as results from
inadequate enforcement of safety constraints in system design, development and
operations. STAMP treats safety as a control problem rather than component
failures. STAMP is based on system theory, which was designed to understand
the structure and behavior of any type of system. In a system-theoretic approach,
the system is seen as a set of control components which interact with each other
(shown in Figure 2.2). This helps to create models of systems which cover human,
technology, software, and environmental factors [Lev04a]. Therefore, STAMP
considers accidents not only arising from component failures, but also from the
interaction among system components. In other words, accidents occur when
component failures, external disturbances and/or dysfunctional interactions
among system components are not adequately handled by the safety control
system [Lev04a].

The STAMP approach can be divided into two different analysis methodologies.
While STAMP acts as an underlying theory, the methods STPA (System-Theoretic
Process Analysis) and CAST (Causal Accident Analysis based on STAMP) are to
be practically used for safety analysis. STPA is designed for safety analysis in the
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system development and operation stage; the goal here is to identify hazards
existing in the system and providing so-called safety constraints to mitigate those
hazards. CAST is designed for accident analysis, the goal here is to identify
causal factors, which lead to the accident.

2.2.2.1. STPA

STPA (System-Theoretic Process Analysis) [Lev11] is a safety analysis technique
based on the STAMP model of accidents for large and complex systems. STPA
has been developed to identify more thoroughly causal factors in complex safety-
critical systems including software design errors. STPA aims to create a set
of unsafe scenarios that can lead to an accident. It is similar to FTA but STPA
includes a broader set of potential scenarios, including those in which no failures
occur, but the problems arise due to unsafe and unintended interactions among
the system components [Lev11]. STPA provides guidance and a systematic
process to identify the potential for inadequate control of the system that could
lead to a hazardous state which results from inadequate control or enforcement
of the safety constraints.

The basic components in STPA are fundamentals of analysis, safety constraints,
unsafe control actions, and control structure diagrams and process models
(shown in Figure 2.3). A control structure diagram is made up of basic feedback
control loops. An example is shown in Figure 2.2. When put together, they can
be used to model the high-level control structure of a particular system. In table
2.1, we itemized the most relevant terms of STPA approach.

Furthermore, STPA was developed also to address increasingly common com-
ponent interaction accidents which can result from design flaws or unsafe inter-
actions among non-failing (operational) components [Lev11]. It accumulates
information about how hazards can occur. This information can then be used
to eliminate, reduce, and control hazards in system design, development, man-
ufacturing and operations. The STPA safety analysis process is carried out in
three major steps (shown in Figure 2.4):

• STPA Step 0. a: Establish the fundamentals of the analysis (e.g. system
description, system-level accidents, system-level hazards, safety and design
requirements).
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Figure 2.3.: The main components which are used in STPA

• STPA Step 0. b: Draw a high-level safety control structure diagram in
which the system is viewed as interacting components. Figure 2.2 shows
the general control feedback control structure.

• STPA Step 1: Identify the potential unsafe control actions of the system
that could lead to one or more system-level hazards. Leveson [Lev11]
defined four types of hazardous actions:

– A control action required for safety is not provided or is not followed.

– An unsafe control action is provided that leads to a Hazard.

– A potentially safe control action is provided too late, too early, or out
of sequence.

– A safe control action is stopped too soon or applied too long (for a
continuous or nondiscrete control action).

• STPA Step 2: Identify accident scenarios that explain how unsafe control
actions might occur and how safe control actions might not be followed or
executed.
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Figure 2.4.: The main steps of the STPA approach

2.2.2.2. Extended Approach to STPA

A new extended approach to STPA was introduced by Thomas [Tho13; TL11],
whose approach aims to identify unsafe control actions in STPA Step 1 based
on the combination of process model variables of each controller in the control
structure diagram. Some control actions in the system can only be hazardous in
a certain context. Therefore, the process model variables should be assembled
to define a context and analysed based on their context to check whether this
combination could lead to a hazard or not. Table 2.2 shows the Context table
of providing control action CAi based on the relevant process model variable
values Cs =
S
(P1 = v1, . . .Pn = vn).

The procedure of the extended approach to STPA is described as follows:
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Table 2.1.: STPA Terminology

Terminology Definition

Accident Accident (Loss) results from inadequate enforce-
ment of the behavioral safety constraints on the
process [Lev11].

Hazard Hazard is a system state or set of conditions that,
together with a particular set of worst-case environ-
mental conditions, will lead to an accident [Lev11].

Unsafe Control Ac-
tions

are the hazardous scenarios which might occur
in the system due to a provided or not provided
control action when it was required. [Lev11].

Safety Constraints The safety constraints are the safeguards which
prevent the system from leading to losses (acci-
dents) [Lev11].

Process model The process model is a model required to deter-
mine the environmental and system variables and
states that affect the safety of the control actions
and it is updated through various forms of feedback.
[Lev11] [Tho13].

Process model vari-
ables

The process model variables are the safety-critical
variables of the controller in the control structure
diagram which have an effect on the safety of issu-
ing the control actions [Lev11] [Tho13].

Causal Factors Causal factors are the accident scenarios that ex-
plain how unsafe control actions might occur and
how safe control actions might not be followed or
executed [Lev11] [Tho13].

• Identify the relevant process model variables of each control action of the
controller in the control structure diagram.

• Create the context table for each control action. A context table is combi-
nation sets of the process model variable values (shown in Table 2.2 and
Table 2.3).

• Evaluate each row in the context table (combination set) within two
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Table 2.2.: The context table of providing the control action CAi

Control Action Process model variables Hazardous ?

CAi

P1 P2 . . . Pn at any
time

too
early

too
late

v11 v21 . . . vn1 no/yes no/yes no/yes
v12 v22 . . . vn2 no/yes no/yes no/yes
. . . . . . . . . . . . .. .. ..
v1n v2n . . . vnn no/yes no/yes no/yes

Table 2.3.: The context table of not providing the control action CAi

Control Action Process model variables Hazardous ?

CAi

P1 P2 . . . Pn
v11 v21 . . . vn1 no/yes
v12 v22 . . . vn2 no/yes
. . . . . . . . . . . . ..
v1n v2n . . . vnn no/yes

contexts (C1= Providing CA or C2 = Not Providing CA) to determine
whether the control action CAi is hazardous in that context or not.

Thomas [Tho13] mathematically discussed the formalization of STPA which
can be used not only to identify unsafe control actions and other control flaws,
but also to generate requirements that will enforce safe behaviors.

2.2.3. Software Safety Analysis Challenges

Safety analysis of software was considered at the beginning of 1970’s as a part
of the system safety [Eri05]. A number of variations based on the traditional
approaches were developed to identify the potential software hazards which may
be present to a system such as Software FTA (SFTA), Software FMEA (SFMEA)
[FLR78; Rei79]. SFTA (Software Fault Tree Analysis) [LH83a] is an extension
of FTA, which is primarily developed to discover all potential faults such as
faulty inputs or software bugs that could occur in software. SFTA has also been
used for verifying software code. SFMEA (Software Failure Modes and Effect
Analysis) [FLR78; Rei79] is an extension of FMEA which was developed in
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1978 as a hazard analysis technique for software to address the potential effects
of software errors on a system. However, these techniques are insufficient to
address software causes and behavior. Leveson stated in [Lev95] that SFTA is
applicable only to small-sized software. Because constructing a complete fault
tree is not possible for large software.

Leveson (2004) [Lev04b] described the common factors and role of software
in spacecraft accidents (e.g. Ariane 5 launcher in 1996, the loss of contact with
the solar heliospheric observatory spacecraft in 1998, the loss of the Mars Polar
Lander in 1999, and the loss of a Milstar satellite in 1999). Leveson noted that
the major root cause of these accidents was arose from flawed requirements
and misunderstanding about the associated risks with software during the
development process [Lev09]. Leveson also emphasised that the use of software
introduces a new causal factor for accidents which involves changes in the
traditional hazard analysis techniques (e.g. FTA, FMEA) to consider the software
risks.
The assumptions of the accident causes based on the traditional techniques

such as FTA and FMEA do not hold for software [Lev09; Lev11]. The software
hazard causes in the accident traditional models, are often stated in general
terms in hazard analyses called “Software error", instead of defining specifically
what software functionality can lead to a catastrophic result [Har10; Har12].
Furthermore, the use of the traditional techniques to identify software hazard
is failed when the software might inadvertently activate of a function such as
opening a valve at the wrong time or firing a thruster prematurely [Har10;
Har12]. Software causes should explicitly describe the software functionality
and related system concerns. The term “Software error" does not provide enough
information on how the accident occurred. Moreover, software is fundamentally
unlike hardware in that software is not hazardous by itself, it has functional
failures and does not fail randomly [Eri05; Lev09; Lev95].

In fact, the complexity of software makes defining appropriate software safety
requirements by traditional safety analysis techniques difficult. Rather than
focusing on creating software safety requirements, most traditional techniques
focus on failures and analyse an existing design with some or all of the require-
ments already defined. Moreover, STPA is a new technique, however, it has not
been yet placed within software development process and used for the purpose
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of software safety.
Table 2.4 shows a summary about the safety analysis techniques: FTA, FMEA,

HAZOP and STPA.
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Table 2.4.: A summary of the safety analysis techniques
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2.3. Software Verification

Software verification is a process to check whether software fully satisfies all the
expected requirements. Formal verification and testing are two fundamental
approaches to software verification. Formal verification techniques are used to
prove the correctness of software and check whether the software satisfies its
requirements. Three types of formal verification exist: model checking, theorem
proving and deductive methods [BK08].

2.3.1. Formal Verification

Formal verification entails a mathematical proof showing that a system satisfies
its desired property or specification. To do this, the property of interest must be
modeled in a mathematical structure (e.g. temporal logic). Temporal Logic has
been proposed by Pnueli [Pnu77] as an appropriate formalism in the specification
and verification of concurrent programs. Many different versions of temporal
logic have been used in the verification process such as Linear-Time Tempo-
ral Logic (LTL), and Computation Tree Logic (CTL) [CE82] which have been
broadly used to express safety properties in a formal notation. An LTL formula
consists of atomic propositions, Boolean operators (¬, _,^,$,!, t rue, f alse)
and temporal operators ( � next, É always, Ü eventually, U until, R release).
An LTL formula can be expressed by the following syntax [BKL08]:

• If � 2  then � is an LTL formula, where  is a finite set of propositional
variables which can be used to build the LTL formulas.

• If � and � are LTL formulas then ¬� , � _ � , É� , � � and � U� are LTL
formulas.

• If É� , then � is always true for all execution paths.

• If Ü� , then � is true at some time in future states.

• If � U � , then � is true until � is true.

CTL (Computation Tree Logic) [CE82] is an extension of classical logic pro-
posed by Edmund M. Clarke and E. Allen Emerson in 1981 that allows reasoning
about an infinite tree of state transitions. CTL combines both branching-time
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and linear-time operators. An CTL formula consists of atomic propositions and
temporal operations: A (All paths), E (Exists), F (Future), G (Globally), U (un-
til), R (release), W (weak until), X (next time). The difference between the LTL
and CTL formulas is that the LTL formulas are interpreted over a set of linear
path of a Kripke structure, whereas the CTL formulas are evaluated over the set
of system states [Roz11].

2.3.1.1. Software Model Checking

Model checking is a well-established formal verification technique to verify
whether the software meets its requirements through exhaustive exploration
of the state space of the software. The model checking process involves that
the target software to be formally modelled in the input language of a model
checker and specifications/properties to be formalized in a temporal logic such
as Linear Temporal Logic (LTL) [Pnu77] or Computation Tree Logic CTL. The
model checker will perform an exhaustive exploration to verify whether a given
property holds in the software. In case that the software does not hold a given
property, a model checker will produce a counterexample that identifies a path
where the software violates the given property. There exist two ways to construct
or extract the input model required by software model checkers: (1) at the design
level, a verification model can be constructed from state machine diagram (e.g.
SMV model [McM93]) and (2) at the implementation level, a verification model
can be extracted directly from software code (e.g. SPIN model [Hol03]). Model
checkers can also be used for testing purposes to generate test cases [ABM98].
In the following, we will describe the most commonly open-source software
verification tools:

The Symbolic Model Verifier (SMV) is a model checker which was developed
by McMillan [McM93] in 1993 to verify finite state systems against specifications
in the Computation Tree Logic (CTL). The SMV language allows to describe the
finite state systems. It requires that the given system to be verified is modeled
in a suitable model/diagram (e.g. Finite state machines). This model of a
given system should be written in the specification language called SMV and the
given property (requirement) should be expressed in CTL to check the validity
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1 MODULE main (<module va r i ab l e s >)
VAR

3 v a r i a b l e s : <range data type>/<enumeration>
<nameSub1>: _SubModule1 ( v a r i a b l e s )

5 . . .
<nameSubN>: _SubModuleN ( v a r i a b l e s )

7 s t a t e s : <A l l ch i l d r en s t a t e s>
ASSIGN

9 INIT ( s t a t e s=<i n i t i a l S t a t e >)
INIT (<var i ab l e> =<value>)

11 next(<var i ab l e >):= case
<var1>=<value> & <tranConditon>:<nextValue >;

13 . . .
next ( s t a t e s ):= case

15 <s t a t e s>=value & t r a n s i t i o n : nex tS ta te ;
. . .

17 esac ;
LTLSPEC

19 <L i s t of LTL formulae>
CTLSPEC

21 <L i s t of CTL formulae>

Figure 2.5.: The basic structure of the SMV model

of the model against its specifications. The output of the SMV model checker
are Boolean values: true or false with a counterexample which shows why the
formula does not validate. Figure 2.5 shows the basic structure of the SMV
model in SMV as described in [McM93; Cav+10]. Each SMV module contains
the following sections: 1) The name of the model with the optional state variable
parameters, 2) The declaration of the state variable and their possible values,
3) The initial values of variables and the states variable, 4) The sub-modules of
the super module deceleration, 5) The transitions of the module, and a list of
the LTL formulae or both.

The NuSMV model checker1 [Cim+00] is an extension and re-implementation
of the symbolic model checker (SMV). NuSMV basically is BDD-based symbolic
model checker (Binary Decision Diagram) to verify finite state systems against
specifications expressed in LTL. NuSMV provides a textual interaction shell and
a graphic interface, extended model partitioning techniques and allows for LTL
model checking [Cim+00]. It supports the analysis of specifications expressed

1
http://nusmv.fbk.eu
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in both LTL and CTL.

Simple Promela Interpreter (SPIN)1 is an open source software verification
tool developed by Holzmann at Bell Labs in 1980[Hol03]. It is used to verify the
correctness of distributed software models. SPIN requires that a given system to
be verified is described in the specification language called Promela (Process
Meta Language) which supports modeling asynchronous distrusted algorithms
as non-deterministic finite automaton. Compared to other model checkers, SPIN
is a general-purpose model checker which uses an efficient algorithm to reduce
the state explosion problem [SK09]. Moreover, SPIN accepts Promela code
(verification model) as input which is similar to C code that is written manually
or it can be also automatically extracted from source code of software written
in ANSI-C by using an extraction verification model tool from implementation
level C code such as Modex2 [HS99].

2.3.1.2. Formal Verification Challenges

Typically, formal software verification focuses on proving the functional correct-
ness of software and demonstrating that the software fully satisfies all functional
requirements [Tra+99]. However, they cannot make it safe or reduce the risk.
Therefore, the software must be analyzed regarding the safety aspect and veri-
fied against its safety requirements at the system level [LCS91]. Formal safety
verification involves demonstrating whether the software fulfills its safety re-
quirements and will not result in a hazardous state. The main obstacles to make
formal safety verification feasible for large and complex systems are that the
formal verification methods needs expert users and the safety requirements are
usually written into a natural language. Hence, they cannot be directly verified
with model checker [Cim+10]. Therefore, to verify the software against its
safety requirements with the model checkers, the safety requirements should
be specified into a formal specification in LTL/CTL. For example, a software
safety requirement of the train door control system can be written as “the train
door software controller must not close the train door when there is a person in

1
http://spinroot.com/spin/whatispin.html

2
http://spinroot.com/modex/
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the doorway". This safety requirement can be expressed in an LTL formula as
follows:

LTLi = G ((person_in_the_doorwa y )! !(cont rolAct ion = close_door))
This formula means that it always (G) the train door software controller must

not provide (!) a control action close_door when there is a person in the door
way.

The main limitation of model checking is the state explosion problem which
makes it impossible to scale up and it might be applicable only to finite state
programs [AK86]. In some cases, the model checker cannot reach to state in the
model and cannot provide an answer. Therefore, the model checker alone is not
sufficient to assess the safety of software. The use of formal verification methods
can reduce the likelihood of certain software errors or help to detect them,
therefore the formal verification methods must complement with appropriate
testing[HC12].

2.3.2. Software Testing

Software testing is one of the most important phases during the software devel-
opment process to detect inconsistencies between the software implementation
and its requirements. The complexity of software makes testing a challenging
process because practically impossible to test all possible execution paths of
software. The main goal of the software testing is to execute a software on a
set of test cases and compare the actual results with the expected results. The
most common classification of the software testing approaches are black box
and white box. Black box testing (functional testing) [Bei95] is a process that
tests the functionality of a system under test or software without peering into
its internal structure. Whereas white box testing (structural testing) [Pre00] is
a process that takes into consideration the internal structure of the system or
software under test.
A popular testing approach called Model-based Testing (MBT) [Dal+99;

AD97] which is one of the variants of black box testing which aims at automati-
cally generating test cases using models extracted from software requirements.
Model-based testing can be performed in three major steps: modelling the sys-
tem under test, test case generating and test execution. The main challenge of
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Figure 2.6.: The finite state machine model

software testing is to generate suitable test cases that cover all requirements and
functions of the software. The model-based testing process involves creating a
suitable model of the software’s behavior based on requirements or an existing
specification (e.g. finite state machine, extended state machine or statecharts)
and generating test data input and expected output to generate the test cases.

2.3.2.1. Software Behavior Models

A number of software behavior models are in use today, several make good
models for testing such as control flow charts [Har87], finite state machines
[Mea55; Gil62], SpecTRM-RL [Lev00], and sequence event diagrams [UML04].
A software behavior can be described as an input sequence, actions, guards and
output logic, or the data flow through the software modules and routines. In
the following, we describe popular software behavior models which are used to
model software behavior and generate test cases from these models:

Finite state machines are commonly used in software behavior modeling and
testing to generate test cases [AD97]. The finite state model (shown in Figure
2.6) includes a set of states, a set of input events and the transition between
them.

Definition 2.1 (Finite State Machine (FSM))
Let f be a finite state machine which can be defined with a 5-tuple [Mea55]:

f = (S, s1, I , O, Ts), where S is a finite nonempty set of states with s1 as the initial
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Figure 2.7.: The statechart model

state, I and O are finite input and output alphabets, and Ts is a behavior relation
which defines all possible transitions of the finite state machine model.

Another software behavior model is an Extended Finite State Machine (EFSM)
which is an extension of the classical (Mealy) Finite State Machine (FSM) model
with input and output parameters, context variables, operation and guards
defined over context variables and input parameters. EFSM [CK93] is a common
and very useful diagram to model the system behavior and suitable for driving
the test cases. EFSM contains nodes which represent the states of the system
and the directed arcs which represent the transitions of the system from one
state to another [UL07].

Definition 2.2 (Extended Finite State Machine (EFSM))
Let M be an extended finite state machine which can be defined by the 7-tuple
[CK93]:

M = (S, I , O, D, F, U , T ), where S is a set of symbolic states, I is a a set of input
symbols, O is the set of output symbols,D is an n-dimensional space D1 ⇥ ...⇥ Dn,
F is a set of enabling function f such that fi : D ! {0, 1}, U is set of update
transformations ui : D! D, and T is a set of transitions.

Statecharts [Har87] were developed as a broad extension of the conventional
formalism of finite state machines with notations of hierarchy, concurrency, and
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communication for describing the behavior of complex or reactive software
systems.

Definition 2.3 (A Statechart)
Let SC be a statechart which can be defined with a 7-tuple [Har87]:

SC = (S, s1,�,⇠,� ,⌦,⌃), where S is a finite set of superstates, s1 2 S is as
the start superstate which is a either a state or a state-chart, � is a transition
function that maps the set of states S, ⇠ is a superstate function that maps the set
of superstates onto itself, � is an event function that maps the set of transitions
T , S ⇥ S to a set of events, ⌦ is a finite set of events, and ⌃ is a default transition
function that maps the set of states S to their default sub-state if it exists, or itself.

In [Har87] Harel defined the statecharts language and the semantics of
statecharts for complex systems. Simply, each Stateflow has a chart which
is an independent state machine. Each chart has one or more states which
are linked together by arcs labeled with transition information. The states
can be also hierarchical states and contain a number of sub-states (children).
Each state should have a type of state decomposition OR_STATE or AND_STATE.
The OR_STATE decomposition allows only one sub-state (which has a default
transition) to be active at a time when the parent (superstate) is active whereas
the AND_STATE decomposition allows all sub-states to be active when the parent
(superstate) is active.

Based on Harel’s statechart notations, the Simulink Stateflow model was
developed byMathworks1 tomodel event-driven (reactive) systemswith enabling
the representation of hierarchical state machine diagram, parallelism and history
within statechart diagrams. The Simulink Stateflow is generally used to model
the discrete controller in the model of a hybrid system where the continuous
dynamics such as the behavior of the plant and environment are specified using
others capabilities of Simulink toolkit [HR07]. Recently, Matlab/Simulink has
become a commonmodel-based development tool for industrial software systems,
which is widely used in various industries such as the aircraft, automotive,
telecommunications, and transportation industries.

1
http://www.mathworks.com
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Figure 2.7 shows an example of the Simulink’s Stateflow model. In Simulink’s
Stateflow, each state can be labeled with the following elements:

name <of a state>
entry: <entry actions are executed when a state is entered.>
during: <during actions are executed when while in a state.>
exit: <exit actions are executed when a state is left.>
entry, during, exit: <combined actions in a state>

The Stateflow model in Fig. 2.7 includes two superstates (state 1 and state 2)
with state decomposition OR_STATE. The superstate State 1 has two sub-states
with state decomposition AND_STATE. When the superstate State 1 is active,
then the both sub-states will be active in the same time. While the superstate
State 2 has two sub-states with state decomposition OR_STATE. That means
when the superstate State 2 is active, then only the sub-state with the default
transition subState 3 will be active.

2.3.2.2. Test Case Generation Techniques

A big challenge in software testing is the design of test cases. To generate test
cases, the tester needs first to understand the system specification and require-
ments. After that, the tester has to manually write test cases or automatically
generate test cases from a model by using model-based testing tools. Automated
generation of test cases involves that the system behavior should be modeled in
a suitable model. Over the years, there are many of the automated model-based
test case generation approaches which have been developed by different tech-
niques such as random generation algorithms [Pro03], graph search algorithms
[Kua62; Bro+05], model-checking [OLA03], symbolic execution [Pre01] or
theorem proving [CR02].

2.3.2.3. Combinatorial Software Testing

Today’s software systems are complex and their behaviors may be affected by
many possible configurations and input variables. Performing exhaustive testing
for all possible configurations and input variables of such systems is not always
possible for a complex system with a large number of configurations and input
variables. For example, if we have a software system with 5 parameters, each
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of which can take 5 values. Then, the total number of possible combinations of
this system is equal to 55 = 3125 possible combinations. Therefore, instead of
testing all the possible combinations, combinatorial testing strategies [KKL13]
are proposed as reasonable alternative ways that can reduce the number of the
possible combinations by generating a subset of combinations to satisfy some of
the combinatorial testing coverages. The combinatorial testing is based on the
assumption that many errors in software can only arise from the interaction of
two or more parameters [KKL13].

Definition 2.4 (Combinatorial Testing)
Combinatorial testing [CG12] is a testing technique that requires covering all
t-sized tuples of values out of n parameter attributes or properties modelled after
the input parameters or the configuration domain of a system under test.

Two forms of combinatorial testing:1) use combinations of configuration pa-
rameter values, or 2) combinations of input parameter values. There are four
combination strategy criteria which are used in combinatorial software testing
[KKL13]:

• All Combinations Coverage: Every possible combination of values of the
parameters must be covered.

• Each Choice Coverage: Each parameter value must be covered in at least
one test case.

• Pairwise Coverage (2-way): Given any two parameters, every possible
combination of values of these two parameters must be covered in at least
one test case.

• T-way Coverage: Given any t parameters, every possible combination of
values of these t parameters must be covered in at least one test case.

Kuhn et. al [KLK08] show the practical use of combinatorial testing and its
feasibility for small to medium-sized modules. They show also the automated
generation of tests that provide combinatorial coverage. A tool support for
automated combinatorial testing called ACTS1 was developed by Kuhn at the

1
http://csrc.nist.gov/groups/SNS/acts/index.html
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American National Institute of Standards and Technology to generate combina-
tion sets of t parameters with n values.

2.3.2.4. Software Safety Testing

Software safety testing [NAS04; Lut00] is a crucial process in developing safety-
critical systems to verify whether a software systemmeets its safety requirements.
Safety-critical software should be tested extensively to ensure that the potential
software-related hazards have been eliminated or controlled to a low level of
risk. The term software safety testing [NAS04] was introduced and implies that
software testing should not only address functional requirements, but also the
software safety requirements. Therefore, the process for testing safety-critical
software combines conventional testing and safety analysis approaches to focus
the testing efforts in a specific way to address the safety of the software and test
the critical risky situations. In the literature, the software safety testing is also
known as “risk-based testing”.
The integration between safety analysis and software testing approaches is

not trivial. Erdogan et al. (2014) [Erd+14] presented a systematic literature
review on the combined use of risk analysis approaches to support testing and
testing approaches to support risk analysis. They identified only 32 scientific
papers which focus on the combined use of risk analysis and testing with dif-
ferent purposes. The results highlight the value of the combination between
risk analysis and testing approaches. Furthermore, the results show that there
is a demand for developing more structured and rigorous approaches to use
risk-based analysis to support software testing and developing tool support for
the combined risk-based testing. Felderer and Schieferdecker (2014) [FS14]
presented a taxonomy of risk-based testing and provided a framework to under-
stand and categorize risk-based testing approaches to aid their selection and
adoption for specific purposes.
Many existing testing approaches and tools do not incorporate information

from safety analysis. Some of them rely on traditional safety analysis such as
Fault Tree Analysis (FTA) [Ves+81] and Failure Mode and Effects and Criticality
Analysis (FMECA) [FME67] which are grounded in reliability theory and com-
monly used for the purpose of safety-based testing. However, these approaches
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focus only on single component failures and they have limitations to cope with
complex systems including software. Leveson [Lev11] noted that the primary
safety problem in software-intensive systems is not software “failure” but the
lack of appropriate constraints on software behavior. The solution is to identify
the required constraints and enforce them in the software and overall system
design. Thus, STPA [Lev11] was developed to overcome the limitations of the
traditional techniques in addressing the unsafe scenarios of complex systems.
One of the objectives of this dissertation is to investigate the application of
STPA on deriving software safety requirements and develop a novel approach
to integrate STPA in the software development process activities, especially the
formal verification and testing activities.
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“ Software is hazardous if it can cause other compo-
nents to become hazardous or it is used to control
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This chapter provides an overview of the closely related work to this disserta-
tion which has been done in STPA safety analysis, the combined application of
safety analysis, formal verification and software testing.

3.1. Generating the Unsafe Control Actions in STPA

Thomas [Tho13] introduced an extended approach to STPA with the purpose of
identifying unsafe control actions in STPA Step 1 based on the combination of
the process model variables of each controller in the control structure diagram.
A combination of process model variables is called a context. Two contexts of
control actions are proposed: Provided control action and not provided control
action. The control action will be hazardous only in a certain context. The
main problem of context tables is the difficulty in defining the combination for a
large number of values of the process model variables which have an effect on
the safety of control actions. To solve this problem, we [AWL15] developed an
algorithm based on the concept of combinatorial testing [KKL13] to automatically
generate the context tables and to allow safety analysts to identify a minimal
combination of the process model variables and automatically generate the
unsafe control actions. The safety analysts can add and apply constraints and
Boolean relations to the generated context tables to ignore some unnecessary
combinations from these tables. Furthermore, we explain how to automatically
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refine the unsafe control actions based on the results of the context tables and
generate unsafe scenarios for each unsafe control action. The unsafe scenarios
will be automatically translated into the refined safety constraints and expressed
them into formal specification in LTL. Both algorithms are implemented as an
Eclipse plug-in and integrated with XSTAMPP platform.

3.2. Combination of Safety Analysis Techniques and Model Checking

The combination of the safety analysis techniques and model checking for safety
verification of complex systems purposes is not something new. There is a
number of considerable work has been done in the field of integrating model
checkers with traditional safety analysis approaches such as FTA and FMEA. In
the following, we discuss the most related work which incorporates the safety
analysis and model checking approaches:
Sere and Troubitsyna (1999) [ST99] showed how to formalise the hazard

analysis results in a formal system specification, which are semantically different
from the specification terms of the controlling software. They used formal
methods like the action system formalism [Bac90] (action systems model) which
describes parallel programs and reactive programs as a modeling technique of
the system behavior and they showed how the results of fault tree analysis (FTA)
as a hazard analysis approach can be encoded into the system formalism.
Tribble et al.(2002) [TLM02] proposed a technique for combing traditional

safety analysis techniques such as Functional Hazard Analysis (FHA), FTA and
FMEA with the formal method approach to conduct a software safety analysis of
the flight guidance system requirements model. They used the NuSMV [Cim+00]
model checker to verify the safety properties derived from the traditional safety
analysis techniques. They also verified some of safety properties with PVS
(Prototype Verification System) theorem prover.

Bieber et al. (2002) [BCS02] combined the fault tree analysis and the model
checking for safety assessment of complex systems. They designed a language
which is called Altarica to model the behavior of systems when faults occur.
They used the fault tree analysis to derive the requirements that constraint the
design of the system controllers. Then, they used the model checking to assess
the designed controller.
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Ortmeier et al. (2004) [Ort+04] proposed an integrated approach called
ForMoSA which combines safety analysis and formal methods and provides
all engineering practices of traditional safety analysis, temporal logic and ver-
ification. ForMoSA is built based on fault tree analysis as a safety analysis
approach.
Bozzano and Villafiorita (2006) [BV06] presented a safety assessment plat-

form called FSAP/NuSMV � SA based on the NuSMV-SA model checker. The
platform integrates the activities of the model design and safety analysis and
supports the activities of formal verification. It also supports generating the fault
trees and link their top events directly to failure causes.

