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Abstract

This thesis investigates distributed economic model predictive control
(DEMPC) for linear coupled systems under inexact distributed minimiza-
tion. The theoretical results are applied to solve the real time economic
dispatch problem for distributed power systems. The goal is to provide
a comprehensive framework for DEMPC with iterative dual algorithms,
starting with offline computations, going through online computations and
stopping conditions.

This work considers both DEMPC without terminal constraints and DEMPC
with terminal costs and sets. Three relevant aspects of DEMPC are covered.
The first question is how the optimization problem should be posed, such
that desired properties like recursive feasibility and stability can be guar-
anteed. The main challenge for distributed systems is to facilitate scalable
offline computations for the required distributed matrices and sets (e.g.
structured stabilizing controller).

The next question is how such an optimization problem can be solved online
in a distributed fashion. Here we argue that dual distributed optimization
algorithms present a scalable solution and show one algorithm that can be
used to solve the DEMPC optimization problem online.

Studying the effects of inexact minimization on DEMPC and corresponding
modifications to the optimization problem is the third and most relevant
aspect in this work. Most theoretical MPC results do not consider this in
great detail. But for dual distributed optimization in combination with real
time requirements, such considerations are highly relevant and should not
be neglected. Here we present a modification to the optimization prob-
lem similar to robust MPC and give guarantees for constraint satisfaction
and recursive feasibility despite constraint violations in the optimization.
Furthermore, the impact of suboptimality on stability and performance is
studied.

By combining these three aspects we get a comprehensive theory on how
to use DEMPC. This theory involves the required offline computations, the
formulation of the optimization problem, the iterative online solution and
corresponding stopping conditions for the iterations.

The final contribution of this work is the application of the derived theory to
solve the real time economic dispatch problem. This serves two purposes.
On the one side it shows at a practical example, how the theoretical guar-
antees of constraint satisfaction and stability hold. On the other side this is
also intended as a contribution to the power systems community, to show



that superior results can be achieved by considering DEMPC, compared to
other state of the art solutions to the economic dispatch problem.
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1 Introduction

1.1 Problem Description

Model predictive control (MPC) is a well established control method, that
can handle complex dynamics and hard state and input constraints. The
field of distributed MPC (DMPC) in comparison is relatively young and
consists of multiple different approaches. The most difficult setup for DMPC,
is when both coupling dynamics and coupling constraints are present. Such
a setup can be found in power systems. In addition to these challenges the
operation of power systems has strict real time requirements. Thus idealizing
the underlying distributed optimization algorithm is not an option. Instead,
we have to assume inexact solutions and study the implication on the closed-
loop operation. Lastly the overarching goal in the operation of power systems
is not a mere stabilization, but the improvement of the overall economic
performance. This can also be incorporated by using Economic MPC (EMPC).
If we combine all these real requirements for power systems, we have a solid
motivation to study distributed economic model predictive control (DEMPC)
under inexact minimization. With the corresponding theory we can use
MPC to improve the economic performance of power systems.

1.2 Contribution

This thesis makes contributions to the theory of DEMPC under inexact mini-
mization. This includes constraint satisfaction, recursive feasibility, stability
and performance results for a given constraint violation and suboptimality
of a distributed algorithm. In addition, these results are applied to a realistic
power system setup to solve the real time economic dispatch problem with
DEMPC.

The first set of contributions corresponds to nominal DEMPC results, that do
not consider inexact minimization. These are mostly extensions of existing
results, that can be used for the offline computations.

For DEMPC with terminal costs and sets, the existing results for stabilizing
DMPC [ConteEtAl16] are extended to DEMPC by using the corresponding



1 Introduction

EMPC results in [AmritRawlingsAngeli11].

For Robust DMPC there is an existing procedure to compute a distributed
RPI set [ConteEtAl13] based on a given stabilizing controller and ellipsoidal
bounds on the disturbances. We augment this procedure by providing a dis-
tributed optimization to compute a stabilizing controller, that minimizes the
resulting constraint tightening. This is done by combining results in [Con-
teEtAl13] with [LimonEtAlo8a] and by using less conservative terminal sets
based on [AlvaradoEtAl1o].

The main contribution correspond to DEMPC with inexact minimization and
considers the closed-loop effect of constraint violations and suboptimality in
the optimization.

Here, a novel approach to ensure closed-loop constraint satisfaction and
recursive feasibility for DEMPC with terminal sets and costs, despite con-
straint violations within the optimization problem, is presented. Compared
to existing results this does not require online adaptation as in [Ferranti-
EtAl15] and results in a less conservative tightening than [KogelFindeisen14]
by using a different candidate solution. Based on this candidate solution,
stability guarantees in dependence of the suboptimality are derived. Perfor-
mance guarantees for DEMPC with terminal sets and costs under inexact
minimization are also derived, which are an extension to [GriinePanin15].
For DEMPC without terminal constraints we only consider the effect of the
suboptimality and do not investigate recursive feasibility. For this setup sta-
bility and performance guarantees under inexact minimization are derived,
which are an extension of [Griine13, GriineStieler14].

The last contribution of this thesis involves the application of DEMPC to
solve the real time economic dispatch problem. Here DEMPC under inexact
minimization is compared to ’classical’ power control methods [ZhangLiPa-
pachristodoulou15] in realistic scenarios. This demonstrates the effectiveness
of this approach by considering a realistic setup. At the same time this
shows that DEMPC can significantly improve the economic performance of
power systems.

1.3 Outline

This thesis is structured as follows. In chapter 2, the nominal DEMPC theory
and corresponding offline computations are described. Distributed optimiza-
tion algorithms that can solve the DEMPC optimization problem online are
presented in chapter 3. In chapter 4, the effects of inexact minimization on



1.4 Notation

the closed-loop properties of DEMPC are derived. In chapter 5, the DEMPC
is applied to the real time economic dispatch problem and the performance
is compared to other controllers. Since the topics of the different chapters
vary substantially, a corresponding literature review is presented in the
beginning of each chapter.

1.4 Notation

In this thesis, the following notation is used.

Graph

In the following, we consider distributed systems, which can be represented
as a graph (V,€), with the global state x € R". Each node i € {1,...,M}
in the graph corresponds to a subsystem i with corresponding local states
x; € R". Since the global state x is composed of the local states x; we
have n = Z?ﬁ 1 1i- We denote the subset of all nodes, that are connected to
subsystem i, as the strict neighborhood N; = {j|(i,j) € £}. By N; = N; U {i}
we denote the neighborhood (including i) with the corresponding states
xXN; € RWilni,

Discrete Distributed Dynamics

In this work we consider the linear discrete time dynamics with neighboring
coupling, which can be written as

x:r:AMx./\[I-f—Blul, 1:1,,M

Here x* denotes the state in the next time step.

Lifted Matrices

To simplify the notation when considering local matrices Q; € R"*" we
denote the lifted matrix by Q; € R"*", which is generated by appending
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zeroes, i.e.
Qi = Qi

The lifted matrix satisfies x ' Q;x = x;/ Q;x;.

Set Operations
For two sets S,T C R"
SPT={x|FseSteT:x=s+t}
denotes the Minkowski sum and the Pontryagin difference is denoted by
SOT={x|x+te8VteT}

We also denote a ball around the origin with radius r as B, = {x|||x|| < r}.

10



2 Distributed Economic Model Predictive
Control - Theory

This chapter describes the theory concerning the used DEMPC schemes.
The first section gives a general overview of relevant MPC theory. In the
second section we discuss DEMPC with terminal costs and terminal sets. In
the third section DEMPC without terminal constraint (i.e. unconstrained
DEMPC) is considered. Finally, tube based robust DEMPC is discussed.

2.1 Overview

This section gives a short overview of relevant theory for MPC. A good
overview of existing MPC theory can be found in [RawlingsMayneog]. The
basic idea of MPC is to solve a control task by posing it as an optimization
problem. This stands in contrast to classical control design, in which the con-
troller is expressed explicitly as a dynamical system and desired properties
are established based on the interconnected closed-loop dynamics. One of
the greatest advantages of MPC is its ability to handle complex nonlinear
dynamics and to guarantee constraint satisfaction during transient operation
for both state and input constraints.

Standard MPC Optimization Problem

In MPC the control law is only defined implicitly as the solution to an
optimization problem. Standard MPC optimizes over a finite horizon with a
stage cost, that penalizes the deviation from the desired equilibrium. This

11



2 Distributed Economic Model Predictive Control - Theory

can be accomplished with the following optimization problem:

N-1

Ir}lin Y 1(x(k)u(k))
k=0

st. (x(k)u(k)) e X xU

x(k+1) = f(x(k)u(k))
(

x(0) =x

where I(x,u) is the stage cost, X', U are general constraint sets, x(-), u(-) are
the predicted states and inputs, and f(x,u) represents the system dynamics.
This optimization problem is solved in each time step with the current state
x and the first part of the resulting optimal input is applied in each time
step.

Model Predictive Control Theory

Most of the classical MPC literature is devoted to centralized tracking MPC
with a positive definite stage cost with respect to the desired steady state. In
centralized MPC, the optimization problem is solved at one central entity
and the overall system is driven to the desired steady state (us,xs) while
respecting state and input constraints: (x,u) € Z. Hereby, the optimization
is usually regarded ideally as a solved problem and we only consider how
to pose the optimization problem, such that the closed-loop system has the
desired qualities.

One of the most important issues in MPC is to guarantee that the opti-
mization problem is recursivly feasible, i.e. that the optimizer is always
able to find a feasible solution. The other related desired property is that
the recursive application of the MPC solution leads to a stable closed-loop
system, that does not violate the constraints. This can be guaranteed with
different approaches.

Zero-Terminal Constraint MPC

For general nonlinear dynamics and constraints, we can establish recursive
feasibility and asymptotic stability by adding a zero-terminal constraint.
This demands, that the predicted state at the end of the optimization horizon
is the desired steady state, i.e. x(N) = x;.

12



2.1 Overview

MPC with terminal cost and terminal set

This terminal constraint can be relaxed by using a terminal set constraint
and adding a terminal cost [ChenAllgowergy]. Here the terminal set and
terminal cost need to be chosen, such that the terminal cost is a control Lya-
punov function (clf) inside the terminal set, with a corresponding terminal
controller.

The typical choice for terminal cost/set MPC is a linear terminal controller
u = Kx and a quadratic terminal cost V¢(x) = xTPfx, which can be com-
puted with the linear quadratic regulator (LQR) equation, assuming that
the linearized system is stabilizable. There are also approaches that do not
include the terminal set constraint explicitly in the optimization problem, but
increase the terminal cost such that the terminal set constraint is implicitly
satisfied.

MPC without terminal constraints

MPC without terminal constraints, i.e. unconstrained MPC, can avoid
restrictive terminal constraints, which can deteriorate performance and
increase the online computational complexity. An additional advantage of
unconstrained MPC is that no complex offline computations are required.
For general unconstrained MPC, asymptotic stability can be established
with a long enough prediction horizon, if an asymptotic controllability
assumption is satisfied [GriinePannekii]. However, this condition is in
general hard to verify for most nonlinear systems or only bad estimates can
be given.

Other MPC methods include generalized terminal constraints [FagianoTeel12,
MiillerAngeliAllgower14], reference tracking MPC [Lim6nEtAlo8b] and
Lyapunov based MPC [HeidarinejadLiuChristofides12], which are however
not considered in this work. Output feedback MPC [MayneEtAlog] is another
important issue in MPC theory, that explicitly considers state estimation
errors, which is also not included in this work.

Economic Model Predictive Control

Economic MPC (EMPC) can be regarded as a generalization of standard
MPC theory [AngeliAmritRawlings12]. Standard MPC theory uses a stage
cost I(x,u), that is positive definite with respect to the desired equilibrium
(xs,us). Economic MPC does not need this assumption and operates with a

13



2 Distributed Economic Model Predictive Control - Theory

general stage cost function that can directly incorporate the economic cost
instead of simply tracking the desired steady state. For most standard MPC
methods under additional assumptions, similar stability properties and in
addition economic performance guarantees can be derived for EMPC . Those
include mainly results for unconstrained EMPC [GriineStieler14] and EMPC
with a terminal cost [AmritRawlingsAngelit1].

Robust MPC

Robust MPC is a modification to standard MPC, which ensures that the
desired properties still hold under unpredictable, but bounded disturbances.
One such modification is tube based robust MPC [LangsonEtAlo4]. Here the
system trajectory is confined to be in a tube around the nominal predicted
trajectory. This is accomplished by adding a controller that keeps the error
bound, and tightening the constraints in the optimization. Robust MPC can
lead to conservative control action, which is one of the major drawbacks.
Alternative robust MPC approaches for EMPC can improve the economic
performance [BayerEtAl16], but usually increase the computational demand
and are thus not considered here.

In the remainder of this chapter we only consider EMPC with terminal cost
and set, unconstrained EMPC and robust tube based MPC.

Distributed Model Predictive Control

Distributed MPC (DMPC) deals with the application of MPC to distributed
systems. The idea is that each subsystem has its own MPC, that computes
the corresponding input for this subsystem. DMPC in general is a newer
field and there are a lot of different approaches for DMPC [MaestreNegen-
bornothersi4, MiillerAllgéwer17]. These approaches differ generally in the
kind of settings for which they can be used and the kind of information that
needs to be exchanged. This diversity of methods stems from a diversity
of applications: from physically independent agents that communicate on
the one side, to large coupled plants for which a global optimization is
computationally intractable on the other side. The main unifying component
in DMPC is that the individual MPCs use locally available information
and exchange information with their neighbors. The scope of the shared
information varies greatly for different schemes and different control tasks.
Here we focus on subsystems that are both physically coupled and have

14



2.2 Distributed Economic Model Predictive Control with terminal sets and terminal costs

coupling constraints. For such setups there are mainly two different kind of
approaches: iterative DMPC and non-iterative DMPC.

Iterative DMPC

In iterative DMPC we consider the global optimization problem as in the
centralized case, which means that we can recover centralized performance.
The difference is that the optimization problem is solved with iterative
distributed optimization as in [StewartWrightRawlings11] or [KogelFind-
eisen12]. Distributed optimization methods for DMPC are described in
detail in chapter 3. In the context of distributed optimization, we can in
general not presume that the optimization problem is solved exactly due to
the limited time. Thus we have to take inexact optimization into account,
which is described in detail in chapter 4.

Non-Ilterative DMPC

Non-Iterative DMPC does not attempt to obtain the global optimum, as
it requires a large amount of cooperation and thus iterative information
exchange. In [FarinaScattolini1i2] each subsystem adds an additional con-
straint, ensuring that the optimized state trajectory only changes by a certain
amount compared to the initial candidate input. By using robust MPC
constraint tightening and treating the change in the neighbor prediction as
a disturbance, constraint satisfaction can be guaranteed without iterative
communication. In the following, we consider iterative DMPC due to several
limitations of non-iterative DMPC, such as difficulty of finding a feasible
initialization and the conservative performance.

2.2 Distributed Economic Model Predictive Control with
terminal sets and terminal costs

This section discusses Distributed Economic Model Predictive Control
(DEMPC) with terminal sets and terminal costs. This approach is less restric-
tive than zero-terminal constraint MPC, while giving the same theoretical
guarantees of recursive feasibility and asymptotic stability. Therefore, a
shorter prediction horizon can be used and thus the computational demand
can be decreased.

In [ConteEtAl16, ConteEtAl12b], a method to compute distributed terminal

15



2 Distributed Economic Model Predictive Control - Theory

costs and sets for Distributed MPC with quadratic tracking stage cost via
distributed LMIs was presented. In [AmritRawlingsAngeli11], a method to
compute a terminal cost and set for Economic MPC was presented. Here,
the results presented in [ConteEtAl12b] are generalized to a linear-quadratic
economic cost, using the results derived in [AmritRawlingsAngeli11].

In the following we consider linear system dynamics

xt = Ax + Bu
and a linear-quadratic economic stage cost
I(xu)=x"Qx+x"g+u"Rutu'r,

which can be interpreted as a tracking cost for an unreachable set point with
Q,R > 0. Without loss of generality we further assume that the optimal
steady state

(xs,us) = argminl(x,u)
st xeX,ueld, x=Ax+ Bu

is given by (xs,us) = (0,0).

In the first part asymptotic stability of EMPC with terminal set and terminal
cost is shown based on [AmritRawlingsAngelit1]. We also show how a
suitable terminal cost and terminal set can be computed in the centralized
case.

The second part extends these results to distributed systems. In particular

a distributed computation of terminal sets and terminal costs is presented,
which is an extension of the procedure in [ConteEtAl12b].

2.2.1 Economic Model Predictive Control with terminal set and
terminal cost

For the centralized EMPC, all results are based on [AmritRawlingsAngeli11].
In each sampling step the following (E)MPC optimization problem is solved:

N-1
V*(x) = min kE I(x(k)u(k)) + V(x(N)) (2.1)
=0

st. x(k+1) = Ax(k) + Bu(k), k=1,.,N
ulkyedd, xk)eX, k=1,.,N
x(N) € Xy, x(0)=x

16



2.2 Distributed Economic Model Predictive Control with terminal sets and terminal costs

The MPC feedback u = u(x) consists of applying the first part of the optimal
input sequence u*(0), which leads to the following closed-loop dynamics

x(t+1) = Ax(t) + Bu(x).
We will use the following assumptions to establish asymptotic stability:

Assumption 1. The constraint set X X U is compact.

Assumption 2. The system x™ = Ax + Bu is strictly dissipative with respect to
the supply rate s(x,u) = 1(x,u) —1(0,0), i.e. there exists a storage function A, and
a function «; € Koo such that:

A(Ax + Bu) — A(x) < —ay(||x]|) + I(x,u) —1(0,0). (22)
Assumption 3. The storage function A is continuous on Z.

Assumption 4. There exists a terminal set Xy C X, containing the origin in its
interior, and a control law u = Kx such that:

(A + BK)X € Xf' Vx € Xf (2.3)
Vi ((A+ BK)x) < Vy(x) —I(x,Kx) +1(0,0), Vx € Xf (2.4)
u=Kxel, Vx € Xf (2.5)

Remark 5. For linear systems with a strictly convex quadratic cost (Q,R > 0),
there exists a linear storage function, that satisfies assumption 2 and thus also as-
sumption 3 [Diehl AmritRawlings11, DammEtAl14]. Furthermore this assumption
implies that the economically optimal operation is steady state operation, thus moti-
vating asymptotic stability of the optimal steady state [MiillerGriineAllgower1s].

The following theorem addresses the stability of the EMPC.

Theorem 6. ( [AmritRawlingsAngelit1],Theorem 15)

Let assumptions 1 -4 hold. If the initial state is feasible, then the EMPC (2.1) is
recursivly feasible and the optimal steady state (0,0) is an asymptotically stable
equilibrium point for the resulting closed-loop system.

Proof. The stability proof of economic MPC relies on the rotated stage cost /,
with

I(x,u) =1(xu) + A(x) — A(Ax + Bu) — 1(0,0),

17



2 Distributed Economic Model Predictive Control - Theory

where A is the storage function (2.2). Correspondingly, we define the rotated
terminal cost Vf and the rotated cost function V as

Vi(x) = Vf(x) +A(x) = V(0) = A(0),
Zl k) + Vi (x(N)).

Now we use the candidate Lyapunov function
V*(x) = V(xu*(x)),
where u*(x) = {u*(0;x),u*(1;x),..., u*(N —1;x)} is the optimal control
sequence. We denote x,- ,)(k,x) as the optimal predicted state trajectory at
time step k and the corresponding input as u*(k,x). Due to the bounded
constraint set & x U, the continuity of the storage function A and the positive
definiteness of the rotated stage cost [, the rotated cost V* is upper and lower
bounded by a K-function ( [RawlingsMayneog], proposition 2.17,2.18) and
thus a candidate Lyapunov function.
As a candidate input sequence @(x) we use the shifted optimal input with
the terminal control law appended:
a(x) = {u"(Lx)u" (2;x),... u" (N = Lx), Ky () (N; ) },
X = {2 () (L) Xy (1) (2 %), -2y (1) (NG X), (A + BK) X0 () (N )}
Due to the terminal constraint we have x,.(,)(N;x) € Xy, which implies
(A + BK)x,(x)(N;x) € Xy due to the invariance of the terminal set X.
To establish asymptotic stability we need the following auxiliary lemma
about the rotated terminal cost:

Lemma 7. ( [AmritRawlingsAngeli11] Lemma 9) The following two statements
are equivalent:

Condition (2.4) in assumption 4 holds
&

Vi((A+ BK)x) < Vp(x) —I(x,Kx), Vxe X
Proof. Adding A((A 4+ BK)x) + A(x) on both sides of condition (2.4) yields
Vi((A+ BK)x) — Vg(x) < —(I(x,Kx) + A(x) = A((A + BK)x) — 1(0,0))
—I(x,Kx).

18



2.2 Distributed Economic Model Predictive Control with terminal sets and terminal costs

Using the previous definitions with an arbitrary input sequence u(-) and
corresponding state sequence x,(-), we have

V(X,M) = Z l~xu + Vf(xM(N))
k=1 —
———— — Vf(X,,(N)"F)\(Xu(N))_/\(O)

Tl 1 (k) u (k) +A(x) = A(xu(N))
= V(x) +Ax) = A0).
Thus the optimal input #* minimizes both the original cost V(x) and the
rotated cost V(x). We abbreviate the MPC feedback as u*(0; x) = p(x) and
the next state as xT = Ax + Byu(x). With this the decrease in the candidate

Lyapunov function can be shown, using the fact that the optimal input leads
to a smaller rotated cost V), than the candidate input sequence i:

+ (xu*(x)(N; x)leu* ( N; )) + Vf((A + BK)xu*(x) (N; x))
= V*(x) = I (0;)) + (e () (NS %), Kty () (N 1))
—Vf(xu*( )( ))+Vf((A+BK)XM*(x)(N,X))

V*(x) — I(x,u*(0; x)).

With this we have a decrease condition on the candidate Lyapunov function
to proof asymptotic stability:

V() =V (x) < —lp(x) < —a(flx])) <0 Vx £0.

The last inequality follows from the strict dissipativity in assumption 2.
By standard Lyapunov arguments, the closed-loop state trajectory x; (k,x)
under the MPC feedback u satisfies x, (k,x) < B(||x||,k) with B € KL and
the system is asymptotically stable. O

This EMPC scheme also has economic performance guarantees, which are
discussed in section 4.4.

19



2 Distributed Economic Model Predictive Control - Theory

Compute Terminal Cost - Discrete Linear Quadratic Regulator

The computation of a terminal set X, terminal cost V¢(x) and a terminal
controller K that satisfy assumption 4 can be accomplished by computing
the discrete linear quadratic regulator (DLQR), or by solving a semi-definite
program (SDP). Due to the linear-quadratic stage cost, we use a linear-
quadratic approach for the terminal cost

Vi(x) = xTPfx + prf.
The terminal cost and controller then need to satisfy the following inequality:
x"(A+BK)"P(A+BK)x+p' (A+BK)x —x"Px—pTx
< —xTQx — x"K"RKx — qTx —rTKx.

Since this inequality should hold for all x € X, the linear part needs to be
zero. This can be shown with a proof by contradiction: Assume the i-th
component of the linear vector has a non-zero component, pick a vector x
with x; = e and x; = 0, j # 7 and let € — 0. Then the linear part exceeds any
quadratic terms and the inequality does not hold. By eliminating the linear
part, we get the usual tracking MPC condition for the quadratic terms with
an additional equality constraint for the linear terms:

(A+BK)"Pf(A+BK) — Py < —Q—K'RK,
p;(A+ BK—1I)=—q" —r'K.

The solution to the discrete linear quadratic regulators (DLQR) K, Py fulfills
the first inequality with equality. The linear part p; can then be computed as

pf=—@ +r K)(A+BK—1)"". (2.6)

Since (A 4 BK) is Hurwitz and has eigenvalues with a magnitude smaller
one, (A + BK —I) is invertible. The economic stage cost can be interpreted
as a tracking cost for unreachable set points, for which in [RawlingsEtAlo8]
this terminal cost has been derived.

Compute Terminal Cost - LMI approach

A more general approach to compute a terminal cost is to pose the first
inequality as a linear matrix inequality (LMI), [BoydEtAlg4]. This way

20



2.2 Distributed Economic Model Predictive Control with terminal sets and terminal costs

additional criteria, for example maximizing the volume of the terminal set,
can be optimized.
For the quadratic part we have the following inequality

(A+BK)"P(A+BK)—P < —-Q—K'RK.
Defining E = P~! and multiplying left and right with E we get
E(A+BK)TE~'(A + BK)E — E < —EQE — EK' RKE.
Now defining Y = KE and moving all terms to one side we get
E— (AE+BY)"E"Y(AE+BY) — EQE—Y'RY > 0.

To get a LMI condition in the optimization variables (E,Y) we rewrite this
inequality as

T -1

AE + BY E 0 0 AE + BY
E—| QY2E 0 I 0 QY2E | >0
RY2y 0 0 I RY2y
and use the Schur complement to get
E EAT +YTBT EQY/2 yTR1/2

AE + BY E 0 0
QY2E 0 I 0 2 0.

RY2y 0 0 I

With this we can minimize —logdetE, subject to this LMI to compute a
small terminal cost. The computation of p ¢ does not change, since it does
not change the size and therefore does not need to be included in the
optimization criterion.

