
Höchstleistungsrechenzentrum
Universität Stuttgart
Prof. Dr.-Ing. Dr. h.c. Dr. h.c. M. Resch
Nobelstraße 19
70569 Stuttgart
Institut für Höchstleistungsrechnen

Ontology Matching in a
Distributed Environment

Von der Fakultät Energie-, Verfahrens- und

Biotechnik der Universität Stuttgart

zur Erlangung der Würde eines Doktor-Ingenieurs (Dr. - Ing.)

genehmigte Abhandlung

vorgelegt von

Axel Tenschert
aus Herford

Hauptberichter: Prof. Dr.-Ing. Dr. h.c. Dr. h.c. Michael Resch
Mitberichter: Prof. Dr.-Ing. Stefan Wesner
Tag der Einreichung: 20. Januar 2016
Tag der mündlichen Prüfung: 16. Dezember 2016

Höchstleistungsrechenzentrum Stuttgart
Universität Stuttgart

Dezember 2016

Danksagung

Der erfolgreiche Abschluss dieser Arbeit wurde ermöglicht durch viele Menschen, die
mich immer wieder unterstützten. All Jenen möchte ich an dieser Stelle meinen Dank
aussprechen.

Besonderer Dank gilt Professor Michael Resch, meinem Doktorvater, der mich zu
meiner Promotion ermutigte und diese ermöglichte. Des Weiteren möchte ich mich
bei meinem Mitberichterstatter Professor Stefan Wesner für die dauerhafte Unter-
stützung sowie die konstruktiven Gespräche bedanken, die mir stets eine große Hilfe
waren und mich motivierten meine Arbeit weiter voran zu bringen.

Meinen Arbeitskollegen danke ich für die angenehme Zusammenarbeit. Hierbei möchte
ich meinen Dank Lutz Schubert aussprechen, der mir besonders zu Beginn meiner
Promotion durch kritische Fragen die Möglichkeit gab, meine Themen ausführlich zu
diskutieren, so zum Beispiel im PhD Seminar. Weiterhin bedanke ich mich bei Bas-
tian Koller und Roland Kübert für die stetige Unterstützung während der Zeit meiner
Promotion.

Außerdem bedanke ich mich bei meinen Freunden für ihren steten Rückhalt. Sina
Rimpf danke ich für das Korrekturlesen. Darüber hinaus gilt mein besonderer Dank
meiner Familie, meinen Eltern, die auf meinem gesamten Lebensweg und insbeson-
dere während meiner Promotion immer zu mir standen und Rückhalt gaben.

Stuttgart, im Dezember 2016 Axel Tenschert

i

ii

Abstract

Nowadays, society, research and industries are faced with a continuously growing
amount of information available as structured or unstructured data presenting se-
mantic meanings. In the scope of this work, data structures based on semantic specifi-
cations are investigated concluding in an approach for receiving customized semantic
data related to a certain domain of interest. As ontologies, originally a philosophy dis-
cipline for identifying the fundamental structure of reality, are similar to interlinked
semantic data collections extended with rules. They are used for storing, updating
and utilizing semantic data. Such ontologies have already reached the barrier of bil-
lions of interlinked concepts, causing difficulties in terms of performance when try-
ing to execute queries. Computer sciences define an ontology as a conceptualization
of formal representations including interconnected concepts related to a certain do-
main. Through the matching of several ontologies relevant semantic data containing
information are identified or the validity of data structures is proven by matching it
to each other. Current ontology matching approaches are based on various matching
strategies being the base for several tools and frameworks. Hence, this work is based
on such strategies as well as latest ontology matching tools and frameworks.
This work investigated an enhanced ontology matching approach dealing with the
continuously growing amount of semantic data for generating facts related to a cer-
tain domain of interest. Thus, the processing of semantic data face the challenge of
allocating sufficient computing resources as well as for performing a content wise
sensible matching of needed data. Current approaches struggle with performance
and efficiency issues as soon as the semantic data reaches a high amount of data, e.g.
in August 2011 in the scope of the large triple store challenge [1], the loading and
querying of about one trillion Resource Description Framework (RDF) triples [2] was
processed. The execution took nearly 338 hours by an average rate of 829.556 RDF
triples per second running on 80 cores. In addition, the generation of precise match-
ing results needs to be considered. Current risks in the scope of matching semantic
data are the generation of false matching results due to an insufficient matching, not
accurate enough to receive high quality results, and an afterwards performed reason-
ing based on the matching results not suitable when thinking of big interlinked data
volumes. Additionally, a reasoning based on a corrupt data set generated by an in-
sufficient matching will produce wrong facts. Thus, the main question of this work
is how to bridge the gap between current matching approaches and large semantic
data stores by applying a semantic matching usable for reasoning on those big data
stores. Such a proceeding will manage the continuously growing immense amount
of data through a matching strategy and thus, providing an individually customized

iii

knowledge base containing domain specific information relevant for a given use case
scenario.
This work makes use of a semantic matching approach usable for ontologies by con-
sideration of similarity values combined with known graph based approaches in a
distributed environment. Hence, an ontology matching approach is developed per-
forming a matching by three iterations by executing a lexical, a taxonomy and a non-
taxonomy matching.

• Lexical Matching. This is the first matching iteration. It compares the lexical
entities of the ontologies.

• Taxonomy Matching. The second matching iteration compares the taxonomies
of the ontologies being graphs. Hence, graph paths are compared.

• Non-Taxonomy Matching. The last matching iteration analyses the linking ele-
ments between the entities.

For each matching a similarity value is generated, expressing the degree of similarity
between ontological structures containing RDF triples. The usage of similarity values
together with a graph based approach increases the accuracy of the semantic matching
strategy. The calculation of the similarity values is divided into several phases:

• Entity Engineering. Relevant entities of the ontology set are identified.

• Search Step Selection. A defined search space of matches in the graph is derived.

• Similarity Computation. Similarity values for the matches are defined. The three
matching iterations (lexical, taxonomy and non-taxonomy) are applied.

• Similarity Aggregation. Several similarity values of a single match (e.g. similar-
ity between properties, relations, etc.) are aggregated to one.

• Interpretation. In the final interpretation step the aggregated similarities are
used to derive matches between entities.

The similarity values are generated while the ontology matching is executed. Each
matching step generates alignment lists being the result of the matching usable for fur-
ther reasoning tasks. However, the matching of large data sets leads to a performance
problem solved through aligning the developed ontology matching algorithms to a
High Performance Computing (HPC) environment. The presented ontology match-
ing approach is performed in a distributed shared memory system on several nodes
for increasing the performance. The used HPC system is the NEC NEHALEM cluster
hosted at HLRS. The outcome is an ontology matching considering distribution tech-
niques in order to increase the overall performance for matching large data sets and
providing results usable for receiving customized data related to a certain domain of

iv

interest. The ontology matching is performed by defining a Priority Ontology (PO) as
a source and match it with other ontologies related to the given domain of interest.
The result produced by the matching iterations is a single customized ontology pro-
viding information of a certain domain for a human being.
In the scope of this work, a prototypical implementation of the matching strategy is
developed and presented. Furthermore, the execution of the semantic matching deals
with large data stores by performing the matching on allocated HPC resources. The
allocation of the HPC resources refers to a Service Level Agreement (SLA) based job
scheduling using queues. The presented scheduling approach offers the possibility
to schedule computing jobs using defined SLA levels such as gold, silver and bronze.
The SLAs are presenting a Quality of Service (QoS) class describing the required re-
sources of an HPC cluster, for instance, the type and amount of nodes as well as the
time frame.
The presented work deals with current scalability issues when thinking of matching
large scale ontologies. For this, the distributed matching approach makes use of HPC
resources. Therefore, this work enhances the efficiency for semantic matching and
bridges the gap between current ontology matching scalability issues and the HPC
domain. Through the demonstration of an ontology matching approach and a pro-
totypical implementation the foundation for a reasoning task using HPC resources
becomes possible.

v

vi

Zusammenfassung

Das stetig zunehmende Aufkommen von Daten in strukturierter und unstrukturierter
Form, stellt Gesellschaft, Forschung und Industrie vor das Problem der angemessenen
Datenselektion. Das Einbinden semantischer Relationen unterstützt eine zielgenaue
Auswahl aus bekannten Datenbeständen. Daher werden in dieser Arbeit Datenstruk-
turen basierend auf semantischen Relationen untersucht, um eine effiziente und kon-
textberücksichtigende Datenselektion zu ermöglichen. Dieser Ansatz sieht die Bereit-
stellung individueller und domänenspezifischer semantischer Daten vor.
Weiterhin verfolgt der vorgestellte Ansatz die Einbindung von Ontologien, um se-
mantische Daten abzubilden und bearbeiten zu können. Ontologien entstammen
den philosophischen Disziplinen und identifizieren und präsentieren grundlegende
Strukturen der Wirklichkeit. Sie sind regelbasiert und stehen in Relation zueinan-
der. Die Beschaffenheit von Ontologien ermöglicht die Persistenz, Überarbeitung und
Nutzung semantischer Daten. Ein besonderes Augenmerk gilt den Relationen zwis-
chen Ontologien und den darin enthaltenen Entitäten, da allein die Anzahl an Relatio-
nen die Milliardengrenze überschritten hat. In Hinblick auf die Datenselektion stellt
dies eine enorme Herausforderung für die Performanz dar.
Allgemein definieren Computerwissenschaften Ontologien als Konzeptualisierungen
formaler Darstellungen miteinander in Relation stehender domänenspezifischer Kon-
zepte. Dies impliziert, dass mittels der Zusammenführung von mehreren Ontologien
relevante semantische Daten identifiziert und die Gültigkeit dieser Datenstrukturen
verifiziert werden kann. Gegenwärtige Vergleichsstrategien für Ontologien basieren
auf verschiedensten Ansätzen. Daher werden in dieser Arbeit unterschiedlichste An-
sätze, Tools und Frameworks zum Vergleich von Ontologien berücksichtigt.
Die in dieser Arbeit entwickelte Strategie zum Ontologievergleich ermöglicht einen
verbesserten Ansatz, um stetig wachsende Mengen semantischer Daten individuell
miteinander vergleichen zu können. Vor diesem Hintergrund wird die Verarbeitung
semantischer Daten untersucht und implementiert. Aufgrund der hohen Anzahl an
Relationen zwischen Daten und den darin enthaltenen Entitäten werden ausreichend
Rechenressourcen genutzt, wie sie in einem verteilten Computersystem bereitstehen.
In dieser Arbeit wird von kontinuierlich wachsenden Datenbeständen ausgegangen,
dabei steht die Performanz der verschiedenen Strategien im besonderen Fokus, z.B.
wurde im August 2011 im Rahmen der Large Triple Store Challenge [1], das Laden
und Abfragen von über einer Billion RDF Triples [2] realisiert. Die Durchführungszeit
betrug nahezu 338 Stunden bei einer durchschnittlichen Rate von 829,556 RDF Tripel
pro Sekunde, verteilt auf 80 Cores.
Darüber hinaus ist die Erzeugung von genauen Ergebnissen notwendig. Aktuelle

vii

Risiken für Vergleichsstrategien semantischer Daten sind die Erzeugung falscher oder
unzureichender Ergebnisse aufgrund zu ungenauer Vergleiche von Ontologien. Zu-
sätzlich ist ein auf diesen Ergebnissen ausgeführtes Schlussfolgern für große miteinan-
der in Relation stehenden Daten nicht geeignet, da durch die Verwendung von un-
zureichenden oder falschen Ontologien als Datenbasis, falsche Schlussfolgerungen
generiert werden. Deswegen ist die zugrundeliegende wissenschaftliche Hauptfrage
dieser Arbeit, wie die Hürde zwischen Ansätzen für Ontologievergleiche und sehr
großen semantische Datenmengen überwunden und umgesetzt werden kann. Hier-
bei ist die Berücksichtigung dauerhaft wachsender Datenmengen für Vergleichsstrate-
gien von Ontolgien essentiell. Das Ziel ist es, aus den genannten Daten eine individu-
ell zugeschnittene und domänenabhängige Wissensbasis zu generieren, die für spez-
ifische Anwendungsszenarien zuverlässig verwendbar ist.
Im Rahmen dieser Arbeit wird ein Ansatz zum Vergleich von Ontologien entwickelt
und implementiert, der semantische Daten und die zugehörigen Relationen berück-
sichtigt. Dabei werden Übereinstimmungswerte zwischen Entitäten und Ansätze zur
Graphenanalyse berücksichtigt. Um dem Aspekt der dauerhaft wachsenden Daten-
mengen und der Performanz gerecht zu werden, wird der Ansatz dieser Arbeit für
eine verteilte Umgebung entwickelt. Die Qualität der Ergebnisse des Ontologiev-
ergleichs wird durch einen dreistufigen Ansatz sichergesellt. Dieser beinhaltet ein
lexikalisches, ein taxonomisches und ein nicht-taxonomisches Vergleichsverfahren.

• Lexikalischer Vergleich. In dieser ersten Verlgeichsiteration werden die lexikalis-
chen Entitäten der Ontologien miteinander verglichen.

• Taxonomischer Vergleich. Dies ist die zweite Vergleichsiteration, die Ontologien
als Graphen betrachtet und die Pfade der Graphen miteinander vergleicht.

• Nicht-Taxonomischer Vergleich. In der dritten und letzten Vergleichsiteration
werden die Relationen der Entitäten der verschiedenen Ontologien analysiert.

Für jedes Matching wird ein Übereinstimmungswert generiert, der den Grad der
Ähnlichkeit zwischen den ontologischen Strukturen darstellt. Die Verwendung von
Übereinstimmungswerten in Kombination mit Graphen basierten Ansätzen, erhöht
die Qualtität der Vergleichsergebnisse durch ein höheres Maß an Genauigkeit. Die
Berechnung der Übereinstimmungswerte ist in mehrere Schritte untergliedert:

• Indentifikation der Entitäten. Die relevanten Entitäten der Ontolgien werden
identifiziert.

• Festlegung des Suchraums. Der Suchraum für die Vergleichsoperationen im
Graph wird definiert.

• Berechnung der Übereinstimmungen. Es werden Ähnlichkeitswerte für die Ver-
gleichsoperationen festgelegt. Die drei Iterationsstufen (lexikalisch, taxonomisch
und nicht-taxonomisch) werden ausgeführt.

viii

• Aggregation der Übereinstimmungen. Die berechneten Übereinstimmungswerte
der Vergleiche (z.B. Übereinstimmungen zwischen Eigenschaften, Relationen,
etc.) werden aggregiert.

• Interpretation. Die Interpretation ist der finale Schritt. Die aggregierten Übere-
instimmungen werden verwendet, um Ähnlichkeiten zwischen den Entitäten
abzuleiten.

Durch den oben vorgestellten Vergleich der Ontologien, werden Übereinstimmungs-
werte generiert. Dabei werden bei jeder Vergleichsoperation Abgleichslisten erzeugt,
welche als Basis für später durchgeführte Schlussfolgerungsprozesse genutzt wer-
den. Die hohe Anzahl an benötigten Vergleichsoperationen, durchgeführt auf ständig
wachsenden Datenmengen, führt jedoch zu Performanzproblemen. Aus diesem Grund
berücksichtigt der Ansatz dieser Arbeit eine verteilte Umgebung, wie sie im HPC
Umfeld zu finden ist. Hierbei wird auf ein Shared Memory System zurückgegrif-
fen, welches den Vorteil bietet, dass die Vergleichsoperationen auf mehreren Knoten
aufgeteilt werden können, mit dem Ziel die Performanz zu verbessern. Das hier-
bei verwendete HPC System ist das HLRS NEC NEHALEM Cluster. Die Verteilung
der Vergleichsoperationen setzt einen Ontologievergleich voraus, der es zulässt Ver-
gleichsmethoden verteilt auszuführen. Der in dieser Arbeit entwickelte ontologische
Vergleichsansatz nutzt eine Ontologie als Quelle (Prioritätsontologie) und vergleicht
diese mit anderen. Das Ergebnis ist eine einzelne spezifizierte Ontologie, die indi-
viduelle Informationen eines Interessenbereichs Menschen zugänglich macht.
Im Rahmen dieser Arbeit wird eine prototypische Implementierung der benötigten
Vergleichsstrategie entwickelt. Weiterhin wird die Ausführung des semantischen Ver-
gleichs für sehr große Datenmengen, mittels hierfür allokierter HPC Ressourcen, durch-
geführt. Hierbei wird die Reservierung der HPC Ressourcen durch ein SLA basiertes
Job Scheduling unter Verwendung von Queues umgesetzt. Der vorgestellte Schedul-
ing Ansatz ermöglicht ein Job Scheduling basierend auf definierten SLA Levels, wie
etwa Gold, Silber und Bronze Leveln. Die SLAs repräsentieren QoS Klassen, die
die benötigten Ressourcen des HPC Clusters beschreiben, z.B. Typ und Anzahl der
Knoten sowie den Zeitrahmen.
Die vorgestellte Arbeit nimmt Bezug auf Performanz und Skalierungsprobleme, die
speziell im Bereich der semantischen Vergleiche in Zusammenhang mit großen Daten-
mengen und Ontologien auftreten. Daher werden HPC Ressourcen verwendet, um
hierdurch eine effiziente Implementierung der Vergleichsstrategie für Ontologien zu
ermöglichen und somit die Kluft zwischen aktuellen ontologiespezifischen Skalier-
barkeitsproblemen und dem HPC Bereich zu überwinden. Durch den in dieser Ar-
beit vorgestellten und prototypisch implementierten Ansatz für das Vergleichen von
Ontologien, wird das Fundament für Reasoning Aufgaben im HPC Bereich geschaf-
fen.

ix

x

Contents

List of Figures xv

List of Tables xvii

Abbreviations xix

1 Introduction 1
1.1 Objectives . 1
1.2 Chosen Approach . 5
1.3 Research Contribution . 10
1.4 Background . 11

1.4.1 Ontology Matching of Semantic Data in Ontologies 11
1.4.2 Required Strategy . 15

2 Background and Requirements 19
2.1 Background and Requirements . 19
2.2 Automotive Engineering . 19

2.2.1 Background . 19
2.2.2 The Concrete Scenario . 22
2.2.3 Identified Requirements for Automotive Engineering 25

2.3 Legal Rule Analysis . 27
2.3.1 Background . 27
2.3.2 The Concrete Scenario . 28
2.3.3 Identified Requirements for Legal Rule Analysis 30

2.4 Linked Web Data . 31
2.4.1 Background . 31
2.4.2 The Concrete Scenario . 32
2.4.3 Identified Requirements for Linked Web Data 32

2.5 Conclusions and Categorization of the Requirements 34

3 State of the Art 35
3.1 Ontology Matching Approaches . 35

3.1.1 Information Retrieval . 35
3.1.2 Vector based Matching Approaches 38
3.1.3 Data Mining . 40
3.1.4 Knowledge Discovery . 43

xi

Contents

3.1.5 Overview of Ontology Matching Approaches 44
3.1.6 Ontology Matching with Probability Values 45
3.1.7 Instance Matching . 48
3.1.8 Graph Based Matching Approaches 48
3.1.9 Distributed Ontology Matching . 50
3.1.10 Ontology Matching and Integration 51

3.2 Relevant Tools and Frameworks . 52
3.3 Advantages and Disadvantages . 63
3.4 Relevant Approaches . 64

3.4.1 Information Retrieval Approach 64
3.4.2 Vector Based Word Space Approaches and Online Ontologies . . 64
3.4.3 Probability Measurement . 65
3.4.4 Graph Analysis . 65
3.4.5 Distributed Ontologies . 66

4 Ontology Matching 69
4.1 Improvement for Ontology Matching . 69

4.1.1 Identification . 70
4.1.2 Selection . 75
4.1.3 Definition . 76
4.1.4 Generation . 78
4.1.5 Interpretation . 88

4.2 Realization of Proposed Strategy . 89
4.2.1 Applying Graph Based Matching Approaches 89
4.2.2 Use of the Proposed Strategy . 91
4.2.3 Validation of the Matching Results 93
4.2.4 The Priority Ontology . 95

4.3 Conclusions of Ontology Matching . 95

5 Distributed Ontology Matching 97
5.1 Techniques for Improving Performance by Distribution 97

5.1.1 General Advantages of Distribution 97
5.1.2 Benefits of the LarKC platform . 98

5.2 Ontology Matching in a Distributed Environment 99
5.2.1 From Queues to SLAs . 100
5.2.2 Distributed Ontology Matching . 101
5.2.3 Distribution on HPC Resources: Ontology Matching 101
5.2.4 Distribution on HPC Resources: Closure and Materialization . . 106

5.3 Applying Distributed Matching Procedures 106
5.3.1 Ontology Matching on Several Nodes 107
5.3.2 Distributed Ontology Matching Procedures 108
5.3.3 Applying Reasoning: Closure and Materialization 112

5.4 Conclusions of Distributed Ontology Matching 113

xii

Contents

6 Improvements for Use Case Scenarios 115
6.1 Advantages of the Distributed Ontology Matching 115
6.2 Application of the New Proposed Strategy to the Use Case 118
6.3 Result Evaluation . 119

6.3.1 Result Evaluation: Ontology Matching - Single Machine 120
6.3.2 Result Evaluation: Ontology Matching - HPC Environment . . . 127

6.4 Requirement Analysis . 131

7 Conclusions and Outlook 137

A Cluster Configuration 157

B Example Data Set - RDF Triple 159

xiii

Contents

xiv

List of Figures

1.1 Ontology Lifecycle . 2
1.2 Amount of RDF Triples and Data Size . 4
1.3 Selection of Ontologies . 7
1.4 Matching between Ontologies . 7
1.5 Matching Types . 9
1.6 Three RDF Triples for a Material as Directed Graph 14

2.1 Graphical Excerpt of an Ontology for Managing Working Processes in
the Automotive Sector . 20

2.2 User from the Engineering Domain . 22
2.3 Ontology Selection . 22
2.4 Graphical Excerpt of a Law Ontology based on the BGB 29

3.1 Resource Allocation Overview . 59

4.1 Ontology Lifecycle: Merging . 69
4.2 Similarity Matching Phases . 70
4.3 Ontology Repository DB . 72
4.4 The Transformer . 75
4.5 The Lexical, Taxonomy and Non-Taxonomy Matching Procedures 81

5.1 Parallel Job Execution of the Lexical Matching 102
5.2 Parallel Job Execution of the Taxonomy Matching 104
5.3 Parallel Job Execution of the Non-Taxonomy Matching 105
5.4 Job Scheduling Using HPC Cluster Nodes 107

6.1 Overview of the Complete Ontology Matching Strategy 118
6.2 Matching Procedures Execution Times for Lexical Matching (minutes) . 124
6.3 Matching Procedures Execution Times for Taxonomy Matching (minutes)125
6.4 Matching Procedures Execution Times for Non-Taxonomy Matching

(minutes), reduced data set . 125
6.5 Summarized Matching Procedures Execution Times for Lexical and Tax-

onomy Matching (minutes) . 131

xv

List of Figures

xvi

List of Tables

1.1 Amount of RDF Data and Data Size . 4
1.2 Three RDF Triples for a Material . 13

2.1 Selected RDF Triple Sets of the Billion Triple Challenge 23
2.2 Requirements for Automotive Engineering 27
2.3 Requirements for Legal Rule Analysis . 31
2.4 Requirements for Linked Web Data . 33

3.1 Role Model for the Resource Allocation 60

4.1 RDF classes . 81
4.2 RDF properties . 82
4.3 Mapping between RDF-(S) elements and graph items 90

6.1 Lexical Matching Evaluation . 122
6.2 Taxonomy Matching Evaluation . 123
6.3 Non-Taxonomy Matching Evaluation (* = unquantifiable, time unit too

low); reduced data set . 123
6.4 Occurrence of Result Terms Measured by a Set of VCDs 127
6.5 Matching Procedure Evaluation using HPC Resources (2 nodes; 2 pro-

cesses) . 128
6.6 Comparison Operations (300 RDF Triple) 130
6.7 Requirement Result Analysis . 134

xvii

List of Tables

xviii

Abbreviations

API Application Programming Interface . 56
AS Accumulation of Similarities . 83
DB Database . 71
DDL Distributed Description Logic . 50
DO Domain Ontology . 61
EC Entity Count . 87
GB Gigabyte . 9
GMM Generalized Method of Moments . 42
GMO Graph Matcher for Ontologies . 55
GUI Graphical User Interface . 45
HPC High Performance Computing . iv
HPC-WSAG High Performance Computing - Web Service Agreement 60
HR High Relevance Ontology. 71
ID Identifier . 72
IR Information Retrieval . 35
IT Information Technology . 58
JVM Java Virtual Machine . 128
kB Kilobyte . 3
LarKC The Large Knowledge Collider .57
LLD Linked Life Data . 31
LLOD Linguistic Linked Open Data . 62
LOD Linked Open Data . 31
LR Low Relevance Ontology . 71
LSA Latent Semantic Analysis . 38
LSV Lexical Similarity Value . 79
MB Megabyte . 3
MLN Markov Logic Network . 46
MO Model Ontology . 61
MR Medium Relevance Ontology . 71
NF Number of Features . 83
NGD Normalize Google Distance . 47
NGMF Next Generation Modeling Framework . 58
NTSV Non-Taxonomy Similarity Value . 79
OntoRepDB Ontology Repository Database . 72
OPS Online Proposal Submission . 59
OWL Web Ontology Language . 6

xix

Abbreviations

OWL DL Web Ontology Language Description Logic . 11
OWL Full Web Ontology Language Full . 11
OWL Lite Web Ontology Language Lite . 11
OWL 2 OWL 2 Web Ontology Language . 11
PBM Partition Based Block Matcher . 55
PC Path Count . 86
plugIT Plug Your Business Into IT . 58
PO Priority Ontology . v
PRP Probabilistic Ranking Principle . 36
QoS Quality of Service .v
RDF Resource Description Framework . iii
RDFS Resource Description Language Schema . 6
SD Search Depth . 86
SLA Service Level Agreement . v
SO Source Ontology . 109
SPARQL SPARQL Protocol and RDF Query Language . 6
TL Term Length. 109
TO Target Ontology . 109
TSV Taxonomy Similarity Value . 79
URI Uniform Resource Identifier . 12
VCD Validity Check Document . 93
WSAG Web Service Agreement . 60
WSMO Web Service Modeling Ontology . 11
WWW World Wide Web . 2
W3C World Wide Web Consortium . 81
XML Extensible Markup Language .3

xx

Chapter 1

Introduction

1.1 Objectives

Towards the continuously growing amount of data accessible in the world wide web
and involving linked data as well as semantic data from a broad set of different me-
dia types, the data management has become a key challenge for society, research and
industry in the last decades. The importance of handling those data is needed for
identifying relevant information from those data sets, making them available and un-
derstandable to human beings and machines. The term semantics describes data pre-
senting a certain meaning usable in a computer processable manner. This indicates the
need of structuring knowledge by use of formal representations. Within the semantic
web activity group [3] ontologies are used to store and manage semantic information
as well as relations between the information considering the use of meta data for spec-
ifying the presented information more precise.
Ontologies have been introduced by Aristotle ([4], [5]) as formal models describing
our awareness of a domain of interest and in addition providing a precise, logical
account of certain meanings of terms by structuring entities as real world models.
Nowadays, ontologies are used in research and enterprise communities in order to
formalize concepts and structure semantic data. Ontologies define the basic terms
and relations comprising the vocabulary of a certain individual domain in a formal
manner, enabling machines to communicate, understand, analyze and process the on-
tologically formalized concepts. The information can be used by machines or human
beings using the provided terminology of an ontology. Through the use of ontologies
as knowledge bases for semantic data, it becomes possible to find semantic correspon-
dences between different information in various ontologies. Su et al. [6] are describ-
ing the use of ontologies in the area of the semantic web as a key issue for enabling a
semi-automatic matching and reasoning of semantic information:

In order to understand and process the information in a semantic mean-
ingful way, researchers have created the Semantic Web vision, where data
has structure and ontologies describe the semantics of the data. This en-

1

Chapter 1 Introduction

Figure 1.1: Ontology Lifecycle

ables the usage of semi-/automatic reasoning within the data structures
such as for software agents or reasoning procedures using ontologies.

The term Semantic Web vision was used by Tim Berners-Lee [7] in the context of mean-
ing and understanding for machines in the World Wide Web (WWW). In this context,
ontologies are usable for defining a formal representation of real world concepts by
defining a terminology of a domain of interest. The ontology life cycle consists of vari-
ous stages (see figure 1.1) including the design and creation of ontologies, the integration
of knowledge data and schema from various sources to be included in the ontology, the
merging of ontologies, the correction of erroneous data in the ontology, the aggregation
and analysis of the existing data in the ontology and the evolution of ontologies.

The objectives of this work are to provide a scalable, robust and efficient matching
strategy for ontologies in order to provide a human being with a tailor-made ontol-
ogy. Through a matching of several ontologies relevant data are identified being used
as an individual knowledge base. This proceeding is an important step for providing
necessary data instead of a broad data set. The ontology matching is performed in a
HPC environment to deal with scalability issues and time restrictions. Such ontolo-
gies contain needed semantic information extracted by reasoning tasks. Moreover,
through the use of a distributed architecture the scalability of a useful matching strat-
egy is increased which is an advantage when considering large data sets and, even
more important, complex and computational expensive matching processes. Further,
a reasoning performed on an ontology needs to deal with time restrictions, large data
sets, reliability and so forth for enabling a fast querying on an adequate knowledge
base as presented in the next chapter (see 2.2, 2.3 and 2.4). The matching of ontologies
includes the integration of knowledge data and schema, the merging aspect and the correc-
tion of erroneous data after the merging was performed. These steps are considered to
provide an efficient approach for the aggregation and analysis of the ontology data
used for providing a specialized knowledge base related to an individual use case for
enabling reasoning tasks based on a matched result set.
When thinking of ontologies, especially using them for providing a customized knowl-
edge base, tools and methods from the semantic web need to be considered. The usage
of ontologies for receiving relevant knowledge being related to a specific domain of
interest and individual tasks is a quite promising approach for making information
available through reasoning performed based on the underlying ontologies. Ramesh
and Gnanasekaran [8] are describing a single ontology as not sufficient anymore for
receiving semantic representations for various context domains:

2

1.1 Objectives

A single ontology is no longer enough to support the tasks predicted
by a distributed environment like the Semantic Web. Multiple ontologies
need to be accessed from several applications. Ontology management is
possible through interoperability of semantic data sources.

Through an improved matching strategy, by means of increasing the scalability and
overall performance, which is provided with the required computing resources and
an exactly adjusted algorithm, the matching by use of several ontologies is performed
in order to support reasoning tasks. A semi-/automatic approach for matching on-
tologies by use of several ontologies which are related to a selected research domain
will support an expert who is in the need of receiving additional knowledge. How-
ever, Euzenat et al. [9] emphasizes that required knowledge depends on the needs of
an actor:

Different actors have different interests and habits, use different tools
and knowledge, and most often, at different levels of detail. These vari-
ous reasons for heterogeneity lead to diverse forms of heterogeneity, and,
therefore, should be carefully taken into consideration.

Hence, this work considers matching approaches such as the matching of concepts,
features and relations between entities and neighboring entity pairs of several ontolo-
gies in a semi-/automatic manner by consideration of the specific requirements of
an actor. In general the process of ontology matching is about finding similarities in
terms of semantic correspondences between similar entities in two or more homoge-
neous ontologies [10]. The result of the matching is an merged alignment list usable
for reasoning tasks.
The selection of ontologies is based on a known set of ontologies related to a specific
domain. The matching approach will consider the matching of entities in different
ontologies in order to calculate a similarity value that expresses the grade of similar-
ity between the entities as proposed by Tenschert [11]. However, the calculation of
the similarity value is faced with large data sets. This encounters the challenge of
processing an ontology matching also for very large data sets and the allocation re-
quired compute resources. However, even large ontologies often only consist of data
amounts measurable in Kilobyte (kB) or Megabyte (MB) as presented by the data set of
the RDF dump site for linked data sets [12]. For instance, table 1.1 demonstrates data
sizes for RDF ontologies considering the RDF triple and the RDF Extensible Markup
Language (XML) notation. The RDF triple notation considers the RDF structured data
as triples constructed as subjects linked with objects via a predicate. Whereas, the RDF
XML notation is a well-formed XML document containing the RDF structured data as
a nested hierarchy of entities. Each of the presented sample RDF data are increased
by the factor of 10 up to a million.

As presented in table 1.1 the data size increases continuously when increasing the
amount of RDF structured data but the amount of data varies between both notations,

3

Chapter 1 Introduction

Amount of RDF Data Data Size (KB), RDF
Triple Notation

Data Size (KB), RDF
XML Notation

100 19 25
1.000 213 233
10.000 2.111 1.930
100.000 18.901 16.852
1.000.000 86.344 79.262

Table 1.1: Amount of RDF Data and Data Size

Figure 1.2: Amount of RDF Triples and Data Size

the RDF triple and the RDF XML notation (see figure 1.2). The different data size
of both notations is caused through the different type of notation of RDF structured
data. While the RDF triple notation annotates the data as simple triples the RDF/XML
notation needs to take care of the common nested XML structure of data. Especially,
when observing large data sizes, the RDF/XML notation requires more memory than
the RDF triple notation. Nevertheless, there is only a slightly different data amount
between both notations.

In contrast to the data amount of RDF structured data, the loading and querying of
thousands of RDF structured data is a complex and computing resource intensive task
being the main challenge when processing those data. As already mentioned in the
abstract by referring to the large triple store challenge, this might take hours or even
days to generate a useful result. The matching of large scale ontologies implies the
problem of handling such large data sets in an efficient manner caused by perform-
ing matching processes between millions of entities stored in the ontologies. Further,
when thinking of reasoning methods using the matching results as a foundation the
need of handling such a matching prompt is a high risk due to very long waiting times

4

1.2 Chosen Approach

or simply receiving no data for the reasoning due to a data overload.
In order to deal with the research question How to provide reliable semantic data in an
efficient and time saving way for enabling reasoning?, the main objectives of this work are
twofold:

1. Presenting and implementing an ontology matching based on similarity values
by consideration of several matching steps.

2. Describing an approach for a distributed ontology matching strategy applicable
on HPC resources for enabling urgent reasoning tasks.

The overall goal is to provide a matching enabling a reasoning over a merged align-
ment list in real-time by adapting improvements of the scalability and performance
when executing the matching task. For this, a single ontology being the prioritized
one will be the foundation for the matching with target ontologies. The alignment
lists contain the finalized matching results convenient for extracting required infor-
mation through reaoning. In this context, Maedche et al. [13] are evaluating a single
core ontology as a beneficial foundation for further methods to measure similarities
between ontologies.
The alignment list is used as an information source for specific research domains. Tay-
lor et al. [14] are describing an ontological semantic implementation making use of an
ontology as a lexicon but for the purpose to access and represent the meaning of text.
However, this work targets the HPC domain and the maintenance of a researcher for
specific questions regarding HPC issues but the alignment list will be used as refer-
ence book or a specific kind of lexicon as well. Hence, a strategy for generating the
result list by matching a priority ontology being the source with target ontologies is
presented in this work.

1.2 Chosen Approach

Nowadays, lots of different ontology matching approaches are available. This work
considers approaches most beneficial for a semi-/automatic applicability in order to
deal with the fact that manual strategies in the research field of matching and improv-
ing semantic knowledge structures are time and resource intensive. Furthermore, the
ontology matching algorithm needs to be developed for supporting a reasoning strat-
egy on HPC resources. Sahlgren et al. [15] are describing this issue for approaches for
construction of a lexicon:

Manual approaches to lexicon construction vouch for high quality re-
sults, but are time- and labor-consuming to build, costly and complex to
maintain, and inherently static: tuning an existing lexicon to a new do-
main is a complex task that risks compromising existing information and

5

Chapter 1 Introduction

corrupting usefulness for previous application areas.

The fact that a manual execution of semantic approaches leads to a very high effort is
taken up by usage of strategies and algorithms for automation of those approaches.
In the scope of this work ontologies are an adequate resource for extracting semantic
knowledge out of the given context and relations of the context in the selected on-
tologies. However, Ramesh and Gnanasekaran [8] considering an ontology in context
of the semantic web as available information organized in ontologies. When think-
ing about knowledge representation and technologies of the semantic web such as
Resource Description Language Schema (RDFS) and Web Ontology Language (OWL)
the European founded LarKC project [16] offers highly innovative solutions for rea-
soning in semantic data structures by usage of a platform supporting a parallel ex-
ecution on distributed compute resources. The general idea of LarKC is to develop
a platform which is able to combine and execute several plugins. The plugins are
plugged to the platform in order to deploy a workflow consisting of several plugins
which ensure the processing of data structures such as with SPARQL Protocol and
RDF Query Language (SPARQL) queries. The ability of including plugins allows a
wide range of developers to create their own plugins and add them to the platform.
Semantic web technologies and tools are providing methods for explicit knowledge
capture and dissemination. Ontologies are describing an accumulation of concepts
and the relationships between the concepts and the features of the concepts for pro-
viding access to semantic knowledge structures. However, it is necessary to find the
access to this semantic knowledge, make it explicit and to search inside the ontologies
in order to match concepts of several ontologies to achieve a stable reasoning strat-
egy for the selection of ontologies. Therefore, the syntactic correlations between the
ontologies will be exposed to achieve this access. The analysis of the ontologies will
take place through a matching method for the ontologies. Nevertheless, before this
steps will take place it is essential to evaluate which ontologies are most beneficial
for the envisaged purpose of an expert. In addition, an effective reasoning strategy is
required in order to extract needed knowledge from the matched and finally merged
priority ontology.
A first step for an expert is to evaluate ontologies and store them or the URLs in an
ontology repository. There are several aspects that have to be clarified such as the
range of specifications and ontology languages that have to be supported in order to
integrate the selected set of ontologies 1.3.

Adequate specifications to describe Ontologies are for instance RDFS and OWL while
RDF is the base of several ontology description languages. As stated out by Weaver
and Hendler [17] when introducing an approach for parallel reasoning on ontologies,
the semantic web consists of ever-increasing resource description framework data.
RDF is based on the XML standard. In order to use the developed algorithm for on-
tology matching in a wide range and therefore making it public to the open source
community common standards such as RDFS will be applied. Thus, the selected on-
tologies have to support these specification. Another issue is to evaluate useful on-
tologies for the described work by considering the used ontology language.

6

1.2 Chosen Approach

Figure 1.3: Selection of Ontologies

Figure 1.4: Matching between Ontologies

After defining and evaluating a set of ontologies the next step is to explore a match-
ing method for analyzing ontologies which comply with the given requirements. To
achieve this method existing ontology analysis will be considered in order to extend
already existing methods and enhance them. Through this a new improved analyzing
method which is based on proved analyzing strategies is developed. A new ontology
matching method which is adapted to the given requirements of an expert is gener-
ated 1.4.

Therefore, ontologies must be evaluated considering the requirements of the expert
that are focused on a specific research domain. Furthermore, a new matching strategy
based on the set of ontologies and existing ontology matching methods will be devel-
oped.
In order to ensure a high quality extraction of semantic knowledge it is obvious to

7

Chapter 1 Introduction

develop a robust and reliable matching algorithm. Therefore, relevant requirements
for the selection of ontologies are elaborated. As mentioned before the main goal of
the presented work is to ensure a matching of several semantic structures stored in
ontologies in order to achieve an individually enhanced knowledge base by means
of the alignment list. Ramesh and Gnanasekaran [8] are emphasizing the goal for an
ontology merge as the new organization and reusage of existing concepts of source
ontologies with the aim to develop a new single terminology. The produced align-
ment list is based on the previous performed matching between the priority and the
target ontologies. It is an ontology as well constructed by such new single terminol-
ogy.
The ontology matching algorithm refers to the given set of ontologies which is com-
posed by the expert. At this, an expert with background knowledge about his focused
work and a little knowledge about ontologies is postulated because of the need to se-
lect ontologies fitting to the given use case scenario. The idea is that similar ontologies
are selected with the aim of extracting a high number of adequate matching results
out of the set of ontologies. Otherwise, the matching of the ontologies will be possible
as well but to compare concepts from ontologies which are completely different, e.g.
comparing a biomedical ontology with an ontology about engineering, will produce
very few or even no useful results for an HPC use case.
A differentiation between the types of matching results is useful for classification. A
partial matching improves the classification of types of matching results in a more fine
grained fashion and offers the possibility to produce new results. The approach of in-
cluding partial matches extends the capabilities of matching concepts in a wide range.
Nevertheless, to ensure the quality of the extracted results out of the comparisons be-
tween the concepts an indicator which presents the degree of accordance is required.
For this, a probability indicating the grade of similarity is used to express the level of
similarity regarding the matching results. Furthermore, to keep the matching method
consistent all three types of matching (no match, partial match and full match) will
be described through a probability expressing the grade of similarity between entities
1.5.

A distinction between the degrees of similarity through generation of the similarity
value is quite important. Beside the ontology matching approach and the generation
of the similarity values and the match and merge based on such, the reasoning pro-
cesses need to be considered as well. The reasoning tasks are highly dependent on
the ontology matching results being the base for the reasoning. Thus, an inadequate,
false or no matching will lead to a not feasible reasoning task. The distribution of
the ontology matching processes on distributed resources and the allocation of the
available computing resources for the matching jobs ensures a high amount of usable
computing resources. This proceeding seems to be beneficial and quite promising
for enabling an effective ontology matching for enabling reasoning. Tenschert and
Cheptsov [18] are describing an effective ontology matching in a HPC environment
by considering large scale ontologies needing to be matched in order to provide se-
mantic data in a robust and time saving fashion. Further, Tenschert et al. [19] present
an ontology matching approach by focusing on the distribution and parallelization

8

1.2 Chosen Approach

Figure 1.5: Matching Types

techniques. The idea of a distributed ontology matching in a HPC environment is
a fruitful approach in order to solve the above mentioned risk and problems when
thinking of large scale data.
When thinking of large data sets the one billion triple challenge [20] indicates the
amount of data that are used. In the past a typical data set of the challenge includes
approximately 1.14 billion statements that have to be processed in a scalable fashion.
The zipped size of the dataset is about 17 Gigabyte (GB). However, this size has in-
creased as presented already by the large triple store ([1]) up to trillions of RDF triples.
Nevertheless, such a size is processable by traditional computing systems even by
consideration of the growing amount of available semantic data in the WWW. Yet, the
main concern regarding the data size is the matching process and more important,
the reasoning method performed on the data set. This implies the use of a customized
knowledge base being adequate to a given use case scenario. Further, such a reason-
ing task might require several hours or even days (e.g. AllegroGraph [21], OpenLink
Virtuoso [22], BigOWLIM [23]). Common reasoning strategies are forward or back-
ward chaining dealing with the use of performing inference rules on an ontology by
executing the rules at load time (forward chaining) or when required in case a query
need to be answered (backward chaining). Both reasoning approaches need to han-
dle complex reasoning tasks through the execution of the inference rules using the
ontologies as knowledge base. Such a reasoning strategy has to be scalable and time
efficient even in case a large set of complex inference rules is executed. Especially the
forward chaining based reasoning needs to deal scalability issues due to the fact that
all inferences are generated at load time. Tenschert and Gilet [24] have discussed the
topic of performing an ontology based reasoning on HPC resources by pointing out
the need of allocating HPC resources for the ontology matching being the foundation
for reasoning tasks. Thus, when thinking of the ontology matching, it need to provide
a high quality of matching results in an efficient and fast manner in order to support
reasoning tasks. Following this idea, the ontology matching approach is quite crucial
for providing an individual and reliable knowledge base enabling experts to identify

9

Chapter 1 Introduction

urgently required information.