Recently, Shariva and Papadopoulos (2015) [SP15] proposed an approach that
combines the new Symbolic Model Verifier (NuSMV) model checker [Cim+00]
with the Hierarchically Performed Hazard Origin and Propagation Studies (HiP-
HOPS) safety analysis technique, which automatically constructs fault trees and
FMEA from a system model. They showed how such a combination between
these approaches can help to verify the design of a system at an early stage
in the design phase of a safety critical system. They translated the model of
Hip-HOPS into an abstract state machine model. Next, they manually converted
the abstract state machine model of a brake-wire system into an SMV Model
to be verified by NuSMV. However, its verification is focused on verifying the
system Hip-HOPS at the system level.
Most of the above integrated approaches were based on the reliability engi-

neering techniques (e.g. FTA and FMEA) to identify the failure conditions to be
verified by model checkers. These approaches aimed at increasing confidence
in a software by showing that some classes of errors which are identified by
traditional hazard analysis techniques are not present. Even though the model
checker shows that the system fulfilled all requirements, that does not necessarily
mean the system is safe. In other words, proofing the correctness of system from
these errors cannot make it safe and ensure the safety operations of the system.

According to the STAMP accident model assumptions [Lev11], the accidents
with systems are caused by software flaws, software specification errors and
uncontrolled interaction between different components which form the system
rather than failures of a single component [Lev11]. We differentiate our work
here from the aforementioned approaches by identifying the STPA-generated
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unsafe scenarios for each unsafe control action of software controller in the
control structure diagram, deriving the detailed software safety requirements at
the system level and verifying the software design and implementation against
the STPA-generated software safety requirements which constrain the software
from these unsafe behaviors. To the best of our knowledge there is no work that
integrates STPA safety analysis with software verification. Moreover, we also
are not aware of other attempts to automatically transform the software safety
requirements derived during safety analysis into formal specifications in LTL.

3.3. Translating Simulink Models into Verification Models

A considerable amount of work has been done on translating Simulink models
into models supported by formal verification approaches. In the following, we
will discuss the most related work:

Banphawatthanarak et al. [BKB99] developed a tool called sf2smv that gener-
ates input for the symbolic model checker SMV [McM93] from Stateflow models.
In our work, we use the same concept for translating Simulink’s Stateflow into
the SMV model. As sf2smv is not available yet, however, it is difficult to compare
it with our approach in detail.
Meenakshi et al. [MBR06] discussed the principles of translating Simulink

models into an input language of a suitable model checker and providing re-
verse translation of traces violating requirements into Simulink notation for
playback. They developed a translator from Simulink to the model checker
NuSMV [Cim+00]. The translator takes a Simulink model as input and gen-
erates an equivalent NuSMV model. However, this translator is restricted only
to discrete Simulink models and support only the basic blocks of Simulink (e.g.
logical block or Selector block) that forms the finite state model of a system.
Moreover, the translator does not support the translation of Simulink Stateflow
into the input language of NuSMV.

Chen and Dong [CD06] proposed a systematic approach to translate Simulink
diagrams to Timed Interval Calculus (TIC) [Fid+98], a notation extending Z
to support real-time system specification and verification. The translated TIC
specification covers the functional and timing aspects of the Simulink blocks.
This work aims to guarantee the correctness of control systems. However, this
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work does not cover Stateflow diagrams.
Chen et al. [Che+12] proposed an approach to systematically translate State-

flow diagrams to into CSP# [Sun+09a]. They developed a translator which is
integrated inside the PAT model checker [Sun+09b] to automate the process
with support of different Stateflow features. This work aims to validate the
functional correctness of Stateflow diagrams by detecting the bugs in the State-
flow model. The properties to be verified are declared in the CSP# model with
preprocessor such as #define. The translation process preservers the execution
semantics of Stateflow and considers advanced Stateflow modelling features
such as implicit events and history junctions.
Ferrante et al. [Fer+12] developed a modified tool called Parallel NuSMV

(PNuSMV) based on NuSMV model checker [Cim+00] that integrates the
ManySAT parallel STA solver [HJS08]. This tool is part of the formal speci-
fication verification framework for the formal verification of Simulink/Stateflow
models. The tool translates a subset of Simulink blocks (e.g. logical operators
and arithmetic blocks) into the NuSMV meta model. The interesting properties
are expressed as temporal logic to be verified with the PNuSMV tool. However,
this work does not consider translating the Stateflow model into the NuSMV
specifications.
We use a similar principle of transforming the Simulink’s Stateflow model

into an intermediate model with consideration of the state decomposition
(AND_STATE and OR_STATE) and the attached actions (Entry, During and
Exit). The main contribution of their work, however, is an approach to model
check Simulink models which is not our main focus of our approach. Our contri-
bution is to visualise the STPA process model, which is created during the safety
analysis, with the Stateflow notation and check its correctness against the STPA
software safety requirements. In this way, we ensure that both models contain
the same specifications (e.g. names of states, variables and control actions)
before using it for generating test cases.

In conclusion, the existing work provide a great basis for our approach but are
different in their focus. They concentrate on model checking Simulink models,
not the integration with safety analysis or testing. To the best of our knowledge,
there is no existing work on constructing the Stateflow diagram based on the
information derived during a safety analysis for test case generation.
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3.4. Risk-based Software Testing

There are several software safety test techniques in the literature that combine
safety analysis principles with model-based testing. Most of them use the term
“Risk-based Testing", which combines risk analysis approaches such as FTA,
FMECA or Markov chains with software testing approaches (e.g. model-based
testing) to create a prioritization criterion for generating test cases.

Redmill [Red04] explored the benefits of risk-based testing as the basis of test
planning in the software testing process and how to understand the risks of the
system to focus test efforts. He does not show how to generate the test cases
from the risk analysis approach.

Zimmermann et al. [Zim+09] proposed a refinement-based approach to the
reliability analysis of safety-critical systems. They used statistical testing as a
model-based testing technique and a Markov chain model to model the system
under test. They also used FTA and FMECA as risk-based analysis techniques to
identify the critical situations that represent high risk.

Kloos et al. [KHE11] proposed a model-based testing approach which uses the
information derived from FTA in combination with a system model to generate
the risk-based test cases. They used FTA to select, generate and prioritize the
test cases. They derived the test cases from the combination of fault trees and a
basic system behavior model called the “base model".

Our approach uses a similar idea of combining a risk analysis approach with
model-based testing. The main difference is that we employ STPA for safety
analysis which is based on system and control theory rather than reliability
theory like FTA and FMEA. STPA copes with the analysis of complex, modern
systems and tackles the dynamic behavior of the system by treating safety as a
control problem. Furthermore, STPA provides an abstract model of the system
under analysis called the safety control structure diagram which views all main
interacting components including the software components of the system. This
allows us to directly construct the test model from the control structure diagram
and constrain its transitions with the STPA-generated safety requirements.

62 3 | State of the Art



3.5 | Generating Test Cases Using Statechart Diagrams 3 | State of the Art

3.5. Generating Test Cases Using Statechart Diagrams

Over the years, many approaches have been developed to generate test cases
from statechart diagrams. The idea behind these approaches is to transform the
statechart diagram into an Extended Finite State Machine (EFSM) and generate
the test cases from this model. In the following, we will discuss the most related
work:

Ural [Ura87] proposed a method to transform the extended finite state ma-
chines into a flow graph and generate test sequences. This method is based
on the principles of using data flow analysis techniques in software reliability
[FO76] to trace the flow graph and generate test cases.

Bourhfir et al. [Bou+97] proposed a unified method for automatic executable
test case and test sequences generation which combines both control and data
flow testing techniques with control flow criteria (Unique Input Output) and the
all-du paths coverage criterion. Their approach generates only executable test
cases for EFSM-specified systems by using symbolic evaluation techniques.

Kim et al. [Kim+99] proposed an approach to generate test cases from UML
state diagrams based on the conventional control and data flow analysis. The
authors have first transformed the state diagrams into EFSM with consideration
of the hierarchical and concurrent structure of states (flattened and broadcast) of
the UML state diagrams. Then, the EFSM are transformed into the flow graphs.
They applied the conventional data flow analysis techniques to the resulting
flow graph to generate the test cases. However, they focused only on identifying
possible control and data flow and not the values of input variables.

Hong et al. [Hon+00] developed a method for the selection of test sequences
from statecharts. The method is based on the STATEMATE semantics of stat-
echarts by Harel [HN96]. The basic idea is to transform the statechart into
an EFSM which contains all the possible runs of the statechart. The authors
have considered the input variables in the EFSM which was generated from the
state machine diagram. The resulting EFSM model will then be transformed
into a flow graph to generate test sequences that cover all associations between
definitions and uses of each variable that appear in the original state machine.
The authors used the existing method of Ural [Ura87] to transform the EFSM
into a flow graph that models the flow of both the control and the data in the
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statechart.
In conclusion, our approach uses a similar principle of generating test cases

from the test model by using graph search algorithms (depth-first search, breadth-
first search and both combined) which are presented in the aforementioned
mentioned approaches. However, we choose different test coverage criterion to
generate test cases such as all states coverage, all transition conditions coverage
and the STPA software safety requirements coverage. However, our approach
transforms each state in the safe test model as an executable Java script function
that takes the state variables which are declared in the state actions (Entry, Dur-
ing, Exit) as parameters and execute their equations to update their values. The
updated values of these variables will be used to check the transition condition
and determine the next state. Moreover, our approach provides traceability be-
tween the software safety requirements and test model and traceability between
the software safety requirements and the generated test cases.

3.6. Generating Test Cases from Simulink Models

Few research has concentrated on the subject of the automatic generation of test
cases from Simulink Stateflow: Zhan and Clark [ZC08] developed an approach
for automatic testing of Matlab/Simulink models. Their approach is a search-
based test data generation and selection approach. It uses the first search-based
approach to generate test data.
Pâsâranu et al. [Pas+09] proposed a framework for model-based analysis

and test case generation for flight software of a NASA flight mission based
on the Simulink Stateflow and UML representations. They used Java path
finder1 and symbolic path finder2 to generate test cases from both UML and
Simulink/Stateflow models. The proposed framework is based on the concept of
using model checking to generate test cases. The framework takes the models
which are created by using different modelling environment and enables their
analysis with model checking and test case generation approaches.

Windisch [Win09] proposed an automation approach for search-based testing
of continuous functional models like Simulink Stateflow models. The method

1
http://javapathfinder.sourceforge.net

2
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-symbc
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demonstrates how search-based testing techniques can be applied to a continuous
functional model such as Simulink/Stateflow to generate test cases.

Li and Kumar [LK12] proposed an automatic method for test data generation
for Simulink Stateflow based on its translation to input/output extended finite
automata model. The method involves that the Simulink Stateflow shall translate
to an input/output extended finite automate model. Each path in Input/output
extended finite automate model represents a computation sequence of the
Simulink Stateflow diagram. They implemented the proposed method by using
two model checking techniques and constraint solving. The NuSMV model
checker is used to map the input/output of the extended finite automata to
a finite abstracted transition system modeled in SMV and generate test cases
by checking each path in the I/O of the extended finite automata against the
resultant model.
We differentiate our work here from the aforementioned approaches by au-

tomatically generating the safe test model from the Stateflow model which is
constructed from the safety analysis specification. Our approach also shows how
to validate the correctness of the safe test model against the software safety
requirements by using the NuSMV model checker.
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“ Safety is a system property and software, of itself,
cannot be safe or unsafe. ”— J��� M�D�����

This chapter introduces the proposed approach for safety engineering of
software-intensive systems based on STPA, called STPA SwISs. The content
of this chapter has been presented and published in the paper at the 33rd

International Conference, SAEFCOMP 2014 Workshop [AW14b], the paper at
the 34th International Conference, SAFECOMP 2015 [AW15a] and the paper at
the 3rd European STAMP Workshop, Procedia Engineering Journal [AWL15].
Developing safety-critical software requires a more systematic software and

safety engineering process that enables the software and safety engineers to
recognize the potential software risks. For this purpose, we propose a system-
theoretic safety engineering approach based on STPA including software ver-
ification activities [AWL15]. The proposed approach is abbreviated as STPA
SwISs (STPA-based Approach for Software-Intensive Systems) which provides
seamless safety and verification activities to allow the software and safety en-
gineers to work together during the software development for safety-critical
systems. STPA SwISs provides a concept of applying STPA to software compo-
nents at the system level to identify potentially unsafe control actions and to
derive the corresponding software safety requirements that prevent software
system to transition into a hazardous state. Furthermore, STPA SwISs provides
an algorithm to automatically transform the software safety requirements into
formal specifications in Linear Temporal Logic (LTL) [Pnu77] to facilities the
verification activities of software design and implementation with the model
checker against the STPA results. In addition, STPA SwISs provides a concept
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Figure 4.1.: STPA SwISs- A Safety Engineering Approach for Software-Intensive
Systems

of automatically generating safety-based test cases from information derived
during STPA safety analysis to test the software system against the STPA results.

The STPA SwISs approach can be applied during the development process of
new software or to existing software and defines the following roles (shown in
Figure 4.1):

• Safety analyst will apply STPA and derive the software safety require-
ments at the system level.

• System analyst and designer will model the system specification and
model the results of STPA in a suitable model (e.g. Simulink Stateflow).

• Safety testerwill verify the constructedmodel against the STPA-generated
software safety requirements and generate the safety-based test cases. The
key idea here is to use two verification approaches (i.e. model checking
and testing approach) to provide a sufficient evidence that the software
is safe to operate. The safety tester will use the model checking to verify
the software against its STPA-generated safety requirements and check
the correctness of the test model. Safety tester also will use the testing
approach to generate safety-based test cases for each software safety
requirement. The STPA SwISs approach uses both software verification
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Figure 4.2.: Detailed STPA SwISs approach

approaches (formal verification and testing) to focus the testing efforts
in a specific way to address the safety of the software. This, in turn, shall
help the software and safety engineers to test the critical risky situations
and provide a proof that the software satisfies its STPA-generated safety
requirements.

The STPA SwISs approach is carried out in four major steps (shown in Figure
4.2: 1) deriving the software safety requirements of a software controller at
the system level, automatically generating the unsafe scenarios based on the
extended approach to STPA by Thomas [Tho13], and automatically expressing
the STPA-generated safety requirements in formal specifications in LTL; 2) con-
structing the safe behavioral model of the software controller with the statechart
notations in Simulink. A safe behavioral model is a statechart notation that
models the process model variables of a software controller in the STPA control
structure diagram as states and the control actions as the state actions, and it is
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Figure 4.3.: STPA SwISs activities during the V-Model development process

constrained by the STPA-generated software safety requirements (transitions);
3) transforming the safe behavioral model into an input model of the NuSMV
model checker and checking the correctness of the generated model against the
STPA and safety requirements expressed in LTL; and 4) automatically generat-
ing a safety-based test model and deriving the safety-based test cases from this
model.
Figure 4.3 shows the STPA SwISs activities during the development process

of the new software. The initial input of safety engineering is the system spec-
ification and requirements. Based on these specifications, the safety analyst
will perform the STPA safety analysis, which is the starting point of the safety
engineering process. In the following sections we describe in more detail the
five major activities:

4.1. Deriving Software Safety Requirements

This step starts by applying STPA to the system specification to identify STPA
software safety requirements and the potentially unsafe scenarios which the
software can contribute to. The algorithm starts by establishing the fundamentals
of analysis by determining the system-level accidents (ACC) and the associated
system-level hazards (HA) which the software can lead to or contribute in. Next,
the algorithm demands that the safety control structure diagram of the system
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shall be constructed from the system specifications. The software here is the
controller in the control structure diagram.

Definition 4.1 (A Control Structure Diagram)
The Control Structure Diagram (CSD) of a software system can be expressed with
five-tuples (CO, AC, SO, CP, CA), where CO is a set (one or more) of the software
controllers which control the controlled processes (CP) by issuing control actions
to the actuators, AC is a set of the actuators which implement the control actions
(CA) of the controller, CP is a set of the controlled processes which are controlled by
controllers (CO). SO is a set of sensors which send the feedback about the status of
the controlled process.

Each controller in the control structure diagram must contain a model of the
assumed state of the controlled process, called the process model [Lev11]. A
process model contains one or more variables, the required relationships among
the variables, the current state and the logic of how the process can change state.
This model is used to determine what control actions are needed. It is updated
through various forms of feedback [Lev11]. The process model is a part of the
internal state of the controller in the control structure diagram.

Definition 4.2 (A Software Controller)
A software controller COi can be expressed formally as a two-tuple COi = (CA, PM),
where CA is set of the control actions and PM is the process model of the controller
which has a set of process model variables (PMV), which are a set of critical variables
P and states S that have an effect on the safety of CA: P=

S
(P1 = v1 . . .Pn = vn),

where P1 and Pn are process model variables of the software controller COi with
their values v1 and vn.

We classified the process model variables of the software controller that
affect the safety of the critical control actions into three types: 1) Internal
variables which change the status of the software controller, 2) Interaction
interface variables which receive and store the data/command/feedback from
the other components in the system, and 3) Environmental variables of the
environmental components that interact with or are controlled by the software
controller.
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The safety analyst can derive the software safety requirements for each soft-
ware controller in the control structure diagram by performing the following
steps:

1. STPA Step 1: Identify unsafe control actions. In this step, the safety
analyst will identify the potentially unsafe software control actions for
each software component that can lead to one or more of the defined
system hazard HA, as follows:

a) Identify all safety-critical Control Actions (CAs) that can lead to one
or more of the associated hazards (HA).

b) Evaluate each CA with four general types of hazardous behaviors
to identify the Unsafe Control Actions (UCAs): (a) a control action
required for safety is not provided, (b) an unsafe action is provided,
(c) a potentially safe control action is provided too early, too late or
out of sequence and (d) a safe control action is stopped too soon or
continued too long.

c) Translate the identified UCAs manually into informal textual Software
Safety Requirements (SSR).

d) Identify the process model and its variables and include them in the
software controller in the control structure diagram to understand
how each UCA could occur. The process model describes the states
of the software controller (only critical states which are relevant to
the safety of the control actions) and their variables describe the
software communication, input and output.

e) Automatically generate the critical set of combinations of the pro-
cess model variables for each control action (CA). Each combination
should be evaluated within two contexts (C1= Providing CA or C2

= Not Providing CA) to determine whether the control action is
hazardous in that context or not. A control action CA could be con-
sidered hazardous in context C if only a combination of process
variables related to CA leads to a system-level hazard H 2 HA. The
context C1 = Providing CA has three types of sub-contexts: context
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incorrectness, in which the unsafe control action commanded incor-
rectly and caused a hazard (any time), context real-time execution, in
which the unsafe control action commanded in a wrong timing (too
early or too late) or sequence, and context execution mechanism, in
which the unsafe control action commanded in a wrong mechanism
of execution (applied too long or stopped too soon).

2. STPA Step 2: Identify the unsafe software scenarios for each unsafe control
action. Based on the results of STPA Step 1, the safety analyst will identify
the unsafe software scenarios for each unsafe control action UCA as follows:

a) Identify the potentially unsafe critical combination of unsafe soft-
ware control actions and evaluate it to identify the potential unsafe
scenarios of the software controller that cause accidents.

b) Refine software safety requirements based on the unsafe scenarios
of the software controller.

The output of this step is a safety control structure diagram with a process
model, a list of software safety requirements, and a set of unsafe software
scenarios, and a list of the refined software safety requirements and refined
unsafe control actions.

4.2. Formalising Software Safety Requirements

Once the corresponding software safety requirements have been identified and
expressed by Boolean operators, these requirements can be easily mapped into
a formal specification in LTL to be able to verify them by model checking. A
safety requirement (property) ensures something bad (hazardous behavior)
never happens during the execution. The safety tester has to transform the
STPA-generated safety requirements into formal specification in LTL [AW15a].

Definition 4.3 (LTL formula)
Let RSSRi be a software safety requirement which must always be true for all
execution paths of a software. Then an LTL formula ' of RSSRi can be expressed
as follows:
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LT Li = É(RSSRi), where RSSRi = (Cs =
S
(P1 = v1, . . .Pn = vn) ! (CAi)) _

RSSRi = (Cs =
S
(P1 = v1, . . .Pn = vn)! (¬ CAi))

This formula means: The occurrence of Cs =
S
(P1 = v1, . . .Pn = vn) always

implies (!), that the software must (or mustn’t) provide the control action CAi .
Based on the above definitions, the software safety requirements identified by
safety analysis activities can be easily translated into LTL. This step can be fully
automated by converting Boolean expressions of the hazardous combinations
of process model variables into LTL. The LTL formulae will be also transformed
into CTL formulae with CTL operators to support the verification activities with
CTL.

4.3. Constructing a Safe Software Behavioral Model

To verify the software design against the results of STPA and generate the corre-
sponding safety-based test cases directly from the information derived from the
STPA safety analysis, each software controller’s behavior in the control struc-
ture diagram must be modelled in a suitable behavioral model and constrained
by the STPA safety requirements. For this purpose, the system designer and
safety analyst should work together to construct a safe behavioral model of each
software controller based on the system specification and the safety control
structure diagram that contains the process model of the software controller.
The safe behavioral model should be labeled with software safety requirements
as derived by STPA. A safe behavioral model explores the safe behaviors of the
software controller based on the results of STPA. It includes only the process
model variables that affect the safety of control actions of the software controller,
their relationship, and the ways in which the system can migrate from one state
to another (shown in Figure 4.4). For this purpose, we select the Stateflow
[Mat16] diagram notations to visualize the automation model of each software
controller. The Stateflow diagram is a visual notation for describing dynamic
behavior, including the hierarchy, concurrency and communication information.
The idea here is to build a model from STPA results with a modeling editor
(e.g. Simulink) that supports the export of the statechart notations as XML
specifications.
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Figure 4.4.: A safe software behavioral model

Definition 4.4 (Safe Behavioral Model (SBM))
Let SBM be a Safe Behavioral Model (shown in Fig. 4.4) which can be expressed by
a three-tuple (PMV, T, CA), where PMV is a set of the safety-critical process model
variables: critical variables P and S states: P ⇢ PMV and states S ⇢ PMV, T is the
set of transition conditions which are extracted from the STPA refined software
safety requirements RSSR that are refined based on PMV, and CA is the set of the
critical software control actions.

Each transition Ti of the safe behavioral model is expressed with the syntax
Ti = IE [SSR] / TA, where IE is the input event that causes the transition Ti ,
SSR is a safety requirement which is a Boolean condition that constraints the
transformation from the current state to the next state, and TA is an action
that will be executed when the Boolean expression is valid. Each state in the
Stateflow model has three optional types of actions: Entry, During and Exit
actions. Entry actions execute when the state is entered, During actions execute
when the state is active, an event occurs and no valid transition to another state
is available, and Exit actions execute when the state is active and a transition
out of the state occurs [Mat16]. These actions are used to determine how to
change the current state of the software controller to the next state.

The syntax of the Stateflow in Simulink allows to combine these three actions
that execute the same tasks in a state. To change values of the process model
variables P =
S
(P1 = v1 ^ . . .Pn = vn) in a state, we used these actions of each

state in the safe behavioral model to determine how each value of the process

4.3 | Constructing a Safe Software Behavioral Model 75



4.3 | Constructing a Safe Software Behavioral Model 4 | Approach

Figure 4.5.: Mapping the process model variables and control actions into the
safe software behavioral model

model variable (Pi) can be changed when the software controller enters or exists
or this state. For example, the process model variable Pi in the process model
of the software controller can be written in a state as an Entry, During or Exit
action or combined state actions as follows: ent r y, during, ex i t : Pi = <new
value of Pi >.
As the transition condition is derived from the refined STPA software safety

constraints, the new value of each process model variable will be used to check
the transition condition of the current state to determine what is the next state.
We also used these state actions to determine which control action of the software
controller can be dispatched on entering, during or exiting the current state.
Figure 4.5 shows how to map the internal process model variables of the software
controller and its control actions into the safe behavioral model. We identify the
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rules of constructing a safe software behavioral model from the STPA results as
follows:

• The safe behavioral model should contain all internal state process vari-
ables of the software controller in the STPA control structure diagram:
PMV ⇢ S 2 SBM , where S is a set of software controller states.

• All process model variables of the software controller in the STPA control
structure diagram should be declared in the safe behavioral model.

• The safe behavioral model should constrain the transitions using the STPA
software safety requirements (constraints) which are identified based on
the rules 3 and 4.

• Define an enumeration data type variable named controlAction in the safe
behavioral model which takes all control actions of the software controller
in the STPA control structure diagram as its value.

• The controlAction variable will be used as an entry action of internal states
of the safe behavioral model to show which control action will be issued
when the software controller enters a state.

4.4. Software Safety Verification

This step aims at verifying the STPA software safety requirements based on the
verification model which is constructed from the safe behavioral model at the
design level or extracted directly from the source code at the implementation
level. It aims also to validate the correctness of the safe behavioral model to
check whether it violates its STPA safety requirements. The input of this step is
the safe behavioral model and the STPA results. The safety test engineer should
perform the verification activities in this step with two complementary tasks:
(1) formal verification and (2) testing.

The safety test engineer should perform the software formal verification
through the following two sub-tasks:

• Extracting the input verification model of the model checker. The verifica-
tion model can be constructed in two ways: (a) construct the verification
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model from the safe behavioral model into the SMV model at the design
level. In this case, the verification model will be verified by using the
NuSMV model checker, or (b) Extract the verification model directly from
the software code by using the extraction the verification model tools
such as Modex [HS99] for ANSI-C Code at the implementation level. In
this case, the verification model will be verified by using the SPIN model
checker, and

• Verifying the verification model against each the STPA-generated software
safety requirement specified in the LTL to ensure that the verification
model of the software controller satisfies the STPA safety requirements.
When the verification model violates any STPA-generated software safety
requirement during the execution of the verification procedure, a coun-
terexample will be produced. A counterexample contains information
where the software does not meet these constraints (e.g. software states,
initial state and variables and their values). The verification of the soft-
ware controller can be performed at the design level or after finishing the
implementation of software controller.

4.5. Safety-based Test Case Generation

Safety-based testing is a process to generate automatically test cases based on a
given model which is constructed from the information derived during safety
analysis. The safe behavioral model will be used as input to the safety-based
testing process to generate safety-based test cases. The safety test engineer
should perform the safety-based testing process through the following four
sub-tasks:

• Automatically convert the safe behavioral model of the software controller
into the input model of the safety-based testing tool which we developed.

• Select suitable test coverage criteria (i.e. all transactions coverage, all
state coverage, or action coverage) to ensure that every transaction in the
safe behavioral model is considered.

• Set the input test data for the critical variables of the software system
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under test, and

• Use the safety-based testing tool to perform the traversal on the safe behav-
ioral model. During traversal, collect the actions, conditional expressions
(i.e. guards) and test input and output data on each transition to generate
safety-based test cases.

The output of this step is the safety-based test cases to be grouped into test
suites. A test suite comprises a group of relevant test cases. The model checking
is used here to verify the safe behavioral model against the results of STPA to
ensure that the safe model includes and satisfies the STPA results. It is also used
to generate specific test cases for each software safety requirement.

4.6. Summary

We presented a comprehensive safety engineering approach that integrates the
modern safety analysis approach STPA with software verification approaches
(formal verification and testing) to enable safety engineers to verify the software
against the software safety requirements which are derived at the system level.
The proposed approach exploits the advantages of applying STPA to software
at the system level to identify potentially unsafe scenarios of software and de-
rive the software safety requirements that prevent software to provide unsafe
control action. The approach also exploits the benefits of the software verifi-
cation approaches to directly verify the software design and implementation
against its software safety requirements. One of the key benefits of the proposed
methodology is that it can be iterated until the software meets all software
safety requirements.

The limitation of the proposed approach is that there are still manual interven-
tions required to be performed by safety test engineers in constructing the safe
behavioral model. Another limitation is mapping the specifications of the STPA
safety analysis (e.g. process model variables and safety constraints) into the
safety behavioral model specifications (e.g. states, input variables and transition
conditions). Therefore, we provided two ways to check the correctness of the
safe behavioral model before using it in the test cases generation: 1) The tool
support allows the safety test engineers to manually check the validation of the
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safe behavioral model by providing a validation user interface which shows both
STPA and safe behavioral model specifications in one table, and 2) automatically
transform the safe behavioral model into an SMV model and use the NuSMV
model checker to verify it against the STPA safety requirements specified in LTL.
As it is known, manual construction of the formal specification of the safety

requirements may lead to huge effort and time. Therefore, we developed an
algorithm to automatically generate the LTL formulae of each safety requirements
and check its consistency. Furthermore, the formal verification methods (e.g.
model checker) still do not scale up well, difficult in practices and need user
expertise. Therefore, we provided a high degree of automation to support the
main steps of the proposed approach to facilitate a seamless use of the safety
analysis and software safety verification activities by little or no prior experience.

80 4 | Approach



C
�
��

��
� 5

A��������� �� A�������

“ When the ideas are coming, I don’t stop until the
ideas stop because that train doesn’t come along
all the time. ”— D�. D��

In this chapter, we describe the algorithms to automate some activities of the
STPA SwISs approach to help the software and safety engineers to derive the
software safety requirements, automatically formalise them in LTL, verify them
and generate safety-based test cases. Figure 5.1 shows the automation process
of the STPA SwISs approach.

5.1. STPA Components in XML Specification

The STPA approach has different data components which are used to document
the analysis results (as shown in Figure 2.3) such as:1) Data lists (e.g. accident
lists, hazard list, system goals, safety and design requirements); 2) Diagrams
(e.g. hierarchical and detailed safety control structure diagram and process
model); and 3) Data tables (e.g. unsafe control actions table, causal factors tables
and corresponding safety constraints table). To facilitate the implementation
of the STPA process, we first provide an internal representation of each STPA
component in XML (Extensible Markup Language) specification. Each STPA
component is associated with an XML element that documents the input data
(shown in Figure 5.2). Each STPA component has a unique Id and name.
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Figure 5.1.: The detailed automation support of the STPA SwISs approach

5.2. Automatically Generate Unsafe Scenarios

In this section, we explain how to automatically generate the context table
based on the process model variables of the software controller and how to
automatically generate the unsafe scenarios. Furthermore, we show how to
generate a minimal combination set of process model variables for a software
controller with a large number of the process model variables by using the
combinatorial testing algorithm [KKL13].