Compute Terminal Set

For the terminal set we use Xy = {x\xTPfx < a}, instead of the level sets of
the terminal cost V(x), since they are not necessarily centered around the
origin. Note that this set satisfies the invariance condition (2.3) due to the
quadratic inequality and since R,Q > 0. Once Pf,K are computed, we need
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2 Distributed Economic Model Predictive Control - Theory

to compute the scalar parameter a to determine the size of the terminal set,
such that it satisfies the input constraints and state constraints

Kx el VxeXf, ngX.
We consider polytopic state and input constraints
X ={x|Hx <h}, U= {ullu<lI}.
With these constraints, the maximization of the terminal set that satisfies
these constraints can be posed as a linear program (LP).

Lemma 8. ([ConteEtAl12b]) The size amax of the terminal set Xy = {x|xTPfx <
Amax } that satisfies the input and state constraints in assumption 4, i.e. X r C
X, KXy C U, can be computed with the following linear program.

fmax = Max a (2.7)
st. |PV2H] Pa < 1, i=1...ny
P V2KTL P < 17, i=1...ny

Proof. Without loss of generality we focus on the state constraints:
Vx:xTPfxgméHixghi, i=1...1y.

Substituting x = P/fl/ 2% we get:

P E<a= Hﬂ)f”% <h, i=1...n.
Using the symmetry in the terminal set, the squared inequality is equivalent:
i <a= |H,-Pf—1/zyz|2 <K, i=1...n.

The left side of the equation can then be rewritten as:
—1/2+12 —1/2121 =12 —1/2¢5T7 2
|H;P;25? < |[HiP; V2 PRl3 < [P PH Pa
The condition for the input constraints can be derived equivalently, starting
from
Vy:x'Ppx<a=LKx<l, i=1...n,
O

With this we can pose the computation of the terminal cost, terminal
controller and terminal set as optimization problems.
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2.2 Distributed Economic Model Predictive Control with terminal sets and terminal costs

2.2.2 Distributed Economic Model Predictive Control with
terminal sets and costs

Now we extend these results to the distributed case. The stability result of
theorem 6 is not directly impacted by transitioning to a distributed setup.
The challenge is to construct a terminal cost Vf, terminal controller K and
terminal set X, that satisfy assumption 4 in the distributed setting.

The change compared to the central setup is twofold. To solve the MPC
optimization problem online in a distributed setup, we use distributed
optimization methods based on dual decomposition (see chapter 3). This
requires a distributed structure of the optimization problem, which in turn
requires a distributed structure for the terminal cost V, the terminal set X’
and the terminal controller K. The other difficulty for distributed systems
is that the offline computation procedures must be posed in such a way,
that they can also be solved by distributed optimization. This ensures, that
these computations can still be carried out for large scale systems without
a central unit. For the standard distributed MPC, these challenges have
been addressed in [ConteEtAl12b] and here these results are extended to
distributed economic MPC, with linear-quadratic stage cost.

Distributed Setup

For the distributed setup we assume a decomposable stage cost, consisting
of local linear quadratic stage costs:

M M
Hxu) =Y Li(xu) = Y 5 Qixi + x/ q; + uf Ry +u r;
i=1 i=1

= xTQx + qu +uRu+ uTr,

where x;,u; are the local states and input variables of subsystem i. We also
have a linear distributed system dynamics

xf = Ay xn; + Bju;.

Hence for the terminal cost we use a sum of local terminal costs with linear
and quadratic terms:

M M
Vi(x) = ;Vﬁ(x,') = ;x;rPfixi +xlpp=x"Prx+x'py.
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2 Distributed Economic Model Predictive Control - Theory

For the terminal controller K we also impose a distributed structure, where
the local input only depends on the neighboring states x, i.e.

u; = Kpqxn;-

Sufficient distributed LMI conditions

With this approach, the task is to specify a distributed optimization problem,
that can be used to compute the corresponding matrices and vectors, such
that (2.4) in assumption 4 is satisfied. First, we plug in the ansatz, to derive
sufficient local inequalities.

Lemma 9. If the following two conditions are satisfied

Vfl(x;r) — Vf, (xl) < —li(x,-,u,-) + ll(0,0) + ’)/i(XM), i=1,.,M (2.8)
M
Y 7i(xa;) <0 (2.9)
i=1

with x = (An; + BiKy;)xn;, then the Lyapunov decrease condition (2.4) in
assumption 4 is satisfied.

Proof.

M
V¢((A+BK)x) — Vy(x) = ; Vi (x7) = Vi (x:)

M M
<Y —Li(xiui) + 1(0,0) + vi(xnr) = —1(xu) +1(0,0) + Y vi(xa;)
i=1 i=1

< —I(x,u)+1(0,0).
O

Since we have linear-quadratic stage cost and terminal cost, we make a
linear-quadratic approach for -;:

Yilxn;) = x;\r/il"]\[ix/\/‘. —l—x;\r/i'y/\/‘.

For notational purposes we introduce lifting matrices that pick subsystem
values of the overall system and lift subsystem values to the global dimension,
such that

XM = Wix, Wl c {0,1}11/\/1)(”_
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2.2 Distributed Economic Model Predictive Control with terminal sets and terminal costs

In addition, we denote lifted matrices by overlining them, i.e. Ex; = W, E;W;.
Given these local inequalities, we derive sufficient LMI conditions, that can
be used to compute the corresponding terminal costs and controllers with
distributed optimization. The following lemma is an extended version of
theorem IV.3 in [ConteEtAl12b].

Lemma 10. The conditions in lemma 9 are equivalent to the following set of LMIs
and equality constraints:

Ei+Ey Ex AN + Y B[ EnQ? YRV?
AniEng Bt E; 0 O 150 (210
Qi" En; 0 ! 0
R2Yy 0 0 I
P (ANEN; + BiYar) = PLEN; +8] Ex; +1iYa; —mEn; =0 (211)
i={1,.,M}
M

Y WIEGW <0 (212)
i=1
M
Wi'yx/i =0 (2.13)
i=1

with Ej = P, E = P!, Fy; = Ex;TaEn; and Yy, = Ky Ey;

Proof. The proof consists of two parts :

Part 1 shows that condition (2.8) is equivalent to the two conditions (2.10),(2.11).
Part 2 shows that condition (2.9) is equivalent to the two conditions (2.12),(2.13).
This is done by separating the linear and quadratic terms and rewriting the
inequality conditions as LMIs.

Part 1: Show that condition (2.8) is equivalent to the two conditions (2.10)
and (2.11). Starting with (2.8) we have

Vi (x7) = Vi (i) < —li(xiu5) +1:(0,0) + vi(x;)-

Inserting the linear system dynamics, the stage cost and the terminal cost
results in

x5 (An; + BiKn) TP (A, + BiKn)xn — xp Prxy;
+pf(Ax; + BiKn)xn; — Pl
<-— x;l\—[i(éi + K;\—/iRiKM)xM — (@ +r! Ky )xn, + x)\—/il"/\/ix/\[i +'7/—\r/ix/\/1,
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2 Distributed Economic Model Predictive Control - Theory

with x;' Ppx; = x)\—/l_fﬁx/\/‘., p};x,- = ﬁ;xNi, x| Qix; = x;\r/'lél‘xM and
q;rx,- = ﬁiTx ;- Analogous to the centralized EMPC case the linear terms

need to be zero, to ensure that this condition holds for all x. This yields the
following two conditions:

(An; + BiKn;) " Ps(An; + BiKy;) — P, < —(Q; + K RiKy) + Ty
pf(Ax +BiKyp) = Pf +7 +1iKn; — 8 = 0.

By multiplying the second condition from the right with Exz, we get (2.11).
Now we have to transform the matrix inequality condition into the LMI
(2.10). By multiplying the matrix inequality with E; from left and right we
get:

Exi(An; + BiKy;) " Pr.(An; + BiKn;)En; — EnrPE;
< —En;(Qi + K RiKnp)En; + En;TacEw;
Defining Fy; = EpT'pEn; and Yy = Ky Ep;, we get
—(Ex AN + YN B ET (En A + Y\ B ) + Ei + Fy;
—(En;QiEn; + YA RiYyy;) > 0.

Due to the block diagonal structure of Pf / E the variables Y, F maintain the
distributed structure. This inequality can be rewritten as

ANEpn; + BiYy, T E, 0 0\ ! [AnEN +BiYn
E+Fv—| QEy 0 I 0 Q/%Ey | 20
R}/ZYM 0 0 I R}/2YM
By applying the Schur complement, we get (2.10):
E+Fy  EvAy +YUB[ ExQ’ YR
ANEn, + B Yy, E; 0 0 >0
Q1 %En; 0 I o |-
RY2yy, 0 0 I

Part 2: Show that condition (2.9) is equivalent to the two conditions (2.12)
and (2.13). Starting with (2.9) we have:

M
Y rilxn;) 0.
iz
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2.2 Distributed Economic Model Predictive Control with terminal sets and terminal costs

Inserting the linear and quadratic approach we get:

M

Yo x T + v < 0.

i=1
To ensure that this condition holds for all x, the linear terms need to be zero,
which yields the two conditions:

M
Y WTyw; <o,
i=1
M
YA Wi = 0.
i=1

The linear part already equals (2.13). To show equivalence to (2.12) we need
to make a transformation:

M
W, Tp;W; <0
i=1

M M

= E(ZwiTr/\/iWi)E = Z EWZ‘TFMWZ'E <0

i=1 i=1
M M

= Z WITEMFME/\/{WI' = Z W,‘TF./\/}WI‘ <0.
=1 i=1

O

Remark 11. The LMI conditions correspond to the quadratic terms and the equality
constraints correspond to the linear terms. Due to (2.11) the conditions are not
linear in the optimization variables (E;, Fp;,Y;,p .Y N;)- Therefore we propose finding
E;,Fy;;,Y; that satisfy condition (2.10) and (2.12), and then with these variables fixed
computing py,,yn; with equation (2.11) and (2.13). Then the whole computation
consists mainly of the procedure in [ConteEtAl12b] with an additional step to
compute the linear terms p,,y ;. Since pg, and y,; do not influence the shape
of the terminal set, they also are not required in the objective function. A typical

M
choice for the cost function would be — Y. det(log(E;)), which leads to a small

1=
terminal cost. This computation can be achieved by using distributed semi-definite
programming, see for example [PakazadEtAl1s].
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It is important to note that py,, 7y, that satisfy condition (2.11) and (2.13) always
exist. By stacking the equality constraints, we can see that py needs to satisfy:

pr(A+BK—1)+q+rK=0.

This is the same condition we derived for the centralized case. Since A + BK
is asymptotically stable and has eigenvalues with a magnitude smaller than one,
(A + BK — 1) is invertible and thus there exists a py that satisfies the equality
constraint. Correspondingly -y, is given by:

TN, = Pf (AN + BiKy) = P +8] + Ky

Compute Terminal Sets

Once the conditions in lemma 10 are fulfilled, a scalar parameter amax needs
to be determined such that the terminal set X’ = {x|xTPfx < amax } satisfies
the input and states constraints:

Kyxn, € U; Vx e Xy
XN, € Xy, VxeXf

For this we assume local polytopic constraints:

Xy, = {xM\HN,.xM < hM},
Uy = {u;|Liu; < 1;}.

The maximization of the terminal set, that satisfies these constraints can be
posed as the following linear program (LP)

Amax = mflx o (2.14)
st. [P APHA e < hyy i=1, M j=1.. 0,

PAPKGLLBa <17, =1 .M j=1,..m,

i

The derivation is equivalent to the central case in lemma 8. With amayx the
size of the overall terminal set is given. The structure of this LP allows for a
distributed solution.
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2.2 Distributed Economic Model Predictive Control with terminal sets and terminal costs

Time varying terminal sets

The terminal set

M
Xf(“max) = {x| inTPﬁxi < “max} ’

i=1

is positive invariant under the terminal controller by construction. However,
imposing such a coupled ellipsoid constraint on the online optimization is
unreasonable. Instead we consider a terminal set X f1 structured into local
terminal sets X’ i

Xf(rxl, b)) = Xfl(ﬂél) e X XfM(txﬁw),
Xfi(ocl-) = {xi|xi Prx; < al}.

Here the size ocf is time-varying, in order to reduce conservatism. This
approach is also used in [ConteEtAl12b] and is based on the analysis in [Jo-

kicLazarog]. For Z oc < Amax,Vt > 0, we can guarantee Xf(le, . "'“5\/1) -
i=1
X f(zxmax). Therefore the size of the local terminal sets can change such

that recursive feasibility is guaranteed, as long as the overall size does not
increase. The update of the local terminal set size is done with the parameter
update according to the follow lemma.

Lemma 12. ( [ConteEtAl16] Lemma 8,9)) If the conditions in lemma 10 are
satisfied, the parameter update

af = a; + x5 Tajang,

ensures
xj € Xpi(a;) = x;" = (An; + BiKp;)xn; € Xf/i(a;"),
Xf(ocl,. ) - Xf(“max) = Xf( .,IXE\"_A) - Xf(txmax),
alf*' > 0.

Proof. From x; € Xy ;(e;) and the positive definitness of Py, we know

0 S xiTPf,'xi S o;.
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Using the quadratic terms in (2.8) we have

X Prxt < Prxi 4 x5 (T + Qi+ K RiKy )y

T +

<+ xMerM <a,
which proves the first and third assertion. Due to (2.9) we have le-\i 1 le.* <
Z?ﬁ 1% < &max, which proves the second assertion. O

This update ensure recursive feasibility. One way to initialize the local sets

? = max/ M. In general any initialization with Zfﬁ 1 Dé? < Kmax,
uc? > 0 works. An alternative method for the initialization can be found

in [ConteEtAl12b] Remark IV.5.

size is then: «

Summary - DEMPC with terminal costs and terminal sets

The following two algorithms summarize the offline and online distributed
computations:

Offline distributed Synthesis of terminal costs and terminal sets
1. Terminal cost: solve LMI (2.10), (2.12) by distributed optimization
— each system gets Ky, ', Py,
2. Terminal cost II: solve (2.11), (2.13) by distributed optimization
— each system gets yu;,pf,
3. Terminal set size: solve LP (2.14) with tightened constraints X, U
— each system gets amax
4. Init Terminal: initialize «;, such that Z?ﬁ 1% < &max (€.8- &; = &max/ M)

Online DEMPC, execute at every time step
1. Each system i € {1,.,M} measures local state xf
2. Solve DEMPC problem (2.1) by distributed optimization
3. Each system i € {1,..,M} applies control input u;(0) computed in step 2
4. Each system i € {1,..,M} updates local terminal set:
a1 = ot + x5 (N + ) T x (N + 1)
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2.3 Distributed Economic Model Predictive Control without terminal constraints

2.3 Distributed Economic Model Predictive Control
without terminal constraints

In this section we discuss the usage of distributed economic model pre-
dictive control (DEMPC) without terminal constraint, also referred to as
unconstrained DEMPC. Therefore the MPC optimization problem that needs
to be solved in each time step is given by

N-1
V5 (x) = min kZ: I(x(k),u(k)) (2.15)
=0

st. x(k+1) = Ax(k) + Bu(k), k=1,.,N
u(kyed, x(k)eX, k=1,.N
x(0) =«

In contrast to the DEMPC with terminal cost and terminal set, here we have
no terminal cost and no terminal set constraint. Therefore one of the greatest
advantages of DEMPC without terminal constraints is that complicated
offline computations like computing a suitable terminal cost and terminal
set can be avoided. In addition, due to the absence of restrictive terminal
constraints more states are initially feasible, which increases the region of
attraction. The main drawback is that the resulting theoretical guarantees for
stability are usually weaker and the corresponding proofs are more involved.
In the previously discussed EMPC, that uses a terminal cost and terminal
set, we have the property that feasibility of the MPC problem implies sta-
bility, due to the stabilizing candidate solution. In EMPC without terminal
constraints, this implication does not hold in general and the proofs of
stability are of a different nature. In particular recursive feasibility is harder
to establish and requires additional assumptions.

Since the DEMPC without terminal constraints requires no complex offline
computations, there is no need to change the theoretical results to fit the
distributed setup. Instead we can directly use available results for EMPC
without terminal constraints.

Stability Results

We will first discuss stability results for EMPC without terminal constraints.
These results are all taken from [GriineStieler14].
To this end we first need to define some notation: Assume without loss of
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generality that the optimal equilibrium point is the origin (xs,us) = (0,0).
The control law computed by the MPC with a prediction horizon of N is
given by u = un(x). The state trajectory at step k resulting from applying
the controller iy with an initial state x is denoted by x;, (k,x).

For the EMPC without terminal constraints we will in general not be able
to achieve asymptotic stability of the optimal steady state. Therefore we
formally define practical asymptotic stability, a stable convergence to a small
neighborhood of the optimal steady state.

Definition 13. The origin is practically asymptotically stable with respect to € > 0
onaset S C X if there exists a function B € ICL such that

|y (kx)| < max{B(|x|k)e},
forallx € 5, k€ N.
This can be established with a suitable practical Lyapunov function.

Lemma 14. (Theorem 2.4 [GriineStieler14])
Given a practical Lyapunov function V and functions aq,0p € Keo, a3 € K that

satisfy
a1(lx]) < V(x) S w(la]) Vre X
V(Ax+ Bun(x)) = V(x) < —ag(|x|)+6 Vxe€S
with either X = S or S = {x|V(x) < L} with L > zxz(zxgl((i)) +0.

Then the origin is practically asymptotically stable on the set S with respect to
e =a; an(n3(8)) +9).

To establish asymptotic practical stability of the EMPC without terminal
constraints we use the following assumptions.

Assumption 15. Strict Dissipativity
The optimal control problem is strictly dissipative, i.e. there exists a function
n; € Koo and a storage function A, that satisfy

minl(xu) > a(|x]) Vxe X (2.16)
uel

where I(x,u) = 1(x,u) + A(x) — A(Ax + Bu) —1(0,0) is the rotated stage cost.
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2.3 Distributed Economic Model Predictive Control without terminal constraints

Assumption 16. Continuity + Compactness:

The state and input constraints X and U are compact.

The functions f,1,A are continuous and A is Lipschitz continuous on a ball By.
There is a & € Koo such that the rotated stage cost satisfies

I(xu) <a(lx]) +a(lu]) VxeXuecl.

Assumption 17. Local controllability on Be
There exists a € > 0, M' € N, C > 0 such that Vx € Be Ju; € Z/{M/(x),
uy € UM (0) with xy, (M’ ,x) = 0, x4, (M',0) = x and

max{ |[xu, (k) |, [l2u, (K,0) | [[1 (K) I, [lu2 (k) [} < Cllxll, k=0,..., M —1.

Assumption 18. Finite time controllability into Be
For € > 0 from assumption 17 there is a K € IN, such that for all x € X there is a
k < Kand u € U*(x) with

Xy (k,x) € Be.

The following theorem establishes the practical asymptotic stability of
EMPC without terminal constraints.

Theorem 19. ( [GriineStieler14] Theorem 3.7 ) Let assumption 15-18 be satisfied.
Then there exists a Ny € IN and functions 6 € L, ay € Koo such that

a(]x]) <
VX (Ax + Buy(x)) < Vi (x)

N(x) < av(lx])
ar([|x[]) +6(N)

is satisfied for all N > Np and x € X.
This implies practical asymptotic stability of the origin with

[[2ex (k)| < max{p([|x[|.k), e(N)},
e(N) = a; Hay (a; 1 (5(N))) +6(N)) € L, BeKL.
Proof. The stability proof consists of two parts: First the bounds on V}; are
computed. Then the Lyapunov decrease condition is derived.
Part 1: The lower bound on the practical Lyapunov function V3, follows

directly from the strict dissipativity property. The upper bound comes from
assumptions 16, 17 and 18. If x ¢ B, assumption 18 guarantees that there
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exists a u, that steers the system to the equilibrium with M’ + K steps. This
implies

s (x) < Tn(xu) < (M +K I(xu) =:C,
Y (x) < n(xu) < (M + )xer}?i’éu (x,u)

where Ji (x,u) describes the open-loop rotated cost of a trajectory. If x € Be
we can use assumption 16 and 17 to get

3 M -1

VR (x) < Jwr(xu1) < kgo (g (k) [) + ([ (k)

) < 2M'a(C|x|) < &(]x|)

with & € Ke. By choosing a K such that Ka(|x|) > C, we get ay(r) =
max(1,K)&(r).
Part 2: In [Griine13] it was shown, that for a sufficiently large N we have

T (N (2)) < VR () = Vg (xpy (K,x)) + 6(N)

with § € L. Inserting K=1 and using the bound on the rotated cost function
we get

Vi (Ax + Bun (x)) < Vi (x) — a(|x]) +5(N).

Practical asymptotical stability then follows by applying lemma 14. O

Remark 20. We can use this theorem to establish practical asymptotic stability. A
deeper investigation in the stability properties will be carried out in section 4.3. This
result also holds for a more general setup with nonlinear stage cost and dynamics,
as long as the corresponding assumptions hold. There is also no need to change any
of the conditions for distributed EMPC in comparison to standard EMPC.
Assumption 18 can be very difficult to satisfy in practical applications, due to the
control invariance. One way to satisfy this is by replacing the state constraint set
X by the recursivly feasible set X. Alternatively due to the Lyapunov proof we
have an invariant level set, which can be used to guarantee recursive feasibility (see
[BocciaGriineWorthmanni4] for details).

This theorem only guarantees the existence of a large enough prediction horizon,
that guarantees practical asymptotic stability. In practice the estimates for Ny can
be very conservative.
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Turnpike Property

It should be noted that under appropriate controllability assumptions, there
is an equivalence between the strict dissipativity and the turnpike prop-
erty [DammEtAl14, GriineMiiller16]. Loosely speaking, the turnpike prop-
erty says, that for a long enough prediction horizon N the predicted state
trajectory initially converges close to the optimal steady state x; and then
moves to a region with a smaller stage cost. Another similar property, is that
the system is suboptimally operated outside the optimal steady state.
While this property is equivalent to the strict dissipativity property and
harder to check, it can provide a better interpretation and insight in the
behavior of EMPC without terminal constraints and explain why too short
prediction horizons might not lead to stability.

Average Constraints

In EMPC without terminal constraints, average constraints can be used to
ensure convergence to a steady state. This mainly relates to assumption 15.
An average constraint on a linear auxiliary output

y=hyx+hu+c
is defined as
AV[]/] cy= {]/‘Aav]/ < bav}/

where

<

_J= T thc”oy()_
Av[y]—{yﬂtn%oo.nlgr;o a1

defines the asymptotic average [AngeliAmritRawlingsi2]. This average
constraint is incorporated in the EMPC with the constraint

N-1
Z y(k) € Vi,
k=0

where ); is updated in each time step with

Vi1 = yt@yeyt-

The average constraint can be used to enforce convergence by considering
dissipativity under average constraints:
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Assumption 21. Strict Dissipativity under average constraints

The optimal control problem is strictly dissipative under the average constraints, i.e.
there exists a storage function A, a multiplier A € [0,00)P and a function a; € Koo
such that we have

min [ (x,u) —XTy(x,u) > a(|x]), VxeX.
uel
With additional average constraints, we can ensure that the system is

suboptimally operated off steady state, which in turn implies that the EMPC
will converge close to the optimal steady state. An additional difficulty, that
arises by using average constraints, is establishing recursive feasibility. If this
is given, we can again establish practical asymptotic stability of the optimal
steady state.

Recursive Feasibility of unconstrained EMPC with average constraints

In [MiillerAngeliAllgéwer13] a stability proof for zero-terminal constraint
EMPC with average constraints is derived and in [MiillerEtAl14] it was
extended to terminal cost/set EMPC. But for EMPC without terminal con-
straint guaranteeing recursive feasibility with average constraints is still an
unresolved issue. The usual way of guaranteeing feasibility due to stability,
becomes more complex with average constraints. In particular assump-
tions 17 and 18 need to include the average constraints.

This issue can be avoided by defining an appropriate dummy state variable
and using corresponding state constraints. For example let us assume we
have the average constraint av[y] = 0. Then we can define the dummy state
#T = ¥+ y and impose simple bounds % € [—~AyN,AyN]. If the extended
system ¥ is controlled with the extended state constraints, the system sat-
isfies the average constraint av[y] = 0. Similarly for av[y] € [Ymin,Ymax] we
can use

Y1 =% +Y—Ymin, X2 =%2+Y — Ymax
with state constraints on %1, ¥,. For transient constraints this is more difficult.

2.4 Robust Distributed Model Predictive Control

This section investigates tube based robust distributed model predictive
control (RDMPC). In the first part the general idea of tube based robust MPC
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is introduced and two robust MPC variants based on [MayneSeronRakovicos]
and [ChisciRossiterZappao1] are presented . In the second part these variants
are discussed in the context of distributed MPC and the corresponding
distributed computations are derived and summarized. In particular, one
approach to compute ellipsoidal robust positive invariant (RPI) sets with
ellipsoidal bounds on the disturbances based on [ConteEtAl13] is presented.
Furthermore, a second approach, that computes both a local ellipsoidal RPI
set and a stabilizing controller for polytopic disturbance is derived, which is
a combination of [ConteEtAl13] and [LimonEtAlo8al].

2.4.1 Tube based Robust Model Predictive Control

Here we discuss the usage of tube based robust MPC. We first give a short
motivation, why robust MPC modifications are considered. Then we explain
the basic idea and discuss the robust positive invariant (RPI) set approach
and the growing tubes approach.