1.3 Research Contribution

The research contribution of this work is a concept for performing a reliable ontology
matching in an efficient and scalable manner using HPC resources for creating a cus-
tomized knowledge base for enabling reasoning. The focus of this thesis is the ontol-
ogy matching procedure distributed in an HPC environment being the foundation for
reasoning in order to provide a relevant set of data, the knowledge base, for individ-
ual use case scenarios. Thus, a match of several ontologies for constructing alignment
lists as results will be performed. The aim is an updated result ontology support-
ing experts with required knowledge enabling and supporting reasoning tasks. The
distributed ontology matching approach needs to be performed on HPC resources to
deal with large and complex semantic rule sets and data sizes even in a restricted time
frame.
In summary, the major contributions of this work are:

1. A method for matching ontologies with the aim to construct a customized case
specific result ontology by means of alignment lists.

2. An algorithm for executing the ontology matching in a distributed fashion on
HPC resources for enabling an efficient matching dealing with time restrictions.

3. Prototypical implementations of the ontology matching strategy to prove the
matching concept and enabling the utilization of reasoning tasks using the match-
ing results as an individual knowledge base.

Current matching strategies consider various strategies as it is described in chapter 3.
However, this work presents a significant improvement for a semantic matching strat-
egy on HPC resources by consideration of a forward-chaining based reasoning using
available data being the knowledge base. Those data are the individual generated
result ontology.

10

1.4 Background

1.4 Background

1.4.1 Ontology Matching of Semantic Data in Ontologies

Among others, ontologies contain data usable for work processes, technical configura-
tions or HPC issues. Beside the various contents and topics of ontologies, the format
of the ontologies is different which faces the syntactic heterogeneity problem. The
simplest syntactic heterogeneity problem takes place through the use of different data
formats [10] such as XML, RDF, RDFS, OWL and much more. A brief overview of
recommended ontology standards is presented in the following:

• XML The eXtensible Markup Language [25].

• RDF The Resource Description Framework [26].

• RDFS The RDF Schema [27].

• OWL The Web Ontology Language [28], [29]. In the scope of the OWL initia-
tive several sub languages of OWL are available such as Web Ontology Lan-
guage Lite (OWL Lite), Web Ontology Language Description Logic (OWL DL)
and Web Ontology Language Full (OWL Full).

• OWL2 The OWL 2 Web Ontology Language (OWL 2) [30].

• WSMO The Web Service Modeling Ontology (WSMO) [31].

• SPARQL The SPARQL Protocol And RDF Query Language does not define an
ontology but it allows a querying of RDF based ontologies [32].

The RDF format will be mostly relevant for this work because the RDF format is com-
monly used for semantic data and it is a well known standard as well as the founda-
tion for ontology description languages. A more detailed evaluation of related work
is given in 3. Nevertheless, due to the essential nature of RDF and SPARQL both
standards will be presented in a brief overview.

RDF RDF is the Resource Description Framework used for annotations of semantic
correlations between entities. RDF is a common base for a broad range of markup lan-
guages used for identifying and describing semantic relations. The RDF was designed
for markup of semantics in the WWW but it has become a fundamental basis for the
semantic web. The foundation of RDF is the mapping of semantic correlations into
three units, a subject, a predicate and an object. The so called RDF triple makes use of

11

Chapter 1 Introduction

the subject to describe a given resource more precisely described by use of the predi-
cate and finally the subject is linked to another resource described as the object. It is
possible that the object is only a literal. RDF provides unique identifiers for resources
by assigning URLs to the given resource. The RDF model is a well-formed data model
using a formal semantic based on directed graphs. RDF defines resources as triples
that can be modeled as mathematical graphs. Powers [33] describes the purpose and
benefit of using RDF as follows:

RDF’s purpose is fairly straightforward: it provides a means of record-
ing data in a machine-understandable format, allowing for more efficient
and sophisticated data interchange, searching, cataloging, navigation, clas-
sification, and so on. It forms the cornerstone of the W3C effort to create
the Semantic Web, but its use isn’t restricted to this specific effort.

When thinking of common standards in the field of the semantic web well known
standards are RDF, RDFS and OWL. In general RDF is based on XML and offers a
toolkit for developers for constructing statements, the RDF triples, and as well la-
beled relations between these statements by use of RDFS. Most semantic standards
are based on top of RDF. By use of the RDF structure a simple presentation model
is used to apply logic for supporting large-scale information processing for various
contexts. Following main features are provided by RDF, nevertheless a broad set of
possibilities for constructing semantic statements is supported by RDF structures:

• Subject - The subject is a resource that is the source of an arc in a RDF model.

• Predicate - The predicate is the property of a RDF triple.

• Object - The object of a RDF triple is the value of a statement.

• Literal - A literal is a simple string or character that might be the value of a
property.

• Property - A property is an attribute of a resource such as ¡rdf prefix¿.title might
be a property, as is rdf.type.

• Resource - The resource is the source entry. It can be an abstract or a real entity.

• Statement - A statement is an arc in a RDF model that is usually interpreted as
a fact.

• Triple - A term is another term for a structured statement containing a subject, a
predicate and an object.

• Blank Node - A blank node represents a resource but without an Uniform Re-
source Identifier (URI) for the resource. Blank nodes are as existentially qualified

12

1.4 Background

variables constructed by use of first order logic.

• Dublin Core - Dublin Core [34] is a standard for meta data web resources.

The RDF structure is a commonly used structure in the semantic web enabling devel-
opers to express semantic relations in terms of subject, predicate and object. However, in
case the aim is to achieve a higher expressiveness for semantics the RDF standard can
be enhanced by use of RDFS. RDFS includes the features of RDF but enables ontology
developers to express hierarchies between semantic statements or concepts. By using
the additional RDFS elements it becomes possible to construct such a hierarchy similar
to a directed graph. Furthermore, the labeled linking between the semantic entities en-
ables the development of an ontology with labeled relations. Table 1.2 describes three
RDF triples for the resource http://www.example.org/materialXY/info.rdf#materialXY101
presenting an arbitrary material. The resource is the subject. The three RDF triples are
presented as an directed graph as well in figure 1.6. As presented in this figure, the
root node is the subject (resource presented as URL) linked via the predicates (each is a
single namespace) to each object. The first two objects are presented as URLs because
they are resources and the third object is a literal.

Subject Predicate Object
http://www.example.org
/materialXY/info.rdf
#materialXY101

primarystructure http://www.ps.materialXY101/

http://www.example.org
/materialXY/info.rdf
#materialXY101

secundarystructure http://www.ss.materialXY101/

http://www.example.org
/materialXY/info.rdf
#materialXY101

name materialXY101

Table 1.2: Three RDF Triples for a Material

However, expressiveness of RDF can be enhanced, for instance by use of OWL making
use of the RDFS elements but offers an additionally set of functionality. One of the
main functionality of OWL is the feature to describe classes in a more complex and
detailed way. Additionally, different dialects of OWL are available, such as OWL
Lite, OWL DL or OWL Full. However, the foundation is RDF and more complex
and expressive standards bear the problem of running into scalability and consistency
conflicts.

SPARQL When thinking of semantic description languages such as RDF it is cru-
cial to take a closer look on how to use the semantically annotated data. Hence, the
SPARQL Protocol And RDF Query Language abbreviated with the term SPARQL is

13

Chapter 1 Introduction

Figure 1.6: Three RDF Triples for a Material as Directed Graph

presented for showing how to make use of semantic data such as RDF data. SPARQL
is a graph based query language for RDF. Thus, it is recommended when performing
reasoning tasks including RDF queries based on RDF structured data. Additionally,
the general idea of the semantic web is to provide data and related semantics. Such
semantics need to be described and identified with common standards, for instance
with RDF. However, query languages as SPARQL are required to make the semantic
data usable for users needing to query the semantically annotated data. A SPARQL
query is constructed in a way allowing a user to define parameters of interest and
restriction regarding the type of needed semantic data used for the query. A simple
SPARQL query can be constructed as follows:

1 PREFIX
SELECT
WHERE

The prefix is similar to a XML namespace, it ensures the use of an identified target
namespace by identifying it with an URI. Furthermore, in the given example the pa-
rameters of interest are described after the SELECT command and the restrictions are
described after the WHERE command. Besides the presented SPARQL commands the
use of SPARQL queries becomes more concrete when presenting the example with pa-
rameters referring to an RDF structure. The given RDF structure are the RDF triples
from the previously presented RDF triple example. The given RDF triple example is
enhanced with a prefix mp (material property) for defining the URIs of the predicates.
The RDF serialization is a file and contains the following data:

@prefix mp: <http://hlrs.de/ns/materialstructure\#>
2 http://www.example.org/materialXY/info.rdf\#materialXY101 mp:

primaryStructure http://www.ps.materialXY101/ .
http://www.example.org/materialXY/info.rdf\#materialXY101 mp:

secundaryStructure http://www.ss.materialXY101/ .
http://www.example.org/materialXY/info.rdf\#materialXY101 mp:name

materialXY101 .

14

1.4 Background

The listing above shows three RDF triples consisting of a subject, predicate and an
object. A SPARQL query offering the name of the given material by comparison of
the primary structure in the RDF file is extracted by use of the following SPARQL
query:

1 @prefix mp: <http://hlrs.de/ns/materialstructure\#>
SELECT ?materialName
WHERE

{
?primeStructure mp:primaryStructure "http://www.ps.materialXY101/"

6 ?primeStructure mp:name ?materialName
}

Variables are initiated by use of a question mark and the SPARQL query makes use of
the prefix as well. The output of the SPARQL query is the name of the material with
the fitting primary structure and prefix defined by the URI:

materialXY101

When thinking of more complex queries a SPARQL query can be extended by adding
more parameters in the SELECT command or more constraints in the WHERE condi-
tion. Nevertheless, the example above demonstrates the usability and vital necessity
for performing queries on given semantic data sets. The use of a common query lan-
guage such as SPARQL a simple use of the semantic data becomes possible.

1.4.2 Required Strategy

A strategy handling large scale ontology matching for forward-chaining based rea-
soning tasks by use of distributed resources is required. Thus, the performance and
efficiency problem in the scope of the ontology matching area is solvable. For this, first
of all current ontology matching tools and frameworks are elaborated. Furthermore,
the current state of ontology matching approaches is analyzed in order to expose the
benefits and drawbacks of the different methods. Additionally, the elaborated ap-
proach has to deal with distributed computing resources for distributing the match-
ing approach in a HPC environment.
The ontology matching is performed by identifying similarities in different data sets,
the ontologies. Thus, a selection of relevant ontologies has to be defined as a founda-
tion for an adequate matching. For ensuring that the matching approach is performed
on a beneficial set of ontologies homogeneous ontologies are selected. Nevertheless,
it is possible to use heterogeneous ontologies but this might cause a not useful gener-
ation of matching results due to the fact that the set of used ontologies is too different
in terms of the content. Therefore, the ontology matching strategy need to support a
selection of homogeneous ontologies.
Furthermore, the matching strategy needs to clarify which aspects of the ontologies

15

Chapter 1 Introduction

from the set are taken into account. For instance, an ontology contains concepts, fea-
tures and values, relations between the concepts and rules. The required strategy has
to face the challenge of comparing several aspects of ontologies and the creation of a
matching result through a specific measurement defining the grade of similarity be-
tween matched entities.
When thinking of the requirements of the ontology matching strategy, the fact that the
matching might be performed in a restricted time frame has to be considered. More
specifically, the matching strategy takes into account distributed computing resources
for dealing with complex and compute intensive matching tasks. The ontology match-
ing needs to deal with large amounts of semantic data and therefore, needs to take
into account strategies for increasing the effectiveness and scalability by use of HPC
resources for enabling reasoning tasks based on the produced ontology matching re-
sults. This work examines this strategy and is made up beside a general introduction
to the following chapters:

• Chapter 2: Background and Requirements. The research background is pre-
sented by identifying requirements of real world scenarios. The requirements
are used at a later step for evaluating the results of this work.

• Chapter 3: State of the Art. In this chapter the latest strategies and approaches
related to ontology matching approaches are examined by consideration of avail-
able tools and frameworks. It provides an overview of approaches useful for the
approach developed in this work.

• Chapter 4: Ontology Matching. This chapter defines the ontology matching ap-
proach based on the state of the art analysis. Besides the matching, the complete
ontology matching lifecycle is defined.

• Chapter 5: Distributed Ontology Matching. Based on the ontology matching
approach, this chapter concludes in an improved ontology matching approach
usable in a HPC environment. The presented distributed ontology matching
approach will enable a forward-chaining based reasoning using the matching
results as the needed available data.

• Chapter 6: Improvements for Use Case Scenarios. The proposed distributed
ontology matching approach is applied to the use case scenarios in order to
prove the applicability and usefulness. In this context, the efficiency is measured
on a single machine and by use of allocated HPC resources.

• Chapter 7: Conclusions. Finally, this work concludes in a summary of reached
results, limitations and recommendations for the future.

Through identifying and implementing a required strategy for matching large scale
ontologies, a novel concept will be demonstrated being a connecting factor for further

16

1.4 Background

research and developments.

17

Chapter 1 Introduction

18

Chapter 2

Background and Requirements

2.1 Background and Requirements

This section covers requirements from real world scenarios by analyzing one general
purpose and two specific use cases. They are the foundation for this work and thus,
they will be presented in an extensive context considering the given research back-
ground. Additionally, the requirements will be evaluated in chapter 6.
The three use case scenarios address the following topics:

• Automotive Engineering (customized UC): Supporting the automotive engineer-
ing process postulates a good knowledge regarding development processes and
required materials.

• Legal Rule Analysis (customized UC): Comparing legal rules from a complex
linked knowledge domain for providing results being additional legal informa-
tion for a specific case.

• Linked Web Data (general purpose UC): Linked data sets are available for sev-
eral domains such as weather data collected via sensors.

2.2 Automotive Engineering

2.2.1 Background

Nowadays, large data amounts are usable via the web, databases or further data
stores. Lots of them are semantic data expressing certain meanings. When thinking of
engineering work processes, we need to distinguish between relevant data from var-

19

Chapter 2 Background and Requirements

Figure 2.1: Graphical Excerpt of an Ontology for Managing Working Processes in the
Automotive Sector

ious data sets. For instance, Syldatke et al. [35] have presented an approach for iden-
tifying and processing semantic data stored as ontologies for supporting and acceler-
ating test phases of car components or management structures for work processes. In
this sense, ontologies are useful as knowledge base for managing work processes, the
nature of specific materials or the definition of certain terms from required domains
such as the automotive sector or HPC terminology needed for simulation purposes.
A graphical example of a management ontology for work processes from the auto-
motive sector is presented by Schraps et al. [36]. Figure 2.1 presents an excerpt of
such an ontology based on Schraps graph based relation model for roles in a work
process. Such a relation model is not only used to present management structures but
to identify expert knowledge, competences and roles being related to specific work
processes.

The ontology presented in this figure presents RDF Triples, described in the follow-
ing.

?person="John Doe" hasCompetence ?competence="Knowledge Management".
?artifact="AP7 Documentation and Reporting" addressesCompetence
?competence="Knowledge Management".
?SIO="John Doe#2" usedResoure ?person="John Doe".
?SIO="John Doe#2" hasArtifact ?artifact="AP7 Documentation and
Reporting".
?SIO="John Doe#2" hasRole "contributes".
?SIO="John Doe#2" hasRole "responsible".

Based on the ontology for managing working processes, a structure is composed iden-

20

2.2 Automotive Engineering

tifying the relations and presenting a semantic rule for described competences.

<rule name="has competence" type="property">
?person[prop#has_competence->competence] :-

?person[prop#used_resource->?person]
AND ?SIO[prop#has_artifact->?artifact]
AND (

?SIO[prop#has_role->"responsible"_string]
OR ?SIO[prop#has_role->"contributes"_string]
)
AND ?artifact[prop#addresses_competence->?competence].
</rule>

The semantic rule is derived from the underlying ontology and enables reasoning
tasks for exploring and presenting an excerpt of specific required knowledge, i.e. skills
and responsibilities of an employee related to selected work processes. In the given
example, a conclusion drawn based on the ontology is, John Doe is performing work
in a specific artifact AP7 documentation and reporting and he has the required compe-
tence in knowledge management. Further conclusions can be drawn similar, by adapting
semantic rules to the given knowledge base. Such a proceeding is called reasoning, it
is based on two main pillars, the knowledge base and the semantic rules. This work
targets the first pillar, the knowledge base being ontologies, for ensuring a reliable
high quality knowledge base being the foundation for customized reasoning tasks.
The amount of diverse ontologies with various structures makes the selection of ad-
equate information very complex. Additionally, the amount of available relevant in-
formation in a given research field becomes more sophisticated due to billions of RDF
triples. This leads to the question, how to process such amount of information in
an efficient and scalable way and how to utilize only necessary information. When
thinking of reasoning tasks, the amount, type and structure of information stored in
ontologies is relevant for reasoning processes. A reasoning task performed on a well
structured data set being closely related to the theme of the query is much more effi-
cient than querying an unknown and large data store. This implies two big problems,
the selection and matching of relevant information and the applicability of the pro-
vided information by performing reasoning tasks. Nevertheless, the ontology match-
ing is focused in this work but by consideration of the matching results usability for
reasoning tasks.

A selection of ontologies from a known set is recommended for concentrating on rele-
vant ones and further, to avoid using competing ontologies with opposing content. In
case an ontology has a very low priority for the specific use case scenario, an inclusion
in the information selection process will have a negative impact regarding the over-
all performance and the results quality. In such a case the provided knowledge base
would be broad through not required data which would increase the reasoning effort

21

Chapter 2 Background and Requirements

Figure 2.2: User from the Engineering Domain

Figure 2.3: Ontology Selection

when performing reasoning tasks. Further, the risk of selecting false data increases
due to additionally included irrelevant or not fitting data and thus, the reliability of
produced results would decrease.
Generally, the main issue for an expert is to receive information based on the provided
knowledge base regarding a specific research issue, presented in figure 2.2. Beyond
this, the provided information need to be available allowing an expert to receive re-
quired information by submitting a query based on the ontology. In the scope of this
work, an ontology matching approach usable in the HPC domain will be elaborated.

2.2.2 The Concrete Scenario

Today lots of semantic data from different domains are distributed all over the WWW.
Thus, a researcher needs to know the semantic data locations fitting to the domain of
interest. The ontology locations can be stored in an ontology registry, e.g. a meta
ontology, a database or a website pointing to the domain specific ontology locations.
Thus, first a researcher needs to select an ontology set appropriate for further knowl-
edge capturing processes. The ontology selection phase is presented in figure 2.3.

22

2.2 Automotive Engineering

RDF Triples (NQuad) Data Size in KB, MB or GB
89 2,5 KB
16.516 293 KB
804.375 7,5 MB
19.655.239 165 MB
80.596.583 1010 MB
198.090.024 4,5 GB
808.977.190 7,1 GB

Table 2.1: Selected RDF Triple Sets of the Billion Triple Challenge

In order to ensure the scalability for reasoning tasks using a wide spread set of on-
tologies, distribution techniques are relevant for improving the ontology matching in
order to provide reliable data. Through distributed matching processes lots of com-
parisons between ontologies can be processed at same time. When thinking of the
automotive scenario this is a quite important issue due to the possibility to match a
source ontology containing data regarding skills, roles and competences with target
ontologies providing data regarding work processes. Such a matching identifies sim-
ilarities between the source and the target ontologies and will be able to provide a
knowledge base containing a customized set of semantic data fitting to an individu-
ally selected work process. Such a proceeding ensures the usage of necessary semantic
data instead of a broad data set.
The data sets can include a few up to billions of RDF triples. The data sizes vary from
KB up to MB or even GB as already presented by figure 1.2 and table 1.1. The data
size of the RDF triple set is easy to handle but the matching processes performed on
such data sets are computing intensive. Nevertheless, the billion triple challenge pro-
vides large data sets and identifies approaches usable for processing RDF triples up
to billions of RDF triples. A set of example data taken from the billion triple challenge
is presented in the table 2.1 [37]. The RDF triples are notated in the NQuad notation
being RDF triples extended with an extra entity for defining a context.

The Billion-Triple challenge [38] gives an overview of data sizes for semantic data.
However, the data size becomes even more computing intensive when the RDF triples
are matched. Hence, it need to be distinguished between the data size of the RDF
triple stores and the data size when performing comparisons between the RDF triples,
the data produced through calculations for assertions. Table 2.1 presents the data size
of the RDF triple stores used for performing matching operations. The data set of
the billion triple challenge includes approximately 1,14 billion matched statements in
2011. Therefore, it can be assumed that a size of a billion of different semantic state-
ments is a large data set. The matching of such data sets is a time consuming task
due to the need of comparing all selected RDF triples with a source for comparison.
However, the definition of an acceptable period of time depends on the use case re-
quirements and the instancy of the required results. The given use case expects that
the results are required in a short period of time. For this, an effective approach for

23

Chapter 2 Background and Requirements

matching and querying information in several ontologies combined with the needed
computing resources is a useful strategy for supporting a reasoning among large data
sets based on several ontologies. When thinking of large data sets execution times
for performing a matching vary from milliseconds up to hours or even days. Match-
ing thousands of RDF triples can take several hours or even days depending on the
performed matching procedure. Moreover, matching millions up to a billion of RDF
triples is a task often not executable on current single computers due to a too long
execution time or even a not sufficient computational power. However, the execu-
tion time of matching RDF triples is strongly influenced by the selected matching
approach. Thus, the main issue of this work is to provide an effective matching ap-
proach taking care of execution times.
The presented use case considers data sets used as knowledge base for performing
queries. Out of the data sets an expert is enabled to receive new information by match-
ing the already known data in the selected ontologies for generating a customized
knowledge base and afterwards, execute a reasoning task by querying the matching
results. The new information are stored in an alignment list which is an ontology. The
matching is performed by use of a priority ontology as a source for further match-
ing tasks with target ontologies. The priority ontology is selected by an expert from
the known set of ontologies. During the matching, the information stored in the se-
lected ontologies are matched with the information of the selected priority ontology.
This ontology is updated during the matching by adding new information or updat-
ing existing concepts or relations between concepts with new matching results in an
alignment list. However, it need to be considered that only matching results with a
strong relation to the domain of interest are relevant for the later on performed reason-
ing. The updated knowledge base, alignment list, is the foundation for the reasoning
task.
After updating and enhancing the alignment list, the risk of having produced non
coherent results is not resolved yet. This is crucial because the same term in two
compared ontologies might have different meanings. Further, a false matching result
enables false inferences. However, the risk that different meanings of same terms are
not considered by the automatic matching approach needs to be addressed as well as
the risk of producing wrong results. To avoid such a mismatch an additional compar-
ison of the terms and relations in the ontologies needs to be performed. A solution
for checking the terms and relations of the selected ontologies is highly recommended
for enabling an expert to execute the reasoning process based on a reliable knowledge
base.
When thinking of an expert needing new information for work processes, the nature
of material used for manufacturing or HPC terms relevant ontologies contain infor-
mation about the organization of specific work processes, material properties or HPC
terminology for simulations. To ensure a matching of large data sets as well as the
consideration of a high amount of assertional data produced via the matching proce-
dure in an acceptable period of time, the distribution of effective matching procedures
in a HPC environment is elaborated.

24

2.2 Automotive Engineering

2.2.3 Identified Requirements for Automotive Engineering

The following main issues regarding this use case are relevant to fit the use case spe-
cific requirements.

• Offering an improved base for reasoning through considering various ontolo-
gies related to a certain domain, e.g. skills, competences, roles, work processes
and material properties.

• The matching of semantic data and even large data sets are the main goal. For
this, distribution techniques are used. Large data sets such as billions of state-
ments as identified in the billion triple challenge or the large triple store need to
be handled.

• The enabling of an expert to perform reasoning tasks by use of a single priority
ontology matched with several target ontologies from a known set. This step
produces updated alignment lists used as ontologies by the expert.

• The expert is in the need of receiving information from a certain domain. How-
ever, the information is distributed among several ontologies so that the content
might overlap within the ontologies or gaps will appear. Through a matching
and merging of the selected ontologies in the alignment list a single ontology
is available including all relevant data from the selected ontology set usable for
reasoning. The expert is enabled to send the request to the produced alignment
lists with the aim to receive the required information. The expert has to follow
two steps:

1. select relevant ontologies and define the priority ontology.

2. execute a reasoning task by use of the produced alignment lists as knowl-
edge base.

The expert is supported by alignment lists including relevant information re-
garding the specific needs for the selected research domain. The alignment lists
are produced through the ontology matching. At this point an effective match-
ing approach is strongly required in order to provide the alignment lists used as
the foundation for enabling reasoning tasks.

Table 2.2 identifies the specific requirements of the ontology matching for this HPC
use case scenario.

Req. No. Definition Use Case Example

25

Chapter 2 Background and Requirements

R1 Domain knowledge Knowledge about useful do-
main ontologies including infor-
mation regarding the location,
domain, type, structure and
data size. A website, meta on-
tology or database that links to
related ontologies (e.g. ontolo-
gies about skills, competences,
roles, work processes or mate-
rial properties).

R2 Finding RDF structure Finding an RDF structure us-
able for the selected ontologies.
Several ontologies with differ-
ent topics will be used, e.g. de-
partments and experts of a com-
pany, production processes and
required work materials. The
different ontologies need to be
compatible in their structure.

R3 Large data sets Management of large data sets
ensuring an effective matching
procedure for billions of RDF
triples. The billion triple chal-
lenge or large triple store.

R4 Validity check Validity check of matching re-
sults ensuring a high quality of
produced matching results. The
matching results are checked
through a validation related to a
specific domain.

R5 Maintenance of Result Lists Maintenance of result lists us-
able as single ontologies as a
foundation for performing rea-
soning tasks using query lan-
guages such as SPARQL. The ex-
pert makes use of a single ontol-
ogy covering questions regard-
ing a certain domain.

26

2.3 Legal Rule Analysis

R6 Similarity levels Applicability of a reasoning task
through distinguishing different
levels of similarity between the
matching results for providing
best fitting result lists to the ex-
pert. The result list is used as a
foundation to execute reasoning
tasks.

R7 Time efficiency Clarification of the time when
the computing resources have to
be available. Usually, the se-
mantic data need to be available
on demand.

R8 Information topicality Life time period for validity of
information. An user needs in-
formation until a certain point of
time. In case of a delayed receipt
the information are not valid or
no longer required.

R9 Computing resource allocation The allocation of computing re-
sources is part of the scenario
and hence this step is also re-
stricted in time.

R10 Computing resource configura-
tion

The selected HPC infrastructure
has to fit to the specific needs of
the customer.

Table 2.2: Requirements for Automotive Engineering

2.3 Legal Rule Analysis

2.3.1 Background

Todays legal regulations are defined in huge collections of structured paragraphs dis-
tinguishing between several law areas such as the civil code or criminal laws. Espe-
cially legislative texts have a very well-defined terminology and a clear systematic.
The German civil law manages legal issues between legal persons or between a le-
gal person and an entity. Attempts were performed to digitize such paragraphs in
a computer readable way, firstly making legal texts available as online resource and
secondly structuring them using standardized formats, e.g. using XML or more with

27

Chapter 2 Background and Requirements

more expressiveness, RDF data as presented by Schönhof et al. [39]. However, the
idea of digitizing and exploiting legal systems is old as the first related papers are
dated back to the fifties [40]. Until now, several attempts were performed for describ-
ing legal knowledge using semantic web languages [41]; most of them being abstract
models not implemented. Since a few years, German law texts are online in the web
as texts and structured as XML files [42]. The center of the German law system is
the German civil code (BGB) managing, as above mentioned, issues between legal
persons and further legal persons or entities. It described the fundamental legal defi-
nitions using ongoing numbered paragraphs being subdivided to articles, sub articles
and even smaller units of texts.
The amount of legal issues defined and presented in a law framework reaches a vast
number of paragraphs and articles. Looking at the paragraphs included in the Ger-
man BGB, the total number is a few thousands divided by smaller text units as arti-
cles, sub articles, half sentences and so forth. Further, due to permanent updates and
extensions of a law framework the concrete amount of paragraphs cannot exposed
readily. Between 2009 and 2013, Germany resolved 553 federal laws [43] and much
more federal state laws. Thus makes it hard to figure out the required paragraphs
manually. Further, when thinking of an automated process for finding required infor-
mation from law related data this process could easily exceed hardware resources of
a common PC or cause long waiting times, e.g. a full working day or more.
Regarding the legal rule analysis, the civil code and criminal laws are the knowledge
base used for providing relevant information. The continuously growing amount of
law texts being related to each other leads to a complex linked data set being express-
ible as ontologies. The links of a law ontology are given by direct references to law
paragraphs, sentences, words and so forth, and indirect through the meaning of en-
tities. Especially, the indirect references given through meaning of entities requires a
method for analyzing the meaning of those and match them with further law ontolo-
gies. Thus, a matching of law ontologies will examine the given knowledge base and
provide useful results as a base for further reasoning processes.

2.3.2 The Concrete Scenario

The concrete scenario aims at an approach to compare law texts by using structured
RDF data for supporting users with additional legal information for a specific case.
Hence, a brief introduction of law systems based on the German law is given. Fur-
ther, when comparing law paragraphs relations between the paragraphs are empha-
sized due to the fact that law texts are not presented as collections of isolated rules
but a highly context sensitive network. The complexity of this network is increased
through the attempt to reduce repetitions as well as the use of an abstract wording.
Focusing on the German law (BGB), it is divided into five chapters divided according
to different aspects of law (general basic rules, obligation rules such as rules for contracts,
property rules, family law and succession law). This brings in another complexity because

28

2.3 Legal Rule Analysis

Figure 2.4: Graphical Excerpt of a Law Ontology based on the BGB

a specific case might be regulated by several laws from different law areas. In such
a case the more specific law overrules the more general one or a recent law displaces
an older one. This implies a permanent domain independent interaction of rules. The
relations between laws is compounded by named references or abstract concepts, e.g.
specialist terms. Generally, the relation quantity of a legal system is very vast.
Based on the given facts, an automated matching of law texts would support experts
with additional information for specific cases. For instance, when searching for law
texts related to a given scenario, law texts from other statue books might be relevant.
For avoiding a query performed on all available statue books an ontology matching
using the law ontologies identifies individually necessary law texts. Those identified
law texts will be used as knowledge base for further tasks. In addition, a term de-
scribed in a law paragraph could be related by its meaning to another term. When
thinking of the amount of available law texts and the continuously growing amount
of law texts, it becomes more and more difficult to identify related meaning of terms.
Experts, being non-jurists and jurists, would benefit from a set of provided case spe-
cific law paragraphs offered automatically by an examining and matching procedure.
Such a matching between law and general purpose ontologies will examine the mean-
ing of entities used in a law ontology. However, matching procedures for identifying
required knowledge are complex calculations and can take several hours. Thus, this
process might block progress for a full working day. A graphical excerpt of a law
ontology generated from the BGB is presented by Schönhof et al. [44] in figure 2.4.

29

Chapter 2 Background and Requirements

2.3.3 Identified Requirements for Legal Rule Analysis

The following requirements are identified based on the above scenario.

• An expert requires matching results of several law paragraphs being related to
a specific case. This requires the matching of appropriate data. Further, for
matching the data in an automated way they need to be structured.

• In addition, due to the complexity of law paragraphs, the matching procedure
needs to be able to deal with thousands of law paragraphs. Beyond the data size
the complexity of the data is increased by the vast amount of relations between
entities. Further, the relations are identified by explicit identifiers or a context
sensitive identifier such as specific terms in a text.

• Legal rules are continuously updated and extended thus it has to be assumed
that the matching needs to be performed continuously as well. More detailed,
a law matching needs to be performed for each given case for ensuring using
latest updates. This implies a time dependency.

• The more law paragraphs need to be matched the more crucial becomes the
time dependency issue. Further, the required matching time is influenced by
the matching configuration, e.g. allocated computing resources, size of data set,
matching procedure details, etc.

• The structured data are domain specific in terms of being law paragraphs but it
needs to be distinguished between different areas of legal rules. However, the
structure of the used data is homogenous.

The above identified use case requirements for the legal rules analysis use case sce-
nario are listed in the table 2.3. For avoiding duplicated requirement items, those
being relevant for this use case scenario but already presented in the previous pre-
sented automotive engineering use case are not listed in this table. These requirement
items are R3 - R9 2.2.

Req. No. Definition Use Case Example
R11 Homogenous data structure In contrast to the automotive en-

gineering use case scenario the
data structures are highly ho-
mogenous due to similar do-
mains.

R12 Highly linked data A vast amount of relations be-
tween entities.

30

2.4 Linked Web Data

R13 Context sensitive relations The relations between entities
are labeled through explicit
identifiers and context sensi-
tive identifiers resulting from
specific terms.

R14 Expert support An expert being a jurist or a non-
jurist needs to be supported be-
cause of thousands of available
legal regulations.

Table 2.3: Requirements for Legal Rule Analysis

2.4 Linked Web Data

2.4.1 Background

When thinking of data sets available in the WWW such data are often linked data.
Linked web data attracted attention due to vast amounts of relations pointing to sev-
eral entities. Further, data might have a homogenous or heterogeneous structure and
additionally domains might vary greatly. Linked web data are referring to Linked
Open Data (LOD) being a fundamental part of the semantic web. In addition to linked
web data, linked open data are freely available. Such data are available as RDF data
sets. For instance, the Linked Life Data (LLD) platform [45] is a data-as-a-service plat-
form providing access to biomedical data structured as RDF data distinguishing be-
tween a basic access for freely available use of the linked data and a premium account.
Additionally, the linked data web site [46] provides access to linked data in the web
and it is related to the linked open data project [47]. Key issue of these initiatives are
the idea of linking structured data via URIs or RDF structures across the WWW. For
finding alignments between RDF data sets effective comparison methods are crucial
for matching RDF data distributed in several domains. Generally, LLD are available
for instance for dynamic sensor data (e.g. weather forecast), biomedical data, etc.
Linked web data are semantic data provided as ontologies. Through different do-
mains and focuses of the ontologies as well as the large amount of links a matching
of the ontologies in order to provide a specialized knowledge base is a complex task.
Thus, matching procedures for ensuring a high quality of results need to be able to
handle vast amounts of matching iterations due to the high amount of links.

31

Chapter 2 Background and Requirements

2.4.2 The Concrete Scenario

In the concrete use case scenario related to LLD, dynamic sensor data for weather
forecasts are highly relevant. Those data sets are related to weather focusing on hur-
ricanes or blizzard observations. The complete set of data contains nearly 1.7 million
RDF Triples [48], [49] to be taken into account for calculations. A data analysis of
those sets requires resources capable for enabling such analysis, e.g. for comparison
of collected sensor data, etc. Usually, the LLD are structured as several RDF chunks
grouped as RDF triple stores. The RDF chunks are pointing to other RDF chunks in-
cluded distributed RDF triple store. The LLD comparison enables the identification of
sensible segmentation. This scenario leads to questions such as how to distribute the
work load when matching several RDF chunks at same time. The links between the
RDF chunks are crucial and a matching across the borders of segmented RDF chunks
is important for including relevant links and pointers.
In addition, ontologies are developed in different languages and structures. For deal-
ing with ontologies created in different languages, a transformation of the ontologies
into the same language is required. This issue counters the fact that a transformation
might cause a loss of data and therefore information or data are transformed wrong.
Hence, a reliable strategy for the transformation of ontologies is highly recommended.
In case of a different structure of ontologies an expert needs to be involved in order to
analyze if the selected ontologies are compliant enough for a matching.
The level of involvement of an expert into the ontology matching strategy is another
issue to be discussed. The overall idea is to support an user performing an ontol-
ogy matching using linked web data to enable reasoning task based on the provided
matching results being the knowledge base.

2.4.3 Identified Requirements for Linked Web Data

A linked web data scenario usually is in the need of handling results from an on-
tology match containing several domains of interest. Often the matching methodol-
ogy is based on big data sets and producing large amounts of assertional data when
performing matches. Thus, it is of high importance to provide an effective match-
ing methodology capable to deal with large scale data. In addition, a distributed or
high performance computing environment provide such an approach with required
computing resources. However, such a proceeding includes scheduling strategies for
computing resource allocation. Those resources are the required infrastructure to deal
with big data issues.
Besides the already identified requirements the following issues need to be considered
when thinking of a linked web data scenario.

• Data sets are linked thus it needs to be ensured that the linked data locations
are identified and that the used data fit in terms of used ontology language and

32

2.4 Linked Web Data

structure.

• The linked data can point to data sets from another domain thus the consistency
need to be ensured. This issue might require the transformation of ontologies.

• The matching of used linked data sets is complex and time consuming. A distri-
bution of the matching procedure can increase the overall performance.

• Beyond the technical aspects, the matching procedure needs to be understand-
able by experts to allow an expert interaction with the matching process. Also,
an involvement of an expert into the matching procedure needs to be consid-
ered.

Besides the already identified requirement items of the previous sections, additional
ones are defined in table 2.4.

Req. No. Definition Use Case Example
R15 Identifying RDF chunks It needs to be elaborated which

RDF data from a RDF triple
store need to be used for the
matching procedure.

R16 Cross-border matching When matching the LLD chunks
the relations and links to other
RDF data chunks need to be con-
sidered.

R17 Distributed matching The RDF chunks need to be
distributed by consideration of
R11, R12 and R13.

R18 Transformation of ontologies Ontologies might be created in
different languages. For per-
forming a matching with dif-
ferent ontologies a transforma-
tion of the used ontologies into
one joint language is required by
considering the risk of losing or
producing wrong data.

R19 Expert involvement The level of involvement of an
expert to the ontology match-
ing process needs to be defined
by considering a user friendly
approach supporting an expert
with an efficient and reliable on-
tology matching approach.

Table 2.4: Requirements for Linked Web Data

33

Chapter 2 Background and Requirements

2.5 Conclusions and Categorization of the
Requirements

The described use case scenarios lead to specific and general requirements. This re-
quirements have to be fulfilled through useful strategies such as distribution of match-
ing processes on several computing resources or involving HPC resources as well as
a strategy for matching ontologies in a scalable and effective fashion for ensuring a
convenient reasoning. The ontology matching results being the knowledge base are
the foundation for a reasoning performed by an expert. In addition, the aim of the
ontology matching is identifying and providing semantic data being related to a spe-
cific scenario. In this sense, an individually customized ontology provides experts
with necessary data being the knowledge base instead of a wide range of data. The
set of requirements is listed in the tables 2.2, 2.3 and 2.4. A major issue of this work is
dealing with complex calculation processes arising through performing an ontology
matching. As it will be presented in this work, an ontology matching process can take
a complete working day or more and thus block substantial working progress.
This work targets a fulfillment of the elaborated key issues by considering existing
approaches by a state of the art analysis 3. Further, the listed requirements will be
analyzed and evaluated in chapter 6.

34

Chapter 3

State of the Art

3.1 Ontology Matching Approaches

When thinking about the ontology matching research area, various approaches with
different advantages and disadvantages can be used. For instance, Tao et al. de-
scribing ontologies as simple computational models based on super- and sub-class
relationships [50]. Under that condition Tao et al. elaborating an approach for on-
tology mining taking into account semantic relations in ontologies such as part-of,
kind-of and related-to for extracting information gathered from a keyword-based and
a subject/concept-based proceeding. A fundamental essence of the analysis done by
Tao et al. is the division of a subject and a relation in an ontology.
An ontology connects a distinct set of subjects by means of concepts. The connections
between the concepts define a relationship among the concepts and in addition, the
type of relation between concepts by defining rules such as is-a or has-a labels. Follow-
ing this assumption, the next sections present existing ontology matching methods.

3.1.1 Information Retrieval

Karlgren et al. [51] present an overview of Information Retrieval (IR) standard meth-
ods for matching procedures in a text representation. For this, first a specified text
is analyzed, and afterwards a query is build by analyzing a specific information re-
quest. In this standard view of information retrieval, text is defined as a repository
and transmitter for human knowledge. In order to enable an information system to
retrieve the required information the system needs to access the selected text, analyzes
and represent it. The system needs to receive an information request, analyze it and
construct a query. Thus, an information system is enabled to perform a matching pro-
cedure between the text representation and the query. Baeza-Yates et al. [52] present
the information retrieval approach in little different but similar way by identifying
eight steps:

35

Chapter 3 State of the Art

1. Information need: An information is required.

2. System selection and collection: A system is selected as well as a collection of
documents needed for the retrieval of information.

3. Query construction: A query is constructed in order to retrieve information rel-
evant to the query.

4. Query send: The query is send to the system.

5. Results receive: The results are received as information items.

6. Results interpretation: The results are scanned, evaluated and interpreted based
on the previously defined query.

7. Stop and check: The procedure stops or the next step is performed.

8. Query Update: The query is modified and step four is started again.

Both presented approaches are similar, a collection of documents containing the con-
tent needing to be identified and further, build a query. Following this, the query is
used for receiving relevant information.
In general, an information system needs to reduce the amount of available informa-
tion in order to make the text representation manageable and further, it needs to deal
with vagueness, ambiguities and indeterminacy inherent in human language. Hence,
two main challenges for information systems using information retrieval methods are
identified as follows:

1. Focusing on relevant information: Reducing available amount of information by
not disregarding relevant information.

2. Exposing meaning in text: Dealing with obscurities of human language by de-
termining meaning in a text.

An information system as described above enables a matching between selected texts
and a query. However, two challenges have to be solved in order to produce useful re-
sults out of the matching procedure. For this, probabilistic methods and vector based
approaches, as proposed by and Landauer et al. [53], Salton et al. [54] and Schütze
et al. [55], give a hint on how to deal with these two issues using an automated sys-
tem. We will take a closer look to vector based approaches in the next section 3.1.2.
The probabilistic method is summarized by Singhal [56] with the aim to clarify the
probabilistic strategy in the information retrieval area. At this, the base idea is to rank
documents of a collection by comparing them to a specific query of relevance, the so
called Probabilistic Ranking Principle (PRP) [57]. After performing this step, the infor-
mation retrieval model estimates the relevance of a document based on the produced

36

3.1 Ontology Matching Approaches

probability through applying a ranking strategy. Hence, a probabilistic based estima-
tion of the document relevance is used to make an assumption about the pertinence
of a selected document.
The scope of information retrieval is about receiving knowledge structures out of a
set of information, e.g. text, documents or graphics. However, the integration of in-
formation is an important issue formalized by Lembo et al. [58].

< G, S, M >

Whereas, the meaning of the Variables is as follows:

• G is a global schema that is expressed in the global language LG by usage of the
alphabet AG. LG determines the expressiveness allowed for specifying G

• S is a set of local schema that is modeled in the source language LS by usage
of the alphabet AS. When thinking of a global schema AS determines the set of
constraints that can be defined. Further, AS is disjoint with AG.

• M is the mapping of G and S

The described data integration definition is used for information retrieval approaches
for receiving data from a target data set in order to integrate and therefore enhance a
source data set. In this case it becomes possible to integrate the local schema (target)
into the global schema (source). Moreover, the definition of the triple < G, S, M >
allows a generalized data integration from a target schema into source schema.
Su et al. [6] exposing an ontology mapping definition enabling a matching between a
source and a target ontology.

Definition 1 (Ontology mapping model). An ontology mapping model is a
5-tuple [S,T,F,R(s1, t1), A] where

• S is a set composed of logical views (representation) for the elements
in source ontology.

• T is a set composed of logical views (representation) for the elements
in target ontology.

• F is a framework for representing ontology elements and calculating
relationships between elements in the two ontologies.

• R(s1, t1) is a ranking function which associate a real number with an
element s1 ∈ S and an element t1 ∈ T. Such ranking defines an order
among the elements in source ontology with regard to one element t1
in the target ontology.

• A is a set composed of mapping assertions. A mapping assertions is
a formal description of the mapping result, which supports further

37

Chapter 3 State of the Art

description of the exact nature of the derived mappings. It has the
following components:

– a pair of ontology elements,
– a type of correspondence,
– a degree of correspondence, and
– a set of sources of assertion.

Based on this definition the matching process between two ontologies is

described as S, T, F,R→ A. This leads to a method to receive content from a
target ontology in order to update a single source ontology.