5.2.1. Generate Context Tables

Traditionally, the STPA-generated safety requirements are written in natural
language. In the following, we show how to automatically refined the STPA-
generated safety requirements and transform them into formal specification
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1 <?xml version=" 1.0 " encoding="UTF�8" standalone=" yes " ?>
<ns2:dataModelContro l le r a s tpave r s i on=" 2 .0 .6 " xmlns:ns2=" astpa .

model ">
3 <pro j e c tda t a>

<sty leRanges />
5 <pro j e c tDe s c r i p t i on> . . .</ p ro j e c tDe s c r i p t i on>

<projectName> . . .</projectName>
7 </ pro j e c tda t a>

<acc iden t s />
9 <hazards />

<l i n k s />
11 <sa f e t yCon s t r a i n t s />

<systemGoals />
13 <designRequirements />

<con t r o l s t r u c t u r e>
15 <component><id> </ id> <tex t></ t ex t>

<i s S a f e t y C r i t i c a l>f a l s e</ i s S a f e t y C r i t i c a l>
17 <componentType>ROOT</componentType>

<ch i ld ren>
19 <con t r o l l e r s />

<ac tua to r s />
21 <con t ro l l edP ro ce s s />

<sensor s>
23 <con t r o l a c t i on s />

<processModel>
25 <pro ce s s va r i ab l e><proces sva lue> </ proces sva lue> </ pro ce s s v a r i ab l e

>
</processModel>

27 </ ch i ld ren>
<unsa f e con t r o l a c t i on s />

29 <c r o s s r o ad i n g s a f e t y c on s t r a i n t s />
<causa lFac to r s />

31 </ ns2:dataModelContro l le r>

Figure 5.2.: The XML specifications of STPA components

in LTL. To refine the informal textual software safety requirements which are
derived in STPA Step 1, the safety analyst has to identify the process model
of each software controller and its critical variables which have an effect on
the safety of control actions. For each control action in the control structure
diagram, the critical combinations (context tables) can be generated based on
the following definition:

Definition 5.1 (Context Table)
Let CAi is a control action which is commended by a software controller COi to an
actuator ACi , and PMV =

S
(P1 . . .Pn) is a set of the process model variables that
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have an effect on the safety of the control action CAi . Each process model variable
Pi has Vi values. Then, the context table C can be generated based on the following
equation: CCA = |P1| . |P2| ... |Pi| = | P1 ⇥ P2 ⇥... ⇥ Pn| =|

Qn
i=1 Pi|, where ⇥

is the Cartesian product operator, i is the number of process model variable and n
is the total number of process model variables.

The context table is the results of the Cartesian product between the values of
the process model variables. Based on the generated combination sets Cs, the
safety analyst has to evaluate each control action in two contexts Providing and
Not Providing.

5.2.1.1. Identify a Minimal Combination of Process Model Variables

The main problem of automatically generate the context tables is the difficulty
in defining the combination for a large number of values of the process model
variables which have an effect on the safety of control actions. To solve this
problem, we developed an algorithm based on the concept of combinatorial
testing [KKL13] to automatically generate the context tables and allow safety
analyst to identify a minimal combination of process model variables by adding
constraints and Boolean relations on the generated context tables to ignore some
unnecessary combinations from these tables.

5.2.1.2. Generate the Unsafe Scenarios

Each item in the context table will be evaluated manually by the safety analyst.
If a critical combination set is hazardous in the context of providing or not
providing the control action CAi , then a hazardous rule will be automatically
generated based on the combination set.

Definition 5.2 (Refined Unsafe Control Action)
The refined unsafe control action (RUCA) is a four-tuple (CA, Cs, C , TC), where CA
is a control action which causes a hazard H 2 HA, Cs =

S
(P1 = v1, . . .Pn = vn)

which is a critical set of combinations of the relevant process model variables PMV
of CA, C is a context where providing or not providing the control action CA is
hazardous, and T C is the type of context providing of control action CA (any
time, too early or too late).
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Algorithms 5.1 Algorithm of generating context tables and transform safety
software requirements into LTL specification
Input: CAs : A list of control actions, PMVi, j: A table of process model variablesS

P and values
Data: C : Two contexts {Provided, Not Provided}
Output: LT L= A list of LTL specifications
Description:
1: for each control action CAi 2 CAs do
2: for each context Ci 2 C do
3: Define a dependency matrix Di = CAi ⇥ PMV
4: end for
5: Construct an input text file Ni with ACTS plug-in format
6: AC TS Ni
7: Generate combination sets CSi =

S
(Pi,1 ^ . . .Pi,n)

8: Evaluate each combination set f (
�!
CSi)

9: if f (
�!
CSi) is hazardous in the context Ci then

10: Check for any conflicted combination set in CS
11: if f (

�!
CSi) is not conflicted then

12: Refined Safety Requirements
�!
SRi

13:
�!
SRi = (⌦CSi ! (CAi _¬CAi))

14: LT Li  G(SRi)
15: end if
16: end if
17: end for

To automatically translate each critical combination of process model variables
for each control action CA into the unsafe software scenarios, we set the following
rules:
Rule 1: Each refined unsafe control action (RUCA) in the context of Providing

(C1) of a control action CAi can be expressed as:
RUCAi =<CA> provided<TC> is hazardouswhen<Cs=

S
(P1 = v1, . . .Pn =

vn)> occurred.
Rule 2: Each refined unsafe control action (RUCA) in the context of Not

Providing (C2) of a control action CAi can be expressed as:
RUCAi = <CA> Not provided is hazardous when <Cs=

S
(P1 = v1, . . .Pn =

vn)> occurred.
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By using the rules 1 and 2, we refine the unsafe control actions which are
identified based on the combination set of process model variables. The software
safety requirements are generated automatically from the refined unsafe control
actions. Based on definition 3, we identify the following rules which are used to
automatically generate the Refined Software Safety Requirements (RSSR):
Rule 3: Each RUCAi in the context Providing (C1) of control action CAi can

be transformed automatically into a new software safety requirement as follows:
RSSRi =<CA>must Not be Provided<TC>when<Cs=

S
(P1 = v1, . . .Pn =

vn)> occurred.
Rule 4: Each RUCAi in the context Not Providing (C2) of control action CAi

can be transformed automatically into a new software safety requirement as
follows:

RSSRi = <CA> must be Provided when <Cs=
S
(P1 = v1, . . .Pn = vn)>

occurred.
Algorithm 5.1 shows the process of generating context tables based on the

process model variable values and transforming them into formal specification
in LTL.

5.3. Automatically Formalise the Safety Requirements

Based on the definition 4.3 and by using rules 3 and 4, each refined software
safety requirement RSSRi , which is identified from the refined unsafe control
action RUCAi , can be automatically transformed into a formal specification in
LTL.

Rule 3 defines three types of software safety requirements, which means that
the control action CAi must not be provided in the type of context T C = any
time , too early or too late when the critical combination Csi of the relevant
process model variable values occurred. Each type of software safety can be
transformed automatically into formal specification by the following rules:
Rule 3.1: Each RSSRi derived from the context of providing control action

CAi any time (without delay) can be automatically transformed into LTL as:

LTLi = G (Csi ! ! (cont rolAct ion == CAi)), where Csi=
S
(P1 = v1^ . . .Pn =

vn).
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Rule 3.1 means that it always (G) the software controller should not (!) pro-
vide a control action CAi when the values of the critical combination Csi have
been occurred.

Rule 3.2: Each RSSRi derived from the context of providing control action
CAi too early can be automatically transformed into LTL as:

LTLi = G (((cont rolAct ion == CAi)! Csi ) & ( ! (cont rolAct ion == CAi) U
Csi)).

Rule 3.2 means that a software controller should always (G) not provide
control action CAi before the occurrence of critical combinations set Csi still not
become true in the execution path and that it well provides the CAi when the
combination of Csi holds.

Rule 3.3: Each RSSRi derived from the context of providing control action
CAi too late can be automatically transformed into LTL as:

LTLi= G((Csi ! (controlAction== CAi)) & (! Csi U(controlAction== CAi))).

Rule 3.3 means that the software controller should always (G) not provide a
control action CAi too late while the occurrences of the critical set of combina-
tions has become previously true in the execution path.

Rule 4.1 defines one type of the software safety requirements which is the
context of not providing a control action CAi when it is required. This type can
be expressed into LTL by the following rule:

Rule 4.1: Each RSSRi derived from the context of Not providing of control
action CAi can be automatically transformed into LTL as:

LTLi = G (Csi ! X (controlAction == CAi)), where Csi=
S
(P1 = v1 ^ . . .Pn =

vn).
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This rule means that the occurrence of a critical set of combination values
always implies that the software controller must provide the control action CAi

at the next time step (X ) without any delay.

5.4. Safety-Based Test Case Generation

To generate the safety-based test cases, the information derived from the STPA
safety analysis must be integrated into a suitable model which should visualize
the process model variables of each software controller and their relations in a
control structure diagram. We use the Simulink Stateflow editor to visualize the
safe behavioral model by using the Simulink Stateflow diagram notations, which
supports the export of the statechart notations as XML specifications. Figure 2.7
shows the XML specifications of the Simulink’s Stateflow model.
We use the XML specification of the Simulink Stateflow as an input to the

safety-based testing process to check the correctness of the Safe Test Model
against the STPA-generated safety requirements and generate the safety-based
testing cases from the safe test model as follows:

5.4.1. Automatically Transforming a Safe Software Behavioral Model into an
SMV Model

To check the correctness of the safe behavioral model and ensure that the safe
behavioral model of the software controller satisfies all STPA software safety
requirements, the safe behavioral model must be verified against the generated
LTL formulae. For this purpose, we developed an algorithm that automatically
transforms the SBM model created in the Simulink editor into an input language
of a model checker such as SMV (Symbolic Model Verifier), automatically parses
the LTL formulae from the STPA data model and includes them into an SMV
model. To verify the SMV model against the STPA software safety requirements,
we use the NuSMV model checker. In case that the SMV model does not satisfy a
given LTL of a software safety requirement, the NuSMVmodel checker will return
a counterexample. A counterexample contains information that shows why the
given LTL formula of a software safety requirement is not satisfied. Based on the
counterexample’s information, the safe behavioral should be modified. As the
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<?xml version=" 1.0 " encoding=" ut f �8" ?>
2 <ModelInformation Vers ion=" 1.0 ">

<Model Name=" Thes i s ">
4 <P Name=" Vers ion ">8.7</P>

<P Name=" MdlSubVersion ">1</P>
6 <P Name=" SavedCharacterEncoding ">US�ASCII</P>

</Model>
8 <Sta te f low>

<machine id=" 17 ">
10 <P Name=" crea ted ">11�Nov�2015 14 :11:22</P>

<Chi ldren>
12 <char t id=" 18 ">

<P Name="name">Chart</P>
14 <P Name=" decomposit ion ">CLUSTER_CHART</P>

<Chi ldren>
16 <s t a t e SSID="3 ">

<P Name=" l a b e l S t r i n g ">State2 en t r y : var1 = �1;</P>
18 <P Name=" type ">OR_STATE</P>

<Chi ldren>
20 <s t a t e SSID=" 12 ">

<P Name=" l a b e l S t r i n g ">subState 3</P>
22 <P Name=" type ">OR_STATE</P>

</ s t a t e>
24 <s t a t e SSID=" 14 ">

<P Name=" l a b e l S t r i n g ">subState4</P>
26 <P Name=" type ">OR_STATE</P>

</ s t a t e>
28 <t r a n s i t i o n SSID=" 13 ">

<P Name=" l a b e l S t r i n g "></P>
30 <s r c>

</ s r c>
32 <dst>

<P Name=" SSID ">12</P>
34 </ ds t>

</ t r a n s i t i o n>
36 <t r a n s i t i o n SSID=" 15 ">

<P Name=" l a b e l S t r i n g ">[ t2==1]</P>
38 <s r c>

<P Name=" SSID ">12</P>
40 . . .

42 </Chi ldren>
</ char t>

44 </Chi ldren>
</machine>

46 </ Sta te f low>
</ModelInformation>

Figure 5.3.: The XML specifications of Simulink’s Stateflow model
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LTL formula contains information about the state of software controller si and
the control action CA, therefore, the modification of the safe behavioral model
involves changes to the transition conditions or the initial values of the variables
of the state si in which the model violated the given LTL formula. This step
continues until the safe behavioral model satisfies all STPA-generated software
safety requirements.

The algorithm of generating the SMVmodel is divided into three sub-algorithms:
1) generate STPA data model which parses XML specifications of the STPA project
created in XSTAMPP (shown in algorithm 5.2); 2) generate Stateflow (safe be-
havioral model) data model which parses XML specifications of a Stateflow
model and generate a tree of Stateflow states (TS f ) in which a node repre-
sents one Stateflow state (shown in algorithm 5.3); and 3) generate SMV model
which transforms the STPA data model and Stateflow data model into SMV
specifications (shown in algorithm 5.5).

5.4.1.1. Parsing the STPA project created by XSTAMPP

Algorithm 5.2 shows the process of parsing the STPA project created by XSTAMPP.
The algorithm process accepts the STPA project file F as input. Then, it parses
the XML specification of the STPA project into the corresponding data model
DataModel which represent all data in an STPA project (see lines 1�3). For each
software controller in the control structure diagram, a data model DMSW will be
created to store the information about the software controller such as its critical
control actions, process model and its variables, software safety requirements
and the generated LTL formulae (see lines 4� 5). The algorithm will fetch the
information of each software controller and store them in the corresponding
lists (see lines 6� 9) and add these lists into the data model of the software
controller (see lines 11� 14). The output of this algorithm is a list of the data
model of the software controllers in the safety control structure diagram (see
line 16).

5.4.1.2. Parsing the Stateflow model created by Simulink/Matlab

Algorithm 5.3 shows how to parse the XML specifications of the Stateflow model
stored in a Simulink/Matlab file. The input of this algorithm is an XML file

90 5 | Automation of Approach



5.4 | Safety-Based Test Case Generation 5 | Automation of Approach

Algorithms 5.2 Generate STPA Data Model
Input: F : A STPA project file
Data:
CAs= a list of control actions,
PMVs= a list of process model variables,
SSRs = a list of software safety requirements, and
LT Ls = a list of generated LTL formulae of SSR.
DataModel= a data model which stores all information of STPA project F .
Output: DataModelSW= a list of the data model of the software controller CO
2 F . Description:
1: URL schemaFile (“/hazschema.xsd”)
2: XSModel LoadXMLSchema (schemaF ile)
3: DataModel ParseXMLSchema (F)
4: for each SWi Controller in DataModel do
5: Create a new data model DMSW for SWi Controller.
6: Fetch: CAs  DataModel. f etchCont rolAct ions()
7: Fetch: PMV  DataModel. f etchProcessModelVariables()
8: Fetch: SSRs  DataModel. f etchSo f twareSa f et yRequirements()
9: Fetch: LT Ls  DataModel. f etchLT Ls()

10: Add DMSW .CAs  CAs
11: Add DMSW .PMVs  PMVs
12: Add DMSW .SSRs  SSRs
13: Add DMSW .LT Ls  LT Ls
14: Add DataModelSW [i] DMSW .
15: end for
16: Return DataModelSW

of the Simulink Stateflow file (Sf) which contains XML specifications of the
Stateflow model. To parse the Stateflow file which we created in the Simulink
editor, we first generate XML specifications of the Simulink Stateflow from the
Simulink/Matlab editor.

The structure of the Stateflow model allows a multilevel hierarchy of states in
which a state Si. j can contain sub-states with different types, where i indicates
the number of the level hierarchy of the Stateflow model (i = 0...n), j is the
number of states, and n is the total number of levels in the Stateflow model.
Therefore, the algorithm 5.3 traverses recursively the Stateflow data model based
on the depth-first search algorithm to consider all sub-states of the superstate
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Algorithms 5.3 Generate a Tree of Stateflow Data
Input: S f : A Simulink Stateflow file
Data: DMS f = A data model to store all data of Stateflow in S f ,
S= A list of states of Stateflow S f .
Output: TS f = a tree which represents all information of Stateflow states 2 s f .
Description:
1: URL schemaFile (“/State f lowschema.xsd”)
2: XSModel LoadXMLSchema (schemaF ile)
3: DMS f ParseXMLSchema (S f )
4: Extract all states at level 0: S  DMS f .Stateflow.getStates()
5: Create a state root node  root
6: Set ParentID root  ParentID /2 DMS f .States.I Ds
7: Name root  ’root’
8: for each State s in S do
9: Create a state child node  node

10: Set ParentID node.parent I D  root.I D.
11: Set Data node.name  s.name
12: node.Id  s.SSI D
13: node.setDecomposi t ion s.getDecomposi t ion()
14: node.setStatesAct ions s.getStatesAct ions()//Entry, During and Exit
15: if s.hasChild ren()==true then
16: node.isHasChild ren(t rue)
17: traverseChildren (node , s )
18: end if
19: Add root.addChild ( node )
20: end for

// Extract all transitions between the states.
21: TS f .setTransitions(DMS f .getTransi t ions())

// Extract all variables of Stateflow.
22: TS f .setVariables(DMS f .getVariables())
23: TS f .root = root
24: Return TS f

and add them to the tree of Stateflow. Each Stateflow model has two kinds of
state decomposition: OR states (exclusive) and AND states (parallel) [Mat16].
The Stateflow semantics allow every state to have a state decomposition that
indicates what type of sub-states the superstate can contain. All sub-states of a
superstate Si. j should have the same type of decomposition of the parent state.
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5.4.1.3. Generating the tree of the Stateflow model

The algorithm for generating the tree of the Stateflow (shown in algorithms 5.3
& 5.4) starts by parsing the XML specifications of the Simulink’s Stateflow Sf
into the data model DMS f (see lines 1� 3). A tree Stateflow will be created to
store a root node, a list of transitions and the list of the Stateflow variables. As a
Stateflow model has no root state, a default node called root will be created to
store all information about the superstates at level 0 and assigned its ParentID
randomly as an integer number that is not assigned to any state in the Stateflow
model (see lines 4�7). Each node stores the following data: id, name, parentID,
T a list of transitions, a list of children (sub-states), the order of execution, a list
of the state actions (entry, during and exit actions) and type of decomposition
state (OR State or AND State). All superstates at level 0 in the Stateflow model
are added as the children of the default root node. For each state Si, j , a node
will be created to store all information of the state Si, j (see lines 8� 14). If the
state Si, j has children, then all its sub-states will be traversed recursively until
no more children exist for the superstate (see line 15). Then, a state node will
be added as a child of the root node (see line 17). The transitions at this level
will be added to a transition list of the Stateflow tree Ts f to be used in the next
algorithms (see line 21 � 23): the SMVGenerator algorithm, Extended Finite
State Machine model (EFSMGenerator) and a truth-table of the EFSM model
generator.

5.4.1.4. Generating the SMV model from the STPA and Stateflow data
models

Figure 2.5 shows the basic structure of the SMV model as described in [Cav+10].
Each SMV module represents a superstate in the Stateflow model which can
contain the following sections: 1) The name of the model with the optional
state variable parameters, 2) The declaration of the state variable and their
possible values, 3) The initial values of variables and the states variable, 4) The
sub-modules of the super module declaration, 5) The transitions of the module,
and a list of the LTL formulae. To represent the states of the Stateflow model ('
internal state variables of each controller in STPA) in an SMV model, we declare
an enumeration variable called “states" which contains the names of sub-states
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Algorithms 5.4 traverseChildren(root, s)
Input: root : a root node in the tree TS f , s: a state in a satateflow data model
DMS f
Description:
1: if s.hasChildren()==ture then
2: for each State child in s.getChild ren() do
3: Create a new node node
4: Set node.setName  child.getName
5: nodel.set Id  child.get I D
6: node.setParent I D  child.getParent I D
7: node.setDecomposi t ion child.getDecomposi t ion()
8: node.StatesAct ions  child.StatesAct ions()//Entry, During, Exit
9: if child.hasChildren()== ture then

10: node.setHasChild ren(t rue)
11: end if
12: Add root.addChild(node)
13: traverseChildren(node, child)
14: end for
15: end if

of the superstate in the Stateflow model.
Based on the principles of the SMV model [Cav+10] and Stateflow diagram

[Mat16], we develop an algorithm to transform the Stateflow (safe behavioral
model) and STPA data objects into an SMV model. Algorithm 5.5�5.6 shows the
process of automatically transforming the safe behavioral model and the STPA
data models into an input language of the SMV model checker. The algorithm
traverses the states of the safe behavioral model recursively and generates the
SMV model by parsing the hierarchical levels of the safe behavioral model. The
inputs of the algorithm are a tree of Stateflow model TS f which is created based
on algorithms 5.3� 5.4 and the STPA data model DataModelSW of the software
controller COi , which is generated based on algorithm 5.2 and a node n in the
tree TS f .
The algorithm 4�5 process starts by creating an object of the SMV model

which represents all structure data of the SMV model (see line 1). The algorithm
takes the root node of the safe behavioral model tree as the input at the first time
to create the main module of the SMV model, then it cerate the main module
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section (see lines 2�6) and declares the VAR section (see line 7). In this section,
the algorithm will declare the local variables of the root node and maps their
data types to the SMV data types (see lines 8� 9). The algorithm will check
whether the variables are declared exactly in the process model of the software
controller in the STPA control structure diagram to reduce the time and effort of
matching these variables during the verification step (see line 10). If a name of
variable or state in the STPA data model does not match any name in the data
model of the safe behavioral model, then the algorithm will show a message to
the user and return null (see line 49).

The SMVmodel does not support the same basic data types (int, double, single)
as the data types which are declared in the Stateflow model, it supports only
a finite range type as integer range min...max value. Therefore, the algorithm
should map the data types (int, double or single) into a finite range which starts
with a minimum value and ends with a maximum value of integer data type.
The enumeration data types are declared into the Stateflow model as a class
which is saved in a separate file and not in the XML specifications of Stateflow
model. Therefore, the algorithm checks each variable with enumeration data
type whether it is a process model variable in the STPA data model or not. In
case the enumeration variable is a process model variable, the algorithm takes its
values as they are defined in the STPA process model variable values. Otherwise,
the algorithm creates an empty bracket {} for the values of the enumeration
variable and prompts the user to determine the values of this variable (see lines
11� 15).

Next, the algorithm checks whether the root state root has children states
and which of them has children too (see line 16� 20). In case that a child node
of root has children, then the algorithm declares a sub-module for this child
node. Then, the algorithm takes all variables of the current state node to create
a list of the parameters of the sub- module (see line 18). Next, the algorithm
parses the sub-states of the superstate and creates the variable “states" with a
list of the names of the sub-states as values (see lines 21� 24).

The algorithm will create the section “Assign" to initial the states and variables
of the SMVmodel (see line 25). The algorithm will create the initial expression of
the “states" variable. Each data variable will also be initialised with the minimum
value of its data type such as a variable with a numeric data type with zero,
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Algorithms 5.5 generateSMV(TS f , DataModelSW , n)

Input: TS f : a tree data model of safe behavioral model, DataModelSW : a STPA
data model of controller COi , n: is a node in tree TS f .
Output: SMVi: an SMV object represents the data of SMV model.
Description:
1: Create a SMVi  SMV model object
2: if (n.isRoot ()==true) then
3: Set header of SMVi  ’Module main’
4: else
5: SMVi ’Module’ root.getName() (root.getVariables)
6: end if
7: Set VAR section of SMVi  ’VAR’
8: Parse Variables SMVi .setVariables() TS f .getVariables()
9: Map data type of SMV variables into SMV data types.

10: if (ValidateSTPADataModel (n.getVaraibles(), DataModelSw) then
11: if (v.getT ype()!= “Enum”) then
12: Declare each variable as v.getName() : v.getType();
13: else
14: v.getName() : {}; // an empty bracket
15: end if
16: if (n.isSubModule==true) then
17: for each s 2 n.getChildren() do
18: Declare Sub_+s.getName(n.getVariables())(n.getVariableNames())
19: end for
20: end if
21: Declare states variable in SMV  ’states’
22: for each s 2 n.getChildren() do
23: states s.getName()
24: end for
25: Set ASSIGN section of SMV  ’ASSIGN’
26: initial each v of SMVi  
27: init(v.getName()) :=initial_Value;
28: Parse Transitions T  n.getTransitions()
29: Set Next section of T of n state
30: SMVi . ’next’ (states) := case
31: for each t 2 T do
32: states := t.Source&t.Condit ion : t.Dest ination;
33: TRUE: states ; esac
34: end for
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Algorithms 5.6 generateSMV (TS f , DataModelSW , n) (continued)

35: if (n.isRoot ()==true) then
36: for each v 2 n.getVariables () do
37: SMVi . ’next’ (v.getName()) := case
38: states=n.getSource(): n.getEntryDuringExit(v.getFunction())
39: TRUE: v.getName (); esac;
40: end for
41: end if
42: SMVi  ’esac;’
43: if (n.hasChildren()) then
44: for s 2 root.getChildren() do
45: SMVi  generateSMV(TS f , DCsi , s)
46: end for
47: end if
48: else
49: Show “STPA variables do not match S f variables" & Set SMVi  null
50: end if
51: SMVi LTLSPEC "DCsi .getLTL()
52: Return SMVi .

Boolean with FALSE and enumeration variable with the first value (see in lines
26� 27). Next, the algorithm will parse all transitions of the current state node
and create the next expressions for the “states" variable (see lines 28�34). The
next expressions of states variable refer to the transition relations of current
state node with other states in the model (the truth-table). The next expressions
of the states variable are expressed as follows:

1 next(states):= case
2 states=<sub-state> : <nextstate>
3 ...
4 1: {All sub-states}; esac;

To create the next expressions for each data variable, the algorithm parses the
Entry, During and Exit actions of the current state and extracts all actions of
each variable (see lines 35�41). The next expressions of the data variables refer
to the values of variables in the next state. The next expressions of each data
variable are expressed as follows:
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1 next(variable):= case
2 states = <state> & transition: <nextValue>
3 ....

The algorithm will continue parsing the superstate in the tree of the safe
behavioral model (Stateflow) till all superstates have been visited (see lines
43–48). The generated SMV specifications of each sub-module and the main
module will be saved as a string into a stack object. Finally, the algorithm will
fetch the LTL formulae from the STPA data model object and add them at the
end of the main-module section (see lines 50–51).

To check the correctness of the generated SMV model and the safe behavioral
model, we run the NuSMV model checker to verify whether the SMV model
contains errors and verify it against the STPA software safety requirements
expressed in the LTL formulae and saved to the SMV model.

5.4.2. Automatically generating the Safe Test Model from the Safe Software
Behavioral Model

After ensuring the correctness of the generated SMV model of the safe behavioral
model (Stateflow model), the safe behavioral model which uses the notations
of the Simulink’s Stateflow should be transformed into the EFSM notation. For
this purpose, we develop an algorithm to map the Stateflow tree of the safe
behavioral model and its truth-table into an EFSMmodel. The algorithm 5.7�5.8
shows the process of transforming the tree of the Stateflow model into an EFSM
model. The idea here is to eliminate the hierarchical and concurrent structure
of the Stateflow model (flattened and broadcast communication) and transform
them into the EFSM notations by considering the state decomposition (exclusive
or parallel).
The algorithm 5.7�5.8 starts by taking the root node of the Stateflow tree

TS f as the root node of the EFSM model and the truth-table of the Stateflow as
the truth-table of the EFSM model (see line 1). The Stateflow semantic supports
multi-hierarchy levels of states, whereas the EFSM model does not. Therefore,
the truth-table of the EFSM model must not have any source or destination
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Algorithms 5.7 GenerateEFSM (TS f )

Input: TS f : a tree of Stateflow model,
Output: EFSM : a Java object represent all data of EFSM
Description:
1: Create StateNode root  TS f .getRoot()
2: Get TruthTable t ruthTable  TS f .getTruthTable()
3: if root.hasChildren()==ture then
4: Set Initial state TS f .getInitialState( )
5: while isHasSuperState(t ruthTable) do
6: for Transition t 2 t ruthTable do
7: StateNode src t.getSourceNode ()
8: StateNode dest t.getDestinationNode ()
9: if src.isSuper() & !(dest.isSuper()) then

10: get child ren src.getChildren()
11: for child 2 child ren do
12: updateTruthTable (child, dest, t, t ruthTable)
13: end for
14: else
15: if !(src.isSuper()) & dest.isSuper() then
16: if dest.Decomp(’AND_STATE’) then
17: get children dest.getSubSates();
18: for child 2 child ren do
19: updateTruthTable (src, child, t, truthTable)
20: end for
21: else
22: if dest.Decomp(’OR_STATE’) then
23: SD getDefaultState(dest)
24: updateTruthTable (src, SD, t, truthTable)
25: end if
26: end if
27: end if
28: if src.isSuper()& dest.isSuper()&dest.Decomp(’OR_STATE’)

then
29: get srcChildren src.getSubSates();
30: get def dest.getDefaultState();
31: for s 2 srcchild ren do
32: updateTruthTable (s, def, t, truthTable)
33: end for
34: end if
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Algorithms 5.8 GenerateEFSM (TS f ) (continued)

35: if src.isSuper()& dest.isSuper()&dest.Decomp(’AND_STATE’)
then

36: get srcChildren src.getSubSates();
37: get destChildren dest.getSubSates();
38: for s 2 srcchild ren do
39: for d 2 destchild ren do
40: updateTruthTable (s, d, t, truthTable)
41: end for
42: end for
43: else
44: if !(src.isSuper())& !(dest.isSuper()) then
45: updateTruthTable (src, dest, t, truthTable)
46: end if
47: end if
48: end if
49: end for
50: end while
51: end if
52: Add EFSM .setTruthTable truthTable
53: Add EFSM .setStates TS f .getStates()
54: Return EFSM .

node as a superstate (a state that has children). The idea here is to investigate
the truth-table of Stateflow and update the destination and source parent state
with its sub-states. At the beginning, the algorithm checks whether there is a
superstate in the truth-table (see lines 2� 3). For each transition t 2 T in the
truth-table, the algorithm will identify its source and destination states and
create two state nodes (see lines 6–8). Next, the algorithm will check their state
decomposition as follows:

• If source state src 2 Ts f of transition t is a superstate with a state decom-
position “OR_STATE" or “AND_STATE" and the destination node dest 2 Ts f

is not superstate. Each sub-state of src state must be linked to the desti-
nation state dest by creating a new transition with the same information
of transition T 2 Ts f .TruthTable for each sub-state and only update the
source with sub-state (see lines 9� 13).
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• If source state src 2 Ts f is not superstate and the destination state dest 2
Ts f is superstate with a state decomposition “AND_STATE". All sub-states
of dest state should be identified and linked with the source state (see
line 15� 20). Algorithm 5.9will create a new transition for each sub-state
of dest, where source is src and destination is the sub-state of destination.