Motivation

In the previous two sections, we assumed ideal conditions, i.e. that the
predicted trajectories in the optimization are equal to the real resulting
system trajectory. In practice there are two common issues, that lead to an
error in the predictions. There is often a model mismatch, due to the use of
simplified models, unpredictable disturbances or inexact model parameters.
In addition, we often have an additional error term due to the dual inexact
optimization, see chapter 3 and chapter 4.

To ensure that the previously derived results hold despite such prediction
errors, we investigate robust distributed model predictive control (RDMPC).
In particular, we focus on tube based robust DMPC.

Basic Idea

In robust tube based MPC, the MPC algorithm is augmented with a sta-
bilizing controller to ensure that the state trajectory under disturbances is
confined to a tube around the nominal predicted trajectory. Due to the
asymptotic stability of the nominal trajectory, the system converges to the
tube around the optimal steady state. To ensure that the system constraints
are still satisfied, a robust constraint tightening is performed, which takes the
worst case disturbance into account. This modification can be used for both
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terminal cost/set DEMPC and DEMPC without terminal constraints. We
will discuss these modifications in the context of terminal cost/set DEMPC,
since this requires some additional steps for the terminal set. We do not
change the robust modifications for the economic MPC, even though there
exists other approaches [BayerEtAl16] to improve the performance.

We assume an uncertain, but bounded additive disturbance w € W, which
results in the model

xt = Ax + Bu + Ew.

Due to the uncertain disturbance w we distinguish between the nominal
predicted input and state trajectories v, z and the actual trajectories u, x
impacted by the disturbances.

The main components of tube based robust MPC are RPI tubes Z, a stabiliz-
ing control law K; and a tightening of the nominal constraints.

Robust MPC with RPI tubes

In [MayneSeronRakovic¢os] a robust positive invariant (RPI) set Z is com-
puted and used as a constant tube around the nominal trajectory. The RPI
set Z has to satisfy

(A+BK)ZEDEWC Z,

with the stabilizing controller K, to ensures stability and robust positive
invariance. With the PRI set we have the property that the feedback

u=v+Ki(x—2z)

keeps the state trajectory x confined to the tube around the nominal predicted
state trajectory z:

xez@PzZ = xtez" P2z,
zT = Az+Bv, xT = Ax + Bu + Ew.
The tightened constraints on the nominal trajectory can be computed as
X=Xz U=UBK2Z.

This way we can ensure satisfaction of the original constraints (x,u) € X xU,
by requiring that the nominal predictions lie in the tightened constraint set
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(zv) € X x U.

The computation of the terminal set ?f is done with the usual procedure
in (2.7), by using the tightened constraint sets X, U/ instead of the original
constraint sets X', U.

Since the tube is invariant, the initial state of the nominal state trajectory z(0)
can be used as an optimization variable, as long as it lies within the tube
around the real state. With this the new robust MPC optimization problem
with terminal set and terminal cost is given by

N-1
min Y I(z(k),0(k)) + Vi(z(N))
2000 =
st. z(0) ex@P 2
z(k+1) = Az(k)+ Bo(k), k=1,... N—1
(z(k),ok) e X xU, k=1,....N—1
z(N) € &y,

where x is the current state and z(k), v(k) are the predicted nominal states
and inputs. In each time step the input

u =v"(0) + K¢(x — z"(0))

is applied. The following theorem establishes the stability properties of this
robust MPC approach.

Theorem 22. ( [MayneSeronRakovi¢os] Theorem 1) Let assumptions 2 and 4 hold

with the tightened constraints U, X, X .
Then the state of the system x™ = Ax + B(v*(0) + K¢ (x — z*(0))) + Ew, w € W
exponentially converges to Z.

The main idea of the proof is to show convergence of the nominal state z
to the optimal steady state. Since the real state x lies within a tube Z around
z, x converges to Z. By optimizing over the initial state z(0) we can reduce
conservatism and the MPC has a degree of freedom to react to disturbances
instead of just stabilizing the nominal trajectory, but we also have a higher
computational demand online. Note that the computation of the terminal
set and robust tightening can be carried out in succession, i.e. first compute
the robust tightening and then the terminal set.
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Robust MPC with growing tubes

In [ChisciRossiterZappao1] the growing tube robust MPC approach is de-
rived, which uses pre-stabilized dynamics, with the stabilizing controller K;.
This approach does not require the computation of a RPI set, but instead
uses a growing tube along the prediction horizon, that approaches the size
of the RPI set Z in the limit. The constraints are then tightened using the
growing tube along the prediction horizon.

The corresponding tightened nominal constraints for each prediction step k
are computed as:

j=0

k—1
Xk_X@<@(A+BKt)jEW>, k=0,....N—1,

k—

uk_u@Kt(

The tightened terminal set uses the nominal terminal set Xy and then tightens
it with

1
(A+BKt)]EW>, k=0,...,N—1
j=0

N-1
X=X (@ A+ BK; fEW)
j=0

For comparison the minimal RPI set is defined as

(o)

Zoo = (A +BK)EW,
j=0

which means that the constraint tightening in this approach is smaller,
compared to the RPI set approach. With this notation, the robust MPC
optimization problem for the growing tubes approach is given by

mle +Vf( z(N))

st. z(O) x

z(k+1) = (A+ BK;)z(k) + Bo(k), k=1,....N—1

(k),o(k) + Kiz(k)) € X x Uy, k=0,...,N—1
)

€ Xy

(z
z(N
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and the resulting MPC input is
u =1v"(0) + Kx.

Due to the use of a pre-stabilizing controller K¢, the input constraints involve
the state trajectory. The following theorem establishes the convergence of
this robust MPC approach.

Theorem 23. ( [ChisciRossiterZappao1] Theorem 8) Let assumption 2 and 4 hold
with the constraints U, X, Xf.

Then the state of the system x* = Ax + B(v*(0) + K¢x) + Ew, w € W converges
to the minimum RPI set of the system x* = (A + BK;)x + Ew, w € W.

The resulting optimization problem has the same complexity as the origi-
nal MPC problem, which makes it a very attractive add-on. Both theorems
are originally for stablizing MPC, but for EMPC with terminal cost/set the
same argument holds for the rotated cost (see proof theorem 6).

2.4.2 Robust Distributed Model Predictive Control

Now we focus on the distributed case. As in section 2.2, the theoretical results
do not change when we transition to a distributed setup. The challenge is
to ensure, that all the offline computations required in the central robust
MPC case can be carried out with distributed optimization and result in
distributed structures. This includes in particular the computation of a
stabilizing controller K¢, the computation of a structured RPI set Z and the
tightening of the constraints. The outlined procedures are very similar to
the distributed optimization used in section 2.2 for the terminal cost/set
DEMPC.

The distributed linear system subject to local uncertain bounded additive
disturbances is described by

x1-+ = AMxM + Bju; + Ejw;, w; € W;.

First, a procedure to compute a distributed stabilizing controller K; with
local ellipsoidal RPI sets Z is presented, which is a distributed version of the
computations in [LimonEtAlo8a]. Then a distributed optimization to obtain
less conservative ellipsoidal RPI sets Z from [ConteEtAl13] is presented,
which assumes a given stabilizing controller K;. Finally all the offline and
online computations for RPI tubes and growing tubes robust DMPC are
summarized.
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Distributed controller synthesis and structured RPI sets for polytopic
disturbances

The following procedure computes a distributed stabilizing controller K
and a structured distributed ellipsoid RPI set Z. This is a distributed version
of the procedure in [LimonEtAlo8a] and uses ideas of the distributed RPI
set from [ConteEtAl13]. For the disturbances w; we assume local polytopic
constraints

Wi = {wi|Awiwi < bw;}, W=W; X X Wpy.

For the stabilizing controller in the distributed setup, we assume that the
local input only depends on neighboring states, similar to the distributed
terminal controller:

u; = Ky prxp-

For the RPI set Z we use a distributed ellipsoid approach

M
Z={x|x"Pzx=Y x/ Pzx; <1}.
i=1

By using the approach from [ConteEtAl13] the RPI set constraint is replaced
by local RPI constraints Z;, with

M
xi€ Zi={x|x/ Pzx; < B}, Y. Bi<1, Bi=0.
i

We assume local polytopic constraints, which can be written as

Xy, = {x]\/,.Hh/\/‘.,]-x_/\[J <1,j=1,...ny},
Uy = {ui||lijui] <1,j=1,... 04}

The following lemma gives a distributed SDP, that can be used to compute a
suitable controller K; and RPI set Z.

M
Lemma 24. The structured RPI set Z = {x| ¥_ x;' Pzx; < 1} with
i=1

ZN: S VYN KeoniZn © Vil
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can be computed with the following distributed SDP:

v, 12 K
. AR
st (P i) >0, j=1,.m,

Y- 1.. Wy,

; Wl W
Vi N] A/’ O...,M, ]':1,---/nx,'/
Wazhj
AW, 0 (AW, + BY;)
0 Bi(1—A) —TE Yw; € vert(W;),
AW; +BY; L
M M
Y Si>0, A>0, Zﬁg Bi >0
i=1 i=1
.M,
with

M
W=Y W, Wi=pP;', Y=YY, Yi=KxWy, Wy=D) W

1 JEN;

M=

1

The RPI set is given by P, = W1, and the local controller is given by K; = YPz.

Proof. This proof consists of two parts. First, the variables are defined and
the RPI condition is written as a LMI. In the second part the state and input
constraints are included in the optimization, with the variables p;,7;.

Part I: In this part we derive a distributed LMI condition, that is sufficient
for the RPI condition. Denote the closed-loop controlled dynamics by
Ay = A+ BK;. The RPI condition can be written as

(Apx + Ew)TPZ(Akx +Ew) <1, VxTPzx <1, Vwe W.

Due to the convexity in w it is sufficient if this condition is satisfied for all
vertices w of W, w € vert(W):

(Agx + Ew) "Pz(Apx + Ew) <1, Vx'Pzx <1, Yw € vert(W).
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By using the S-procedure this can be written as
(Apx + Ew) " Pz (Agx + Ew) — 14+ A(1 - x " Pzx) <0,
VYw € vert(W), A >0,
which can be expressed as the following matrix inequality
A(Pz 0 _( AlPzA Al PzEw >0
0 -1 w'E"PzAy w!E'PzEw—-1) ="
A >0, Yw € vert(W).
Now we define W = P Land Y = KtPgl. Multiplying the inequality with

(]8] (1)) from left and right yields

A(Wo0Y (AW +BY)"W™'(AW + BY) (AW +BY) W 'Ew) _ 0
0 -1 wl ETW~1(AW + BY) w ETWEw -1 ) =
A >0, Yw e vert(W).

By rewriting this inequality as

(0 1 2) - (e )t awsn g0 zo

A >0, Vw € vert(W),

we can apply the Schur complement to get the following LMI condition

AW 0 (AW+BY)T
0 1-A w'ET >0, A>0, Yw e vert(W).
AW +BY Ew W

By using the distributed structure of the RPI set and the controller we also
get a distributed structure in the new variables W,Y:

M
W=3Y W, W=r;'

i=1

M — J— J—
Y = ZYi, Yi =Ky Wh,, Wi, = Z Wi,

1 JEN;
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where the overline denotes a lifting of the local matrices to the global

model, as described in section 2.2 for the terminal cost/set. Plugging in this
structure yields

M __ M _ _
AY W, 0 Y, (AW, +BY;)"
i=1 i=1
M M _
0 L Bi(1—A) Y@ E | >0,
= i=1
M _ ' 1M _ l M __
Y. AW; +BY; Y. Ew YW,
i=1 i=1 i=1

M
A>0, Y Bi<1pB; >0, Vw;e vert(W)).
i=1

Then the following set of distributed LMI conditions is sufficient

AW; 0 (AW; + BY))T
0 Bi(1—7) w, E; >S;
AWZ' + BYI' E,-wi Wi
M M
Y. Si>0, A>0, Bi<1,B>0, Vw; €vert(W;), i=1,...,M,
i=1 i=1

where S; can for example be chosen as a block diagonal matrix with appro-
priate dimensions. The matrix S; corresponds to the coupling between sub-
systems to reduce conservatism, and plays a similar role to Fy; in lemma 10.
Part II: In the second part the constraints are included in the optimization,
in order to lead to small constraint tightening. The conditions on the state
and input constraints

2N, EVTAN K Zh € Veills

can be explicitly written as
T .
L iKens xn | < Vo J=1,00m,

xe vl <V G =1y,

VXXGPZ,MXM < 1, PZ,N’,‘ = ZJ\[PZI..
JEN
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By applying the Schur complement this can be written as the following
matrix inequalities

-
vy, >0, TP:‘ L iKen; > 0.
h/\/i,]' Pz v, Kt,/\/, li/]- Pz u;

Now we multiply the inequalities with <1 0

0 WM) from left and right to get

LMIs in the new variables

. Lhy:
P i) S0, =1, M, =1,
Yitlij Wy

; Wi W
i NN S0 =1, M, =1,
Wyihnj  Wa

which finishes the proof. O

Remark 25. The minimization of -y; ensures, that the robust constraint tightening
leads to a small constraint tightening in the state constraints. The parameter p;
sets the constraint tightening in the input constraints. The variables p; € (0,1] and
A > 0 are not included as optimization variables, but are set as design parameters
(or updated in an outer loop). Alternatively p; can also be included in the objective
function, to lead to a small input constraint tightening. The parameter B; can be
used in the optimization (since its linear), which leads to a global constraint or it
can simply be set to B; = 1/ M. Compared to the procedure in [ConteEtAl13] the
computation here is larger and does not require a stabilizing controller a priori. But
we are limited to local RPI sets Pz, without coupling to neighbors, which can lead
to more conservative RPI sets.

Distributed RPI set computation for ellipsoid disturbances

Now an approach to compute less conservative RPI sets based on [ConteE-
tAl13] is presented. This approach assumes a given stabilizing controller K;
and only computes the RPI set. Here the structured RPI sets take the full
neighborhood into account with

M
Z ={x[x"Pzx =Y x{Pznxn <1}

i=1
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Instead of considering local polytopic disturbances, we consider local ellip-
soidal disturbances W; = {w;|w;' w; < v;}. As in the previous method, the

RPI set can be enforced by local RPI sets
xx; € Zx, = {xnclxp Pz aixn; < Bit

M
Y Bi<1, Bi>0.
i=1

We will denote this tighter distributed RPI set in dependence of the pa-
rameters B; as Z(p). The following lemma shows how the corresponding
matrices can be computed by distributed optimization.

Lemma 26. ( [ConteEtAl13]) For a given stabilizing controller Ky, the structured
M
RPIset Z = {x| ¥ x P, nixn; < 1} with
i=1 "
2N SVTAN KiniZh; € Voills,

can be computed with the following distributed SDP:

M
min ;
Pn;,Sisisri 1; i
, Wi,
st. [T N ) >0, i=1,M, j=1,..n,
hyij Pz

2 ITK
P RN S0 o1, M, =1,
Knlij Pz

—(A+BK;) Pz n(A+BK) —(A+BK) PzyE 0
( —E"Pz . (A+ BKy) —E"Pz\E o)
0 0 Bi
—Pzy 0 0 0 0 ©
— 50 0 0 0)-s;{0o =T o]|>5;, i=1,....M,
0 0 [‘31' 0 0 Ui
M

$i>0,i=0,...,.M, S >0,
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with Pz y; such that
Z PZ/\/ XN, = xX/,PZ,Mer
j eN;
Proof. This proof consists of two parts. First, the RPI condition is posed as
an LMI condition. Then the constraints are included in the minimization,
similar to lemma 24.

Part I: The RPI condition is given by

((A+ BK¢)x + Ew) " Pz ((A 4 BK;)x + Ew) < 1,
VxTng < 1/\wl~Tw,- <v,i=1,... M.

By applying the S-procedure this can be written as
0<1-((A+BK)x+ Ew)TPZ((A + BK;)x + Ew)
—59(1—x"Pzx) — Zs w w;),
5;>0,i=0,...,M,

which can be written as the following matrix inequality

M _ M _
—(A+BK)" ¥ Pzn;(A+BK;) —(A+BKi)" Y PzyE 0
M M
—E Y. Pz (A+BK) —ET Y. Pz nE 0
i=1 i=1
1 1 M
0 0 Y Bi
i=1
—YM Pz, 0O 0 M (0 0 0
—sg 0 0 0 -Y'silo =T o] >0,
0 0o Mg/ = \0 0 o

M _
with Y. Pz n; = Pz. A sufficient condition for this LMI is given by the

i=1
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following local coupled LMIs

—(A+BK;)"Pzp\(A+BKy) —(A+BK) PzyE 0
—ETPz n (A+BKy) —ETPz \E 0
0 0 Bi
—Pzy 0 0 0 0 0
—s0 0 0 0|-s;{0 -I 0]>5,
0 0 ,Bi 0 Vi

0
Mi
$i>0,i=0,....M, ) S;>0.

Part II: In the second part the constraints are included in the optimization,
in order to lead to small constraint tightening. Due to the coupled local RPI
set, we define the matrix Pz »; such that

YX/; ZNPZN XA :x.If,PZ,NixM'
j€

Analogous to lemma 24 we can apply the Schur complement to get sufficient
LMI conditions for the set size with respect to the constraint set.

i ’f/T\/J >0 pi l;th’N" > 0.
h/\[u] PZ,M - K;,r/\/,l"f PZ,/V, -

Remark 27. Alternutively, the size of the RPI set can be directly minimized, by

O

minimizing — Z detlog(Py;). Unlike the previous optimization problem, the

controller K; 1s assumed to be known. The parameter s; can be used as a local
optimization variable, but so € (0,1) needs to be set a priori, which plays the same
role as A in lemma 24.

With this optimization problem we have two competing procedures to
compute a RPI set: lemma 24 and lemma 26. The first procedure with
polytopic disturbances can be used to compute both local RPI sets Pz ; and
a corresponding stabilizing controller K; 5;. The second procedure with
ellipsoid constrained disturbances, needs a given stabilizing controller K x;
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to compute local RPI sets Pz n;, which are less conservative due to the
neighboring coupling in the local RPI sets. By executing both procedures
successively, we can combine the advantages to compute both stabilizing
controller K; 5, and RPI sets Pz y; with coupling to neighbors. For local
scalar disturbances w; € IR, the polytopic and ellipsoid constraints WV; are
equivalent.

Robust Distributed Model Predictive Control with RPI Tubes

Now we consider the Robust DMPC with RPI tubes [MayneSeronRakovi¢os].
In particular all the offline computations including the robust constraint
tightening and the online operation are summarized.

We first compute the stabilizing controller K; and RPI set Z with lemma 24
and/or lemma 26. To distinguish the two we refer to the RPI set Z; from
lemma 24 as option 1 and the coupled RPI set Z; from lemma 26 as option
2. Now we have to compute the tightened state and input constraints with
respect to the RPI tube. The constraints are tightened with the support
function oz [ConteEtAl12c]. The tightened local constraints

X, = {xn [ Hyon; < hag}, Ui = {ug|Liwg < 1},
can be computed with the local support function oz y;
EN,./]- =hyj— UZ,M(H/—\F/,,]‘)’ i=1,...M j=1,...,ny (2.17)
lLij=1lij—ozn(KyLL), i=1...M j=1,.n,. (2.18)

Due to the structure of the constraints and the RPI set, the support function
can be evaluated. For option 1 the support function is given by

T T —1
UZ/M(GM,j) :7511132 GM,]XM = |PZ,MGM,]
le\fie

and for option 2 we have

T T 5—1
oz (G j) = sup Gur XN = [Pz z G
XN; €

The tightened distributed terminal set X ¢ can be obtained by solving the
optimization problem in lemma 10 and by using the tightened input and
states constraints instead of the nominal constraints to compute the terminal
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set size in (2.14).

For the initialization of the local RPI sets, any f;(0) that satisfies g; > 0 and
Z?ﬁl Bi <1 (eg. B; = 1/M) can be chosen.

The optimization problem that needs to be solved in each time step is given

by

M

N-1
min ) Y 1i(zi(k)0i(k)) + V(2 (N)) (2.19)
2002 = i=1

st. z(0) e xEP Z(B)
Zi(k+1)=AMZM(k)+BiUi(k), k=0,...N—1
N (k)€ Xy, wvi(k)el;, k=0,...N—1

Zz’(IN) € Xy ()

For option 1 the update for B is given by
Bi(t) = (xi(t) =z (1t = 1)) Pz, (xi() —z[ (tt = 1)), (2:20)
and for option 2 by
Bi(h) = (xn; (D) = zi (HlE = 1)) TPz i (aas (8) = zi (HE = 1)), (221)

This update ensures recursive feasibility as outlined in theorem V.1 in [Con-
teEtAl13].
As a summary the following operations need to executed offline.
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Offline distributed synthesis - terminal cost/set with RPI modification

1. Stabilizing Controller: solve LMI in lemma 24 by distributed optimization
— each system gets Pz, ,K; y;

option 2: solve LMI in lemma 26 by distributed optimization using Ky,

— each system gets Pz y;

2. Tighten constraints: compute tightened X and U with (2.17) and (2.18)
— each system gets X -, U;

3. Terminal cost: solve LMI (2.10), (2.12) by distributed optimization
— each system gets Ky, ['zr, Py,

4. Terminal cost II: solve (2.11), (2.13) by distributed optimization
— each system gets Y, P,

5. Terminal set size: solve LP (2.14) with tightened constraints X, U
— each system gets &max

6. Init Terminal: initialize &;, such that Zfﬁ 18 < max (€.8. & = max/ M)

7. Init RPI initialize B; such that Zf\il Bi<1l(eg. Bi=1/M)

For the closed-loop operation we have the following operations in each
time step:

Online Robust DEMPC-RPI, execute at every time step
1. Each system i € {1,..,M} measures local state xf
2. Each system i € {1,..,M} updates RPI size B; with (2.20)/(2.21) and x*
3. Solve RDEMPC problem (2.19) via distributed optimization
4. Each system i € {1,.,M} applies control input
uf = 07 (0) + Ky v (xy, — 23 (0))
5. Each system i € {1,..,M} updates local terminal set:
al ™ = at 4 zp (N4 1) TTppzp (N + H1)*

From a computational point of view, the optimization over the initial state
increases the complexity. In the case of coupled local RPI sets (Pz ;) we
have quadratic constraints between neighboring systems, which excludes
many distributed optimization methods, that are tailored to linear coupling
constraints between neighbors, see chapter 3.
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Robust Distributed Model Predictive Control with growing Tubes

For the robust DMPC with growing tubes [ChisciRossiterZappao1], we can
use lemma 24 to obtain K; via distributed optimization. Alternatively any
stabilizing K; can be used, since the RPI set Z is not explicitly used.

As a next step the local constraints need to be tightened over the prediction
horizon. We again assume polytopic state and input constraints

X ={x|Hx <h}, U={u|Lu<I}.

For the constraint tightening we define a k-step support function oy (a,k)
[ConteEtAl13]

ow(ak) = sup aTy(K)
weWk

st. y(0) =0,
y(l+1) = (A+BK)y(l) +w(l), 1=0,...k—1.

Then the tightened constraints
= {x|Hx <h}, Up={ullu <},
can be computed with
Ek,j = ]’l] — Uw(H]-T,k), ] = ]., oo Ny, (2.22)
Iej =1 —ow (KL} k), i=1,... 1. (2.23)

For polytopic disturbances W, the computation of the k-step support func-
tion is a distributed LP and is equivalent to a distributed MPC problem.
The nominal terminal set A is obtained by solving the optimization problem
in lemma 10 and determining the size « with (2.14).

The tightened terminal set ?f can then be computed by tightening the
nominal terminal set Xy with

N-1

X=X (EB (A + BK;) fEW) (224)
j=0

In [AlvaradoEtAl10] a less conservative terminal set ?f is computed. Con-
sider the tightened set of disturbances

Wi = (A+BK)NTEW
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and the tightened state and input constraints X'y, i y. Then the size of the
terminal set X’ fr needs to be such that

XpC Xy, KXpCUy,
(A+BK)X;PWy C Xy (2.25)

The first two inequalities are included in the usual computation of the
terminal set size (2.14). The third condition can always be satisfied by
choosing a large enough prediction horizon N. Alternatively, for a fixed
smaller N, this condition could be enforced by increasing Q in the Lyapunov
decrease inequality (2.4) in the computation of the terminal controller. This
condition cannot be satisfied by simply decreasing the size of the terminal
set.