As presented, the transformation of data from a target source, by use of a data process-
ing method, to a source data set is a challenge in the field of information retrieval as
well as for ontology matching approaches. Before stating out the current progress in
the area of ontology matching, vector based matching approaches used in the research
field of information retrieval are elaborated in the next section.

3.1.2 Vector based Matching Approaches

The random indexing approach belongs to the field of word space approaches. Karl-
gren et al. [51], Chatterjee et al. [59] and Sahlgren [60] exposing various techniques for
demonstrating the viability of representing word meanings as semantic vectors being
computed by usage of the co-occurrence statistics of words in texts.

The use of vector-based models of information for the purpose of repre-
senting word meanings in the area of research that has gained considerable
attention over the last decade.

Vector based models use words as ambiguous and non-exclusive items considering
only mathematical comprehensible facts. Further, key issue of semantic vector based
analysis is the assumption that words with similar meanings occur with similar neigh-
bors, assumed that enough text is compared ([51]). The differences of the approaches
in the field of vector based analysis is the different idea on how to perform the analy-
sis. One fundamental approach in the research field of word space approaches is the
Latent Semantic Analysis (LSA) approach using vector spaces as Landauer et al. [61]
presents:

LSA is a fully automatic mathematical and statistical technique for ex-
tracting and inferring relations of expected contextual usage of words in
passages of discourse. It is not a traditional natural processing of artificial
intelligence program;

38

3.1 Ontology Matching Approaches

The LSA approach considers raw text parsed into words defined as unique character
strings and separations of meaningful passages or only samples such as sentences or
paragraphs. Related to this raw text snippets, a matrix is created measuring the oc-
currence frequency of a word in a specific passage or sample. The values stored in the
matrix are indicators in a sense that they are mathematical useful values being pro-
cessed in an algorithm. Further, the mathematical values are connectors in a way that
they connect a word with a passage or sample by exposing the occurrence between
word and such a passage or sample. The described matrix consists of various cells
and each cell indicates the frequency of a context-sensitive word. This matrix is nor-
malized by logarithms for word frequencies and entropies of words across all selected
text sources. Through the transformation of the normalized matrix by using singular
value decomposition it becomes a much smaller matrix.
The LSA approach was referred as a base for further approaches related to the field
of word space approaches such as information retrieval, word sense disambiguation,
various semantic knowledge tests and text categorization. Further, the random index-
ing is an efficient and scalable alternative to the traditional word space methods. The
random indexing approach is divided into two steps:

1. Creation of the index vector: Each context, e.g. document or word, defined as an
unique index vector. The dimensionality d of the index vector has an order of
thousands.

2. Creation of the context vector: A text is scanned and every time the search term,
a word, occurs in the context, the context’s d-dimensional index vector is added
to the context vector.

In comparison with the LSA approach the random indexing approach generates a ma-
trix similar to the LSA word-by-document matrix whereas the words are the search
terms and the documents are texts selected for the word search. However, the ran-
dom indexing word-by-document is much more smaller then the LSA matrix because
of involving the index and the context vector. The random indexing matrix accumu-
lates a document’s vector to the row for a given word each time the word appears
in the selected text. Karlgren et al. [51] compare the LSA and the random indexing
approach:

By comparison, assuming a vocabulary of 60,000 words in 30,000 doc-
uments, LSA would represent the data in a 60, 000 × 30, 000 words-by-
documents matrix, whereas the matrix in random indexing would be 60, 000×
1, 800 when 1,800-dimensional index vectors are used.

The random indexing approach is a based on word space approaches as well such as
the LSA. In general the idea of using word spaces is to create a high dimensional vec-
tor space for words and further to construct a statistic that is used for the previously
mentioned vector space. When thinking of the vector space that is constructed by
providence of the previously statistic, this strategy follows the conception that if a set

39

Chapter 3 State of the Art

of words continuously appears in a text in the same context the meaning of the words
is the same. Through this, it becomes possible to validate the terms of the matching
result with a text document in order to verify if the terms appear in similar context. In
case there is a high accordance between specific terms, the probability that the mean-
ing of the terms is the same is very high. Nevertheless, the word space approaches
face the challenge of scalability and efficiency in case the dimension of the elaborated
vectors increases as stated out by Sahlgren [62]. The use of HPC resources covers this
challenge by use of high efficient computing infrastructure but a more fine grained
approach for dealing with this issue in order to reduce the amount of required com-
puting resources is recommended.
For this, the simple vector based word space approach is enhanced by using the
vector based random indexing approach creating models such as done by latent se-
mantic analysis (LSA) methods. Following this approach, first of all an extensive co-
occurrence matrix is created and then second a reduction phase of the co-occurrence
matrix is performed that limits the size of the used matrix. Within the reduction phase,
the occurrence of upcoming vectors of terms in a specific context is aggregated to accu-
mulated context vectors. Hence, the random indexing approach reduces the amount
of required computing resources to perform the validity check in the given period of
time.
Nevertheless, the vector based word space approaches are facing the problem of pro-
ducing useless results under the condition that the text documents that were used for
the analysis are leading to misleading results. In order to avoid the generation of not
usable results an expert has to perform a very fine grained selection of text documents
in order to receive adequate matching results. However, such a selection requires a
very good knowledge of the expert that is aware of the content of the text documents
and the term that is used as value for the random indexing. Through the involvement
of a human expert which such specific knowledge about the context of the terms and
text documents, it is questionable if the vector based word space approaches are use-
ful in an automated approach for producing reliable result. This issue counters the
problem of decreasing the overall performance by demanding a high effort from an
expert.

3.1.3 Data Mining

Data mining methods make use of automated data scanning techniques for specific
patterns, models or divergences. Especially a repetitive occurring of a certain pattern
can be recognized by data mining methods as stated out by Fayyad et al. [63], Witten
et al. [64] or Han et al. [65]. These methods are often statistical mathematical founded.
As we have seen in the previous section 3.1.1 information retrieval approaches make
use of data collections as well. Nevertheless, data mining and information retrieval
are two related but different disciplines. While the focus of information retrieval is
the receiving of information based on a certain query, the focus of data mining is the

40

3.1 Ontology Matching Approaches

recognition of particular patterns. However, information retrieval techniques might
use data mining methods as a base for collecting required data used for the afterwards
performed information retrieval approach.
Traditionally, data mining techniques are used to collect a specific kind of data by, for
instance, searching for a certain pattern within a data collection. Therefore, the data
collection methods are used for knowledge discovery, proposed by Fayyad et al. [66],
and for a statistical learning of machines, proposed by Hastie et al. [67]. The close
link between data mining and knowledge discovery becomes obvious when stating
out the need for humans to capture useful information (knowledge) held in large dig-
ital data sets. Following this approach one can say, methods for data mining can be
used to gain required knowledge from digital data. However, one vital problem of
combining the both fields of data mining and knowledge discovery is the mapping of
low-level data from the data mining procedure into other more complex forms. This
is an crucial issue when thinking of the need to provide human usable knowledge
from such a procedure. Nevertheless, the bridge between data and knowledge needs
to be gaped. Especially, when identifying knowledge as the end product constructed
out of data. This idea is presented by Piatetsky-Shapiro [68] by exposing knowledge
as the end product of a discovery based on data in a database. However, common
knowledge discovery strategies are presented in the next section 3.1.4. Beside the use
of knowledge discovery methods combined with data mining approaches, one pos-
sibility is the use of probability logic and the elaboration of relations between partial
implications between evidence and conclusion. Glymour et al. [69] are pointing out
various approaches for a statistical centered data mining by use of different probabilis-
tic based methods. Common data mining methods are presented in the next sections
such as a probability distribution (3.1.3.1), a gibbs sampling (3.1.3.2), a hypothesis
testing (3.1.3.3), a model scoring (3.1.3.4) and a rational decision making and planing
(3.1.3.5).

3.1.3.1 Probability Distribution

A data mining technique for collecting required data out of a collection is to use meth-
ods to measure the probability distribution of a certain pattern. Eskin [70] presents an
approach for detection of so called anomalies within a data set. However, Eskin refers
to a detection of anomalies within a data set of noisy data but the proposed method
is probabilistic based and therefore relevant for a probabilistic centered data mining
strategy. This strategy covers several steps for the anomaly detection such as model-
ing a probability distribution, the detection of the anomaly, applying such an anomaly
detection to a intrusion detection and detecting of anomalies in sequences of system
calls. The idea of probability distribution is presented by Jain et al. [71] as well by
presenting techniques for data clustering. Though, data clustering is used for group-
ing a set of entities into a collection, the cluster, so that the entities in each cluster are
more similar to each other than entities in other clusters. This grouping of entities
can be achieved through use techniques for identifying a distribution of probabilities

41

Chapter 3 State of the Art

by use of probabilistic clustering methods. In summary, probability distribution tech-
niques are used to identify the occurrence of certain probabilities over a set of data.
These proceeding enables an estimation of relevance for specific data patterns based
on the probability. A specific method for constructing and identifying a probability
distribution is the Gibbs Sampling method (3.1.3.2).

3.1.3.2 Gibbs Sampling

Gibbs Sampling is an algorithm for constructing a sequence of samples of joint prob-
ability distributions of two or more random variables. As presented by Gelfand et al.
[72] the Gibbs Sampling method is used for building marginal distributions by use of
a non normalized joint density. This understanding of Gibbs Sampling is as well pro-
posed in a former work by Gelfand et al. [73]. However, Gelfand et al. determine that
this understanding fails in case the Gibbs Sampling method is used as a technique for
fitting statistical models. However, the Gibbs Sampling can be used for data mining
by constructing the mentioned joint probability distributions.

3.1.3.3 Hypothesis Testing

Hypothesis testing approaches are based on the assumption that a hypothesis is true
or false. Such an approach is used in order to perform a statistical hypothesis test in
order to make an decision over data. Newey at al. [74] present a method for a large
sample estimation by use of hypothesis testing methods. For the strategy proposed by
Newey et al. they make use of Generalized Method of Moments (GMM) estimators for
testing hypothesis while the GMM estimators itself provide the required functionality
for estimations of parameters in statistical models. A former work related to this topic
is a hypothesis testing by use of moment estimations presented by Newey et al. [75].
Through the use of moment estimations it becomes possible to verify a hypothesis.
When thinking of hypothesis testing in the are of data mining, the aim to examine
hypothesis over a collection of data in order to identify relevant data and patterns is
one possibility to solve data mining issues.

3.1.3.4 Model Scoring

The model scoring approach presents an strategy for rating certain models or patterns
in a text in order to construct a probability value. This value is used for assumption
making regarding the relevance of a model / pattern to a specific topic of interest. Gly-
mour et al. [76] are describing the model scoring approach as a method for mapping
models by use of a numerical ordering over a set of models or given data. Through

42

3.1 Ontology Matching Approaches

the constructed order it becomes possible to make statements regarding the topic of
interest.

3.1.3.5 Rational Decision Making

Rational decision making strategies are often related to planing strategies as well.
However, the area of rational decision making can be used for data mining issues for
deciding which data to collect by elaborating rational decisions. Doyle [77] presents
an approach for decision making and refers to techniques beyond the field of data
mining such as reasoning whereas decision making is as well usable for data mining
issues. One fundamental goal of data mining is often the extraction of causal infor-
mation. This can be achieved through stating out cause and effect relations by use
of a decision maker. Such a decision maker deals with decision rules for identifying
relevant data out of a large data set.

The above described methods are common procedures for data mining. These meth-
ods are used to collect relevant data based on a data collection by identifying certain
data structures and specific patterns.

3.1.4 Knowledge Discovery

The knowledge discover process can be divided into the following five steps:

1. Selection: Data are selected from a data source and identified as target data.

2. Preprocessing: An initial processing is performed on the produced target data.

3. Transformation: The preprocessed data are transformed.

4. Data Mining: Data mining methods are used to identify certain patterns out of
the transformed data.

5. Interpretation / Evaluation: The last step produces the knowledge out of the
patterns.

These steps for knowledge discover can as well be adapted to a knowledge discovery
over databases as proposed by Fayyad et al. [78]. Within an database related knowl-
edge discovery approach the used data are stored in the database and the knowl-
edge discovery processes are adapted to this collection of data. However, when using
knowledge discovery strategies on top of a database a distinction between the knowl-
edge discovery and the data mining methods is required due to the fact that a data

43

Chapter 3 State of the Art

mining algorithm is used for identifying relevant data out of the database. Addition-
ally, knowledge discovery in databases is presented by Frawley et al. [79].

3.1.5 Overview of Ontology Matching Approaches

When thinking of reasoning the research field of ontology matching is relevant as
well. In this context Zhang [80] describes the advantage of ontologies and the se-
mantic web for representing information. Gal et al. [81] are elaborating the need
of ontology matching by matching of concepts with the aim to describe the mean-
ing of data by considering heterogeneous distributed data sources and considering
uncertainties in ontologies. Furthermore, when thinking of an ontology matching ap-
proach, this also refers to semantic matching. Fundamentals of semantic matching
as it is done by comparison of ontologies is given by Giunchiglia et al. [82]. Ad-
ditionally, Huang et al. [83] are presenting an overview about the use of ontologies
regarding bio-informatics through use of ontologies as formal knowledge representa-
tion models to offer knowledge to an expert. At this, ontology matching strategies are
required as well for supporting an expert with knowledge that is represented in the
ontologies of a various set of ontologies. However, Shvaiko et al. [84] are presenting a
brought set of ontology matching approaches within their work and pointing out the
fact that at current state lots of different ontology matching approaches are developed
by the research community as, for instance, the ontology alignment evaluation initia-
tive [85]. Hence, there is not a single approach available but different directions on
how to match ontologies. The use of one of these approaches depends highly on the
requirements of a specific use case scenario and the expected outcome of the individ-
ual work. Further, as Kalfoglou et al. [86] are describing the landscape of ontologies
and mapping tools has increased continuously. Commonly, trends for selection of a
specific ontology matching approach are noticed.
Due to the fact that various strategies for ontology matching have become more and
more elaborated in the last years ontology matching approaches will be considered
regarding this work as well. Some common approaches are listed below:

• A general analysis of ontology matching strategies, the large-scale evaluation of
alignments.

• Alignment management with the aim to increase usable infrastructure and sup-
port for matching methods.

• Analysis of performance of ontology matching techniques in order to find the
best fitting strategy.

• Discovering missing background knowledge to increase quality of ontology match-
ing by using techniques such as data or text mining.

44

3.1 Ontology Matching Approaches

• Managing ontology matching with uncertainties by the use of probability values
for matching results and dealing with fuzzy or noisy data.

• An ontology matcher selection out of a set in combination with a beneficial (self-
)configuration and improving by adapting automatically matching solutions of
such selected matchers.

• User involvement in case that additional information are required by the match-
ing application or improving results by an expert considering matching expla-
nations. The user involvement expects a Graphical User Interface (GUI) usable
by human beings.

• Simple and clear explanations of ontology matching results for an expert.

• Social and collaborative ontology matching by the use of networks of users
which are communicating to each other.

• Reasoning with alignments by adapting semantics to the ontology matching re-
sults and alignments.

• Schema matching approaches considering the structure of ontologies and the
use of certain ontology languages.

• Lexical matching comparing terms character by character.

• Comparison of relations to other entities or the relations itself with the aim to
reduce ambiguities by consideration of related entities.

The list of possible matching strategies illustrates the complexity of selecting a most
suitable strategy. Thus, the required strategy depends on the scenario and the require-
ments and challenges of a specific research field.

3.1.6 Ontology Matching with Probability Values

A current problem of ontology matching is resolving semantic heterogeneity among
information sources such as ontologies for information integration or interoperation.
As already stated out in the information retrieval 3.1.1, the data mining 3.1.3 and
knowledge discovery 3.1.4 sections a probabilistic measurement for constructing an
estimation of relevance for selected contents is a known method in such related scien-
tific fields. Sabou et al. [87] are facing the semantic heterogeneity problem by use of a
matching algorithm that includes probabilistic methods as well. In order to ensure a
heterogeneous result from an ontology matching approach, ontologies from different

45

Chapter 3 State of the Art

sources can be used. Furthermore, the use of probability values for the matching pro-
cesses enables an automated matching algorithm to make an assumption about the
grade of reliability for the received results. The use of probabilistic methods is useful
for handle uncertainties when matching ontologies.
In the following the ontology matching approach with probability values is described.
The measurement of similarities is described by Pirró et al. [88] as well. First of all, a
description of the necessity of a similarity measurement is presented.

• A measurement of the probability value indicates the strength of similarity, dis-
similarity, distance, ultra-metric or normalized (dis)similarity of two entities
(e.g. 0.31 = weak similarity , 0.98 = strong similarity)

• a probability value can be determined by comparing several ontologies and
comparison of similarity of two entities in all selected ontologies

• a measurement can also be determined by considering the path length between
two entities (minLength and maxLength)

Regarding the research field of ontology matching through the usage of similarity
and the mentioned approaches such as measurement of similarity strength and the
distance between similar entities as a measurement indicator, common relevant ap-
proaches are already available. When thinking of the identification of similarity val-
ues of compared entities first order logic should be considered. Through the usage of
first order logic assumptions regarding the strength of similarity are defined and com-
parisons between the entities are possible. Furthermore, the usage of Markov Logic
Network (MLN), which is closely related to first order logic, should be considered as
well. Niepert et al.. [89] are presenting a probabilistic-logical framework for ontology
matching that is based on Markov logic. For his they have figured out advantages for
using Markov logic:

Its main strength is rooted in the ability to combine soft and hard first-
order formula. This allows the inclusion of both known logical statements
and uncertain formula modeling potential correspondences and structural
properties of the ontologies.

Based on Markov logic it becomes possible to describe matching approaches and to
present an enhanced matching result between various ontologies in order to build an
enhanced ontology that includes the new Markov logic based alignment. Addition-
ally to that strategies for probabilistic reasoning in ontologies are identified by the use
of Markov logic for presenting the data of the ontologies and the matching results.
When thinking of ontology matching as a process for representing connections be-
tween entities in heterogeneous ontologies it becomes quite beneficial to use Markov
logic approaches for combining first order logic and undirected probabilistic graphi-
cal models [90]. Niepert et al. [89] are describing a MLN as a set of first order formula
with weights. The level of evidence regarding truth value of a formula influences the

46

3.1 Ontology Matching Approaches

intensity of a formula as well. Hence, an appropriate matching formalism can be used
together with a formula syntax and a semantic to achieve a probabilistic based match-
ing.
Approaches regarding distance between semantic entities are relevant as well. Hence,
the Normalize Google Distance (NGD) approach and related work will be considered
for this work. Through usage of the NGD algorithm for semantic entities it becomes
possible to compare the similarity of unknown semantic entities in order to make an
assumption regarding the similarity grade of the compared entities. Cilibrasi et al.
presenting an approach comparing words and phrases of texts found in the WWW by
use of the Google search engine [91]. The WWW is the used database for this method
facing the problem that the WWW is the largest available database. However, the
presented method is usable with other search engines and databases as well. The pro-
duced results are presented as graphs by use of trees. The main result of the work
done by Cilibrasi et al. is the use of an LSA based idea 3.1.2 by using Google to pro-
cess a nearly unlimited size of documents found in the WWW whereby the primary
LSA approach is limited in size for constructing the matrix of similarities for com-
pared terms in texts. In addition, similar approaches using the NGD were performed
searching in the WWW for texts usable for constructing similarities [92] or searching
in Wikipedia in order to use common world knowledge [93].
In general, the mathematical definition of similarity between two entities is described
by Euzenat et al. [9]:

A similarity σ : o × o → < is a function from a pair of entities to a real
number expressing the similarity between two objects such that:

(1) ∀x, y ∈ o, σ(x, y) ≥ 0 (positiveness)
(2) ∀x ∈ o, ∀y, z ∈ o, σ(x, x) ≥ σ(y, z) (maximality)
(3) ∀x, y ∈ o, σ(x, y) = σ(y, x) (symmetry)

The above presented formula expresses similarities between entities while formula 1
to 3 are necessary for constructing the similarity between two selected entities.
Beyond the mentioned approaches for measuring probabilities, Pirró et al. [94] state
out the difference between methods for identifying similarities and relations. They
distinguish between a similarity in case that for instance two concepts are alike each
other and as related if the connection between both concepts is a relation. Most ap-
proaches are focused on either the similarity or the relation between entities or, as it is
done in the work by Pirró et al., concepts. However, both research approaches are rel-
evant for constructing an estimation regarding similarity between two entities. Nev-
ertheless, the the distinction between entities itself is handled by adapting instance
matching approaches as presented in the next section 3.1.7 to identify the meaning of
an instance in an ontology.

47

Chapter 3 State of the Art

3.1.7 Instance Matching

The instance matching domain is a certain research field of the ontology matching
domain. However, instance matching focuses on the instances of ontologies with the
aim to deal with ambiguities. In this scope research has be done as, for instance, by
the instance matching initiative [95] belonging to the ontology alignment evaluation
initiative (see 3.1.5). Research in this field has been done, among others, by Engmann
et al. [96] making use of COMA++ 3.2 for matching schemas in order to identify se-
mantic correspondences between such schema. Engmann et al. used constraint and
content based techniques by adapting similarity values for presenting similarities be-
tween entities and parent entities. The aim of instance matching is to identify entities
pointing to the same real world objects. In addition Ferrara et al. [97] perform a
benchmark for instance matching by considering typographical errors of entities and
the use of different standard formats of ontologies. Hence, they analyze, for instance,
the structural heterogeneity by means of different levels of depth and aggregation
criteria for entity representations and additionally taking into account missing value
specifications. The benchmark is performed by observing the precision of results, the
number of recalls, the errors and the execution time. Thus an identification of the
quality of a matching algorithm becomes possible. In general, instance matching is
crucial for ontology matching due to the need of identify the meaning of entities.

3.1.8 Graph Based Matching Approaches

An ontology can be described as a graph. In this context Mao et al. are referring to
ontologies as a type of taxonomic trees including concepts, features and relations that
are associated with instances [10]. Following this approach, the ontology developer
assumes that the presented composition of an ontology is valid:

1. An ontology has one starting entity that is linked with other entities of the on-
tology.

2. Each entity that is linked with one or more other entities is a concept.

3. Each concept can be described with features. These features are containing val-
ues.

4. Each link between concepts makes an assumption about the type of relation be-
tween the linked concepts.

Considering the listed points above, when representing an ontology as a graph, the
first concept of an ontology is the starting element of the ontology, the links are the
edges and the concepts are the nodes. However, each node is described with features

48

3.1 Ontology Matching Approaches

containing specific values. The graph model is presented as a tree. Furthermore, the
edges are annotated with remarks regarding the type of connection.
For the comparison of different ontologies an approach is to consider graph analysis
to make an assumption about the structure and content of the used ontologies. Nev-
ertheless, the content of the concepts (features with values) and the annotations of the
edges have to be considered if the graph wise comparison should produce a result
considering the information stored in the ontologies.
The ontology matching by use of graph analysis methods seems to be convenient un-
der the four listed conditions that are mentioned above. In general, a graph G consists
of nodes N and edges E that are connected to each other:

G = {N, E}

An ontology O that is represented as a graph consists as well of nodes N that are con-
cepts and of edges E that are the relations. Additionally, each edge E can be marked
with a label L that is a rule such as is-a or has-a, each node N has features F and values
V of the features F. Therefore, the following formulas describe ontologies as graphs.

O = {N, E}, whereby N = {F, V} and E = {L}

• O is an ontology,

• N is a node that is a concept,

• E is an edge that is a relation between nodes,

• F is a feature of a node,

• V is a value of a feature,

• L is a label of an edge.

When thinking of the presented definition of an ontology, the use of graph based
matching methods should be considered. Blum et al. [98] are presenting an approach
to construct a graph plan as an improvement for a graph analysis. The graph plan
described by Blum et al. is a complex structure that is analyzed by a graph plan pro-
cedure that always returns the shortest possible partial order plan or it produces a
notification in case that no such partial order plan is available. The approach of Blum
et al. is one way of processing a complex graph structure in order to state out the
shortest graph plan. However, the matching of graphs requires fine grained elabora-
tion of the graphs or the partial graphs that need to be explored. Often computing
problems that are based on graph analyzing methods rely heavily on the structure of
a graph such as a comparison of two graphs focuses mainly on the structure. Never-
theless, in case an ontology is presented as a graph not only the structure but even the

49

Chapter 3 State of the Art

content is important. A reliable and trustworthy ontology matching approach needs
to deal with a comparison of the structure in terms of the relations between concepts
and the content that is stored within the examined ontologies. Hence, when applying
graph based matching methods to an ontology matching procedure the meaning of
the content that is stored in the ontologies has to be taken into account as well.

3.1.9 Distributed Ontology Matching

In the following section a brief overview about strategies on how to handle an ontol-
ogy matching for reasoning issues in a distributed environment is given. Kalfoglou et
al. [86] have already described the situation of ontologies at current state. The num-
ber of ontologies available in the web has continuously increased during the last years
and the use of a single ontology for reasoning issues is not longer an appropriate so-
lution because of the fact that lots of more information are needed as a reliable and
trustful foundation. These information are often stored in a set of ontologies; not a sin-
gle ontology. Hence, a set of relevant ontologies need to be taken into account when
searching for a specific research topic. In addition Bhatt et al. [99] describing ontolo-
gies as a fundamental issue of the semantic web because of the possibility to split
up information from the web and store them regardless of implementation language
and structure of the data. Further, they state out the current situation of significantly
growing amount of data in the web. This causes large scale web ontologies grow-
ing induced by more and more data in the web. In terms of scalability and efficiency
the growing amount of data in ontologies needs to be addressed by current ontology
matching approaches. Serafini et al. [100] counter this problem with an approach us-
ing multiple local ontologies connected via semantic mappings. This approach makes
use of Distributed Description Logic (DDL) but facing the problem of inconsistencies
in DDL needed to be solved. However, in order to make an assumption regarding
relevant ontologies some open issues need to be answered such as:

• The overall topic and content of the selected ontologies.

• The structure and used ontology language of the selected ontologies; a match-
ing of several ontologies will fail in case the structure and used language is not
considered.

• The availability and location of the selected ontologies; especially in a distributed
environment it is essential to clarify the location and access to an ontology on a
specified computing resource.

Generally, ontology matching methods for providing required data and information
need to deal with above mentioned issues as presented in section 3.1. Nevertheless,
a distributed ontology matching approach has to cover aspects such as allocation of

50

3.1 Ontology Matching Approaches

required computing resources, distribution of raw data such as source ontologies, lo-
cation of produced output data and distribution of the matching algorithm.

3.1.10 Ontology Matching and Integration

Ontology matching methods often consider information integration aspects. The goal
is to provide an integrated and coherent view of information stored in multiple, pos-
sibly heterogeneous information sources, such as several distributed ontologies. It
is one of the core problems in modern distributed, cooperative information systems
in which the ability of different components and applications to share knowledge and
inter-operate seamlessly is of utmost importance. Data from different, possibly incom-
patible and heterogeneous ontologies are combined, aggregated and reasoned upon
in order to reach meaningful conclusions. The integration of ontology information is
a major issue when thinking of ontology matching.
A general definition of the information integration problem is given in Calvanese et
al. [101], Lembo et al [58]. In this model, the conceptual layer of an information in-
tegration problem distinguishes between a target model and multiple source models.
The target model is a conceptual representation of the global concepts and relation-
ships that are of interest to the application. The source model of an information source
is a conceptual representation of the data residing in underlying information sources.
This definition of an information integration system is general enough to capture vir-
tually most approaches in the literature. Obviously, the nature of a specific approach
depends on the characteristics of the mapping, and on the expressive power of the
various schema and query languages. The main challenge is to discover the seman-
tic relationships of terms in different ontologies. By accepting an ontology as a point
of common reference, naming conflicts are eliminated and semantic conflicts are re-
duced.
In the majority of ontology integration approaches, matching is typically performed
manually. Obviously, manually specifying schema matches is a time-consuming, error-
prone, and therefore expensive process. Moreover, there is a linear relation between
the level of effort and the number of matches to be performed, making manual ap-
proaches inadequate for huge data sets, where a faster and less labor-intensive inte-
gration approach is needed. This requires automated support for schema and data
matching.
Another problem with current approaches is that, due to their complexity and lack of
an intuitive interface, they only appeal to experts, thus making matching an expensive
process. Given that the use of multiple matchers may be required, two sub-problems
emerge. The first is the design of individual matchers, each of which computes a
mapping based on a single matching criterion. The second is the combination of indi-
vidual matchers, either by using multiple matching criteria within a hybrid matcher
(e.g., name and type equality) or by combining multiple match results produced by
different match algorithms in parallel or sequentially.

51

Chapter 3 State of the Art

3.2 Relevant Tools and Frameworks

The following section presents common tools and frameworks in the domain of ontol-
ogy matching followed by a summary of advantages and disadvantages based on the
evaluation of the previously mentioned tools, the presented approaches and methods
of section 3.1 and 3.1.9. However, the mentioned algorithms, tools and systems are
considered as most relevant to the given work.

AgreementMaker The AgreementMaker system [102] is evaluated by Cruz et al.
[103], it provides the possibility to match ontologies, schemas or schemas and in-
stances and by consideration of up thousands of concepts. However, the end user
of the AgreementMaker system needs to be a domain expert. The AgreementMaker
system supports the matching of concepts and structure of ontologies in manual or
automated manner. Furthermore, it provides a GUI presenting concepts and features
of two different ontologies by linking similar entities of both.

Anchor-prompt Anchor-prompt is an algorithm finding semantically similar terms
automatically. Noy et al. [104] implemented the Anchor-prompt algorithm for com-
paring two ontologies treated as graphs with a result of 75 percent correct matches.
Musen et al. [105] describe Anchor-prompt as an approach dealing with a graph based
method to treat ontologies. The assumption in Anchor-prompt is that two entities are
similar and therefore there are similar structured graph connections and paths that
can be analyzed.
It is possible to adapt well proofed graph based matching strategies to the Anchor-
prompt approach. Compared ontologies need to have a similar structure so that the
graph based matching approaches can be used. Furthermore, it is a time consuming
way of performing the matching and the amount of produced correct results needs to
be improved in order to deal with critical use case scenarios.

AROMA AROMA is an ontology matching approach using data mining methods
by consideration of associations, it was developed in the scope of the AROMA project
[106]. The focus of the AROMA project is the matching of OWL ontologies with the
aim to explore relations between entities by means of equivalences and subsumptions.
The relation based matching is useful to analyze similarities between selected entities
but it does not deal with ambiguities such entities.

ASMOV The automated semantic mapping of ontologies with verification (ASMOV)
includes an iterative similarity measurement, a semantic verification of the produced

52

3.2 Relevant Tools and Frameworks

results and a user involvement by allowing the user to interact with the ASMOV sys-
tem. In addition, applications for information integration and semantic cataloging
are supported. The ASMOV approach is divided into several steps, the first is a lex-
ical matching in order execute a pre-processing for the similarity calculation. The
results from the lexical matching are used for the similarity calculation in order to
extract alignments verified by the semantic verification. Afterwards the produced
alignments are set to final or rejected by the verification. The ASMOV approach is
already producing accurate results by consideration of acceptable execution times but
further work needs to be done for dealing with very large ontologies, for instance, by
adapting parallel execution strategies as stated out by Jean-Mary et al. [107].

BLOOMS Jain et al. [108] developed a system called blooms based on the idea of
bootstrapping information provided by linked open data (LOD). Blooms constructs a
set of trees for each matched entity. Afterwards, the tree sets of the given entities are
matched. The input for the BLOOMS system are two ontologies containing schema
information. BLOOMS considers two main issues, first the bootstrapping by use of
noisy data and second, the use of Wikipedia provided by DBPedia as data source for
the bootstrapping.
The BLOOMS approach reaches a high precision of results and recall values. How-
ever, future work for this approach is the consideration of partonomical relationships
or disjointness in the used LOD.

CAIMAN The CAIMAN system performs an exchange of relevant documents be-
tween users dispersed over different locations. In this scope each user organizes doc-
uments according with the individual domain knowledge and an own categorization
scheme, the ontology. The role of CAIMAN is to explore such ontologies under the
aspect of information retrieval and provides relevant information of the documents to
the users. CAIMAN makes use concept matching methods in order to compare a con-
cepts of an existing ontology with a concepts of a community ontology for extracting
required information. Lacher et al. analyze the CAIMAN system [109].

Chimaera Chimaera [110] is a software system dealing as well with heterogeneity
issues as presented by McGuiness et al. [111]. However, its main focus is supporting
a user for the creation and maintenance of distributed ontologies in the WWW. The
two main functions of Chimaera are first, the support for merging multiple ontologies
together and second, analyzing single or multiple ontologies. Chimaera is usable as a
user friendly tool providing a graphical representation.

CIDER CIDER [112] is a system for producing ontology alignments. For this, it
compares two ontologies for extracting a semantic context by use of a semantic rea-

53

Chapter 3 State of the Art

soner. Afterwards, the ontological context is used to compute a similarity between
the matched ontological contexts by performing a matching in three steps, (i) a lex-
ical,(ii) a taxonomical and (iii) a relational matching. The similarity value produced
by the similarity computation is used by an artificial neural network to produce the
matching results. The artificial neural network performs, for instance, a lexical dis-
tance analysis and a vector space modeling. CIDER reaches a high precision of the
constructed results and an acceptable recall value. However, there is space for im-
provements, especially when dealing with very large ontologies.

COMA++ COMA is presented by Do and Rahm [113]. Based on COMA the newer
version COMA++ is presented by Aumueller et al. [114], it considers schema level
information for its matching strategy. The schema matching is performed by use of a
taxonomy matcher comparing ontology schemas by linking them to a taxonomy used
as an intermediate ontology. A similarity value for the matched entities is produced
out of the matched schemas. Engmann et al. used COMA++ for schema matching as
presented in 3.1.7.
COMA++ offers the possibility to utilize different matching strategies as, for instance,
a constraint or content based matching by supporting the user with a GUI. Further-
more, COMA++ supports three matching strategies [115]:

1. Context based matching: The context based method is required for matching
schemas with similar entities.

2. Fragment based matching: The fragment based matching is based on the divide
and conquer idea, decomposing a large matching task into a subset of smaller
matching tasks.

3. Reuse oriented matching: The reuse based matching makes use of already avail-
able matching results produced by a previous performed matching.

ContentMap ContentMap (An logiC-based ONtology inTEgratioN Tool using MAP-
pings) [116] is a system for mapping ontologies for integration and heterogeneity is-
sues. ContentMap is a Protégé plug-in extending the Protégé GUI with necessary
features to provide a mapping evaluation and in addition provide a mapping repair
resolution method.

CROSI CMS The CROSI project [117] developed a semantic integration and interop-
erability survey, a framework for characterizing semantic integration systems as well
as an architecture and a system. The overall system is an ontology mapping system.
However, it makes use of the Jena libraries as described later on.

54

3.2 Relevant Tools and Frameworks

Cupid Cupid is presented by Madhavan et al. [118], it makes use of a matching
strategy based on schema level information. For this, the schemas of selected ontolo-
gies are matched in order to make assumptions regarding the similarities of entities.

DSSim The DSSim algorithm can be used to manage uncertainties on the web by
use of ontology mapping methods as presented by Nagy et al [119]. The presented
approach deals with issues such as incomplete and inconsistent information produced
by ontology mapping processes.

Falcon-AO Falcon-AO is an automatic ontology alignment tool for which a set of
elementary matchers such as V-Doc, I-Sub and Graph Matcher for Ontologies (GMO)
are implemented. Furthermore, Hu et al. [120] figure out Flacon-AO as a prominent
component of Falcon for aligning ontologies automatically by combining the elemen-
tary matchers with the ontology partitioner, the Partition Based Block Matcher (PBM).
The integration of PBM into large-scale ontologies and the usage of a central controller
of Falcon-AO enables the matching with large-scale ontologies. The PBM divides the
large-scale ontologies into matching blocks that are connected with anchors so that
it becomes possible to match in the matching blocks and not in the whole large-scale
ontology. The central controller integrates the various alignments by set of rules that
are based on linguistic and structural comparability. Further, Falcon-AO makes use of
the elementary implemented matchers.
Falcon-AO provides the PBM for matching large-scale ontologies. Through this, Falcon-
AO achieves a good performance for effectiveness and efficiency [120]. The partition-
ing is not always optimal for ontologies with complex relations, Falcon-AO might fail
to achieve a sufficient quality for matching results when applications are related to
specific domains and Falcon-AO is not able to provide alignments with a semantic
relationship [120].

FCA-Merge The FCA-Merge algorithm provides a method for merging ontologies
by a bottom-up approach. Thus, it becomes possible to describe the structure of the
merging process. Stumme et al. [121] present the FCA-Merge method in order to
apply techniques from natural language processing and formal concept analysis.

FOAM FOAM is an ontology alignment tool [122] for performing a semi-automatically
alignment between two OWL ontologies. For this, FOAM makes use of similarity
heuristics in order to match the given entities such as concepts, relations and in-
stances. The result set produced by FOAM are pairs of aligned entities.

55

Chapter 3 State of the Art

GLUE GLUE is presented by Doan et al. [123], it considers instance data in order to
find semantic mappings between two matched ontologies. For this, machine learning
methods are considered in order to perform a usable matching producing similarity
values for matched entities such as the concepts of the ontologies. Additionally, infor-
mation regarding the structure of the compared ontologies are used with the aim to
verify and update the previously generated similarity values.

HCONE As presented by Kotis et al. [124] HCONE is used for providing a map-
ping and merging of ontologies. For this, HCONE is used for ontology merging by
interpretation of the concepts of selected ontologies. The interpretation is done via
a mapping to WordNet senses and performing a semantic indexing and afterwards
analyzing the definitions of concepts by use of reasoning methods using description
logics.

Jena Semantic Web Framework The Jena Semantic Web Framework is developed
for building java based semantic web applications. It provides an environment for
RDF, RDFS, OWL and SPARQL and including a rule-based inference engine. Further-
more, the Jena Semantic Web Framework provides several operations on models.
The Jena Semantic Web Framework is an open source project and it [125] including:

• an RDF Application Programming Interface (API)

• methods for reading and writing RDF in three different notations (RDF/XML,
N3, N-Triples)

• an OWL API

• an in-memory and a persistence storage

• a SPARQL query engine

Besides the included features, the Jena Semantic Web Framework is easy to use for
Java developers and offers a wide range of functionalities regarding RDF, RDFS, OWL
and SPARQL such as:

• navigation in a model in order to find resources and properties in a model

• querying a model by querying the complete model or a specific part of the se-
lected model

• performing operations on models such as union for union of the statements in
the model, intersection for constructing a new model with the listed statements

56

3.2 Relevant Tools and Frameworks

and difference for constructing a new model containing the statements that are
not listed in another model

One typical disadvantage is the decreasing computational power in case of perform-
ing complex reasoning tasks. This issue might be addressed by providing HPC re-
sources or a distribution of the tasks on several resources. In addition, the Jena Se-
mantic Web Framework ontology support is build on top of RDF. Jena is mainly used
for writing java applications for matching semantic content.

LarKC In the scope of the LarKC project (The Large Knowledge Collider (LarKC))
[16] a platform for massive distributed incomplete reasoning removing the scalability
barriers of currently existing reasoning systems for the Semantic Web was developed.
The LarKC project has identified Java based efficient data centric semantic web ap-
plications and defined a base for parallelisation of such applications. Furthermore,
LarKC is not restricted to ontologies but it offers the possibility to process semantic
data such as it is provided in ontologies in a distributed fashion. Thus LarKC distin-
guished between the LarKC platform and LarKC plugins.

• LarKC platform: The LarKC platform an platform for effective distributed rea-
soning, it is available as an open source sourceforge project 1.

• LarKC plugin: A LarKC plugin is a piece of code that follows the LarKC guide-
lines for developing LarKC plugins. LarKC plugins are used with the LarKC
platform, they are plugged into it. Within LarKC a distinction between five types
of plugins is done: identifier, transformer, selecter, reasoner and decider.

1. Identifier: The identification of relevant data.

2. Transformer: The transformation of the identified data so that it can be used
for further tasks.

3. Selecter: The selection of data that will be used for a reasoning task.

4. Reasoner: The reasoning task using the selected data.

5. Decider: The decision which results produced by the reasoning to chose.

The distinction between the platform and different types of plugins enables a devel-
oper to make use of the platform for distribution of the workload through develop-
ment of individual plugins or reusage of existing plugins.

1The latest LarKC release: http://sourceforge.net/projects/larkc/

57

Chapter 3 State of the Art

Lily Lily is a system for ontology mapping. It supports four matching functions,
a generic ontology matching, a large scale ontology matching, a semantic based on-
tology matching and debugging of the mapping. However, the ontologies used for
the Lily system are heterogeneous. The matching itself is performed by combining
the four matching strategies and it is therefore a hybrid matching. Wang et al. [126]
performed a benchmark for the Lily system in the scope of the ontology alignment
evaluation initiative in 2009 and stated out the strengths and weaknesses of the Liliy
system. According to Wang et al. Lily produces satisfactory alignment results for nor-
mal size ontologies but it needs to deal with the extraction of semantic subgraphs for
all concepts and features which courses a decrease of performance.

MAFRA MAFRA (A MApping FRAmework for Distributed Ontologies) [127] is a
framework for the mapping of distributed ontologies. MAFRA considers two on-
tologies a target and a source ontology and creates semantic relations between both
ontologies. Beside the ontology mapping approach it provides a GUI. Maedche et
al. [128] analyze MAFRA by focusing on a meta ontology for the semantic bridging
the mapping between the two domain ontologies. In this scope the additionally used
meta ontology is crucial for generating useful mapping results.

OntoBuilder The Onto Builder project [129] makes use of ontological constructs for
an automated schema matching. For this purpose, ontologies from the WWW are
discovered by web search engines. The selected ontologies might be from different
domains. After the selection of the ontologies a mapping between them is performed
in order to generate an improved single ontology.

OntoMediate The OntoMediate project (Ontological Mediation and Semantic Gate-
ways for Domain/Enterprise Translation) [130] focuses on the exploitation of social
and collaborative processes for improving ontology matching tasks by consideration
of integrated data. For this, data of shared ontologies are used in order to support
a flexible alignment generation. However, OntoMediate needs to deal with different
formats and meanings of the ontologies and the entities. The OntoMediate approach
takes into account a community support for evaluation of ontology vocabulary, an
ontology mapping for dealing with different information representations of meaning
and an information network containing different ontologies used for the OntoMediate
approach. The OntoMEdiate approach relies on the data integration and the involve-
ment of users performed by a community driven management.

plugIT The plugIT project (Plug Your Business Into IT (plugIT)) [131] provides the
Next Generation Modeling Framework (NGMF) for plugin business knowledge into
an Information Technology (IT) domain. The business knowledge as well as the IT

58

3.2 Relevant Tools and Frameworks

Figure 3.1: Resource Allocation Overview

processes are modeled in a modeling language. Furthermore, the models are trans-
lated into model ontologies (MOs) in the plugIT semantic workflow that are used to
match business and IT ontologies. The ontology matching in the plugIT project is
processed in the plugIT IT-Socket. In general, plugIT supports a semantic workflow
for the needs of high performance computing issues in terms of offering SLAs about
HPC resources to handle customer requests for such resources (Gilet et al. [132]). The
semantic workflow includes the plugIT semantic kernel that matches the ontologies
with the aim to recommend the best fitting SLA for IT resources fullfilling the require-
ments of the customer and the IT provider. Through this, the business needs and the
IT solutions are aligned by the plugIT IT-Socket.
Figure 3.1 presents an overview about the interaction between involved persons and
the plugIT IT-Socket. The plugIT approach is efficient for allocation of required HPC
resources by use of SLAs developed in an automated fashion by the so called plugIT
semantic kernel. However, the semantic kernel compares graphical models represent-
ing the HPC resources but considering the availability and current workload of the
selected computing resources only in a limited degree. In the scope of the plugIT
project and certain business scenarios the plugIT approach for allocation of resources
fits perfect to the needs. The use of several SLAs with various priority for scheduling
jobs on the selected HPC resources improves current efforts for resource allocation
on HPC infrastructure. Therefore, the SLA approach developed in the plugIT project
might be used as a well fitting foundation for allocation of computing resources for
ontology matching tasks.
Through the use of the SLA based plugIT [131] approach the process of validation and
allocation of HPC resources that is done by the IT expert is enhanced in a way that the
IT expert has only to approve the recommendations from the IT socket. The general
idea about the IT socket is to support an end user, that has the role of an project appli-
cant (table 3.1), by offering the Online Proposal Submission (OPS) [133] application to
the end user that is performing an online proposal submission. The OPS application
supplies a form to the project applicant that requests all necessary information in or-
der make an automatically assumption of about the HPC configuration required for

59

Chapter 3 State of the Art

the scenario.
After receiving the recommendations from the IT socket the IT expert, that has the
role of the project approver (table 3.1), validates the recommendations and sends the
a notification with an recommendation from the IT socket to the project applicant.
The recommendation from the IT socket is a service level agreement (SLA). For this
work the used schema for the SLA is the Web Service Agreement (WSAG) specifica-
tion [134]. In order to deal with the specific requirements of HPC additional elements
are necessary that are covered by the WS-Agreement schema for HPC (High Perfor-
mance Computing - Web Service Agreement (HPC-WSAG) [135]). This means that
the recommendation proposed to the project approver is an SLA offer based on the
HPC-WSAG schema.
However, the IT socket requires information from the HPC site for making an assump-
tion about the most fitting resource configuration to offer based on the input done by
the project applicant.