• If source state src 2 Ts f is not superstate and the destination state dest 2
Ts f is superstate with a state decomposition “OR_STATE". The default
state de f aul tState of superstate dest (a default state is a state which has
a default transition) should be identified (see lines 22� 27). Algorithm
5.9 will create a new transition and set its source as src and its destination
as the default state of destination.

• If source state src 2 Ts f is superstatewith a state decomposition “OR_STATE"
or “AND_STATE" and the destination state dest 2 Ts f is superstate with
a state decomposition “OR_STATE". All sub-states of src state should be
identified and linked with a default state of dest state (see lines 28� 34).
Algorithm 5.9 will create a new transition for each sub-state of src and
its source is src and its destination is the default state of destination dest
state.

• If source state src 2 Ts f is superstatewith a state decomposition “OR_STATE"
or “AND_STATE" and the destination state dest 2 Ts f is superstate with a
state decomposition “AND_STATE". All sub-states of src state should be
identified and linked with all sub-states of dest state (see lines 35� 43).
Algorithm 5.9 will create a new transition for each sub-state of src and its
source is src and its destination is the sub-state of destination dest state.

• If source state src 2 Ts f is not superstate and the destination state dest 2
Ts f is not superstate. A transition t will be added into the truth-table
(see lines 44� 46).

The algorithm runs continuously till no superstate exist in the truth-table. All
sub-states (without children) in the Stateflow model tree will be taken as the
states of the EFSM model. Also, all data variables of the Stateflow model and the
actions of the state (entry, exist, during) will be added into the states of EFSM.
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Algorithms 5.9 UpdateTruthTable (t, src, dest, t ruthTable)
Input: t : a transition in the truth-table, src : a source node of transition t, dest:
a destination node of transition t, t ruthTable: a truthTable of Stateflow tree Ts f
Description:
1: create new Transition t_new
2: set data t_new t
3: update t_new.setSrc(src)
4: update t_new.setDest(dest)
5: add t ruthTable  t_new

5.4.3. Automatically Generating Safety-Based Test Cases

The final step is to generate the test cases from the safe test model (extended
finite state machine) which are constructed from the safe behavioral model.

We developed a random walk-based algorithm for automatic test case genera-
tion from the safe test model. We implemented three search-based algorithms
(e.g. depth-first search, breadth-first search, and both combined depth-breadth-
first search). The idea behind here is to select a state in the safe test model as
a start node and transform into a Java Script function at run time. The Java
script function takes the variables which are declared in the state actions (Entry,
during, Exit) of each as parameters and executes the state actions to update the
values of the variables. The return value of the function will be determined based
on the data type of each variable which is declared in the Simulink Stateflow
model. Next, the algorithm will check the transition conditions of a state to
determine which is the next state. During traversing the safe test model, the
information of the visited states (path sequences) will be saved in a test suite.
Generating test cases from a model usually leads to an infinite number of

possible test cases. Therefore, it is necessary to choose a suitable test coverage
criteria to manage the generating process. In our algorithm, we identify three
test coverage criteria: 1) state coverage which is the number of visited states
divided by the total number of the states of the model, 2) transition coverage
is the number of the executed transitions divided by the total number of the
transitions, 3) STPA safety requirements coverage in which each STPA software
safety requirement should be covered at least in one test case to trace how the
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STPA-generated software safety requirements are covered into the generated
test cases. To measure the STPA SSR coverage, we define a safety requirements
traceability matrix between the generated safe test model and STPA software
safety requirements to manage the quality of the test case generating process
and measure the coverage of STPA software safety requirements in the gen-
erated safety-based test cases. As the safe test model of the safe behavioral
model is constrained with STPA safety requirements (step 2) and contains the
process model variables as states, the algorithm will automatically generate the
traceability matrix (T M = SSR⇥ T N , where SSR 2 DCs of the STPA data model
and T N transition conditions 2 TS f ).
Algorithm 5.10 shows how to generate the traceability matrix T M by cal-

culating the similarity degree between each STPA-generated software safety
requirement(SSR) and the transitions condition (T N) of the safe behavioral
model and the input state actions of the source state of transition condition T N .
The similarity degree is calculated by the following equation:

Sim(SSR,T N) =
|#Total No. matched tokens between (SSR, TN)|

|#Max No. tokens in (SSR, TN) | ⇥100 (5.1)

Algorithm 5.10 takes a STPA-generated software safety requirement (SSR), a
transition condition T N , the source state of the transition condition T N and a
minimum degree of similarity (maxSimilari t y) which should be between 5%
. . . 100% and entered by the user. To compare between the STPA-generated
software safety requirements and transition conditions, the algorithm construct
at first the full transition information by including the name of source state and
the control action which is provided in this state to the transition condition. The
algorithm creates the full transition information by adding the source state src
and the control action cont rolAct ion to the transition condition T N . The full
transition condition will be constructed as follows:
Full Transition  {states=src.getName() and contorlAction=src.getAction()

and src.getTransitionCondition (TN)}
The algorithm calculates the similarity degree based on the equation 5.1. If

the similarity degree is greater than the minimum degree of similarity, then the
algorithm will create an item in the traceability matrix for the software safety
requirement SSR and the transition condition T N . The algorithm also allows the
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Algorithms 5.10 Generate Traceability Matrix (SSR, T N , src, minSimilari t y)
Input: SSR: a STPA-generated software safety requirement, T N : a transition
condition in a safe test model extracted from SBM . src: a source node of
transition condition T n.
minSimilari t y: a minimum degree of similarity between 5% ... 100%.
Output T M : a traceability matrix. Description:
1: Add T N  states = src.getName()
2: Add T N  cont rolAct ion= src.getAct ion().getName()
3: tokenize SSR[] SSR
4: tokenize T N[] T N
5: get max_Tokens  max (SSR[], T N[])
6: inital Sim 0
7: inital matched_Tokens  0
8: inital i  0
9: while i < max_Tokens do

10: inital j  0
11: while j < max_Tokens� 1 do
12: if SSR[i] == T N[ j] then
13: matched_Tokens = matched_Tokens+ 1
14: end if
15: j = j + 1
16: end while
17: i = i + 1
18: end while
19: SimSSR,T N =(matched_Tokens / max_Tokens) ⇥ 100
20: if SimSSR,T N > minSimilari t y% then
21: Add T M  SSR ⇥ T N
22: end if
23: Return T M .

user to set the maximum similarity degree between 5..100% before generating
the safety-based test cases.

Algorithm 5.11 shows how to generate the test cases from the safe test model.
It takes the generated Safe Test Model (STM), a Traceability Matrix T M , a list of
the test coverage criteria CC, a number of test steps which is the total number of
executions of the algorithm and a stop condition which is a test coverage criteria
to stop the execution of the algorithm when it reaches 100%. The process of

104 5 | Automation of Approach



5.4 | Safety-Based Test Case Generation 5 | Automation of Approach

Algorithms 5.11 Generate Safety-based Test Cases(ST M , T M ,CC , TestSteps,
StopConidi ton)
Input: ST M : a safe test model extracted from SBM , T M : a traceability matrix,
CC: is a list of the test coverage criteria, TestSteps is the total number of
execution algorithms, StopCondit ion: a condition to stop the execution process.
Output TS: a list of test suites, each test suite should contain a list one test case
T C .
Description:
1: Initial step 0
2: while step < TestSteps do
3: Choose star t state ST M .getRandomState()
4: Choose end state ST M .getRandomState()
5: Create a new test suite ts
6: if StopConidi ton< 100.0% then
7: Randomly Generate_Tes_InputData ()
8: Walk TCi  GenerateTestCasesByDFS (start, end)
9: Add ts  TCi

10: Walk TCj  GenerateTestCasesByBFS (start)
11: Add ts  TCj
12: else
13: if StopConidi ton==100.0% then
14: Calculate_Coverage_Criteria()
15: STOP
16: end if
17: end if
18: ADD TS  ts
19: Calculate_Coverage_Criteria()
20: unvisitedTransitions(STM)
21: unvisitedStates(STM)
22: Initial step step + 1
23: end while
24: Return TS.

generating the test cases from the safe test model can be described as follows:

1. The algorithm starts by selecting a random state as the start state and
a state as the end state from the safe test model to generate all possible
paths between them (see lines 3� 4).
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2. A new test suite ts will be created to store all the generated test cases.

3. Generate for each input data variable a random value between its minimum
and maximum values which are identified by the user (see line 7).

4. Walk randomly by using the depth-first algorithm, all possible paths be-
tween the start and end states will be identified. The path here means
a sequence of the visited states and their transitions. We also use the
breadth-first algorithm combined with depth-first algorithm to identify all
possible paths PT from start state to achieve a good test coverage criteria
(see line 8� 11).

• For each transition t in path pt 2 PT , its transition condition will be
transformed into a Java Script function. The test input variables in
will be passed as an input of a Java Script function. To execute this
function at the run time, we use the Java Script Engine which invokes
the function with values of input data parameters and returns the
result.

• For each state s in path pt, the state actions (Entry, During, Exit) will
be eliminated and transformed into Java Script functions. These will
be executed to update the values of each local loc or output variable
out of each state.

• Create a new test case tc. Each test case will store the information
about the sequence path pt such as: id is a number of the test case,
id_Ts which is the number of the test suite, id_SSR which is the
number of the software safety requirement, preconditions and actions
which is the sequence of the local variables of states in the path pt
and their updated values, and postconditions which is the sequence
of output variables and their values.

5. Check whether the test case tc has been covered in any test suite. If it
hasn’t, tc will be added to the test suite ts (see line 13).

6. Calculate the test coverage criteria and check the stop condition of the
algorithm (see line 14).
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7. Change status of all states and transitions in the safe test model to unvisited
to generate a new sequence path (see line 20� 21).

8. The algorithm will be continued (repeat 1-8) till the stop condition is
achieved (100%) or the number of executions the algorithm has been
reached to the total number of the test steps.

Ultimately, the time spent during test case generation process, the values of
the test coverage criteria and a list of test suits and their test cases with the
related software safety requirements will be automatically saved into a CSV file.

5.5. Summary

In this chapter, we presented the automation support for the STPA SwISs ap-
proach. We showed how to transform the informal textual safety requirements
into formal specification in LTL to enable the verification activities of the system
against the STPA-generated safety requirements. We also discussed how to
model the STPA results into a suitable software behavior model for safety-based
test generation. We explored how to automatically generate the SMV verification
model from the safe behavioral model. Finally, we explained the algorithms of
the safety-based test case generation process from the safe behavioral model.
The automation support algorithms are implemented in our tool support to

reduce the effort required to manually generate the context tables, refine the
unsafe control actions, generate unsafe scenarios and perform safety verification
activities with the model checker and the testing approach.
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“ I think, fundamentally, open source does tend to
be more stable software. It’s the right way to do
things. ”— L���� T�������

In this chapter, we describe the tool support that we developed to support
the application of the safety engineering approach based on STPA for software-
intensive systems as well as the STAMP methodologies STPA and CAST.

6.1. XSTAMPP

The increase in the usage of STAMP methodologies has fostered the need for
developing a support tool to assist safety engineers in performing the safety anal-
ysis as well as the accident analysis. For this purpose, we developed tool called
XSTAMPP1 (eXtensible STAMP Platform) [AW15b]. XSTAMPP is a software tool
developed to serve the widespread adoption and use of STAMP methodologies
(STPA and CAST) in different domains. It is also developed to support the
safety engineering approach based STPA called (STPA SwISs) to automatically
generate the context tables which are used to refine the safety requirements and
automatically transform the refined safety requirements into a formal specifica-
tion in Linear Temporal Logic (LTL) to support verification activities. XSTAMPP
supports automatically verifying the LTL formulae of the STPA-generated safety
requirements with model checkers such as NuSMV and SPIN. Furthermore, XS-
TAMPP was also extended to automatically generate the safety-based test cases
directly from the STPA results and Simulink’s Stateflow. XSTAMPP is an open

1 http://www.xstampp.de/
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source, plug-in-based, extensible software platform using the Eclipse Rich Client
Platform (RCP)1 which makes our platform easier to extend and to integrate
independent components. XSTAMPP is built to be flexible to be extended by
including different user interface editors for the STAMP components and to
be used by different users in different application areas. The last version of
XSTAMPP 2.0.2, the source code of XSTAMPP and its plug-ins are available at
our repository2.

6.1.1. XSTAMPP Architecture

As shown in figure 6.1, the XSTAMPP platform architecture mainly consists of
four components:

Figure 6.1.: The XSTAMPP Architecture

• STAMP Components The main components which are used during the ap-
plication of the STAMP/STPA approach: 1) STAMP data lists (e.g. Hazards
list, accidents list, system goals and design constraints, safety require-
ments, corresponding safety constraints and control actions), 2) STAMP

1
http://www.eclipse.org/

2
http://sourceforge.net/projects/stampp
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diagrams (e.g. hierarchical and detailed safety control structures, and pro-
cess models diagram); and 3) STAMP Tables (e.g. unsafe control actions
table and causal factors analysis table).

• STAMP Components Editors As an external representation, each STAMP
component is represented by an independent Eclipse user interface editor
which is tightly integrated into the platform workbench UI. Each editor
allows a safety analyst to edit a STAMP component in a separate user
interface.

• Workbench User Interface The workbench UI contains the infrastructure
for views and UI editors. All UI editors of STAMP components, views and
perspectives are located in the Workbench UI.

• XSD Specification Template As an internal representation, each STAMP
component editor is always associated with an XML element that docu-
ments the input data from a safety analyst in the user interface editor. All
XML elements will be saved to and restored from a saved XSD1 file with
extension *.haz for a whole project.

• Plug-in Development Environment (PDE) PDE provides custom exten-
sion points which can be extended with new software components. A
software component called a plug-in is a component that provides a cer-
tain type of service within the context of the Eclipse workbench2.

• Eclipse Rich Client Platform (RCP) RCP provides an inherently extensi-
ble application framework that allows the seamless integration of indepen-
dent software modules into a software application.

6.1.2. Design and implementation

The following is a description of the implementation and design details of the
XSTAMPP platform:

From the implementation point of view, we developed the STAMP platform
based on the Eclipse RCP platform and XSD specifications to facilitate version-
ing, backup and possible future integration with other tools. Built upon RCP,

1http://www.w3.org/XML/Schema
2 https://eclipse.org
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XSTAMPP provides core functionality that makes it easier to extend in the future.
The new architecture of our platform supports to add new plug-ins into the
workbench UI. We developed each STAMP component editor as a plug-in which
can be easily integrated and extended. For each STPA component, we also
provided an XML element template which acts as an internal representation of
the STAMP component data. These features make our platform easy to extend
in the future and to implement new requirements and extensions for STPA and
CAST as well.

From the design point of view, the STAMP platform allows the safety analyst
to create and open many projects by a New/open project wizard. The current
version of XSTAMPP supports only to create and open STPA projects. However,
XSTAMPP has a potential to include the CAST project as well. Each project will
be viewed in the project explorer as a tree which contains the basic components
of the main steps of STPA (as shown in Figure 6.2). For instance, an STPA project
will appear with three sub-trees which are: a sub-tree of the fundamentals of
analysis (e.g. system description, accidents, hazards), a sub-tree for the control
structure diagram and a sub tree the STPA data tables e.g. unsafe control actions
and causal factor tables.

From the functionality point of view, the new platform allows safety analysts
to select and add new views to his/her project explorer such as a view of the
hierarchical control structure, a view of the control structure diagram at a
detailed level and the context table of the process model variables. Unlike A-
STPA, the new STAMP platform allows the safety analysts to open different user
interface editors in the platform workbench at the same time, order and manage
them in one view. That provides a safety analyst with the capability to view
many user interface editors of the project in the workbench. Furthermore, the
new platform enables the safety analysts to export the results of analysis in
different formats such as PDF, JPEG or Excel for a whole project or for each user
interface view.
Figure 6.2 shows the main workbench of XSTAMPP which is divided into

three main parts: a project explorer, the user interface viewer and the toolbox.
The safety engineers can use XSTAMPP to perform CAST accident analysis and
STPA safety analysis. They can create and open two different types of XSTAMPP
projects: STPA safety analysis and CAST accident analysis in the project explorer.
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Figure 6.2.: The main workbench UI of XSTAMPP

Any XSTAMPP project includes all necessary components to document the results
of applying STPA and CAST in different domains such as fundamentals of analysis,
drawing the control structure diagram of the system, editing STAMP data (i.e.
the unsafe control actions, causal factors, safety roles and responsibilities).

6.1.3. XSTAMPP Plug-ins

XSTAMPP includes different Eclipse plug-ins as follows:

6.1.3.1. A-STPA

A-STPA1 (Automated STPA) [AW14a] is an open source tool to help transform
STPA (System-Theoretic Process Analysis) to an executable STPA which auto-
mates the activities of STPA. We develop the A-STPA tool to assist safety analysts
in performing STPA. Moreover, it will give the safety analysts different views on
the STPA hazard analysis process. We discuss the design of the tool and illustrate

1
http://www.xstampp.de/a-stpa.html
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Figure 6.3.: The main workbench UI of A-STPA standalone version

its usage. So far, it is still an early version but it can already help the safety
analysts in avoiding consistency defects. We are confident that A-STPA will
become a powerful tool support for STPA. A-STPA is developed as a standalone
version based on the Eclipse platform. Figure 6.3 shows the main workbench UI
of A-STPA. A-STPA has the following main functions:

1. Edit the fundamentals of the analysis

2. Link the conducted information during step 1 to the other components
in the next steps such as the hazards link to the accidents and safety
constraints which are derived from the hazards.

3. Draw the control structure diagram

4. Edit tables such as the control actions table, unsafe control action table
and causal factors table

5. Augment the control structure diagram with a process model

6. Export and import the STPA hazard analysis results

However, the stand-alone version has a some of shortcoming in terms of
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extensibility, functionality, designing and editing issues. Based on the A-STPA
stand-alone version, we developed A-STPA as an Eclipse plug-ins based to support
the application of STPA in XSTAMPP. In A-STPA plug-in version, we enhanced
the usability and functionality of A-STPA by removing the shortcomings of A-
STPA. We built a new editor for documenting a large number of unsafe control
actions and causal factors. Moreover, we improved the drawing features of the
control structure diagram by implementing a new component as a dashed box
component to add comments or to group some components in one box and a
component of the control actions list in which the safety analyst can draw and
link multi-control actions to one arrow.

6.1.3.2. XSTPA

XSTPA1 (Automated tool support for the extended approach to STPA) [AW16]
is an Eclipse plug-in to automate the extended approach to STPA proposed by
Thomas and our improvements [AW15a] to automatically generate the con-
text table and unsafe software scenarios. XSTPA uses a combinatorial testing
algorithm [KKL13] to automatically generate the context table and identify a
minimal combination of process model variables for large and complex systems.
XSTPA uses a Java library for the combinatorial testing algorithm called ACTS2

which was developed by the American National Institute of Standards and Tech-
nology to generate combination sets of t parameters with n values (context
tables). Furthermore, XSTPA automatically generates the hazardous rules and
allows the safety analyst to refine the unsafe control actions and it automatically
refines the safety requirements and transforms them into formal specifications
in LTL.
From the functionality view, when the safety analyst augments the process

model into a controller component in the control structure diagram view, the
XSTPA editor (as shown in Fig 6.4) will automatically appear under the control
structure diagram UI view with necessary information about the controllers,
their process model variables with their values and the control actions on the
control structure diagram. The safety analyst has to choose which control action

1
http://www.xstampp.de/xstpa.html

2
http://csrc.nist.gov/groups/SNS/acts/index.html
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Figure 6.4.: The XSTPA plug-in in the XSTAMPP workbench UI

is safety-critical to generate its context tables. Then, the safety analyst has
to determine the dependencies D between the control action and its relevant
process model variables in two contexts (C1= providing and C2 =not providing).
For each dependency relation, XSTPA will automatically generate an input file N
as input to the ACTS algorithm to automatically generate the context tables of
each safety-critical control action. The input file of ACTS is a text file with the
following format [KKL13]:

[System]
Name: Adaptive Cruise Control System (ACC)
[Parameter]
ACC_Mode (enum): Standby, Cruise, Follow
Brake (enum) : NotApplied, Applied
Distance (enum): D>= safeDistance, D<safeDistance
[Relation]
[Constraint]
ACC_Mode !=’Off’
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The [System] section contains the information about the STPA project and the
[Parameter] section contains the definition of process model variables and their
values. All process model variables are defined as enum data type to accept
different kinds of values of the process model variables. The [Relation] section
is an optional section which defines the strengths between the process model
variables. For example, the ACC system has 3 process model variables, then
the first relation can be created that consists of all the process model variables
with strength 1 or 2. The safety analyst can define a custom relation when
some process model variables have a higher degree of interaction or they are
closely related to each other. The [Constraint] section is an optional section
which includes the Boolean conditions that combinations must satisfy to be valid.
For instance, the constraint (ACC_Mode ! =’Off ’) will exclude all rows in the
generated context table of process model variable ACC_Mode which contain the
value off.

When the safety analyst clicks on the generate button in the context table,
XSTPA will automatically generate the combinations of the process model vari-
ables CSi =
S
(Pi,1 ^ . . .Pi,n). From setting UI view, the safety analyst can apply

different combination coverage on the generated results such as pairwise cover-
age or t-way coverage to minimize the number of the combination sets. Pairwise
coverage means that for each 2 process model variables, every possible combina-
tion of values of these 2 variables must be covered in at least one combination.
T-way coverage means that for t process model variables, every possible combi-
nation of values of these t variables must be covered in at least one combination
[KKL13].

XSTPA can automatically show the conflicted combination sets. The conflicted
combination sets mean that two or more combination sets have the same values
of the process model variables in the both two contexts (providing and not
providing) of one control action. If the safety analyst selects any combination as
hazardous in any context, XSTPA will automatically express them as Boolean
expressions with an AND operator. Finally, the XSTPA will generate automatically
the LTL formulae of the hazardous combination sets of a safety critical system.
The results of XSTPA can also be exported as PDFs, images and CVS sheets.
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Figure 6.5.: The STPA Verifier process

6.1.3.3. STPA Verifier

STPA Verifier1 [AW16] is an Eclipse plug-in developed to verify the STPA safety
requirements with model checking tools such as SPIN and NuSMV. The STPA-
generated safety requirements are automatically transformed into formal speci-
fication in LTL (linear Temporal Logic).

As shown in figure 6.5, the STPA verifier plug-in fetches all LTL formulae from
XSTPA and allows user to load the verification model of the system (Promela or
SMV Model). Furthermore, STPA verifier provides a configuration view of each
model checker (SPIN and NuSMV) to enable user to configure the model checker
with the necessary parameters. It also allows users to extract the Promela model
from C Code of the software by using the Modex tool. The STPA Verifier shows
the results of each LTL formula in the table with different values such as a
syntax error, success, failed (counterexample) and incomplete. It also shows the
verification results for each LTL formula with information of how many states
the model checker visited to validate the LTL formula, how many transitions,
memory space which is spent during search, time which the model checker spent.

1
http://www.xstampp.de/stpaverifier.html
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Figure 6.6.: The main views of STPA Verifier in XSTAMPP

Figure 6.6 shows the main views of the STPA verifier in XSTAMPP.

6.1.3.4. STPA TCGenerator

STPA TCGenerator1 is a stand-alone tool written in Java based on the NetBeans
platform. STPA TCGenerator is developed to generate the safety-based test cases
directly from STPA safety analysis results. STPA TCGenereator parses the STPA
file project created in XSTAMPP and the safe behavioral model which is created
with Simulink’s Stateflow editor to automatically generate the SMV model and
check the correctness of the safe behavioral model, eliminate the safe test model
and generate safety-based test cases (shown in Figure 6.7).
We summarise the main functions of the STPA TCGenerator as follows:

• Parse the STPA data model which is documented in XML specification into
Java objects.

• Parse the XML specification of the Simulink Stateflow model into Java
objects.

1
http://www.xstampp.de/STPATCGenerator.html
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Figure 6.7.: The main views of STPA TCGenerator(Standalone version)

• Based on the STPA data model and the Simulink Stateflow model, the tool
automatically generates the SMV model.

• Check the consistency between the STPA data model and the specification
of Simulink Stateflow and provides the results to the user (e.g. matched,
does not match, and unknown).

• Verify the generated SMV model against the generated LTL of the STPA
safety requirements.

• From the Simulink Stateflow model which is verified against the STPA
safety requirements, the tool automatically transforms the Simulink State-
flow model into the extended finite state model for testing purposes.

• Generate the tractability matrix between STPA safety requirements and
the Simulink Stateflow specifications.

• Allow the user to add the test input data for each input variable.

• Allow the user to configure the test case generation process by adding a
number of test steps and selecting the test case generation algorithm and
the test coverage.

The STPA TCGenerator tool accepts two files as input: an STPA project with ex-
tension haz. or .hazx and a Stateflow model as XML file. The STPA TCGenerator
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Figure 6.8.: The process of generating safety-based test cases

parses the XML specifications of the STPA project and Stateflow model into the
corresponding Java objects by using Java Architecture for XML Binding (JAXB)
technology. We implemented a Java library called SMV Generator which con-
tains all necessary methods for transforming the XML specifications of the STPA
project and Stateflow model into an SMV model. To check the correctness of the
generated model against the LTL formulae of STPA software safety requirements,
STPA TCGenerator uses the binary files of the NuSMV model checker to verify
the generated SMV model. The process of generating safety-based test cases is
shown in figure 6.8.

After validating the correctness of the safe behavioral model, the STPA TCGen-
erator generates a hierarchical tree of the safe behavioral model which shows the
hierarchy levels of the safe test model. The STPA TCGenerator tool parses the tree
of the safe behavioral model recursively by considering superstate decomposition
AND_STATE (parallel) or OR_STATE (exclusive) to automatically generate the
safe test model as an extended finite state machine. The tool automatically
generates the traceability matrix between STPA software safety requirements
and the safe behavioral model and shows them in a table. All input data variables
with their data type, initial, minimum, maximum values which are shown in the
test input configuration view.

Before running the tool to generate the test cases, the safety tester has to set
the number of test steps, select the test coverage criteria (state, transition and
STPA software safety requirements test coverage criteria). Furthermore, the safe
tester has also to set the test input value for each input data variable of the safe
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Figure 6.9.: STPA TCGenerator tool as an Eclipse-plugin in XSTAMPP

behavioral model. The tool automatically generates the safety-based test cases
and show the measures of the test coverage and traceability matrix between the
generated safety-based test cases and STPA-generated safety requirements. The
results of STPA TCGenerator are automatically saved into CVS sheets.
To allow the safety tester to generate safety-based test cases directly in XS-

TAMPP platform, we developed an Eclipse-plugin for the STPA TCGenerator tool
(shown in Figure 6.9). The STPA TCGenerator plugin version enables software
and safety engineers to identify safety requirements of software by applying
STPA to specification and design models and generate safety-based test cases
from the STPA to measure the safety of the software implementation.

The first prototype of the STPA TCGenerator standalone version and the results
of the illustrative example are available online in our repository1. The updatesite
of the STPA TCGeneratorPlugin are available online in our repository 2.

1
https://sourceforge.net/projects/stpastgenerator/.

2https://sourceforge.net/projects/stpatcgeneratorplugin/
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6.1.3.5. A-CAST

A-CAST1 (Automated CAST) [AW16] is an Eclipse plug-in tool which is developed
based on the XSTAMPP architecture to support performing the CAST accident
analysis steps and to help the analyst during investigating an accident based on
the STAMP model. This tool does not support the STPA SwISs approach, but it
was developed only to support the application of CAST accident analysis.

The CAST accident analysis approach has the following main steps [Lev11]:

• Identify the basis of analysis e.g. system-hazards which are violated, the
system safety design constraints and proximal events.

• Construct the safety control structure as it was designed to work.

• Accident analysis in which the analyst should evaluate each component in
the safety control structure diagram and determine whether it fulfilled its
responsibilities or provided inadequate control. The analyst should also
examine the coordination and communication between the main players
of the accident under analysis.

• Edit recommendations.

A-CAST implements the aforementioned steps of CAST. It allows the safety
analyst to draw the control structure diagram and document the safety responsi-
bilities and roles of each component in the control structure diagram. Moreover,
A-CAST allows the safety analyst to edit and document recommendations for
each component directly on the control structure diagram by double-clicking
on the component. The results of the CAST accident analysis can be exported
completely in one PDF file or individually as PDFs, images, and CVS files for
each CAST step. Figure 6.10 shows the main views of A-CAST in XSTAMPP.

1
http://www.xstampp.de/a-cast.html
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Figure 6.10.: The main view of A-CAST in XSTAMPP

6.2. Summary

We presented a tool support, called XSTAMPP which is developed to support the
safety engineering approach for software-intensive systems. XSTAMPP supports
the application of STAMP methodologies in different industrial environments. It
also aims at implementing the steps of STAMP/CAST to support accident analysts
in performing the STAMP/CAST method. Moreover, XSTAMPP provides a tool
support to generate the context tables and to generate the corresponding formal
specifications of the refined safety requirements to support the safety verification
activities. XSTAMPP has different Eclipse plugins which are developed to support
safety and software engineers in performing STPA safety analysis for software
components at the system level, verify their software design and implementations
against the STPA-generated safety requirements. XSTAMPP also allow the safety
engineers to automatically generate safety-based test cases directly from the
STPA results.
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“ Empirical explorations ultimately change our un-
derstanding of which questions are important and
fruitful and which are not. ”— L������� M. K�����

In this chapter, we describe the empirical validation of the STPA SwISs ap-
proach. STPA SwISs is an STPA-based approach for software safety, which can
be applied during the development process of a new safe software or to an
existing safety-critical software. Therefore, to explore its application during the
development process of a new safety-critical software in terms of identifying
the software safety requirements, verifying them and generating safety-test
cases, we conducted a pilot case study on developing a safe software simulator
of the adaptive cruise control system with a stop-and-go function. Moreover, we
explore the application of STPA SwISs to real software systems by conducting
two industrial case studies based on the automotive software systems. The first
case study was conducted on the Active Cruise Control System (ACC) at BMW
Group. The second industrial case study was conducted on the fully automated
vehicle project at Continental.