In the following, we will refer to this choice of terminal set size (2.25) as
option 2 and the usual tightening in (2.24) as option 1. The optimization
problem that needs to be solved in each step is given by

N-1 M

min } Y 1i(zi(k),0i(k)) + V. (zi(N)) (2.26)
2 (=0 i=1

st. z(0) = x

(k+1 = (AM —‘y—BiKt//\/i)ZM(k) +Bil)l‘(k), k=0,....N—1
(z(k) Kiz(k) +ov(k)) € Xy x Uy, k=0,...,N—1
zi(N) € Xp, ()

As a summary the following operations need to executed offline.
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Offline distributed synthesis - terminal cost/set with growing tubes
1. Stabilizing Controller: solve LMI in lemma 24 by distributed optimization
— each system gets K; /.
2. Tighten constraints: compute tightened constraints with (2.22) and (2.23)
— each system gets Xpr, Ui, k=1,...,N—1
3. Terminal Cost: solve LMI (2.10), (2.12) by distributed optimization
— each system gets Ky, 'y, Pﬁ
4. Terminal Cost II: solve (2.11), (2.13) by distributed optimization
— each system gets y,7,p i
5. Tightened terminal set size &max:
Option 1: solve LP (2.14) with nominal constraints — &max
tighten &max with (2.24)
Option 2: solve LP (2.14) with tightened constraints XNUN = Tmax
increase N such that (2.25) is satisfied
6. Init Terminal: initialize &;, such that Z?ﬁ 1% < amax (€.8. &; = &max/ M)

For the closed-loop operation, we have the following operations in each
time step:

Online Robust DEMPC-II, execute at every time step
1. Each system i € {1,.., M} measures local state xf
2. Solve RDEMPC problem (2.26) by distributed optimization
3. Each system i € {1,..,M} applies control input u; = v} (0) + K pz X7
4. Each system i € {1,..,M} updates local terminal set:
W™ = at 4 zp (N + 1) TTppzp (N + H1)*

For this approach the robust modification does not increase the computa-
tional demand, which makes it a very attractive add-on.
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3 Distributed Optimization for Distributed
Model Predictive Control

In this chapter we discuss different distributed algorithms to solve the
optimization problem arising in distributed MPC. The first section gives an
overview of distributed optimization algorithms. In the second section the
alternating direction method of multipliers (ADMM) and its application to
DMPC are discussed.

3.1 Overview

This section gives an overview of different distributed optimization methods
and algorithms, that can be used to solve the optimization problem arising in
distributed MPC. As mentioned in section 2.1 we consider iterative DMPC,
which means that the global MPC optimization problem has to be solved
with distributed optimization. In chapter 2 the corresponding structure of
the MPC optimization problem has been derived. For DEMPC without termi-
nal constraints the resulting optimization problem is a distributed quadratic
program (QP). If terminal constraints or RPI tubes are used, we have addi-
tional quadratic constraints, which increases the computational complexity
to distributed quadratically constraint quadratic programs (QCQP).

In the following we discuss various distributed optimization methods based
on primal and dual decomposition with respect to their application to DMPC.
In [Boydoy] a short description of primal and dual decomposition methods
is given and a good overview over convex optimization methods can be
found in [BoydVandenbergheo4].

Primal Decomposition

In the primal decomposition the MPC optimization problem is distributed
among the subsystems by optimizing the local inputs u; independently and
iteratively exchanging information. In [StewartEtAlio] this method was
applied to DMPC by combining the locally optimized inputs u; in a Jacobi
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iteration. For linear system dynamics with convex cost and constraints the
convex combination of the respective optimal inputs decreases the global
objective function and ensures constraint satisfaction due to the convexity.
This iteration converges to the Pareto optimum and ensures constraint satis-
faction with an arbitrary number of iterations.

One disadvantage of this method lies in the nature of the local optimization
problems, that needs to be solved in each iteration. The local input minimizes
the global cost, which requires knowledge of the models, states and stage
cost of all subsystems affected within the prediction horizon. This means
that this method scales badly, since the information exchange is required
with non-neighboring subsystems, which makes it less appropriate for large
scale distributed systems.

Another limitation is the computation of a feasible solution, by only op-
timizing one input. Especially for DEMPC without terminal constraints
we cannot give an initially feasible solution and thus we cannot guarantee
recursive feasibility. This is the reason why primal optimization and also the
non-iterative approaches are not further considered and we focus on dual
decomposition.

Dual Decomposition

In dual decomposition the central optimization problem is solved by de-
composing the optimization problem into local optimization problems that
are coupled by linear (in-)equality constraints. A good introduction to
distributed dual optimization can be found in [BoydEtAl11].

Introduction to Distributed Dual Optimization

Since several different dual decomposition algorithms are discussed, the
common framework for all of them is first introduced. Let us assume a
linearly constrained convex optimization problem

*

p* = minf(2)
st. Aegz —beg =0,
Ainegz — bineg < 0,
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3.1 Overview

where f(z) is a strict convex function. For this optimization problem the
Lagrange function £ is defined as

L(z,Av) = f(z) + v’ (Aeqz - beq) + /\T(Aineqz - bineq)r
where v € R, A € Rzigeq are the dual variables. The dual function g is
then defined as B

¢(Av) = min L(x,A,v),
xXeER"

and the dual optimization problem is given by

a* = Av).
An;%ﬁg( v)

The most important result in this context is strong duality:

Theorem 28. ( [BoydVandenbergheoql) Strong Duality: If the primal optimization
problem is convex and the constraint qualifier condition (CQC) holds, then d* = p*.

For linear constraints the constraint qualifier condition always holds and
for more general convex constraints f;(z) < 0 (e.g. quadratic constraints)
the slater condition/strong feasibility is a sufficient condition. The strong
duality property is also equivalent to the saddle point property:

min max £(z,A,v) = max min £(z,A,v).
z A>0v A>0v Z

With these properties, algorithms to solve convex optimization problems
can be discussed. One of the fundamental algorithms in this context is the
dual-ascent algorithm, which converges to the saddle point, by iteratively
minimizing with respect to the primal variable and making a projected
gradient (ascent) step in the dual variables:

Dual gradient ascent
21 = argmin L(z,Ak,vk)

1/kJrl _ 1/k + 0(k(quZk+1 _ beq)
AR = P=o (Ak + “k(Ainquk+1 - bineq))

Here &) denotes the step size and P> the projection.
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Distributed Dual Gradient

M
In DMPC we have separable cost functions f(z) = Y fi(z;) and structured
i=1

constraints Aeq, Ajneq, which enables a distributed C(;mputation of the corre-
sponding primal and dual update. Based on this a distributed dual gradient
algorithm [NecoaraNedich15] can be formulated.

Distributed Dual Gradient Algorithm
K1 = arg min £(z,A% vk)
z

1/kJrl — l/k 4 WJl(Aeqszrl _ beq)
AL = PZO <)‘k + W)Tl(Ainquk+1 - bineq))

This algorithm achieves a linear convergence rate by using block diagonal
matrices Wy, W) for the step size, which requires a strictly convex local cost.

Proximal Center based Decomposition

A difficulty of the distributed dual gradient method is the requirement
of a strictly convex cost, which also affects the convergence rate. The
proximal center method uses a smoothing technique for the Lagrangian,
that improves the convergence and keeps the distributed structure. The
smoothed Lagrangian is given by

M
ZV/\ Zfl Aequbeq)Jr)‘ ( mqu*bineq)ﬂLCZ ”ZiHZ/
i=1

with the smoothing constant ¢ > 0. This idea of using a prox term to smooth
the Lagrangian is based on [Nesterovos] and ensures strict convexity, which
is a pre-requisit for fast gradient algorithms. With this smoothed Lagrangian
the distributed optimization consists of a minimization with respect to the
primal variables and a fast gradient step in the dual variables. Compared to
the dual gradient algorithm, a faster convergence can be reached. In order
to converge to the true optimum the smoothing constant ¢ has to decrease
( [NecoaraSuykenso8] Thm 3.6).

The proximal center based method has two benefits: It increases the con-
vexity, which improves the convergence, and it can treat linear coupling
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inequality constraints with dual variables. In [NecoaraDoanSuykenso8]
this method was used for distributed MPC, in [NecoaraEtAlog] it was ex-
tended to nonlinear systems by using sequential convex programming and
in [Tran-DinhNecoaraDiehl16] it was extended to inexact optimization.

Alternating Direction Method of Multipliers

The alternating direction method of multipliers (ADMM) uses the augmented
Lagrangian to increase the convexity. Here the primal variables are split in
¥, z and the primal minimization is done in an alternating fashion, i.e. first
minimizing y and then minimizing z. This method can only treat equality
constraints with dual variables. The corresponding augmented Lagrangian
L, is given by

Lo(yzA) = fzy) + AT (Azz+ Ayy = b) + E | Az + Ayy — b

The algorithm then consists of an alternating primal minimization and a
dual update.

Alternating Directional Method of Multiplier

yk+l = argmyin Lo (y,25,AF)
k1 — argmzin Ly (y*+1,z,A%)

/\k+l — /\k +,0(Azzk+1 +Ayyk+1 o b)

The convergence of this algorithm is studied in detail in [BoydEtAl11].
In [ConteEtAl12a] and [KogelFindeisen12] different possibilities are pre-
sented to write the distributed MPC optimization problem in this fashion.
The variable z is used as a global variable and the equality constraint is used
to demand consistency between different predictions, while the state and
input constraints are included in the primal update. If the tunable weight
p is chosen properly, this method can achieve reasonable results with few
iterations.

Summary

All the presented dual algorithms can be implemented fully distributed, but
require a strict convex Lagrangian. If the original optimization problem is
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3 Distributed Optimization for Distributed Model Predictive Control

only convex, we can either use the smoothed Lagrangian or the augmented
Lagrangian to ensure strict convexity. One of the major differences between
the augmented Lagrangian and the smoothed Lagrangian is that the prox
term introduces an error, while the augmentation does not change the
minimum. On the other side, the smoothed Lagrangian enables the usage
of fast gradient methods, that can give an upper bound on the number
of required iterations, while such estimates are hard to obtain for ADMM.
Another difference is how the constraints are handled. In the ADMM
approach, all the constraints are included in the local optimization, while
only equality constraints can be enforced with dual variables. On the other
side, for the dual fast gradient the coupling constraints are enforced with
dual variables, while the linear local constraints can be either included in
the primal optimization or with dual variables.

3.2 Alternating Direction Method of Multipliers

In this section the Alternating Direction Method of Multipliers (ADMM)
and its application to distributed MPC is discussed in detail. First, the
optimization problem is formulated in such a way, that it fits into the ADMM
framework. Then the corresponding online ADMM iteration is described in
detail and properties of the algorithm are discussed.

3.2.1 Rewrite central optimization problem

We first write the optimization problem with only coupling equality con-
straints, to fit the ADMM framework. To this end we consider the formula-
tion used in [ConteEtAl12a]. The variable z contains a copy of all the global
predictions u, x over the whole prediction horizon N. The variable y consists
of local predictions y;, i = 1,...,M. Each local prediction y; consists of the
state trajectory of the neighboring systems as predicted by subsystem i, i.e.
xj\/l_, and the predicted input u; over the prediction horizon N. This way the
same variable x;(k) is contained as independent optimization variables in y;,
j € N; and in z. To ensure that all the optimization variables have the same
value, a consistency constraint

Eiz=y;
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3.2 Alternating Direction Method of Multipliers

is added, that enforces x! = = x;. With this notation we can rewrite the central
optimization problem for DEMPC with terminal costs/sets as

M M N-1
min ) Ji(yi) = ZZ! (k) + Vi (xi(N)) (3.1)
=1 i=1 k=

st. y; € Vi(xi), yi= EiZ/

where Y;(x;) is a convex set, that enforces all the local constraints. The local
constraint set is given by

Vi) = {wili(0) = xi, x}(k+1) = A (0) + B (K), ..
X(N) € Xy, xiy (k) € Xy, ui(k) € ui}.

In this formulation we can also consider nonlinear dynamics and ellipsoidal
terminal constraints within the local constraint };.

3.2.2 Distributed Algorithm

With this formulation we can now formulate the ADMM iteration. As
mentioned this algorithm relies on the augmented Lagrangian Ep:

M M
Lo(yzA) =Y Lip(yizAi) = Y Ji(yi) + A (vi — Eiz) + g”EiZ —yill3-
iz

Only the simple consistency constraint is treated with dual variables, while
the complex constraints ); are treated locally. The distributed ADMM
iteration is given by the following algorithm:

Alternating Directional Method of Multiplier - Iteration

k+1
=arg min L 2K Ak
gy,e)i,(xo) io (b 2

communicate ka to neighbors j € V;

average global variable: szr1 | j3f| EZ/;\[ E]T (yk+ Ty p A 1)
j

communicate zk+1 to neighbors: j € N;
update dual Varlable AkH Ak + p(yk+1 E;Zk+T)

solve local optimization: y;
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Each iteration requires two communication steps and one local optimiza-
tion step (y;). The update of z is equivalent to an unconstrained minimiza-
tion of the augmented Lagrangian, which can be shown by writing it as a
quadratic program (QP) in z;.

Convergence

The convergence of this algorithm is studied in detail in [BoydEtAl11]. If the
unaugmented Lagrangian £ has a saddle point and the cost J;(y;) is closed,
proper and convex, then the iteration converges asymptotically to a feasible
solution that minimizes the global cost. The convergence proof relies on a
Lyapunov function

M 2
Y pllE(z—=)I3

1
V== A3+
P i=1

with

M
VP =V < —plrtll - p Y (=" —2) 113
i=1

and the residual ¥ = y — E;z. In practice, ADMM is able to achieve medium
accuracy with few iterations, but then requires an increasing amount of
iterations to achieve high accuracy.

3.2.3 Stopping Condition

Due to real time requirements and/or constraints on the communication,
we might have to stop the online distributed iteration prior to computing
the optimum. Therefore we consider the use of stopping conditions and
investigate the properties of the resulting inexact solution. For ADMM, a
simple stopping condition is

IEiz = yillo < €z,
with the accuracy €. In general, we are not able to give any prior bound to

the number of required iterations, in order to satisfy the stopping condition.
But the stopping condition can easily be checked online.
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Prediction error

One important question is which bounds we can give on the prediction error.
To this end we consider the prediction error w;, with

wi(k) = xj(k+1) = (Ann; (k) + Bjwi (K)),
where x,; is composed of xjj, j € N;. From the constraint y; € Y;(xg) we
know
xi(k+1) = ANixj\/i(k) + Bju;(k).
Thus we have
wi(k) = A (xy; = x7)-

Due to the stopping condition we know Hx; - x;: llo < 2€; and thus

[wi(k)[leo <2) [|Ajj o€z
JEN;
This bound can be seen as a distributed version of the bounds derived

in [FerrantiEtAl15]. In chapter 4 we will consider the closed-loop properties
of using DEMPC with such inexact solutions.
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4 Distributed Economic Model Predictive
Control with inexact optimization

This chapter deals with the effect of inexact optimization on the closed-loop
properties of DEMPC. In particular, we are interested in guaranteeing con-
straint satisfaction, stability and performance despite inexact optimization
resulting from finite dual iterations.

The first section gives an overview over some existing results for inexact
optimization and motivates a further investigation. In the second section,
a robust MPC approach to inexact optimization for terminal constraint
DEMPC is considered and recursive feasibility and stability guarantees are
derived. Stability results for DEMPC without terminal constraints under
inexact optimization are investigated in the third section . In the last section,
performance guarantees for DEMPC under inexact minimization with and
without terminal constraints are studied.

4.1 Overview

This section gives an overview over some existing results for MPC with inex-
act optimization. These methods are discussed in the context of distributed
optimization and possible guarantees on feasibility and stability. Also the
relevance of investigating such results is highlighted.

Motivation

We first establish the relevance of considering the results of inexact optimiza-
tion and argue why it needs to be incorporated. One of the main advantages
of MPC are the satisfaction of constraints, guaranteed stability and an im-
proved economic performance. In chapter 2, we established corresponding
theoretical results under the assumption that the underlying optimization
problem is solved in each time step. Here the online optimization is ac-
complished with iterative dual distributed optimization algorithms, which
converge asymptotically to the true optimum, see chapter 3. In real time
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4 Distributed Economic Model Predictive Control with inexact optimization

applications of distributed MPC, the optimum is in general not attained due
to limited communication and computational resources.

For stabilizing MPC with primal optimization, few iterations are usually
sufficient to stabilize the system and satisfy the constraints. Therefore the
effect of inexact optimization can often be neglected. This is however not
the case for DEMPC with dual optimization.

The usage of distributed dual optimization methods leads to constraint
violations and errors in the predicted trajectories that only vanish asymp-
totically. This in turn complicates the analysis of MPC schemes, leads to
constraint violations and can even cause loss of stability. This is why the
deteriorating effects of inexact minimization should not be ignored in the
context of DEMPC with dual optimization, particularly for DEMPC without
terminal constraints.

With this in mind, the goal is to modify the optimization problem, such
that we have sufficient stopping conditions on the online iterations, that
guarantee feasibility, stability and performance with the current suboptimal
solution. In particular, those stopping conditions should be easy to check
and are preferably based directly on properties of the optimization, which
enables an a priori upper bound on the number of needed iterations.

We will now introduce some existing results regarding suboptimality, stabil-
ity and constraint satisfaction for MPC with inexact optimization.

Results for Primal Decomposition

We start by discussing suboptimality in primal decomposition due to its
simplicity. The main reason for this is that the predicted state trajectories in
the optimization are consistent with the dynamic equality constraint.

Feasibility implies Stability

For the primal decomposition, we can ensure feasibility of the predicted
trajectories in each iteration step. In particular, if we consider terminal con-
straint MPC, the candidate solution is already both feasible and stabilizing.
This feature was exploited in [StewartEtAl10] to use a primal decomposition
algorithm, that guarantees feasibility and stability with any number of itera-
tions.

So we can see that for primal decomposition, the issue of inexact optimiza-
tion is less difficult. Note that we discussed in chapter 3 the main drawbacks
of primal decomposition and why we use dual decomposition instead.
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Stabilizing Linear MPC with projected gradient steps

In [RubagottiPatrinosBemporadi4], a stabilizing terminal cost/set MPC with
a projected dual gradient algorithm is used. Here the dynamic constraints
are satisfied in each iteration step and only a violation € in the state and input
constraints need to be considered. To ensure both constraint satisfaction
and recursive feasibility of the algorithm the constraints are tightened over
the prediction horizon k with Z; = (1 — ke)Z. This has similarities to the
constraint tightening in robust MPC with growing tubes. The algorithm is
able to guarantee a maximum constraint violation of € with a fixed number
of iterations, which in turn establishes feasibility and stability of the original
problem. The main limitation of this method is the projected minimization,
which makes it unsuitable for distributed optimization.

Suboptimal Distributed MPC without terminal constraint

In [GiselssonRantzer14] stabilizing distributed MPC without terminal con-
straints and with dual distributed optimization is investigated. The opti-
mization problem uses an online iterative adaptive constraint tightening
to achieve feasibility of the system trajectory, despite primal constraint vi-
olations in the optimization. To ensure stability despite suboptimality, a
sufficient stopping condition based on a consistent candidate solution in the
next time step is used.

MPC based on time splitting with adaptive constraint tightening

In [FerrantiEtAli5] a different adaptive constraint tightening is proposed
and the optimization problem is split along the prediction horizon (time
splitting) with an ADMM like approach. This algorithm is augmented
with an adaptive constraint tightening, that chooses the accuracy € and the
corresponding tightening based on the candidate solution, i.e. such that
the candidate is feasible with respect to the tightened constraints. By using
a terminal constraint MPC, the satisfaction of the constraints can be used
to establish stability by bounding the suboptimality. The key advantages
of this method are both a parallelization of the computation due to the
time splitting and the adaptive tightening that guarantees feasibility and
stability with a finite number of iterations. In order to use fixed tightening
as in [RubagottiPatrinosBemporadi4], the parameters would need to be
computed offline for each initial state ( [FerrantiEtAl15] Remark 6).
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Distributed Hierarchical MPC

In [DoanKeviczkyDe Schutter11] a distributed hierarchical MPC scheme is
presented, that enables the computation of a feasible and stabilizing solution
with finite iterations. The algorithm also uses adaptive tightening based on
a slater vector. The feasibility is guaranteed with a constraint tightening and
stability with a bound on the suboptimality.

Stabilization of inexact MPC

In [KogelFindeisen14] a framework to ensure recursive feasibility and stabil-
ity for inexact MPC is proposed. This method takes the constraint violation
in the dynamic constraint explicitly into account with a robust MPC ap-
proach. Compared to the previous approaches a constant tightening can be
used, but the tightening of the constraints is significantly more conservative.
In particular, the constraints are tightened in such a way, that the consis-
tent candidate solution is feasible with respect to the tightened constraints.
Stability is guaranteed by ensuring a decrease in the optimized cost and
bounding the cost increase due to the error in the equality constraint.

Summary

From these different approaches we can see some common features, which
are needed to guarantee feasibility and stability.

To guarantee feasibility with inexact dual optimization, a tightening of the
constraint similar to robust MPC is inevitable. If we use a distributed dual
optimization, the constraint tightening has to consider both the error in the
dynamic constraint and the error in the constraint satisfaction.

We have seen, that ensuring recursive feasibility of the tightened optimization
problem can be accomplished by adapting the tolerance and the constraint
tightening. This adaptation however requires a certain amount of global
communication and is thus not suited for large scale distributed systems. On
the other hand, approaches considering a fixed tolerance lead to a constant
but significantly larger constraint tightening.

With respect to the stability, this can be posed as a condition on the sub-
optimality # of the optimization problem. For EMPC, especially without
terminal constraints, this issue seems largely unexplored and will also be
investigated.

In conclusion, a suitable method should include stopping conditions on

70



4.2 A Robust Model Predictive Control approach

the constraint violation € and suboptimality 7, that ensures feasibility and
stability. Furthermore, guaranteeing recursive feasibility for the tightened
optimization problem under inexact minimization is an important, nontrivial
task. In the following a new method is presented, that ensure recurisve
feasibility with a less conservative constraint tightening.

4.2 A Robust Model Predictive Control approach

In this section a robust MPC approach to ensure recursive feasibility and
closed-loop stability with inexact minimization is presented. We consider
constant constraint tightening, but compared to established results we use
a different candidate solution. First, recursive feasibility with constraint
tightening and an the new candidate solution is established. Then stability
guarantees in dependence of suboptimality guarantees are discussed.

4.2.1 Constraint Violations - Recursive Feasibility

An important and difficult issue for DMPC is to guarantee recursive feasi-
bility under inexact minimization resulting from finite dual iterations. To
this end we will use methods similar to robust MPC and the growing tubes
approach, as outlined in section 2.4, based on [ChisciRossiterZappao1, Con-
teEtAl13].

Pre-Stabilized Dynamics

We consider pre-stabilized dynamics
Ax = A+ BK;,

with a structured distributed stabilizing feedback K;, computed using
lemma 24. As mentioned in chapter 3 and section 4.1 the state and in-
put trajectory (z,v) resulting from inexact dual optimization does not satisfy
the dynamic constraint. Thus, to study feasibility we define the consoli-
dated predicted state trajectory ¥, that is consistent with the optimized input
trajectory v and the system dynamics, i.e.

x(k+1) = Ax(k) + B(Kix(k) + v(k)) = Axx(k) 4+ v(k),
x(0) = x.
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Recursive Feasibility under inexact minimization - Available Results

As outlined in section 4.1 there are two main approaches, to insure recur-
sive feasibility despite inexact predictions. Both approaches use the same
candidate solution ¥, which consists of the consolidated predicted state
trajectory ¥ shifted by one time step and with the terminal controller K
appended (the usual candidate solution). In [FerrantiEtAl15] the constraints
are tightened, such that this consolidated trajectory is feasible with respect
to the original constraint X', U. Recursive feasibility is then established
by adapting the constraint tightening and thus the accuracy e, such that
the problem is feasible, based on the consolidated candidate solution Xt
(slater vector). In order to use a fixed tightening, the parameters need to be
computed offline for each initial state ( [FerrantiEtAl15] Remark 6), which is
impracticable.

In [KogelFindeisen14], a constant constraint tightening is used with the same
consolidated candidate solution x". To ensure recursive feasibility without
adapting the constraint, the tightening of the constraints is significantly
more conservative. In particular, the constraints are tightened in such a
way, that the consolidated candidate solution X" is feasible with respect to
the tightened constraints. This problem is illustrated in figure 4.1 for a one
dimensional system x € R. Here z is the inexact trajectory, the red lines
correspond to the error in the prediction, X is the consolidated trajectory, X
is the state constraint and X is the tightened state constraint.

The goal now is to use a fixed constraint tightening and ensure recursive
feasibility, without using overly conservative approaches. To this end we use
a different candidate solution and consider a relaxed optimization problem.

Figure 4.1: [llustration: inexact prediction z and consolidated trajectory x.
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Tightened Optimization Problem - Feasibility

Let the overall state and input constraint be denoted by
X ={x|Hx <h}, U={u|lLu<I}
and the tightened constraints by
Xy = {x|Hx <h}, U= {u|lLu <I}.

The corresponding tightening will be discussed later. The tightened opti-
mization problem, which will be solved in each time step, is then given

by

M N-1

min ) Y Li(zi(k)vi(k)) + Vy,(2(N)) (4-1)

i=1 k=0
st. [[(An; + BiKyn;)z; (k) + Bivi(k) — zi(k+ 1) [leo < €74,
ZN; (k) € Y/\/i,k’ v;(k) + Kinizn (k) € ﬁi,kr
Zi(N) € (1_€f)yf,r Zi(o) = Xi,
i=1,....M, k=0,....N—-1,
with the current measured local state x;. This approach uses ideas from [Fer-

rantiEtAl15] and directly considers the fact, that we cannot expect the
dynamic constraint to be satisfied exactly.

Inexact Minimization
Given the optimization problem (4.1), we can define an inexact solution.