Role Person in
charge

Task

Project applicant End user The project applicant is the end user that is
in the need of HPC resources that fit to the
use case scenario.

Project approver IT expert The project approver is the IT expert that
validates the recommendations of the IT
socket.

Infrastructure modeler IT expert The infrastructure modeler is also an IT ex-
pert that knows about the HPC infrastruc-
ture in order to create graphical models for
the HPC resources each time the HPC in-
frastructure

Table 3.1: Role Model for the Resource Allocation

The IT infrastructure, the SLAs and the criteria for the SLAs are described as graphical
models in an online repository that is accessible by the IT socket. These models are
created by an IT expert, the infrastructure modeler (table 3.1), that has very detailed
knowledge about the existing HPC environment and useful SLAs describing the avail-
able computing resources. The benefit of this approach is that the models are created
easily by the infrastructure modeler once in case new HPC resources are available or
if the current hardware changes. Through this, the knowledge about the HPC infras-
tructure is not only accessible to one specific IT expert, it is mapped in the graphical
models that are stored in the online repository. Based on this online repository the IT
socket receives the required information for producing SLA offers automatically.
As it is presented in table 3.1, three roles of persons involved in this process are neces-
sary: the project applicant, the project approver and the infrastructure modeler. With
regard to the IT socket, the functionality for creating SLA offers out of the models

60

3.2 Relevant Tools and Frameworks

from the online repository and the input of the project applicant comes from the se-
mantic kernel component of the IT socket. The semantic kernel transforms the input
from the project applicant into ontologies in order to compare them with the models
of the SLAs, SLA criteria and the IT infrastructure that have been transformed to a
Model Ontology (MO). Further, a Domain Ontology (DO) for HPC is used to support
the transformation to the MOs. This means, the functionality of the semantic kernel is
twofold:

1. Transformation of project applicant input and models into ontologies and MOs.

2. Comparison of ontologies.

The recommendation of SLA offers to the project applicant automates the process of
resource allocation and makes it more efficient compared to the manual workflow for
resource allocation of HPC resources. The ontology matching is performed in order
to make use of the semantic information provided by the ontologies.

PROMPT PROMPT is a matching system dealing with heterogeneity described by
Noy and Musen [136], it is based on an algorithm for semi-automated ontology merg-
ing and alignment. The PROMPT system supports an expert with results based on
the ontology merging, taking into account inconsistencies by making suggestions on
how to deal with such inconsistencies.

Protégé Protégé [137] is a platform supporting the modeling of ontologies by pro-
viding ontology editors and different formats such as RDF, RDFS, OWL and XML
schema. Protégé is based on Java and can be used as a knowledge base framework.
Besides the functionalities for dealing with ontologies in various formats it provides
a GUI.

RiMOM RiMON (Risk Minimization based Ontology Mapping) [138] is a tool for
generation ontology alignments by combining different strategies such as alignment
identification by semantic matching of entities in different ontologies. The semantic
matching combines a textual and a structural matching of the given ontologies.

Similarity Flooding Similarity flooding, analyzed by Melnik et al. [139], is a system
that deals with a graph based method to treat ontologies. Similarity flooding assumes
that the comparison of entities depends on the connection to the neighboring entities
by focusing on directed labeled graphs with the aim to analyze such neighboring en-
tities. However, in case that ontologies are not expressed as directed labeled graphs

61

Chapter 3 State of the Art

the similarity flooding approach does not produce beneficial results anymore. Fur-
thermore, it requires a similar structure of the graphs in order to perform a useful
matching.

SPIDER SPIDER (Schema mapPIng DEbuggeR) is a prototypical tool for debugging
schema mappings as stated out by [140]. For debugging schemes it produces routes
describing relationships between source and target data by considering the given
mapping schema. The route engine of SPIDER produces one or all routes of the map-
ping.

BabelNet The Databases BabelNet 2.0, EuroWorldNet, WordNet 2.0 and GermaNet
are a result of the combination of a dictionary and an encyclopedia called Thesaurus.
It contains a huge number of relation and synonyms between words. BabelNet is a
multilingual encyclopedic dictionary and semantic network providing a stand-alone
resource with its Java API, a SPARQL endpoint and a Linked Data interface as part of
the Linguistic Linked Open Data (LLOD) cloud [141]. Especially BabelNet 2.0 [142]
and EuroWorldNet are capable to interconnect words within various languages and
different meanings. The whole BabelNet 2.0 thesaurus can be downloaded on the
homepage. The file works with Java, needs about 40 GB of disk space and is used
with the LemonAPI for Eclipse.

GATE GATE (general architecture for text engineering) [143] is an open source soft-
ware capable of solving text processing problems. It is used by a broad community
of developers, users, educators, students and scientists. It focuses on text processing
workflows by applying a repeatable process.
GATE includes ANNIE (A Nearly-New Information Extraction System) an informa-
tion extraction system. ANNIE is a set of modules comprising a tokenizer, a gazetteer,
a sentence splitter, a part of speech tagger, a named entities transducer and a corefer-
ence tagger.

Treetagger Treetagger [144] is used to divide sentences and to match its parts to
single word classes. Mostly, Treetagger is used as a part of Gate or Text2Onto, it
annotates text with part-of-speech and lemma information.

Text2Onto Text2Onto [145] is an extension of the Gate Project. It seems to be one of
most promising programs, which are able to build up an entire RDFS or OWL model
automatically from a natural text. While extracting natural texts, Text2Onto uses the
following three programs:

62

3.3 Advantages and Disadvantages

• WordNet - a lexical database for englisch, [146]

• Treetagger - a language independent part-of-speech tagger, 3.2

• GATE - general architecture for text engineering, 3.2

3.3 Advantages and Disadvantages

The comparison of tools and frameworks (see 3.2) has shown that lot’s of tools for
extracting knowledge from texts and manipulating ontologies are usable as well as
frameworks providing APIs for developers. In general, presented matching and ex-
traction tools are following strategies for combining several matching approaches, by
consideration of lexical similarities as well as comparing relations to neighboring enti-
ties and exposing the type relation type. In addition, another common approach is the
verification of the matching results by consulting a source of evidence, e.g. a specific
domain ontology, the WWW or manually involving human knowledge. Most match-
ing approaches distinguish between a source and a target ontology with the aim to
extend a target ontology. However, some cases only specify alignments, created with-
out updating a complete ontology with produced matching results. The main goal
of ontology matching methods is the maintenance and extraction of required knowl-
edge from a set of ontologies by matching and generating facts. For this, similarities
are analyzed and in most cases a value presenting the grade of similarity is created.
In addition, the analyzes of the previously presented tools has shown, most matching
systems produce a high number of correct results but also a certain amount of incor-
rect results. The incorrect results often occur by matching incomplete or ambiguous
data. Additionally, the different structure and different ontology language can pro-
duce incorrectnesses. Simply another language might be also a cause for wrong re-
sults. Thus, a verification is highly recommended to reduce the amount of incorrect
results.
Common ontology matching tools compare the selected ontologies by analyzing the
given entities graph wise. Thus, a graph wise matching is beneficial but in case of
high amounts of data, as for instance the matching with data from the WWW, most
matching approaches produce insufficient delays due to a lack of performance and ef-
ficiency of the matching procedure. Dividing the matching task into several subtasks
is a strategy to handle matching procedures with high data volumes. However, the
separation of related data implies the problem of taking care of the relations of these
entities in case of storing them in separated data blocks. A common proceeding is
the relation storing as a list or table. Nevertheless, this proceeding causes additional
effort in terms of time and complexity for each time a relation needs to be checked.

63

Chapter 3 State of the Art

3.4 Relevant Approaches

When thinking of beneficial ontology matching approaches which are related to the
considered use case, the following approaches are of high interest.

3.4.1 Information Retrieval Approach

As described ontology matching approaches are relevant to the research field of on-
tology matching. As presented in 3.1.1, Su et al. [6] are providing a definition for
ontology mapping in terms of matching of two different ontologies, a target and a
source. This approach is used by Calvanese et al. [101] and Lembo et al. [58] when
presenting a method for schema integration. In this described approach a distinction
between the target and multiple source models on a conceptual layer is proposed. An
information retrieval based proceeding deals with extracting information from com-
plex data sources, it is related to the field of data mining 3.1.3. Such a strategy is useful
when thinking of gaining required information from a given data set or for result ver-
ification issues. To sum up, information retrieval approaches are focused on complex
data sources and the extraction of relevant data from those.

3.4.2 Vector Based Word Space Approaches and Online
Ontologies

The vector based matching approaches are taking into account methods such as ran-
dom indexing 3.1.2. These methods are usable for generating a matrix regarding an
entity occurrence in a text for making assumptions regarding the meaning of an entity.
Sahlgren [147] describes this proceeding in his doctoral thesis and underlines the us-
ability of word space focused approaches to extract semantic knowledge from usage
data. In addition, such a proceeding is beneficial for verification issues of produced
matching results or for applying additional information for a given entity in an on-
tology. However, the meaning of an entity and derivations of such a meaning might
be different in case texts from different domains are used as Mihalcea et al. [148] em-
phasize when performing tests for verification of semantic meanings based on a text
corpora. This affects produced results negatively in case the related domain does not
fit to the given context. Hence, the domain selection of the used texts is a crucial issue.
Besides the mentioned texts, online ontologies found in the WWW are usable for vec-
tor based word space approaches as well for verification of produced results and sup-
porting required domain knowledge. Generally, vector based word space approaches
including online ontologies make use of data structures. Nevertheless, data structures
are usable for verification of single entities of ontologies.

64

3.4 Relevant Approaches

3.4.3 Probability Measurement

The matching of entities in a given set of ontologies is often based on similarity mea-
surements as stated out in 3.2. For this, a similarity can be expressed by a certain value
calculated out of different matching methods as presented by Pilehvar et al. [149] or
Snow et al. [150] who is focusing on measuring sense similarity. For performing those
measurements several methods such as a matching of lexical similarities, relations or
types of relations or the structure of an ontology are promising approaches. In addi-
tion, a vector based word space measurement as presented in 3.4.2 those methods are
usable supplementary for verification purposes or contributing to the similarity value
calculation. However, the more matching strategies are applied the more computa-
tional effort is required in terms of calculating the matching results and performing a
useful verification of the results. In addition, a threshold is required defining a limit
for the similarity value in order to verify if a produced result is considered as trust-
worthy. The trustworthiness of the produced results is crucial for providing reliable
results.
When thinking of the probability measurement approach, it makes use of several data
structures. A lexical matching of entities can be applied to single terms but calculating
similarities of relations requires linked data sets such as ontologies.

3.4.4 Graph Analysis

When thinking of graph analysis approaches the comparison of graph paths becomes
an issue for ontology matching strategies. Hu et al. [151] present an ontology match-
ing system supporting graph based approaches by adapting functionalists for hand-
ing RDF ontologies used as RDF graphs. The use of the RDF standard enables the
presentation of an ontology as graph due to the fact that entities in the ontologies
are linked and in most cases such linking is labeled. Thus, RDF based ontologies can
partially be presented as graphs with labeled edges. In addition, Husain et al. [152]
introduce a framework for answering SPARQL queries based on RDF graphs. Nev-
ertheless, the comparison of similarities should consider the similarity grade of the
compared graph paths. However, this proceeding requires the definition of a search
space for limitation of the paths that are snippets of the complete ontologies or the
complete graphs will be parsed. Additionally, the matching of the graphs identifies
the similarity of the structure of the relationships between the concepts of the ontolo-
gies that are used as nodes but the features and values are not considered when only
thinking of the similarity grade of the path structure. Nevertheless, the use of such a
graph analysis approach seams to be beneficial for the proposed strategy.
However, generally graph analyzing strategies provide methods for comparison of
graphs and included nodes and edges. The matching of ontologies as graphs leads to
the field of graph matching theory. The structure of a sub-graph of one of the selected
graphs is mapped within the structure of the sub-graph of another graph and vice

65

Chapter 3 State of the Art

versa or, for instance, a full graph matching is possible but computational expensive
and time consuming depending on the size of a graph. Steps for using graph analy-
sis methods regarding an ontology matching are included in current research as well
as presented by Shvaiko et al. [153]. However, in general graph analysis methods
are computationally intense which indicates that needed computing resources have
to be available and that used algorithms for performing a graph matching have to be
developed in an effective fashion. Furthermore, among methods for graph analysis
a selection of useful graph matching strategies is required, for instance dealing with
graph isomorphism. Currently, graph isomorphism is an unsolved problem for graph
analysis in terms of effectiveness cause of the fact that until now no efficient graph
analysis algorithm for graph isomorphism has been developed. Graph isomorphism
is still an unsolved problem in the research field of computational complexity theory
as exposed by Kobler et al. [154]. An issue, such as graph isomorphism, can be solved
by involving a human expert in the ontology selection phase and in addition, perform
a sub-graph based matching of selected ontology parts.
Generally, graph based matching methods refer to ontologies such as RDF graphs. For
those, methods from the field of graph matching can be applied.

3.4.5 Distributed Ontologies

As presented in section 3.1.9, the amount of available ontologies is significantly grow-
ing as well as the amount of available data in the web. Hence, in order to keep the
execution time of a reasoning task low, a set of distributed ontologies will be consid-
ered, in order to provide a matching of such ontologies for providing necessary data.
Fan et al. [155] and Flahive et al. [156] describe the necessity of handling large data
sets being ontologies through using distribution methods. Such distributing as well as
previously presented matching methods will be used for ensuring an effective match-
ing enabling reasoning based on a well prepared knowledge base.
Following the idea of this work, a set of ontologies is matched for producing align-
ment lists based on a priority ontology used for a specific reasoning task. The dis-
tribution focuses on the selection of ontologies distributed at different locations and
ontologies locally available. Such ontologies are used for the matching procedure in
order to generate similarity values by use of adequate matching strategies presented
in the next chapter 4. The similarity value is used to make assumptions regarding the
matched entities of the distributed ontologies. Out of the produced similarity value
and the assumptions, a set of alignments will be generated based on those selected
ontologies. The alignments are used for updating the priority ontology for providing
a customized knowledge base. However, the execution times of such matching pro-
cedures need to be evaluated. Currently considered ontology matching approaches
need to deal with large data sets (see chapter 2). Performing a matching task on such
data in order to provide semantic data for a reasoning task can lead to performance
and scalability problems. Thus, a distribution of the performed matching tasks for

66

3.4 Relevant Approaches

increasing the overall performance will be elaborated in chapter 5.

67

Chapter 3 State of the Art

68

Chapter 4

Ontology Matching

4.1 Improvement for Ontology Matching

In the previous section (see 3) various ontology matching methods and related ap-
proaches were described. When thinking of creating new facts as known from the
ontology lifecycle (see 1.1) and indicated in figure 4.1. The matching of similarity val-
ues is a gainful approach for semi-automatization of a complete matching process.
Hence, the matching approach used in this work is based on the elaboration of sim-
ilarity values between ontology entities. In addition, ontologies can be handled as
graphs when thinking of ontology structures. The required prerequisites have to be
considered as defined in the following in the two main phases of a similarity match-
ing.

Preparation for the similarity matching

1. Identification of relevant ontologies: The required ontologies are defined from a
known set related to the research field of interest. The preselection is a manual step
done by the expert.

2. Selection of relevant features of entities: The entities are identified by considering
the selected ontologies. The amount of matching iterations depends on the data set size.
For each selected entity of the priority ontology a matching iteration is performed.

Figure 4.1: Ontology Lifecycle: Merging

69

Chapter 4 Ontology Matching

Figure 4.2: Similarity Matching Phases

3. Defining the search space: The search space defines the number of neighboring entities
which are matched. For instance, the relation of a single entity to another might be
different in another ontology.

Execution of the similarity matching

1. Generating the similarity value: The similarity value is created out of a number of
different values. The different values are generated from different similarity matching
approaches such as features of the concepts and relations to the neighboring concepts and
the structure of the ontologies by exploring the type of relations between the entities.

2. Interpretation of generated similarity: The similarity value is used for creating align-
ments out of the matched entities. A high similarity value leads to a high probability
of similarity. This probability of similarity expresses the grade of similarity between
matched entities.

The two main phases are divided into sub-phases as presented in figure 4.2.

4.1.1 Identification

For finding relevant ontologies fitting to a domain of interest an ontology classification
can support decision making about best preferred ontologies. Hence, the first step
is highlighting every relevant ontology. Further, schema and structure of selected
ontologies need to be similar as presented in 3.1.7 for the instance matching based
approach. This indicates the ontology schema as relevant for successful matching

70

4.1 Improvement for Ontology Matching

procedures. In the second step a decision is done based on the relevance level of an
ontology.

1. Defining the Relevance: Considering a) the content, b) the schema and c the
structure.

2. Ontology Rejection: Decision regarding the content, the schema and the struc-
ture.

The definition of relevance is categorized in three level of relevance assuming that an
ontology with a not usable content will not be used or it needs to be translated into a
fitting schema.

• LR Ontology - Low Relevance Ontology (LR)

• MR Ontology - Medium Relevance Ontology (MR)

• HR Ontology - High Relevance Ontology (HR)

For every level of relevance a detailed differentiation of the level of relevance is possi-
ble. The differentiation indicates a more detailed few regarding the significance of an
ontology expressed with three different categories, LR, MR and HR.

1. LR Ontology {1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9}

2. MR Ontology {2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9}

3. HR Ontology {3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9}

The selected ontologies and the level of relevance is stored in a Database (DB) so
that a repository is created. The ontology repository is accessible by the end user
who is enabled to perform a selection of significant ontologies based on the ontology
repository. Hereby, the reusability of the ontologies is guaranteed by storing URLs
of the ontologies and the relevance level including the category of relevance. In case
the end user is in the need of performing a similar matching of ontologies again he is
supported with the ontologies and the related level of relevance. Figure 4.3 refers to
the data model of the ontology repository DB that stores the ontologies and the level
of relevance of an ontology. At this, each relevance is related to the specific matching
topic. This means, that the same ontology information might be stored up to three
times but in a different tables and with a different link to another matching topic:

1. Ontology X is stored in the low relevance ontology table and linked to matching topic
A

2. Ontology X is stored in the medium relevance ontology table and linked to match-

71

Chapter 4 Ontology Matching

Figure 4.3: Ontology Repository DB

ing topic B

3. Ontology X is stored in the high relevance ontology table and linked to match-
ing topic C

The ontology collector is the entry point for storing an ontology. It stores the domain
of interest and it is related to the unique Identifier (ID) of the ontologies and the do-
main by use of the relevance ontology keys table. The relevance ontology keys table stores
the IDs and the ID of a related ontology stored in another table according to its rel-
evancy regarding the selected matching topic. The ontologies are stored either in
low relevance ontology, medium relevance ontology or high relevance ontology.
The Ontology Repository Database (OntoRepDB) is created based on MySQL Server
(e.g. version 5.5.12). The implemented database as well as the implemented methods
for manipulating the database support functions for creating, reading, updating and
deleting (CRUD) of data in the database being implemented as Java methods. The se-
lected methods are used for data manipulation of the ontology collector table and each
of the methods is either used for creating, reading, updating or deleting data.
The description of the OntoRepDB is ordered by consideration of the tables and differ-

72

4.1 Improvement for Ontology Matching

ent types of data.

• ontology collector The ontology collector table contains different types of match-
ing domains, e.g. automotive data, linked web data or legal rules. The classi-
fication between different domains is useful because of the different types of
used ontologies. More specifically, this means that each ontology stored in the
OntoRepDB has a different grade of relevance for each matching domain.

– row id This is the id of the current record.

– matching topic This is the matching domain such as a HPC ontology.

– id relevance ontology keys This id is used in the next table to allocate the
matching topic to relevant ontologies.

• relevance ontology keys The relevance ontology keys table stores the relations
between the matching domains and the allocated ontologies.

– row id relevance ontology key This is the id of the current record.

– row id matching topic This is the id of a selected record from the matching
domains.

– low relevance ontology row id In case an assigned matching domain is allo-
cated to a low relevance ontology, the id of the low relevance ontology is
stored.

– medium relevance ontology row id In case an assigned matching domain is
allocated to a medium relevance ontology, the id of the medium relevance
ontology is stored.

– high relevance ontology row id In case an assigned matching topic is allo-
cated to a high relevance ontology, the id of the high relevance ontology
is stored.

• low relevance ontology The low relevance ontology stores the ontologies that
are rated with a low relevance to a specific matching topic.

– row id This is the id of the current record.

– name This is the name of the selected ontology.

– description This is a description about the content of the ontology. It is op-
tional but recommended in order to support the end user.

73

Chapter 4 Ontology Matching

– type This is a description about the used ontology language of the ontol-
ogy such as, for instance, OWL. It is required because of the transformation
method, explained in the following lines of this section.

– URI The URI points to the location where the ontology is stored. This might
be a pointer to a WWW location or a local storage device.

– relevance grade The relevance grade is a detailed statement regarding the
overall relevance of the selected ontology to a matching topic. The values
are identical to the values for the LR, MR and HR Ontologies.

• medium relevance ontology This table is similar to the low relevance ontology
but the overall relevance for a specific matching topic of the table ontology collector
is rated with medium.

• high relevance ontology This table is similar to the low relevance ontology but
the overall relevance for a specific matching topic of the table ontology collector
is rated with high.

Besides the already mentioned selection of useful ontologies, it is also necessary to
take a closer look at the type and the structure of the ontology. Different ontologies
might be constructed in different ontology languages. Very common ontology lan-
guages are RDF and, for instance, OWL built on top of RDF. However, even if the used
ontology language is similar, the created ontology might be presented in a different
way then another. The presentation of the ontology depends on the used method for
reading and / or writing the OWL or RDF file. For instance, the presented Jena Frame-
work (section 3.2) offers various notation for reading and writing RDF and OWL files.
This issue leads to the conclusion that it is necessary to use ontologies with same
structure using a single binding ontology language. Through this, it becomes possible
to secure a stable ontology matching without mismatches. However, a commitment
allowing only a single type of ontology with a defined structure limits the amount of
eligible ontologies. Using a Transformer creating ontologies with same notation out of
a set of heterogeneous ontologies deals with this issue.
As already presented the OntoRepDB contains relevant information regarding the used
ontologies. This includes the type row of the low relevance ontology table, the
medium relevance ontology table and the high relevance ontology table. The type row in
the tables of the database identifies the used ontology language. This information is
required by the Transformer that aims at constructing ontologies with same structure
and same notation. The type row indicates indicates the used ontology language for
the Transformer that makes use of its rules for translating the selected source ontol-
ogy into the transformed source ontology. The main functionality of the Transformer is
twofold:

1. (a) Identify the used ontology language by means of the type row in the On-

74

4.1 Improvement for Ontology Matching

Figure 4.4: The Transformer

toRepDB and (b) perform a transformation into another type in the the case that
the Transformer rules claim this.

2. (a) Read the source ontology and (b) write and store it in a notation specified by
the Transformer rules.

The Transformer is presented in figure 4.4; it provides transforming functions for the
ontology types and structures based on a set of rules. The rules are based on the as-
sumption that in case no transformation guideline is available for a selected ontology,
the selected ontology will be rejected. This default assumption is required for error
prediction to ensure a matching with only allowed and valid ontology types.
The described DB includes significant ontologies supporting an end user by offering

him a set of ontologies and pointing out the level of relevance for his requirements.
This is described in the selection phase. Furthermore, the ontology types and struc-
tures are aligned by the Transformer.

4.1.2 Selection

The next phase is the selection being similar to the identification phase but concentrat-
ing on the ontology entities for validating the content. The selection of entities is done
by the end user knowing best about the relevancy of available entities. Therefore,
the end user has to specify requirements regarding the entities. At this step, human
involvement in the ontology matching process is required. However, human involve-
ment interrupts the complete ontology matching process. However, the selection of
adequate ontologies is supported by the ontology repository being a database main-
taining links to ontologies and domain descriptions of the ontologies.
Using all available ontologies instead of making a selection causes two critical is-
sues:

75

Chapter 4 Ontology Matching

1. Data overload through establishing a confusingly broad set of data

2. Incorrect assumptions caused by simply using all available data despite from
their relevance

A data overload happens in case a huge set of ontologies or even a few very large on-
tologies are used during the matching process. However, in case the ontology repos-
itory contains only a small set of ontologies, the data overload might not be a major
issue but there is still the issue of producing incorrect assumptions by using every
available ontology without validating the need of ontologies and without a review
of the content by checking the entities of the included data in the selected ontology.
The use of an ontology for the matching process, content wise not adequate for the
current matching domain, might lead to wrong assumptions used for updating the
priority ontology. For instance, if the ontology topic is different, entity ambiguities
might cause a comparison of entities without being aware that the meaning of the en-
tities is different an used in another context. Of course, the matching procedure has to
deal with entity ambiguities by using methods for validating meaning of entities and
reviewing the context of the compared entities but a bad selection of ontologies in this
step, such as just selecting all available ontologies, makes the whole matching process
much more error prone. Hence, a good selection of ontologies reduces the source of
errors and is therefore a necessary step.
For reducing needed time for the selection phase, it supports a history repository stor-
ing the domain of a matching process and the selected ontologies. In case, another
matching iteration related to the same domain is performed, the previously used on-
tologies are recommended by use of the history repository.
The described selection phase is a key phase for the reliability of the produced match-
ing results. Therefore, the end user needs to have knowledge about selected ontolo-
gies and the selection history needs to be integrated into the selection phase. The
selection history is included in the ontology repository database. However, the end
user has the possibility to access the database and update it whenever it is necessary.
Through this, the end user is supported by using the ontology database including
the relevance level of ontologies for a specific domain and by the history presenting
previously performed selection iterations.

4.1.3 Definition

When the selection is done the last step to perform in the preparation phase is the
definition of the search space. The search space is the part of the ontology selected for
the matching. For instance, if the definition allows a maximum number of X neigh-
boring elements this means that for each matching iteration the neighboring entities
are considered up to a neighboring level of X.
When thinking of the search of an ontology as said the depth level for comparisons

76

4.1 Improvement for Ontology Matching

needs to be defined whereby the maximum depth of the search space is the maximum
number of concepts of the selected ontology and the minimum depth is one. In case
the search depth is one, the current concept focused by the matching procedure is
compared with only a single concept from the comparing ontology. However, in this
case the number of concepts defines the number of concepts for different distances of
concepts, e.g.

1. ConceptA− > ConceptB− > ConceptC has a search space of 2.

2. ConceptA− > ConceptB1, ConceptB2− > ConceptC has a search space of 2.

Item one and item two have both a search depth of two, although first example con-
tains three and second example contains four concepts.

SearchSpaceX = MAXConceptLevel - (MAXConceptLevel - X)

• SearchSpaceX defines the search space that is considered during the matching pro-
cedure. The search depth is expressed by a number of concepts whereby the
number of concepts describes the distances between the concepts, e.g. an on-
tology might contain Y concepts but the value of MAXConceptLevel is less than
Y.

• MAXConceptLevel defines the maximum number of concept distances of an ontol-
ogy. Each additional distance increases the MAXConceptLevel by one whereby the
minimum distance is always one. A distance of one means that only one selected
concept is considered without validating relations to other concepts.

• X defines the amount of concept distances that are used for the matching proce-
dure.

In case of using a full ontology, the value of SearchSpaceX is the maximum number of
concept distances. But, in case of large data sets and a time restriction the matching
of all concepts might lead to a data overload and further the matching might lead
to a matching of concepts obviously not relevant. Therefore, in order to minimize
the required time and effort for computing and to use only relevant concepts for the
matching procedure it is quite important to define an adequate search space.
More detailed, the maximum number of concepts of an ontology is different than the
maximum number of concept distances. The maximum number of concepts of an on-
tology expresses all concepts contained in an ontology whereas the maximum number
of concept distances expresses the longest possible distance within an ontology. If the
search space is defined by the maximum of the concept distance this causes a compar-
ison of every entity and every relation of the selected ontology.

77

Chapter 4 Ontology Matching

4.1.4 Generation

The generation of the similarity value is a key benefit of the presented ontology match-
ing approach. Through the similarity value a matching indicator is created making
use of similar entities of another ontology. Hereby, it is important to define the match-
ing indicator as accurate as possible. As Euzenat et al. [157] described, using a non
absolute reliable similarity value as matching indicator requires an expert for moni-
toring the proposed matching results and mappings between matched entities:

Nevertheless, the computed similarities suggest possible mappings of
entities, hence they can support an alignment. One way of doing this con-
sists in displaying the entity pairs with their similarity scores and/or ranks
and leaving the choice of the appropriate pairs up to the user of the align-
ment tool. One could go a step further and attempt at defining algorithms
that automate alignment extraction from similarity scores.

However, the aim of this work is to create an alignment list produced by the matching
results. As presented in previous chapters (see 3), the ontology matching approach
considers several aspects such as name of concepts, features, values of the features
and the relations between the concepts. However, Farooq et al. [158] identify three
different levels of measurement aspects for creating a meaningful value for similarity
between semantic entities in an ontology. Here Farooq et al. are defining the primary
similarity (1st level), the taxonomic similarity (2nd level) and the non-taxonomic similarity
(3rd level). During the 1st level a lexical matching between concept names is per-
formed, for the 2nd level the parent concepts are compared to identify similarities and
for the 3rd level the role of the matched concepts is compared.
The ontology matching approach of this work performs a matching based on lexical
matching and relations between concepts. The structure of the ontologies is consid-
ered in the previous steps in the preparation phase. The matching of the relations is a
taxonomy matching when thinking of a matching between neighbored concepts. Fur-
thermore, it is a non-taxonomy matching in case the role of a concept is evaluated by
considering the label of a relation such as a is-a or has-a label.
Additionally the used matching strategy is based on graph analysis approaches. When
thinking of an ontology as a graph the following distinction is valid:

• Each ontology is a graph and the first concept is the starting node.

• Each concept is a node that is described more detailed with features and values
of the features.

• Each relation is a labeled edge.

The definition above will be used for adapting graph matching approaches to the
matching of the ontologies in order to create the similarity value. However, the use of

78

4.1 Improvement for Ontology Matching

graph based matching approaches faces the challenges of matching ontologies with
a different structure as well as the fact that graph based matching methods are often
time and resource consuming as it is figured out by Mao et al. [10]. Although, for this
work there are four steps of matching that have to been taken into consideration.

1. The nodes are compared by matching the names of the nodes (the comparison
is not case sensitive).

2. The names of the features of the nodes are compared (the comparison is not case
sensitive).

3. The values of the features are compared (the comparison is not case sensitive).

4. The labeled edges between the nodes are compared by verifying the label of the
edge and the nodes that are connected due to the labeled edge.

However, the four stages of matching are only performed if they are not in contrast to
the settings of the selection or the definition phase. Thus the foundation of the similar-
ity value is the matching by use of lexical, taxonomy and a non-taxonomy matching
strategies and the utilization of graph analysis strategies. The similarity value is first
created for the lexical matching of the concept, feature and value of a feature. After-
wards the similarity value is created for the taxonomy matching of the neighboring
entities such as parent, sibling or child concept. The last step is to generate the similar-
ity value for the non-taxonomic matching for a concept as an indicator that specifies
the grade of similarity by considering the labels of the edges in order to identify the
role of a concept. Thus three similarity values are created.

1. Lexical Similarity Value (LSV)

2. Taxonomy Similarity Value (TSV)

3. Non-Taxonomy Similarity Value (NTSV)

The LSV method is the lexical comparison of entities such as the name of a concept,
the name of a feature and the value of a feature. Out of this matching a similar-
ity value is created for each concept that is compared with another concept from the
comparison ontology. This means, that for each concept of the source ontology one
LSV similarity value is stored as well as the name of the concept of the comparison
ontology. The notation for the LSV similarity is a tuple whereas the first element
is the created similarity value, the second element is the name of the concept of the
comparison ontology and the third element is the name of the comparison ontology
itself.

< LSVSIM, Concept, Ontology >

79

Chapter 4 Ontology Matching

The TSV method is the taxonomy comparison that covers the comparison of a specific
path from the source ontology with a specific path from the comparison ontology
in order to make an assumption about the grade of similarity between neighbored
concepts. The assumption regarding the similarity of neighbored concepts is based
on the lexical similarity from the LSV method. Further, the maximum path length is
restricted by the search space. The notation for the TSV similarity is a tuple whereas
the first element is the created similarity value, the second element is an array that
contains all names of all concepts in the path whereas the number of concepts in the
path is max, the third element is the name of the comparison ontology and the fourth
element is the unique name of the path.

< TSVSIM, Concept[searchspace], Ontology, Path >

The NTSV approach is based on the TSV method. However, in this step the similarity
result from the TSV method is modified by including the labels of the edges between
the concepts. The notation for the NTSV similarity is a tuple whereas, compared with
the TSV tuple, only the first element is updated.

< NTSVSIM, Relations[searchspace], Ontology, Path >

All three similarity values are used to make an assumption about the general grade
of similarity between matched entities. However, regarding the taxonomic matching
graph based matching approaches such as the matching of different paths will be con-
sidered for this work. Furthermore, the end user has the possibility to make a selec-
tion out of the presented matching methods. Because of the dependencies between the
different matching methods three different configuration settings are allowed, namely
the {LSV} or the {LSV, TSV} or the {LSV, TSV, NTSV} configuration setting. Fig-
ure 4.5 gives an overview of the three used matching procedures. As presented, after
each step the results are stored. Such results are the produced alignments including
the similarity values of the current matching step. Whereas the lexical and the taxon-
omy matching procedures make use of the the source and the target ontologies, the
non-taxonomy matching procedure uses the alignment lists produced by the taxon-
omy matching procedure as input for matching them with the source ontology. After
each performed matching procedure, an expert has the choice to end or proceed the
next matching procedures.

4.1.4.1 Lexical Matching: LSV

When thinking of a lexical matching the selection of entities for comparison is crucial.
The question is if only concepts are matched or rather features and values of the fea-
tures are compared. A simple comparison of concepts will not offer the possibility to
deal with different notations for same entities due to the issue that a different spelling
will mean that the entity is different. This issue will be handled by the taxonomy

80

4.1 Improvement for Ontology Matching

Figure 4.5: The Lexical, Taxonomy and Non-Taxonomy Matching Procedures

(4.1.4.2) and the non-taxonomy (4.1.4.3) matching. However, it becomes possible to
tackle this issue even in a lexical matching procedure by involving a comparison be-
tween features and values of the features. For this, first a lexical matching approach
by use of RDFS and second of OWL is proposed.
For RDF, a set of classes and of properties is available enhanced by RDF Schema
syntax. The following table RDF classes taken from the World Wide Web Consor-
tium (W3C) Recommendation [159] presents the classes in RDF that need to be con-
sidered for a comparison.

Class name comment
rdfs:Resource The class resource, everything.
rdfs:Literal The class of literal values, e.g. textual

strings and integers.
rdf:XMLLiteral The class of XML literals values.
rdfs:Class The class of classes.
rdf:Property The class of RDF properties.
rdfs:Datatype The class of RDF data types.
rdf:Statement The class of RDF statements.
rdf:Bag The class of unordered containers.
rdf:Seq The class of ordered containers.
rdf:Alt The class of containers of alternatives.
rdfs:Container The class of RDF containers.
rdfs:ContainerMembershipProperty The class of container membership proper-

ties, rdf: 1, rdf: 2, ..., all of which are sub-
properties of ’member’.

rdf:List The class of RDF Lists.

Table 4.1: RDF classes

81

Chapter 4 Ontology Matching

A simple matching of notations is performed by searching RDF files for a specific
notation and validate if same notation is available in another RDF file. In order to
make a more precise lexical matching the simple comparison of the classes is not suf-
ficient. Hence, a comparison of RDF properties is performed. Thus the following table
presents the features, RDF properties, by assigning them to the domain and the range.
The table RDF properties is taken from the W3C recommendation website [159].

Property name comment domain range
rdf:type The subject is an instance of a

class.
rdfs:Resource rdfs:Class

rdfs:subClassOf The subject is a subclass of a
class.

rdfs:Class rdfs:Class

rdfs:subPropertyOf The subject is a subproperty
of a property.

rdf:Property rdf:Property

rdfs:domain A domain of the subject prop-
erty.

rdf:Property rdfs:Class

rdfs:range A range of the subject prop-
erty.

rdf:Property rdfs:Class

rdfs:label A human-readable name for
the subject.

rdfs:Resource rdfs:Literal

rdfs:comment A description of the subject
resource.

rdfs:Resource rdfs:Literal

rdfs:member A member of the subject re-
source.

rdfs:Resource rdfs:Resource

rdf:first The first item in the subject
RDF list.

rdf:List rdfs:Resource

rdf:rest The rest of the subject RDF
list after the first item.

rdf:List rdf:List

rdfs:seeAlso Further information about
the subject resource.

rdfs:Resource rdfs:Resource

rdfs:isDefinedBy The definition of the subject
resource.

rdfs:Resource rdfs:Resource

rdf:value Idiomatic property used for
structured values.

rdfs:Resource rdfs:Resource

rdf:subject The subject of the subject RDF
statement.

rdf:Resource rdfs:Resource

rdf:predicate The predicate of the subject
RDF statement.

rdf:Resource rdfs:Resource

rdf:object The object of the subject RDF
statement.

rdf:Resource rdfs:Resource

Table 4.2: RDF properties

The RDF and RDFS elements described in table RDF classes and RDF properties are

82

4.1 Improvement for Ontology Matching

used for the lexical matching. For this, first a concept for the matching procedure is
identified and second, in case a matching concept was identified, the features of the
concepts are compared. Lower and upper case notations are equal for the matching
procedure. In general for every entity that is lexically compared the matching similar-
ity is 1 or 0. A more fine grained distinction regarding the similarity value is achieved
by taking into account the features of compared concepts. The similarity value for the
lexical matching is generated by appropriating the single similarities of the features of
a concept and dividing the aggregated feature similarities by the number of features
multiplied by factor 2. Factor 2 is used because of the fact that not only the value of
the features of a concept are used for the matching approach but the features of the
selected concept as well. The similarity of the concept itself is not used for generation
of the LSV similarity value because it is only 1 or 0. In case it is 0 no lexical matching
takes place and in case it is 1, the lexical matching is performed.

LSV = AS÷ (NF ∗ 2) (4.1)

• AS = Accumulation of Similarities (AS) of the selected concept.

• NF = Number of Features (NF) assigned to the selected concept.

As an example a RDF snippet is given, containing entities used for a lexical matching.
RDFS snippet:
<rdf:Property rdf:about="http://www.hlrs.de/2012/01/01-rdf-syntax-ns#type">

<rdfs:isDefinedBy rdf:resource="http://www.hlrs.de/2012/01/01-rdf-syntax-
ns#"/>

<rdfs:label>type</rdfs:label>
4 <rdfs:comment>description</rdfs:comment>

<rdfs:range rdf:resource="http://www.hlrs.de/2012/01/01/rdf-schema#Class"
/>

<rdfs:domain rdf:resource="http://www.hlrs.de/2012/01/01rdf-schema#
Resource"/>

</rdf:Property>

Before performing the lexical matching, a similar concept of another ontology needs
to be identified. For the given example the wanted concept is the RDF class prop-
erty. In case this class is found in another ontology, the lexical matching takes place.
The concept of the ontology is compared with another concept in order to find accor-
dances of used RDF and RDFS terms. Afterwards, the values of the features, the RDFS
properties, are compared to identify matches. In the given example the concept is the
RDFS snippet describing the RDF class property. In case the lexical matching reaches
a defined threshold, the result will be stored. Nevertheless, the usual RDF structure
is presented in a triple predicate, subject, object. Such a triple provides information
regarding the relation of the three entities predicate, subject and object, but in order to
deal with more complex ontology structures containing more entities, and e.g. more
properties related to a concept, OWL files are considered as well. Nevertheless, a lexi-
cal matching can be performed by use of RDF data. The following algorithm presents

83

Chapter 4 Ontology Matching

a lexical matching by comparison of the lexical entities of RDF triples in pseudo code.
Furthermore, the presented algorithm is extendable through adding more or other
entities.
read RDFmodel1;
read RDFmodel2;

3 result_model := NULL;
WHILE RDFmodel1.hasNext(RDFmodel1.RDFstatement) DO

int AS := 0;
float LSV := 0;
WHILE (RDFmodel2.hasNext(RDFmodel2.RDFstatement)) && (RDFmodel2.length <=

textit{SearchSpace}) DO
8 IF (RDFmodel1.RDFstatement.subject == RDFmodel2.RDFstatement.subject) {

write(RDFmodel2.RDFstatement.subject,resultModel);
AS++;
}

IF (RDFmodel1.RDFstatement.predicate == RDFmodel2.RDFstatement.
predicate) {

13 write(RDFmodel2.RDFstatement.predicate,resultModel);
AS++;
}

IF (RDFmodel1.RDFstatement.object == RDFmodel2.RDFstatement.object) {
write(RDFmodel2.RDFstatement.object,resultModel);

18 AS++;
}

IF (count>0) {
LSV := (float) AS / NF;
} ELSE {

23 LSV := NULL;
}

END
END

Such a matching is implemented prototypical by use of the Apache JenaTMframework
in order to compare RDF statements of two different RDF files. In general, this match-
ing compares the lexical structure of two RDF models by dividing it into the RDF
statements and compare each entity of the statement. However, this proceeding is
extendable by adding more or other relevant entities. Each RDF statement of RDF
model1 is compared with the RDF statements of RDF model2 until the search space
is reached or there is no more RDF statement in RDF model2. The default value of
the search space is the complete length of RDF model2. The similarity value is cal-
culated by dividing the number of matches of each RDF statement by the number of
checked entities of each RDF statement. In case the names of the matching features
are matched as well, the NF need to be multiplied by factor two. The similarity values
for each matching of RDF statements are usable for further calculations, e.g. identify-
ing the overall similarity of the complete lexical matching procedure. The matching
results are stored in a result model being an alignment list.
The presented lexical matching for RDF triples creates the LSV but the given formula
could be much simpler due to the fact that the used RDF triple make use of an iden-
tical structure. Hence, a simple division of the AS divided by the factor three (the

84

4.1 Improvement for Ontology Matching

number of elements included in a RDF triple) is sufficient in order to create the LSV.
When performing the lexical matching by use of ontologies structured as OWL files,
the above presented formula for identifying the LSV is required to deal even with
concepts with different structure. In addition, generally OWL files contain more RDF
elements than used in the RDF triple example but it is based on RDF. The focus of this
approach will be RDF based ontologies.