7.1. Pilot Case Study: Developing A Software Simulator for ACC

7.1.1. Case Study Description

Adaptive Cruise Control (ACC) is a well-known automotive system which has
strong safety requirements. ACC [SAE03] is an advanced version of the cruise
control which allows a vehicleś cruise control autonomously adapt the vehicleś
speed to the traffic environment. The operation of an ACC is based on a long
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Figure 7.1.: A mechanism of the simulator of ACC with stop-and-go function

range forward-radar sensor which is attached to the front of the vehicle to detect
whether there is a vehicle moving in the ACC vehicleś path. When the radar
sensor detects a foregoing slow moving vehicle in the path, the ACC system will
adapt the speed of ACC vehicle automatically (slow down or accelerate) and
control the distance between the ACC vehicle and the target vehicle. If the road
is free and the radar sensor detects that the target vehicle is no longer in the
path, then the ACC will automatically return back the vehicle speed to its pre-set
speed.
To illustrate the proposed approach, we developed a simulator software

written in ANSI-C to simulate the Adaptive Cruise Control Systems system with
stop-and-go function by using two LEGO EV3 Mindstorm robots1. We developed
the simulator within 6 months (see the appendix A ). The ACC with stop-and-go
function [VN00] is an extended version of the normal adaptive cruise control
system. It maintains a certain speed and keeps a safe distance from the vehicle
ahead based on the radar sensors. The ACC with stop-and-go function will bring
the vehicle to a complete stop when the vehicle ahead comes to a standstill or
there is a stationary object in the lane.

Figure 7.1 shows the mechanism of the simulator of the ACC with stop-and-go
function. The ACC simulator maintains a constant time gap to vehicles ahead. It

1
http:

//www.iste.uni-stuttgart.de/en/se/forschung/werkzeuge/acc-simulator.html
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Figure 7.2.: The ACC system with stop-and-go function scenarios

uses a forward ultrasonic sensor with a range of up to 255 centimeters, which is
located in the front of the robot to detect the distance of the robot ahead of it and
can automatically maintain the pre-set time gap. It adjusts the robot speed by
increasing or decreasing the value of current speed to keep a safe distance. If the
robot ahead is completely stopped, then the ACC simulator will slow down the
robot vehicle to a standstill. If the vehicle ahead starts moving again, then the
ACC simulator will automatically start to move again and maintain a constant
time gap between the robot ahead. Our simulator algorithm is the ACC simulator
starts first read the distance data from the ultrasonic sensor and then computes
the time gap by using the following equation:

cur rentT imegap = | F rontdistance
CurrentSpeed

| (7.1)

Second, the simulator computes the standstill time, which is the time at which
the ACC vehicle must decrease the speed or stop when the vehicle ahead is close
or fully stopped. It is calculated as

�Timegap = st il lstand time+
p

cur rentT imegap (7.2)

Third, the simulator will compare the value of the time gap with the following
scenarios (shown in Fig. 7.2):

• TimeGap > (�TimeGap + safeTimeGap). This indicates that the vehi-
cle ahead is so far from the point t�. The simulator will accelerate the
speed of the vehicle robot till the desired speed. The simulator adjusts
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(increase/decrease) the current speed by using the following equation:

cur rentSpeed + /� =
∆

speed2 + 2 ⇤ (Time), (7.3)

where Time = ((�Timegap+ sa f eT imeGap)� TimeGap)

• (TimeGap > safeTimeGap) && (timeGap < (�TimeGap + safeTimeGap)).
This indicates that the vehicle robot ahead is approaching within the
period of time gap between [t� tsa f eT imeGap]. The simulator will put the
ACC system in follow mode. Follow mode means that there is a vehicle
in front in the lane. The simulator will automatically adjust the current
speed by using equation refeg:7.5.

• TimeGap == safeTimeGap. This indicates that the vehicle robot ahead is
approaching within the desired time gap and there is a safety distance
between them. The simulator will put the ACC system in the cruise mode.
Cruise mode means that the vehicle robot ahead is approaching in safe
time gap. Then, the simulator will set the current speed as the desired
speed.

• TimeGap < safeTimeGap. This indicates that the vehicle ahead is moving
within the time between [tsa f eT imeGap t0]. The simulator will reduce the
speed of the vehicle by using equation 7.3.

• TimeGap == 0. This indicates that the vehicle ahead has fully stopped.
Then the simulator will bring the vehicle to a complete stop at the standstill
distance and change the ACC mode to stop. If the front vehicle starts to
move again, then the simulator will change the ACC mode to resume.
Resume mode means that the current speed of the ACC vehicle will be
accelerated to the desired speed. The simulator uses the following equation
to achieve that:

cur rentSpeed+ = accelerat ionratio, (7.4)

where accelerationratio is set to 4 cm/sec;
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7.1.2. Results

7.1.2.1. Deriving Software Safety Requirements of the ACC Simulator

To derive the software safety requirements, we applied the STPA SwISs Step 1
to the system specification requirements. We used the XSTAMPP software tool
to document the results of STPA and generate the formal specification of the
STPA results.

As a result, we identified the system-level accidents that the simulator software
can lead (or contribute to). For example, ACC-1 : The ACC robot crashes the
robot ahead. The system-level hazards which can lead to this accident are:

• H1: The ACC software does not keep a safe distance from the a vehicle
robot ahead.

• H2: The ACC software provides an unintended acceleration when the
vehicle in front is too close.

• H3: The ACC software does not stop the vehicle when the vehicle ahead is
fully stopped.

We built the control structure diagram of the ACC simulator (shown in Fig.
7.3). It contains the main interconnecting components of the ACC simulator at a
high level, such as the ACC simulator software controller unit, the electronic motors,
the robot vehicle as the controlled process, and the Ultrasonic and speed sensors.
The ACC software controller receives the distance data from the ultrasonic sensor
and current speed data from the speed sensor. Based on this information, the
software will calculate the time gap and determine if the vehicle robot ahead
is present. The ACC software will adjust the speed of the robot based on the
above sensors and issues one of the critical safety control action: accelerate,
decelerate, or fullystop. Each one of these control actions will be evaluated
based on the four general hazardous types (columns of table 7.1). Table 7.1
shows the examples of the potential unsafe control actions of the ACC simulator.
We evaluated each item in table 7.1 to check whether it can contribute or

lead to any system-level hazards (H1� H3). If an item is hazardous, then we
assign one or more system-level hazards to it. We translate each hazardous item
manually to the corresponding software safety requirement by using the guide
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Figure 7.3.: The control structure diagram of ACC with the safety-critical process
model variables

words, e.g., shall or must be. Table 7.2 shows examples of the informal textual
software safety requirements.

To refine the informal textual software safety requirements which are shown
in table 7.2, we identified the process model of the ACC software controller
and its critical variables which have an effect on the safety of the ACC software
control actions. Figure 7.3 shows the control structure diagram and process
model variables of the ACC software. The ACC software has three safety-critical
process model variables: Internal variables such as currentSpeed (5 values),
Timegap (5 values), Internal states variable such as ACC mode (states) with
5 values, and the environmental variables such as front distance. Each safety
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Table 7.1.: Examples of potentially unsafe control action of the acceleration
control action

Not providing
causes hazard

Providing causes
hazard

Wrong timing or
order causes haz-
ard

Stopped too soon
or Applied too
long

The ACC soft-
ware does not
accelerate the
speed when the
robot vehicle
ahead is so far in
the lane. [Not
Hazardous]

UCA-1.1: The
ACC software
accelerates the
speed of robot
unintendedly
when the time
gap to the robot
vehicle ahead is
smaller than the
desired time gap.
[H-1] [H�2]

UCA-1.2: The
ACC software
accelerates the
speed before the
robot vehicle
ahead starts
to move again.
[H-1] [H-2]

UCA-1.3: The
ACC software
accelerates the
speed too long
so that it exceeds
the desired
speed of the
robot. [H-2]

control action provided by the ACC software should be evaluated to determine
whether it will be hazardous or not when the combination set of relevant values
of the process model variables (context) occur.
We used XSTAMPP/XSTPA to generate the critical combinations (context

tables) for each safety-critical action in the two contexts when the control action
is provided and it is not provided and causes hazard. For each control action,
the total number of combinations between the process model variables is (5
⇥ 5 ⇥ 5 =125) combinations. We reduced the number of combinations by
applying pairwise test coverage to the generated combination sets. The number
of critical combinations is reduced to 25 for each control action. Table 7.3 shows
examples of the context table of providing the control action accelerate based on
the combinations of the values of the critical process model variables. As a result,
we identified 32 unsafe scenarios (shown in Table 7.4) for all the control actions
accelerate (18 scenarios), decelerate (7 scenarios ) and FullyStop (7 scenarios).
Table 7.5 shows the examples of generated software safety requirements for the
unsafe scenarios.

Based on the rules 3-4, XSTAMPP also automatically generates the LTL formula
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Table 7.2.: Examples of corresponding safety constraints at the system level

Related UCAs Corresponding Safety Constraints

UCA-1.1 SSR1.1- ACC software must not accelerate the speed of the
robot when the target robot vehicle is too close in the lane.

UCA-1.2 SSR1.2- ACC software must not accelerate the speed when
the robot ahead is fully stopped.

UCA-1.3 SSR1.3-ACC software must not increase the speed than the
desired speed.

UCA-1.4 SSR1.4-ACC controller must stop the robot at standstill
point (shown in Fig. 7.2) when the robot ahead is fully
stopped.

Table 7.3.: Examples of the context table of providing the control action accelerate

Control
Actions

Process Model Variables hazardous
Control
Action?

CurrentSpeed TimeGap ACC
Mode

providing

accelerate

CS>minSpeed TimeGap<(�
Timegap
+ safety-
TimeGap)

follow No

CS<= desired-
Speed

TimeGap== 0 follow Yes, H2, H1

CS<desiredSpeed TimeGap
> safety-
TimeGap

follow No

CS<desiredSpeed TimeGap
<(� TimeGap
+ safety-
TimeGap)

follow Yes

132 7 | Empirical Validation



7.1 | Pilot Case Study: Developing A Software Simulator for ACC 7 | Empirical Validation

Table 7.4.: Examples of refined unsafe control action generated in XSTAMPP
based on the results of STPA Step 1

ID Unsafe software safety scenarios

RUCA-1.1 The ACC software controller provides the accelerate command
when ACC mode is Standby and timeGap is greater than (deltaX
+ safetyTimeGap) and the current speed is less than desired
speed.

RUCA-1.2 The ACC software controller provides the accelerate command
when timeGap is less than (deltaX +TimeGap).

RUCA-1.3 The ACC software controller provides the accelerate command
when current speed is greater than or equal to desired speed.

RUCA-1.4 The ACC software controller does not provide the fullyStop
command when the timeGap is 0.

RUCA2.1 The ACC software controller provides the decelerate command
too late when ACC mode is follow and timeGap is less than
safetyTimeGap and currentSpeed is greater than desired speed.

for each refined software safety requirement. Table 7.6 shows the examples of
the corresponding LTL formula of each software safety requirement. We used the
generated-LTL formulae to verify the safe behavioral model which is constructed
from the STPA results.

7.1.2.2. Automatically Generating SMV Model

We visualised the process model of the ACC software controller (shown in Fig.
7.3) by creating a Simulink/Matlab Stateflow model (shown in Fig. 7.4). The
Stateflow contains 9 states (2 of them are superstates) and 19 transitions. It
shows the relationship between the process model variables in the safety control
structure diagram of the ACC simulator. The process model describes the critical
variables and states of the software and how the software issues the critical
safety control actions (e.g. accelerate, decelerate)
To validate the correctness of the safe behavioral model, we generated the

SMV model of the safe behavioral model (shown in Fig. 7.4) by using the
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Table 7.5.: Examples of refined software safety requirements

Related UCAs Refined Safety Constraints

RUCA-1.1 RSSR1.1- Accelerate command must not be provided when
ACC mode is Standby and timeGap is greater than (deltaX
+ safetyTimeGap) and the current speed is less than desired
speed.

RUCA-1.2 RSSR1.2- Accelerate command must not be provided when
timeGap is less than (deltaX +TimeGap).

RUCA-1.3 RSSR1.3-Accelerate command must not be provided when
current speed is greater than or equal to desired speed.

RUCA-1.4 RSSR1.4-FullyStop command must be provided when the
timeGap is 0.

RUCA2.1 RSSR2.1- Decelerate command must not be provided too
late when ACC mode is follow and timeGap is less than safe-
tyTimeGap and currentSpeed is greater than desired speed.

STPA TCGenerator tool which transforms the safe behavioral model into a
verification input of the NuSMV model checker. For that, we first derived the
XML specifications of the Simulink’s Stateflow model. Second, we took the XML
specifications of both ACC simulator STPA file and the safe behavioral model as
input to the STPA TCGenerator tool. The tool parses both files and generates
the SMV model which maps all states, transitions and data variables, and LTL
formulae of STPA software safety requirements of the safe behavioral model to
SMV model specifications. The generated SMV model is shown in the appendix
A.

We updated the default values of each input data variable which are declared
in the generated SMV model (e.g. initial speed (10.0), desired speed (45.0), initial
frontdistance (150.0)). The value of current speed will be calculated by using
equations 5. The value of time gap will also be calculated by using equation 2.
The STPA TCGenerator tool runs the NuSMV 2.6.0 model checking tool to verify
the generated SMV model file. The NuSMV model succeeded in verifying the
generated SMV model within 0.29 seconds and no further errors were reported.
NuSMV consumed 42.10 megabytes to store 2.31828e+17 states and performed
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Table 7.6.: Examples of LTL formulae of the refined software safety requirements
at the system level

Refined SSRs Corresponding LTL formula

RSSR1.1 LTL1.1- G((state==Standby)&& (timeGap> deltaX+ safe-
tyTimeGap) && (currenSpeed < desiredSpeed)! ! (con-
trolAction==Accelerate)).

RSSR1.2 LTL1.2- G((currentSpeed > desiredSpeed ) &&
(TimeGap <(deltaTime+safetyTimeGap)) !! (con-
trolAction==Accelerate).

RSSR1.3 LTL1.3- G((currentSpeed >=desiredSpeed)!! (ControlAc-
tion==stop) .

RSSR1.4 LTL1.4- G((timeGap==0) ! X (controlAc-
tion==FullyStop).

RSSR2.1 LTL.2.1- G((state==Follow)&&(timeGap<safetyTimeGap)
&& (currentSpeed >= desiredSpeed) ! !(controlAc-
tion==Decelerate))

2.97418e+09 transitions. As a result, all LTL formulae were satisfied and there
is no counterexample generated because the safe behavioral model itself was
built from STPA software safety requirements.

7.1.2.3. Safety-based Test Case Generation

After validating the correctness of the safe behavioral model, we used the STPA
TCGenerator to generate a hierarchical tree of the safe behavioral model which
shows the hierarchy levels of the safe test model. The STPA TCGenerator tool
parses the tree of the safe behavioral model recursively by considering superstate
decompositions AND_STATE (parallel) and OR_STATE (exclusive) to generate the
safe test model as an extended finite state machine. As a result, the generated
safe test model contains 7 states (after removing the superstates) and 32 transi-
tions (after maintaining the transitions of superstates). The tool automatically
generates the traceability matrix between STPA software safety requirements
and the safe behavioral model.
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Figure 7.4.: The safe behavioral model of the ACC software controller

To generate the safety-based test cases from the safe test model of the ACC
simulator, we first set the number of test steps to 10 and selected the three test
coverage criteria (state, transition and STPA software safety requirements test
coverage criteria) in the STPA TCGenerator tool. We selected the STPA software
safety requirements coverage as the stop condition of the test case generating
algorithm. We also set the test input value for each input data variable: power
(true), desired speed (45 cm/sec), initial speed (10 cm/sec), front distance
(150 cm). Finally, we ran the STPA TCGenerator tool three times to generate
safety-based test cases from the test model, respectively: 1) depth-first search,
2) breadth-first search and 3) the combined algorithm. Table VIII shows the
results of the generated safety-based test cases by each test algorithm. We could
achieve 100% coverage of all the STPA software safe requirements which are
linked to the safe test model in the traceability matrix. Figure 7.7 shows an
example of the format of documenting each safety-based test case.
Based on the traceability matrix between the model and the STPA software
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1 [Test Case ID] 2
2 [Test Suite ID] 2
3 [Related STPA SSRs]
4 RSSR1.1, RSSR1.2, RSSR1.3
5 [PreConditons]
6 desiredspeed=45.0
7 frontdistance=120.32
8 currentspeed=44.0
9 state=Resume

10 [Actions]
11 controlAction=Accelerate
12 [PostConditons]
13 currentSpeed=45.0
14 state=Cruise
15 [Comment]

Figure 7.5.: An example of a generated safety-based test case

safety requirements, the STPA TCGenerator provides an individual coverage (how
many test cases TC covered each SSR) by each test algorithm (shown in Fig.
7.6).

7.1.2.4. Verification of the ACC Software Source Code

To verify the software source code of ACC Simulator against the STPA-generated
software safety requirements, we first generated the Promela model (see in
Appendix A) by using STPA Verifier which includes the Modex 2.7 tool. Modex
tool is for extracting the verification model directly from source code written in
ANSI-C. The generated Promela model is shown in the appendix A. A few errors
were in the generated Promela Model such as Modex does not include the C
library math.h into the model. We traced all errors in the generated model to
make it work correctly in SPIN. We configure SPIN 6.4.3 in STPA verifier plug-in
using a depth of the search tree of more than 104. The SPIN model succeeded
in verifying our software program within 1.38e+03 seconds and no further
errors were obtained. SPIN consumed 1.1 gigabyte to store 7,642,219 states
and performed 13333010 transitions.
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Table 7.7.: The safety-based test cases generated by STPA TCGenerator tool

Test
Al-
go-
rithm

Test
Steps

Test
Suite

Test
Cases

Time
(in
Sec)

State Cov-
erage

Transition
Coverage

STPA SRR
Coverage

DFS 10 1 119 3 6/7=
85.7%

23/32=
71.9%

32/32=
100%

BFS 10 4 24 1 6/7=
85.7%

17/32=
53.1%

32/32=
100%

Both 10 5 249 2 7/7=
100%

18/32=
87.5%

32/32=
100%

Figure 7.6.: The total number of test cases for each STPA software safety re-
quirement

To verify STPA-generated safety requirements which are automatically ex-
pressed in LTL, we used STPA verifier plug-in which automatically generates the
never claims for all LTL formulae by using the SPIN command line option. Next,
STPA verifier included these never claims into the Promela model and ran SPIN
to verify them one-by-one. Table 7.8 shows examples of the verification results
of the software safety requirements with depth of search, number of different
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Table 7.8.: Examples of the verification results of software safety requirements

SSR #Depth #States
Stored

#Transitions #Time (s) #Memory
(GB)

Results

SSR1.1 4964 9584017 16196785 1.5e+03 1.02 satisfied

SSR1.2 9999 8851830 15413578 1.4e+03 0.91 satisfied

SSR2.1 484 157289 294864 22.7 0.16 incomplete

SSR3.1 5 2 2 0.2 0.02 fails

states found in the model, number of transitions performed during depth-first
search, total of memory needed for states and total time in second.
The results in table 7.8 show that the safety requirements SSR 1.1, SSR 1.2

and SSR 2.2 are satisfied while SSR 2.1 is incomplete because not all parts of
the model were exercised. SSR 3.1 is refuted and a counterexample is yielded.
To analyse the counterexample, we ran SPIN to perform a guided simulation
using the trail file on the verification model. An example of SPIN result for this
counterexample is shown as follows:

1 spin: trail ends after 5 steps

2 #processes: 10

3 5: proc 9 (p_main:1) model:701 (state 4)

4 5: proc 8 (p_runSimulator:1) model:623 (state 7)

5 5: proc 7 (p_radarSensorUnit:1) model:604 (state 7)

6 ...

7 10 processes created

8 Exit�Status 0

The results show that the SSR3.1 fails because the radar unit monitor does
not always provide radarData to the ACC software controller when ACC is in
the cruise mode. This situation will cause an accident if there is a vehicle in
the lane and the distance to a forward vehicle is too small. To eliminate this
counterexample, we constrained the radar unit by checking the status of the
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ACC system before providing the data of the target vehicle.

7.1.3. Discussion

The idea behind the proposed approach is to integrate STPA safety analysis
and its identification of the hazardous situations that the software can lead or
contribute to semi-automatically with software testing. For this, we formalise
the STPA software safety requirements into a formal specification and model
the information derived from the STPA safety analysis into a test model. That
helps us to focus the effort of testing by generating safety-based test cases for
each software safety requirements. However, there are still some open issues
and interesting challenges that require further research.

7.1.3.1. Visualisation of Process Model

The process model in the STPA control structure diagram is a very abstract model
which shows only the safety-critical variables and states which have an effect on
the safety of issuing the control actions by a software controller in the control
structure diagram. It does not show how the software controller issues the
control actions. Therefore, we use the statechart notation to visualise the rela-
tionships of the process model variables and describe the safe behavioral model.
However, constructing a safe behavioral model from the STPA safety results
by safety test engineers depends on the level of information which is available
during the STPA safety analysis process (e.g. process model, and process model
variables and values). Moreover, it is critical how this information describes the
internal state of the software controller and the safety-critical software variables
(e.g. interaction and environmental variables). Furthermore, visualising the safe
behavioral model in a modelling tool such as Simulink requires user expertise in
the modelling of dynamic behavior to map the safety analysis specifications (pro-
cess model, control actions and software safety constraints) into the Stateflow
notation. Therefore, this point remains as future work to automatically provide a
basic structure of the safe behavioral model from the process model information
(e.g. states and its hierarchical levels) which is visualised in XSTAMPP. This will
help the safety tester to understand the relationships between the critical system
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states, environmental and interaction variables which are documented in the
process model of the software controller in the STPA control structure diagram.

7.1.3.2. The Correctness of the Safe Test Model

The manual construction of test cases is a hard, time-consuming and error-prone
activity that requires deep knowledge and expertise. Furthermore, the manual
building of a test model from system specifications with the purpose of generat-
ing test cases still needs a proof of its correctness to ensure that the test model
captures all specifications. A solution is to construct a test model for a given
system and prove its correctness by transforming it into an intermediate model
which is supported by a formal verification approach (e.g. model checker) to
verify the generated model against its specifications. In addition, the specifica-
tions should also be mapped from informal text to the formal specifications. For
this issue, we transformed the safe test model into the SMV model and verified
it by using the NuSMV model checker to ensure that the safe test model satisfies
the STPA specifications. However, the model transformation process also needs a
proof of the correctness of the resultant model, even though the model checker
did not induct any error. In our proposed approach, this issue remains as an
open issue for future work.

7.1.3.3. Traceability Matrix

The automation of the test case generation process can lead to a large number of
test cases that cover the same information. Reducing the number of generated
test cases is a major factor in evaluating the effectiveness of an automated testing
tool and the quality of the generated test cases. Therefore, we added a new
test coverage criteria (STPA software safety requirements) to stop the test case
generating algorithm when this criterion becomes 100% to ensure that each
STPA safety requirement is covered at least in one test case. Furthermore, the
first prototype of the STPA TCGenerator tool supports to generate test cases for
each software safety requirement by automatically generating a traceability
matrix by calculating the similarity degree of the matched tokens between the
STPA software safety requirements and the safe test model. The traceability
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matrix contains all relevant transitions of each software safety requirement in
the safe test model.

7.1.3.4. Process Model Variables Data Types

Another limitation is that the process model variables in the STPA control struc-
ture diagram visualised by XSTAMPP have no data types. Furthermore, XSTAMPP
does not support multi-levels hierarchies of the process model of the software
controller in the control structures. That makes ensuring and checking the
consistency between the hierarchy levels of the process model in STPA and
the Stateflow model in Simulink a big challenge. For example, the process
model variable ACC Active in the ACC software controller has sub-process model
variables such as control speed and FrontDistancesensor which will be activated
when the ACC state is active. Therefore, it requires human effort to define the
process model hierarchy and map it to the Simulink Stateflow model hierarchy
level.

7.2. Industrial Case Study on BMW’s ACC with Stop-and-Go function

7.2.1. Case Study Description

We conducted an industrial case study to explore the application of the STPA
SwISs approach for safety engineering based on STPA using a real industrial
system in the automotive domain. The case study was conducted at the German
company BMW Group, which is a luxury automobile and motorcycle company.
We applied the STPA SwISs approach to the BMW active cruise control system
with stop-and-go function of the new car model G11. The case study was
performed at the headquarters of BMW Group in Munich, Germany.

Figure 7.7 shows the case study work packages, deliverables and tool support.
We started by applying STPA to the system specifications of ACC stop-and-go to
derive the software safety requirements at the system level. We used XSTAMPP
[AW15b] to document the results of applying STPA and transformed the STPA
safety requirements automatically into formal specifications in LTL. Based on the
results of STPA, we constructed a safe behavioral model of the ACC as a Simulink
statechart. To ensure the correctness of the resulting model and STPA results,
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both are reviewed by two BMW experts. Furthermore, we automatically con-
verted the safe behavioral model into SMV (Symbolic Model Verifier) [McM93]
by using our tool STPA TCGenerator (STPA Test Case Generator)1 which is a
model-based safety testing tool. We also verified the SMV model against the
STPA results by using the NuSMV model checker [Cim+00]. We used the safe
behavioral model as input to our model-based testing tool STPA TCGenerator
to generate safety-based test cases. Finally, we selected 20 of the generated
safety-based test cases to be executed on the ACC system.

7.2.2. Case Study Design

In the following, we will describe the case study design which contains the
main research questions that drive the case study, data collection and analysis
procedures, as well as how we ensure the validity of the results. Our case study
design follows Runeson and Höst’s guidelines [RH08].

7.2.2.1. Study Goal and Research Questions

The goal of this case study is to explore the applicability and feasibility of the
STPA SwISs approach of software safety engineering based on STPA in a real
industrial environment. We use two research questions to structure the study
design.
RQ1) How effective is using the STPA SwISs approach to derive the soft-

ware safety requirements at the system level? This research question focuses
on investigating how STPA SwISs helps to derive the appropriate software safety
requirements at the system level to help the software and safety engineers to
recognize the software risks.
RQ2) How useful is generating the safety-based test cases from the STPA

results? We want by this research question to investigate how the safety-based
test cases generated from STPA results can help to test the system against each
software safety requirement to ensure that the system satisfies the STPA software
safety requirements.

1
https://sourceforge.net/projects/stpastgenerator/
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Figure 7.7.: Case study work packages, deliverables and tool support

7.2.2.2. Data Collection Procedures

The case study follows the 4 steps of the STPA SwISs approach to derive the
software safety requirements and generate and execute the safety-based test
cases on the system environment. Specifically, we apply the approach to the
specification document of the active cruise control system with stop-and-go
function. We use the XSTAMPP software tool to document the safety analysis
results which are exported as PDF files and Excel sheets. We also use the reports
generated by formal verification and testing approaches (e.g. STPA verifier and
STPA TCGenerator). These reports include the verification results of each STPA
safety requirement, the generated safety-based test cases and the test execution
results.

7.2.2.3. Analysis Procedure

The following section describes the top-down process for applying the STPA
SwISs safety engineering approach to the software controller of the active cruise
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control system in this case study:

Deriving the Software Safety Requirements: At first, the safety analyst in-
vestigates the existing documents about the case study object, its functional
requirements, and its system specification. From these documents, the safety
analyst establishes the fundamentals of the analysis (e.g. a list of the system-level
accidents that the software can contribute to, a list of the system-level hazards
that may lead to one or more of the system-level accidents) and builds a safety
control structure diagram of the ACC system and its environment. The safety
control structure diagram is a high-level abstraction diagram that contains the
main components which interact with the ACC software controller and the neces-
sary information about the input, software control actions and feedback signals.
The control structure diagram is visualized by XSTAMPP. One of the internal ACC
system designers reviews the control structure model and the STPA-generated
software safety requirements and provides feedback to the safety analyst. Based
on his feedback and improvement suggestions, the safety analyst modifies the
diagram. The safety analyst uses the final control structure diagram to guide
the safety analysis process to derive the software safety requirements based on
the STPA SwISs approach.

Modeling of STPA results: Second, the safety and software engineers build
a safe behavioral model of the software controller of the ACC system from the
system specifications and STPA results. The safe behavioral model is a Simulink
state chart model which contains the relevant process model variables (states)
and transitions which is labeled by the STPA software safety requirements. The
safe behavioral model was also reviewed by the ACC system designer and tester.
The resultant model is reviewed by the ACC system testing expert at BMW.

Verifying the safe behavioral model: Third, the safety analyst transforms
the safe behavioral model into the SMV (Symbolic Model Verifier) [McM93]
specification model by using the STPA TCGenerator tool. Then the safety analyst
verifies the SMV model against the STPA results by using the NuSMV model
checker to ensure that the SMV model satisfies all STPA-generated software
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safety requirements.

Generating safety-based test cases: Fourth, the safety tester uses the XML
specification of the safe behavioral model and the STPA project, which is created
by XSTAMPP as input to the STPA TCGenerator tool to generate the safe model
test and generate test cases for each STPA software safety requirement. The
system tester determines the range of test data for each safety-critical variable
(process model variable). The STPA TCGenerator tool automatically generates
the traceability matrix between the software safety requirements and the safe
test model and automatically generates the safety-based test cases from this
model. The generated test cases are saved automatically in an Excel sheet. The
generated safety-test cases are reviewed by the ACC testing expert at BMW.

Test execution of the safety-based test cases: Finally, we define criteria
of selection safety-based test cases in which each generated software safety
requirement should be tested at least in one test case. The safety analyst and
system tester will conduct the execution of the test cases based on the final
implementation of the ACC software system on the BMW car model series 7.