Assumption 29. The inexact solution (z,v) to the optimization problem (4.1)
satisfies:
I(AN; + BiKix7)za; (k) + Bivi(k) — zi(k+ 1) |0 < €21 + €
Hpzzn; (k) < i+ 1pex;,  Li(vi(k) + K ppzw; (k) < T+ 1q€0,,
z(N) € Xy, z/(0) = x;
Compared to the posed optimization problem, this allows a violation €;

in the dynamic constraint, €,,, €y, in the input and state constraints and
€5 for the terminal constraint. Only the initial state constraint is assumed
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to be satisfied exactly, which can be accomplished by most algorithms by
considering z;(0) as a fixed parameter instead of a variable. This bound can
be guaranteed after finite iterations and a corresponding stopping condition
can be checked distributedly online.

Tightened Constraints

Given assumption 29 we can discuss how to tighten the constraints in order to
ensure constraint satisfaction and recursive feasibility of the algorithm. The
error in prediction can be interpreted as a bounded unknown disturbance

xi(k4+1) = Apxp; (k) + Biuj(k) + wi(k),  w;i(k) € Wi,

with Wi = {wi|[|wille < €, + €} and Wy = Wy x -+ x Wy This
setup is opposite to the robust MPC setting, since the disturbance lies in the
prediction and not the actual system behavior. To ensure recursive feasibility,
the size of the relaxation decreases over the prediction horizon with

€2,k+1 = €z, k — €i- (4-2)

The tightening of the state and input constraints uses the k-step support
function oy (a,k):

ow(ak) = sup uTy(k),
weWF
st. y(0) =0,
y(l+1)=Axy()+w(), 1=1,..., k-1

We consider Wi‘ instead of W; X - -- x Wy, which is slightly more conser-
vative, but required for recursive feasibility (see proof of theorem 30). The
tightened state and input constraints are computed with:

- =T
hi,k,j = hl‘,/' — Uw(HM/]-,k) — (k + l)exl,

S
lLigj=1lij —ow(LijKin; k) — (k+1)ey,.

Here Ei,k,j denotes the j-th component of /; . This tightening consists of two
factors. The term (k + 1)ey, is similar to the tightening used in [Rubagotti-
PatrinosBemporad14] ,with Z; = (1 — ke) Z. The other term 0y reflects the
dynamic constraint violation and the corresponding tightening is similar as
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in [FerrantiEtAl15]. Compared to [KogelFindeisen14] the constraint tighten-
ing is significantly less conservative. The tightened constraints maintain the
distributed structure and the k-step support function can be computed by
distributed optimization, see section 2.4.

Tightened terminal set

The terminal cost V¢ and the terminal controller u = Kx need to satisfy
the typical Lyapunov decrease condition, (2.4) and can be computed using
lemma 10. The size of the terminal set X'y = {x|xTPfx < @} needs to be
such that

Xy C XN, KXfCUn, (4-3)
(A+BK)(X DAY W) € (1—ep) Xy,

which can be computed analog to (2.14). The last condition is similar
to [AlvaradoEtAl1o] and can always be ensured by choosing a large enough
prediction horizon N and a small enough €.

Theorem 30. Assume that the predicted state and input trajectories z, v satisfy
assumption 29, and the terminal set X ¢ satisfies (4.3), with €;, €;,, €, €u; = 0
and €,, . according to (4.2). Then the consolidated trajectory X satisfies

T(k) e X, u(k) =ov(k) + KF(k) € U.

Furthermore, the candidate solution (Z,5)

Z(N) = (A+BK)2(N — 1),

based on the previous solution (z, v) and the current state x is a feasible solution to
the optimization problem (4.1), which ensures recursive feasibility.

Proof. The proof is composed of 4 parts. First, constraint satisfaction of
the consolidated trajectory is established. In the second part the candidate
solution is constructed and we show satisfaction of the relaxed dynamic
constraints. In the third part we show that this candidate solution satisfies
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the tightened state and input constraints over the prediction horizon. Finally
we show that this solution also satisfies the terminal constraint, and thus
establishes recursive feasibility.

Part I: Show constraint satisfaction of consolidated trajectory.

The constraint satisfaction of the consolidated trajectory X follows directly
from the construction of the constraint tightening (see Robust MPC). The
disturbance considered in oy is slightly larger than W; x ... W}, due to the
decrease €; > 0 and (4.2). Thus we have:

_ —T
H/\/i,]-x/\/,. (k) < HM/]-Z(k) + ow (H/\/‘.,]',k)
< Ei,k,j + oy (HX/”],k) + €x; < hi,j/
_ —T
Lij(vi(k) + Ki np%n; (k) < Lij(vi(k) + Ky ppza; (k) + 0w (Li jKe n; - k)

- — T
<Uligj+ow(LijKin; k) +ew < d;j.

Part II: Show that candidate sequence satisfies relaxed dynamic constraint.
We construct a candidate state and input trajectory i, Z, that satisfies the
relaxed equality constraint

(AN, + BiKir)zw; (k) + Bivi(k) = zi(k +1)[|eo < €,

To this end we shift the previous solution by one time step and append the
terminal controller K. We also have to add an error term, due to the previous
constraint violation. With the measured state Xmeas in the next time step, we
have

2(0) = Xmeas = z(1) +w, w €Wy,

with z being the approximate solution to the optimization problem in the
last time step according to assumption 29. With this we can set

(k) =z(k+1)+ Akw, k=0,...N-1,
(k) =o(k+1), k=0,...,N—2.

IS

<

To show that this trajectory satisfies the relaxed dynamic constraint, we use

z(k+1) = Akz(k) + Bo(k) + wy, wy € W.
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Now substituting Z we have

z(k) = z(k + 1) + Akw = Agz(k) + Bo(k) + Akw + wy
= Ag(2(k —1) — AK1w) + Bo(k — 1) + Akw + wy
= AKZ(k — 1) + Bﬁ(k — 1) + wk,

fork =1,...,N —1. Now we have the new equality constraint violation
W; k—1 = W;, which satisfies

@ k-1l < €2k + € = €241,

and thus the required bounds on the dynamic constraint over the prediction
horizon. The terminal state of the candidate solution

2(N) = (A+BK)Z(N —1), 9(N—1) = (K—K)Z(N—1)

exactly satisfies the dynamic equality constraint, by using the terminal con-
troller K.

Part III: Show that the candidate sequence satisfies state and input con-
straints.

For the state constraints we know that

HM,/'ZN,- (k) = HN,',]'ZM (k+1)+ H/\/i,jAlf(w,
and due to assumption 29 we have
- —T
Hyjzni(k+1) < higia,j+ €x, = hij —ow(Hp pk +1) — (k+ 1ex,
which implies
- = —T
Hyg jZn; (k) < hij+ Hy jAkw — oy (Hg ok +1) = (k+ 1)ey,.

Due to the definition of the support function and linear superposition we
have

ow (Hyg ik +1) > oy (Hy k) + Hy jARw.

Note that this does not hold, if we use Wj x - - - x W for the k-step support
function. This leads to

~ -1 N
H/\/i/jZM (k) S hi,j — UW(H/\/},jlk) — (k + 1)€Xz' = hi,k,j'
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For the input constraints the same arguments hold with

Lij(0:(K) + Ko 23, (K)) = Liji(0ilk +1) + Kp iz (k + 1) + Ky Ajw)
< gy j+ e, + LKy Ajw < dig .

Part IV: Now we consider the terminal constraint and the effect of the
terminal controller. We have

Z(N) = (A+ BK)Z(N — 1) = (A + BK)(z(N) + A¥ "'w),
#(N—1) =KzZ(N —-1).

From assumption 29 we have z(N) € ?f C Xy and thus we can use the
arguments from Part III to establish Z(N — 1) € Xy_1. Similarly for the
input u;(N) = Kz(N) € Kff C Uy, we can establish (N — 1) € Un_1.
For the terminal set we have

Z(N) = (A+ BK)(z(N) + A¥ "'w)
€ (A+BK)(Xs P AR W) C (1—¢f)Xy,
due to (4.3). O

This result allows an additional violation € in the constraints and still

ensures recursive feasibility with a suitable candidate solution Z, 4. The
initial state constraint is assumed to be satisfied, which most algorithms can
accomplish. This formulation is general and independent of the used opti-
mization algorithm, assuming that the algorithm can handle linear coupling
inequality constraints. The linear decreasing relaxation €,, ; over the predic-
tion horizon, has some similarities to the adaptive exponential relaxation
in [FerrantiEtAl15]. A suitable choice for €, ; might be €, n = €;.
If we compare the required constraint tightening to ensure recursive feasi-
bility, with the constraint tightening to ensure constraint satisfaction of the
consolidated trajectory, the difference only lies in the error terms €y, €y, €;,
but is independent of €.

Remark 31. To the best knowledge of the author, this is the only result, that uses
a candidate sequence, which does not satisfy the dynamics exactly, to establish
recursive feasibility. By posing the constraints for the optimization problem with an
intermediate tightening (e /2), we can guarantee the existence of a strictly feasible
candidate solution (slater vector). Thus we can use methods like [FerrantiEtAl15]
to bound the dual variables and give prior bounds on the number of iterations for
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4.2 A Robust Model Predictive Control approach

fast gradient schemes. Note that here we do not require any online adaptation of
the parameters and it is even possible for some algorithms to given a general upper
bound on the number of iterations, independent of the current state.

4.2.2 Suboptimality - Stability

With this constraint tightening we can ensure feasibility of the consolidated
trajectory. Now we focus on stability. Let Ve (v,x) denote the cost associated
with the predicted consolidated trajectory x with the input trajectory v and
the initial state x:

Let V¢ (x) denote the optimal cost given the constraints in assumption 29:
Vi(x) = nzuvn Ve(v,x)
st. X(k+1) = (A + BKy)x(k) + Bu(k), *%(0) ==,
[(An; + BiKinp)zw; (K) + Bivi(k) = zi(k+1) [l < €2k + €5,
Hprzp (k) < hij + 1pex,,  Li(vi(k) + Kepizn; (k) < Lig + 1464,
Z(N) S ?f’ Zi(O) = X;
By definition we have V}(x) < Ve(5,x). In the following we denote the
suboptimal sequence, that results from inexact minimization by (z¢,v¢) and
assume that they satisfy assumption 29. The resulting suboptimal MPC state
feedback is denoted by pe(x).
Using the candidate solution (Z,,7¢) based on the previous solution (z¢,ve),

a stability result for the special case of K = 0,i.e. if the stabilizing controller
can also be used as a terminal controller, is presented.

Lemma 32. Let the assumptions in theorem 30 be satisfied and let the pre-stabilized
system satisfy (2.4) with K =0, i.e.

Vf(AKX) < Vf(x) - l(x,O)
Then the candidate solution from theorem 30 satisfies

Ve (9,Axx + Bv) — Ve(v,x) < —I1(x,0).

79



4 Distributed Economic Model Predictive Control with inexact optimization

Assume furthermore, that the suboptimal solution ve has a suboptimality y(x), i.e.
Ve (Ue (X),X) < V: (x) =+ U(X)/

and that the strict dissipativity in assumption 2 is satisfied.
Then we have

Ve (Agx + Bpe(x)) = Ve (x) < (x) = I(x,pe(x)).

Proof. This proof consists of 2 parts. First, the decrease in V. with the candi-
date input @ is shown. Then assuming a suboptimality 7 the decrease in the
candidate Lyapunov function Ve is derived.

Part I: Show cost decrease based on candidate input .

To show the cost decrease we use the feasible input sequence 7 from theo-
rem 30, based on the previous solution v and the measured state x and thus
w. With the terminal controller K = 0 we have

(N —1)=0.

We study the difference Ve (9,Agx + Bpie(x)) — Ve(v,x), where 7 is the can-
didate input sequence. Abbreviate x* = Agx + Bpuc(x) to get

Ve(5,x1) = Ve(v,x) = 1:201 1(x(k +1),8(k)) — 1(X(k),0(k)) + V¢ (F(N + 1)) — V;(Z(N)
= —I(x,v) + 1(F(N),5(N = 1)) + V;(F(N +1)) — Vf(Z(N)).
For the terminal state X(N + 1) we have
X(N+1) = AxX(N) + Bo(N — 1) = Ax%(N).
Thus we have
Vi(X(N+1)) = V¢(x(N) +1(x(N),5(N —1)) <0
and

Ve(0,x7) = Ve(v,x) < —1(x,0).

Part II: Show closed-loop decrease in candidate Lyapunov function Ve (x).
First, note that Ve(x) is a valid candidate Lyapunov function. To study the
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4.2 A Robust Model Predictive Control approach

closed-loop stability based on the suboptimality # we consider V under the
feedback pi¢. Due to optimality we clearly have

V:(x+) < Ve(ﬁe/x+),

with the candidate solution 3. based on the suboptimal solution v.. Now
using the decrease condition derived in the Part I we get

VE(xT) < Ve(vex) = H(xpe(x)).
Using the suboptimality bound 7 (x) we can conclude
Ve () S VE) +n(x) = 1 e (2))-
Similar to the proof of theorem 6 we know use the strict dissipativity as-
sumption and add A(xT) — A(x) to get
M) = AGE) + V2() = V) < 47(6) + Al = A) = ().

Ve (x+) = Ve (x) —I(x,pe(x))

O

The restriction K = 0 simplifies the procedure by using the terminal

controller K as the stabilizing controller K;, but can lead lead to a larger
constraint tightening. One way to avoid this, is to impose additional con-
straints based on lemma 24 with some fixed p,7 as tuning parameters on the
computation of Pf,K in lemma 10.
It is possible to derive a similar result for general terminal controller, by
appending (N — 1) = Kx(N) for the candidate trajectory. This requires the
explicit computation of the consolidated trajectory X and also has higher
demands on the terminal set.

Corollary 33. If an upper bound on the suboptimality y(x) < 7 is guaranteed,
we have practical asymptotic stability (see lemma 14). If the suboptimality satisfies
7(x) < a(x) = minl(x,u) the optimal steady state is asymptotically stable.

u

Ensuring a certain degree of suboptimality can be a challenging task,
especially since here the suboptimality is defined with respect to the con-
solidated trajectory. One way to bound the suboptimality is described
in [FerrantiEtAl15], which in general requires an adaptive solver tolerance.
The condition 1 < a;(||x||) leads to high accuracy demands close to the
origin. Ensuring some upper bound 7 on the suboptimality is a lot more
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4 Distributed Economic Model Predictive Control with inexact optimization

reasonable.

Alternatively the tightening could be chosen small enough, such that the
suboptimality # is smaller than «;(||x||) for all x outside of the terminal set
Yf and use dual-mode MPC, see [KogelFindeisen14].

4.3 Economic Model Predictive Control without terminal
constraints

In this section we study the stability of EMPC without terminal constraints
under inexact optimization. In [Griine13] the stability of EMPC without
terminal constraints is studied. Here we extend these results to include
a suboptimality 17 due to the an inexact optimization. The final result of
this section is a generalized version of theorem 3.7 in [GriineStieler14], that
includes the suboptimality 7. As in chapter 2, we consider linear system
dynamics with a linear-quadratic stage cost I(x,u). In addition, we assume
without loss of generality that the optimal steady state is the origin and
that the optimal steady state cost is zero, i.e. 1(0,0) = 0. The theoretical
results are also valid for general nonlinear system dynamics and general
economic stage cost I(x,u), as long as the assumptions used in theorem 3.7
in [GriineStieler14] are satisfied.

Contrary to section 4.2 we only consider a suboptimality # in the cost and
do not prove recursive feasibility of the tightened optimization problem
under inexact minimization. For EMPC without terminal constraints this is
a significantly more difficult and so far unexplored task.

Stability Proof with inexact minimization

If we consider the stability results in section 4.2, we always rely on the
candidate solution . For the terminal set DEMPC this candidate solution can
always be obtained due to the properties of the terminal set and feasibility.
For the EMPC without terminal constraints we also use a candidate solution
to show the stability properties. The (main) difference is that this candidate
solution uses properties that are implicitly satisfied due to strict dissipativity
and optimality, but not enforced by any constraint. This requires a more
detailed investigation of the stability proof in [Griine13] to derive similar
stability properties.
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Suboptimal EMPC

We first define some terms. We assume that the MPC optimization problem
is solved by some algorithm, that can ensure feasibility, but will not give the
optimal input, see chapter 3. The suboptimal input can be written as

ue(x) = {uec(0,x),ue(1,x),... uc(N—1,x)}

and the corresponding state feedback of the suboptimal EMPC is defined
by pn.e(x) = ue(0,x). Furthermore the closed-loop state trajectory under
the suboptimal EMPC feedback can is written x;, . (k,x). The open-loop
predicted cost over the prediction horizon N of a input u is defined as
Jn (x,1). The resulting suboptimal MPC feedback is defined as follows.

Definition 34. The n-suboptimal MPC solution u(x) satisfies the original state
and input constraints, i.e. uc(x) € UN(x). Furthermore, the corresponding value
function Vy ¢(x) satisfies

VNe(x) = In(xue(x)) < V() 7.

Overview

The proof of the practical asymptotic stability of inexact EMPC without
terminal constraints is rather long and consists of several intermediate
results. Large portions of the proof are taken from [Griine13]. The main
results, that include the suboptimality, are lemma 35 and theorem 36.

The proof is structured as follows. In lemma 35, bounds on the closed-loop
cost with suboptimal EMPC are derived, given the existence of a candidate
control sequence uy .. In theorem 36, this candidate control sequence is
constructed based on some assumptions on the optimal cost function Vy;
and a turnpike property. In theorem 39, sufficient assumptions to satisfy
condition c) in theorem 36 are stated. In theorem 42 sufficient assumptions
to satisfy condition b) in theorem 36 are stated. In theorem 47 the bounds
of theorem 36 on V}; are used to derive bounds on the rotated cost 17;,.
In theorem 48, all the previous results are combined to show practical
asymptotic stability.

1. Performance with candidate input uy .

The first part of the proof consists in showing some properties of the optimal
value function V}; under the suboptimal MPC feedback jiy ¢, based on the
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4 Distributed Economic Model Predictive Control with inexact optimization

existence of a candidate control sequence uy . This lemma is an extension of
proposition 4.1 in [Griine13] to EMPC with suboptimality. The corresponding
control sequence will be constructed in theorem 36. This lemma also gives
us an upper bound on the average infinite horizon closed-loop performance

T
T2 (opine) = Jim © (g e)
co\A/HN e K—>ooKK /N, )r
K

JR (xpne) = k;ol (g e (k) N e (X (K,X)))-

Lemma 35. Assume there existsa Ng > 0, 61,0y € L suchthatVx € X, N > Ny,

there exists a control sequence uy y € UNF1(x) and ky » € {0,...,N} such that
the following conditions hold:

W) @)= T 1t (b)) < Vi (x) +5(N)
k=0,k#ky +

(2) l(xuN,x (kN,x/x)/uN,x (kN,x)) < ‘52(N)

Then the suboptimal EMPC uy . with suboptimality n satisfies the following
inequalities
forallx € X,all N € N, with N > Ny + 1 and for all K € IN:

JE (N e) < Vi (R) = Vi (R, (K) + K1 (N = 1) +65(N = 1) +17),
Ta(xpne) <61 (N—1)+6(N—1) +7.

Proof. We start with the dynamic programming principle

VR (x) = Hopn (x)) + Vo (Ax + Bun (x)) < 1(xpe(x)) + Vo (Ax + B e(x))
S U2 pe (%) + In-1(Ax + Bune(x)te) = Vne(x) < V(x) +71,

which implies

I(xune(x)) < VN (x) = VN (Ax + Bune(x)) +77.
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In the following we denote x ¢ (k) = Xy (k,x) and pn e(xn,e(k)) = pn,e (k).
From this we have

(i) kz xne(K) i e (K)) (44)
0
K-1
< Y (Vilene(R) = Vi (xne(k+1)) +17)

w
Il
S

K-1
= VR (x) = VN1 (ane(K)) + K+ 3 V(e (k) = Vi (an,e (k).

Now we will bound these terms. Using property (1) with N — 1 in place of
N we get

Vi (x) 2 Jya(x) —a1(N - 1)
and due to optimality we have
VN (%) < In(xun-1,x)-
By combining these bounds we get
VR (%) = VRq (%) < In(xun-1,0) = Jy—1(x) +61(N = 1) (4.5)
= 1(xuy_ o (kn-10%) iN-1,x (kN-1,x)) + 01(N = 1)
<6H(N—-1)4+6(N-1).
By pluging in (4.5) in (4.4) with x = xp ¢ (k) we get
JR(xpne) < VR(x) = Vioa (xne(K)) + (K= 1) (62(N = 1) + 61 (N — 1)) + K.
Using (4.5) with k = K we have
VN (ane(K) = VN1 (ane(K)) < (N —1) + 61 (N — 1),
which yields
JR(xpne) < Vi(x) = Vi(ane(K)) + K(62(N = 1) + 61(N = 1) +77).
The average bound ], follows by dividing by K and letting K — oo, since
VY is finite. O

This lemma states, that we can bound the average infinite horizon perfor-
mance ], if there is a control sequence u N,x, that is close to optimal (61) and
reaches a state with a cost close to the optimal steady state cost (J,) within
kn x steps. If the suboptimality # goes to zero, we recover the original result
from [Griine13].
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2. Construct Candidate Input

The following theorem is the main theoretical results for EMPC without
terminal constraints. Here a candidate control sequence is constructed, based
on the previous optimal input u*.

This is a modified version of theorem 4.2 in [Griine13], that uses lemma 35
and the suboptimal MPC ¢ instead of proposition 4.1 in [Griine13].

Theorem 36. Assume there exists § > 0 such that the following properties holds:

a) There exists Vi € Koo such that V6 € (0,6], Vx € By, there is a uy € U
such that Ax + Bu, € X and

[Ax + Bux| < y¢(6) and  I(xux) < 71(5)
hold.

b) There exists a Ng € Nq and vy € Koo such that for each § € (0,8), for each
N € N with N > Ny and x € Bs the inequality

VN (x) = VR (0)] < v (9)
holds.

c) There exists a 0 € L and Ny € N with Ny > Ny for Ny € INg from b),
such that for each x € X and each N > Nj there exists an optimal trajectory
Xy, (ox) satisfying ||xyy, (kx,x)|| < o(N) for some ky € {0,...,N — No}.

Then there exists a Ny € IN such that the suboptimal EMPC uy ¢ with suboptimal-
ity n satsifies the following inequalities

JR(xpne) < VR (x) = Vi (3, (K)) + K(e(N =1) +77),

—cl
Jo(xpne) <e(N—1)+7,

forallx € X, K € IN,all N > N, + 1 with € € L given by

e(N) = v (c(N)) +rv(rf(e(N))) + 1i(c(N)).
If furthermore
Vi (x) = V§(0)
holds for all N € N and x € Bg, then we have

e(N) = v (rr(@(N))) + 1i(e(N)).
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Proof. This proof basically consist of constructing the control sequence for
lemma 35 with

31(N) = rv(e(N)) + v (rs(@(N)), 6(N) = 7(c(N)).

To satisfy the assumptions of lemma 35 we choose N > Nj such that
0(N2) < 6 and y(c(N2)) < 0 holds for o from c) and 7 from a). Now pick

N >Ny, x € X and uy, € UN (x) from c) with x’ = xuhx(kx,x) and let u,
be the control value in a) for x = x’. Let x”/ = Ax’ + Bu,s and let UN

be an optimal control sequence for x = x” and the horizon N — ky. With
this the candidate control sequence uy , € UN*1(x) is given by

u’{\],x(k) k=0,...ky—1
un (k) == uy k=ky
Wy (k—ke 1) k=ke+1,...N.

This implies

Xuy, (kx) = xu&x(k,x), k=0,...ky,
[+] <o(N), [x"|| = |Ax" + Buy|| < v¢(c(N)),
1(x'juy) < 7(o(N)).

From this we can conclude using b)

Vi (x") < Vg(0) + v (r5(e(N))) (4-6)
< (r(@(N))) + v (e(N)) + Vg (x') = Vi (x') + 61(N)
for any K € IN with K > Nj. By c) we have K = N — ky > Ny. Now we have

to distinguish two cases:
In case N — ky > 1 we use (4.6) to get

N
Yo 0wy, (k)N (k) = Inog, (¢ o) = Vg, (27)
k=K +1

< Vi (&) + 61 (N).
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In order to satisfy condition (1) in lemma 35 we set kyx = ky and get

N
ING) = ) Ly, (kx)un (k)

k=0,k£k,
ky—1 N
= l(xUN/x (er)ruNx + 2 xUN\' k X uNX(k))
k=0 k=k,+1
N
=VN0) = Vi () + 3 Iy, (kun«(k)))
k=kot1

< VN (x) + 61 (N),

which satisfies condition (1) of lemma 35 with 61 (N) = vy (c(N)) + vy (71 (c(N))).
In case N — ky = 0 we get

N
InG) = Y 1, (k) un (k) = Yy (x),
k=0kk,

which also satisfies condition (1) of lemma 35 with J; (N).
For condition (2) of lemma 35 we get

Huy, (ke k) iy x (k) = 1(x' ) < 11 (0(N)) = 62(N).

With this we have satisfied all conditions of lemma 35 and get

€(N) = 01(N) + 62(N) + 1 = 7(e(N)) + yv((N)) +1v (11(c(N))) + 7.