4.1.4.2 Taxonomy Matching: TSV

The previously proposed lexical matching (4.1.4.1) is sufficient in case if similar con-
cepts have the same notation. However, in case the notation of the concept names is
different, another strategy is required in order to identify similar concepts with differ-
ent names. In general, the lexical matching lacks of a sufficient solution to deal with
similar entities with different notations. At this point the taxonomy matching offers a
solution to handle similarities that are not identified by a lexical matching because of
different notations. When considering the taxonomy in an ontology the neighboring
entities, namely neighboring concepts, are relevant. Assuming an ontology is pre-
sented as a graph it is of high relevance to consider the parent nodes as well as the
siblings. The number of parents and sibling nodes to be considered depends on the
previously defined search space (see 4.1.3). The taxonomy matching procedure is trig-
gered by an involved expert after the lexical matching was performed.
When thinking of RDF triples as a tree the structure is as follows: ¡subject, predicate,
object¿. The subject is the entity described by the predicate and the object whereby the
predicate is the link to the object. The object is the last node of a branch or it is linked
to one or more other objects which will make the object to the subject of another RDF
triple. This is presented by the following example of an RDF taxonomy:

<subject_A, predicate_A, object_A>
<subject_B (previously object_A), predicate_B1, object_B>
<subject_B (previously object_A), predicate_B2, object_C>

4 <subject_C (previously object_B), predicate_C1, object_D>
<subject_C (previously object_B), predicate_C2, object_E>
<subject_D (previously object_C), predicate_D, object_F>
...
<subject_D (previously object_C), ...

9 ...
<subject_E (previously object_D), ...
...
<subject_F (previously object_E), ...
...

The presented listing demonstrates the tree structure of an RDF based ontology by
linking the subjects with objects through the predicates. For identifying similarities
between such ontologies the given structure needs to be compared by consideration
of the previously defined search space. The default value of the search space is the

85

Chapter 4 Ontology Matching

complete ontology. Only in case, the expert wants to consider only partial structures
of the selected ontologies it is recommended to change the default search space to a
lower value. However, the aim is to update an alignment list in case a similarity is
given. The similarity is identified by generating the TSV. The focus of the TSV gener-
ation is the linking of the subjects with the objects in order to identify similarities with
neighboring entities. The TSV is generated by considering the matching similarities
compared with the complete search space.

TSV = PC÷ SD (4.2)

• PC = The Path Count (PC) contains the value of the matching patch length.

• SD = The Search Depth (SD) is the search space of the target ontology, in most
cases the search space has its default setting.

The outcome of the taxonomy matching is a set of alignment lists marked with the
TSV. The involved expert is enabled to identify the usability of the listed alignments
by use of the provided TSV. The TSV algorithm is presented in the following in
pseudo code.

read SD;
2 read RDFmodel1;
read RDFmodel2;
result_model := NULL;
WHILE RDFmodel1.hasNext(RDFmodel1.RDFstatement) DO

int PC := 1;
7 WHILE (RDFmodel2.hasNext(RDFmodel2.RDFstatement)) && (RDFmodel2.length <=

SD) DO
IF (RDFmodel1.RDFstatement.subject == RDFmodel2.RDFstatement.subject)

&& (RDFmodel1.RDFstatement.object == RDFmodel2.RDFstatement.object
) {

write.toPath(RDFmodel2.RDFstatement,resultModel.addPath);
PC++;
}

12 float TMV = (float) PC / SD;
END

END

As presented the path in the RDF graph from RDF model1 is matched with the path of
another RDF graph from RDF model2. The path structure is identified by comparing
the subject and the object of an RDF statement. In case of a match, the RDF statement
is added to the graph of the result model and the PC increased. The similarity value
is generated for each matching by the given formula. The presented algorithm is
extendable through adding more or other entities similar to the LSV algorithm. The
linking items, the predicates, are analyzed by the generation of the NTSV in the next
section (4.1.4.3).

86

4.1 Improvement for Ontology Matching

4.1.4.3 Non-Taxonomy Matching: NTSV

The non-taxonomy matching is performed after the lexical and the taxonomy match-
ing. In addition to the taxonomy matching it compares the relation between entities
itself. This relations are the linking entities in a RDF structure; in a RDF triple this
entities are the predicates. Each relation between entities is labeled with additional
definition of the relation type. This type of relation is compared in order to identify
the similarity grade. As presented in the listing above, the predicates identify the
links between subjects and objects for an RDF based ontology. The amount of con-
sidered links depends on the previously defined search space of the ontology graph.
The proceeding is similar to the taxonomy matching procedure but the linking entities
itself are matched. Furthermore, the non-taxonomy matching is the last of the three
performed matching steps. Its input data are the alignment lists produced by the pre-
viously performed taxonomy matching. The selection of the used input alignment
lists is done by an expert or otherwise it is possible to automatically filter the taxon-
omy matching results by only making use of alignments reaching a previously defined
threshold for the TSV. Anyhow, in both cases the input data for the non-taxonomy
matching are the alignment lists generated by the taxonomy matching. The NTSV is
generated by considering the matching similarities of the linking entities compared
with the complete search space.

NTSV = EC÷ SD (4.3)

• EC = The Entity Count (EC) contains the value of the matching patch length
containing similar linking elements.

• SD = The Search Depth is the search space of the target ontology, in most cases
the search space has its default setting. However, the search space is different
from the taxonomy procedures’ search space due to the fact that the now used
target ontology is an alignment list produced by the previously performed tax-
onomy matching.

The NTSV algorithm is presented in the following in pseudo code.

1 read SD(FromTaxonomyMatching);
read RDFmodel1;
read resultModel(FromTaxonomyMatching);
RDFmodel2 := resultModel(FromTaxonomyMatching);
result_model := NULL;

6 WHILE RDFmodel1.hasNext(RDFmodel1.RDFstatement) DO
int EC := 1;
WHILE (RDFmodel2.hasNext(RDFmodel2.RDFstatement)) && (RDFmodel2.length <=

SD) DO
IF (RDFmodel1.RDFstatement.predicate == RDFmodel2.RDFstatement.

predicate) && (RDFmodel1.RDFstatement.predicate == RDFmodel2.
RDFstatement.predicate) {

write.toPath(RDFmodel2.RDFstatement,resultModel.addLink);

87

Chapter 4 Ontology Matching

11 EC++;
}

float NTMV = (float) EC / SD;
END

END

As presented the linking entities in the RDF graph from RDF model1 are matched with
the linking elements of another RDF graph from RDF model2 being a result from the
previously performed taxonomy matching. The linking entities are identified by com-
paring the predicates of the RDF statements. In case of a match, the RDF statement is
added to the result model and the EC increased. The similarity value is generated for
each matching by the given formula. The presented algorithm is extendable through
adding more or other entities similar to the LSV and TSV algorithm.

4.1.5 Interpretation

The interpretation is the last step of the overall ontology matching strategy. When the
similarity values of the matching results are produced, the interpretation takes place.
During the interpretation the ontology matching algorithm decides if a matching re-
sult is used based on the similarity value; the matching result is interpreted. However,
the interpretation phase requires knowledge regarding the produced results. For this,
the previously generated similarity values, {LSV, TSV, NTSV}, have been stored in
a result data stores. In case the aggregation of the three similarity values reaches a
defined threshold, a new generated alignment is used. The new alignments are gen-
erated automatically by the three matching procedures as follows:

1. Concept Construction A new concept by means of a subject is added to the new
alignment list.

2. Concept Description The new subject is linked to an object by constructing a
predicate.

3. Concept Integration The new concept is integrated into the complete alignment
list structure by constructing a new object not present in the current alignment
list or in case a relation is already given, the object is another already existing
subject of the ontology.

However, the concept construction might also be the re-usage of an already existing
concept in the alignment list. The aim of the concept construction is twofold: (a) the
introduction of a new concept to the alignment list or (b) the update of an already
existing concept. The produced alignment lists can be used as ontologies as well.
Additionally, the produced results need to be validate to prove their usability for the

88

4.2 Realization of Proposed Strategy

expert. Hence, three approaches are used to prove the validity of the generated re-
sults.

1. The generated similarity values are considered in order to make an assumption
if the result is useful for the experts needs.

2. The occurrence of the matched terms in reliable and domain related validation
text documents is identified.

3. The generated alignment lists are matched with an reliable and domain relevant
domain ontology by performing the three matching iterations with the produced
results.

The three steps are performed consecutively. The validation of produced results will
be explained more precise in 4.2.3.

4.2 Realization of Proposed Strategy

This section presents how the described ontology matching method is applied and
utilized.

4.2.1 Applying Graph Based Matching Approaches

The use of the graph matching methods for performing a graph based matching ap-
proach opens a broad set of well proven matching approaches for ontologies. How-
ever, this section presents the use of the previously described ontology matching
method by considering tree matching methods for performing the matching of the
ontology structure (see 4.1.4.2). The matching of various ontologies is performed in
three steps, the comparison of concepts, the comparison of relations and the compar-
ison of the roles of the concepts. The matching of the concepts considers similarities
between the concepts that are based on the syntax and on the semantic meaning of
the selected concept. Identifying the similarity for the syntax is an easy task that can
be solved by a simple string matching between concepts but it is time consuming.
However, the semantic meaning is identified by matching the features and the values
of the features of the selected concepts as they are presented by use of the RDF data
structure.
The concepts are used as nodes of a path for a specific graph. By use of the relations
between the concepts that have reached a certain similarity grade that is expressed by
an similarity indicator the path is created. Furthermore, it is possible to make use of
the roles of the concepts by including the labels of the edges. However, an ontology

89

Chapter 4 Ontology Matching

language is required that is usable for graph matching approaches. For this, the RDF
standard is used, it offers a set of statements that can be treated as items in a graph.
Furthermore, it is the foundation for further standards. RDFS is an extension of RDF
and can be used as well. A mapping between the RDFS statements and items in a
graph are presented in the following table 4.3.

RDFS Element Graph Item Description
class root element The instance of the main class is the root element

of the graph.
classes node The class concept creates an object and initiates

an instance of an object by use of the rdf:type
command. Each instance of a class is used as a
node.

subClassOf labled edge A transitive property that defines a class hierar-
chy by use of the rdfs:subClassOf command.

subPropertyOf labled edge A transitive property that defines a property hi-
erarchy by use of the rdfs:subPropertyOf com-
mand.

Table 4.3: Mapping between RDF-(S) elements and graph items

As presented four main categories are required for representing an RDFS structure as
a graph:

1. root element: The root element is the main instance of the RDFS class in the graph.

2. node: Each instance of a class that is not the main instance is a node.

3. labled edge: The hierarchies of classes and properties are the relations in the
graph.

For the application of the proposed strategy RDF ontologies will be considered. RDFS
is an extension that can be used on top of the RDF structure with the presented ap-
proach. However, in order to apply the graph based approach the three steps of con-
structing the similarity value as already proposed in section 4.1.4 need to be consid-
ered. The first step, the lexical matching, is a matching of lexical entities in the selected
ontology. Therefore, no graph matching is applied to the first step but the ontology
structure is browsed as it is a graph. Only the matching of the lexical entities with the
aim to construct the required similarity value for lexical matches (LSV) is performed
for the first step.
The second phase of constructing a taxonomy similarity value (TSV) takes care of
graph matching approaches by comparison of the relations between the entities. The
use of the RDF standard allows the mapping of an RDF based ontology as graph. Such
graph structure is used for the matching in order to find similarities.

90

4.2 Realization of Proposed Strategy

Furthermore, the third step of constructing a similarity by considering the non taxon-
omy elements (NTSV) of the structure referring to the relations between the entities
in the RDF structure itself and is therefore as well related to the graph based matching
approach.

4.2.2 Use of the Proposed Strategy

The ontology matching process starts with an priority ontology PO that consists of
concepts C, features of the concepts F, values of the features V and relations between
the concepts R. The priority ontology is the source ontology. C, F, R ∈ PO Every
concept of the PO is matched with the concepts of comparison ontology Ox from the
defined set that is in the previously defined search space. The matching is done by:

1. Comparison of the features and values of the concepts

• High accordance of features of concepts: concepts might be the same

• Indicator (probability value) of accordance of the matching is set

2. Comparison of the relations and type of relation between the concepts

• High accordance of relations of concepts: concepts might be the same

• Indicator (probability value) of accordance of the matching is set

The first comparison of the features of the concepts is performed in order to find sim-
ilar concepts in the source and the target ontology. This step is required because two
concepts of different ontologies might be the same but notated another syntax. There-
fore, if only the syntax of concepts is compared not all similar concepts are identified.
Through this, the comparison of the features and values of the concepts as it is de-
scribed in the previous sections is a beneficial method for identifying similarities in
different ontologies. This proceeding includes the semantic meaning and therefore
enriches the identification process for concepts in different ontologies. The identifica-
tion of the concepts is necessary for the second comparison step that identifies similar
paths within two different ontologies presented as trees. The third step, the non tax-
onomy matching, required identified concepts as well. Nevertheless, it is possible
to merge the matching results or to produce an alignment list. Both proceedings are
described in the following.

Merging Matching Results The matching results are stored as taxonomies T in
alignment lists. Every taxonomy is a path of a tree based on the used ontology, only

91

Chapter 4 Ontology Matching

matching results that have an indicator (similarity value) reaching a certain threshold
are used. Such threshold needs to be defined in the previously performed preparation
phase.

• T1 : results of matching for C1 ∈ PO

• T2 : results of matching for C2 ∈ PO

Several taxonomies can be merged to a single ontology. For this a similarity value is
the indicator for the matching results in the taxonomies. The merge of the taxonomies
is a comparison of the results of the matched ontologies.

• Step 1: T1 becomes the new ontology, T1 = ontology

• Step 2: T1 is compared with T2 ; for the comparison the indicator (probability
value) of the matching results of the ontology and T2 is used; matching result
with highest indicator is used; T2 becomes the new ontology, T2 = ontology

Furthermore, the non-taxonomy matching is considered as well. The non-taxonomy
matching considers the labels of the relations between the matched entities in the on-
tologies presented as tree in order to identify the type of relation between the entities.
When thinking of an RDF structure, the labels of the relations are presented by the
predicates. The non-taxonomy comparison matches the type of relations by compar-
ing predicates for similar structures. For an RDF structure this means, in different
taxonomies subjects and objects might be linked with different predicates. Hence, a
similar proceeding needs to be performed as for the taxonomy comparison method.
Thus predicates are identified and the type of relations between two concepts is ex-
plored.
Every taxonomy requires a new merging step to check if parts of the current ontology
have to be replaced. Hence, the number of merging iterations depends on the number
of created taxonomies. Furthermore, the threshold needs to be considered in order to
ensure a useful level of trustworthiness regarding the matching results. The merging
of produced matching results is a computing intensive procedure that needs to deal
with trustworthiness problems when deciding which results to merge together. How-
ever, the proposed approach produces matching results that can be used as alignment
lists or as merged alignment lists based on the generated matching results.

Producing Alignment Lists The described use case scenarios (see 2) need automated
support for HPC terms. For this, an alignment list is helpful explaining the terms of
such HPC texts. The generation of an merged alignment list does not face the prob-
lem of merging in an incorrect manner as it might happen when merging complete
ontologies or several matching results. However, alignments can be related to each
other when the RDF data standard is used but the set of alignment lists includes all

92

4.2 Realization of Proposed Strategy

taxonomies generated by the ontology matching procedure. In case, different tax-
onomies describe different relations between the alignments, the different alignments
will be stored as alternative results in the alignment list data store. The alternative
alignments are those with a lower similarity value. They will be provided to an expert
as well so the expert is enabled to select which alternative to select. Nevertheless, the
proposed alignments are the same as produced when using the merging of matching
results approach:

• T1 : results of matching for C1 ∈ PO

• T2 : results of matching for C2 ∈ PO

However, the new merged alignment list includes all taxonomies:

• Step 1: T1 becomes the first alignment list, described with the similarity value

• Step 2: T2 becomes the second alignment list, described with the similarity value

• Step ...: T... becomes the ... alignment list, described with the similarity value

• Step n-1: TX becomes the last alignment list, described with the similarity value

• Step n: all taxonomies are ordered by the similarity value

The last step n is required to provide the best fitting taxonomy as the first ordered by
the similarity value.

4.2.3 Validation of the Matching Results

Vector based techniques are a considered instrument to compare the matching results
with a text document related to the domain of a given use case scenario (see 3.1.2).
The text document is provided by an expert for the automated validity check. This
Validity Check Document (VCD) contains content regarding the domain of the use
case scenario and the domain of selected ontologies. Through random indexing tech-
niques, the occurrence of terms are evaluated.
The random indexing approach is a based on word space approaches and therefore
applicable for the required validity check with the VCD. In general the idea of us-
ing word spaces is to create a high dimensional vector space for words and further
to construct a statistic that is used for the previously mentioned vector space. In the
described urgent reasoning scenario the considered words for the validity check are
the generated terms of the matching approach. When thinking of the vector space
that is constructed by providence of the previously statistic, this strategy follows the

93

Chapter 4 Ontology Matching

conception that if a set of words continuously appears in a text in the same context the
meaning of the words is the same. Through this, it becomes possible to validate the
terms of the matching result with the VCD in order to verify if the terms appear in sim-
ilar context. However, in order to make an assumption about the context of the terms
the validity check examines the related terms in the VCD and in the priority ontology
with the aim to compare the related terms. In case there is a high accordance between
the related terms in the VCD and the related terms in the priority ontology, the valid-
ity check accepts the matching result. Nevertheless, the word space approaches face
the challenge of scalability and efficiency. The use of HPC resources covers this chal-
lenge but a more fine grained approach for dealing with this issue in order to reduce
the amount of required computing resources is recommended.
For this, the simple vector based word space approach is enhanced by using the vector
based random indexing approach that creates models such as done in latent semantic
analysis (LSA) approaches. Following such approaches first of all an extensive co-
occurrence matrix is created and then second a reduction phase of the co-occurrence
matrix is performed that limits the size of the used matrix. Within the reduction phase,
the occurrence of upcoming vectors of terms in a specific context is aggregated to accu-
mulated context vectors. Hence, the random indexing approach reduces the amount
of required computing resources to perform the validity check in the given period of
time.
Nevertheless, the vector based techniques are facing the challenge of producing not
usable results in case that the text documents for comparison are not well fitting to
the specific scenario domain. This introduces the question, if the use of a vector based
approach for a validity check as described previously is usable without demanding
a high effort from an expert being in the need to do a very precise selection of text
documents fitting to the use case scenarios domain. The evaluation of vector based
approaches as well as a strategy for performing a validity check by use of compar-
ison ontology are considered. In case a comparison ontology is used, the ontology
is matched with the priority ontology with the aim to make a prove of confidence
regarding the updated priority ontology. For this, online ontologies can be used as
performing a validity check. Sabou et al. [87] are presenting a strategy for explor-
ing the continuously increasing number of online available ontologies in order to use
them as a source of evidence. This approach implies a continuous evaluation of on-
line available ontologies. However, the use of an ontology as source of evidence from
the ontology set, defined by an expert, permanently available by use of the ontol-
ogy repository DB allows an easy to use selection of a validation ontology. However,
the ontology used as a source of evidence needs to be reliable and trustworthy. The
use of an inappropriate ontology is a risk for the validation and the creation of the
alignments because of the possibility that the matching results are marked as not us-
able through the validation also if the validation itself is not trustworthy and reliable.
Hence, the expert has to do a well-considered selection of the ontology used as the
source of evidence. Even when the validation of the matching result is producing de-
viate results it is still an issue of trust and reliability if the expert decides to make use
of the afterwards validation of the matching results.
To sum up the approach for validating the produced matching results, three steps

94

4.3 Conclusions of Ontology Matching

ensure reliable and trustworthy results. As a first step the expert considers the gen-
erated similarity values of the matching procedures. Afterwards, a VCD is used to
identify the occurrence of the result terms and as a last step the generated alignment
lists are matched again but with the domain ontology. Nevertheless, the validation of
the results is a matter of trust and reliability as well.

4.2.4 The Priority Ontology

The priority ontology is a selected ontology used as a base for the ontology matching
strategy in order to enable a better reasoning capability for the expert. To be more
precise, the priority ontology is the source ontology used for matching as described
above (see 4.1) with target ontologies. The result of the matching procedure consisting
of the lexical, taxonomy and non-taxonomy matching are alignment lists containing
the generated facts. However, before the alignment lists are finalized several itera-
tions take place. Additionally, the quality of the results depends on the previously
performed preparation steps. The quality of the matching results is ensured through
the defined threshold for similarities and the afterwards performed prove of validity.
In case the threshold is not reached, the matching result will not be used for the migra-
tion of the results into the alignment list. The matching results reaching the threshold
are used for the migration by several iterations. However, the alignment lists will con-
tain alternative matching results that have reached the threshold but were overruled
by another matching result with a higher similarity grade. The alignment lists contain
all matching results ordered by the similarity value reached the threshold generated
through the described matching approach. For this the priority ontology is used as
foundation to be matched with selected target ontologies.

4.3 Conclusions of Ontology Matching

The described ontology matching approach consists of a preparation phase, the match-
ing by generation of a similarity value and an afterwards interpretation of the results
by creation of an alignment list. The generated results are validated. Further, the on-
tology matching is performed by three sequentially performed matching procedures
performed in several iterations. The matching methods are:

1. a lexical matching: the values of compared concepts are matched by validating
the lexical structure;

2. a taxonomy matching: the neighboring concepts are identified and validated in
order to examine similarities of the structure of an ontology by consideration of
the search depth of the tree;

95

Chapter 4 Ontology Matching

3. a non-taxonomy matching: the relations between the concepts are analyzed
with the aim to identify the type of relation to the neighboring concepts.

For performing the matching iterations the source ontology as well as the target on-
tology used for this iteration are mapped as trees. Such trees are compared and the
results are stored with the constructed similarity values in case the previously de-
fined threshold is reached. In case the threshold is not reached, the result will not
be stored. The complete matching of all ontologies is done by matching the source
ontology with all assigned target ontologies. The validation of the matching results is
ensured through the use of the three validation methods including the three different
matching procedures (see 4.1.4) and the use of a similarity value as well as alternative
matching results.
However, semantic data sets are growing even in the future. This effects directly the
processing time and overall performance for matching procedures. Even a data set
consisting of GB of data is not big data looking from the HPC perspective but it causes
high execution times for the matching calculations. Thus, focusing on the matching
approach GB of data are big data in terms of the performed calculation iterations
growing massively with increasing data sets. Hence, matching strategies need to deal
with growing data sets in order to deal with large data volumes to ensure an appropri-
ate reasoning based on the matching results. The matching of large data sets described
in 2 might lead to execution times of several hours or even days. The distribution of
matching tasks can be distributed on several computing resources to face the chal-
lenge of performing a semantic matching by use of large data sources. For this, the
next chapter proposes a strategy for handling very large semantic data sets in order to
increase the performance of execution times for the proposed matching methods.

96

Chapter 5

Distributed Ontology Matching

As presented in chapter 4 a priority ontology is the foundation for updating and en-
hancing semantic structures with additional semantic data by adapting a matching
strategy based on similarity values. This strategy is composed of a lexical, a taxonomy
and a non-taxonomy matching procedure. For using the matching results a reasoning
strategy is required dealing with an approach for performing inferences on base of the
produced facts by consideration of scalability and performance. Thus, the first step is
to enhance the matching strategy in a way enabling an expert to perform the matching
procedures in a less time consuming manner. When thinking of reasoning, common
reasoning strategies are forward and backward chaining producing new inferences at
run-time or in advance. This chapter presents an improved ontology matching strat-
egy and how to adapt a reasoning strategy taking into account current scalability and
performance problems when executing inference rules.

5.1 Techniques for Improving Performance by
Distribution

5.1.1 General Advantages of Distribution

The core concept of distribution techniques for increasing the performance is the idea
to separate processes, workload or domains with the aim to run each item on several
computing resources, as several threads on different nodes and so forth. Through this
it becomes possible to run the different items in parallel on the allocated computing re-
sources. However, the distribution of processes and processing of several processes at
same time leads to challenges in the area of parallel computing such as dependencies
between processes and latencies. The parallelization approach depends on several
circumstances such as selected hardware architecture, decomposition of data, work
or the domain and further, the selected programming model. In order to deal with an

97

Chapter 5 Distributed Ontology Matching

ontology matching supporting a reasoning strategy in a distributed computing envi-
ronment a brief overview about existing parallelization strategies is presented. This
overview is a short summary for demonstrating the complexity of the parallelization
challenge. In addition, the distribution and parallelization approach for the presented
work is identified.
In general parallelism can be adapted implicit on job, task, block, instruction or BIT
level. In case a job runs in parallel this means an execution of jobs at same time. Usual
problems are different length of jobs, different speed of processors and the optimal
minimalization of the total execution time. A parallel execution of tasks is given in
case parts of a program are executed at same time. The task parallelism implies the
problem of switching between sequential and parallel parts of selected tasks. Further,
the block parallelism describes the parallelization of instruction blocks by considera-
tion of data dependencies between instruction blocks. Such data dependencies occurs
in case execution order or block statements change which will change the computa-
tion results. Additionally, procedural (given in the logic of a program) and opera-
tional (blocks of instructions need the same physical device) dependencies need to
be taken into account as well. Beside the already mentioned issues, instructions can
be performed in parallel by consideration of dependencies and the given logic of the
instructions.
When thinking of parallelism strategies, a decomposition of work, data or the domain
needs to be evaluated. The work decomposition is given in case several working
steps are executed at same time. Data decomposition allows a parallel execution of
data sets. Further, the domain decomposition describes the process of splitting up a
problem into several domains and execute such domains in parallel.

5.1.2 Benefits of the LarKC platform

The European founded LarKC project provides a platform for massive distributed
incomplete reasoning that aims to deal with the challenge of solving scalability prob-
lems for existing reasoning systems as it was presented in 3.2. The overall goal of
LarKC is to deal with three major issues:

1. Enriching the current logic-based semantic web reasoning methods by enhance-
ment and adaption of knowledge discovery for reasoning in order to use more
efficient reasoning methods.

2. Employing cognitively inspired approaches and techniques for improving the
reasoning process as well and also increase the effectiveness of the followed rea-
soning procedure.

3. Building a distributed reasoning platform with the aim to make use of a broad
set of computing resources. Regarding the allocation of the used computing

98

5.2 Ontology Matching in a Distributed Environment

resources LarKC supports a computing at home approach as well as the use
of a high performance computing cluster that provides required computing re-
sources in order to guarantee the amount of needed computing resources to per-
form a reasoning even for very large data sets and computationally demanding
reasoning algorithms.

For the ontology matching approach described in 4 the distributed reasoning platform
of the LarKC project is a considered existing system for dealing with the analyzed re-
quirements that are improved by adapting computing resources being distributed as
a cluster. Additionally, the described ontology matching approach is aligned with
the first two major goals of LarKC, improvement of a reasoning strategy and using
cognitively inspired approaches. Both issues are handled with the ontology match-
ing strategy of this work by considering an effective reasoning based on ontologies in
order to provide an expert with results that are produced by the ontology matching
and afterwards available by the matching results. At this point there is a clear dis-
tinction between the results from the LarKC project and ontology matching approach
presented in this work. The LarKC project focuses on reasoning methods to provide
reasoning results in an efficient way. This work targets an efficient approach as well
but the focus is the ontology matching in order to provide an individual knowledge
base customized to a specific domain. This knowledge base is the result of the ontol-
ogy matching. Further, the matching procedure will be improved by applying it to a
HPC environment. Following, it becomes possible for an expert to execute a scalable
an efficient matching for providing the results being the knowledge base for reason-
ing tasks. An overview of the LarKC project was already given in previous chapters
3.2.
It follows that the third major issue of LarKC is as well a major issue of this thesis.
The ontology matching approach needs to be performed by use of needed computing
resources such as a distributed shared memory system (e.g. provided by supercom-
puting centers such as HLRS). However, the use of an adequate matching strategy
for reasoning is an open issue. Such matching strategy needs to deal with large data
sets consisting of trillions of RDF triples. Looking at the Large Triple Stores presented
in the abstract section, it was possible to process more than a trillion RDF triples in
approximately 338 hours (approx. 829.556 triples per second) in August 2011. This
example demonstrates the need of making RDF processing more efficient in order to
deal with very large sets of data. While the LarKC project had its focus on en efficient
reasoning strategy this work targets an improved ontology matching for supporting
reasoning methods with an individual knowledge base.

5.2 Ontology Matching in a Distributed Environment

The presented work focuses on the ontology matching and gives an overview on how
to enhance a matching in a distributed fashion usable for reasoning tasks. The ontol-

99

Chapter 5 Distributed Ontology Matching

ogy matching is executed in order to provide an expert with a useful set of alignments
containing data relevant to a specific domain. Reasoning is performed in order to
make use of the information available in the alignment lists. The most data intensive
task in the scenarios (see chapter 2) are the matching procedures for large data sets for
enabling reasoning taking place after execution of the ontology matching approach.
The ontology data data are small but the execution of the matching by using these
data set becomes a challenge due to a large amount of comparisons between entities
of the selected ontologies.
When thinking of an ontology matching for enabling a highly scalable matching and
reasoning, sufficient computing resources need to be allocated. For this, the match-
ing distribution for offering the possibility to perform reasoning tasks is a promising
approach. In the following the resource allocation and the strategy for an efficient
reasoning are presented. The resource allocation is a crucial task in this scenario due
to the fact that for large computational procedures the provision of the needed com-
puting resources takes time to be aligned with the given requirements.

5.2.1 From Queues to SLAs

At current state queues are often used to allocate computing resources as, for instance,
the use of a prioritization model such as the use of a bronze, silver and gold queue.
The computing jobs stored in the queue with the highest priority are selected first.
Usually the price for a high priority queues is higher than the price for a low priority
queue. However, beside the use of queues SLAs can be used to define requirements
of a job and allocate adequate computing resources for the given job.
As already presented by means of the plugIT project SLAs are usable for identifica-
tion and allocation of required HPC resource 3.2. The use of long-term SLAs enables
an expert to improve the job scheduling on a HPC cluster (see Tenschert et al. [160]).
The long-term SLA provides a method for storing configurations of HPC resources,
e.g. type of used machine or installed software packages. In addition it is possible
to prioritize SLAs in order to schedule jobs effective and avoid latencies for matching
tasks depending on each other.
Today, HPC cluster consider a job scheduling done by using batch queues such as
OpenPBS [161] or TORQUE [162]. Most often a HPC provider maintains several HPC
resources with a diverse set of queues with different prioritizations. For the usage of
batch queues for several submitted jobs various scenarios are possible such as the use
of a ”‘first come first served”’ (FCFS) algorithm in order to execute the job in the queue
with the highest priority level first. Most HPC provider perform their job scheduling
by use of best-effort methods.
Additionally, the job scheduling varies between local workstations and HPC systems.
Though it is possible to submit a job directly on a node of a workstation the job sub-
mission at a HPC system is performed by use of front end or login nodes accessible
from the outside. The front end or login nodes interact with the job scheduler for set-

100

5.2 Ontology Matching in a Distributed Environment

ting up the job on the cluster.
When thinking of the previously described ontology matching approach (4) the per-
formed ontology matching require a scheduling of given computing jobs. The use of
a scheduling system as described above supports an expert for resource allocation.
Additionally, the process for the provision of needed HPC resources is improved.
The presented scheduling approach as it was presented by Tenschert et al. enables
a scheduling based on QoS parameters allowing an expert to process computing jobs
by a defined scheduling plan. Such scheduling plan will be used for the ontology
matching approach described in this work. Thus, the distributed execution of the
ontology matching allows a processing of the given ontology matching tasks by per-
forming several jobs in parallel in an HPC environment. The next sections describe
the job parallelization of the ontology matching approach. Following an overview of
an improved usage of the ontology matching results is proposed to support an ex-
pert by increasing efficiency of reasoning tasks making use of the ontology matching
results. However, the reasoning is up to the expert depending on individual needs.

5.2.2 Distributed Ontology Matching

The distributed ontology matching makes use of the allocated HPC resources pro-
vided by a job scheduling system as presented in the previous section. The proposed
ontology matching strategy (see chapter 4) consists of three matching steps, the lex-
ical, the taxonomy and the non-taxonomy matching. The three steps are performed
sequential. However, within each of the three matching steps the matching can be
performed in parallel by use of a distributed computing architecture. In this case, the
most important issue is the allocation of computing resources and the execution of the
identified jobs. Given the fact that the presented approach makes use of matching the
tasks in parallel, the matching results reaching the previously defined threshold are
merged in the alignment list. Hence, the ontology matching is performed by running
the matching iterations in parallel. This is done for each matching step, the lexical,
the taxonomy and non-taxonomy matching. However, the reasoning depends on pro-
ducing results by applying inferences. Such inferences produce a high amount of
assertional data. Thus a more efficient ontology matching is presented by use of HPC
resources. Following an overview about possibilities on how to improve reasoning
tasks is given.

5.2.3 Distribution on HPC Resources: Ontology Matching

As described SLAs can be used to define the amount, type and configuration of needed
computing resources (see section5.2.1). The distribution of the presented ontology
matching requires the provided HPC resources. When thinking of the distributed on-

101

Chapter 5 Distributed Ontology Matching

Figure 5.1: Parallel Job Execution of the Lexical Matching

tology matching approach, the three matching steps need to be considered. Thus, for
each of the three matching steps the parallelization method is described.

Lexical Matching The complete matching task is divided into several independent
tasks performed as single processes. When thinking of the proposed RDF ontologies,
each concept in the source ontology is matched with the concepts in the target ontol-
ogy. Thus, the parallelization on task level enables the matching of each concept in
the source ontology with the concepts in the target ontology depending on the search
space. As described, the default search space is the maximum number of possible
matching operations leading to a matching of a set of concepts from the source ontol-
ogy with all concepts of the selected target ontology. Figure 5.1 presents the parallel
task execution for the lexical matching. The task parallelization is performed by run-
ning the tasks in several parallel processes distributed on the allocated nodes.

The amount of lexical matching tasks performed in parallel depends on the amount
of data chunks of the source ontology. Each chunk of data becomes a single matching
task. Further, after the lexical matching is performed, the matching results of each
matching processes are merged to a single alignment list. Further, the amount of
performed comparison operations is as follows:

• Entity A consists of An characters and is compared with entity B consisting of Bm
characters. Thus, for each lexical comparison between two entities the amount
of comparison operations is An multiplied with Bm.

• Entity A is compared with each entity from the selected search space.

This concludes in the following amount of lexical comparison operations per entity of
the source ontology:

102

5.2 Ontology Matching in a Distributed Environment

entityX(n)× (entity ∑S
entity=1×m)

The selected entity being marked as entity X consists of n characters being compared
to each entity of the target ontology being in the scope of the search space. Regard-
ing the target ontology the first entity in the defined search space is identified with
the index 1 and the last one with the index S being the maximum index. n is the
amount of characters for the entity from the source and m is the amount of charac-
ters for each entity of the target. In case a comparison operation identifies a match
this is registered. This implies that each identified match causes an additional write
operation whereas each comparison operation causes a load operation for receiving
the characters. When thinking of the scalability, sequential parts being performed be-
fore initializing the lexical matching approach are the three steps presented in section
4.1 including the identification, the selection and the definition phase and in addition,
dividing the ontology into data chunks. The lexical matching being performed on sev-
eral nodes makes use of the data chunks. When separating the data into chunks the
search space is taken into account so that relevant data are available for comparison
operations. Thus, when increasing the amount of nodes used for performing the lexi-
cal matching approach the execution time will decrease. The overall data size is fixed
but it is divided to several nodes so that the matching approaches will be performed
in parallel. It is expected that providing chunks of data so several nodes enhance the
performance but in case of a match an additional write operation takes place. Thus,
the execution time will vary between comparison operations identifying matches and
those that are not matching. The data size used for the lexical matching approach is
presented in the next chapter in section 6.3.1 and 6.3.2.

Taxonomy Matching After the lexical matching, the taxonomy is performed by
consideration of the parallel task execution strategy. The parallel task execution is
similar to the parallel lexical matching due to the fact that the linking of the tax-
onomy of the RDF graph paths is matched. Hence, chunks of data are generated.
Again, the produced output is a set of alignment lists. Each matched path is stored
as a single alignment list used by the afterwards performed non-taxonomy matching.
Each matching matching task processes a graph matching of the taxonomy and is per-
formed in parallel by running several processes on the allocated nodes. These tasks
are executed in parallel using a distributed shared memory system. The results are
not merged together because the non-taxonomy matching requires alignment lists for
each matched path. Figure 5.2 presents the parallel taxonomy matching.

The amount of taxonomy matching tasks performed in parallel depends on the amount
of identified RDF Triple paths when comparing the source with the target ontology.
The search space limits the search depth. The amount of comparison operations is as
follows.

• A path from the source Ps being limited by the search space is compared with the

103

Chapter 5 Distributed Ontology Matching

Figure 5.2: Parallel Job Execution of the Taxonomy Matching

target ontology. The comparison takes place between the entities of the source
and the target ontology.

• For the comparison the entities from Ps are compared with the entities from the
target ontology.

Thus, the amount of taxonomy comparison operations is as follows per path of the
source ontology:

entity ∑P
entity=1 s× entity ∑S

entity=1

The selected path from the source being marked as path Ps is limited by the search
space S. For both, the source and the target ontology the first entity in the defined
search space is identified with the index 1 and the last one for the source ontology
with Ps and for the target ontology with the index S. In case a comparison operation
identifies a match this is registered, similar to the lexical matching approach. Also,
this causes an additional write operation whereas each comparison operation causes
a load operation for receiving the characters. As already done by the lexical match-
ing approach, the data are divided into chunks for the taxonomy matching as well.
Regarding the scalability, due to the fixed data size, when increasing the amount of
nodes used for performing the taxonomy matching approach the execution time will
decrease. The expectation is the same as for the lexical matching approach. Providing
data chunks on several nodes will enhance the performance but a matching will cause
an additional write operation and thus the execution time will vary depending on the
amount of data chunks and matches.

104

5.2 Ontology Matching in a Distributed Environment

Figure 5.3: Parallel Job Execution of the Non-Taxonomy Matching

Non-Taxonomy Matching The last matching step is the non-taxonomy matching,
it analyzes the relations between the concepts of the ontologies. The previously pre-
sented lexical and taxonomy matching make use of chunks of data. However, the par-
allel task execution of the non-taxonomy matching is performed by using the align-
ment lists generated through the taxonomy matching and perform them in parallel in
the HPC environment. Thus, the data chunks used by the non-taxonomy matching
are the results produced by the taxonomy matching. Figure 5.3 presents the non-
taxonomy task execution.

The amount of non-taxonomy matching tasks performed in parallel depends on the
amount of alignment lists produced by the taxonomy matching procedure presented
as follows.

• A path from the source Ps being limited by the search space is compared with the
target ontology. In contrast to the taxonomy matching approach, the comparison
takes place between the source and the target ontology by using the labels of the
edges.

• For the comparison the labels from Ps are compared with the labels from the
target ontology.

Thus, the amount of non-taxonomy comparison operations is as follows per path of
the source ontology:

label ∑S
label=1×label ∑S

label=1

105

Chapter 5 Distributed Ontology Matching

The data chunks used for the non-taxonomy are the results generated by the previ-
ously performed taxonomy matching iteration. Thus, it is a reduced data set. Due
to the comparative small amount of data the search space S is per default set to the
full data set. This implies that S is the maximum index. Similar to the lexical and the
taxonomy matching approaches each comparison operation causes a load and each
match a write operation. Hence, execution times can increase for data sets containing
lots of matches. When thinking of the scalability, due to the fixed problem size of the
data a reduction of execution times is expected but the data size needs to be consid-
ered. When using the reduced data sets the improvement of execution times might
be negligible depending on the data size. In chapter 6 a measurement of performance
takes place.

5.2.4 Distribution on HPC Resources: Closure and
Materialization

The closure approach, performing the inference rules by using an ontology makes use
of allocated computing resources. The closure approach is responsible for construct-
ing new facts at load time to provide the expert with results for submitted queries. The
use of the closure method indicates a workload partitioning through breaking down
the problem to execute it in parallel. For use of the closure approach the RDF data are
partitioned on several nodes. Each partitioned part of the data is used for applying
inference rules to generate new facts. The adaption of the inference rules is executed
in several processes executed in parallel. The complete forward-chaining based clo-
sure method is presented by Weaver and Hendler. In this work the closure approach
is presented to partition the workload of a reasoning task by data partitioning. The
steps to be performed are:

1. decomposition of reasoning tasks

2. scheduling of reasoning jobs

3. processing the inference rules

After the inference rules are processed, the results need to be merged.

5.3 Applying Distributed Matching Procedures

The distribution approach of the proposed ontology matching strategy needs to be
adapted to the HPC environment. Thus, firstly the architecture is described in order

106

5.3 Applying Distributed Matching Procedures

Figure 5.4: Job Scheduling Using HPC Cluster Nodes

to identify the given needs and dependencies. Afterwards, the ontology matching
approach is presented based on the given infrastructure and finally an overview on
how to adapt a reasoning strategy to the given approach is presented.

5.3.1 Ontology Matching on Several Nodes

The general idea is to make use of an HPC environment by use of a computing clus-
ter. The cluster consists of several physical computing resources such as nodes. Each
computing job executed in the cluster runs on these nodes. A scheduling system as it
was presented in section 5.2.1 enables a job scheduling specified to the given needs as
demonstrated in figure 5.4. A beneficial proceeding for parallel execution of matching
tasks is the allocation of the complete matching process on several nodes. Thus, the
matching jobs are processed as described in the previous sections but by defining the
amount of used computing resources by selecting a cluster and defining the amount
of used nodes and the required availability time of the system. For instance, at HLRS,
the NEC NEHALEM cluster is used for running matching jobs through defining the
amount of needed nodes. The NEC NEHALEM cluster is composed out of more than
700 computing nodes. The NEC NEHALEM cluster was ranked in the Top500 list
[163] in 2009 to be the 77th fastest computing system and in 2011 the 305th fastest.
The proposed matching strategy consists of the lexical, the taxonomy and the non-
taxonomy matching approach. Hence, such a proceeding indicates the processing of
the three matching procedures as proposed before but defining the amount of used
nodes. Through this proceeding, a lack of available computing resources is solvable
by allocating a sufficient amount of computing nodes. The computing resources of
a cluster provide more computing power than conventional PCs. Therefore, simply
allocating a huge amount of nodes enables more complex calculations by decreasing
the needed time. Such a proceeding is easy to use but not efficient when thinking of
parallelization strategies. In case of using several nodes of a cluster it becomes possi-
ble to distribute the processing as it is required for the ontology matching on several
nodes in parallel. Thus, the allocated computing resources are used more efficient. In
the next section, the parallel execution of the proposed matching tasks is presented.

107

Chapter 5 Distributed Ontology Matching

5.3.2 Distributed Ontology Matching Procedures

As proposed in section 5.3.1 a cluster is usable for using several nodes for performing
matching tasks. However, besides the allocation of the required computing resources,
the matching processes need to be divided to be runnable in parallel on several nodes.
Thus, the matching procedures for each of the three matching steps need to be aligned
to the parallelization strategy. The algorithms of the matching strategies need to be
enhanced by enabling a parallel usage.
The following updates need to be included:

• LSV, TSV and NTSV are merged to one matching cycle

• the lexical matching will change. each matched term is matched sign by sign for
each lexical matching iteration

• the distribution will be performed by splitting up the RDF data in several chunks.
The RDF chunks need to include as well the data they point to, otherwise too
much communication will be required when linking from one RDF chunk on a
node to another one.