7.2.2.4. Measurements

To answer the research questions, we investigate the safety analysis and the
verification and test case generation reports. Moreover, we investigate the
execution results of the safety-based test cases.
To answer RQ1, we first summarise the results of deriving software safety

requirements. We calculate the total number of the STPA-generated software
safety requirements which are derived at the system level and the unsafe software
scenarios which are reported by following STPA SwISs approach.
To answer RQ2, we investigate the list of the generated software unsafe

scenarios to evaluate whether these scenarios describe real unsafe scenarios in
the ACC system. We investigate the list of test cases generated and the execution
testing report to evaluate how useful it is to generate test cases directly from
the safety analysis. Finally, we calculate the coverage of the software safety
requirements by the generated test cases generated by counting the total number
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of STPA-generated software safety requirements covered by safety-based test
cases. We measure the Software Safety Requirements (SSR) coverage in the
generated safety-based test cases by using the following equation:

SSR Coverage=
|#STPA SSR covered by Test Cases|
|#STPA Software Safety Requirements| (7.5)

7.2.2.5. Validity Procedure

To ensure internal validity, we define an extensive review role after each step.
All generated software safety requirements, the control structure diagram of
ACC, the safe behavioral model, the SMV model and the safety-based test cases
are reviewed by the experts of the approach, the ACC system, and software and
system safety. The experts provide valuable feedback and comments to ensure
that all steps were conducted correctly and the results were obtained practically
reasonable and acceptable.

An external validity concerns on how the proposed approach can be general-
ized to any software systems within the same industry or in a different industry.
We perform a single case study with one company, nevertheless, we choose an
automotive software of the well-known safety-critical system that has strong
safety requirements. To ensure the external threat further studies on applying
the STPA SwISs approach to different software systems in different industry
domains are needed.

7.2.3. Results

In this section, we first present a detailed description of the case we selected.
Then, we describe the results of the case study and answer the research questions.

7.2.3.1. Case Description

We carried out the case study on an automotive software system of the German
company BMW Group. Active Cruise Control with stop-and-go (ACC) 1 (shown
in 7.8) is an extended version of the adaptive cruise control system which keeps
the vehicle at a safe distance from the vehicle in front at all times. It keeps

1
http://www.bmw.com/articles/active_cruise_control_stop_go.html
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Figure 7.8.: The block diagram of BMW’s ACC system with Stop-and-Go function

the vehicle speed constant within a range of 30 to 210 km/h and automatically
adapts the following distance to the vehicle in front. The stop-and-go function
controls the speed when the car slows down to a standstill and restarts the
engine automatically after a short interval (< 3 seconds). When there is a traffic
jam or the traffic comes to a halt, the ACC system with stop-and-go will apply
the brakes until the vehicle comes to a standstill and then automatically will
move on as soon as the road is clear.

7.2.3.2. Software Safety Analysis of BMW’s ACC

Before applying STPA SwISs to the active cruise control system with stop-and-go
function, we established the fundamentals of the analysis. We used the XSTAMPP
tool to document the results of this step. Here we will summarise our results
as follows: We identified 6 system-level accidents which the software of the
ACC system can lead or contribute to (shown in Table 7.9). We also identified 9
system-level hazards which can lead to the accidents (shown in Table 7.10). We
linked the system-level hazards to the accidents.
We drew the high-level safety control structure diagram of the ACC system

(shown in Figure 7.9). The diagram shows the main components which interact
with the ACC system. The main components of this diagram are: 1) ACC soft-
ware as a controller component, which controls the controlled process (vehicle)
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Figure 7.9.: The safety control structure diagram of the ACC system with Stop-
and-Go function

by issuing control actions to the actuators; 2) The motor system and brake
system are the actuator components which implement control actions of the ACC
software controller; 3) The vehicle is the controlled process which is controlled
by an ACC software control while the ACC system is active; and 4) a set of sensor
components which send feedback about the status of the controlled process to
the controller. The ACC software controller issues two safety-critical control
actions: acceleration signal and deceleration signal to control the speed of the
vehicle. We used this diagram to identify the potentially unsafe control actions
of an ACC software controller in the ACC system.
We identified 21 unsafe control actions for the safety-critical control actions

(shown in Table 7.11): acceleration signal (10 unsafe control actions) and decel-
eration signal (11 unsafe control actions). We evaluated each item in table 7.11
to check whether it can contribute or lead to any system-level hazards. If an
item is hazardous, we assign one or more system-level hazards to it. Otherwise,
we assign not hazardous to it. We translate each hazardous item manually to
the corresponding software safety requirement. Table 7.12 shows examples of
the informal textual software safety requirements.
To understand how each unsafe control action can occur and to identify the

causal scenarios (causal factors), we identify the safety-critical process model

7.2 | Industrial Case Study on BMW’s ACC with Stop-and-Go function 149



7.2 | Industrial Case Study on BMW’s ACC with Stop-and-Go function 7 | Empirical Validation

Table 7.9.: Examples of the system level accidents

ID Accident Description

1 ACC Stop & Go vehicle col-
lides with a moving vehicle in
the lane while the ACC system
is active.

There is a vehicle moving slowly in
the front of the ACC Stop & Go and
the ACC vehicle does not reduce the
speed or even bring a vehicle to the
complete stop.

2 A vehicle is approaching too
close behind the ACC Stop
& Go vehicle and suddenly
the ACC stop & Go vehicle is
stopped without illuminating
the brake light.

There is a vehicle is approaching be-
hind the ACC Stop & Go vehicle and
suddenly the ACC stop & Go vehicle
is stopped while the vehicle behind
is too close without illuminating the
brake light.

3 ACC Stop & Go vehicle col-
lides a stationary vehicle in
the lane

There is a stationary vehicle in the
front and ACC stop & go vehicle does
not stop and ACC stop-and-go system
is active.

4 ACC Stop & Go vehicle col-
lides a small object (e.g. mo-
torcycle) which is moving in
the front

There is a small object such as a mo-
torcycle or bike approaching in front
of an ACC stop-and-go vehicle. The
accident would occur if the object de-
tection units (3 radar + camera) of
the ACC stop-and-go could not recog-
nize the small object.

variables of the ACC software controller (shown in Figure 7.9). The ACC software
controller has a process model with 11 critical process model variables. These
variables have an effect on the safety of the control actions. We classify the
process model variables into three types of process model variables as follows:

• Internal state variables which indicate the internal states of the software
controller of the system such as ACCMode which is a process model vari-
able that indicates the status of ACC (active or inactive) and states which
is a process variable indicating the operational modes of the ACC system.
It has five states: stop, standby, accelerate, cruise and decelerate.
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Table 7.10.: Examples of system level hazards

ID Hazards Accidents

1 ACC Stop & Go system does not keep a safe distance
from a slowed-down object in front.

1,3, 4, 5

2 ACC Stop & Go system provides an unintended ac-
celeration while the moving vehicle is too close.

1,3, 4

3 ACC Stop & Go system does not stop the vehicle
when the traffic comes to a halt and the speed of the
forward vehicle is zero (stationary).

3,4

4 ACC Stop & Go system does not keep a safe distance
from the non-fixed objects in its lane.

5

5 ACC Stop & Go system does not maintain a safe
distance from a small object (e.g. motorcycle) which
is approaching in the front.

4

6 ACC Stop & Go system provides an unintended ac-
celeration/deceleration that makes the vehicle un-
controlled in the critical situation.

4, 5, 6

• Internal variables which change the status of the controller such as
timeGap which is calculated by an ACC software controller based on
the front speed, current speed and front distance between the ACC vehicle
and a vehicle in front of it and currentSpeed which indicates the current
speed of the ACC vehicle.

• Interaction Interface variables which receive and store the data or com-
mand or feedback from the other components in the system such as Brake
status which indicates the status of the brake pedal, Gas Pedal which in-
dicates the status of the gas pedal, resume_cancel button which indicates
the status of the resume_cancel button that actives ACC with last desired
speed or deactivates ACC, ACC button which indicates the status of the ACC
button, and the Activation preventer which is an aggregated variable that
indicates the status of ACC activation preventer (e.g. driver belt, door lock,
gear, etc.). The ACC activation preventer is a set of the ACC deactivation
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Table 7.11.: Examples of potential unsafe control action acceleration of the ACC
software controller

Not providing
causes hazard

Providing causes
hazard

Wrong timing or
order causes haz-
ard

Stopped too soon
or applied too
long

The ACC soft-
ware controller
does not provide
the acceleration
signal when the
road is clear and
the vehicle ahead
is so far. [Not
Hazardous]

UCA1.1. ACC
software con-
troller provides
unintended
accelerate sig-
nal when a
slowed down
object ahead
is too close.
[H-1][H-2]

UCA1.3. The
ACC software
controller
provides an
acceleration
signal before the
ACC is engaged
and there is an
object in the lane
approaching too
close. [H-2]

UCA1.4. The
ACC software
controller
provides accel-
eration signal
to motor unit
too long which
increases the
current speed be-
yond the desired
speed.[H-6]

Table 7.12.: Examples of corresponding software safety constraints at system
level

UCA ID ID Corresponding Safety Constraints

UCA1.1 SR1.1 The ACC software controller must not provide an ac-
celeration signal when a slowed down vehicle ahead is
approaching too close.

UCA1.2 SR1.2 The ACC software controller must not provide an accel-
eration signal before the ACC system is engaged.

UCA1.3 SR1.3 The ACC software controller must increase the speed
within the limit range of speed value (30 ...210 km/h).

variables. If the driver presses any ACC activation preventer button, then
the ACC will be automatically deactivated or can not be activated.

We refine the unsafe control actions in table 7.11 based on the process model
variables. First, we identify the dependencies between the control actions and
the process model variables which have an effect on the safety of the control
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Figure 7.10.: The safety control structure diagram of the ACC system with the
safety-critical process model variables

action to generate the context table for each control action (shown in Table
7.13).

Second, we identify the combination sets of relevant values of the process
model variables (context) for each control action (shown in Table 7.14) to
determine whether or not the control action in this context will be hazardous.
We examine the combinations set in two contexts: Provided control action causes
hazard and Not Provided control action causes hazard. The total number of
all combination sets between the process model variables is calculated by the
following equation:

Total. No = Activation Preventer x GasPedal x states x TimeGap x

CurrentSpeed x BrakeStatus (7.6)
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Table 7.13.: The dependency matrix between the control actions and the process
model variables

Control Action Relevant process model vari-
ables

Context

Acceleration Sig-
nal

Activation Preventer, Brake, Cur-
rentSpeed, GasPedal, States,
TimeGap

Provided/Not Pro-
vided

Deceleration Sig-
nal

Activation Preventer, Brake, Cur-
rentSpeed, GasPedal, States,
TimeGap

Provided/Not Pro-
vided

For the ACC stop-and-go software controller, the total number of all com-
bination sets of process model variables is = 2 x 2 x 5 x 5 x 6 x 2 = 1200
combinations of process model variable values. To automatically generate the
combinations and reduce their number, we used XSTPA1 plugin in XSTAMPP
which uses the combinatorial testing algorithm [KKL13] to automatically gen-
erate the context table and identify a minimal combination of process model
variables for large and complex systems. XSTPA also automatically refines the
unsafe control actions which are identified in STPA Step 1 and transforms the
hazardous combinations in context tables into the LTL specifications.
To reduce the number of combination sets in XSTPA, we select the combina-

torial testing algorithm (e.g. pairwise algorithm). The pairwise algorithm is a
testing criterion which requires that for each pair of process model variables of
the software controller, every combination of valid values of these two variables
be covered by at least one combination set. The algorithm takes the two longest
variable values. For example, the ACC stop-and-go software controller has the
following process model variables: the currentSpeed (6 values) and states (5
values) are the two longest variables values. Based on that, we reduce the total
number of combinations as = 6 x 5 = 30 combinations. Next, we generate
the context tables with 30 combinations for each control action (acceleration,
deceleration) in two contexts: provided and not provided.
We use two strategies to generate the context tables and ignore irrelevant

1urlhttp://www.xstampp.de/XSTPA.html
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Table 7.14.: Examples of the context table of providing the control action accel-
eration signal

Process model variables Hazardous ?

Activation
preven-
ter

States CurrentSpeed TimeGap at
any
time

too
early

too
late

Off Decelerate >DesiredSpeed Unknown no no no

Off Stop Unknown ==0 yes yes yes

Off Standby Unknown ==DesiredTime no no no

Off Accelerate >DesiredSpeed <DesiredTime yes no no

Off Cruise ==DesiredSpeed >DesiredTime no no no

combinations:

• Assumption 1: We assume that the ACC system is active and all the
sensors which make the ACC system automatically deactivate are off.

• Assumption 2: We assume that the ACC system is active and one of the
sensors (e.g. brake pedal) which deactivates the ACC system is on.

Table 7.14 shows examples of the context table of providing the control action
acceleration signal. The hazardous rules are automatically generated from the
context table. We evaluated each hazardous rule and linked it to one or more
unsafe control actions which are identified in STPA Step 1 to automatically refine
the unsafe control actions with the process model variables and generate the
refined software safety requirements. We identified 86 refined unsafe control
actions for the ACC control actions. For example, the unsafe control action
UCA1.1 ACC software controller provides unintended acceleration signal when a
slowed down object ahead is too close can be refined as RUCA1.1: ACC software
controller provides the acceleration signal while ACC activation preventer is off, the
brake pedal is not pressed, the state is stop, the gas pedal is not pressed, the current
speed is unknown and time gap is ==0. These 86 refined unsafe control actions
are automatically transformed into the refined software safety requirements
by our tool XSTAMPP/XSTPA. For example, the RUCA1.1 can be transformed
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Table 7.15.: Examples of refined software safety constraints based on process
model variables

RUCA ID Refined Software Safety Constraints LTL

RUCA1.1 RSSR1.1 The ACC software controller must not pro-
vide an acceleration signal when the activa-
tion preventer is off, the state is Stop, the gas
pedal is not pressed, the brake pedal is not
pressed, the current speed is unknown and
the time gap is equal 0 (traffic jam).

LTL1.1

RUCA1.2 RSSR1.2 The ACC software controller must not pro-
vide an acceleration signal when the activa-
tion preventer is off, the state is stop, the
gas pedal is not pressed, the brake pedal is
not pressed, the current speed is less than
desired speed and the time gap is less than
desired time.

LTL1.2

RUCA1.3 RSSR1.3 The ACC software controller must not pro-
vide an acceleration signal when the activa-
tion preventer is off, the state is Decelerate,
the gas pedal is not pressed, brake pedal is
not pressed, the current speed is greater than
the desired speed and the time gap is less
than the desired time.

LTL1.3

into the refined software safety requirement RSSR1.1 as The acceleration signal
must be not provided any time or too late or too early when activation preventer is
off, the brake pedal is not pressed, the state is stop, the gas pedal is not pressed,
the current speed is unknown and time gap is == 0. Table 7.15 shows examples
of the refined software safety requirements based on process model variables
which were generated by XSTPA.

We also identified 123 causal scenarios that lead to the 21 unsafe control
actions which are identified in the STPA Step 1 by analysing the control loops in
the control structures diagram in Figure 7.10. For example, a causal scenario of
the unsafe control action UCA1.1: ACC software controller provides unintended
accelerate signal when a slowed down vehicle ahead is too close. is defined as
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Table 7.16.: Examples of the causal scenarios of the unsafe control action UCA1.1

Unsafe Control Action (UCA1.1): The ACC Software controller provides
an unintended acceleration signal when a slowed down object ahead is
too close.

Refined Unsafe Control Action (RUCA 1.1): The ACC software controller
provides an acceleration when the activation preventer is off, the ACC state
is stop, the gas pedal is not pressed, the brake pedal is not pressed, the
current speed is unknown and the timegap is equal 0

ID Causal Scenarios Safety Constraints

SC.1 The ACC software controller
provides an acceleration
signal while the ACC vehi-
cle is stopped in a traffic
(timegap=0) and there is a
stopped vehicle in the front

The ACC software controller
shall not provide an accelera-
tion signal while the time gap
between the ACC vehicle and
the stopped vehicle in front is
equal (to) 0.

SC.2 The ACC software controller
provides an acceleration signal
while the driver-seat belt (Ac-
tivation preventer is on) is not
bound (maybe the driver went
outside the vehicle after wait-
ing for a long time in the traffic
jam)

The ACC software controller
shall not provide an accelera-
tion signal while the driver-seat
belt is not bound.

CS1.1: The ACC software controller receives incorrect data from radar in front
which leads to wrong estimation of time gap while a vehicle ahead is too close.
Table 7.16 shows examples of the causal scenarios of the unsafe control action
UCA1.1: The ACC Software controller provides an unintended acceleration signal
when a slowed down object ahead is too close.

For each refined software safety requirement, an LTL formula will be generated
automatically. For example, the LTL formula of the RSSR1.1 can be expressed
as:

LT L1.1 = [ ] ((ActivationPreventer==off && brake==off && states==
stop && gaspedal=off && currentspeed==unknown && timegap==0) ! !
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Table 7.17.: Examples of the corresponding LTL specifications of the software
safety requirements

ID LTL Formulas

RSSR1.1 [](((ActivationPreventer==off) && (Brake==Notpressed)
&&(States==Stop) && (GasPedal==NotPressed) && (Cur-
rentSpeed==Unknown) && (TimeGap==0))! !(controlAc-
tion==accelerationsignal))

RSSR1.2 [](((ActivationPreventer==off) && (Brake==Notpressed) &&
(States==Accelerate) && (GasPedal==NotPressed) && (Cur-
rentSpeed<DeisredSpeed) && (TimeGap<DesiredTime))! !(con-
trolAction==accelerationsignal))

RSSR1.3 [](((ActivationPreventer==off) && (Brake==Notpressed) &&
(States==Decelerate) && (GasPedal==NotPressed) && (Cur-
rentSpeed>DeisredSpeed) && (TimeGap<DesiredTime))! !(con-
trolAction==accelerationsignal))

(ControlAction==accelerationsignal) ).
The LTL formulae will be used to verify the safe test model against the STPA

results. Table 7.17 shows examples of the generated LTL formulae of the software
safety requirements.

7.2.3.3. Modeling STPA Results

After deriving the software safety requirements of the ACC stop-and-go system,
we created a Simulink/Matlab Stateflow model to visualize the STPA results
with a safe behavioral model (shown in Figure 7.11). The safe behavioral model
contains the process model variables of the ACC software controller (shown in
Figure 7.10) and shows the relationship between the process model variables
and hierarchy levels between the process model variables and its values. This
model constraints the transitions between the process model based on the STPA
results. The model contains 9 states (3 superstates and 6 sub-states) and 20
transitions.
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7.2.3.4. Software Safety Requirements Verification

To check the correctness of the safe behavioral model which is constructed
within Simulink’s Stateflow against the STPA process model and the STPA-
generated software safety requirements, we first used the Matlab command
line to derive the XML specifications of the safe behavioral model of the ACC
stop-and-go system. The XML specifications are saved in an XML file called
ACCStopandGo.xml. Second, we used the STPA TCGenerator tool to automatically
transform the safe behavioral model into the verification model in an SMV
(Symbolic Model Verifier) model. The tool takes two input files: An STPA
project of the ACC system which documents the results of step 1 and the XML
specification file of the safe behavioral model. The tool will parse both files and
generate the SMV model which maps all states, transitions, and data variables
of the safe behavioral model and the LTL formulae of STPA-generated software
safety requirements to SMV model specifications and automatically save them
to a file named ACCStopandGo.smv.

To verify the generated SMV model against the STPA software safety require-
ments, we used the STPA verifier plug-in 1 which is an Eclipse plug-in to verify
the STPA safety requirements with model checking tools such as SPIN and
NuSMV. As a result, all LTL formulae of the STPA-generated software safety
requirements are stratified except 5 of them are not stratified and counterex-
amples are generated. We updated the safe behavioral model based on the
counterexample results and generated an updated SMV model. We verified the
updated SMV model against the LTL formulae. Finally, all LTL formulae were
stratified by the updated SMV model.

7.2.3.5. Safety-based Test Case Generation

To automatically generate safety-based test cases, we use the safe behavioral
model which is constructed from the STPA safety analysis results and validated
the STPA-generated safety requirement as input to STPA TCGenerator. STPA
TCGenerator parses Simulink’s Stateflow of the safe behavioral model recur-
sively by considering Simulink’s statechart notations (superstate decompositions

1
http://www.xstampp.de/STPAVerifier.html

7.2 | Industrial Case Study on BMW’s ACC with Stop-and-Go function 159



7.2 | Industrial Case Study on BMW’s ACC with Stop-and-Go function 7 | Empirical Validation

Figure 7.11.: The safe behavioral model of the ACC stop-and-go software con-
troller

AND_STATE and OR_STATE) to automatically transform the statechart nota-
tions into the extended finite state machine notations to generate the safe test
model. As a result, the safe test model contains 7 states (after removing the
superstates) and 22 transitions (after maintaining the transitions of superstates
by considering the state decomposition type). STPA TCGenerator automatically
provides the traceability matrix between the STPA-generated software safety
requirements and the safe test model. It also shows the input variables of the
safe test model (e.g. currentspeed, timeOut, timegap, etc.) with their data type,
initial, minimum, maximum values to allow the user to set the test input data
and the test configuration.
We set the STPA TCGenerator with the test configurations as follows (shown

in Figure 7.12): the number of test steps to 20; the test algorithm is the random
walk with depth-first and breadth-first search; the test coverage criteria are
the state-based, transition-based and STPA software safety requirements test
coverage criteria; and the stop condition is STPA software safety requirements.
We also set the input value for each test data variable: desiredspeed (30–210
kmh), deisredTimegap (2,4 seconds), Timegap (0–10 seconds), currentspeed(0–
210 kmh), power (true), brakepedal (false–true), gaspedal (false–true) and
Activation preventer (false–true).

As a result, we generated 40 test suites with a total of 230 test cases within
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Figure 7.12.: The test configuration view in the STPA TCGenerator

100.0% state coverage, 82.59% transition coverage, and 100 % STPA safety
requirement coverage. 180 out of the 230 test cases are safety-based test
cases which have a relation with one or more STPA safety requirements in the
traceability matrix. The test cases are automatically saved in a CSV file.

7.2.3.6. Execution of the Safety-based Test Cases

Based on the available resources (time and hardware) from our industrial partner,
we were allowed to execute only 20 test cases. We selected 20 test cases out of
180 which are more relevant for the critical control actions of the ACC software
controller and the STPA-generated software safety requirements. We executed
the selected test cases by driving the car on the highway. The safety analyst
and system tester conducted the execution of the test cases on the BMW car
model 7 series. They drove first from the university of Stuttgart to the highway
because they could not perform the test in the city due to the safety reasons
and the BMW car model was under test. The test was performed in a realistic
environment on a German highway under cloudy weather. Table 7.18 shows the
examples of the selected safety-based test cases with the execution results. As
a result, the ACC stop-and-go system succeed with 18 out of 20 safety-based
test cases. One test scenario was difficult to test. The test scenario was to test
the stop function when there is a traffic jam and the vehicle in front moved
slowly. As a requirement, the ACC stop-and-go will automatically restart the
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Table 7.18.: Examples of the selected test cases and the test execution results

#No. #Precondition #Post-condition Road status #Test
Result

1 currentspeed=100
DesiredSpeed=83
DesiredTimeGap=2.4
TimeGap>=2.4
Gaspedal=true
Brakestatus=false
Power=true
ACC_Button=false Re-
sume_Cancel=false
ActivatPreven.=false
currentstate=Accelerate

controlAction=
accelerationsignal
State= Accelerate

No vehicle in
the lane

Success

2 currentspeed=0
DesiredSpeed=70
DesiredTimeGap=2.4
TimeGap=0.0
Gaspedal=false
Brakestatus=true
Power=true
ACC_Button=false Re-
sume_Cancel=false
ActivatPreven.=false
currentstate=stop
timeOut=1.0

controlAction=
none State= Stop

A vehicle in
front in the
lane

incomplete

engine and move off the vehicle, if the stop lasts from 1 to 3 seconds, otherwise
it will automatically stop the vehicle until the vehicle in front starts moving
again. For this situation, we used a timer to calculate the time of the stop. But
it was difficult to measure the stop time of the vehicle in front within 1 or 2
seconds and move again. In another test scenario, we recognized that if the
ACC stop-and-go is in the deceleration state (currentspeed > desired speed and
there is a vehicle is in front) and the driver pressed on the ACC button, then the
vehicle speed is immediately decelerated too slowly.
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7.2.4. Discussion

Table 7.19 summaries all results of the case study. Based on the results of the
case study, we answered our research questions as follows: For research question
RQ-1, we identified 6 system-level accidents to which the ACC software can
contribute to and 9 system-level hazards. We also identified 21 unsafe control
actions. Furthermore, we identified 86 refined unsafe scenarios that describe
different hazardous events that the ACC software transits the ACC system into
hazardous behaviors. We automatically identified 86 refined software safety
requirements based on the process model variables of the control actions of the
ACC software controller: acceleration and deceleration signals. We also identified
123 causal scenarios that the ACC software controller can contribute to. The
evaluation of STPA SwISs substantiates that: 1) the STPA-based analysis approach
help us to identify the hazardous situations of the ACC software controller at
the system level and develop detailed software safety requirements; 2) and
it help us to transform the informal software safety requirements into formal
specification in LTL to be used for the verification purpose.

To investigate research question RQ-2, the results reveal that we could generate
180 safety-based test cases from the results of research question RQ-1. All
software safety requirements which are identified in step 1 are covered in at least
one safety-test case. We obtained 100% for the Software Safety Requirements
(SSR) coverage in the generated safety-based test case. That means we can test
the ACC system against each software safety requirements with different test
cases to measure the safety of the whole system. Deriving test cases directly
from the safety analysis results allows us to focus the testing effort to test the
critical risky situations. We were able only to execute 20 out of 180 safety-based
test cases, however, we could recognize different situations of ACC software
behaviors.

As a limitation, we could only execute a few generated safety-based test cases.
Furthermore, we were not able to test some of the test scenarios to recognize
some of the unsafe behaviors such as a bicycle moving in front of the ACC vehicle
in the lane or a small stationary obstacle in the lane.
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Table 7.19.: A summary of the case study results

ID Item Total. No

1 System Level Accidents 6

2 System level Hazards 9

3 Unsafe control actions 21

4 Corresponding software safety constraints 21

5 Refined unsafe control actions 86

6 Refined software safety constraints 86

7 Causal factors 123

8 Generated LTL formulae 86

9 Generated test cases 230

10 Safety-based test cases 180

7.3. Industrial Case Study on Continental’s Fully Automated Vehicle

The content of this section has been presented at the 4th European STAMP
Workshop and published at Procedia Engineering Journal [Abd+16].

7.3.1. Case Study Description

Fully automated vehicles represent a major innovation in the automotive industry
which will replace driver tasks by software functions to make traffic more com-
fortable. Ensuring the safety of the fully automated vehicles is a big challenge.
However, demands on fully automated driving vehicles, like a fail operational
and nominative performance, are not covered by the current automotive safety
standards like ISO 26262 (Road Vehicle–Functional Safety)[ISOv ] is an interna-
tional functional safety standard that provides guidance, recommendation and
argumentation for a safety-driven-product development in the automotive area.
Safety classification and suggestions for specific safety development processes
may aid to stipulate functional safety for each new product as state-of-the-art.
These standards were not established for fully automated vehicles.
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Figure 7.13.: A Fully Automated Driving Vehicle

Nowadays, innovations in software and technology lead to increasingly com-
plex automotive systems such as self-parking vehicles, the use of smartphones
to park vehicles and more recently fully automated driving vehicles. As a new
technology, the fully automated driving vehicles may bring a new safety risk
and threats to our society which have to be controlled during their development.
Hence, the safety analysis becomes a great challenge in the development of
safety-critical systems. In the past, failures of the automotive systems beyond
separate component malfunction like interface problems led to safety issues. The
automotive industry started to pay attention to the functional safety of vehicle
electronic control systems and to have safety standards to address the growing
complexity of its systems.
To explore the application of the STPA SwISs approach with complex soft-

ware system, we applied STPA SwISs to the fully automated vehicle project
at Continental to derive the software safety requirements and provide design
recommendations to engineers to help them in assessing the fully automated
driving architecture. This case study is conducted in the form of an industrial
cooperation between the Institute of Software Technology at the University of
Stuttgart and Continental to develop a safe architecture design for the current
autonomous vehicles at Continental.
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7.3.2. Fully Automated Vehicle

A fully automated vehicle (Figure 7.13) is highly reliant on software and ve-
hicular networks to autonomously steer a vehicle on the road. Moreover, semi-
automatic and fully automated driving system requires compliance with the
essential system features such as reliability, availability, security and safety. A
fully automated driving system (SAE Level 5)1 involves the act of navigating
the car without any input from the human driver through the use of sensing
the environment, performing and calculating a desired driving path (trajectory)
and sending the desired controls to the actuators. Therefore, the required com-
ponents for a fully automated driving system can be classified in three main
groups: 1) perception (sense), 2) Motion Planning (PLAN), 3) motion control ,
and 4) act. Figure 7.14 shows the functional architecture of the fully automated
vehicle, which is divided into the following parts:

Perception (Sense) Observation of the vehicle surroundings by various sen-
sors such as short and long-range radars, stereo cameras, mono cameras and
lidar systems. Raw sensor output is either preprocessed (e.g. filtering, compres-
sion, pre-interpretation) by the sensor itself or sent directly to a unit for further
processing. Data from different sources is merged by sensor fusion and inter-
preted, e.g. object recognition, traffic sign recognition, road and lane detection.
Data fusion increases the reliability of the perceived environment by combining
different sensor types. The environment model is an abstract representation of
the perceived environment that uses structured data types to model all relevant
elements. Localization of the ego vehicle is done by different means, e.g. GPS
(Global Positioning System), SLAM (Self Localization and Mapping), Odometry
and landmarks and lane markings. Ego position and motion are made available
for functions.