For the special case V{;(x) > V5 (0) we get

)

V(") <V (0) +yv(i(e(N))) < Vi(x') + v (n(e(N))),
which implies &;(N) = vy (7¢(c(N))) and thus the lower bound e(N). O

This theorem contains the desired inequality for the cost Vy; under subop-
timal MPC py ¢, but the conditions b) and c) are rather hard to verify. The
following theorems will give simpler sufficient assumptions for condition
b) and c), and use strict dissipativity to conclude practical asymptotic sta-
bility. The tighter bound for Vj;(x) > V*(0) is in general only achievable
for a positive (semi-)definite tracking cost, and not for ‘real” economic cost
functions.
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3. Asymptotic Controllability

We first discuss sufficient assumptions, that can be used to satisfy condition c)
in theorem 36. Therefore we define LS functions:

Definition 37. ( [Griine13], Def. 5.4)
A class IKLS is a class of summable ICL functions, that sum up to a K function,
ie. B €KL with

(o)

')/‘B(r) = Z .B(r/k)

k=0
satisfies yg(r) € K.
The following asymptotic controllability condition will be used.

Assumption 38. ( [Griine13], Assumpt. 5.5)
There exists a p € KLS such that Vx € X, VN € N there exists a u € UN(x)
such that

1o (k,x) u(k)) < B([|x]|.k)
holds for allk =0,...,N — 1.

Theorem 39. ([Griine13], Thm. 5.6)

Assume that the strict dissipativity conditions holds and C := 2sup ||A(x)].
xeX
Assume furthermore, that the asymptotic controllability assumption 38 is satisfied.

Then condition c) of theorem 36 is satisfied.

4. Local Controllability

Now corresponding assumptions for condition b) in theorem 36 are dis-
cussed. The following intermediate result gives convergence results to the
optimal state for close to optimal inputs.

Theorem go. ( [Griine13],Thm. 5.3)
Assume that there exists a A that satisfies the strict dissipativity condition in
assumption 15 and C := 2 sup ||A(x)||. Then for each x € X, § > 0, each control

XeEX
sequence u € UN (x) satisfying J(x,u) < & and each € > 0 the value
Qe :=#{ke{0,...,N—1}|||x,(kx)| <€}

satisfies the inequality Qe > N — (6 + C) /a;(€).
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Now a local controllability condition on B; sufficient for condition b) in
theorem 36 is used.

Assumption 41. ( [Griine13],Assumption 6.1)

There exists a 6. > 0, d € IN, vx, Yu, Ve € Koo such that for each x,,, (k,x) with
uy € L{d(x) satisfying xy, (k,x) € Bs, forallk = 0,...,d and all x1, x, € By,
there exists a uy € U (x) satisfying

Xup (d,x1) = X2
and the estimates

12 (K1) = 2y (R, x) | < e (max{ [ xq — x|, [| 22 — xu, (d,2) [ }),
[z (k) — ur (k) || < yu(max{]|xy — x|, [lx2 = xu, (d2)]]}),

and

([ (xuy (k,2x1) 12 () ) = 1 (o () 1 ()| < ye(max{||xq — x[[,||x2 — xu, () })
forallk=0,...,d—1

With this assumption we can ensure that the open-loop state trajectory tem-
porary stays close to the optimal steady state. In addition to this assumption,
we require a bound on the rotated stage cost

1) < a([lx[| + [[ul])- 47)

This result can be used for the asymptotic controllability condition, assump-
tion 38 in theorem 39, with P(N) = [N/2]. Using the fact that for some
k < N/2 we have ||x,; (kx)|| < o(N) we can give sufficient conditions for
condition b) in theorem 36.

Theorem 42. ( [Griine13],Thm. 6.4)
Let the assumptions in theorem 40, assumption 41 and (4.7) hold. Then condition b)
in theorem 36 is satisfied.

5. Rotated Cost decrease

Now the decrease in the cost V}; of theorem 36 is used to get a decrease in
the rotated cost V5;. We first need some intermediate results:
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Assumption 43. ([Griine13], Assumption 7.2)
We assume that there exists C' > 0 such that for each x € X, the optimal control
sequence u’; \; € UN (x) and each € > 0 the value

Qe :=#Pe, Pei={ke{0,...,N—1}|[lxy (k)] < e}

satisfies Qe > N — C'/a;(€).

Lemma 44. ([Griine13], Lemma 7.4)
Assume that the MPC problem satisfies assumption 43 and condition (b) from
theorem 36 for some Ng € IN and 6 > 0. Then forall x € X, N > Ny and € < o

satisfying
/
= (==
the set P. = Pe N {0,...,N — Ny} is nonempty and for all P € P, we have
VN (%) = Jp(xun ) + Vi-p(0) + Ri(Ne)
with
[R1(N€)] < rv(e).

Lemma 45. ( [Griine13], Lemma 7.5)
Assume A(x) is Lipschitz on By with Lipschitz constant Ly. Then forallu € U, gg (x)

with € < 6 we have

Jp(xu) = Jp(x,u) + A(x) + Ro(u,Pje),
|R2(u,P,e)\ < L/\E.

Lemma 46. ( [Griine13], Lemma 8.5) B
Suppose that the assumptions of lemma 44 and lemma 45 hold for some & > 0, for
both the original and the rotated problem, and that

2c’
-1
€2 (m) :

Then Pl := PN P.N{0,...,N— Ny} # @ and for each P € P, we have

Tp(x'ﬁ?\f,x) = ]P(xru}k\],x) + /\(x) + R3(P/€)/
[R3(P,e)| < 4(yv(e) + Le).
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4 Distributed Economic Model Predictive Control with inexact optimization

With these intermediate results we can uses the result in theorem 36 for
the suboptimal MPC yup . and gives bounds on the rotated cost V};. The
proof uses large parts of the proof of theorem 7.6 [Griine13].

Theorem 47. Assume that the original problem and the rotated problem satisfy
assumption 43 and condition (b) of theorem 36 for some Ny € Ng and 6 > 0.
Assume furthermore, that A is Lipschitz on By with Lipschitz constant L) . Let Ny

be such that
- 6C’
=0>al———
€e=6>uw (N7N071>

forall N > Nj.
Assume that

TR (2N e) < VR () = Vi (3 (K)) + 6.
Then for all N > Ny we have

J(xpne) < V() = Vi (xuy, (K) +6,
with § = 6 + 2y (€) + 8(vv(€) + Lye).

Proof. To derive this inequality lemma 44 is used for times and lemma 46
twice. Therefore assumption 43 is used eight times. Thus we can choose N

such that we have
- 8C’
P akll (A
2 (N*N0*1>

This ensures, that P/ is nonempty, for all six considered trajectories. We start
by applying lemma 44 at x and x;, (K) to get

VN (x) = VN (e (K))
=Jp (%13 x) + VN (0) + Ri(Ne)
- ]P(x]/lf\l,e (K)’u;\f,XpNE(K)) - Vltl(o) - R%(Nre)
= Ip (k) — o (i (KDt (1)) + REN.E) — RE(N.),
with |R} (N€)| < v (€). Similarly for the rotated problem we get

V() = Vi (. (K))
=Tp (i) — T, (KD, 1)) + REN.€) = RE(N.e).
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4.3 Economic Model Predictive Control without terminal constraints

By applying lemma 46 to the points x and x,, (K) we get
Tp(xuy,) = Jp (xpy, (K), u;{\],x;wﬁ (K))
=Jp(x,y,) = Jp (xuy, (K), iy e )
= A(x) + Alxpy, (K)) + R3(Pe) — R (Pse),
with |R(P,e)| < 4(7v(€) + Lye). With this we get
JR(vpne) = IR (xpine) +A(x) = Ay, (K))
<VR (%) = VN (e (K)) 46+ A(x) = Alxpy . (K))
=T (0) ~ T (o (KDt (k)
+Ri(Ne) = RE(N,e) + 6(N) + A(x) = Ay, (K))
=Jp(xiiy.) = Jp(xu. (K)/ﬁ*N,xPng x)
+Ri(Ne) — R3(N,e) — R3(P,e) + Ri(Pe) + 6 + A(x) — Axpy, (K))
=VX (%) = VX (¥, (K)) + Ri(Ny€) = RI(N,e) — R3(Pe) + R3(Pse) +6.

5

6. Practical Asymptotic Stability

Now we combine all of the previous results to derive practical asymptotic
stability under the suboptimal MPC i ¢. This theorem is a modified version
of theorem 3.7 in [GriineStieler14], that includes suboptimality.

Theorem 48. Let assumptions 15-18 be satisfied. Then there exists a Ny € IN,
ay € Koo such that

Vii(Ax + Bun,e(x)) < V(%) — ay(|x]) +6(N) + 7,
a(|x]) < Vi (x) < av(lx]),

for all N > Ny with & € L. Correspondingly we have practical asymptotic stability
with ||xuy, (kx)|| < max{Bn.(kx)nc} and Bne € KL.
Furthermore we have

I(xune) < VN(x) = VG (Ax + Bune(x)) +6(N) +1,
with 6 € L.
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4 Distributed Economic Model Predictive Control with inexact optimization

Proof. This proof consists of four steps. First the bounds on the rotated cost
V%, are derived. Then the bound on the stage cost /(x,jix ¢) is derived using
theorem 36 with K = 1. This can be used in combination with theorem 47
with K = 1 to show the desired decrease in the rotated cost V};. Finally this
decrease is used to show practical asymptotic stability.

Part I:

The bounds &;, &y on V}; are independent of the suboptimality and can thus
be used directly from theorem 19.

Part II:

We need to show

I(xpne) < VN (%) = V(i (1) + 6+ 17

This can be done by satisfying the conditions a)-c) of theorem 36 with K =1
and

§=e(N=1), e(N)=1v(@(N))+rv(rp(e(N)))+1(c(N)).

Condition a) follows directly from assumption 16.
For condition (b) of theorem 36 we know that the assumptions in theorem 42
are sufficient. The bound on the rotated stage cost (4.7) is clearly satisfied
for the linear-quadratic stage cost. Assumption 41 is a local controllability
assumption, that can be replaced by assumption 17 in combination with
a Lipschitz bound on A and the upper bound on the rotated stage cost in
assumption 16. The Lipschitz continuity of A is contained in assumption 16.
The last assumption follows from the strict dissipativity in assumption 15
and the bounded set.
For condition c) we can use theorem 39, which requires the controllability
assumption 38. Due to the upper bound on Jy(x,u) we can conclude an
upper bound on [y (x,u) by using the continuity of A. With this bound we
can establish the assumption.
Part III:
The bounds on the cost decrease in the rotated cost V§; can be concluded
from the cost decrease in V}; by using theorem 47 with K = 1. In order to
use theorem 47 we have to ensure, that assumption 43 and condition (b) of
theorem 36 are satisfied. From Part II, we already know that condition (b) of
theorem 36 is satisfied.
To show that assumption 43 is satisfied, we can use theorem 40. Due to the
bound on V3, on the compact set we have

IN(uy ) SVR(x) = V() = Ax) + Axyg, ) < G

X
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4.3 Economic Model Predictive Control without terminal constraints

and thus we can use theorem 40 with § = C; to get C = C; 4 2C. Corre-
spondingly for the rotated cost we have C’' = max ay (||x]])-
xe

By choosing € from theorem 47 as € = v¢(N), with e € £, we get

S(N) =6(N) +27v(1e(N)) +8(7v(7e(N)) + Lyve(N))
=y (e(N)) + v (v(@(N))) + 71(c(N)) + 27y (7e(N))
+8(1v(7e(N)) + Lave(N))

with §(N) € L.
Part IV:
By using lemma 14 we get practical asymptotic stability with

ey = a; (ay (a5 (6(N) + 1)) + 5(N) + 7).

Summary

Let us summarize this stability result and compare it to the nominal stability
result obtained in [GriineStieler14]. For a constant # and a large enough
prediction horizon N we have practical asymptotic stability. The error 7,
converges to zero, if the prediction horizon N goes to infinity and the sub-
optimality # goes to zero.

If the suboptimality # converges to zero, we recover the original result for
nominal MPC. If the prediction horizon N goes to infinity, § goes to zero,
but we still have only practical asymptotic stability, due to the constant
suboptimality 7.

If we compare this result, with the stability result in section 4.2 for terminal
constraint DEMPC we have the additive term # in both cases. A big differ-
ence between the two results, is that for the terminal constraint DEMPC, the
constraint tightening and the recursive feasibility of inconsistent trajectories
is also taken into account.

In theory for a constant suboptimality 7, the stability guarantees improve for
longer prediction horizons N. On the other hand achieving a certain subop-
timality # requires in general more iterations for a longer prediction horizon
N. This problem exists for both the DEMPC with terminal constraints and
without terminal constraints and is also discussed in section 4.4.
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4 Distributed Economic Model Predictive Control with inexact optimization

4.4 Performance Guarantees

In this section we discuss performance guarantees for DEMPC under inexact
minimization. For practical applications we are mostly interested in the
economic performance. As motivated in section 3.1, we should not neglect
the effect of inexact minimization, if we consider dual distributed optimiza-
tion. Therefore, extending economic performance guarantees to suboptimal
DEMPC is a relevant contribution.

The first part of this section considers DEMPC with terminal cost and sets
and extends the performance results in [GriinePaninis] to take inexact
optimization into account. The second part considers DEMPC without ter-
minal constraints and extends the transient performance guarantees given
in [GriineStieler14]. In the third part, these theoretical results are interpreted
and consequences for practical applications are discussed.

4.4.1 Performance Guarantees with terminal sets and terminal
costs

We first consider DEMPC with terminal costs and sets from section 2.2.
For this setup we derive economic performance results under inexact min-
imization, which are extensions of the results given in [GriinePanin15]. A
prerequisite for these results is a decrease condition in V* under the subop-
timal MPC-feedback . To this end, the results in section 4.2 can be used.
We first need to define some notation. We denote the closed-loop cost of
applying the suboptimal MPC by

K—1
]Icg(x,ye) = kZ: l(xye(er)rﬂe(xyg (kx))).
=0

Let J& (x,1¢) be the infinite closed-loop MPC cost. Furthermore, we define
the control set

Ug (x) = {u € UX|xy(Kx) € By, xu(kx) € Xk €{0,... K}}.
Denote Xy as the feasible set for MPC with prediction horizon N, i.e.
Xy = () () # 2,

and correspondingly Xo denotes the infinite horizon feasible set. JR(x,u) is
the open-loop cost of applying the input sequence u over a prediction horizon
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K, without considering a terminal cost or constraint. V2°(x) is the corre-

sponding optimal infinite horizon cost, i.e. V¥°(x) = lim sup inf JR(x,u).
K—soo #€UX(x)

First, the average infinite horizon performance is analysed. Then in theo-

rem 50, the un-averaged infinite horizon performance is bounded, by placing
a specific bound on the suboptimality. In theorem 53, the transient perfor-
mance is bounded, using the same assumption on the suboptimality. In
theorem 55, an alternative transient performance guarantee is derived, with
a less restrictive assumption on the suboptimality.

Averaged infinite horizon Performance

We first consider the averaged infinite horizon performance. Therefore we
use the stability results of DEMPC with terminal sets and terminal cost
under inexact minimization, as derived in section 4.2. For the nominal case
the average performance has been analysed in [AngeliAmritRawlings12] and
it was shown, that the averaged closed-loop performance is no worse, than
the optimal steady state. For #(x) < I(x,e(x)) we can use Corollary 33 to
conclude asymptotic stability of the optimal steady state, which implies the
existence of a Be € KL such that ||x,, (k,x)|| < Be(||x]||,k). This implies an
average performance no worse, than the optimal steady state. For a more
general suboptimality # (k) we cannot guarantee asymptotic stability, but we
still can bound the average infinite horizon performance with

. 1=
Jeo (pie) = lim sup = 3 1z, (k) pie (xy, (k)
T—o0 k=0
1 T-1
<lim sup — | V*(x) = V*(xu (Tx)) + Y n(k) | =supavy],
T—o0 T k=0

where av[y] is the average suboptimality. For both results we require that 7
converges to 0, to get an averaged performance equal to the optimal steady
state.

Non-averaged infinite horizon Performance

Now we focus on the non-averaged infinite horizon performance and derive
a bound on the suboptimality with respect to the infinite horizon MPC. In
order to have a finite value, the average performance has to be zero and thus
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4 Distributed Economic Model Predictive Control with inexact optimization

the suboptimality has to convergence to 0. We consider

n(x) < el(xpe(x)) < car(|lx])),
with ¢ € (0,1). We require the following additional assumption:

Assumption 49.  (a) The terminal cost satisfies
V()| < ve(lIxI])-
(b) There exists Ny € IN, 6 > 0 such that X, contains the Ball Bj.

(c) There exists vy € Koo such that

A < yalllx])-
(d) There exists vy € Koo such that

V()| < rvlx]])-

Assumption (d) might not seem intuitive, but by using the fact, that V*(x)
is a Lyapunov function and that the difference is bounded by v, (||x||), this
assumption can be satisfied. Now we can state a theorem for the infinite
horizon cost under suboptimal MPC feedback. This theorem is a modified

version of theorem 5.1 in [GriinePanin15], that includes suboptimality.

Theorem 50. Let assumptions 1,2,4 and 49 hold. Assume further, that

V¥ (Agx + Bpe(x)) = V7 (x) < =1(xpe(x)) +1(x),

holds for all x € Xy and that n(x) < cl(x,pc(x)) with ¢ € (0,1). Then we have

1

. (VA (x) + 6(N)) + = (x])

1-c
for all x € Xy with §(N) € L.

Sxe) < VF(x) + V(x) <

Proof. The proof consists of two parts. First, the closed-loop cost J& (x,c) is
bounded by using the decrease condition in V*(x). Then the infinite horizon
cost V¥¢(x) is bounded by using a candidate input sequence u. and the

dynamic programming principle.
Part 1: Starting with

V*(Agx + Bpe(x)) = V*(x) < —1(xpue(x)) +1(x),
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we have
K—1
]%(xfﬂe) = kZ: l(xye (k/x)/VE(x;te(er)))
=0
K-1
<V*(x) = V¥ (xp (Kpx)) + kZ 1 (xp (k,x))
=0
K—1
SV @) =V (K0 1 T (e ()
=0
K-1
=V*(x) = V* (x4 (Kx)) + ¢ kZ I(oxp (k,x) ) e (xp (Kx)
=0

J{ (xpie)
+eA(x) = eA(xy (Kx))
1

< (V) =V (e (Kx)) 4+ A (x) — A, (Kx)) . (48)

1-c
With 77(x) < cI(x,ue(x)) the system is asymptotically stable, which implies
[ (k)| < Be ([ k) < pe(Mk) =: oe(k),

with M = max,cy ||x]| and oc € £, B € KL. Using assumption 49 (d) we
have

IV* (. (Kx)) | < yv(0e(K)). (4-9)
By taking the limit K — co we have
lim [|V*(x, (Kx))|| = lim 7y (ce(K)) = 0.
K—co K—o0
Using V*(x) = V*(x) + A(x) we get

c

1 —CV (x),

) < 1o V() A () = V() +

which concludes the first part of the proof.
Part 2: For the second inequality we need an intermediate result.

Lemma 51. ( [GriinePaninis] Corollary 4.4 ) Let assumption 1,2,4 and 49 hold.
There exists 0 € L such that Vx € Xeo,u € UP(x) with JU (x,u) < VE(x) +1
and for any K, p € N, there is a k € IN with p < k < K+ p such that
[lu(k,x)[| < o (K).
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Now we choose Ny, J based on assumption 49(b), fix € € (0,1) and an
admissible control u. that satisfies Jo<(x,uc) < VI + €. Then for N > 2N
we use lemma 51 with K = | N/2]|. Therefore the exists a k € {0,...,K—1}
such that ||x,, (k,x)|| < ¢(K) < 0(Np). For ¢(Ny) < § we have x,_(k,x) €
AN, C X, for Ni > Np. Correspondingly for N; = N — k we have ue €
L{A‘(Nik (x). By using assumption 49 (d) and lemma 51 we have

VN (xue (k%)) < vy (e (K)).

To get a bound on the best possible infinite horizon performance, we need
the following intermediate lemma.

Lemma 52. ( [GriinePaninis] Lemma 4.5 )
Let assumption 1,2,4 and 49 hold. Then VX (x) > —A(x) hold Vx € Xw.

Using lemma 52 with assumption 49 (c) we have
VaE(x) = =mdllxl)-
With this the candidate input from lemma 51 satisfies
Vo (x) + € > J(xue) + Voo© (xu (k,x)) = Ji€(x,ue) — 12 (0(K)).
Using the dynamic programming principle we get

Vi) = et G k)

< T (rue) + Vg (xu, (kx))
< Ve (x) +yv(e(K)) + 11 (0(K)) +e.

Since € was arbitrary, we have

Vi(x) < V'(x) +6(N),
6(N) = v (e(IN/2])) +7a(e(LN/2])).

For the rotated cost V*(x) = V*(x) + A(x) we have correspondingly
V¥ (x) < Ve (x) + 6(N) +ya(llx]))-

The final inequality is obtained by combing the two results. O
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To satisfy the assumption of the cost decrease, the result in section 4.2 can

be used. Note that if we use the pre-stabilized dynamics, the bound on the
closed-loop performance considers only the additional input v = p¢(x) and
not the full input u = py ¢ (x) + Kex, ie. I(x,u) # 1(x,pe).
For ¢ = 0 (3 = 0) we recover the result in [GriinePanin1is], which states
that the infinite horizon performance difference is bounded by a £-function
of N. This means that by increasing the prediction horizon N the MPC
performance will approach the infinite horizon performance. From the
suboptimality 77, ¢ we can see a deterioration of the performance, if c — 1.
This corresponds to the average result and stability result, that only holds
forc < 1.

Transient Performance

Now we will consider the transient performance over a horizon K with
inexact minimization. Recall from theorem 6 that the state trajectory under
the nominal MPC feedback satisfies ||x, (k,x)|| < B(||x[ k) with B € KL. The
following theorem gives a bound on the transient performance ]Iil(x,ye) with
respect to the optimal performance J§°(x,u). This theorem is a modified
version of theorem 5.2 in [GriinePanin15], that includes the suboptimality #.

Theorem 53. Let assumptions 1,2,4 and 49 hold. Assume further, that
V*(Agx + Be(x)) — V¥ (x) < =1(x,pe(x)) +1(x).

and that 1(x) < cl(x,ue(x)), with ¢ € (0,1).
Then there exists a 61,0y € L such that for all x € X'y we have

( inf  Jif (x,u) 4 01(N) + 82(K) + c(ya(0e(K)) + )\(x))) ,

1
cl

Xpe) <
IK( ]le) 1 uelf (x)

—c
with k = B(||x||,K) and

51(N) = v (e(IN/2])) +7a(e([N/2])),
52(K) = v (e (K)) + 7a(e(K)) + 7v (B(MK)) + 12 (B(MK)) + v (Be(MK)),

with M = max,cy ||x]|.

Proof. This proof consists of two parts. First, a bound on V*(x) is derived.
(This part is the same as in theorem 5.2 in [GriinePanin15].) Then a bound
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on the closed-loop cost with the inexact DEMPC is computed based on this
bound. }
Part 1: For the first part, we need a 1, o € L such that

Vi(x) < inf  JE(xu) +61(N) + 5 (K).
uelf (x)

By
For this we require an intermediate lemma.

Lemma 54. ( [GriinePanin1s] Lemma. 4.6)
Let assumptions 1,2,4 and 49 hold and fix kg > 0. Then for any x € (0,x], any
x € X, Ko € N with B(||x]|,Ko) < « the following inequalities hold.

(a) Forall K > Ky the inequality

inf Jg“(xu) < v ([Ix]]) + v (x)

uelg (x)
holds with vy € Keo from assumption 49 (d).
(b) Forall K € N with ng (x) # @ we have

Ax) =mal) < inf JgE(xu).

eug (x)

(c) There exists a o € L such that for all K > Ko, all P € N, any u € L{gk(x)
with

J(u) < inf  JE(xu) +1

uelf (x)

there is a k < min{P,K — 1} such that ||x,(kx)|| < §(min{P,K}).