Parallel LSV Algorithm The matching is divided into several matching tasks by us-
ing the LSV algorithm and running parts of the outer WHILE loop in parallel depend-
ing on the defined chunks of data. Each chunk consists of a set of RDF triples. Hence,
the matching iterations are divided into several matching tasks being performed in
several processes depending on the amount of used nodes. Each presented matching
job algorithm consists of an outer and an inner WHILE loop as demonstrated in the
following in pseudo code.
WHILE (RDFmodel1.hasNext(RDFstatement)) DO

<parallel>

5 read RDFmodel1.RDFstatement(X);
read RDFmodel2;
result_model := NULL;
int AS := 0;
float LSV := 0;

10 WHILE (RDFmodel2.hasNext(RDFmodel2.RDFstatement)) && (RDFmodel2.length <=
textit{SearchSpace}) DO

IF (RDFmodel1.RDFstatement.subject == RDFmodel2.RDFstatement.subject) {
write(RDFmodel2.RDFstatement.subject,resultModel);
AS++;
}

15 IF (RDFmodel1.RDFstatement.predicate == RDFmodel2.RDFstatement.predicate)
{

write(RDFmodel2.RDFstatement.predicate,resultModel);
AS++;

108

5.3 Applying Distributed Matching Procedures

}
IF (RDFmodel1.RDFstatement.object == RDFmodel2.RDFstatement.object) {

20 write(RDFmodel2.RDFstatement.object,resultModel);
AS++;
}

IF (count>0) {
LSV := (float) AS / 3;

25 } ELSE {
LSV := NULL;

}
END

30 </parallel>

END

In case of X data chunks composed out of RDF model1, X matching tasks are needed.
Each result is stored in the result model being an alignment list.
The presented LSV pseude code compares subjects, predicates and objects as complete
terms. In case of a match a counter (AS) is increased and divided by the number of
matched terms (3). The result is a floating-point number between 0 and 1 expressing
the grade of similarity, whereas 0 means no similarity and 1 means identical terms.
For creating a more precise similarity the matching procedure for subjects, predicates
and objects is enhanced through matching term by term, e.g. a subject consists of
five tokens the matching will check the five tokens with the subject from the target
ontology and afterwards divide it by five. The following pseudo code presents the re-
quired update needed for including this enhanced similarity calculation for the lexical
matching.

FOR (i := 0; i ¡ SOtl; i++;) BEGIN IF (SOsubject.token[i] == TOsubject.token[i]) : AS++; END
AS := (float) AS / SOtl;

• i is an index used to run the for loop depending on the length of the term from
the source ontology.

• the term meaning is as follows: Source Ontology (SO); Target Ontology (TO);
Term Length (TL).

• subject is replaced with the predicate or the object according to the matching
step.

• token is the currently used token of the term used for matching it with another
token from the target ontology.

• AS is the enhanced similarity value; in case a token matches with another token
it is increased by one; after finishing the for loop the AS value for a subject,

109

Chapter 5 Distributed Ontology Matching

predicate or object is calculated through dividing by the amount of tokens from
the term of the source ontology.

The presented calculation enables a token-wise instead of the previously performed
term-wised proceeding. This proceeding ensures a much more precise similarity value
creation whereas for the benefit of performance it does not proof if the matching term
from the target ontology includes more tokens than the source ontologys term. How-
ever, the following taxonomy matching detects mis-matches caused through this is-
sue. Further, in case the target ontology term has less tokens it is handled by not
increasing the AS value.
The parallel lexical matching is the first of three matching steps, it is followed by the
taxonomy and the non-taxonomy matching.

Parallel TSV Algorithm Similar to the proceeding done for the LSV, the TSV algo-
rithm is divided into several matching tasks runnable in parallel on several computing
nodes. Parts of the outer WHILE loop are performed in parallel while the inner WHILE
loop presents the taxonomy matching being part of each matching task as presented
in the following in pseudo code.

WHILE (RDFmodel1.hasNext(RDFstatement)) DO

3 <parallel>

read SD;
read RDFmodel1.RDFstatement(X);
read RDFmodel2;

8 result_model := NULL;
int PC := 1;
WHILE (RDFmodel2.hasNext(RDFmodel2.RDFstatement)) && (RDFmodel2.length <=

SD) DO
IF (RDFmodel1.RDFstatement.subject == RDFmodel2.RDFstatement.subject)

&& (RDFmodel1.RDFstatement.object == RDFmodel2.RDFstatement.object
) {

write.toPath(RDFmodel2.RDFstatement,resultModel.addPath);
13 PC++;

}
float TMV = (float) PC / SD;

END

18 </parallel>

END

Similar to the parallel lexical matching but focusing on the matching paths of the
source and the target ontologies, the taxonomy similarity is created. The path count
(PC) is increased by each iteration and finally divided by the search depth (SD).
In a similar manner each data chunk composed out of RDF model1 becomes a single

110

5.3 Applying Distributed Matching Procedures

matching task. X is the amount of RDF statements and matching tasks. The results
are stored in a result model.

Parallel NTSV Algorithm As before, the NTSV algorithm is divided into several
matching tasks runnable in parallel on several computing nodes but by using the gen-
erated output of the taxonomy matching as input. Again, parts of the outer WHILE
loop are processed in parallel while the inner WHILE presents the non-taxonomy
matching as presented in the following in pseudo code.

WHILE (RDFmodel1.hasNext(RDFstatement)) DO

<parallel>

5 read SD(FromTaxonomyMatching);
read RDFmodel1.RDFstatement(X);
read resultModel(FromTaxonomyMatching);
RDFmodel2 := resultModel(FromTaxonomyMatching);
result_model := NULL;

10 int EC := 1;
WHILE (RDFmodel2.hasNext(RDFmodel2.RDFstatement)) && (RDFmodel2.length <=

SD) DO
IF (RDFmodel1.RDFstatement.predicate == RDFmodel2.RDFstatement.

predicate) && (RDFmodel1.RDFstatement.predicate ==
RDFmodel2.RDFstatement.predicate) {

write.toPath(RDFmodel2.RDFstatement,resultModel.addLink);
EC++;

15 }
float NTMV = (float) EC / SD;
END

</parallel>
20

END

Each matching iteration increases the entity count (EC) finally divided by the search
depth (SD).
The alignment lists of the taxonomy matching become single matching tasks used for
the non-taxonomy matching. The results are stored in a result model.

In order to avoid waiting times when submitting the matching jobs to the cluster,
a queue containing all needed matching jobs is produced in advance. Afterwards,
the jobs are performed on the cluster by use of the previously allocated computing
resources including the defined amount of nodes. Each of the three matching jobs
(lexical, taxonomy and non-taxonomy) contain several matching tasks depending on
the amount of prepared data chunks.

111

Chapter 5 Distributed Ontology Matching

5.3.3 Applying Reasoning: Closure and Materialization

This section deals with a general overview on how to apply reasoning to ontologies.
The produced matching results are stored as alignment lists usable as ontologies.
However, for the user another issue is to perform the reasoning itself in a more ef-
ficient manner. Nevertheless, reasoning is required for using the matching results but
it is not the main focus of this work. Hence, the reasoning is presented in a descrip-
tive manner. The idea is the use of HPC resources to face the problem of dealing with
high amounts of data produced through inference making by producing assertional
data. Two methods are beneficial for the reasoning, the closure and the materializa-
tion method. The closure method splits up the inference tasks on several nodes for
performing them in parallel. The applying of the inference rules to the data set of an
ontology is enhanced by use of the closure method. It separates the execution of the
inference rules on several nodes. Additionally, it becomes possible to split each infer-
ence process as well. The materialization stores the results of the closure method.
The closure approach has already been developed as a module implemented in
PythonTM1. It is a brute force implementation using the RDFLib module. The men-
tioned modules are usable on personal computers or on HPC systems. Weaver et al.
(mentioned in 1.2) have proposed a closure experiment running 128 processes for per-
forming inferences in parallel. The initial data size was 345 million RDF triples while
the result produced by the closure method consists of 650 million RDF triples. When
thinking of the Large Triple Store [1] the number of used RDF triples can become more
than one trillion. This numerous amount of RDF triples implies the need of an effec-
tive closure method dealing with such data sets.
Weaver and Hendler provide the parallel RDFS inferencing algorithm described in
the following:

Listing 5.1: Parallel RDFS Inferencing Algorithm by Weaver and Hendler
for i = 0 to p - 1 do

TAi = \{ t | t ∈ TA ∧ t /∈ TAj , ∀ j 6= i \}

Ti = TAi ∪ TO ∪ Trd f s
4 foreach rule ∈ finite RDFS rules do

repeat
apply rule to Ti to get inferences
add inferences to Ti

until no new inferences
9 end
end

return
⋃p−1

i=0 Ti

The outer loop denotes the parallelism where i is the rank of the processes. The pro-
vided input is a set of assertional triples TA, a set of ontological triples TO and a num-
ber of processes p. Trd f s is the set of finite axiomatic triples. The provided output are
all triples together with all inferences from the computation of the finite RDF closure

1Python Programming Language: http://www.python.org/

112

5.4 Conclusions of Distributed Ontology Matching

approach. Waever and Hendler are describing an algorithm regarding the input and
output. The presented approach is usable for executing the inference rules in parallel.
Thus the provided algorithm is enhanced to run the algorithm in parallel on several
nodes. The following enhancement of the algorithm by Weaver and Hendler suggests
how to improve it when distributing it on several nodes in parallel.

Listing 5.2: Enhanced Parallel RDF Inferencing Algorithm
for n = 1 to n = m do

for i = 0 to p - 1 do
TAi = { t | t ∈ TA ∧ t /∈ TAj , ∀ j 6= i }

4 Ti = TAi ∪ TO ∪ Trd f s
foreach rule ∈ finite RDFS rules do
repeat
apply rule to Ti to get inferences
add inferences to Ti

9 until no new inferences
end

end

return
⋃p−1

i=0 Ti
end

The enhanced approach is extended by another outer loop where n is the selected
node and m is the maximum of available nodes. However, each node is connected to
several cores, able to perform several jobs, depending on the hardware infrastructure.
Thus, the extension of the Weaver and Hendler approach is the possibility to dis-
tribute the processes on a large set of nodes. This proceeding is similar to the parallel
execution of the ontology matching approaches dividing the proceeding in several
tasks.

The materialization method stores the previously produced results. Thus, in the ma-
terialization phase it is decided which results to be stored. A common proceeding is
to sore all produced generated facts but a distinction between facts relevant to a cer-
tain domain is recommended. Through this the results can be made more adequate
according to the domain of interest, for instance, by selecting the results by a list of
terms relevant to the domain.

5.4 Conclusions of Distributed Ontology Matching

The last sections have shown the applicability of the lexical, the taxonomy and the
non-taxonomy ontology matching approaches by aligning them to a HPC infrastruc-
ture. For this, firstly the needed HPC resources are allocated by using a SLA based
scheduling system. Following, the ontology matching is performed by running the
parallel matching jobs using allocated nodes.

113

Chapter 5 Distributed Ontology Matching

When thinking of applying a distributed reasoning method, an improvement by in-
volving HPC resources can be reached for the reasoning through allocation of several
computing nodes. Through this, it becomes possible to handle large data sets such as
the assertional data occurring when the generation of inferences takes place. The rea-
soning is performed after the ontology matching was done in order to produce new
facts out of the matching results. The matching tasks are performed as jobs scheduled
by SLAs on HPC resources. Through this, bottlenecks and latencies occurring due to
a bad distribution of reasoning tasks can be avoided. Nevertheless, the distribution of
the reasoning tasks requires a fitting distribution taking care of relations between the
divided tasks. The afterwards merge of the distributed produced results needs to be
taken into account as well. In addition, a distributed reasoning makes only sense in
case the amount of data and produced assertional data is more complex than the pro-
cess of distribution itself. When thinking of the previously ontology matching, only
relevant results are considered and thus, often a usual reasoning method is sufficient.
The goal of this work is the ontology matching with the aim to increase the efficiency,
especially for large data sets. Thus, the parallel execution of the matching tasks on
a cluster is a usable approach enabling an expert to run reasoning queries based on
the provided matching results being the individual knowledge base. The matching
preconditions, the similarity value generation and the following result evaluation en-
sures a high quality of produced results. Through the ontology matching, relevant
data are extracted out of a huge bunch of information. The extracted data are the
foundation for reasoning tasks.

114

Chapter 6

Improvements for Use Case Scenarios

This chapter compares and evaluates the benefits of the ontology matching approach
presented in section 4 and 5. Afterwards, the applicability of the results regarding the
use case scenarios are investigated by consideration of the previously defined require-
ments in 2.

6.1 Advantages of the Distributed Ontology
Matching

In the following the allocation of required computing resources, the ontology match-
ing and the reasoning approach is summarized.

Allocation of Computing Resources Beside the described approach for an effi-
cient allocation and reservation of HPC resources, a distributed reasoning is presented
and the realization of the ontology matching approach by use of the available comput-
ing resources. The ontology matching approach is applicable for HPC environments,
e.g. the HLRS ([164]) HPC infrastructure. The SLA based approach is the foundation
for resource allocation as it is required in this work. The SLA based approach was
successfully used for constructing SLAs. Several SLA level allow a priorization and
scheduling of computing jobs by considering the required computing resources as
well as requirements concerning the HPC infrastructure. Besides the SLA a scheduler
is used to handle the computing jobs depending on the SLAs. In section 5.2.1 the use
of SLAs combined with a scheduler was presented and successfully used for running
computing jobs in a HPC environment.

Enhanced Distributed Ontology Matching The generation of the alignment list
through usage of a priority ontology enables the reasoning on customized data sources

115

Chapter 6 Improvements for Use Case Scenarios

containing all relevant information from a previously performed selection of ontolo-
gies. However, a strategy for matching the target ontologies of the set and further per-
forming a validity check of the matching results is elaborated in this work, with the
aim to examine the ontology matching approach. For performing an adequate match-
ing a similarity value is created to express the level of accordance between matched
entities. The matching process is performed in two major steps, the preparation and
the execution, that are subdivided.

• Preparation of similarity matching:

– Identification of relevant ontologies;

– Selection of relevant features of entities;

– Definition of the search space.

• Execution of similarity matching:

– Generation of the similarity value;

– Interpretation of the generated similarity value.

During the preparation phase adequate ontologies are identified by an expert in order
to create the set of target ontologies to be compared with the priority ontology. After-
wards the selection of the entities takes place for ensuring a matching of the entities of
the priority ontology with the target ontologies from the known set. For each entity of
the priority ontology one matching iteration is performed. This means, the amount of
matching iterations grows significantly with every entity of the priority ontology. The
next step is the definition of the search space for defining the number of neighboring
entities taken into account for the matching. Due to the fact that the relation of a sin-
gle entity with its neighboring entities might be not similar in different ontologies, it
is quite important to define the depth level, the search space, for comparison of the
relations between entities in different ontologies. The more deeply the search space is
defined, the more matching process are performed. This leads to a higher expense for
the matching process but it is a necessary step in order to match the relations between
entities for ensuring a high quality of matching results.
The execution phase covers first the generation of the similarity value. The similarity
value is created out of a number of different values that are generated from different
similarity matching approaches such as features of the concepts and relations to the
neighboring entities. The numbers of considered neighboring concepts are defined
previously in the search space definition step. The second step during the execution
phase is the interpretation of the similarity value. The similarity value is used for
merging entities and into the matched entity in an alignment list. A high similarity
value leads to a high probability of similarity. This probability of similarity measures
the grade of similarity between matched concepts. After each matching step a simi-

116

6.1 Advantages of the Distributed Ontology Matching

larity value is produced used as a base for deciding to conclude with the matching or
stop the matching process.
The presented ontology matching approach is distributed on HPC resources for in-
creasing the overall matching effectiveness. Computing resources are allocated through
the SLAs and a job scheduling. Thus computing resources are used for running match-
ing jobs in parallel. The presented distribution approach considers the lexical, taxon-
omy and the non-taxonomy matching. For each matching step, the ontology matching
is divided into several tasks running on the allocated computing nodes of a cluster (see
section 5.3). This HPC resource allocation and the distribution enables an improved
ontology matching when thinking of effectiveness and scalability depending on the
used HPC infrastructure.

Quality of Matching Results The quality of matching results is ensured through the
validity check. For this, vector based techniques are elaborated as an instrument to
compare the matching results with a text document related to the topic of the use case
scenario. This text is an HPC related text as it was presented in 2. The text document
is provided by the expert for the automated validity check. This validity check docu-
ment (VCD) contains text about the domain of the use case scenario and the content
of selected ontologies. Through random indexing, the occurrence of a term being the
matching result is evaluated with the VCD. The random indexing approach for per-
forming the validity check is divided into several phases. However, in case the vector
based approaches are used for making an automated assumption about the mean-
ing of terms, these approaches are facing the problem of producing unreliable results
or demanding very high additional effort from an expert. The validity check of the
produced matching results is performed by use of an additional ontology, a domain
ontology, for comparison of the matching results with the alignment list. The use of
a domain ontology for proving the quality of the matching results is easy adaptable
by use of the presented ontology matching approach. The matching result becomes
the priority ontology and the domain ontology becomes the target ontology. Now, the
ontology matching is performed as described in the previous chapters. The quality of
the matching results is expressed in the generated similarity values. The higher the
similarity values, the higher is the quality of the matching results. Thus, the compari-
son of the matching results with a domain ontology is an easy to use approach when
following the presented ontology matching strategy. It is up to the expert to decide
what kind of validation mechanism to use but both, the random indexing and the
comparison with a domain ontology approach, are relevant for ensuring the quality
of the matching results.

Ontology Based Reasoning The focus of this work is the distributed ontology
matching but the goal of the matching approach is enabling an efficient ontology
based reasoning. Thus, a reasoning method was introduced making use of distributed
computing resources as well. The distribution of the reasoning method is beneficial

117

Chapter 6 Improvements for Use Case Scenarios

Figure 6.1: Overview of the Complete Ontology Matching Strategy

through the presented HPC resource allocation by use of SLAs. However, the usage
of HPC resources requires a computing resource allocation by selecting nodes from
a cluster. The proposed reasoning method is a forward-chaining reasoning strategy
comprising the closure and the materialization method. The forward-chaining based
reasoning approach enables an expert to receive needed facts from the previously
matched result list immediately by use of the matching results. The foundation for
this reasoning is the use of the matching results generated through the distributed
ontology matching method.

6.2 Application of the New Proposed Strategy to the
Use Case

The novel solution for ontology matching is demonstrated through both use case
scenarios by adapting the presented improved ontology matching strategy. Addi-
tionally, the afterwards performed reasoning proves the usability of the generated
results stored as alignment lists usable as ontologies. The produced alignment lists
are RDF structured ontologies an therefore reasoning queries are performed by use of
SPARQL.
The complete scenario can be divided into the matching based on allocated best fit-
ting HPC resources and techniques for distributing the performed processes by use of
the alignment lists. Though this, the whole process from receiving the required com-
puting resource till receiving urgently needed information through reasoning by use
of the matching results is covered by considering a restricted time frame for perform-
ing the matching in order to enable an afterwards performed reasoning. The general
picture of the proposed strategy is presented in 6.1.

118

6.3 Result Evaluation

• The request and allocation for HPC resources;

• The configuration of the matching process and selection of a set of ontologies;

• The distributed ontology matching.

• The reasoning by use of the alignment lists generated through the distributed
ontology matching.

The complete strategy is performed with the intervention of an expert. The experts re-
quirements are considered in a convenient way by involving the expert in the match-
ing process at the necessary points of intervention. The automated processing rea-
soning queries based on the alignment lists enables the generation of inferences from
the ontologies. The time restriction of the urgent computing scenario is considered
through the use of HPC resources and distribution techniques. Further, a validation
of matching results with the aim to create a result list usable for reasoning methods
is performed. The produced alignments are used to enhance the knowledge base of
the expert by offering the alignments and providing semantically annotated data by
using the RDF structure.

6.3 Result Evaluation

This section proves the described concepts of this work by using specific evaluation
metrics. The concepts are proved by using the evaluation metrics for the prototypi-
cal implementations of the developments. The computing resource allocation by use
of SLAs and job schedulers was already performed through research activities such
as the SLA based job scheduling approach described in section 5.2.1. Thus, the eval-
uation will concentrate on the focused ontology matching approach by using HPC
resources and performing the distribution approach on a single up to eight nodes.
The evaluation metrics need to answer the following questions:

• Utility: who needs the information from this evaluation, and what information
is needed?

• Feasibility: how much time and effort is required to make use of the presented
concepts?

• Accuracy: are the results produced by the prototypical implementations usable
and accurate?

When thinking of the accuracy of the matching results a domain ontology and a text
based comparison is used to prove the quality of the produced results. The following

119

Chapter 6 Improvements for Use Case Scenarios

two sections demonstrate the described matching strategy for the ontology match-
ing on a single machine (section 6.3.1) and in a distributed computing environment
(section 6.3.2).

6.3.1 Result Evaluation: Ontology Matching - Single Machine

The tables 6.1, 6.2 and 6.3 demonstrate the proposed matching strategy by considera-
tion of different amount of RDF structured data. First, the lexical, then the taxonomy
and following the non-taxonomy matching approaches are evaluated. Regarding the
evaluation it need to be considered that the lexical as well as the taxonomy match-
ing procedure makes use of the same input RDF data. In addition, the last matching
step, the non-taxonomy matching, makes use of the generated results from the pre-
viously taxonomy matching. This is caused through the fact that the non-taxonomy
entities are the linking elements of a selected taxonomy, they are the labels between
two entities. It follows that the data for the non-taxonomy matching is reduced set
of data. Hence, the RDF data are less than the input data of the previous performed
matching steps. Only in case same ontologies are compared, the input data for the
non-taxonomy ontology will be the same.
For performing evaluations with RDF structured data the used HPC resources are
listed in the appendix A. It is the configuration of the HLRS NEC NEHALEM clus-
ter. Besides the tables, the results of the performed benchmark for evaluation are
presented in the following. As presented the taxonomy matching is the most time
consuming task closely followed by the lexical matching. The non-taxonomy match-
ing depends strongly on the input data received by the previously performed taxon-
omy matching, the search space and the overall similarity of the ontologies. However,
search space and similarity grade of used ontologies is crucial for the lexical and tax-
onomy matching as well but due to the fact that the non-taxonomy matching needs
only to take care regarding the similar paths in an ontology it requires less time to
execute the matching and additionally the data size is lower compared to the previ-
ous matching steps. For the presented results, the search space was set to the default
value, the complete ontology. Furthermore, the taxonomy and the lexical matching
approaches produce a set of result files as described in 4.1.4. Thus, an average value
for data size for the non-taxonomy input data is used for each matching iteration and
in addition, the selected file for the taxonomy and the non-taxonomy matching proce-
dure is an average sample file from the previously generated data sets. For each data
set one iteration with a single input file is performed.
A RDF graph is used for comparing and testing the execution times of the three match-
ing procedures by use of different sample RDF data sets. The RDF data used for
testing the implemented matching approach consist of RDF Triples being linked data
used as ontologies. They are similar structured as already presented in the use case
scenarios in section 2.2, 2.3 and 2.4. The RDF Triple consist of a subject, a predicate
and an object such as presented in the following listing from a generated example

120

6.3 Result Evaluation

RDF Triple set.

<rdf:Description rdf:about="http://example5/ROOT">
...

<j.1:value2>
<rdf:Description rdf:about="http://example7y">
<j.86:value0 rdf:resource="http://example2z"/>
<j.107:value7 rdf:resource="http://example7x"/>
<j.67:value8>
<rdf:Description rdf:about="http://example2y">
<j.69:value5 rdf:resource="http://example2z"/>
<j.54:value6 rdf:resource="http://example6z"/>

...
</rdf:Description>

</j.67:value8>
<j.74:value6 rdf:resource="http://example8x"/>

...
<j.51:value4 rdf:resource="http://example7x"/>

</rdf:Description>
</j.1:value2>
<j.175:value1 rdf:resource="http://example2x"/>

...
</rdf:Description>

</rdf:RDF>

A subject is a description marked with the rdf:about tag, a predicate is the value of
the linked object being, for instance, j.86:value0 and the object is the linked resource
rdf:resource tag. As demonstrated, the RDF triple are linked to other RDF Triples. The
above selected example is presented in the XML notation and shown in the Annex B;
additionally the annex contains same RDF data set in RDF Triple notation. It is a small
data set consisting of about 300 RDF triples. The used data set is very close to the use
case scenario data by using the RDF syntax being the foundation for the ontologies
used in the three use case scenarios. Thus, the data set is representative for testing the
provided matching approaches. As presented in the later performed tests most of the
RDF triple data sets are larger amounts of data composed of thousands of RDF triple.
When thinking of the three matching procedures, in this matching evaluation the non-
taxonomy matching procedure includes only the matching of a single input file gen-
erated by the previous performed taxonomy matching. Thus, the used RDF triple
set used for the non-taxonomy matching is a reduced data set composed out of the
matching results from former matching iterations. This proceeding is the reason for
using a RDF data set with a size in the range of kB. However, it is up to the expert
to define the amount of input files for the non-taxonomy matching, e.g. 1 input file
= N-TM Execution Time ∗ 1; 10 input files = N-TM Execution Time ∗ 10; 50 input
files = N-TM Execution Time ∗ 50; and so forth. Thus, the tests for the non-taxonomy

121

Chapter 6 Improvements for Use Case Scenarios

RDF Data Amount
(approx.)

Nodes Time (min.)

100.000 – 17,5 MB 1 97,51
– 2 54,63
– 4 14,58
– 8 9,54
200.000 – 41,7 MB 1 212,23
– 2 118,73
– 4 37,67
– 8 25,00
300.000 – 76,6 MB 1 310,54
– 2 165,87
– 4 49,32
– 8 32,38
400.000 – 134,8 MB 1 487,81
– 2 277,38
– 4 85,77
– 8 60,83
500.000 – 193,5 MB 1 612,77
– 2 346,27
– 4 85,89
– 8 52,95

Table 6.1: Lexical Matching Evaluation

matching were performed for one matching iteration on several nodes (1 to 8). It is
repeatable depending on the amount of individually needed matching iterations. The
SD is set to the maximum of available entities of the source for the lexical matching
and it is set to one for the taxonomy and the non-taxonomy matching for enabling a
comparison with neighbored entities.

When looking at the measurements presenting the time needed for executing the on-
tology matching, it becomes obvious that there is a variability in the range of execu-
tion times, e.g. when executing a data set the matching is performed more than eight
times faster than using a single node but performing the matching with another data
set might reach a lower increase of performance. As exposed in the distributed match-
ing approaches in 5.2.2, the data are distributed into data chunks while each identified
matching causes an additional write operation. Further, the non-taxonomy matching
is performed based on a reduced data set generated by the taxonomy matching pro-
cedure.
The execution time of the lexical and the taxonomy matching is decreased through
the distribution of the data on several nodes and performing the matching in parallel.
Same for the non-taxonomy matching but due to the very small amount of data it is
only a minor improvement. The scalability is close to a super linear scaling caused

122

6.3 Result Evaluation

RDF Data Amount
(approx.)

Nodes Time (min.)

100.000 – 17,5 MB 1 105,42
– 2 67,54
– 4 18,16
– 8 12,59
200.000 – 41,7 MB 1 256,45
– 2 125,84
– 4 43,11
– 8 26,01
300.000 – 76,6 MB 1 331,98
– 2 178,76
– 4 52,86
– 8 36,45
400.000 – 134,8 MB 1 502,93
– 2 294,58
– 4 96,34
– 8 65,71
500.000 – 193,5 MB 1 648,33
– 2 362,64
– 4 91,73
– 8 61,56

Table 6.2: Taxonomy Matching Evaluation

Matching Iteration Nodes RDF Input (KB) Time (min.)
1 1 324 34,65
– 2 324 11,64
– 4 324 8,95
– 8 324 7,32

Table 6.3: Non-Taxonomy Matching Evaluation (* = unquantifiable, time unit too low);
reduced data set

123

Chapter 6 Improvements for Use Case Scenarios

Figure 6.2: Matching Procedures Execution Times for Lexical Matching (minutes)

through the distribution of data chunks to the nodes.

When considering the ontology snippet from the beginning of this section 6.3.1, it has
changed based on the previously performed matching. As presented in the follow-
ing snippet the ontology provides only entities being convenient to an individual use
case scenario. Thus, after each of the three matching iterations the similarity value
is generated and marked in the RDF file. The following RDF example snippet is an
intermediate file generated through the lexical matching procedure containing the ac-
cumulated similarities for the RDF triples. It is an example using a threshold for the
similarity value of 0.60.

<rdf:Description rdf:about="http://example5/ROOT">1.00
...

<j.1:value2>1.00
<rdf:Description rdf:about="http://example7y">0.66
<j.86:value0 rdf:resource="http://example2z"/>0.66
<j.107:value7 rdf:resource="http://example7x"/>0.33
<j.67:value8>0.33

<rdf:Description rdf:about="http://example2y">0.66
<j.69:value5 rdf:resource="http://example2z"/>0.00
<j.54:value6 rdf:resource="http://example6z"/>1.00

...
</rdf:Description>

</j.67:value8>

124

6.3 Result Evaluation

Figure 6.3: Matching Procedures Execution Times for Taxonomy Matching (minutes)

Figure 6.4: Matching Procedures Execution Times for Non-Taxonomy Matching (min-
utes), reduced data set

125

Chapter 6 Improvements for Use Case Scenarios

<j.74:value6 rdf:resource="http://example8x"/>0.66
...

<j.51:value4 rdf:resource="http://example7x"/>1.00
</rdf:Description>

</j.1:value2>
<j.175:value1 rdf:resource="http://example2x"/>1.00

...
</rdf:Description>

</rdf:RDF>

Out of the above presented intermediate RDF file with similarity values, an output file
for an individual use case scenario is generated. Due to a threshold for the similarity
value of 0.60, RDF triples marked with a similarity value lower than 0.60 are removed
as presented in the following.

<rdf:Description rdf:about="http://example5/ROOT">
...

<j.1:value2>
<rdf:Description rdf:about="http://example7y">

<j.86:value0 rdf:resource="http://example2z"/>
<rdf:Description rdf:about="http://example2y">
<j.54:value6 rdf:resource="http://example6z"/>

...
</rdf:Description>

<j.74:value6 rdf:resource="http://example8x"/>
...

<j.51:value4 rdf:resource="http://example7x"/>
</rdf:Description>

</j.1:value2>
<j.175:value1 rdf:resource="http://example2x"/>

...
</rdf:Description>

</rdf:RDF>

The source ontology was reduced by removing data not reaching the threshold of the
similarity value. Thus, the threshold is a parameter allowing an expert to adjust the
level of accuracy for the generated matching results. Compared to the ontology data
before the matching, the following data are the removed ones.

<j.107:value7 rdf:resource="http://example7x"/>
<j.67:value8>
<j.69:value5 rdf:resource="http://example2z"/>

126

6.3 Result Evaluation

However, the generated matching need to be proved. Hence the already mentioned
VCDs are used whereas the amount of used VCDs is up to the expert and influences
the validity prove of the matching results. As presented in figure 6.4, the occurrence
of a term in the text is the amount of occurrence while the total occurrence is the
percentage occurrence of the term calculated by the amount of all terms in the text
divided through the occurrence amount. However, the percentage appearing of a text
is generally very low.

Result Term VCD Type Occurrence in Text Total Occurrence Relevance
Search Term HPC related 25 0,09 % high
Search Term HPC related 17 0.03 % high
Search Term HPC related 5 0.01 % medium

Table 6.4: Occurrence of Result Terms Measured by a Set of VCDs

Additionally, an expert is enabled to proceed with an additional validity check by
consideration of a domain ontology known trusted by the expert. Now, the expert
compares the produced matching results with the trusted domain ontology by per-
forming the previously executed matching steps but by using the result RDF files
together with the domain ontology RDF file. With regard to the previously monitored
execution times of the lexical, taxonomy and non-taxonomy matching there is a need
of increasing the performance of the matching to reduce the overall execution time of
the complete ontology matching process by including the validity prove. The overall
execution time of the ontology matching procedure is as follows:

1. LM execution time + TM execution time + N-TM execution time

2. VCD execution time

3. Execution time of the domain ontology validity prove by performing step 1
again by use of the produced matching results and the domain ontology

In case of large data sets the execution of the presented complete matching strategy
is time consuming. Hence, the presented distribution of the matching process is used
and evaluated. As demonstrated, the data size of the RDF triples is usually low, e.g.
kB or MB. Thus, the distributed matching is focused in the next section for analyzing
the performance of the matching approaches.

6.3.2 Result Evaluation: Ontology Matching - HPC Environment

The data sets known from the evaluation for a single machine are used for testing
the execution times of the presented matching procedures. As stated out, the eval-

127

Chapter 6 Improvements for Use Case Scenarios

uation environment is the NEC NEHALEM cluster of HLRS. Further, the NEC NE-
HALEM cluster makes use of a batch system for submitting jobs using Torque and
Maui scheduler[165]. For performing the parallel execution of the matching jobs,
FastMPJ [166] is used to implement the parallelization of the matching algorithms.
The number of processes is defined by the run configutation of FastMPJ, e.g. us the
-np 2 -cp ${workspace loc: ...}; command in the run configuration to run the job using
two processes for performing the program identified through the classpath. Addition-
ally, the amount of used cores is defined on the NEC NEHALEM cluster by running
the qsub command, e.g. using two nodes for 30 minutes:

qsub -lnodes=2:nehalem,walltime=00:30:00 -I

Table 6.5 demonstrates the proposed matching strategy by consideration of RDF struc-
tured data by outlining the results. FastMPJ enables the distribution of the Java pro-
cesses but it is limited to the configuration of the Java Virtual Machine (JVM) on the
cluster. For testing the distribution on several nodes, the FastMPJ Java processes are
distributing single processes on several nodes. The considered RDF data are large
data sets.

RDF Data Amount (for LM
and TM)

Nodes LM Execution
Time (min.)

TM Execution
Time (min.)

100.000 – 17,5 MB 1 97,51 105,42
– 2 54,63 67,54
– 4 29,16 36,31
– 8 19,07 25,17
200.000 – 41,7 MB 1 212,23 256,45
– 2 118,73 125,84
– 4 75,34 86,21
– 8 49,99 52,01
300.000 – 76,6 MB 1 310,54 331,98
– 2 165,87 178,76
– 4 98,64 105,71
– 8 64,75 72,89
400.000 – 134,8 MB 1 487,81 502,93
– 2 277,38 294,58
– 4 171,54 192,67
– 8 121,65 131,42
500.000 – 193,5 MB 1 612,77 648,33
– 2 346,27 362,64
– 4 171,78 183,45
– 8 105,89 123,12

Table 6.5: Matching Procedure Evaluation using HPC Resources (2 nodes; 2 processes)

128

6.3 Result Evaluation

The non-taxonomy matching depends on the amount of input data produced by the
lexical and the taxonomy matching as well as the individual selection of an expert.
Thus it is not directly comparable with the taxonomy and the non-taxonomy match-
ing. The measurements vary depending on the amount of performed operations being
comparisons between entities and write operations. Assuming a small data set con-
sisting of 300 RDF Triples the amount of comparison operations is presented in table
6.6.

Configuration Lexical Matching Taxonomy Match-
ing

Non-Taxonomy
Matching

The source and the
target ontology con-
sist of 300 RDF Triple
assuming an average
amount of characters
for each entity of 8.
The search depth
is the maximum
amount of available
entities being 300.

Each character
from each entity
from the source
is compared with
a single character
from each en-
tity of the target.
This concludes in
(300 × 8) × 300
comparison op-
erations being
720.000.

– ..

The source and the
target ontology con-
sist of 300 RDF Triple
assuming an average
amount of characters
for each entity of 8
and an average link-
ing of each entities to
three neighbors. The
search depth is set
to one in order to
investigate the direct
neighboring entities.

– Each character
from each entity
from the source
is compared with
a single character
from each entity of
the target. Due to
the search depth
of one each com-
parison with an
entity causes the
same proceeding
for the neighbors.
This concludes in
((300 × 8) × 3) ×
300 comparison
operations being
2.160.000.

–

129

Chapter 6 Improvements for Use Case Scenarios

The source ontology
consist of 300 RDF
Triple while the tar-
get is the produced
result from the pre-
vious performed
lexical and taxonomy
matching. Thus, the
target ontology is
a reduced data set.
The average amount
of entities for the
target ontology is
assumed with 20 and
the search space is
set to one.

– – Each entity from
the source is com-
pared with similar
entities from the
target ontology in-
cluding the neigh-
bors. This con-
cludes in (300 ×
3) × 300 compari-
son operations be-
ing 270.000.

Table 6.6: Comparison Operations (300 RDF Triple)

When thinking of the amount of comparison operations it has emerged that it is highly
dependent on the matching configuration of the expert. Increasing the SD will cause
an exponentially increase of comparison operations. In addition, an identified match
causes an additional write operation. Thus, the execution time of the matching meth-
ods are depending on the similarity grade of the source and the target ontology and
the matching configuration defining the SD. Regarding the lexical matching the SD
should be high (e.g. the maximum of entities of the source) to ensure that all similar
entities of the target are identified. Regarding the taxonomy and the non-taxonomy
matching a low SD already ensures a matching of the neighbors being an indicator for
similarities.
The performed tests using HPC resources have shown a significant improvement con-
sidering the execution time (see figure 6.2, figure 6.3, figure 6.5) and figure 6.4). The
three matching procedures were performed on the NEC NEHALEM cluster splitting
up the input data for each matching step on several nodes. The successfully per-
formed tests and the reached improved execution time has demonstrated the usabil-
ity of the presented approach in a HPC environment. Further, the presented process
is usable for several configuration scenarios through modifying the used amount of
nodes and processes. However, the input data needs to be divided in as many chunks
of input data as allocated processes. Otherwise, duplicated matches or inefficient us-
age of HPC resources might be the consequence. Further, the used implementation
makes use of the JVM and FastMPJ. Thus, when increasing the amount of processes,
the used JVM heap space needs to be aligned.
When thinking of large data sets, the processing of matching jobs in parallel on several
nodes of a cluster has shown the applicability of the presented approach. Such large

130

6.4 Requirement Analysis

Figure 6.5: Summarized Matching Procedures Execution Times for Lexical and Taxon-
omy Matching (minutes)

data sets are processable in a time saving way, when distributing the matching jobs
and process them parallel on the allocated computing nodes of the NEC NEHALEM
cluster.

The comparison of the matching strategy performed by use of a single node in contrast
to the HPC resources has demonstrated the improved performance when utilizing the
distribution approach. Further, a resource allocation and a scheduling are beneficial
methods for preparing the matching in a HPC environment. Both require human in-
volvement and effort spent for such steps. Hence, the distributed ontology matching
is beneficial when thinking of large data sets of RDF triples, but in case of small data
sets of only hundreds of RDF triples the distribution is not necessary due to a small
increasing of efficiency but in comparison a high increasing of additional effort for
configuration issues. Actually, the execution time for only 100 RDF triples is higher
when using the cluster. This is caused through extra effort required for the distribu-
tion of the processes on the nodes. Furthermore, aspects such as bandwidth, latencies
and data transfer costs need to be considered using HPC systems.

6.4 Requirement Analysis

The previously defined use case requirements are used for measuring the evaluation
results. In addition, evaluation criteria such as usability, feasibility and accuracy are

131

Chapter 6 Improvements for Use Case Scenarios

relevant for the use case evaluation.

• Utility: An expert requires information regarding specific materials for engineer-
ing techniques, skills, roles or competences related to individual tasks. When
thinking of the law text scenario an expert requires knowledge regarding fur-
ther laws and meanings. Generally, linked data need to be matched for gener-
ating a customized knowledge base for a specific scenario. These information
are stored in provided ontologies composed by using the RDF standard. How-
ever, performing a query on large amount of data sets is inefficient and hence the
ontology matching is performed for providing certain relevant data being the in-
dividually generated knowledge base usable for performing queries. Thus, the
ontology matching approach is highly relevant when thinking or large amounts
of semantic data.

• Feasibility: This work has focused on the ontology matching by consideration of
large data sets. The evaluation has shown that a matching of large data sets be-
comes cost expensive but through using distribution techniques combined with
HPC resource, the matching process is improved and feasible. Nevertheless, the
evaluation has shown that the proposed distribution is beneficial for large data
sets not small size data, e.g. consisting only of a few hundred RDF triples with
a data size in the range of kB.

• Accuracy: The generated matching results are proved through a domain ontol-
ogy and similarity values are generated during the matching for ensuring a high
quality of the matching results. However, the setting of the threshold for the
similarity values is up to the expert and therefore the quality of the result is con-
figurable. Generally, an incorrect matching result is possible even by defining
a high threshold. Thus, a validity check of the generated results through the
expert is recommended.

The produced results are usable through performing SPARQL queries in order to re-
ceive certain information from the matching results. The structure of SPARQL queries
is presented in the following by a SPARQL query searching for all lead alloys pre-
sented in an ontology for automobile material.

PREFIX am: <http://hlrs.de/ns/automobile-material#>
2 SELECT ?alloyName
WHERE

{ ?x am:primaryStructure "lead" .
am:isPartOf ?y .

?x am:name ?alloyName .
7 ?y am:type am:alloy .

}

Another example is given by an extended SPARQL query searching for all persons
having a specific competence (e.g. ?competence = alloy) using an individually gener-

132

6.4 Requirement Analysis

ated knowledge base for roles, skills and competences.
PREFIX ac: <http://hlrs.de/ns/automobile-competences#>

2 SELECT ?competence
WHERE

{ ?x ac:competenceName ?competence .
ac:isCompetenceOf ?y .

?y ac:person .
7 }

By using SPARQL queries certain information are usable based on the matching re-
sults. Through the use of the matching results the used ontology is already cus-
tomized for a specified domain. The addressed requirements are listed in table 6.7.

Req. No. Definition Approach
R1 Domain knowl-

edge
The ontology repository provides an expert with
ontologies related to a domain of interest.

R2 Finding RDF
structure

During the selection phase ontologies with ad-
equate structures are identified. Further, us-
ing ontology converter support aligning ontol-
ogy structures.

R3 Large data sets The distributed matching approach using HPC
resources enables a performant and time efficient
ontology matching of large data sets.

R4 Validity check The produced matching results are proved by
use of a domain ontology and an additional do-
main related texts used as source of evidence.
This increases the quality of produced results.

R5 Maintenance of
result lists

A single ontology of the ontology set is used
as base for all further matching steps, it is the
priority ontology. The results are stored in an
alignment list containing all results reaching the
defined threshold of the similarity value. The
alignment list is a single source of data usable
for further reasoning tasks.

R6 Similarity levels The proposed matching strategy supports rea-
soning through using the produced matching re-
sults. The evaluation has shown the usability of
the produced ontology matching results by the
similarity level definition indicating the opera-
tionality grade.

R7 Time efficiency The distributed ontology matching approach us-
ing HPC resources improves the execution time
drastically depending on the amount of allo-
cated nodes.

133

Chapter 6 Improvements for Use Case Scenarios

R8 Information
topicality

The produced information are valid until an on-
tology from the set is updated or not available
anymore. This implies the re-calculation of the
matching results.

R9 Computing
resource alloca-
tion

SLAs are used to improve the queue based
scheduling strategy for allocation of computing
resources for computing jobs.

R10 Computing re-
source configu-
ration

The needed computing resources are defined in
the SLAs during the resource allocation phase.

R11 Homogenous
data structure

Similar structures are handled by the presented
ontology matching approach. Ontology trans-
formation or a structure based selection of on-
tologies is not required for homogenous data
structures.

R12 Highly linked
data

The distributed matching approach considers
linked data by matching selection regions of on-
tologies graph wise.

R13 Context sensi-
tive relations

The taxonomy matching concentrates on the
contexts of relations.

R14 Expert support The proposed strategy supports an expert with
needed information and proofing the matching
quality through similarity levels (R6) and veri-
fying the results with a source of evidence (R4).
However, the approach requires an expert in-
volvement for the final verification.

R15 Identifying
RDF chunks

The RDF chunks can be identified through an ex-
pert or by automated selection through checking
the required search depth.

R16 Cross-border
matching

The search depth defines the RDF chunks and
considers the relations and links to other RDF
data chunks (see R15).

R17 Distributed
Matching

The distributed RDF chunks consider R11, R12
and R13.

R18 Transformation
of ontologies

It is concentrated on adequate data structures
(see R2) and further, ontology converters are
used.