Motion Planning (PLAN) Based on the environment model and ego position
on the digital map, ego motion and mission goal (i.e. navigational instruction
where to go) of the vehicle’s desired trajectory is determined. The term Driv-
ing Strategy stands for higher-level behavior and maneuver planning (Driving

1
http://www.sae.org/misc/pdfs/automated_driving.pdf

166 7 | Empirical Validation



7.3 | Industrial Case Study on Continental’s Fully Automated Vehicle 7 | Empirical Validation

Figure 7.14.: Functional Architecture of the Fully Automated Vehicle at Conti-
nental [Abd+16]

Strategy). The resulting maneuvers are passed to trajectory planning which
calculates an optimal, collision free trajectory to follow the desired maneuver
reference. At the same time, the trajectory planner is a reactive layer, which
can deviate from the reference by the driving strategy to avoid collisions or
undesired vehicle states. During normal operation, the trajectory will follow
the reference but will react to unpredicted situations, e.g. quickly decelerates
when another car suddenly crosses the ego path unpredictably. The desired
trajectory is a vector of points in the state space (position, time and motion)
and represents the track that ego vehicle has to follow. The desired trajectory is
passed on motion control.
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Table 7.20.: Examples of the system level accidents

ID Accident

1 Fully automated vehicle lost the steering and crashed into an object
moving in front on highway.

2 Fully automated vehicle lost the steering and crashed into the ego
lane.

3 Fully automated vehicle made an accident while an object suddenly
is appeared in its lane in front.

4 Fully automated vehicle lost the steering/braking suddenly while
the vehicle moving up in the hill and made an accident.

5 Fully automated vehicle made an accident due to fake data of sensors
by an anonymous person.

6 Fully Automated driving vehicle made an accident due to loss the
communication signals with backend.

Motion Control: Motion control has the task to perform lateral and longitudi-
nal vehicle guidance along the desired trajectory. A longitudinal and a lateral
controller produce control outputs to the vehicle actuators in order to keep the
vehicle on the desired trajectory. Actuators heavily depend on vehicle type. For
traditional passenger cars, these are e.g. engine control unit, electric steering,
brake system and automatic transmission. The other vehicle types, e.g. robocabs
or electric vehicle have different higher level interfaces which accept motion or
steering commands and translate them into the corresponding suspension and
steering types.

ACT: In the ACT subsection, all actuators (e.g. brake system, steering system
and engine control) required for longitudinal and lateral movement, can be
summarized. The output of the motion controller provides the torque requests
for the actuators.
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Table 7.21.: Summary of the identified hazards at the architectural level
Hazard Category No. of Hazards Linked Accidents
Road Surface Detection 4 1–12, 16 –19
Object Detection 23 1–13, 15–20
Control Hazard 47 1, 2, 12,15, 24-26
Localisation & Mapping 8 1–21, 24-26
Environmental Model 34 1–13, 14–21
Decision Making 30 1–21
Data Communication 10 1–19, 21
Individual ECU Defect 5 1-19
Security Attacks 15 20-23
Total 176

7.3.3. Results

As the fully automated vehicle is a new project, we aimed to assess the architec-
ture design of the fully automated vehicle by applying the STPA SwISs approach
to the architectural design and specification to gain deep understanding of the
unsafe scenarios of the fully automated vehicle. We summarised the results of
applying STPA SwISs to the fully automated vehicle at the architectural level as
follows:

7.3.3.1. Safety Analysis of Fully Automated Driving System

At first, we established the fundamentals of the analysis by identifying the
system-level accidents and the associated hazards. As a result, we identified 26
system-level accidents which the fully automated driving can lead or contribute
to (shown in Table 7.20). For example, ACC1: Fully automated vehicle lost
the steering and crashed into an object moving in front on highway. Second,
we identified the associated hazards which can lead to these accidents. We
identified 176 hazards which are grouped into 9 categories (shown in Table
7.21). Table 7.22 shows examples of the system-level hazards. Next, we drew
the high-level control structure diagram of the fully automated driving system
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Table 7.22.: Examples of system level hazards

ID Hazards Category

1 The fully automated vehicle lost steering control
while there is snow and Ice on road.

HG1. Road Sur-
face Detection

2 The fully automated vehicle does not detect sings
and marking of change the speed or direction or
others.

HG.2 Object Detec-
tion

3 The fully automated vehicle provide a too high
acceleration signal.

HG3. Control Haz-
ard

4 The fully automated vehicle does not receive the
map location data.

HG4. Localization
& Mapping

5 The fully automated vehicle receive insufficient
Environmental Model data.

HG5. Environmen-
tal Model

6 The fully automated vehicle moves with no ma-
neuver planning

HG6. Decision
Making

at the architectural level (shown in Figure 7.15). The control structure diagram
includes: 1) the Fully automated Driving system (AD) as the main controller,
which compresses a set of software control systems; 2) the motion control as an
actuator; and 3) sense sensors (e.g. vehicle sensor, environmental model sensor,
localization sensor, etc.).
The fully automated driving system issued the trajectory to motion control

to steer the vehicle. The trajectory contains a time sequence of state-space
points with timestamp (date/time on which the vehicle is to pass through the
trajectory point), global x position (a position in the coordinate system), global
y position (a position in the coordinate system ), trangente/track angle (an
angle of the given point), curvature (the amount by which a geometric object
such as a surface deviates from being a flat plane or a curve), curvature rate
(curvature changes over time ), velocity (the speed of the vehicle for the given
trajectory point), acceleration (acceleration of the vehicle at the given trajectory
point), and jerk (the rate of change of acceleration; that is, the derivative of
acceleration with respect to time, and as such the second derivative of velocity,
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Figure 7.15.: The control structure diagram of the fully automated driving sys-
tem
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Table 7.23.: Examples of potentially unsafe control actions of the automated
driving function

Not providing
causes hazard

Providing causes
hazard

Wrong tim-
ing/order causes
hazard

Stopped
too soon/
applied
too long

UCA1.1. The AD
system does not
provide jerk infor-
mation while the
AD vehicle is ap-
proaching in the
lane and there is a
vehicle in the front.
[H-31, [H-54]

UCA1.2. The AD
function provides
incorrect data
of jerk (rate of
change of acceler-
ation) while the
AD vehicle in a
critical situation.
[H-31,H-46, H-
55]

The AD function
provides the jerk
data too late while
the AD vehicle is
approaching in a
critical situation
Not Hazardous

N/A

UCA1.3. The AD
system does not
provide the veloc-
ity at the given tra-
jectory point while
AD vehicle is mov-
ing too fast. [H-
32, H-33, H-49]

The AD function
provides incorrect
velocity at the
given trajectory
point when the AD
vehicle is moving
too fast. [Not
Hazardous]

UCA1.4. The AD
function provides
the velocity too
late while the AD
vehicle is moving
in the lane [H-54,
H-56]

N/A

or the third derivative of position).
We evaluated each of these control actions to check whether or not they lead

to hazardous events. We identified 29 unsafe control actions. For example,
the unsafe control action UCA-1: The fully automated driving system does not
provide a valid trajectory to motion control while the automated driving vehicle
is approaching too fast in the lane, Hazard Category: control hazards. This
unsafe control action can lead to the control hazard category (e.g. loss of steering
or braking or acceleration). Table 7.23 shows examples of the potentially unsafe
control actions of the automated driving system.
We translated each hazardous control actions into a corresponding safety
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Table 7.24.: Examples of corresponding software safety constraints at system
level

UCA ID ID Corresponding Safety Constraints

UCA1.1 SR1.1 The AD vehicle must always provide jerk to mo-
tion control while the vehicle is moving.

UCA1.2 SR1.2 The AD vehicle must not provide the value of
jerk out of the range data.

UCA1.3 SR1.3 The AD vehicle must provide always the velocity
of the vehicle at the given trajectory.

UCA1.4 SR1.4 The AD vehicle shall provide the value of velocity
on time to the motion control while AD vehicle
is moving.

requirement such as SR-1: The automated driving system must always provide a
trajectory to motion control.

To refined the unsafe control actions, we identified the process model variables
of the fully automated driving system (shown in Figure. 7.16) at this level. The
fully automated driving function has 9 process model variables such as:

• Road type with values: road change, parking, intersection, city, mountain,
highway, urban or work area.

• Detection objectswith values: none, obstacle, pedestrian, person, animal,
lane, vehicle, motorcycle, bicycle, or road construction.

• current velocity with values: == 0, > 0, < 240, or unknown.

• Road map: received, not received or unknown.

• Backend status with values: connected or disconnected, or unknown.

• Location data with values: received, not received, or unknown.

• Environment with values: flat-road, bi-directions road, hill road, curved
road , or non-flat road.

• Vehicle status with values: stop, move, park, wait or unknown.

7.3 | Industrial Case Study on Continental’s Fully Automated Vehicle 173



7.3 | Industrial Case Study on Continental’s Fully Automated Vehicle 7 | Empirical Validation

Figure 7.16.: The control structure diagram of the fully automated driving sys-
tem with process model variables
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Table 7.25.: Examples of refined software safety constraints based on process
model variables

RUCA ID Refined Software Safety Constraints LTL

RUCA1.1 RSSR1.1 The acceleration command must not be
provided anytime when environment is Bi-
directions road and current velocity is greater
than 0 and RoadMap is NotReceived and De-
tectedObject is obstacle and weather is snow
and Location is unknown and Backend is con-
nected and road is RoadChang and Vehicle
Status is Move

LTL1.1

RUCA1.2 RSSR1.2 acceleration command must not be provided
too early when environment is Bi-directions
road and current Velocity is greater than 0
and RoadMap is NotReceived and Detecte-
dObjects is obstacle and weather is snow and
Location is unkonwn and backend is con-
nected and Road is RoadChang and Vehicle
Status is Move

LTL1.2

• Weather with values: normal, snow, fogy, heavy raining, tornado or un-
known.

We used XSTAMPP to generate the context tables, provide a minimal set of
combinations between the process model variables and refine unsafe control
actions. As a result, we identified 129 refined unsafe control actions which are
translated automatically into 129 software safety requirements. For example, a
refined unsafe control action RUCA-1.1 is: the AD system provided an acceleration
command while the vehicle is moving on highway and there is a traffic and the
roadmap data from the backend is unknown (missing). We used the result of this
step to refine the software safety requirements. Table 7.25 shows examples of
refined software safety requirements based on process model variables. We used
the result of this step to refine the software safety requirements.

We determined the causal scenarios (potential causes) for each unsafe control
action and its refined unsafe control actions to understand how each hazardous
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Table 7.26.: Examples of the causal scenarios of the unsafe control action UCA1.1

Unsafe Control Action (UCA1.1): The AD system does not provide jerk
information while the AD vehicle is approaching in the lane and there is a
vehicle in the front.

Refined Unsafe Control Action (RUCA) 1.1: The AD system does not
provide jerk information when the AD vehicle is approaching on high-
way, weather is snow, there is a vehicle in the front, and the backend is
connected.

ID Causal Scenarios Safety Constraints

SC.1 The AD system does not receive
an accurate data for accelera-
tion rate from the acceleration
sensor while the vehicle is mov-
ing on highway

The AD system shall receive the
acceleration rate data from the
acceleration sensor to calculate
an accurate value for the jerk
information

SC.2 The AD system issues wrong jerk
information vehicle to motion
controller at the given trajectory
point while the vehicle is mov-
ing on city.

The AD system shall receive ap-
propriate information which are
required to calculate the accu-
rate jerk information to avoid
the abrupt/suddenly accelera-
tion of the AD vehicle.

event could occur in the fully automated driving vehicle. For example, a causal
scenario of the unsafe control action UCA1.1 is CS.1: the AD system does not
receive the road map data from the backend while the vehicle is moving on highway.
Table 7.26 shows the examples of the causal scenarios for the unsafe control
action UCA1.1 The AD system does not provide jerk information while the AD
vehicle is approaching in the lane and there is a vehicle in the front.

7.3.3.2. Formalising Software Safety Requirements

We used XSTAMPP to automatically transform the refined software safety re-
quirements into formal specification in linear temporal logic to be used in the
verification activities. As a result, we transformed the 129 refined software
safety requirements into 129 LTL formulae.. Table 7.27 shows examples of the
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Table 7.27.: Examples of the corresponding LTL specifications of the software
safety requirements

ID LTL Formulas

RSSR1.1 G (((((Environment==Bi-directions road) &&(CurrentVelocity >
0) &&(RoadMap== NotReceived)&&(DetectedObject==none)
&& (Weather==snow) &&(Location==Unknown) &&
(Backend==connected) &&(Road==RoadChange) &&
(VehicleStatus==Move)))! (!((controlAction==acceleration)))))

RSSR1.2 G ((((controlAction== acceleration))! (((!((controlAction ==ac-
celeration)))U(((Environment== Bi-directions road)&&(Current
Velocity>0) && (RoadMap==NotReceived) && (DetectedOb-
jects ==none) &&(Weather==snow)&&(Location==Unknown)
&&(Backend==connected) &&(Road==RoadChange)&& (Vehicle
Status ==Move)))))))

LTL formulae of the refined software safety constraints.

7.3.4. Discussion

In this case study, we explored the application of the STPA SwISs approach
in identifying the unsafe scenarios for autonomous vehicles in complex envi-
ronments and deriving software safety requirements to evaluate the current
architectural design of the fully automated driving vehicles at Continental. The
results showed that STPA is a powerful hazard analysis technique which provides
a systematic guidance on deriving detailed safety requirements and develop
safety concepts. We also provided the formal specification of the STPA-generated
software safety requirements to be used in the formal verification activities of
the prototype of full automated vehicle at the design and implementation stages.
The results of this case study are used as an assessment report to developers
team of the fully automated vehicle at Continental to help them to evaluate
the architectural design of the new fully automated driving vehicle at an early
stage of the development process. The STPA SwISs is currently being used at
Continental to assess the current architecture of the fully automated driving
vehicle during the whole development process.
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7.4. Summary

We presented the empirical validation of the proposed approach. This chapter
presents three case studies which were conducted to illustrate and evaluate the
application of the STPA SwISs approach during the development process of a
new safe software and on the existing software system in the industry. On case
study was as a pilot case study to develop a simulator for an adaptive cruise
control system with Adaptive Cruise Control System with Stop-and-Go function
at our institute of software technology, software engineering group, university
of Stuttgart. The second case study was conducted on an existing software
system like Active Cruise Control System (ACC) with stop-and-go function at
BMW Group. The third case study was conducted to illustrate the application of
the proposed approach on more complex software system such as the current
project of fully automated driving of the self-driving vehicle at Continental.
The results from these case studies showed that the STPA SwISs approach is
effective, highly scalable and applicable in terms of identifying software safety
requirements, automatically transforming them into formal specification in LTL
and automatically verifying the software design and implementation against
them.
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8.1. Summary

This dissertation presents a comprehensive safety engineering approach based
on STPA called STPA for software-intensive systems (STPA SwISs). STPA SwISs
combines safety analysis, formal verification and Safety-based Testing activities
to develop safe software. STPA SwISs intends to demonstrate the application of
STPA to the software components in a system to derive detailed software safety
requirements, transform them into a formal specification in LTL and generate
safety-based test cases directly from the results of STPA safety analysis. The STPA
SwISs approach allows the software and safety engineers to work together during
the software development for safety-critical systems. Moreover, it highlights
the advantages of applying STPA to software at the system level to identify
potentially unsafe control actions of software and to derive the corresponding
safety requirements that prevent software to transition into a hazardous state.
The proposed approach is general and can be applied to any software; however,
because the software development process as described in the safety standard
ISO 26262 (Road vehicles functional safety) [ISOv ] is subdivided into sub-phases
according to the V-Model, we believe that our approach can especially be adapted
to be used in the context of this standard as a means to support the development
of safe automotive software or to evaluate existing automotive safety-critical
software.
We also provided some degree of automation to the STPA SwISs approach

activities. We also showed how to automatically transform the informal textual
safety requirements into formal specification in LTL to enable the verification
activities of the system against the STPA-generated safety requirements. We
also discussed how to model the STPA results (e.g. process model and the STPA-
generated safety requirements) in a suitable model to enable the generation
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safety-based test cases directly from the STPA safety analysis. We developed an
extensible STAMP platform called XSTAMPP as tool support designed specifi-
cally to serve the widespread adoption and use of STPA in different areas. We
implemented and provided the automation algorithms in the XSTAMPP safety
engineering tool to reduce the effort required to generate manually the context
tables, refine the unsafe control actions, generate unsafe software scenarios and
the software safety requirements and perform verification activities. To simplify
the verification and testing activities and reduce the required efforts, we linked
between the XSTAMPP safety engineering tool and the model checkers such as
NuSMV and SPIN. Furthermore, we developed a safety-based testing tool as an
Eclipse plug-in to automatically generate safety-based test cases directly from
the STPA results. The safety-based testing tool is integrated within XSTAMPP.

We also demonstrated the application of the proposed approach and the tool
support within three case studies: a pilot case study and two industrial case
studies based on the automotive software systems.

8.2. Lessons learned

In the following, we presented the lessons learned from the STPA SwISs and the
case studies which are presented in this dissertation:

• The work here shows that the STPA approach is very effective on real soft-
ware systems and applicable to the software component level by deriving
detailed software safety requirements at the system level.

• The STPA SwISs approach provides a concept on how to place STPA into
the software development process to identify the software safety require-
ments at the system level and verify software against the STPA-generated
software safety requirements at the design level and the implementation
phases to help the software and safety engineers to early recognize the
software risks.

• The manual writing of the formal specification of the informal textual
safety requirements for complex software systems can be impractical for
large systems and increases the time and effort required to write them. For
this issue, STPA SwISs shows how to automatically transform the informal
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software safety requirements into formal specification in LTL to directly
enable the verification activities with model checkers.

• Modeling the information derived during the safety analysis into the soft-
ware behavioral model is a big challenge, due to the different specifications
and notations of the safety analysis and the software behavior models. Fur-
thermore, they are usually documented and visualized by different tools.
The STPA SwISs approach tackles this issue and provides an algorithm
which explains in detail how to model the STPA results into the software
behavioral model and how to check the validation and correctness of the
software behavioral model against the information derived during the
safety analysis process.

• Typically, test engineers build a test model from the software specifica-
tion and use this model to generate test cases. However, the proof and
check of the correctness of this model remains a big challenge and time
consuming. Therefore, STPA SwISs provides an algorithm on how to
check the correctness of the safe test model which is constructed from
the safety analysis results by the safe test engineers. The idea here is to
automatically transform the safe test model into an SMV model. Then,
the safety engineers will use the SMV model as an input to the model
checker to verify its correctness and check whether it satisfies the STPA
safety analysis specification which are expressed into formal specification
in LTL.

• The complexity of systems makes the software verification activities diffi-
cult in practice. The formal verification approaches (e.g. model checker)
used in software design and development phase to mechanically prove
that the software meets its formal requirements. The formal verification
approaches can only prove the presence of the errors and not their absence.
However, not all the software errors can cause safety-critical issues. For
this issue, we developed and implemented an algorithm to enable the
verification activities of the software safety requirements derived during
safety analysis with the model checkers.

• The software model checkers do not easily scale up to larger-size software
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programs and they are limited in the types of errors they can find [Lev09].
In addition, the software testing is very expensive task in the software
development process, typically it takes more than 50% of the development
time and requires large effort [UL07]. Furthermore, it is difficult to test
software completely. Thus, the STPA SwISs approach uses the concept of
combining the model checking and testing approaches for testing purpose
to verify the software against its software safety requirements instead
testing all software behaviors. The idea behind that is to generate safety-
based test cases for each STPA-generated software safety requirement to
focus the testing effort in a special way to test only the highly dangerous
software scenarios which are derived during the STPA safety analysis. This,
in turn, shall reduce the required time of testing and help the software
and safety engineers to reduce the associated software risks to a lower
level.

• The safety-based test cases which are automatically generated from the
STPA safety analysis results help us to test the software system against
each software safety requirement at the system level. We also believe
that the safety-based test cases can help software and safety engineers
to test their software components at the system level and recognize the
dangerous behavior early in the development process of the safety-critical
systems.

8.3. Limitations

In the following, we presented the limitations of the STPA SwISs approach:

• The STPA Step 2 (causal factor analysis) aims to identify accident scenarios
that explain how unsafe control actions might occur and how safe control
actions might not be followed or executed. Moreover, this step helps
in identifying non-trivial safety requirements which are not addressed
in the STPA Step 1 (identify Unsafe Control Actions) by analysing the
control loop parts. In this step, the safety analyst uses the classification of
control flaws leading to hazards (e.g. unsafe control algorithms or unsafe
input higher, incorrect process model implementation, etc.) to identify
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the accident causes for each unsafe control action and develop a detailed
informal safety requirements. This step stills need a formal procedure on
how to document the accident scenarios based on the results of the STPA
step 1 (e.g. unsafe control actions) and the process model variables to
easily transform them into formal specification. Therefore, our approach
does not transform the results of STPA Step 2 into formal specifications.
There are still manual interventions required in this step to be performed
by safety and software engineers to manually transform the STPA Step 2
results into formal specification in LTL/CTL.

• Constructing a safe behavioral model from the STPA safety results by
safety test engineers depends on the level of information which is handled
during the STPA safety analysis process (e.g. process model, and process
model variables and values) by safety analyst and how this information
describes the software states, interaction and environmental variables
which have an effect on the safety of providing the control action by a
software controller in the control structure diagram. Furthermore, visual-
izing the safe behavioral model in Simulink editor requires user expertise
in the modeling dynamic behavior to map the safety analysis specification
into the Simulink Stateflow specification. Therefore, this point remains
as a future work to automatically provide a basic structure of the safe
behavioral model from the process model information (e.g. states and
its hierarchical levels) which is visualized in XSTAMPP. This will help the
safety tester to understand the relationship between the critical system
states, environmental and interaction variables which are documented
in the process model of the software controller in the control structure
diagram.

• Applying STPA SwISs to an existing software system requires that the
safety analyst has to first look to the software controller specification (e.g.
safety-critical control actions, critical states, and safety-critical variables)
to use them to document the process model variables of the software
controller in the control structure diagram to reduce the time and effort
to correct and verify the safe behavioral model with model checkers.
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8.4. Future Work

There are still many interesting directions and trends to extend this work which
are described as follows:

8.4.1. Using STPA and STPA SwISs in Compliance with ISO 26262

The main scope of ISO 26262 is to avoid E/E failures. It provides a safety life
cycle and stipulates a new functional safety procedure for each new system.
ISO 26262 is well regarded by industry and is seen as necessary. The current ISO
26262 document does not mandate the use of specific techniques or methods for
safety analysis during the concept phase. It also neither mandates any hazard
analysis technique nor gives concrete guidance on how to identify and classify
hazards in systems. Reliability analysis approaches such as Fault Tree Analysis
(FTA), Failure Mode and Effects Analysis (FMEA) and Hazard and Operability
Analysis (HAZOP) are being used for this purpose in the most recent ISO 26262
applications to identify and eliminate hazards. However, these techniques have
limitations in identifying hazards in complex systems. Accordingly, there is
a need for investigating the effectiveness of other hazard analysis techniques
which include more types of hazardous causes such as STPA (System-Theoretic
Process Analysis) that can provide more effective guidance on how to identify
and eliminate hazards in the design for developing safe systems. We believe that
STPA can be used as a hazard analysis in the ISO 26262-part 3, concept phase
to identify hazards in the design and develop the functional safety concept.

Furthermore, STPA SwISs is an STPA-based approach for software safety. It is
general, which can be applied to any software; however, because the software
development process as described in the safety standard ISO 26262 is subdivided
into sub-phases according to the V-Model, we believe that our approach can
especially be adapted to be used in the context of this standard as a mean to
support the development of safe automotive software or to evaluate existing
automotive safety-critical software.
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8.4.2. Visualization of the STPA Results

STPA uses a control structure diagram to visualize the main components of the
system (e.g., controllers, actuators, controlled Processes, and Sensors). Each
controller in the control structure diagram must contain a model of the assumed
state of the controlled process, called the process model [Lev11]. STPA SwISs
shows how to automatically generate the unsafe scenarios based on the process
model variables. Furthermore, the STPA SwISs approach introduces a model
called safe behavioral model which is directly constructed from the STPA results.
This model is used to automatically generate the safety-based test cases. Thus,
we found a research potential resulting from our work to visualize the STPA-
generated unsafe scenarios and execute them on this model to help the safety
analyst to understand how the system will violate the safety constraints.

8.4.3. Using STPA SwISs Results for Auto Safe Code Generation

STPA SwISs shows how to generate the safe behavioral model from the STPA
results (e.g. control structure diagram, process model and safety constraints).
This model is transformed to the verification model to enable the verification
activities and generate safety-based test cases for each STPA-generated safety
constraints. The model is visualized in the Simulink Stateflow editor which
provides a feature to automatically generate the corresponding code in the C
programming language. However, this editor is a commercial tool. Therefore,
there is a potential to develop a systematic approach and an open source tool
based on the concept of STPA SwISs and its tool support to automate generating
safe code directly from the results of the STPA safety analysis. That will help
the safety and software engineers to provide a prototype of their thoughts at an
earlier stage of the development process of a safe software.

8.4.4. New Improvements to the Tool Support

As a future work, we plan to improve the tool support by considering the
other Stateflow semantics which were not addressed in our approach such
as the inner transitions and connection and the history junction transitions.
Furthermore, we plan to improve the process model in the control structure
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diagram by allowing the safety analyst to define the data type of each process
model variable and draw the multi-hierarchy levels of the process model variables.
In the automotive domain, the system architecture is normally created in an
architecture tool (e.g. Rhapsody1, Enterprise Architect2, and PREEvision3). The
creation of the functional safety concept includes the mapping of the functional
safety requirements to an architectural element. To assign the functional safety
requirements to an architectural element, the requirements are exchanged by the
standard exchange interface “RIF” between DOORS 4 and PREEvision. Within
the PREEvision the requirements are then allocated to the architectural elements.
Therefore, we plan to link between XSTAMPP with the architectural tool such as
PREEVision to link the results of STPA safety analysis directly to the architectural
element.
.