Using lemma 54 (c) with P = | N/2], we use a candidate input ue € U gK (x)
with

(xue) < inf  J¥(xu) +€
REGoaw) < _inf )

and an arbitrary € € (0,1]. Therefore there exists a k € {0,...,[N/2]},

k < K—1 with ||xy, (k)] < o(min{P,K — 1}). Since u, steers x into By the
shifted input satisfies ue(k+-) € ngc_k(xue (k,x)) and thus L{g;k(xue (kx)) # 2.
Now we can apply lemma 54 (b) to conclude

Tk (e (kx) e (k ++)) = —ya(c(min{P,K —1})) — 7y, (x).
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This implies
inf Jge(xu) +e > Jg(xue) = Jg©(xoue) + Jg=p (xu, (kx) ue(k +-))
ueldf (x)
> Jg“(xue) — ya(o(min{N,K —1})) — 71 (x)
By choosing a sufficiently large N, K we have o(min{P,K}) < 4, with §
from assumption 49 (b), we have u. € L{Ij(Q(x) for Q > Ny, with Ny from
assumption 49 (b). By choosing N > 2Ny, we have N — k > Ny and thus
k
ue € Uy, (x).
With this inequality and the dynamic programming principle, we have

Vix) = inf R (xu) + YV i(xu(kx))} < JECoue) + V5 (xu (k)

uelxlf{,Nik (x)

< ueL.{me(x) J¥¢(x,u) + vy (o(min{P,K — 1})) + vy (k)
+ 71 (e(min{P K —1})) + 71 (x) +e.
With

51(N) = rv(e(IN/2])) + 1 (o([N/2]))

62(K) = yv (e (K)) + 1 (0(K)) + 7v (B(MK)) + 72 (B(M,K))

and M = sup,. y ||x| we have

V*(x) < inf )];C(x,u)+51(N)+52(K).

ueldg (x
Part 2:

Now we use the bound on V* to derive a bound on the transient performance.
From the proof of theorem 50: (4.8), (4.9) we have

JRpe) < 1 (V9(0) = V¥ (3 (Kx)) + A (x) — e, (Kx))

and

IV (e (K)) < yv (e (K)),
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due to the stability ||x, (kx)| < Be(||x|,k) and assumption 49 (d). This
implies

1
cl

Xpe) <
]K( ’45) 17C ueugK(x

( inf ) JRE () + 61(N) + 62(K) + v (0e(K))
+cA(x) + C'M(‘Te(K))> :

With 8, (K) = vy (0e(K)) 4 02 (K) we have

ueldf (x)

h%(x,ye)sllC( inf IEC(W)+51(N)+52(K)+C(n(0e(1<))+A(X)))-

O

For K — oo this theorem is equivalent to the previous theorem 50 on

the infinite horizon performance. If we compare this result, to the nominal
1

result in [GriinePanin15], the main difference is the factor T The other

additive therm c(7y, (0e(K)) + A(x)) depends also on the initial state x, and

is linear in the suboptimality c. Furthermore, for ¢ = 0 (7 = 0) and thus
B = Be we recover the result from [GriinePanini5] theorem 5.2.

Transient Performance - |l

So far all performance results relied on asymptotic stability of the system
under the suboptimal MPC feedback ye with 77(x) < I(x,ue(x)). Now we
study the performance by considering a more general constant upper bound
77 on the suboptimality, for which we can only establish practical asymptotic
stability. As already discussed the averaged infinite performance is equal
to the average suboptimality av[y], which in general leads to a non-finite
value for the non-averaged infinite horizon performance. The following
theorem extends the transient performance result in theorem 55 to a constant
suboptimality bound 7 (k) < 7.

Theorem 55. Let assumptions 1,2,4 and 49 hold. Assume further, that

V*(Agx + Bpe(x)) = V¥ (x) < —l(xpe(x)) +1(x).
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with a constant bound 1 (x) < 7. Then we have

120 (k) | < max{Be (k, [|x[|) ey (77) }-

with Be € KL and €, € K. Furthermore, there exists a 61, 6y € L such that for all
x € Xy we have

T (x,pe) < Zi/{r;f( ) JE (x,u) + 61(N) + 52 (K)

K-1
+ yv (max{oe (K),€,(77)}) + k;) 1(k),

with k = B(||x||,K), 0e(k) = Be(M,k) and

51(N) = v (e(IN/2])) + (0 ([N/2])),
52(K) = yv(e(K)) + 72 (c(K)) + v (B(MK)) + 72 (B(MK)),

with M = max ||x||.
xed&

Proof. This proof consists of three parts. First, practical asymptotic stability
with Be, €y is established. Then the optimal open loop cost J¢¢ is bounded
based on the value function V*. In the third part the closed-loop cost ]}7(1 is
bounded based on V*.

Part 1:

For the practical asymptotic stability we consider the rotated version of the
cost decrease in V*. By adding A(x") — A(x) on both sides we get

V() =V (x) < () +1(x) < —aq([lx]) +7.

Recall that ¢ € K« and from theorem 6, that V* is a candidate Lyapunov
function (positive definite). Now by using lemma 14 ( [GriineStieler14] Thm.
2.4), we get

[12uc () | < max{Be (k. [|x[]) € (77) },

with Be € KL and ¢, € K.
Part 2:
This part equivalent to part 1 in the proof of theorem 55 and yields

V)< ne ) +0(N) + 5(K).

- ueldf (x
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Part 3:
Now we use the bound on V* to derive a bound on the transient perfor-
mance.

K-1 K-1
JR (xpe) = kZ 1ty (k) pe (xp (kx))) < V7 (x) = V7 (2 (Kx)) + kZ 1 (k)
=0 =0

With assumption 49 (d) and the practical stability result of part 1, we have

IV (2 (Kx)) | < yv (max{oe (K), e, (77}),

with (k) = Be(Mk), M = max,cy ||x]|. By combining these bounds we
get

JRCope) < inf T (xu) +1(N) + 52 (K)
ue

K-1
+ v (max{ce (K),e; (77}) + kZ 7 (k).
=0

O

For 77 = 0 and thus ce = 0, €; = 0 we recover the result from [GriinePanin15]
theorem 5.2.
For K — co we recover the result on the average performance av[y] < 7.
The most critical error term is Z]Ifz_ol 1(k), since it increases with K. This
result is similar to the transient performance guarantee for EMPC with-
out terminal constraints (Thm. 4.1 [GriineStieleri4]), where we have one
term K- §1(N), that represents the fact, that we do not attain the optimal
steady state. Intuitively this means, that the effect of a suboptimality in the
optimization # to terminal constraint EMPC, is similar to the effect of the
prediction horizon N for EMPC without terminal constraints. Both lead to
practical asymptotic stability, instead of asymptotic stability. Furthermore,
due to the suboptimal operation off steady state, this leads to an additional
cost term in the transient performance, that scales with the interval K.

4.4.2 Performance Guarantees without terminal constraints

Now we consider DEMPC without terminal constraints from section 2.3.
First, the average infinite horizon performance is analysed. Then the tran-
sient performance is bounded, by assuming some bound on the subopti-
mality. The following result bounds the performance of DEMPC without
terminal constraints under inexact optimization.
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Averaged infinite horizon Performance

We first consider the averaged infinite horizon performance. To this end we
use

TR pne) < V() = Vi (xuy. (K) + 6(N) + 7

from theorem 48. This yields the following bound on the averaged infinite
horizon performance:

=l . 1
Jeo(X,1iN,e) = lim sup fhil(x,ﬂN,e)

T—oo
T-1
< lim sup T (v;;(x) Vi (T + & n(k)) +6(N)
—00 =0
= supav[n] + J(N).

Compared to the nominal result we have an additive term corresponding to
the average suboptimality.

Transient Performance

Since we have a non-zero average infinite horizon performance, we do not
investigate the infinite horizon performance further and directly consider the
transient performance. The following result is an extension of theorem 4.1
in [GriineStieler14], that includes a suboptimality # with a constant upper
bound 7. To this end we use the stability result of theorem 48 derived in
section 4.3.
Theorem 56. Assume that the rotated cost function V* satisfies

Vi (Ax + Bun,e(x)) = Vi (x) < —ag([Ix]]) +8(N) +7(x),

a([lxll) < VR (x) < ay(llx]),

with n(x) < 7. Assume further that the system is practical asymptotically stable

[y () | < max{Be(l|x[ k)€ },

with BN € KL and that assumption 49 (c) holds. Let k := ||x,uN,e(K/x)H <
max{Bn¢(|[x|,K)€y}, then

K-1
]fg(x,]/tN,e) < inf  Jx(xu) +ay (k) + 29, (k) + K61 (N) + Z (k)
uelX(x) k=0

holds for all K, N € IN, and all x € Xy.
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Proof. Starting with the practical Lyapunov function V* we have
VA (Ax + Bune(x)) < Vi (x) = ag([|x[]) + 61 (N) +7(x).
Summing over the prediction horizons and using induction this yields

K-1 :

K-1
kZ Ity (kx) e (kx)) < VR (2) = VR (g (K)) + KOy (N) + kZ 1 (k).
=0 =0

Using the dynamic programming principle

Vil = dnf ko) + Vi (ru(K)) )

and the bounds on V;Q
a([lx)l) < VR (x) < ay(llx])

we get forall K € {1,... N} withu € L{ge(x)

T (o) = Jie () + Vg (xu(K,x)) = Vi g (xu(Kx)) > Vi (x) — ay (e).

>V (x) <ay(e)

Going back to the original cost we have
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Now for all u € Uf (x) we get

(vine) ; (e (o) e () = A(3) + Mt (K. ))

V3 (3) — Pu (i (K) + K5y (N) + I:;: 7k
= A) + A, (K0)

<o) + 2y (6) — Va (s (K)) + K81 (N) + 122: 7k
— A + At (K1)

i) + @y () = Dy (g, (K0)) + Koy (N) + 122: 7k
= MK )+ A, (K)) 7

<JrCou) + v (6) + K (N) + I:z: 1) + 272 ().

The proof of the transient performance is similar to theorem 4.1 in
[GriineStieler14], by replacing d1(N) with §;(N) + 7. The main ingredi-
ent is the practical asymptotic stability proof under inexact minimization as
derived in section 4.3. This theorem states, that the effect of the suboptimal-
ity due to inexact optimization #, on the transient performance, is similar to
that of the suboptimality 1 (N) with respect to the infinite horizon MPC.

4.4.3 Interpretation

Now we discuss the implications of these results for the application of
DEMPC in comparison to the nominal results in [GriineStieler14,GriinePanin15].

DEMPC without terminal constraints

Let us first consider the DEMPC without terminal constraints. The nominal
results in [GriineStieler14] imply, that by increasing the prediction horizon N,
we can improve the performance and stability properties and even approach
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the infinite horizon EMPC. This means, that if we for example use a time
splitting algorithm [FerrantiEtAl15], we can improve the performance at the
cost of increasing the computational demand.

Now if we consider the results presented in this section, we get a seemingly
similar implication. By increasing the prediction horizon N, the stability
properties and performance approach the infinite horizon EMPC, up to a
constant depending on the suboptimality #. It is however unreasonable to
assume a constant suboptimality # with an increasing prediction horizon
N. Most likely that for a fixed number of iterations (limited time), the
suboptimality # will increase with the prediction horizon N.

Thus increasing the prediction horizon N without increasing the number
of iterations, will lead to a larger suboptimality 77 and depending on 6(N)
potentially to a worse performance. Even if the computational recources
grow proportional to the prediction horizon N, we can conclude, that there
is a trade off for how large the prediction horizon N should be. If we can
express 77 as a function of N, then the optimal prediction horizon N* is such
that 7(N) + §(N) is minimal.

More practically speaking this means that the prediction horizon should
be chosen large enough, such that we would get a good enough nomi-
nal performance. But increasing the prediction horizon too much, will at
some point result in worse performance (assuming limited computational
resources). Alternatively, one might try to increase the prediction horizon
without increasing the suboptimality. For [FerrantiEtAl15] this means that
the number of CPUs has to grow faster thann linear with respect to the
prediction horizon N, which can only be accomplished to a certain limit.

DEMPC with terminal constraints

Now we consider the results for the DEMPC with terminal cost and terminal
constraints. Again starting from the nominal results in [GriinePanin15] we
know, that the closed-loop infinite horizon performance compared to the
infinite horizon MPC cost V2, is only worse by a factor 6(N), which means
that for N — oo we approach infinite horizon performance. Furthermore,
independent of the prediction horizon, we can guarantee asymptotic stability
and thus an average optimal operation.

In the case of inexact minimization we distinguish two cases. We first
consider 7(x) < ca;(]|x|]). To ensure this we need to know a; and the
stopping condition for the dual iteration has to be adapted in each time step,
to ensure this bound. This requirement is quire similar to the bound on the
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suboptimality required for stabilizing MPC [FerrantiEtAl15]. If we approach
the optimal steady state this leads to high accuracy demands and thus high
computational demands. In [FerrantiEtAli5] this issue is avoided by using
the terminal controller inside the terminal set Xs. If we can guarantee this
suboptimality 7 we get similar performance bounds to the nominal case,

with the additional factor ¢
The more general case 7(x) < 7 is a lot easier to facilitate computationally,
since we can always assume some bound on the suboptimality #. The
price we pay is the loss of asymptotic stability and thus a deterioration of
the performance. If we consider short transient performance guarantees,
the deterioration in the performance is not necessarily that large. Even
though the performance guarantees look quite similar to the DEMPC without
terminal constraints, the implications are quite different.

The effect of the prediction horizon N on the performance seems small
compared to the suboptimality ;7. Therefore it might be better to use a
short prediction horizon with a small suboptimality than a large prediction
horizon with a larger suboptimality. The limitation is that the prediction
horizon needs to be large enough to ensure a large domain of attraction.
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5 Real time Economic Dispatch for Power
Systems with Model Predictive Control

This chapter describes the economic power dispatch problem for power
systems and compares the performance of DEMPC to existing 'classical’
control structures. The first section introduces the economic power dispatch
problem and the corresponding distributed power system dynamics. The
second section introduces the classical distributed control structure for
power systems, automatic generation control (AGC), and a state of the
art extension: economic AGC (EAGC). In the third section we investigate
how the theoretical results for DEMPC in the previous chapters and the
corresponding assumptions fit into the power system setup. In the fourth
section the performance of DEMPC is evaluated in simulation experiments
and compared to classical controllers.

5.1 Overview

This section gives a motivation for the usage of DEMPC for power systems
and outlines some of the existing controllers.

Motivation

Traditionally the control of power systems is divided into two time scales.
The slow economic dispatch (ED) determines the economically optimal
operation point based on a steady state optimization. The AGC regulates the
frequency and power exchanges to drive the system to the desired operation
point.

Several trends can be observed, that motivate the usage of more advanced
control methods for distributed power systems. Power systems grow in
size and complexity, making centralized control impractical due to the
high computational demand and the sharing of confidential information.
Therefore a distributed control structure that relies on minimal data exchange
is preferable. In the future an increase in renewable energy resources and
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demand response will lead to larger and faster fluctuations and disturbances
in the power grid. This means that transient performance becomes more
relevant and the classical controller configuration needs to be modified.

Available Controllers

Several alternative controller configurations have been studied. In [ZhangLi-
Papachristodoulou1s, ZhaoEtAl16] AGC has been modified to incorporate
constraints and performance in a steady state sense and achieve better sta-
bilization. While these approaches can improve the performance, they are
mainly steady state oriented and cannot give any guarantees during tran-
sient operation.

In contrast, MPC is a dynamic optimization method and can thus give
guarantees for transient operation. In [VenkatEtAlo8] a distributed MPC
was considered to stabilize the power system, which improves the conver-
gence speed. This approach however only considers input constraints, uses
primal decomposition and does not consider the economic performance.
In [ErsdalEtAl16] centralized MPC is used to stabilize the Nordic power grid
and compared to AGC. This MPC considers the same kind of constraints,
but only stabilizes the system and does not consider distributed optimiza-
tion. In comparison, the derived DEMPC uses dual distributed optimization
methods, that are scalable and directly considers the economic performance.

5.2 The Economic Dispatch Problem for Power Systems

This section describes the economic dispatch problem for power systems.
First the corresponding system dynamics are described. Then the objectives
and constraints are discussed.

5.2.1 Distributed Power System Model

A distributed power system network can be modeled as a graph (N,€),
where each node i € N corresponds to a bus/generator and the edges
(i,j) € € correspond to the coupled dynamics. The following model is taken
from [LiEtAl14]. Each generator/subsystem i is described by its local states
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x;, inputs u; and disturbances d;:
pu
X; = wj s ui:PiC/ di:PiL/
S
with the local mechanical Power PiM, the local frequency deviation w;, the
local phase shift J;, the local power change command PiC and the local power
load PI-L. The dynamic coupling between neighboring subsystems (i,j) is
based on the branch flow/tie-line power P;;
Vil [Vl

T 22
Xij T

Pi (Xi]' sin(S,-]- — V,']' Cos 51’]’)/

which is a nonlinear function of the phase shift 6;; = J; — J;. Here V; is
the bus voltage, x;; the line inductance and r;; the line resistance. The

corresponding local dynamics are given by

. 1
w; = —M(D,‘a)i—PiM—FPiL—F 2 Pi]'— Z Pji)/
i

jii—j jij—i
51' = wj,
. 1 1
pM = —i(PlM —P¢+ R—iw,-).

The corresponding parameters are the generator inertia M;, a damping
constant Dj, the time constant T; and a constant R;. With this the distributed
nonlinear model can be written as

X = Ajx; + Z gij(xij) + Bju; + E;d;.
j€N{

Controller Model

This nonlinear distributed model tends to be too complex for the controller
design. In order to avoid a large model mismatch, the model is successively
linearized around the current phase J;;:
Vi .
Pij(Adjj) =~ m(xij cos(6j(0)) + ri;sin(6;(0))) Ad;; + Pi(0),
ij ij

B,‘l‘
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with the current tie-line power P;;(0), the small change in the relative phase
Ad;j and a parameter Bj;. Theoretically the parameter B;; depends on the
current relative phase 6;;(0), but choosing a constant parameter is a sufficient
approximation. With this we have a linear distributed model

X,‘ = AM(XM +CM) +B,-ul- +Eidi/

where cp; and d; are modeled as constant external disturbances. This model
is controllable and marginally stable.
For DMPC we require a discrete time distributed linear model. Therefore
we use a second order discretization:

%= Ac(x+c)+ Beu+ Ecd,
h? h? h?
?AE +hAc+1)(x+c) + (7 ABc + Beh)u + (o AEc + Ech)d,

| —
Aq By Eg

x(t+h) = (

which leads to the linear distributed model
¥t = AM(XM + CM) + Bju; + E;d;.

The resulting discretization error is inevitable, since higher order discretiza-
tions lead to a further coupling in the dynamics, that destroys the distributed
structure and poses difficulties to the distributed online optimization.

5.2.2 Constraints and Objectives

Now we consider the constraints and economic cost function used for the
economic dispatch.

Constraints

Simple hyper box constraints on the power are considered

PE € [PS i Poal, PM e [PM

i i,min’ * i, max

PM ), Pj € [PRn, pmax],

i, min’ * i, max

This corresponds to local input constraints u; € U; and coupled local state
constraints xy; € X
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Economic Cost

The economic cost is a quadratic cost for the mechanical power PiM, with
M2
li(xju;) = a;(P7)"

Additional quadratic penalization of the angular frequency w; can also be
used to ensure small frequency deviations during transients.

Optimal Operation at steady state

The classical economic dispatch problem is an optimization problem to
compute the optimal steady state. In particular, a desired frequency w*
is usually set by a higher level controller and should be reached, which
corresponds to w = 0 and thus steady state operation. For steady state
operation the supplied and demanded power must be balanced, which
corresponds to

Therefore the economic stage cost corresponds to a tracking cost of an
unreachable set point [RawlingsEtAlo8] (except for PL = 0). By shifting
the origin to the optimal steady state x* we get linear dynamics with a
linear-quadratic stage cost I;, which corresponds to the setup in chapter 2.
If we only consider this stage cost and the previous constraints the optimal
operation would be a quasi-stationary state with constant w # 0 and constant
power P;;, PM (frequency synchronized solution). To ensure that the DEMPC
converges to the optimal steady state, we will discuss modifications to the
cost and/or constraints, which correspond to assumption 2.

5.3 Classical Control Structure - Power Systems

This section introduces the classical control structure used for distributed
power systems. In particular, classical automatic generation control (AGC)
and the more recent economic automatic generation control (EAGC) are
presented.
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5.3.1 Automatic Generation Control

The classical control of power systems is achieved with AGC and a slow cen-
tralized steady state economic dispatch. The centralized economic dispatch
solves the economic steady state optimization problem and assigns each
subsystem a desired local power PZ-M. The area control error (ACE) based
AGC is then used to stabilize this set point. This is done by computing the
error

ACE; = Biwi+ Y Pj— Y Pj,

Jii—j ifj—i
and adjusting the power change command with an integral control

5C — _K. .
Pi = —KjACE;,
that controls the turbine-governor control. This controller always compen-
sates the disturbances locally and cannot facilitate a more economic sharing
of the load among the subsystems. A more thorough investigation of AGC
can be found in [KumarKothariothersos].

5.3.2 Economic Automatic Generation Control

In [ZhangLiPapachristodoulou15] EAGC is proposed, a AGC like controller,
that modifies the power flow to enable a more economic operation and load
sharing. In particular, this controller is able adapt to changing disturbances
and track the new optimal steady state, without requiring the centralized
economic dispatch to compute the new optimal steady state. This way
changing disturbances can be incorporated a lot faster, which is increasingly
relevant due to emerging renewable energies and thus more dynamics in
the disturbances.

Basic Idea

Without going into specifics, the basic idea of the EAGC lies in reverse
engineering of the AGC and then re-engineering it to get economic AGC. This
relies on the saddle point algorithm to solve the steady state optimization
problem. The AGC can be reverse engineered to be equivalent to the
saddle point dynamics of the steady state optimization problem with a
local disturbance matching, i.e. PI.M = PIL. This steady state optimization
problem is then re-engineered by relaxing the disturbance matching, to allow
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an exchange in the power flow and imposing the hyperbox constraints on
PM, DPjj. By expressing the controller as a saddle point dynamic for this
optimization problem we get the EAGC, which has a similar structure to the
AGC, but incorporates the economic cost and has additional variables for
the branch flow and the constraints.

Properties

Let us discuss some properties of the EAGC. The derivations all use the
continuous time linearized system dynamics and the resulting controller is a
continuous controller, similar to the AGC. The controller does not need any
online optimization, consists of simple addition and multiplication and can
be implemented in a distributed fashion. This controller steers the system to
the economical optimal steady state, that satisfies the constraints. During
transient operation no guarantees with respect to performance or constraint
satisfaction can be made.

5.4 Distributed Economic Model Predictive Control

This section bridges the gap between the theoretical results for DEMPC on
the one side and the distributed economic dispatch problem on the other
side. First we show that the theoretical results in chapter 2 are applicable
to the distributed power setup. Then we consider the previously ignored
problem of output-feedback DEMPC and show how to compute an aug-
mented distributed observer. Finally we discuss the applicability of different
DEMPC approaches and argue for a specific one, which will be used for the
comparison in section 5.5.

5.4.1 Assumptions

Here we show how the assumptions used for the theoretical results in
chapter 2 can be satisfied for the power systems setup. As already pointed
out in section 5.2, the system dynamics and the stage cost fit the setup used
in chapter 2.

Optimal Operation at steady state

Strict dissipativity, assumption 2/16, is the most crucial assumption for
DEMPC. In [MiillerGriineAllgower15] it was shown, that this is satisfied, if
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the system is uniformly sub-optimally operated off steady state. As outlined
in section 5.2 the pure economically optimal behavior would result in a
constant w # 0. By adding a small penalty on 512 the optimal behavior
must lead to a finite § and thus av[w] = 0, which is desired. A more
straight forward approach to this problem is to directly use an average
constraint av|w;] = 0 in the DEMPC, which ensures asymptotic stability with
assumption 21, see [MiillerEtAl14]. An alternative way to avoid a constant
offset in w is to impose hyper box constraints on J;, which implicitly imposes
an average constraint av[w;]. This makes the analysis of recursive feasibility
simpler, but has other disadvantages.

DEMPC Assumptions

For completeness, we also cover the other assumptions and show, how they
can be satisfied for this setup. Assumption 1 requires compactness of the
constraint set X x U. To satisfy this assumption additional hyper box con-
straints can be imposed on J; and w;.

Assumption 2 and 3 relate to the storage function A(x). For linear systems
with a strictly convex quadratic stage costs and convex constraints there
exists a linear storage function A(x) = AT x that satisfies the strict dissipa-
tivity, [DiehlAmritRawlings11]. This can be guaranteed by adding a small
penalty on all state and input variables.

Assumption 4 relating to the terminal set X'r and the terminal cost V¢, can
be satisfied by using the design procedures lemma 10 and (2.14). Even
though we have a system that is controllable by distributed controllers, we
can theoretically not guarantee that the LMI conditions in lemma 10 have
a solution, due to the imposed structure. For the considered numerical
examples it was always possible to solve the corresponding SDPs. This issue
has been investigated in more detail in [HorssenLazarWeiland14].

For the DEMPC without terminal constraints we require some additional
assumptions. Assumption 17 is equivalent to a local controllability condi-
tion. Assuming Be € X and Be, € U, this condition is satisfied due to the
controllability of power systems.

Assumption 18 requires a finite time controllability into Be. This assumption
can be satisfied by replacing the state constraints X’ by the feasible set of
the MPC with terminal constraints. Or in other words, this assumption is
satisfied for the feasible set and thus we can guarantee the stability property
for all x in the feasible set instead of the whole state constraint set.
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5.4.2 Distributed Observers

In MPC we usually assume, that the full state x is measurable. For dis-
tributed power systems we can only measure the local frequency deviation
w; and the tie-line power Pj;. The local mechanical power PM is not mea-
sured, but is required for the predictions in the MPC. In comparison, the
AGC/EAGC does not require a measurement of the mechanical power PM.
Therefore we augment the DEMPC with a state observer, and use the esti-
mated state to make the predictions. In general, the issue of operating MPC
with limited observations is refereed to as output feedback MPC. Deriving
theoretical guarantees for this can be very difficult, since it usually requires
bounds on the observer error, and is beyond the scope of this investigation.
Instead we just show how such a distributed observer can be computed and
assume some upper bound on the transient estimation error, that can be
used for the constraint tightening with the robust DMPC.