R19 Expert involve-
ment

At each step of the ontology matching approach
an expert is enabled to interact the process in
case irregularities are observed.

Table 6.7: Requirement Result Analysis

134

6.4 Requirement Analysis

The requirements of the use case scenarios are addressed through the distributed on-
tology matching approach being performed in a HPC system. The generated results
are usable by performing reasoning tasks and supporting an expert with needed infor-
mation. Due to required distribution effort, the distributed ontology matching focuses
on large data sets. However, a residual risk of generating incorrect results remains
even when defining a high similarity value threshold. Thus, a final result review of an
expert is recommended for reducing this risk but finally, the produced results are us-
able through providing similarity levels and performing an automated validity check
for ensuring a high result quality.

135

Chapter 6 Improvements for Use Case Scenarios

136

Chapter 7

Conclusions and Outlook

The underlying research question of this thesis was: How to provide reliable semantic
data in an efficient and time saving way for enabling reasoning?. It was motivated by
the possibility to adapt HPC resources for matching ontologies containing large scale
semantic data sets not processable anymore in an efficient way due to the data size.
During this work it turned out, the semantic data size is not a limiting factor for HPC
resources but the calculation time for matching processes. While data size increase
linear, the calculation time for matching processes increases exponential.

Summary The presented work describes and evaluates an automated ontology match-
ing by using a domain dependent ontology set. Chapter 4 presents the ontology
matching approach. A single ontology becoming the priority ontology is the source
for further matching steps using target ontologies. The aim is to support an expert
with required information by offering tailor-made matching results as alignment lists
enabling reasoning tasks for individual use case scenarios. Additionally, the pre-
sented matching strategy offers highly reliable information by adapting a validity
verification for the produced matching results. A probability value describing the
level of similarity between the matched entities ensures the quality of the matching
results. For this, a defined threshold needs to be achieved. Based on the matched
results stored as alignment lists, the reasoning can be executed in a forward chaining
way to ensure a quick response time when a query is submitted. The entire ontol-
ogy matching process begins with a selection and identification of relevant ontolo-
gies. Afterwards, the matching process is configured by defining the search space
and target ontologies. In addition, the required HPC resources are allocated for the
matching processes using SLAs. Finally, the efficient distributed ontology matching
presented in chapter 5 takes place by performing the lexical, the taxonomy and the
non-taxonomy matching for generating matching results stored as alignment lists be-
ing used as ontologies. The selected ontologies and the produced alignment lists are
RDF triple stores building the individual knowledge base used for domain specific
queries. The matching is performed by consideration of similarity values expressing
the grade of similarity between the matched entities. The produced matching results

137

Chapter 7 Conclusions and Outlook

are validated. More generally, the result of the ontology matching approach are on-
tologies usable as the foundation for performing reasoning tasks.
The presented strategy is applicable for time urgent computing scenarios by align-
ing the ontology matching and the reasoning approach to a distributed environment
offering the required amount of computing resources. Especially, when thinking of
the large data sizes of RDF triple stores the distribution of the matching processes on
several nodes improves the effectiveness and enables an expert to receive required
information in a short period of time. Using HPC resource for the presented ontology
matching methods has emerged the scalability of the presented approach. Neverthe-
less, the matching configuration and the similarity grade of the used ontologies has an
impact on the execution times. Further, matching procedures not utilizable on a per-
sonal computer due to exponentially growing sophisticated and expensive calculation
times become feasible. Bringing HPC resources to the ontology matching domain im-
proves the overall performance and enables new possibilities for ontology matching
based on large scale data sets. Additionally, the reasoning produces high amounts
of assertional data when new facts are generated at load time when following the
forward chaining based reasoning approach. Such assertional data are covered by a
distributed execution of inference rules at same time. However, before the reasoning
takes place the alignment lists are generated through the focused automated match-
ing algorithms. The matching approach enables an expert to configure the matching
in accordance to the given scenario, e.g. identification of ontologies (see 4.1.1, selec-
tion of relevant entities (see 4.1.2) and the definition of the search space (see 4.1.3). For
all three use case scenarios (automotive engineering [2.2], legal rule analysis [2.3] and
linked web data [2.4]) relevant specific information for the selected domain of interest
are provided. Thus, an individually generated knowledge base is provided for each
use case scenario. Furthermore, the expert has the possibility to check the produced
matching results after each matching step by validation of the produced similarity
values. In general, the matching approach developed in this work by use of similar-
ity values and HPC resource ensures a high quality of the produced results in a time
saving way.

Limitations This work has proven the usability of an ontology matching approach
developed for using it in a HPC environment. Thus, the matching processes can be
distributed on several nodes in order to handle large scale data sets for increasing the
overall effectiveness and execution time. However, a general issue when thinking of
ontology matching, is the ontology structure and the used ontology language. The
presented approach takes care of different ontology structures by presenting a trans-
former in order to align ontologies. Changing the structure can cause a loss of data
or the generation of wrong data structures. It can become more critical when think-
ing of different ontology languages used for several ontologies selected for matching.
However, translating the language of an ontology can also enhance the matching by
translating the ontology into a more common language providing more target ontolo-
gies than available previously before the translation (e.g. translating from German

138

into English language). The presented transformer is an approach on how to handle
ontologies with different structures but due to the fact that transforming ontologies is
a distinct research field, this topic is beyond the scope of the ontology matching dis-
cussion in this work. Nevertheless, it is part of the preparation phase for the ontology
matching process and therefore described briefly by presenting an ontology matching
solution. The presented ontology matching approach considers RDF structured on-
tologies being RDF triple stores but by offering the presented transformation method
the ontology matching approach is not restricted to a single ontology structure.
The goal of this work is the generation of matching results usable for reasoning queries.
Thus, the focused issue is the ontology matching which is extensive discussed but the
reasoning is based on the matching results. A reasoning can be performed by running
SPARQL queries using the matching results. Besides the ontology matching topic,
reasoning is another research field which is considered in the scope of this work due
to the fact that reasoning is the cause for performing the ontology matching. How-
ever, the focus is the ontology matching approach. Nevertheless, when thinking of
reasoning, several approaches are available. The approach presented and already per-
formed by Weaver and Hendler is situated closely to the presented ontology matching
approach through the applicability of parallel processing of the reasoning task on se-
lected nodes and thus it is selected for demonstration issues.
Another important aspect is the validation of the matching results. The matching
results can easily be validated by performing an ontology matching with a domain
ontology by using the presented approach. However, the proposed random indexing
can be added to the validation phase as well. Nevertheless, a residual risk of gen-
erating false matching results is unavoidable but it can be reduced to a minimum by
adapting the similarity values and followed by this performing the validation. Finally,
an expert needs to decide if the matching results are reliable but decision support is
given through the mentioned validation methods.

Conclusions Beside the presented solution, a future research topic will be the anal-
ysis and execution of parallel reasoning approaches. This work gives an overview re-
garding a distributed reasoning strategy dealing with large data sets and high amounts
of assertional data but the separation of the reasoning tasks on several nodes implies
the challenge of storing the relations between the divided domains and in addition the
risk of performing similar tasks in different nodes is given. Regarding the validation,
trustworthiness of the produced matching results is proved through using a domain
ontology as source of evidence to perform a validity check of the alignment list con-
taining the matching results and applying random indexing methods. However, the
use of machine learning techniques by use of specific features such as, for instance,
linguistic, structural or even web features is a used method in order to increase the
correctness of the matching results. Especially when thinking of the involvement of
web features in the validation process, the WWW provides data usable as source of
evidence. Additionally, using ontologies with different structure or different ontology
languages is a wide research field requiring well defined strategies for transformation

139

Chapter 7 Conclusions and Outlook

of data and structures. In this scope, the transformation of ontologies is an interesting
approach for the future.
Looking back at the results of this work, a distributed ontology matching approach
using HPC resources was presented and tested successfully. The applicability of this
approach is shown through developing the ontology matching approach based on re-
lated state of the art research. The ontology matching approach is distributed and
processed in a HPC environment. Beyond the ontology matching, this work shows
solutions for processing reasoning tasks based on the ontology matching results be-
ing the knowledge base. Generally, the aim to improve an ontology matching ap-
proach for increasing effective and scalable results, being reliable semantic data, is
fulfilled. Thus, future research for processing of semantic data using HPC resources
is a promising approach for handling large scale semantic data sets.

140

Bibliography

[1] The World Wide Web Consortium. The w3c large triple store page:
http://www.w3.org/wiki/largetriplestores, 2011. (document), 1.2, 5.3.3

[2] The W3C. The w3c rdf page: http://www.w3.org/tr/rdf-concepts/, 2004. (doc-
ument)

[3] The Semantic Web Activity Group of the W3C. The semantic web activity home-
page: http://www.w3.org/2001/sw/, 2012. 1.1

[4] L. M. De Rijk. Aristotle: General introduction, the works on logic. Philosophia
Antiqua. Brill, 2002. 1.1

[5] N. Guarino and P. Giaretta. Ontologies and knowledge bases: Towards a termi-
nological clarification. Towards Very Large Knowledge Bases: Knowledge Building
and Knowledge Sharing, pages 25–32, 1995. 1.1

[6] X. Su and J. A. Gulla. An information retrieval approach to ontology mapping.
Data & Knowledge Engineering, 58:47–69, 2006. 1.1, 3.1.1, 3.4.1

[7] T. Berners-Lee, J. Hendler, O. Lassila, et al. The semantic web. Scientific american,
284(5), 2001. 1.1

[8] C. Ramesh and A. Gnanasekaran. Methodology based survey on ontology man-
agement. International Journal of Computer Sciences & Engineering Survey (IJC-
SES), 1:1, 2010. 1.1, 1.2, 1.2

[9] J. Euzenat and P. Shvaiko. Ontology Matching. Springer, 2007. 1.1, 3.1.6

[10] M. Mao, Y. Peng, and M. Spring. Ontology mapping: as a binary classification
problem. In Proceedings of the 4th International Conference of Semantics, Knowledge
and Grid (SKG), 2008. 1.1, 1.4.1, 3.1.8, 4.1.4

[11] A. Tenschert. Using similarity values for ontology matching in the grid. In
Proceedings of NDT 2010 Conference, 2010. 1.1

141

Bibliography

[12] The W3C. The datasetrdfdumps wiki page:
http://www.w3.org/wiki/datasetrdfdumps/, 2012. 1.1

[13] A. Maedche and S. Staab. Measuring similarity between ontologies. In Proceed-
ings of the 17th International Conference (EKAW), 2002. 1.1

[14] J. M. Taylor, V. Raskin, M. S. Petrenko, and C. F. Hempelmann. Multiple noun
expression analysis: An implementation of ontological semantic technology. In
Proceedings of the International Multiconference on Computer Science and Information
Technology (IMCSIT), pages 517–524, 2010. 1.1

[15] M. Sahlgren and J. Karlgren. Automatic bilingual lexicon acquisition using ran-
dom indexing of parallel corpora. Natural Language Engineering, Special Issue on
Parallel Texts, 3:327–341, 2005. 1.2

[16] The LarKC Project Consortium. The larkc project - the large knowledge collider:
http://www.larkc.eu/, 2011. 1.2, 3.2

[17] J. Weaver and J. Hendler. Parallel materialization of the finite rdfs closure for
hundreds of millions of triples. In 8th International Semantic Web Conference
(ISWC2009), 2009. 1.2

[18] A. Tenschert and A. Cheptsov. Effective ontology matching in high-
performance computing environments. In Proceedings of the SEMHE09 workshop.
Part of the ECTEL Conference, 2009. 1.2

[19] A. Tenschert, M. Assel, A. Cheptsov, and G. Gallizo. Parallelization and distri-
bution techniques for ontology matching in urban computing environments. In
Proceedings of the Fourth International Workshop on Ontology Matching. Part of the
ISWC Conference, 2009. 1.2

[20] The Semantic Web Challenge Consortium. The semantic web challenge web
page: http://challenge.semanticweb.org, 2015. 1.2

[21] The W3C. The large triple store homepage:
http://www.w3.org/wiki/largetriplestores, 2011. 1.2

[22] The W3C. The large triple store homepage:
http://www.w3.org/wiki/largetriplestores, 2011. 1.2

[23] The W3C. The large triple store homepage:
http://www.w3.org/wiki/largetriplestores, 2011. 1.2

[24] A. Tenschert and P. Gilet. Reasoning on high performance computing resources.
In Proceedings of IMMM 2011 Conference, 2011. 1.2

142

Bibliography

[25] The W3C. The extensible markup language homepage:
http://www.w3.org/xml/, 2012. 1.4.1

[26] The W3C. The resource description framework homepage:
http://www.w3.org/rdf/, 2012. 1.4.1

[27] The W3C. The rdf schema homepage: http://www.w3.org/tr/rdf-schema/,
2004. 1.4.1

[28] The W3C. The owl web ontology language homepage:
http://www.w3.org/2004/owl, 2004. 1.4.1

[29] The W3C. The owl working group homepage:
http://www.w3.org/2007/owl/wiki/owl working group, 2012. 1.4.1

[30] The W3C. The owl 2 web ontology language homepage:
http://www.w3.org/tr/owl2-overview/, 2009. 1.4.1

[31] The W3C. The web service modeling ontology (wsmo) homepage:
http://www.w3.org/submission/wsmo/, 2005. 1.4.1

[32] The SPARQL Working Group of the W3C. The sparql working group homepage:
http://www.w3.org/2009/sparql/wiki/main page, 2013. 1.4.1

[33] S. Powers. Practical RDF. O’Reilly & Associates, Inc., first edition edition, 2003.
1.4.1

[34] The Dublin Core Metadata Initiative Limited. The dublin core metadata initia-
tive: http://dublincore.org/, 1994. 1.4.1

[35] T. Syldatke, W. Chen, J. Angele, A. Nierlich, and M. Ullrich. How ontologies
and rules help to advance automobile development. In Proceedings of the 2007 in-
ternational conference on Advances in rule interchange and applications, RuleML’07,
pages 1–6. Springer-Verlag, 2007. 2.2.1

[36] M. Schraps, T. Ronneberger, and W. Golubski. Automotive engineering im
enterprise-domain-network. In INFORMATIK 2011 - Informatik schafft Commu-
nities, volume 41. Jahrestagung der Gesellschaft fr Informatik, 2011. 2.2.1

[37] The Semantic Web Challenge Committee. Billion triple challenge 2012 dataset:
http://km.aifb.kit.edu/projects/btc-2012/, 2012. 2.2.2

[38] ELSEVIER; Natural Language Processing Group; Karlsruher Institut for Tech-
nologie. The semantic web challenge: http://challenge.semanticweb.org/,
2012. 2.2.2

143

Bibliography

[39] R. Schönhof, A. Tenschert, and A. Cheptsov. Towards legal knowledge represen-
tation system leveraging rdf. In A.Cheptsov and C. Mavromoustakis, editors,
Proceedings of the Eighth International Conference on Advances in Semantic Process-
ing, SEMAPRO 2014. IARIA conference, 2014. 2.3.1

[40] L. Mehl. Automation in the legal world: From the machine processing of legal
information to the law machine. In Mechanisation of Thought Processes, Legal
Information to the Law Machine. Teddington Conference, 1958. 2.3.1

[41] G. Sartor, P. Casanovas, M. A. Biasiotti, and M. Fernndez-Berrera. Approches to
Legal Ontologies. Springer Press, 2011. 2.3.1

[42] Federal Ministry of Justice and N. Mussett consumer protection, Germany. Ger-
man civil code bgb: http://www.gesetze-im-internet.de/englisch bgb/, July
2011. 2.3.1

[43] German Federal Parliament. Statistic of the bundestag:
http://www.bundestag.de/, June 2014. 2.3.1

[44] R. Schönhof, A. Tenschert, and A. Cheptsov. Information extraction from un-
structured texts by means of syntactic dependencies and constituent trees. In
Proceedings of the Ninth International Conference on Advances in Semantic Process-
ing, SEMAPRO 2015. IARIA conference, 2015. 2.3.2

[45] Ontotext AD. Linked life data (lld): http://linkedlifedata.com/, Nov. 2014. 2.4.1

[46] Linked Data Community. Linked data - connect distributed data across the web:
http://linkeddata.org/, Nov. 2014. 2.4.1

[47] W3C Linked Open Data Community. Linked open data w3c sweo community
project: http://www.w3.org/wiki/sweoig/taskforces/communityprojects/
linkingopendata, Nov. 2014. 2.4.1

[48] Kno.e.sis (the Ohio Center of Excellence in Knowledge-enabled Computing).
Linked sensor data: http://wiki.knoesis.org/index.php/ssw datasets, Sept.
2010. 2.4.2

[49] H. Patni, C. Henson, and A. Sheth. Linked sensor data. In Proceedings of Collab-
orative Technologies and Systems (CTS 2010), 2010. 2.4.2

[50] X. Tao, Y. Li, and R. Nayak. Ontology mining for semantic interpretation of
information needs. In Proceedings of the 2nd International Knowledge Science, En-
gineering and Management (KSEM) conference, 2007. 3.1

[51] J. Karlgren and M. Sahlgren. From words to understanding. In Foundations of

144

Bibliography

Real-World Intelligence, pages 294–308. Uesaka, Y., Kanerva, P., Asoh, H., 2001.
3.1.1, 3.1.2, 3.1.2

[52] R. Baeza-Yates, B. A. N. Ribeiro, and B. Ribeiro-Neto. Modern information re-
trieval. ACM Press books. ACM Press, 1999. 3.1.1

[53] T. K. Landauer and S. T. Dumais. A solution to platos problem: The latent
semantic analysis theory of acquisition, induction and representation of knowl-
edge. Psychological Review, 104(2):211240, 1997. 3.1.1

[54] G. Salton, A. Wong, and C. S. Yang. A vector space model for information re-
trieval. Communications of the ACM, 18(11):613–620, 1975. 3.1.1

[55] H. Schütze and J. O. Pedersen. A cooccurrence-based thesaurus and two
applications to information retrieval. Information Processing and Management,
33(3):307318, 1997. 3.1.1

[56] A. Singhal. Modern information retrieval: A brief overview. IEEE Data Engi-
neering Bulletin, Special Issue on Text and Databases, 24(4), 2001. 3.1.1

[57] S. E. Robertson. The probabalistic ranking principle in ir. Journal of Documenta-
tion, 33:294–304, 1977. 3.1.1

[58] The Infomix Project Consortium. Review on models and systems for information
integration. Universita di Roma - La Sapienza, 2002. D1.1 from the Infomix
project. 3.1.1, 3.1.10, 3.4.1

[59] N. Chatterjee and S. Mohan. Discovering word senses from text using random
indexing. In Proceedings of the 9th International Conference on Intelligent Text Pro-
cessing and Computational Linguistics (CICLing), 2008. 3.1.2

[60] M. Sahlgren. An introduction to random indexing. In Proceedings of the 7th
International Conference on Terminology and Knowledge Engineering (TKE), 2005.
3.1.2

[61] T. K. Landauer, P. Foltz, and D. Laham. An introduction to latent semantic
analysis. Discourse Processes, 25:259–284, 1998. 3.1.2

[62] M. Sahlgren. The Word-Space Model: Using distributional analysis to represent syn-
tagmatic and paradigmatic relations between words in high-dimensional vector spaces.
PhD thesis, Stockholm University, 2006. 3.1.2

[63] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. Knowledge discovery and data
mining: Towards a unifying framework. In KDD-96 Proceedings, 1996. 3.1.3

145

Bibliography

[64] I. H. Witten, E. Frank, and M. A. Hall. Data Mining: Practical Machine Learning
Tools and Techniques. Morgan Kaufmann, 3 edition, 2011. 3.1.3

[65] M. Kamber J. Han and J. Pei. Data Mining: Concepts and Techniques. Morgan
Kaufmann, 3 edition, 2011. 3.1.3

[66] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From data mining to knowledge
discovery in databases. AI Magazine, 17:37–54, 1996. 3.1.3

[67] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer-Verlag, 3 edition, 2003. 3.1.3

[68] G. Piatetsky-Shapiro. Knowledge discovery in real databases: A report on the
ijcai-89 workshop. AI Magazine, 11(5):68–70, 1991. 3.1.3

[69] C. Glymour, D. Madigan, D. Pregibon, and P. Smyth. Statistical inference and
data mining. Communications of the ACM, 39 (11):35 – 41, 1996. 3.1.3

[70] E. Eskin. Anomaly detection over noisy data using learned probability distribu-
tions. In In Proceedings of the International Conference on Machine Learning, pages
255 – 262. Kaufmann, M., 2000. 3.1.3.1

[71] A. K. Jain, M. N. Murty, and P. J. Flynn. Data Clustering: A Review. ACM Com-
puting Surveys, 1999. 3.1.3.1

[72] A. E. Gelfand. Gibbs sampling. Journal of the American Statistical Association, 452,
1995. 3.1.3.2

[73] A. E. Gelfand and A. F. M. Smith. Sampling based approaches to calculating
marginal densities. Journal of American Statistical Association, 85:398 – 409, 1990.
3.1.3.2

[74] W. K. Newey and D. McFadden. Chapter 36 large sample estimation and hy-
pothesis testing. In R. F. Engle and D. L. McFadden, editors, Handbook of econo-
metrics, volume 4 of Handbook of Econometrics, pages 2111 – 2245. Elsevier, 1994.
3.1.3.3

[75] W. K. Newey and K. D. West. Hypothesis testing with efficient method of mo-
ments estimation. International Economic Review, 28:777 787, 1988. 3.1.3.3

[76] C. Glymour, D. Madigan, D. Pregibon, and P. Smyth. Statistical themes and
lessons for data mining. Data Mining and Knowledge Discovery, 1:11 – 28, 1997.
3.1.3.4

146

Bibliography

[77] J. Doyle. Rational decision making. The MIT Encyclopedia of the Cognitive Sciences,
pages 701 – 703, 1998. 3.1.3.5

[78] U. M. Fayyad, D. Haussler, and Z. Stolorz. Kdd for science data analysis; issues
and examples. In Proceedings of the 2nd International Conference on Knowledge
Discovery and Data Mining, 1996. 3.1.4

[79] W. J. Frawley, G. Piatetsky-Shapiro, and C. J. Matheus. Knowledge discovery in
databases: An overview. AI Magazine, 13, No 3:57 – 70, 1992. 3.1.4

[80] J. Zhang. Ontology and the semantic web. In Proceedings of the North American
Symposium on Knowledge Organization (NASKO), 2007. 3.1.5

[81] A. Gal and P. Shvaiko. Advances in web semantics i. Lecture Notes in Computer
Science, 4891/2009:176–198, 2009. 3.1.5

[82] F. Giunchiglia, P. Shvaiko, and M. Yatskevich. Semantic matching. In Encyclope-
dia of Database Systems, pages 2561–2566. L. Ling and M. Tamer, 2009. 3.1.5

[83] J. Huang, D. Dou, L. He, J. Dang, and P. Hayes. Ontology-based knowledge
discovery and sharing in bioinformatics and medical informatics: A brief sur-
vey. In Proceedings of the 7th Conference on Fuzzy Systems and Knowledge Discovery
(FSKD), pages 2203 – 2208, 2010. 3.1.5

[84] P. Shvaiko and J. Euzenat. Ten challenges for ontology matching. In Proceed-
ings of the 7th International Conference on Ontologies, DataBases, and Applications of
Semantics (ODBASE), 2008. 3.1.5

[85] Ontology Alignment Evaluation Initiative. Ontology alignment evaluation ini-
tiative - home page: http://oaei.ontologymatching.org/, 2012. 3.1.5

[86] Y. Kalfoglou and M. Schorlemmer. Ontology mapping: the state of the art. The
Knowledge Engineering Review, 18:1:1–31, 2003. 3.1.5, 3.1.9

[87] M. Sabou, M. Fernandez, and E. Motta. Evaluating semantic relations by explor-
ing ontologies on the semantic web. In Proceedings of the 14th International Con-
ference on Applications of Natural Language to Information Systems (NLDB), 2010.
3.1.6, 4.2.3

[88] G. Pirró and J. Euzenat. A semantic similarity framework exploiting multiple
parts-of speech. In Proceedings of the On the Move to Meaningful Internet Systems
Conference(OTM), 2010. 3.1.6

[89] M. Niepert, C. Meilicke, and H. Stuckenschmidt. A probabilistic-logical frame-

147

Bibliography

work for ontology matching. In Proceedings of the American Association for Artifi-
cial Intelligence (AAAI), 2010. 3.1.6

[90] M. Richardson and P. Domingos. Markov logic networks. Machine Learning,
62:107–136, 2006. 3.1.6

[91] R. L. Cilibrasi and P. M. B. Vitanyi. The google similarity distance. Knowledge
and Data Engineering, IEEE Transactions on, 19(3):370 –383, march 2007. 3.1.6

[92] R. Gligorov, W. Kate, Z. Aleksovski, and F. v. Harmelen. Using google distance
to weight approximate ontology matches. In Proceedings of the 16th international
conference on World Wide Web, WWW ’07, pages 767–776, 2007. 3.1.6

[93] D. Milne and I. H. Witten. An effective, low-cost measure of semantic relat-
edness obtained from wikipedia links. Proceeding of the AAAI Workshop, 2008.
3.1.6

[94] G. Pirró and J. Euzenat. A feature and information theoretic framework for
semantic similarity and relatedness. In Proceedings of the International Semantic
Web Conference, 2011. 3.1.6

[95] IM@OAEI2011. Instance matching homepage:
http://www.instancematching.org/, 2011. 3.1.7

[96] D. Engmann and S. Massmann. Instance matching with coma++. In In Proceed-
ings of the BTW 2007 Workshop, 2007. 3.1.7

[97] A. Ferrara, D. Lorusso, S. Montanelli, and G. Varese. Towards a benchmark for
instance matching. In Proceedings Ontology matching 2008, 2008. 3.1.7

[98] A. L. Blum and M. L. Furst. Fast planning through planning graph analysis.
Artificial Intelligence, 90:281–300, 1997. 3.1.8

[99] M. Bhatt, A. Flahive, C. Wouters, W. Rahayu, D. Taniar, and T. Dillon. A dis-
tributed approach to sub-ontology extraction. In In Proceedings of the 18th In-
ternational Conference on Advances Information Networking and Applications, 2004.
3.1.9

[100] L. Serafini, A. Borgida, and A. Tamilin. Aspects of distributed and modular
ontology reasoning. In In Proceedings of the 19th International Joint Conferences on
Artificial Intelligence, pages 570–575, 2005. 3.1.9

[101] D. Calvanese, G. Giacomo, M. Lenzerini, D. Nardi, and R. Rosati. Description
logic framework for information integration. In Proceedings of the International

148

Bibliography

Conference on Knowledge Representation and Reasoning (KR)., pages 2–13, 1998.
3.1.10, 3.4.1

[102] Advances in Information Systems Research Laboratory. The agreementmaker
homepage: http://agreementmaker.org/, 2011. 3.2

[103] I. F. Cruz, F. P. Antonelli, and C. Stroe. Agreementmaker: Efficient matching for
large real-world schemas and ontologies. In Proceedings of the 35th International
Conference on Very Large Data Bases (VLDB), 2009. 3.2

[104] N. F. Noy and M. A. Musen. Anchor-prompt: Using non-local context for se-
mantic matching. In Conference Proceedings of the Workshop on Ontologies and
Information Sharing at the Seventeenth International Joint Conference on Artificial In-
telligence (IJCAI-2001), 2001. 3.2

[105] M. Musen and N. Noy. Anchor-prompt: Using a non-local context for semantic
matching. In Proceedings of the Workshop on Ontologies and Information Sharing at
the 17th International Joint Conference on Artificial Intelligence (IJCAI), 2001. 3.2

[106] INRIA. The aroma project homepage: http://aroma.gforge.inria.fr/, 2009. 3.2

[107] Y. R. Jean-Mary, E. P. Shironoshita, and M. R. Kabuka. Ontology matching with
semantic verification. Web Semantics: Science, Services and Agents on the World
Wide Web, 7(3):235 – 251, September 2009. 3.2

[108] P. Jain, P. Hitzler, A. P. Sheth, K. Verma, and P. Z. Yeh. Ontology alignment for
linked open data. In Proceedings of the 9th international semantic web conference on
The semantic web, volume Part I of ISWC’10, pages 402–417, Berlin, Heidelberg,
2010. Springer-Verlag. 3.2

[109] M. S. Lacher and G. Groh. Facilitating the exchange of explicit knowledge
through ontology mappings. In In Proceedings of the 14th Int. FLAIRS Conference,
pages 305–309. AAAI Press, 2001. 3.2

[110] AI Laboratory Knowledge Systems. The chimaera homepage:
http://www.ksl.stanford.edu/software/chimaera/, 2005. 3.2

[111] D. McGuiness, R. Fikes, J. Rice, and S. Wilder. An environment for merging
and testing large ontologies. In Proceedings of the 7th International Conference on
Principles of Knowledge Representation and Reasoning., 2000. 3.2

[112] SID Group. The cider homepage: http://sid.cps.unizar.es/semanticweb/
alignment/, 2008. 3.2

[113] H. H. Do and E. Rahm. Coma: A system for flexible combination of schema

149

Bibliography

matching approaches. In Proceedings of the 28th International Conference on Very
Large Databases, pages 610–621, 2002. 3.2

[114] D. Aumueller, H. H. Do, S. Massmann, and E. Rahm. Schema and ontology
matching with coma++. In Proceedings of ACM SIGMOD International Conference
on Management of Data., pages 906–908, 2005. 3.2

[115] Database Working Group Leipzig University of Leipzig. Coma 3.0:
http://dbs.uni-leipzig.de/research/coma.html, 2012. 3.2

[116] Temporal Knowledge Bases Group. The contentmap homepage:
http://krono.act.uji.es/people/ernesto/contentmap, 2000-2012. 3.2

[117] Advanced Knowledge Technologies (AKT). The crosi project homepage:
http://www.aktors.org/crosi/intro, 2004-2005. 3.2

[118] J. Madhavan, P. A. Bernstein, and E. Rahm. Generic schema matching with
cupid. In Proceedings of the 27th International Conference on Very Large Databases.,
pages 49–58, 2001. 3.2

[119] M. Nagy, M. Vargas-Vera, and E. Motta. Dssim - managing uncertainty on the
semantic web. In The 2nd International Workshop on Ontology Matching (OM-
2007), Nov. 2007. 3.2

[120] W. Hu, G. Cheng, D. Zheng, X. Zhong, and Y. Qu. The results of falcon-ao in
the oaei 2006 campaign. In Proceedings of the International Workshop on Ontology
Matching, 2006. 3.2

[121] G. Stumme and A. Maedche. Fca-merge: Bottom-up merging of ontologies. In
In Proceedings of IJCAI, pages 225–230, 2001. 3.2

[122] The Semantic Web Consortium. Foam: http://semanticweb.org/wiki/foam,
Feb. 2012. 3.2

[123] A. H. Doan, J. Madhavan, P. Domingos, and A. Halevy. Learning to map be-
tween ontologies on the semantic web. In Proceedings of the 11th International
WWW Conference., pages 662–673, 2002. 3.2

[124] K. Kotis and G. A. Vouros. The hcone approach to ontology merging. In In
Proceedings of the 21st International Symposium on Computer Architecture, pages
137–151. IEEE Computer Society Press, 2004. 3.2

[125] The Apache Software Foundation. Jena semantic web framework:
http://jena.sourceforge.net/index.html, 2012. 3.2

150

Bibliography

[126] P. Wang and B. Xu. Lily: Ontology alignment results for oaei 2009. In Proceedings
of the OAEI 2009, 2009. 3.2

[127] The MAFRA Project Consortium. The mafra toolkit homepage: http://mafra-
toolkit.sourceforge.net/, 2006. 3.2

[128] A. Maedche, B. Motik, S. Nuno, and R. Volz. Mafra - a mapping framework
for distributed ontologies. In Proceedings of the 13th International Conference on
Knowledge Engineering and Knowledge Management, Ontologies and the Semantic
Web, EKAW ’02, pages 235–250, London, UK, 2002. Springer-Verlag. 3.2

[129] The Onto Builder Project Consortium. The onto builder project homepage:
http://ontobuilder.bitbucket.org/, 2006. 3.2

[130] The OntoMediate Project Consortium. Ontomediate: Ontological me-
diation and semantic gateways for domain/enterprise translations:
http://www.ecs.soton.ac.uk/research/projects/466, 2009. 3.2

[131] The plugIT Project Consortium. The plugit project: http://plug-it.org, 2011. 3.2,
3.2

[132] P. Gilet, A. Tenschert, and R. Kübert. Use of graphical modelling, semantics and
service level agreements for high performance computing. In Proceedings of the
eChallenges 2011 Conference., 2011. 3.2

[133] HLRS University of Stuttgart. Hlrs - online proposal submission:
http://www.hlrs.de/userprojects/ops/, 2012. 3.2

[134] The (GRAAP) WG of the OGF. Web service agreement specification (ws-
agreement): http://www.ogf.org/documents/gfd.107.pdf, 2007. 3.2

[135] B. Koller. Enhanced SLA Management in the High Performance Computing Domain.
PhD thesis, HLRS - High Performance Computing Center Stuttgert, University
of Stuttgart, 2010. 3.2

[136] N. Noy and M. Musen. Prompt: Algorithm and tool for automated ontology
merging and alignment. In Proceedings of the 12th IAAI., pages 450–455, 2000.
3.2

[137] The Protégé PRoject Consortium. The protégé homepa:
http://protege.stanford.edu/, 2012. 3.2

[138] The RiMOM Project Consortium. Risk minimization based ontology mapping
(rimom): http://keg.cs.tsinghua.edu.cn/project/rimom/, 2006. 3.2

151

Bibliography

[139] S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity flooding: A versatile
graph matching algorithm. In Proceedings of the 18th International Conference on
Data Engineering (ICDE), 2002. 3.2

[140] B. Alexe, L. Chiticariu, and W.-C. Tan. Spider: a schema mapping debugger. In
Proceedings of the 32nd international conference on Very large data bases, VLDB ’06,
pages 1179–1182. VLDB Endowment, 2006. 3.2

[141] The Open Linguistics Consortium. Open linguistics:
http://linguistics.okfn.org/resources/llod/, 2014. 3.2

[142] The BabelNet Consortium. Babelnet 2.0 web site: http://babelnet.org/, 2014.
3.2

[143] The GATE Consortium. Gate - general architecture for text engineering:
https://gate.ac.uk/, 2014. 3.2

[144] TC project at the Institute for Computational Linguistics of the University of
Stuttgart. Treetagger: http://www.cis.uni-muenchen.de/ schmid/tools/tree-
tagger/, 2014. 3.2

[145] The Text2Onto consortium. Text2onto - a framework for ontology learning and
data-driven change discovery: http://ontoware.org/projects/text2onto, 2014.
3.2

[146] The WordNet consortium. Wordnet - a lexical database for english:
http://wordnet.princeton.edu/, 2013. 3.2

[147] M. Sahlgren. The Word-Space Model: Using distributional analysis to represent syn-
tagmatic and paradigmatic relations between words in high-dimensional vector spaces.
PhD thesis, Stockholm: Institutionen fr lingvistik, 2006. 3.4.2

[148] R. Mihalcea, C. Corley, and C. Strapparava. Corpus-based and knowledge-
based measures of text semantic similarity. In Proceedings of AAAI Conference,
volume 6, 2006. 3.4.2

[149] M. T. Pilehvar, D. Jurgens, and R. Navigli. Align, disambiguate and walk: A
unified approach for measuring semantic similarity. In ACL (1), pages 1341–
1351, 2013. 3.4.3

[150] R. Snow, S. Prakash, D. Jurafsky, and A. Y. Ng. Learning to merge word senses.
In EMNLP-CoNLL, volume 2007, pages 1005–1014, 2007. 3.4.3

[151] W. Hu and Y. Qu. Falcon-ao: A practical ontology matching system. Web Se-

152

Bibliography

mantics: Science, Services and Agents on the World Wide Web, 6(3):237–239, 2008.
3.4.4

[152] M. F. Husain, P. Doshi, L. Khan, and B. Thuraisingham. Storage and retrieval
of large rdf graph using hadoop and mapreduce. In Cloud computing, pages
680–686. Springer, 2009. 3.4.4

[153] P. Shvaiko and J. Euzenat. Ontology matching: state of the art and future chal-
lenges. Knowledge and Data Engineering, IEEE Transactions on, 25(1):158–176,
2013. 3.4.4

[154] U. Schöning J. Kobler and J. Torán. The graph isomorphism problem: its structural
complexity. Springer Science & Business Media, 2012. 3.4.4

[155] Q. Fang, Y. Zhao, G. Yang, and W. Zheng. Scalable distributed ontology reason-
ing using dht-based partitioning. In The Semantic Web, pages 91–105. Springer,
2008. 3.4.5

[156] A. Flahive, D. Taniar, W. Rahayu, and B. O. Apduhan. A methodology for on-
tology update in the semantic grid environment. Concurrency and Computation:
Practice and Experience, 27(4):782–808, 2015. 3.4.5

[157] J. Euzenat and P. Valtchev. Similarity-based ontology alignment in owl-lite. In
Proceedings of the 15th European Conference on Artificial Intelligence (ECAI), page
333337, 2004. 4.1.4

[158] A. Farooq, M. J. Arshad, and A. Shah. A layered approach for similarity mea-
surement between ontologies. Journal of American Science, 6:69–77, 2010. 4.1.4

[159] The W3C. W3c recommendation: Rdf vocabulary description language 1.0: Rdf
schema: http://www.w3.org/tr/rdf-schema/, February 2004. 4.1.4.1, 4.1.4.1

[160] A. Tenschert and R. Kübert. Sla based job submission and scheduling with the
globus toolkit 4. The Computer Science Journal, 13(4):183–204, 2012. 5.2.1

[161] Argonne National Laboratory. Openpbs public home:
http://www.mcs.anl.gov/research/projects/openpbs/, 2004. 5.2.1

[162] Adaptive Computing. Torque resource manager:
http://www.adaptivecomputing.com/products/open-source/torque/, 2012.
5.2.1

[163] TOP500.Org Authors. Top 500 supercomputer sites:
http://www.top500.org/lists/, 2013. 5.3.1

153

Bibliography

[164] HLRS University of Stuttgart. Hlrs - high performance computing center
stuttgert, university of stuttgart: http://www.hlrs.de/. 6.1

[165] Inc. Adaptive Computing. Adaptive computing, inc. web site:
http://www.adaptivecomputing.com/products/open-source/maui/, 2013.
6.3.2

[166] The FastMPJ Consortium. The fastmpj web site: http://fastmpj.com/, 2013.
6.3.2

154

Appendix

155

Appendix A

Cluster Configuration

Configuration of the NEC NEHALEM cluster at HLRS:

• 700 compute nodes are of type NEC HPC-144 Rb-1 Server

– dual CPU compute nodes: 2x Intel Xeon X5560 Gainestown

∗ 4 cores, 8 threads

∗ 2.80 GHz (3.20 Ghz max. Turbo frequency)

∗ 8MB L3 Cache

∗ 1333 MHz Memory Interface, 6.4 GT/s QPI

∗ TDP 95W, 45nm technology

∗ Nehalem microarchitecture

– standard: 12 GB RAM

– 36 nodes upgraded to 24GB, 48GB, 128GB or 144GB RAM

– 32 compute nodes have additional Nvidia Tesla S1070 GPU’s installed

• Pre- & Postprocessing node

– 8x Intel Xeon X7542 6-core CPUs with 2.67GHz (8*6=48 Cores)

– 1TB RAM

– shared access

157

Appendix A Cluster Configuration

• Node Upgrade:

– 180 nodes Dual Intel ’Sandy Bridge’ E5-2670

– 2.6 Ghz, 8 Cores per processor, 16 Threads

– 4 memory channels per processor, DDR3 1600Mhz memory

– 12 nodes with 64GB RAM

– 168 nodes with 32GB RAM

– QDR Mellanox ConnectX-3 IB HCAs (40gbit)

• Additional large memory nodes:

– 10 nodes Quad Socket AMD Opteron 6238

– 2.6 Ghz, 12 cores per processor

– 4 memory channels per processor, DDR3 1600Mhz memory

– 256GB RAM

– QDR Mellanox ConnectX-2 IB HCAs (40gbit)

• network: InfiniBand Double Data Rate:

– switches for interconnect: Voltaire Grid Director 4036 with 36 QDR (40Gbps)
ports (6 backbone switches)

158

Appendix B

Example Data Set - RDF Triple

For demonstration purposes an auto-generated data set consisting of about 300 RDF
Triple is presented in the following.