1
http://www-03.ibm.com/software/products/en/ratirhapfami

2
http://www.sparxsystems.com/products/ea/

3
http://vector.com/vi_preevision_en.html

4
http://www-03.ibm.com/software/products/en/ratidoor
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Figure A.1.: The Simulator of ACC system with Stop-and-Go function

A.1. The C Code of the ACC Simulator

1 //**************************************
2 //ACCwithstopandGoSimulator.c
3 //���������������
4 //We created this program in C and tested with Lego mindstrom EV3
5 //*************************************
6 //��������������
7 #include <stdio.h>
8 #include <stdlib.h>
9 #include <unistd.h>
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10 #include <string.h>
11 #include <math.h>
12 #include <time.h>
13 #include <stdbool.h>
14

15 #define accoff (1)
16 #define standby (2)
17 #define resume (3)
18 #define cruise (4)
19 #define follow (5)
20 #define stop (6)
21 #define accelerate (1)
22 #define decelerate (2)
23 #define fullystop (3)
24 #define keepspeed (4)
25 #define unknown (5)
26 //***************************************
27 // GLOBAL VARIABLES
28

29 double d_frontspeed = 15.458; //20.3194;
30 double d_currentspeed = 0;
31 double d_safedistance = 20;
32 double d_frontdistance = �1;
33 int frontspeed = 15; //20.3194;
34 int currentspeed = 0;
35 int safedistance = 20;
36 int frontdistance = �1;
37 int states = accoff;
38 int controlAction=unknown;
39 int decelerationratio = 2;
40 int accelerationratio = 4;
41 double d_initialspeed = 1;
42 double d_desiredspeed = 20.416; //25.1805; // Deg/s (40% of max speed)
43 double d_deltaX;
44 double d_minimumSpeed = 1.22;
45 double d_timeGap = 0.3;
46 double d_temp;
47 double d_safetyTimeGap = 0.9;
48 int initialspeed = 1;
49 int desiredspeed = 20; //25.1805; // Deg/s (40% of max speed)
50 int deltaX;
51 int minimumSpeed = 1;
52 int timeGap = 0;
53 int temp;
54 int safetyTimeGap = 1;
55 \\*****************************
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56

57 void calcTimeGap() {
58 if (d_currentspeed > 0) {
59 d_timeGap = (d_frontdistance/d_currentspeed);
60 } else {
61 d_timeGap = 0;
62 }
63 timeGap = (int)floor(d_timeGap);
64 }
65

66 void accelerate_f() {
67 if (states != cruise && states != resume){
68 d_currentspeed += calPID(sqrt( fabs(
69 (d_currentspeed * d_currentspeed) + 2 * fabs((d_deltaX + d_safetyTimeGap) � d_timeGap

)))�d_currentspeed);
70 } else {
71 d_currentspeed = d_currentspeed;
72 }
73 if (states == resume) {
74 d_currentspeed += accelerationratio;
75 }
76

77 if (d_currentspeed > d_desiredspeed) {
78 d_currentspeed = d_desiredspeed;
79 }
80 currentspeed = (int)d_currentspeed;
81 }
82 void decelerate_f() {
83 d_currentspeed �= calPID(sqrt( fabs(
84 (d_currentspeed * d_currentspeed) + 2.7 * fabs(d_deltaX + d_safetyTimeGap � d_timeGap

)))�d_currentspeed);
85 if (d_currentspeed <= 0) {
86 d_currentspeed = 0;
87 } else if (d_currentspeed > d_desiredspeed) {
88 d_currentspeed = d_desiredspeed;
89 }
90 currentspeed = (int)floor(d_currentspeed);
91 }
92 void goMove(){
93 if (states != follow) {
94 accelerate_f();
95 if (states == stop) {
96 d_currentspeed = 0;
97 currentspeed = (int)floor(d_currentspeed);
98 }
99 } else if (states == follow) {
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100 decelerate_f();
101 }
102 (int)((d_currentspeed/17.593)*360);
103 }
104 int GetSonarRawValue()
105 {
106 r = (rand() % 250);
107 return r;
108 }
109

110 int main()
111 {
112 states = standby;
113 controlAction=unknown;
114 d_currentspeed = d_initialspeed;
115 currentspeed = (int)floor(d_currentspeed);
116 int i = 1;
117 while(i < 300)
118 {
119 d_frontdistance = GetSonarRawValue();
120 frontdistance = (int)floor(d_frontdistance);
121 if (d_frontdistance <= �1) {
122 d_frontdistance = 250;
123 frontdistance = (int)floor(d_frontdistance);
124 }
125 calcTimeGap();
126 d_deltaX = 0.5+sqrt(d_timeGap);
127 deltaX = (int)floor(d_deltaX);
128 if (deltaX < 0) {
129 d_deltaX = 0;
130 deltaX = 0;
131 } else if (deltaX > 10) {
132 d_deltaX = 10;
133 deltaX = 10;
134 } }
135 if (states == standby) {
136 if (d_currentspeed > d_minimumSpeed) {
137 states = resume;
138 controlAction=accelerate;
139 }
140 } else if (states == resume) {
141 if (d_timeGap < (d_deltaX + d_safetyTimeGap) && d_timeGap != 0) {
142 states = follow;
143 controlAction=decelerate;
144 } else if (d_currentspeed == d_desiredspeed && d_timeGap > d_safetyTimeGap) {
145 states = cruise;
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146 controlAction=keepspeed;
147 } else if (d_timeGap == 0) {
148 states = stop;
149 controlAction=fullystop;
150 } else if (d_currentspeed < d_desiredspeed && d_timeGap > d_safetyTimeGap) {
151 states = resume;
152 controlAction=accelerate;
153 }
154 } else if (states == cruise) {
155 if (d_timeGap > (d_deltaX + d_safetyTimeGap) && d_currentspeed == d_desiredspeed) {
156 states = cruise;
157 controlAction=keepspeed;
158 } else if (d_timeGap < (d_deltaX + d_safetyTimeGap)) {
159 states = follow;
160 controlAction=decelerate;
161 } else if (d_currentspeed < d_desiredspeed && d_timeGap > (d_deltaX + d_safetyTimeGap

)) {
162 states = resume;
163 controlAction=accelerate;
164 }
165 } else if (states == follow) {
166 if (d_timeGap > (d_deltaX + d_safetyTimeGap) && d_frontdistance > 10) {
167 states = resume;
168 controlAction=accelerate;
169 } else if (d_timeGap <= d_safetyTimeGap && d_frontdistance < 10) {
170 states = stop;
171 controlAction=fullystop;
172 }
173 } else if (states == stop) {
174 if (d_timeGap > d_safetyTimeGap || d_frontdistance > 10) {
175 states = resume;
176 controlAction=accelerate; }
177 }
178 goMove();
179 return 0;
180 }
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A.2. The SMV Model of ACC Simulator

1 ��#############################################
2 ��This model is automtically generated by STPA TCGenerator tool which is developed by

Asim Abdulkhaleq, Stefan Wagner
3 ��University of Stuttgart, Institute of Software Technology, Germany
4 ��Copyright (c) 2016, at Institute of Software Technology, Software Engineering Group

�2016
5 ��Date/Time:2016/02/16 17:57:08
6

7 ��#############################################
8

9

10 MODULE Sub_ControlSpeed(Power,currentspeed,desriedspeedIn,timeGap,deltaX,
minimumSpeed,safetyTimeGap,frontdistance,controlAction,initialspeed,
accelerationratio,frontdistance_in,Ignited,desiredspeed)

11 VAR
12

13 states: {resume ,cruise ,follow ,stop };
14 ASSIGN
15

16 init (states):=resume;
17

18 next (states):=case
19 TRUE:{resume};
20 states=resume & (currentspeed < desiredspeed & timeGap > safetyTimeGap) : resume;
21 states=cruise & (timeGap > (deltaX + safetyTimeGap) & currentspeed = desiredspeed) :

cruise;
22 states=cruise & (currentspeed < desiredspeed & timeGap > (deltaX + safetyTimeGap)) :

resume;
23 states=resume & (currentspeed = desiredspeed & timeGap > safetyTimeGap) : cruise;
24 states=follow & (timeGap > (deltaX + safetyTimeGap) & frontdistance > 10) : resume;
25 states=cruise & (timeGap < (deltaX + safetyTimeGap)) : follow;
26 states=stop & (timeGap > safetyTimeGap | frontdistance > 10) : resume;
27 states=resume & (timeGap = 0) : stop;
28 states=resume & (timeGap < (deltaX + safetyTimeGap) & timeGap != 0) : follow;
29 states=follow & ((timeGap <= safetyTimeGap & frontdistance < 10 )) : stop;
30 TRUE: {resume ,cruise ,follow ,stop };
31 esac;
32

33 MODULE Sub_ACCActive(Power,currentspeed,desriedspeedIn,timeGap,deltaX,
minimumSpeed,safetyTimeGap,frontdistance,controlAction,initialspeed,
accelerationratio,frontdistance_in,Ignited,desiredspeed)

34 VAR
35
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36 ControlSpeed:Sub_ControlSpeed(Power,currentspeed,desriedspeedIn,timeGap,deltaX,
minimumSpeed,safetyTimeGap,frontdistance,controlAction,initialspeed,
accelerationratio,frontdistance_in,Ignited,desiredspeed);

37

38 states: {ControlSpeed ,ReadSensorData };
39 ASSIGN
40 init (states):=ReadSensorData;
41 MODULE Sub_ACCOn(Power,currentspeed,desriedspeedIn,timeGap,deltaX,minimumSpeed

,safetyTimeGap,frontdistance,controlAction,initialspeed,accelerationratio,
frontdistance_in,Ignited,desiredspeed)

42 VAR
43 ACCActive:Sub_ACCActive(Power,currentspeed,desriedspeedIn,timeGap,deltaX,

minimumSpeed,safetyTimeGap,frontdistance,controlAction,initialspeed,
accelerationratio,frontdistance_in,Ignited,desiredspeed);

44 states: {ACCActive ,standby };
45 ASSIGN
46 init (states):=ACCActive;
47 next (states):=case
48 TRUE:{standby};
49 states=standby & (currentspeed<minimumSpeed) : standby;
50 states=standby & (currentspeed>minimumSpeed) : ACCActive;
51 states=ACCActive & (currentspeed< minimumSpeed) : standby;
52 TRUE: {ACCActive ,standby };
53 esac;
54

55 MODULE main
56 VAR
57 Power: boolean;
58 currentspeed: 0..10 ;
59 desriedspeedIn: 0..10 ;
60 timeGap: 0..10 ;
61 deltaX: 0..10 ;
62 minimumSpeed: 0..10 ;
63 safetyTimeGap: 0..10 ;
64 frontdistance: 0..10 ;
65 controlAction:{fullystop,accelerate,decelerate};
66 initialspeed: 0..10 ;
67 accelerationratio: 0..10 ;
68 frontdistance_in: 0..10 ;
69 Ignited: boolean;
70 desiredspeed: 0..10 ;
71

72 ACCOn:Sub_ACCOn(Power,currentspeed,desriedspeedIn,timeGap,deltaX,minimumSpeed,
safetyTimeGap,frontdistance,controlAction,initialspeed,accelerationratio,
frontdistance_in,Ignited,desiredspeed);

73
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74 states: {ACCOff ,ACCOn };
75 ASSIGN
76 init (states):=ACCOff;
77 init (Power) := FALSE ;
78 init (currentspeed) := 0 ;
79 init (desriedspeedIn) := 0 ;
80 init (timeGap) := 0 ;
81 init (deltaX) := 0 ;
82 init (minimumSpeed) := 0 ;
83 init (safetyTimeGap) := 0 ;
84 init (frontdistance) := 0 ;
85 init (initialspeed) := 0 ;
86 init (accelerationratio) := 0 ;
87 init (frontdistance_in) := 0 ;
88 init (Ignited) := FALSE ;
89 init (desiredspeed) := 0 ;
90

91 next (Ignited ):=case
92 states =ACCOff :Power;
93 states =ACCOff :Power;
94 TRUE:Ignited;
95 esac;
96 next (accelerationratio ):=case
97 states =standby : 4;
98 states =standby : 4;
99 TRUE:accelerationratio;

100 esac;
101 next (minimumSpeed ):=case
102 states =standby :2;
103 states =standby :2;
104 TRUE:minimumSpeed;
105 esac;
106 next (desiredspeed ):=case
107 states =standby :desriedspeedIn;
108 states =standby :desriedspeedIn;
109 TRUE:desiredspeed;
110 esac;
111 next (safetyTimeGap ):=case
112 states =standby :2;
113 states =standby :2;
114 TRUE:safetyTimeGap;
115 esac;
116 next (currentspeed ):=case
117 states =standby : initialspeed;
118 states =resume : currentspeed + 4;
119 states =cruise : desiredspeed;
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120 states =follow : currentspeed �1;
121 states =stop :0;
122 states =resume : currentspeed + 4;
123 states =cruise : desiredspeed;
124 states =follow : currentspeed �1;
125 states =stop :0;
126 states =standby : initialspeed;
127 TRUE:currentspeed;
128 esac;
129 next (frontdistance ):=case
130 states =ReadSensorData : frontdistance_in ;
131 states =ReadSensorData : frontdistance_in ;
132 TRUE:frontdistance;
133 esac;
134 next (controlAction ):=case
135 states =resume :accelerate;
136 states =follow :decelerate;
137 states =stop :fullystop;
138 states =resume :accelerate;
139 states =follow :decelerate;
140 states =stop :fullystop;
141 TRUE:controlAction;
142 esac;
143 next (timeGap ):=case
144 states =resume & frontdistance > 0 : currentspeed/frontdistance;
145 states =resume & frontdistance > 0 : currentspeed/frontdistance;
146 TRUE:timeGap;
147 esac;
148 next (deltaX ):=case
149 states =resume & 4 > 0 : 1+ timeGap/4;
150 states =resume & 4 > 0 : 1+ timeGap/4;
151 TRUE:deltaX;
152 esac;
153 next (states):=case
154 TRUE:{ACCOff};
155 states=ACCOff & (Ignited) : ACCOn;
156 states=ACCOn & (!Ignited) : ACCOff;
157 TRUE: {ACCOff ,ACCOn };
158 esac;
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A.3. The Promela Model of ACC Source Code

1 // Generated by MODEX Version 2.8 � 20 February 2015 by Asim Abdulkhaleq
2 // Sat Apr 16 15:02:24 2016 from ACCSimulator.c
3

4 #define accoff (1)
5 #define standby (2)
6 #define resume (3)
7 #define cruise (4)
8 #define follow (5)
9 #define stop (6)

10 #define accelerate (1)
11 #define decelerate (2)
12 #define fullystop (3)
13 #define keepspeed (4)
14 #define unknown (5)
15

16 c_state "long res_p_main" "Global"
17 bool lck_p_main_ret;
18 bool lck_p_main;
19 c_state "long res_p_GetSonarRawValue" "Global"
20 bool lck_p_GetSonarRawValue_ret;
21 bool lck_p_GetSonarRawValue;
22 c_state "long res_p_goMove" "Global"
23 bool lck_p_goMove_ret;
24 bool lck_p_goMove;
25 c_state "long res_p_decelerate_f" "Global"
26 bool lck_p_decelerate_f_ret;
27 bool lck_p_decelerate_f;
28 c_state "long res_p_accelerate_f" "Global"
29 bool lck_p_accelerate_f_ret;
30 bool lck_p_accelerate_f;
31 c_state "long res_p_calcTimeGap" "Global"
32 bool lck_p_calcTimeGap_ret;
33 bool lck_p_calcTimeGap;
34 c_state "double par0_calPID" "Global"
35 c_state "long res_p_calPID" "Global"
36 bool lck_p_calPID_ret;
37 bool lck_p_calPID;
38 int r;
39 c_state "double kd " "Global" "0.1"
40 c_state "double ki " "Global" "0.1"
41 c_state "double kp " "Global" "0.1"
42 c_state "double output" "Global"
43 c_state "double preverror " "Global" "0"
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44 c_state "double error" "Global"
45 c_state "double minvalue " "Global" "0"
46 c_state "double maxvalue " "Global" "200"
47 c_state "double deltatime " "Global" "0.01"
48 c_state "double derivativegain" "Global"
49 c_state "double integralgain " "Global" "0"
50 c_state "double epsilon " "Global" "0.01"
51 int safetyTimeGap = 1;
52 int temp;
53 int timeGap = 0;
54 int minimumSpeed = 1;
55 int deltaX;
56 int desiredspeed = 20;
57 int initialspeed = 1;
58 c_state "double d_safetyTimeGap " "Global" "0.9"
59 c_state "double d_temp" "Global"
60 c_state "double d_timeGap " "Global" "0.3"
61 c_state "double d_minimumSpeed " "Global" "1.22"
62 c_state "double d_deltaX" "Global"
63 c_state "double d_desiredspeed " "Global" "20.416"
64 c_state "double d_initialspeed " "Global" "1"
65 int accelerationratio = 4;
66 int decelerationratio = 2;
67 int controlAction = 5;
68 int states = 1;
69 int frontdistance = (�1);
70 int safedistance = 20;
71 int currentspeed = 0;
72 int frontspeed = 15;
73 c_state "double d_frontdistance " "Global" "(�1)"
74 c_state "double d_safedistance " "Global" "20"
75 c_state "double d_currentspeed " "Global" "0"
76 c_state "double d_frontspeed " "Global" "15.458"
77 chan ret_p_main = [1] of { pid };
78 chan exc_cll_p_main = [0] of { pid };
79 chan req_cll_p_main = [1] of { pid };
80 chan ret_p_GetSonarRawValue = [1] of { pid };
81 chan exc_cll_p_GetSonarRawValue = [0] of { pid };
82 chan req_cll_p_GetSonarRawValue = [1] of { pid };
83 chan ret_p_goMove = [1] of { pid };
84 chan exc_cll_p_goMove = [0] of { pid };
85 chan req_cll_p_goMove = [1] of { pid };
86 chan ret_p_decelerate_f = [1] of { pid };
87 chan exc_cll_p_decelerate_f = [0] of { pid };
88 chan req_cll_p_decelerate_f = [1] of { pid };
89 chan ret_p_accelerate_f = [1] of { pid };
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90 chan exc_cll_p_accelerate_f = [0] of { pid };
91 chan req_cll_p_accelerate_f = [1] of { pid };
92 chan ret_p_calcTimeGap = [1] of { pid };
93 chan exc_cll_p_calcTimeGap = [0] of { pid };
94 chan req_cll_p_calcTimeGap = [1] of { pid };
95 chan ret_p_calPID = [1] of { pid };
96 chan exc_cll_p_calPID = [0] of { pid };
97 chan req_cll_p_calPID = [1] of { pid };
98 c_state "double diff" "Local p_calPID"
99 active proctype p_calPID( )

100 {
101 pid lck_id;
102 endRestart:
103 atomic {
104 nempty(req_cll_p_calPID) && !lck_p_calPID �> lck_p_calPID = 1;
105 req_cll_p_calPID?lck_id; exc_cll_p_calPID?eval(lck_id);
106 c_code { Pp_calPID�>diff = now.par0_calPID; };
107 lck_p_calPID = 0;
108 };
109 c_code { now.error=Pp_calPID�>diff; };
110 if
111 :: c_expr { (now.error>now.epsilon) };
112 c_code { now.integralgain+=(now.error*now.deltatime); };
113 :: c_expr { !(now.error>now.epsilon) };
114 fi;
115 c_code { now.derivativegain+=((now.error�now.preverror)/now.deltatime); };
116 c_code { now.output=(((now.kp*now.error)+(now.ki*now.integralgain))+(now.kd*now.

derivativegain)); };
117 if
118 :: c_expr { (now.output>now.maxvalue) };
119 c_code { now.output=now.maxvalue; };
120 :: c_expr { !(now.output>now.maxvalue) };
121 if
122 :: c_expr { (now.output<now.minvalue) };
123 c_code { now.output=now.minvalue; };
124 :: c_expr { !(now.output<now.minvalue) };
125 fi;
126 fi;
127 c_code { now.preverror=now.error; };
128 c_code { now.d_temp=now.output; };
129 c_code { now.temp=(int )floor(now.d_temp); };
130 atomic { !lck_p_calPID_ret �> lck_p_calPID_ret = 1 };
131 c_code { now.res_p_calPID = (long) now.output; }; goto Return;
132 Return: skip;
133 ret_p_calPID!lck_id;
134 goto endRestart

208 A | ACC Simulator



A.3 | The Promela Model of ACC Source Code A | ACC Simulator

135 }
136 active proctype p_calcTimeGap()
137 {
138 pid lck_id;
139 endRestart:
140 atomic {
141 nempty(req_cll_p_calcTimeGap) && !lck_p_calcTimeGap �> lck_p_calcTimeGap = 1;
142 req_cll_p_calcTimeGap?lck_id; exc_cll_p_calcTimeGap?eval(lck_id);
143 lck_p_calcTimeGap = 0;
144 };
145 if
146 :: c_expr { (now.d_currentspeed>0) };
147 c_code { now.d_timeGap=(now.d_frontdistance/now.d_currentspeed); };
148 :: c_expr { !(now.d_currentspeed>0) };
149 c_code { now.d_timeGap=0; };
150 fi;
151 c_code { now.timeGap=(int )floor(now.d_timeGap); };
152 Return: skip;
153 ret_p_calcTimeGap!lck_id;
154 goto endRestart
155 }
156 active proctype p_accelerate_f()
157 {
158 pid lck_id;
159 endRestart:
160 atomic {
161 nempty(req_cll_p_accelerate_f) && !lck_p_accelerate_f �> lck_p_accelerate_f = 1;
162 req_cll_p_accelerate_f?lck_id; exc_cll_p_accelerate_f?eval(lck_id);
163 lck_p_accelerate_f = 0;
164 };
165 if
166 :: c_expr { ((now.states!=4)&&(now.states!=3)) };
167 atomic {
168 lck_p_calPID == 0 && empty(req_cll_p_calPID) �> req_cll_p_calPID!_pid;
169 c_code { now.par0_calPID = (sqrt(fabs(((now.d_currentspeed*now.d_currentspeed)+(2*

fabs(((now.d_deltaX+now.d_safetyTimeGap)�now.d_timeGap))))))�now.
d_currentspeed); };

170 exc_cll_p_calPID!_pid;
171 }
172 ret_p_calPID?eval(_pid);
173 c_code { now.d_currentspeed+= now.res_p_calPID; now.lck_p_calPID_ret = 0; };
174 :: c_expr { !((now.states!=4)&&(now.states!=3)) };
175 c_code { now.d_currentspeed=now.d_currentspeed; };
176 fi;
177 if
178 :: c_expr { (now.states==3) };

A.3 | The Promela Model of ACC Source Code 209



A.3 | The Promela Model of ACC Source Code A | ACC Simulator

179 c_code { now.d_currentspeed+=now.accelerationratio; };
180 :: c_expr { !(now.states==3) };
181 fi;
182 if
183 :: c_expr { (now.d_currentspeed>now.d_desiredspeed) };
184 c_code { now.d_currentspeed=now.d_desiredspeed; };
185 :: c_expr { !(now.d_currentspeed>now.d_desiredspeed) };
186 fi;
187 c_code { now.currentspeed=(int )now.d_currentspeed; };
188 Return: skip;
189 ret_p_accelerate_f!lck_id;
190 goto endRestart
191 }
192 active proctype p_decelerate_f()
193 {
194 pid lck_id;
195 endRestart:
196 atomic {
197 nempty(req_cll_p_decelerate_f) && !lck_p_decelerate_f �> lck_p_decelerate_f = 1;
198 req_cll_p_decelerate_f?lck_id; exc_cll_p_decelerate_f?eval(lck_id);
199 lck_p_decelerate_f = 0;
200 };
201 atomic {
202 lck_p_calPID == 0 && empty(req_cll_p_calPID) �> req_cll_p_calPID!_pid;
203 c_code { now.par0_calPID = (sqrt(fabs(((now.d_currentspeed*now.d_currentspeed)

+(2.7*fabs(((now.d_deltaX+now.d_safetyTimeGap)�now.d_timeGap))))))�now.
d_currentspeed); };

204 exc_cll_p_calPID!_pid;
205 }
206 ret_p_calPID?eval(_pid);
207 c_code { now.d_currentspeed�= now.res_p_calPID; now.lck_p_calPID_ret = 0; };
208 if
209 :: c_expr { (now.d_currentspeed<=0) };
210 c_code { now.d_currentspeed=0; };
211 :: c_expr { !(now.d_currentspeed<=0) };
212 if
213 :: c_expr { (now.d_currentspeed>now.d_desiredspeed) };
214 c_code { now.d_currentspeed=now.d_desiredspeed; };
215 :: c_expr { !(now.d_currentspeed>now.d_desiredspeed) };
216 fi;
217 fi;
218 c_code { now.currentspeed=(int )floor(now.d_currentspeed); };
219 Return: skip;
220 ret_p_decelerate_f!lck_id;
221 goto endRestart
222 }
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223 active proctype p_goMove()
224 {
225 pid lck_id;
226 endRestart:
227 atomic {
228 nempty(req_cll_p_goMove) && !lck_p_goMove �> lck_p_goMove = 1;
229 req_cll_p_goMove?lck_id; exc_cll_p_goMove?eval(lck_id);
230 lck_p_goMove = 0;
231 };
232 if
233 :: c_expr { (now.states!=5) };
234 atomic {
235 lck_p_accelerate_f == 0 && empty(req_cll_p_accelerate_f) �> req_cll_p_accelerate_f!

_pid;
236 exc_cll_p_accelerate_f!_pid;
237 }
238 ret_p_accelerate_f?eval(_pid);
239 c_code { ; now.lck_p_accelerate_f_ret = 0; };
240 if
241 :: c_expr { (now.states==6) };
242 c_code { now.d_currentspeed=0; };
243 c_code { now.currentspeed=(int )floor(now.d_currentspeed); };
244 :: c_expr { !(now.states==6) };
245 fi;
246 :: c_expr { !(now.states!=5) };
247 if
248 :: c_expr { (now.states==5) };
249 atomic {
250 lck_p_decelerate_f == 0 && empty(req_cll_p_decelerate_f) �> req_cll_p_decelerate_f!

_pid;
251 exc_cll_p_decelerate_f!_pid;
252 }
253 ret_p_decelerate_f?eval(_pid);
254 c_code { ; now.lck_p_decelerate_f_ret = 0; };
255 :: c_expr { !(now.states==5) };
256 fi;
257 fi;
258 Return: skip;
259 ret_p_goMove!lck_id;
260 goto endRestart
261 }
262 active proctype p_GetSonarRawValue()
263 {
264 pid lck_id;
265 endRestart:
266 atomic {
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267 nempty(req_cll_p_GetSonarRawValue) && !lck_p_GetSonarRawValue �>
lck_p_GetSonarRawValue = 1;

268 req_cll_p_GetSonarRawValue?lck_id; exc_cll_p_GetSonarRawValue?eval(lck_id);
269 lck_p_GetSonarRawValue = 0;
270 };
271 c_code { now.r=(rand()%250); };
272 atomic { !lck_p_GetSonarRawValue_ret �> lck_p_GetSonarRawValue_ret = 1 };
273 c_code { now.res_p_GetSonarRawValue = (long) now.r; }; goto Return;
274 Return: skip;
275 ret_p_GetSonarRawValue!lck_id;
276 goto endRestart
277 }
278 active proctype p_main()
279 {
280 int i = 1;
281 pid lck_id;
282 c_code { now.states=2; };
283 c_code { now.controlAction=5; };
284 c_code { now.d_currentspeed=now.d_initialspeed; };
285 c_code { now.currentspeed=(int )floor(now.d_currentspeed); };
286 L_0:
287 do
288 :: c_expr { (Pp_main�>i<300) };
289 atomic {
290 lck_p_GetSonarRawValue == 0 && empty(req_cll_p_GetSonarRawValue) �>

req_cll_p_GetSonarRawValue!_pid;
291 exc_cll_p_GetSonarRawValue!_pid;
292 }
293 ret_p_GetSonarRawValue?eval(_pid);
294 c_code { now.d_frontdistance= now.res_p_GetSonarRawValue; now.

lck_p_GetSonarRawValue_ret = 0; };
295 c_code { now.frontdistance=(int )floor(now.d_frontdistance); };
296 if
297 :: c_expr { (now.d_frontdistance<=(�1)) };
298 c_code { now.d_frontdistance=250; };
299 c_code { now.frontdistance=(int )floor(now.d_frontdistance); };
300 :: c_expr { !(now.d_frontdistance<=(�1)) };
301 fi;
302 atomic {
303 lck_p_calcTimeGap == 0 && empty(req_cll_p_calcTimeGap) �> req_cll_p_calcTimeGap!

_pid;
304 exc_cll_p_calcTimeGap!_pid;
305 }
306 ret_p_calcTimeGap?eval(_pid);
307 c_code { ; now.lck_p_calcTimeGap_ret = 0; };
308 c_code { now.d_deltaX=(0.5+sqrt(now.d_timeGap)); };
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309 c_code { now.deltaX=(int )floor(now.d_deltaX); };
310 if
311 :: c_expr { (now.deltaX<0) };
312 c_code { now.d_deltaX=0; };
313 c_code { now.deltaX=0; };
314 :: c_expr { !(now.deltaX<0) };
315 if
316 :: c_expr { (now.deltaX>10) };
317 c_code { now.d_deltaX=10; };
318 c_code { now.deltaX=10; };
319 :: c_expr { !(now.deltaX>10) };
320 fi;
321 fi;
322 if
323 :: c_expr { (now.states==2) };
324 if
325 :: c_expr { (now.d_currentspeed>now.d_minimumSpeed) };
326 c_code { now.states=3; };
327 c_code { now.controlAction=1; };
328 :: c_expr { !(now.d_currentspeed>now.d_minimumSpeed) };
329 fi;
330 :: c_expr { !(now.states==2) };
331 if
332 :: c_expr { (now.states==3) };
333 if
334 :: c_expr { ((now.d_timeGap<(now.d_deltaX+now.d_safetyTimeGap))&&(now.

d_timeGap!=0)) };
335 c_code { now.states=5; };
336 c_code { now.controlAction=2; };
337 :: c_expr { !((now.d_timeGap<(now.d_deltaX+now.d_safetyTimeGap))&&(now.

d_timeGap!=0)) };
338 if
339 :: c_expr { ((now.d_currentspeed==now.d_desiredspeed)&&(now.d_timeGap>now.

d_safetyTimeGap)) };
340 c_code { now.states=4; };
341 c_code { now.controlAction=4; };
342 :: c_expr { !((now.d_currentspeed==now.d_desiredspeed)&&(now.d_timeGap>now.

d_safetyTimeGap)) };
343 if
344 :: c_expr { (now.d_timeGap==0) };
345 c_code { now.states=6; };
346 c_code { now.controlAction=3; };
347 :: c_expr { !(now.d_timeGap==0) };
348 if
349 :: c_expr { ((now.d_currentspeed<now.d_desiredspeed)&&(now.d_timeGap>now.

d_safetyTimeGap)) };
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350 c_code { now.states=3; };
351 c_code { now.controlAction=1; };
352 :: c_expr { !((now.d_currentspeed<now.d_desiredspeed)&&(now.d_timeGap>now.

d_safetyTimeGap)) };
353 fi;
354 fi;
355 fi;
356 fi;
357 :: c_expr { !(now.states==3) };
358 if
359 :: c_expr { (now.states==4) };
360 if
361 :: c_expr { ((now.d_timeGap>(now.d_deltaX+now.d_safetyTimeGap))&&(now.

d_currentspeed==now.d_desiredspeed)) };
362 c_code { now.states=4; };
363 c_code { now.controlAction=4; };
364 :: c_expr { !((now.d_timeGap>(now.d_deltaX+now.d_safetyTimeGap))&&(now.

d_currentspeed==now.d_desiredspeed)) };
365 if
366 :: c_expr { (now.d_timeGap<(now.d_deltaX+now.d_safetyTimeGap)) };
367 c_code { now.states=5; };
368 c_code { now.controlAction=2; };
369 :: c_expr { !(now.d_timeGap<(now.d_deltaX+now.d_safetyTimeGap)) };
370 if
371 :: c_expr { ((now.d_currentspeed<now.d_desiredspeed)&&(now.d_timeGap>(now.

d_deltaX+now.d_safetyTimeGap))) };
372 c_code { now.states=3; };
373 c_code { now.controlAction=1; };
374 :: c_expr { !((now.d_currentspeed<now.d_desiredspeed)&&(now.d_timeGap>(now.

d_deltaX+now.d_safetyTimeGap))) };
375 fi;
376 fi;
377 fi;
378 :: c_expr { !(now.states==4) };
379 if
380 :: c_expr { (now.states==5) };
381 if
382 :: c_expr { ((now.d_timeGap>(now.d_deltaX+now.d_safetyTimeGap))&&(now.

d_frontdistance>10)) };
383 c_code { now.states=3; };
384 c_code { now.controlAction=1; };
385 :: c_expr { !((now.d_timeGap>(now.d_deltaX+now.d_safetyTimeGap))&&(now.

d_frontdistance>10)) };
386 if
387 :: c_expr { ((now.d_timeGap<=now.d_safetyTimeGap)&&(now.d_frontdistance<10)) };
388 c_code { now.states=6; };
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389 c_code { now.controlAction=3; };
390 :: c_expr { !((now.d_timeGap<=now.d_safetyTimeGap)&&(now.d_frontdistance<10)) };
391 fi;
392 fi;
393 :: c_expr { !(now.states==5) };
394 if
395 :: c_expr { (now.states==6) };
396 if
397 :: c_expr { ((now.d_timeGap>now.d_safetyTimeGap)||(now.d_frontdistance>10)) };
398 c_code { now.states=3; };
399 c_code { now.controlAction=1; };
400 :: c_expr { !((now.d_timeGap>now.d_safetyTimeGap)||(now.d_frontdistance>10)) };
401 fi;
402 :: c_expr { !(now.states==6) };
403 fi; fi; fi; fi;
404 fi;
405 atomic {
406 lck_p_goMove == 0 && empty(req_cll_p_goMove) �> req_cll_p_goMove!_pid;
407 exc_cll_p_goMove!_pid;
408 }
409 ret_p_goMove?eval(_pid);
410 c_code { ; now.lck_p_goMove_ret = 0; };
411 c_code { Printf("%i\n",Pp_main�>i); };
412 c_code { Pp_main�>i=(Pp_main�>i+1); };
413 goto L_0;
414 :: c_expr { !(Pp_main�>i<300) }; �> break
415 od;
416 atomic { !lck_p_main_ret �> lck_p_main_ret = 1 };
417 c_code { now.res_p_main = (long) 0; }; goto Return;
418 Return: skip;
419 }
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