XML notation:

<rdf:RDF
xmlns:j.0="http://example6/5/localName8/"
xmlns:j.2="http://example1/2/localName5/"
xmlns:j.1="http://example5/5/localName5/"
xmlns:j.6="http://example2/1/localName6/"
xmlns:j.5="http://example6/1/localName4/"
xmlns:j.4="http://example4/6/localName7/"
xmlns:j.3="http://example4/1/localName7/"
xmlns:j.7="http://example5/6/localName1/"
xmlns:j.9="http://example7/2/localName5/"
xmlns:j.8="http://example9/7/localName9/"
xmlns:j.10="http://example0/5/localName8/"
xmlns:j.12="http://example2/4/localName8/"
xmlns:j.11="http://example3/8/localName9/"
xmlns:j.13="http://example4/4/localName5/"
xmlns:j.14="http://example3/4/localName2/"
xmlns:j.15="http://example7/0/localName1/"
xmlns:j.16="http://example8/2/localName3/"
xmlns:j.17="http://example9/8/localName1/"
xmlns:j.18="http://example2/6/localName4/"
xmlns:j.19="http://example3/5/localName7/"
xmlns:j.20="http://example9/0/localName6/"
xmlns:j.21="http://example2/5/localName0/"
xmlns:j.22="http://example5/9/localName5/"
xmlns:j.23="http://example0/0/localName2/"
xmlns:j.24="http://example2/3/localName3/"

159

Appendix B Example Data Set - RDF Triple

xmlns:j.25="http://example6/5/localName9/"
xmlns:j.26="http://example7/3/localName2/"
xmlns:j.27="http://example8/1/localName6/"
xmlns:j.28="http://example8/6/localName4/"
xmlns:j.29="http://example1/6/localName2/"
xmlns:j.30="http://example3/9/localName2/"
xmlns:j.32="http://example6/8/localName8/"
xmlns:j.31="http://example5/1/localName7/"
xmlns:j.33="http://example0/8/localName5/"
xmlns:j.34="http://example6/2/localName8/"
xmlns:j.35="http://example4/3/localName2/"
xmlns:j.37="http://example4/9/localName6/"
xmlns:j.36="http://example8/2/localName2/"
xmlns:j.38="http://example3/4/localName3/"
xmlns:j.39="http://example4/5/localName5/"
xmlns:j.41="http://example0/0/localName1/"
xmlns:j.40="http://example3/7/localName4/"
xmlns:j.42="http://example2/5/localName1/"
xmlns:j.43="http://example7/1/localName6/"
xmlns:j.44="http://example7/3/localName6/"
xmlns:j.48="http://example4/8/localName6/"
xmlns:j.47="http://example7/7/localName5/"
xmlns:j.46="http://example7/4/localName1/"
xmlns:j.45="http://example2/1/localName9/"
xmlns:j.49="http://example6/1/localName6/"
xmlns:j.50="http://example0/4/localName7/"
xmlns:j.51="http://example5/0/localName5/"
xmlns:j.52="http://example0/9/localName0/"
xmlns:j.53="http://example5/1/localName0/"
xmlns:j.54="http://example2/4/localName6/"
xmlns:j.55="http://example3/8/localName7/"
xmlns:j.56="http://example5/5/localName1/"
xmlns:j.57="http://example3/6/localName5/"
xmlns:j.58="http://example1/8/localName8/"
xmlns:j.59="http://example7/5/localName2/"
xmlns:j.60="http://example7/1/localName1/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:j.61="http://example1/8/localName9/"
xmlns:j.62="http://example1/5/localName8/"
xmlns:j.63="http://example6/8/localName2/"
xmlns:j.64="http://example0/8/localName6/"
xmlns:j.65="http://example9/6/localName7/"
xmlns:j.66="http://example4/9/localName1/"
xmlns:j.67="http://example5/7/localName1/"
xmlns:j.68="http://example1/9/localName1/"

160

xmlns:j.69="http://example0/6/localName3/"
xmlns:j.70="http://example0/2/localName6/"
xmlns:j.71="http://example3/0/localName5/"
xmlns:j.72="http://example4/5/localName6/"
xmlns:j.73="http://example1/4/localName8/"
xmlns:j.74="http://example4/8/localName7/"
xmlns:j.75="http://example0/4/localName8/"
xmlns:j.76="http://example9/3/localName0/"
xmlns:j.77="http://example9/9/localName5/"
xmlns:j.78="http://example5/5/localName2/"
xmlns:j.79="http://example1/2/localName4/"
xmlns:j.80="http://example7/1/localName9/"
xmlns:j.81="http://example4/1/localName6/"
xmlns:j.82="http://example2/2/localName3/"
xmlns:j.83="http://example0/5/localName5/"
xmlns:j.84="http://example0/8/localName8/"
xmlns:j.85="http://example7/5/localName3/"
xmlns:j.86="http://example6/9/localName9/"
xmlns:j.87="http://example4/0/localName7/"
xmlns:j.88="http://example6/5/localName3/"
xmlns:j.89="http://example8/0/localName6/"
xmlns:j.90="http://example9/6/localName2/"
xmlns:j.91="http://example0/5/localName4/"
xmlns:j.92="http://example5/2/localName0/"
xmlns:j.93="http://example9/4/localName0/"
xmlns:j.94="http://example9/5/localName3/"
xmlns:j.95="http://example3/3/localName5/"
xmlns:j.96="http://example7/4/localName9/"
xmlns:j.97="http://example4/5/localName7/"
xmlns:j.98="http://example5/3/localName0/"
xmlns:j.100="http://example3/6/localName7/"
xmlns:j.99="http://example6/0/localName2/"
xmlns:j.101="http://example5/3/localName9/"
xmlns:j.102="http://example9/9/localName6/"
xmlns:j.103="http://example4/0/localName9/"
xmlns:j.104="http://example2/8/localName2/"
xmlns:j.105="http://example7/9/localName1/"
xmlns:j.107="http://example2/1/localName1/"
xmlns:j.106="http://example6/3/localName0/"
xmlns:j.108="http://example9/8/localName5/"
xmlns:j.109="http://example5/1/localName3/"
xmlns:j.110="http://example0/3/localName4/"
xmlns:j.111="http://example8/0/localName1/"
xmlns:j.112="http://example6/6/localName8/"
xmlns:j.114="http://example4/2/localName7/"

161

Appendix B Example Data Set - RDF Triple

xmlns:j.113="http://example6/9/localName6/"
xmlns:j.115="http://example1/7/localName8/"
xmlns:j.116="http://example4/4/localName0/"
xmlns:j.117="http://example3/4/localName8/"
xmlns:j.118="http://example9/5/localName1/"
xmlns:j.119="http://example3/7/localName8/"
xmlns:j.120="http://example8/3/localName5/"
xmlns:j.121="http://example4/6/localName2/"
xmlns:j.122="http://example9/1/localName2/"
xmlns:j.123="http://example4/4/localName9/"
xmlns:j.124="http://example0/6/localName4/"
xmlns:j.125="http://example2/0/localName8/"
xmlns:j.128="http://example2/9/localName4/"
xmlns:j.127="http://example5/8/localName3/"
xmlns:j.126="http://example0/4/localName1/"
xmlns:j.130="http://example2/5/localName5/"
xmlns:j.129="http://example8/7/localName0/"
xmlns:j.132="http://example1/8/localName3/"
xmlns:j.131="http://example7/7/localName7/"
xmlns:j.134="http://example9/6/localName0/"
xmlns:j.133="http://example6/3/localName1/"
xmlns:j.135="http://example0/8/localName1/"
xmlns:j.138="http://example8/0/localName0/"
xmlns:j.137="http://example6/5/localName5/"
xmlns:j.136="http://example3/9/localName7/"
xmlns:j.139="http://example1/4/localName4/"
xmlns:j.140="http://example0/3/localName1/"
xmlns:j.141="http://example8/3/localName6/"
xmlns:j.142="http://example7/3/localName1/"
xmlns:j.143="http://example4/6/localName1/"
xmlns:j.144="http://example7/8/localName1/"
xmlns:j.145="http://example2/4/localName1/"
xmlns:j.146="http://example9/1/localName5/"
xmlns:j.147="http://example4/3/localName5/"
xmlns:j.148="http://example5/2/localName5/"
xmlns:j.150="http://example9/8/localName3/"
xmlns:j.149="http://example8/2/localName5/"
xmlns:j.151="http://example2/8/localName0/"
xmlns:j.153="http://example0/0/localName8/"
xmlns:j.152="http://example4/9/localName9/"
xmlns:j.156="http://example1/1/localName6/"
xmlns:j.155="http://example6/3/localName2/"
xmlns:j.154="http://example1/3/localName2/"
xmlns:j.157="http://example7/9/localName6/"
xmlns:j.158="http://example1/6/localName0/"

162

xmlns:j.159="http://example8/6/localName2/"
xmlns:j.161="http://example4/6/localName0/"
xmlns:j.160="http://example7/0/localName5/"
xmlns:j.162="http://example0/5/localName0/"
xmlns:j.163="http://example9/0/localName5/"
xmlns:j.164="http://example6/1/localName3/"
xmlns:j.165="http://example8/5/localName9/"
xmlns:j.166="http://example8/7/localName2/"
xmlns:j.167="http://example7/4/localName5/"
xmlns:j.168="http://example0/1/localName5/"
xmlns:j.169="http://example1/8/localName5/"
xmlns:j.170="http://example9/3/localName3/"
xmlns:j.172="http://example6/9/localName5/"
xmlns:j.171="http://example2/8/localName1/"
xmlns:j.173="http://example0/8/localName3/"
xmlns:j.175="http://example5/1/localName4/"
xmlns:j.174="http://example3/9/localName9/"
xmlns:j.176="http://example5/8/localName5/">

<rdf:Description rdf:about="http://example5/ROOT">
<j.1:value2>

<rdf:Description rdf:about="http://example7y">
<j.86:value0 rdf:resource="http://example2z"/>
<j.107:value7 rdf:resource="http://example7x"/>
<j.67:value8>
<rdf:Description rdf:about="http://example2y">
<j.69:value5 rdf:resource="http://example2z"/>
<j.163:value9 rdf:resource="http://example7z"/>
<j.48:value0 rdf:resource="http://example6z"/>
<j.13:value8 rdf:resource="http://example4z"/>
<j.0:value5 rdf:resource="http://example8z"/>
<j.45:value1>
<rdf:Description rdf:about="http://example5z">

<j.121:value7 rdf:resource="http://example6x"/>
<j.84:value5 rdf:resource="http://example6x"/>
<j.71:value6 rdf:resource="http://example4x"/>
<j.165:value0>
<rdf:Description rdf:about="http://example5y">
<j.136:value6 rdf:resource="http://example4z"/>
<j.144:value1 rdf:resource="http://example5z"/>
<j.131:value9 rdf:resource="http://example5z"/>
<j.89:value5 rdf:resource="http://example8z"/>
<j.62:value0 rdf:resource="http://example1z"/>
<j.101:value9 rdf:resource="http://example8z"/>
<j.8:value4 rdf:resource="http://example1z"/>
<j.124:value4 rdf:resource="http://example8z"/>

163

Appendix B Example Data Set - RDF Triple

<j.155:value9 rdf:resource="http://example7z"/>
<j.135:value6 rdf:resource="http://example7z"/>
<j.148:value3 rdf:resource="http://example7z"/>
<j.119:value6 rdf:resource="http://example2z"/>

</rdf:Description>
</j.165:value0>
<j.45:value1>
<rdf:Description rdf:about="http://example2x">

<j.27:value5 rdf:resource="http://example2y"/>
<j.49:value8 rdf:resource="http://example9x"/>
<j.38:value2>
<rdf:Description rdf:about="http://example0y">
<j.10:value7 rdf:resource="http://example6z"/>
<j.92:value9 rdf:resource="http://example7z"/>
<j.21:value0 rdf:resource="http://example8z"/>
<j.56:value9 rdf:resource="http://example6z"/>
<j.107:value7 rdf:resource="http://example8z"/>
<j.130:value3 rdf:resource="http://example5z"/>
<j.7:value0 rdf:resource="http://example9z"/>
<j.115:value2 rdf:resource="http://example9z"/>
<j.117:value2 rdf:resource="http://example9z"/>
<j.33:value0 rdf:resource="http://example0z"/>
<j.174:value7 rdf:resource="http://example4z"/>
<j.132:value2 rdf:resource="http://example0z"/>
<j.2:value7 rdf:resource="http://example7z"/>

</rdf:Description>
</j.38:value2>
<j.128:value2>
<rdf:Description rdf:about="http://example1y">
<j.84:value5 rdf:resource="http://example6z"/>
<j.16:value0 rdf:resource="http://example0z"/>
<j.126:value2 rdf:resource="http://example7z"/>
<j.129:value2 rdf:resource="http://example9z"/>
<j.134:value0 rdf:resource="http://example5z"/>
<j.31:value2 rdf:resource="http://example9z"/>

</rdf:Description>
</j.128:value2>
<j.89:value5 rdf:resource="http://example2x"/>
<j.164:value3>
<rdf:Description rdf:about="http://example3y">
<j.49:value8 rdf:resource="http://example7z"/>
<j.100:value4 rdf:resource="http://example3z"/>
<j.116:value0 rdf:resource="http://example9z"/>
<j.15:value1 rdf:resource="http://example9z"/>
<j.40:value5 rdf:resource="http://example2z"/>

164

<j.63:value7 rdf:resource="http://example6z"/>
</rdf:Description>

</j.164:value3>
<j.54:value6 rdf:resource="http://example4x"/>
<j.31:value2 rdf:resource="http://example7x"/>
<j.18:value5>
<rdf:Description rdf:about="http://example6y">
<j.34:value1 rdf:resource="http://example6z"/>
<j.143:value4 rdf:resource="http://example9z"/>
<j.51:value4 rdf:resource="http://example8z"/>
<j.103:value4 rdf:resource="http://example8z"/>
<j.37:value9 rdf:resource="http://example0z"/>
<j.74:value6 rdf:resource="http://example1z"/>
<j.167:value7 rdf:resource="http://example3z"/>
<j.90:value0 rdf:resource="http://example6z"/>
<j.82:value1 rdf:resource="http://example1z"/>
<j.111:value5 rdf:resource="http://example3z"/>

</rdf:Description>
</j.18:value5>
<j.106:value1 rdf:resource="http://example0y"/>
<j.32:value5 rdf:resource="http://example1y"/>
<j.109:value1 rdf:resource="http://example5x"/>
<j.152:value7 rdf:resource="http://example8x"/>
<j.15:value1 rdf:resource="http://example2x"/>
<j.86:value0 rdf:resource="http://example8x"/>
<j.103:value4 rdf:resource="http://example9x"/>
<j.125:value3 rdf:resource="http://example3y"/>
<j.39:value4 rdf:resource="http://example2y"/>
<j.64:value3 rdf:resource="http://example3x"/>
<j.174:value6>
<rdf:Description rdf:about="http://example8y">
<j.43:value4 rdf:resource="http://example2z"/>
<j.81:value9 rdf:resource="http://example2z"/>
<j.152:value7 rdf:resource="http://example6z"/>
<j.176:value1 rdf:resource="http://example6z"/>
<j.127:value4 rdf:resource="http://example8z"/>
<j.83:value5 rdf:resource="http://example7z"/>
<j.30:value7 rdf:resource="http://example2z"/>
<j.149:value4 rdf:resource="http://example5z"/>
<j.85:value9 rdf:resource="http://example1z"/>
<j.169:value5 rdf:resource="http://example7z"/>
<j.44:value0 rdf:resource="http://example0z"/>

</rdf:Description>
</j.174:value6>
<j.18:value5 rdf:resource="http://example8y"/>

165

Appendix B Example Data Set - RDF Triple

<j.135:value6 rdf:resource="http://example7x"/>
<j.53:value6 rdf:resource="http://example8y"/>
<j.132:value2 rdf:resource="http://example9x"/>
<j.6:value7 rdf:resource="http://example0y"/>
<j.14:value1 rdf:resource="http://example7y"/>
<j.16:value0 rdf:resource="http://example3x"/>
<j.122:value4 rdf:resource="http://example1x"/>
<j.120:value4 rdf:resource="http://example7y"/>
<j.174:value7 rdf:resource="http://example5x"/>
<j.46:value9 rdf:resource="http://example8y"/>
<j.63:value7 rdf:resource="http://example3x"/>
<j.9:value5 rdf:resource="http://example2y"/>
<j.30:value7 rdf:resource="http://example7x"/>
<j.43:value4 rdf:resource="http://example9x"/>
<j.113:value5 rdf:resource="http://example3x"/>
<j.154:value4 rdf:resource="http://example1y"/>
<j.144:value1 rdf:resource="http://example8x"/>
<j.156:value7 rdf:resource="http://example5y"/>
<j.158:value5 rdf:resource="http://example5y"/>
<j.85:value9 rdf:resource="http://example9x"/>
<j.35:value4 rdf:resource="http://example5y"/>
<j.138:value0>
<rdf:Description rdf:about="http://example9y">
<j.55:value3 rdf:resource="http://example4z"/>
<j.11:value5 rdf:resource="http://example1z"/>
<j.121:value7 rdf:resource="http://example0z"/>
<j.93:value0 rdf:resource="http://example2z"/>
<j.55:value4 rdf:resource="http://example1z"/>

</rdf:Description>
</j.138:value0>
<j.98:value4 rdf:resource="http://example0y"/>
<j.48:value9 rdf:resource="http://example5y"/>
<j.79:value5>
<rdf:Description rdf:about="http://example4y">
<j.173:value2 rdf:resource="http://example1z"/>
<j.17:value8 rdf:resource="http://example2z"/>
<j.71:value6 rdf:resource="http://example1z"/>
<j.122:value4 rdf:resource="http://example4z"/>
<j.20:value3 rdf:resource="http://example9z"/>
<j.147:value3 rdf:resource="http://example2z"/>
<j.142:value1 rdf:resource="http://example6z"/>
<j.109:value1 rdf:resource="http://example6z"/>

</rdf:Description>
</j.79:value5>
<j.129:value2 rdf:resource="http://example0x"/>

166

<j.23:value3 rdf:resource="http://example3y"/>
<j.21:value0 rdf:resource="http://example5x"/>
<j.33:value0 rdf:resource="http://example8x"/>
<j.118:value1 rdf:resource="http://example2y"/>
<j.55:value3 rdf:resource="http://example7x"/>
<j.149:value4 rdf:resource="http://example0x"/>
<j.8:value4 rdf:resource="http://example3x"/>
<j.170:value6 rdf:resource="http://example4x"/>
<j.61:value7 rdf:resource="http://example8y"/>
<j.25:value5 rdf:resource="http://example4y"/>
<j.69:value5 rdf:resource="http://example0x"/>
<j.155:value3 rdf:resource="http://example7y"/>
<j.104:value9 rdf:resource="http://example7x"/>
<j.0:value5 rdf:resource="http://example8x"/>
<j.4:value9 rdf:resource="http://example7y"/>

</rdf:Description>
</j.45:value1>
<j.35:value9 rdf:resource="http://example2y"/>
<j.73:value7 rdf:resource="http://example7y"/>
<j.151:value2 rdf:resource="http://example9y"/>
<j.100:value4 rdf:resource="http://example8x"/>
<j.56:value9 rdf:resource="http://example6x"/>
<j.159:value3 rdf:resource="http://example7y"/>
<j.164:value8 rdf:resource="http://example2y"/>
<j.145:value0 rdf:resource="http://example4y"/>
<j.97:value0 rdf:resource="http://example8y"/>
<j.20:value3 rdf:resource="http://example1x"/>
<j.26:value7 rdf:resource="http://example7y"/>
<j.37:value9 rdf:resource="http://example0x"/>
<j.141:value6 rdf:resource="http://example4y"/>
<j.5:value8 rdf:resource="http://example6y"/>
<j.99:value3 rdf:resource="http://example1x"/>
<j.119:value6 rdf:resource="http://example2x"/>
<j.10:value7 rdf:resource="http://example7x"/>
<j.108:value2 rdf:resource="http://example4y"/>
<j.160:value1 rdf:resource="http://example5x"/>
<j.60:value2 rdf:resource="http://example8y"/>
<j.42:value4 rdf:resource="http://example1y"/>
<j.66:value2 rdf:resource="http://example6y"/>
<j.13:value8 rdf:resource="http://example3x"/>
<j.52:value4 rdf:resource="http://example6y"/>
<j.87:value8 rdf:resource="http://example0y"/>
<j.70:value7 rdf:resource="http://example0y"/>
<j.137:value5 rdf:resource="http://example7y"/>
<j.88:value7 rdf:resource="http://example1x"/>

167

Appendix B Example Data Set - RDF Triple

<j.142:value1 rdf:resource="http://example4x"/>
<j.165:value5 rdf:resource="http://example5x"/>
<j.28:value8 rdf:resource="http://example7y"/>
<j.95:value9 rdf:resource="http://example2y"/>
<j.19:value8 rdf:resource="http://example5y"/>
<j.41:value6 rdf:resource="http://example5y"/>
<j.110:value8 rdf:resource="http://example0y"/>
<j.115:value2 rdf:resource="http://example5x"/>
<j.96:value3 rdf:resource="http://example3y"/>
<j.166:value5 rdf:resource="http://example0y"/>
<j.126:value2 rdf:resource="http://example8x"/>
<j.168:value3 rdf:resource="http://example9x"/>
<j.148:value3 rdf:resource="http://example2x"/>
<j.131:value9 rdf:resource="http://example5x"/>
<j.77:value3 rdf:resource="http://example7x"/>
<j.90:value0 rdf:resource="http://example0x"/>
<j.117:value2 rdf:resource="http://example4x"/>
<j.150:value0 rdf:resource="http://example1y"/>
<j.91:value6 rdf:resource="http://example3y"/>
<j.173:value2 rdf:resource="http://example1x"/>
<j.62:value0 rdf:resource="http://example0x"/>
<j.143:value4 rdf:resource="http://example0x"/>
<j.168:value7 rdf:resource="http://example4y"/>
<j.172:value9 rdf:resource="http://example8x"/>
<j.83:value5 rdf:resource="http://example9x"/>
<j.116:value0 rdf:resource="http://example2x"/>
<j.146:value0 rdf:resource="http://example5y"/>
<j.153:value6 rdf:resource="http://example2y"/>
<j.176:value1 rdf:resource="http://example8x"/>

</rdf:Description>
</j.45:value1>
<j.36:value4 rdf:resource="http://example5z"/>
<j.77:value3 rdf:resource="http://example4z"/>
<j.104:value9 rdf:resource="http://example3z"/>
<j.88:value7 rdf:resource="http://example3z"/>
<j.102:value3 rdf:resource="http://example7z"/>
<j.54:value6 rdf:resource="http://example6z"/>

</rdf:Description>
</j.67:value8>
<j.74:value6 rdf:resource="http://example8x"/>
<j.147:value3 rdf:resource="http://example4x"/>
<j.81:value9 rdf:resource="http://example5x"/>
<j.92:value9 rdf:resource="http://example4x"/>
<j.157:value1 rdf:resource="http://example8y"/>
<j.17:value8 rdf:resource="http://example6x"/>

168

<j.75:value3 rdf:resource="http://example2z"/>
<j.48:value0 rdf:resource="http://example1x"/>
<j.113:value5 rdf:resource="http://example5z"/>
<j.168:value3 rdf:resource="http://example9z"/>
<j.172:value9 rdf:resource="http://example2z"/>
<j.76:value4 rdf:resource="http://example6y"/>
<j.2:value7 rdf:resource="http://example2x"/>
<j.114:value5 rdf:resource="http://example1y"/>
<j.34:value1 rdf:resource="http://example9x"/>
<j.3:value9 rdf:resource="http://example2y"/>
<j.163:value9 rdf:resource="http://example6x"/>
<j.123:value3 rdf:resource="http://example6y"/>
<j.127:value4 rdf:resource="http://example6x"/>
<j.55:value4 rdf:resource="http://example9x"/>
<j.82:value1 rdf:resource="http://example0x"/>
<j.64:value3 rdf:resource="http://example7z"/>
<j.44:value0 rdf:resource="http://example4x"/>
<j.139:value9 rdf:resource="http://example7y"/>
<j.99:value3 rdf:resource="http://example6z"/>
<j.111:value5 rdf:resource="http://example6x"/>
<j.40:value5 rdf:resource="http://example0x"/>
<j.94:value5 rdf:resource="http://example0y"/>
<j.102:value3 rdf:resource="http://example8x"/>
<j.47:value3 rdf:resource="http://example9y"/>
<j.133:value9 rdf:resource="http://example6y"/>
<j.169:value5 rdf:resource="http://example3x"/>
<j.167:value7 rdf:resource="http://example1x"/>
<j.155:value9 rdf:resource="http://example5x"/>
<j.58:value8 rdf:resource="http://example5y"/>
<j.90:value7 rdf:resource="http://example9y"/>
<j.78:value2 rdf:resource="http://example6y"/>
<j.134:value0 rdf:resource="http://example5x"/>
<j.171:value1 rdf:resource="http://example0y"/>
<j.160:value1 rdf:resource="http://example2z"/>
<j.140:value2 rdf:resource="http://example0y"/>
<j.130:value3 rdf:resource="http://example2x"/>
<j.162:value4 rdf:resource="http://example5y"/>
<j.170:value6 rdf:resource="http://example9z"/>
<j.80:value9 rdf:resource="http://example9y"/>
<j.165:value5 rdf:resource="http://example7z"/>
<j.59:value9 rdf:resource="http://example6y"/>
<j.105:value5 rdf:resource="http://example2y"/>
<j.7:value0 rdf:resource="http://example1x"/>
<j.75:value3 rdf:resource="http://example7x"/>
<j.124:value4 rdf:resource="http://example0x"/>

169

Appendix B Example Data Set - RDF Triple

<j.26:value5 rdf:resource="http://example3y"/>
<j.68:value5 rdf:resource="http://example5y"/>
<j.161:value1 rdf:resource="http://example8y"/>
<j.72:value1 rdf:resource="http://example4y"/>
<j.22:value2 rdf:resource="http://example5y"/>
<j.112:value4 rdf:resource="http://example8y"/>
<j.36:value4 rdf:resource="http://example6x"/>
<j.57:value0 rdf:resource="http://example0y"/>
<j.29:value5 rdf:resource="http://example8y"/>
<j.136:value6 rdf:resource="http://example2x"/>
<j.50:value3 rdf:resource="http://example4y"/>
<j.12:value0 rdf:resource="http://example2y"/>
<j.65:value4 rdf:resource="http://example0y"/>
<j.11:value5 rdf:resource="http://example6x"/>
<j.175:value1 rdf:resource="http://example5z"/>
<j.24:value0 rdf:resource="http://example6y"/>
<j.101:value9 rdf:resource="http://example3x"/>
<j.93:value0 rdf:resource="http://example5x"/>
<j.51:value4 rdf:resource="http://example7x"/>

</rdf:Description>
</j.1:value2>
<j.175:value1 rdf:resource="http://example2x"/>

</rdf:Description>
</rdf:RDF>

RDF Triple notation:

http://example6y http://example6/2/localName8/value1 http://example6z .
http://example6y http://example4/6/localName1/value4 http://example9z .
http://example6y http://example5/0/localName5/value4 http://example8z .
http://example6y http://example4/0/localName9/value4 http://example8z .
http://example6y http://example4/9/localName6/value9 http://example0z .
http://example6y http://example4/8/localName7/value6 http://example1z .
http://example6y http://example7/4/localName5/value7 http://example3z .
http://example6y http://example9/6/localName2/value0 http://example6z .
http://example6y http://example2/2/localName3/value1 http://example1z .
http://example6y http://example8/0/localName1/value5 http://example3z .
http://example8y http://example7/1/localName6/value4 http://example2z .
http://example8y http://example4/1/localName6/value9 http://example2z .
http://example8y http://example4/9/localName9/value7 http://example6z .
http://example8y http://example5/8/localName5/value1 http://example6z .
http://example8y http://example5/8/localName3/value4 http://example8z .
http://example8y http://example0/5/localName5/value5 http://example7z .
http://example8y http://example3/9/localName2/value7 http://example2z .

170

http://example8y http://example8/2/localName5/value4 http://example5z .
http://example8y http://example7/5/localName3/value9 http://example1z .
http://example8y http://example1/8/localName5/value5 http://example7z .
http://example8y http://example7/3/localName6/value0 http://example0z .
http://example1y http://example0/8/localName8/value5 http://example6z .
http://example1y http://example8/2/localName3/value0 http://example0z .
http://example1y http://example0/4/localName1/value2 http://example7z .
http://example1y http://example8/7/localName0/value2 http://example9z .
http://example1y http://example9/6/localName0/value0 http://example5z .
http://example1y http://example5/1/localName7/value2 http://example9z .
http://example3y http://example6/1/localName6/value8 http://example7z .
http://example3y http://example3/6/localName7/value4 http://example3z .
http://example3y http://example4/4/localName0/value0 http://example9z .
http://example3y http://example7/0/localName1/value1 http://example9z .
http://example3y http://example3/7/localName4/value5 http://example2z .
http://example3y http://example6/8/localName2/value7 http://example6z .
http://example2x http://example8/1/localName6/value5 http://example2y .
http://example2x http://example6/1/localName6/value8 http://example9x .
http://example2x http://example3/4/localName3/value2 http://example0y .
http://example2x http://example2/9/localName4/value2 http://example1y .
http://example2x http://example8/0/localName6/value5 http://example2x .
http://example2x http://example6/1/localName3/value3 http://example3y .
http://example2x http://example2/4/localName6/value6 http://example4x .
http://example2x http://example5/1/localName7/value2 http://example7x .
http://example2x http://example2/6/localName4/value5 http://example6y .
http://example2x http://example6/3/localName0/value1 http://example0y .
http://example2x http://example6/8/localName8/value5 http://example1y .
http://example2x http://example5/1/localName3/value1 http://example5x .
http://example2x http://example4/9/localName9/value7 http://example8x .
http://example2x http://example7/0/localName1/value1 http://example2x .
http://example2x http://example6/9/localName9/value0 http://example8x .
http://example2x http://example4/0/localName9/value4 http://example9x .
http://example2x http://example2/0/localName8/value3 http://example3y .
http://example2x http://example4/5/localName5/value4 http://example2y .
http://example2x http://example0/8/localName6/value3 http://example3x .
http://example2x http://example3/9/localName9/value6 http://example8y .
http://example2x http://example2/6/localName4/value5 http://example8y .
http://example2x http://example0/8/localName1/value6 http://example7x .
http://example2x http://example5/1/localName0/value6 http://example8y .
http://example2x http://example1/8/localName3/value2 http://example9x .
http://example2x http://example2/1/localName6/value7 http://example0y .
http://example2x http://example3/4/localName2/value1 http://example7y .
http://example2x http://example8/2/localName3/value0 http://example3x .
http://example2x http://example9/1/localName2/value4 http://example1x .
http://example2x http://example8/3/localName5/value4 http://example7y .

171

Appendix B Example Data Set - RDF Triple

http://example2x http://example3/9/localName9/value7 http://example5x .
http://example2x http://example7/4/localName1/value9 http://example8y .
http://example2x http://example6/8/localName2/value7 http://example3x .
http://example2x http://example7/2/localName5/value5 http://example2y .
http://example2x http://example3/9/localName2/value7 http://example7x .
http://example2x http://example7/1/localName6/value4 http://example9x .
http://example2x http://example6/9/localName6/value5 http://example3x .
http://example2x http://example1/3/localName2/value4 http://example1y .
http://example2x http://example7/8/localName1/value1 http://example8x .
http://example2x http://example1/1/localName6/value7 http://example5y .
http://example2x http://example1/6/localName0/value5 http://example5y .
http://example2x http://example7/5/localName3/value9 http://example9x .
http://example2x http://example4/3/localName2/value4 http://example5y .
http://example2x http://example8/0/localName0/value0 http://example9y .
http://example2x http://example5/3/localName0/value4 http://example0y .
http://example2x http://example4/8/localName6/value9 http://example5y .
http://example2x http://example1/2/localName4/value5 http://example4y .
http://example2x http://example8/7/localName0/value2 http://example0x .
http://example2x http://example0/0/localName2/value3 http://example3y .
http://example2x http://example2/5/localName0/value0 http://example5x .
http://example2x http://example0/8/localName5/value0 http://example8x .
http://example2x http://example9/5/localName1/value1 http://example2y .
http://example2x http://example3/8/localName7/value3 http://example7x .
http://example2x http://example8/2/localName5/value4 http://example0x .
http://example2x http://example9/7/localName9/value4 http://example3x .
http://example2x http://example9/3/localName3/value6 http://example4x .
http://example2x http://example1/8/localName9/value7 http://example8y .
http://example2x http://example6/5/localName9/value5 http://example4y .
http://example2x http://example0/6/localName3/value5 http://example0x .
http://example2x http://example6/3/localName2/value3 http://example7y .
http://example2x http://example2/8/localName2/value9 http://example7x .
http://example2x http://example6/5/localName8/value5 http://example8x .
http://example2x http://example4/6/localName7/value9 http://example7y .
http://example5y http://example3/9/localName7/value6 http://example4z .
http://example5y http://example7/8/localName1/value1 http://example5z .
http://example5y http://example7/7/localName7/value9 http://example5z .
http://example5y http://example8/0/localName6/value5 http://example8z .
http://example5y http://example1/5/localName8/value0 http://example1z .
http://example5y http://example5/3/localName9/value9 http://example8z .
http://example5y http://example9/7/localName9/value4 http://example1z .
http://example5y http://example0/6/localName4/value4 http://example8z .
http://example5y http://example6/3/localName2/value9 http://example7z .
http://example5y http://example0/8/localName1/value6 http://example7z .
http://example5y http://example5/2/localName5/value3 http://example7z .
http://example5y http://example3/7/localName8/value6 http://example2z .

172

http://example5/ROOT http://example5/5/localName5/value2
http://example7y .
http://example5/ROOT http://example5/1/localName4/value1
http://example2x .
http://example7y http://example6/9/localName9/value0 http://example2z .
http://example7y http://example2/1/localName1/value7 http://example7x .
http://example7y http://example5/7/localName1/value8 http://example2y .
http://example7y http://example4/8/localName7/value6 http://example8x .
http://example7y http://example4/3/localName5/value3 http://example4x .
http://example7y http://example4/1/localName6/value9 http://example5x .
http://example7y http://example5/2/localName0/value9 http://example4x .
http://example7y http://example7/9/localName6/value1 http://example8y .
http://example7y http://example9/8/localName1/value8 http://example6x .
http://example7y http://example0/4/localName8/value3 http://example2z .
http://example7y http://example4/8/localName6/value0 http://example1x .
http://example7y http://example6/9/localName6/value5 http://example5z .
http://example7y http://example0/1/localName5/value3 http://example9z .
http://example7y http://example6/9/localName5/value9 http://example2z .
http://example7y http://example9/3/localName0/value4 http://example6y .
http://example7y http://example1/2/localName5/value7 http://example2x .
http://example7y http://example4/2/localName7/value5 http://example1y .
http://example7y http://example6/2/localName8/value1 http://example9x .
http://example7y http://example4/1/localName7/value9 http://example2y .
http://example7y http://example9/0/localName5/value9 http://example6x .
http://example7y http://example4/4/localName9/value3 http://example6y .
http://example7y http://example5/8/localName3/value4 http://example6x .
http://example7y http://example3/8/localName7/value4 http://example9x .
http://example7y http://example2/2/localName3/value1 http://example0x .
http://example7y http://example0/8/localName6/value3 http://example7z .
http://example7y http://example7/3/localName6/value0 http://example4x .
http://example7y http://example1/4/localName4/value9 http://example7y .
http://example7y http://example6/0/localName2/value3 http://example6z .
http://example7y http://example8/0/localName1/value5 http://example6x .
http://example7y http://example3/7/localName4/value5 http://example0x .
http://example7y http://example9/5/localName3/value5 http://example0y .
http://example7y http://example9/9/localName6/value3 http://example8x .
http://example7y http://example7/7/localName5/value3 http://example9y .
http://example7y http://example6/3/localName1/value9 http://example6y .
http://example7y http://example1/8/localName5/value5 http://example3x .
http://example7y http://example7/4/localName5/value7 http://example1x .
http://example7y http://example6/3/localName2/value9 http://example5x .
http://example7y http://example1/8/localName8/value8 http://example5y .
http://example7y http://example9/6/localName2/value7 http://example9y .
http://example7y http://example5/5/localName2/value2 http://example6y .
http://example7y http://example9/6/localName0/value0 http://example5x .

173

Appendix B Example Data Set - RDF Triple

http://example7y http://example2/8/localName1/value1 http://example0y .
http://example7y http://example7/0/localName5/value1 http://example2z .
http://example7y http://example0/3/localName1/value2 http://example0y .
http://example7y http://example2/5/localName5/value3 http://example2x .
http://example7y http://example0/5/localName0/value4 http://example5y .
http://example7y http://example9/3/localName3/value6 http://example9z .
http://example7y http://example7/1/localName9/value9 http://example9y .
http://example7y http://example8/5/localName9/value5 http://example7z .
http://example7y http://example7/5/localName2/value9 http://example6y .
http://example7y http://example7/9/localName1/value5 http://example2y .
http://example7y http://example5/6/localName1/value0 http://example1x .
http://example7y http://example0/4/localName8/value3 http://example7x .
http://example7y http://example0/6/localName4/value4 http://example0x .
http://example7y http://example7/3/localName2/value5 http://example3y .
http://example7y http://example1/9/localName1/value5 http://example5y .
http://example7y http://example4/6/localName0/value1 http://example8y .
http://example7y http://example4/5/localName6/value1 http://example4y .
http://example7y http://example5/9/localName5/value2 http://example5y .
http://example7y http://example6/6/localName8/value4 http://example8y .
http://example7y http://example8/2/localName2/value4 http://example6x .
http://example7y http://example3/6/localName5/value0 http://example0y .
http://example7y http://example1/6/localName2/value5 http://example8y .
http://example7y http://example3/9/localName7/value6 http://example2x .
http://example7y http://example0/4/localName7/value3 http://example4y .
http://example7y http://example2/4/localName8/value0 http://example2y .
http://example7y http://example9/6/localName7/value4 http://example0y .
http://example7y http://example3/8/localName9/value5 http://example6x .
http://example7y http://example5/1/localName4/value1 http://example5z .
http://example7y http://example2/3/localName3/value0 http://example6y .
http://example7y http://example5/3/localName9/value9 http://example3x .
http://example7y http://example9/4/localName0/value0 http://example5x .
http://example7y http://example5/0/localName5/value4 http://example7x .
http://example0y http://example0/5/localName8/value7 http://example6z .
http://example0y http://example5/2/localName0/value9 http://example7z .
http://example0y http://example2/5/localName0/value0 http://example8z .
http://example0y http://example5/5/localName1/value9 http://example6z .
http://example0y http://example2/1/localName1/value7 http://example8z .
http://example0y http://example2/5/localName5/value3 http://example5z .
http://example0y http://example5/6/localName1/value0 http://example9z .
http://example0y http://example1/7/localName8/value2 http://example9z .
http://example0y http://example3/4/localName8/value2 http://example9z .
http://example0y http://example0/8/localName5/value0 http://example0z .
http://example0y http://example3/9/localName9/value7 http://example4z .
http://example0y http://example1/8/localName3/value2 http://example0z .
http://example0y http://example1/2/localName5/value7 http://example7z .

174

http://example9y http://example3/8/localName7/value3 http://example4z .
http://example9y http://example3/8/localName9/value5 http://example1z .
http://example9y http://example4/6/localName2/value7 http://example0z .
http://example9y http://example9/4/localName0/value0 http://example2z .
http://example9y http://example3/8/localName7/value4 http://example1z .
http://example2y http://example0/6/localName3/value5 http://example2z .
http://example2y http://example9/0/localName5/value9 http://example7z .
http://example2y http://example4/8/localName6/value0 http://example6z .
http://example2y http://example4/4/localName5/value8 http://example4z .
http://example2y http://example6/5/localName8/value5 http://example8z .
http://example2y http://example2/1/localName9/value1 http://example5z .
http://example2y http://example8/2/localName2/value4 http://example5z .
http://example2y http://example9/9/localName5/value3 http://example4z .
http://example2y http://example2/8/localName2/value9 http://example3z .
http://example2y http://example6/5/localName3/value7 http://example3z .
http://example2y http://example9/9/localName6/value3 http://example7z .
http://example2y http://example2/4/localName6/value6 http://example6z .
http://example5z http://example4/6/localName2/value7 http://example6x .
http://example5z http://example0/8/localName8/value5 http://example6x .
http://example5z http://example3/0/localName5/value6 http://example4x .
http://example5z http://example8/5/localName9/value0 http://example5y .
http://example5z http://example2/1/localName9/value1 http://example2x .
http://example5z http://example4/3/localName2/value9 http://example2y .
http://example5z http://example1/4/localName8/value7 http://example7y .
http://example5z http://example2/8/localName0/value2 http://example9y .
http://example5z http://example3/6/localName7/value4 http://example8x .
http://example5z http://example5/5/localName1/value9 http://example6x .
http://example5z http://example8/6/localName2/value3 http://example7y .
http://example5z http://example6/1/localName3/value8 http://example2y .
http://example5z http://example2/4/localName1/value0 http://example4y .
http://example5z http://example4/5/localName7/value0 http://example8y .
http://example5z http://example9/0/localName6/value3 http://example1x .
http://example5z http://example7/3/localName2/value7 http://example7y .
http://example5z http://example4/9/localName6/value9 http://example0x .
http://example5z http://example8/3/localName6/value6 http://example4y .
http://example5z http://example6/1/localName4/value8 http://example6y .
http://example5z http://example6/0/localName2/value3 http://example1x .
http://example5z http://example3/7/localName8/value6 http://example2x .
http://example5z http://example0/5/localName8/value7 http://example7x .
http://example5z http://example9/8/localName5/value2 http://example4y .
http://example5z http://example7/0/localName5/value1 http://example5x .
http://example5z http://example7/1/localName1/value2 http://example8y .
http://example5z http://example2/5/localName1/value4 http://example1y .
http://example5z http://example4/9/localName1/value2 http://example6y .
http://example5z http://example4/4/localName5/value8 http://example3x .

175

Appendix B Example Data Set - RDF Triple

http://example5z http://example0/9/localName0/value4 http://example6y .
http://example5z http://example4/0/localName7/value8 http://example0y .
http://example5z http://example0/2/localName6/value7 http://example0y .
http://example5z http://example6/5/localName5/value5 http://example7y .
http://example5z http://example6/5/localName3/value7 http://example1x .
http://example5z http://example7/3/localName1/value1 http://example4x .
http://example5z http://example8/5/localName9/value5 http://example5x .
http://example5z http://example8/6/localName4/value8 http://example7y .
http://example5z http://example3/3/localName5/value9 http://example2y .
http://example5z http://example3/5/localName7/value8 http://example5y .
http://example5z http://example0/0/localName1/value6 http://example5y .
http://example5z http://example0/3/localName4/value8 http://example0y .
http://example5z http://example1/7/localName8/value2 http://example5x .
http://example5z http://example7/4/localName9/value3 http://example3y .
http://example5z http://example8/7/localName2/value5 http://example0y .
http://example5z http://example0/4/localName1/value2 http://example8x .
http://example5z http://example0/1/localName5/value3 http://example9x .
http://example5z http://example5/2/localName5/value3 http://example2x .
http://example5z http://example7/7/localName7/value9 http://example5x .
http://example5z http://example9/9/localName5/value3 http://example7x .
http://example5z http://example9/6/localName2/value0 http://example0x .
http://example5z http://example3/4/localName8/value2 http://example4x .
http://example5z http://example9/8/localName3/value0 http://example1y .
http://example5z http://example0/5/localName4/value6 http://example3y .
http://example5z http://example0/8/localName3/value2 http://example1x .
http://example5z http://example1/5/localName8/value0 http://example0x .
http://example5z http://example4/6/localName1/value4 http://example0x .
http://example5z http://example0/1/localName5/value7 http://example4y .
http://example5z http://example6/9/localName5/value9 http://example8x .
http://example5z http://example0/5/localName5/value5 http://example9x .
http://example5z http://example4/4/localName0/value0 http://example2x .
http://example5z http://example9/1/localName5/value0 http://example5y .
http://example5z http://example0/0/localName8/value6 http://example2y .
http://example5z http://example5/8/localName5/value1 http://example8x .
http://example4y http://example0/8/localName3/value2 http://example1z .
http://example4y http://example9/8/localName1/value8 http://example2z .
http://example4y http://example3/0/localName5/value6 http://example1z .
http://example4y http://example9/1/localName2/value4 http://example4z .
http://example4y http://example9/0/localName6/value3 http://example9z .
http://example4y http://example4/3/localName5/value3 http://example2z .
http://example4y http://example7/3/localName1/value1 http://example6z .
http://example4y http://example5/1/localName3/value1 http://example6z .

176

	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Objectives
	Chosen Approach
	Research Contribution
	Background
	Ontology Matching of Semantic Data in Ontologies
	Required Strategy

	Background and Requirements
	Background and Requirements
	Automotive Engineering
	Background
	The Concrete Scenario
	Identified Requirements for Automotive Engineering

	Legal Rule Analysis
	Background
	The Concrete Scenario
	Identified Requirements for Legal Rule Analysis

	Linked Web Data
	Background
	The Concrete Scenario
	Identified Requirements for Linked Web Data

	Conclusions and Categorization of the Requirements

	State of the Art
	Ontology Matching Approaches
	Information Retrieval
	Vector based Matching Approaches
	Data Mining
	Knowledge Discovery
	Overview of Ontology Matching Approaches
	Ontology Matching with Probability Values
	Instance Matching
	Graph Based Matching Approaches
	Distributed Ontology Matching
	Ontology Matching and Integration

	Relevant Tools and Frameworks
	Advantages and Disadvantages
	Relevant Approaches
	Information Retrieval Approach
	Vector Based Word Space Approaches and Online Ontologies
	Probability Measurement
	Graph Analysis
	Distributed Ontologies

	Ontology Matching
	Improvement for Ontology Matching
	Identification
	Selection
	Definition
	Generation
	Interpretation

	Realization of Proposed Strategy
	Applying Graph Based Matching Approaches
	Use of the Proposed Strategy
	Validation of the Matching Results
	The Priority Ontology

	Conclusions of Ontology Matching

	Distributed Ontology Matching
	Techniques for Improving Performance by Distribution
	General Advantages of Distribution
	Benefits of the LarKC platform

	Ontology Matching in a Distributed Environment
	From Queues to SLAs
	Distributed Ontology Matching
	Distribution on HPC Resources: Ontology Matching
	Distribution on HPC Resources: Closure and Materialization

	Applying Distributed Matching Procedures
	Ontology Matching on Several Nodes
	Distributed Ontology Matching Procedures
	Applying Reasoning: Closure and Materialization

	Conclusions of Distributed Ontology Matching

	Improvements for Use Case Scenarios
	Advantages of the Distributed Ontology Matching
	Application of the New Proposed Strategy to the Use Case
	Result Evaluation
	Result Evaluation: Ontology Matching - Single Machine
	Result Evaluation: Ontology Matching - HPC Environment

	Requirement Analysis

	Conclusions and Outlook
	Cluster Configuration
	Example Data Set - RDF Triple