Distributed Lunenberg Observer

To estimate the state £;, a distributed Lunenberg observer is used. Denote
the local measurements by y; € R™, then the structure of the observer is
given by

2" = AnEn; + Bt + Li (yi — Cac i) -
N—
Vi
The main challenge here is to compute a distributed observer gain L; €
R"*™i  that asymptotically stabilizes the observer dynamics. This task is
dual to the computation of the terminal controller/cost in section 2.2. For

the estimation error ¢; = £; — x; we get the system dynamics
e = (An; — LiCw e

Computing a distributed observer gain L for a system (A; C) with the system
dynamics matrix A and the output matrix C, is equivalent to computing a
distributed controller for (A; B) = (AT;C"), with the input matrix B. This
means that lemma 10 can be used to compute a distributed observer gain
L; with distributed LMI computations. Similar to a LQR or Kalman filter
design, the matrices Q and R are weighting matrices, that can be used to
shape the observer.
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Tie-line Power based Observer

Computing a distributed observer based on the controller model, can pose
some difficulties due to the non-observable marginally stable mode (§; = § i)
and offsets in the nonlinear tie-line power P;;. To avoid these issues we make

a transformation to the local variables [PiM , W, Pij] and use the corresponding
model for the estimation. This linear model is fully observable and we can
compute a distributed linear observer gain L;, that asymptotically stabilizes
the observer dynamics. An additional advantage of this observer model, is
that the nonlinear tie-line power P;; is directly estimated, by only using the
linear model.

The computation of this local observer relies again on the controller-observer
duality and lemma 10. Since the state variables Pl-]- are shared, the structure

of the terminal cost/Lyapunov function V = x T Px, needs to be further
specified. We use the ansatz

M
V= xTPx = Z XZTP,'X,' + Z Pi]'Pl%’
= (ifeE

with the scalar variables p;; € R and the local cost P; € R? only considering

the purely local states (PI.M ,w;). This structure ensures that the transformation
in lemma 10 (Y = KP), keeps the distributed structure of the local observer
gain L;. With this we can compute a distributed observer gain L;, which
asymptotically stabilizes the observer dynamics and is tunable with the
weighting matrices Q, R.

Disturbance Observer

In addition to the local state measurement the MPC uses the predicted dis-
turbance trajectory d;(t + k) in the optimization. The disturbance changes in
general unpredictably, which means that we cannot presume the correctness
of the predicted disturbance trajectory. Instead the MPC simply assumes,
that the disturbance trajectory remains constant. A small smooth change in
the disturbance can then be compensated by a small constraint tightening.
This however still requires the knowledge of the current disturbance d;(t).

For large sudden load changes (step), we can assume some external knowl-
edge, but small random changes need to be estimated. We use an augmented
distributed state observer, that estimates both the current state £; and dis-
turbance d;. This is done by computing a distributed observer, for the
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augmented state ¥; = [x;, d;] € R®. The augmented system dynamics are
given by
xt A E\ (x B
()=6 1) 6)
[ A N
Tt A x B
x
y=(C 0) (d) :
¢

By using the previous method to compute a distributed observer for this
augmented system, we get an observer, that estimates both the local state x;
and disturbance d;.

5.4.3 Discussion

We have established, that the theoretical results can all be used for power
systems. Now we discuss some of the advantages and disadvantages of
different DEMPC methods, as they relate to the power system setup.

DEMPC without terminal constraints with average constraint w

The usage of terminal costs and sets has the advantage of easily guaranteeing
recursive feasibility and asymptotic stability. The main drawback is the need
to recompute/adapt the optimal steady state and the terminal set size,
due to the changing disturbances. Additional difficulties result from the
ellipsoid constraint, which increases computational complexity for the online
optimization. In contrast DEMPC without terminal constraints requires no
offline computations and fluctuating disturbances do not pose a problem.
Therefore we only consider DEMPC without terminal constraints in the
comparison. For the DEMPC without terminal constraints we use average
constraints av[w;] = 0, to ensure convergence to steady state. This is mainly
because the alternative options need to consider 4;, a quantity which cannot
be measured and has no real physical meaning.

Robust DMPC

For the robust DMPC modification we use the additive disturbance w; to
model different effects. This includes in particular the model mismatch and
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the additional error caused by inexact dual optimization (see section 4.2).
Furthermore, unpredictable fluctuations in the power load P can also be
addressed this way. The state-estimation error can also be included here. If
we want to guarantee constraint satisfaction despite all these inconveniences,
a robust constraint tightening is inevitable.

For the robust modification we have two options: the growing tubes ap-
proach and the RPI tubes. For the RPI tubes, the RPI set needs to be
computed explicitly and the online computational demand is increased due
to the quadratic RPI constraint on the initial state. On the other side the
growing tubes approach only requires a stabilizing controller and leads to
a smaller constraint tightening along the prediction horizon. For power
systems the economical optimal operation point lies often at the boundary of
the constraint set. Therefore we use the growing tubes robust MPC approach
for power systems.

Realistic Scenario

It is important to clarify, that here we go beyond the previous established
results, to apply the inexact DEMPC to a realistic scenario. In particular we
have not established recursive feasibility guarantees for DEMPC without
terminal constraints under this setup (average constraints, inexact mini-
mization, constraint tightening, output feedback). Neithertheless, we have
recursive feasibility for this particular example and correspondingly we have
constraint satisfaction, stability and and superior economic performance.

5.5 Simulation Experiment - Test Case based Comparison

In this section, the performance of the DEMPC for the real time economic
dispatch for distributed power systems is studied in two scenarios and
compared to classical controllers and the best possible performance. First the
setup is introduced and the corresponding model parameters and controller
configurations are described. Then the first scenario with a large disturbance
change is considered and the resulting performance for operation along
the constraints is compared. In the second scenario randomly changing
disturbances are considered and the performance under constant fluctuations
are analysed. Finally the qualitative differences between DEMPC and EAGC
are summarized.
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5.5.1 Setup - Parameters and Controller Configuration

Here the setup for the comparison is introduced and the corresponding
model parameters and controller configurations are detailed. We consider a
4-area interconnected power system, which is represented in figure 5.1. For
the comparison AGC, EAGC, DEMPC and an optimal controller DEMPC* (to
be specified later) are used. The corresponding model parameters are shown

ot
b1

Figure 5.1: A g4-area interconnected power system.

in Table 5.1 and 5.2 and correspond to the model used in [LiEtAl14]. For the

economic cost we use /; = (PM )2, which means that the economic optimal
behavior is to distribute the load as equally as possible. For the constraints
we have Py = —Pﬂin =1, and Pirj“ax = —Pl-rjnin = 0.5. The EAGC is based
on a continous time model, linearized around the origin, and the control
parameters are y = 2, K. =15, Kg = Kz = K) =K, =Ky = Kl,j = 10. The
AGC is simulated with K; = 2 and B; = 2D;.

DEMPC-w

We consider DEMPC without terminal constraints, with the growing robust
tube approach and with an average constraint on wj, i.e. DEMPC-w. The
online computation is carried out with ADMM, and the online stopping
condition is based on the tolerance ¢ = 107°. To get a behavior similar
to EAGC we use the local stage cost [;(x;,u;) = (PM)? 4 100w?, that also
penalizes frequency deviations and thus stabilizes the frequency dynamics.
The model of the DEMPC uses a step size of h = 0.1s and a second order
discretization. For the constraint tightening the disturbance

W; = {wj||wp,,| <1073, |we| <3-107%, |ws| <3-1074},
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Table 5.1: Generator Parameters

Areai ‘ M,‘ Di |Vz| Tz Ri
1 3 1 1.045 4 0.05
2 25 15 098 4 0.05
3 4 1.2 1.033 4 0.05
4 35 1.4 0997 4 0.05

Table 5.2: Line Parameters

line | 12 2-3 3-4 41
r 0.004 0.005 0.006  0.0028
X 0.0386 0.02904 0.0596 0.0474

is considered. The corresponding stabilizing controller K; is computed based
on lemma 24 with A = 0.9. An artificial input constraint |P¢| < 10 and the
tightening p is included in the cost function, in order to avoid high gain
controllers.

The terminal cost Py and terminal controller K are computed based on
lemma 10. To avoid high terminal costs and strong coupling both the termi-
nal cost Py and the coupling I' are minimized.

A distributed tie-line based observer and an augmented version are com-
puted based on the description in section 5.4.2 with the weights R; = 107,
Q; = [10%,1072,10%] and pij = 102. All the corresponding LMI computations
are carried out with the MPT-3 toolbox [HercegEtAl13], Yalmip [Lofbergo4]
and MOSEK [Mosek1o].

Due to the absence of any cost or constraints on the control input PC, we do
not need to know the optimal steady state x* to implement the stabilizing
controller u = K¢(x — x*) + 0.

Best possible Performance - DEMPC*-w

In addition to the comparison between the different controllers, we compare
the performance to the best theoretically achievable performance. In sec-
tion 4.4, we have seen that the difference between the DEMPC and the best
possible performance is bounded by a factor depending on the prediction
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horizon N and the suboptimality . An additional deterioration in the per-
formance arises due to the model mismatch (discretization + linearization),
the unpredictable change in the load (d;) and the consequently tightened
operational space (constraint tightening).

To get an estimate for the loss of performance due to these factors, we
consider an idealized controller, denoted by DEMPC*-w. For this we assume,
that the disturbance trajectory d; in the future is known, that there is no
model mismatch (system model = linearized discretized controller model)
and that the underlying optimization problem is solved exactly. This con-
troller has the same constraint on the average frequency w as DEMPC-w.
This is basically an optimal open loop control. It is important to note, that
such a performance can never be attained in practice, but it is merely a lower
bound.

5.5.2 Scenario 1 - Operation along the Constraints

In the first scenario the disturbance d, increases with a 1 second ramp from
d4 = 0to dy = 1.4, which pushes the system to the constraints. The resulting
behavior of the classical AGC, the Economic AGC, DEMPC with average
constraints for w; and the optimal DEMPC* are shown in figures 5.2- 5.4. In
this scenario we assume, that the DEMPC knows the disturbance trajectory
a priori, which is a reasonable assumption for large deterministic changes.

Here we can see, that the EAGC balances the load among the subsystems
and converges to a steady state that respects the constraints. The AGC
compensates the load locally and does not take any constraints into account.
We can also see, that the AGC converges slowly, with stronger oscillations.
The DEMPC is a lot faster in stabilizing the dynamics and is also able to
respect the tie-line constraints during transients, while the EAGC violates
the tie-line constraints. It is important to point out that the DEMPC only
converges close to the optimal steady state due to the constraint tightening.
Another big difference between MPC and AGC can be seen at the frequency
deviation. The AGC stabilizes the frequency deviation like a linear controller
with lage oscillations. The DEMPC quickly stabilizes all subsystems to the
same, non-zero frequency (frequency synchronization). Then after some
time, the frequency transitions smoothly to the nominal value. This reflects
the fact, that purely minimizing the economic cost, will result in an optimal
behavior with non-zero frequency. Then after some time (tuneable), the
constraint on the average frequency av[w] = 0 becomes active, and thus the
frequency is naturally driven back to the nominal value.
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Mechanical Power B,

Mechanical Power R,

128

AGC EAGC

Mechanical Power B,

0 5 10 15
Time (s) Time (s)
DEMPC -w DEMPC* -w
e (1)
06 P 06
—p?|
0.5 3) 0.5
0.4 —Py g 04
3
<
03 y K 0.3
\r g (1)
0.2 4 'v v % 0.2 PM
o (2
Z o1 —
0.1 3)
P
0 0 —p
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
Time (s) Time (s)

Figure 5.2: Power PM - Scenario 1.



5.5 Simulation Experiment - Test Case based Comparison

Tieline Power P,

Tieline Power P,

0.6

0.4

0.2

-0.2

-0.4

-0.6

0.6

0.4

0.2

-0.2

-0.4

-0.6

AGC

——————————— P

—P

Pay

—P

= = Pijminmax N

0 5 10 15
Time (s)
DEMPC -w
—_—P,
,J\’— Py
PSA
—_—P,
-= P.,.mm/max
0 5 10 15

Time (s)

Tieline Power F“

Tieline Power P,

0.6

0.4

0.2

-0.2

-0.4

-0.6

0.6

0.4

0.2

-0.2

0.4

-0.6

—P,

- P
i min/max

0 5 10 15
Time (s)
DEMPC* -w
—_—P,
—Py
Pa, I—

e
- pumm/max

0 5 10 15

Time (s)

Figure 5.3: Tie-line Power P;; - Scenario 1.

129



5 Real time Economic Dispatch for Power Systems with Model Predictive Control

AGC EAGC

Frequency w
Frequency w

0 5 10 15 0 5 10 15
Time (s) Time (s)

DEMPC -w DEMPC* -w

0

Frequency w
s o
o

S o

?

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

‘

|

Frequency w
S
o

S o

JE—— “a
@ ”
0.04 “a -0.04 o
el —)
—)
0.06 s 0.06
0.08 0.08
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
Time (s) Time (s)

Figure 5.4: Frequency Deviation w - Scenario 1.

130



5.5 Simulation Experiment - Test Case based Comparison

The "optimal” behavior, DEMPC*, is relatively similar to the DEMPC. One of
the major difference is the steady state economic cost, due to the constraint
tightening. The other big difference is in the frequency deviation w. To
achieve better performance, a negative frequency w is stabilized in the quasi-
stationary operation. To still satisfy the average constraint on w, w is initially
artificially increased, where it only results in a small additional cost.

The corresponding differences in performance are summarized in table 5.3.

Table 5.3: Performance

Method | av[P3] av[lw|]] [lwllo av[w?] P3(end) con

AGC 17170 1.5e-2 8.5e-2 5.28e-4 2.4346 0.2156
EAGC 0.4622  1.1e-2  7.3e-2 3.84e-4 04945  0.0018
DEMPC-w | 0.4776 1.9e-3  2.4e-2 1.00e-5 0.5401 0

DEMPC*-w | 0.4359 3.7e-3 1.6e-2 1.90e-5  0.4886 -

Here aV[P]%A] is the average economic cost, av[|w|] the absolute average
frequency offset, |w|w is the peak value of the frequency and av[w?] is the
average quadratic frequency. P2 (end) is the economic cost at the steady
state, that is reached at the end of this simulation, and con measures how
much the constraints have been violated. The difference in the economic
stage cost over time can be seen in figure 5.5.
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Figure 5.5: Economic Performance -Scenario 1
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On different notations of Constraints

There is a general difference in the treatment of constraints between MPC
and AGC, that should be highlighted. For (E)AGC the constraints are de-
fined for steady state operation and violations over longer periods of time
are expected. In contrast MPC always satisfies constraints at each point in
time.

In the given scenario this property in combination with the constraint tight-
ening prevents the MPC from reaching the optimal steady state. It would
however be false to see this as a limitation of MPC. Instead it is a feature,
that allows the operator to impose hard constraints in addition to steady
state constraints. The steady state constraints can be incorporated in the
MPC as average or transient constraints. This way the MPC has a larger
domain of operation and can achieve even better results. More importantly
this enables the operator to directly specify hard constraints and also to
give hard bounds on how long/how much the steady state constraints are
allowed to be violated.

5.5.3 Scenario 2 - Random load changes

In the second scenario we consider constantly fluctuating disturbances to
better reflect the permanent changes and put more focus on the transient
performance. Here the local loads d; change randomly with

di(k+1) =d;(k) + unif(—Ad,Ad),

with the uniform distribution unif and the maximum change Ad = 0.01.
In this scenario the constraints are not relevant, and the focus is on the
transient economic performance due to this changing disturbance. By using
a random change in the disturbance, instead of just a random disturbance,
we get trends in the disturbance. This means that just stabilizing the original
steady state is not optimal. Furthermore, this enables large disturbances,
while having a smooth change. Here the disturbance is unknown to the
DEMPC and online estimated with the augmented state observer. The
resulting random walk of the disturbance and the corresponding estimated
disturbance can be seen in figure 5.6.
The resulting trajectories for the different controllers are shown in figures 5.7-
5.9.

If we compare the EAGC with AGC, we can see a very similar frequency
stabilization, while the economic cost of the EAGC is significantly lower,
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due to the power exchange. Even though, there are no theoretical results
available for the tracking performance of EAGC, we can see, that the load
is shared almost equally over the full time span, which corresponds to the
optimal steady state behavior.
If we look at the DEMPC, the frequency w is kept significantly smaller, while
the tie-line power P;; has a similar trend to the EAGC. Also the power pM
follows a similar pattern to EAGC, but is less smooth.
For the optimal behavior DEMPC*, we can see little difference to the DEMPC.
The quantitative performance is summarized in table 5.4.

The difference in the economic stage cost can be seen in figure 5.10.

Table 5.4: Performance

Method | av[P%] av[w] av[w|]] [w]e av[w?]
AGC 1.242e-2 -4.3e-4 2.2e-3  7.8e-3  7.26e-6
EAGC 1.362e-3 -3.0e-4 1.8e-3 6.3e-3 5.06e-6
DEMPC-w | 1.144€-3 -4.6e-4 7.6e-4 4.4e-3 1.37e-6
DEMPC*-w | 1.139e-3 -1.1e-4 3.3e-4 1.4e-3 1.80e-7
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Numerical Effects

While numerical studies are not the focus of this work, some results regard-
ing the convergence of the ADMM algorithm are presented. Therefore, we
considered different tolerances € and different penalty factors p and study
the effect on the performance and the number of required iterations for this
scenario. In table 5.5 the corresponding numerical results are summarized.
For comparison, two simulation runs with a fixed number of iterations are
included, for which no theoretical guarantees can be obtained.

Table 5.5: Numerical convergence results

€ Y aV[PI%A] av[w?] av[iter] max[iter]
10° 100 1.043e-3 1.76e-6 228 1042
107% 100 1.036e-3 1.81e-6 1.12 4
107* 10 1.066e-3 1.63e-6 92.5 470
107° 10 1.134e-3 1.40e-6 556 876

- 10 1.038e-3  1.79e-6 10 10

- 10 1.059e-3 1.65e-6 100 100

Here we can see that a well-tuned ADMM is able to give medium accuracy
with few iterations. But we can also see, that the number of required
iterations can grow large, if we have higher accuracy demands. Furthermore
we can see that (at least in this scenario) the impact of the accuracy on the
suboptimality is relatively small. In the first scenario the connection is more
complicated since the medium accuracy € also leads to a larger constraint
tightening and thus worse performance. The number of iterations could
be further reduced by scaling the optimization problem and selecting the
parameters optimally [GiselssonBoyd14, GhadimiEtAl15].

5.5.4 Qualitative Comparison

As an addition to the quantitative performance comparison in the two sce-
narios we discuss some qualitative differences. Out of the four considered
controllers we only compare DEMPC and EAGC. AGC seems by every mea-
sure worse then EAGC, and while DEMPC* is superior, it is not practically
implementable.
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The first obvious difference lies in the complexity and online computational
demand associated with DEMPC in comparison to the ‘simple’ implemen-
tation of EAGC. For real time application of DEMPC, multiple distributed
optimization iterations need to be carried out in each sampling time step,
while EAGC only requires simple multiplications/additions. The most im-
portant advantage of MPC in general, is the satisfaction of state constraints
during transient dynamics. In comparison, EAGC guarantees that the sys-
tem converges to a steady state, that satisfies the state constraints, with no
guarantees for the transient constraint violation.

For EAGC we know that the closed-loop system is asymptotically stable. For
DEMPC with suboptimality, especially without terminal conditions, we can
only guarantee practical asymptotic stability (see section 4.3).

A key advantage of DEMPC are the transient performance guarantees de-
spite suboptimality derived in section 4.4, which are not available for EAGC.
In the context of fluctuating disturbances the advantages of DEMPC become
more prevalent. The distinction between asymptotic stability and practical
stability becomes meaningless, while the advantage of transient performance
and constraint satisfactions gains significance. On the other side the EAGC
is mainly based on a steady state optimization, which gives no guarantees
for transient phases, which are dominant under fluctuating disturbances.
Another important issue is the extension to nonlinear dynamics. By its very
nature EAGC is based on duality and thus linear dynamics. For DEMPC
we can use a successive linearized model, which seems to represent the
nonlinear model well enough. For DEMPC without terminal constraints,
all theoretical results are general enough to apply to nonlinear dynamics.
The challenge lies mainly in the online distributed optimization, which
requires the solution of a local nonlinear programming (NLP) in each it-
eration step. (An inexact ADMM method, ALADIN, could be used for
this [HouskaFraschDiehl16].)

In summary, DEMPC is more complex than EAGC, but offers benefits for
transient operation. Therefore, the more fluctuations and dynamics are
present in the system, the higher is the potential improvement in perfor-
mance, stability and constraint satisfaction by using DEMPC, a dynamic
optimization method, instead of EAGC, a primarily stationary optimization
method.
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This chapter summarizes the main results of this thesis in comparison to
existing results. Also further research topics building on this work are
proposed.

6.1 Conclusions

In this work, theoretical guarantees for DEMPC under inexact minimization
were derived. We also showed, that all the required offline computations can
be cast as distributed optimization problems, which facilitates an automatic
design procedure. This is mainly an extension of previous results in [Con-
teEtAl16] and [ConteEtAl13].

Then assuming a certain accuracy (€,17) of a distributed optimization al-
gorithm, the original MPC optimization problem can be modified such
that we have guarantees for constraint satisfaction and recursive feasibility.
There exist several distributed algorithms, in particular dual fast gradient
methods [FerrantiEtAl15, NecoaraNedelcu14, NecoaraSuykenso8], that can
compute such a solution with a finite number of iterations. Compared
to existing results, we do not require online adaptation of the constraint
tightening as in [FerrantiEtAl15, GiselssonRantzer14, DoanKeviczkyDe Schut-
ter11], and the constant tightening is significantly less conservative compared
to [KogelFindeisen14]. This is possible by considering an inexact trajectory
for the candidate solution.

Stability and performance guarantees with suboptimality # in the optimiza-
tion have been derived. This can be seen as an extension of the nominal
results derived in [Griine13, GriineStieler14, GriinePanin1s].

The other contribution of this thesis is the application of DEMPC to solve the
real time economic dispatch problem. Here we demonstrated that DEMPC
can be used for realistic power system scenarios. We also compared DEMPC
to EAGC [ZhangLiPapachristodoulou1s] and showed superior economic
performance, faster frequency damping and constraint satisfaction.
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6.2 Future Work

Although this work already contains a framework for DEMPC with inexact
minimization, there are several promising directions for further research.
The recursive feasibility result could be put together with a dual fast gradi-
ent algorithm like [FerrantiEtAl15]. By choosing the constraint tightening
properly it should be possible to derive a general a priori upper bound on
the number of required iterations.

Deriving a similar recursive feasibility results under constraint tightening
for MPC without terminal constraints, would also be a valuable contribution.
Here a RPI tightening instead of the growing tubes approach might be
more adequate. Showing that the simulation results in thesis also hold for
more complex power systems is another future endeavor. Therefore a more
comprehensive simulation study, considering for example the 39 IEEE bus
system used in [ZhaoEtAl16] would be worthwhile.

140



Eigenstandigkeitserklarung

Ich versichere hiermit, dass ich, Johannes Kohler, die vorliegende Arbeit
selbststdndig angefertigt, keine anderen als die angegebenen Hilfsmittel be-
nutzt und sowohl wortliche, als auch sinngeméf3 entlehnte Stellen als solche
kenntlich gemacht habe. Die Arbeit hat in gleicher oder dhnlicher Form noch
keiner anderen Priifungsbehorde vorgelegen. Weiterhin bestétige ich, dass
das elektronische Exemplar mit den anderen Exemplaren {ibereinstimmt.

Ort, Datum Unterschrift

141



6 Summary and Outlook

142



Literaturverzeichnis

[AlvaradoEtAl1o] Alvarado, I.; Limon, D.; de la Pena, D.M.; Alamo, T.; Ca-
macho, E.: Enhanced ISS nominal MPC based on constraint tightening
for constrained linear systems. In Control 2010, UKACC International
Conference on, S. 1-6, IET, 2010.

[AmritRawlingsAngeli11] Amrit, R.; Rawlings, J.B.; Angeli, D.: Economic
optimization using model predictive control with a terminal cost.
Annual Reviews in Control, Bd. 35, Nr. 2, S. 178-186, 2011.

[AngeliAmritRawlings12] Angeli, D.; Amrit, R.; Rawlings, ].B.: On average
performance and stability of economic model predictive control. IEEE
transactions on automatic control, Bd. 57, Nr. 7, S. 1615-1626, 2012.

[BayerEtAl16] Bayer, FA.; Lorenzen, M.; Miiller, M.A.; Allgéwer, E.: Robust
economic Model Predictive Control using stochastic information.
Automatica, Bd. 74, S. 151-161, 2016.

[BocciaGriineWorthmanni4] Boccia, A.; Griine, L.; Worthmann, K.: Stability
and feasibility of state constrained MPC without stabilizing terminal
constraints. Systems & Control Letters, Bd. 72, S. 14-21, 2014.

[Boydoy] Boyd, S.: Primal and dual decomposition. Lecture Notes, EE364b
Convex Optimization, Stanford University, http://www. stanford.
edu/class/ee364b/lectures. html, 2007.

[BoydEtAlg4] Boyd, S.P.; El Ghaoui, L.; Feron, E.; Balakrishnan, V.: Linear
matrix inequalities in system and control theory, Bd. 15. SIAM, 1994.

[BoydEtAl11] Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J.: Distribu-
ted optimization and statistical learning via the alternating direction
method of multipliers. Foundations and Trends® in Machine Lear-
ning, Bd. 3, Nr. 1, S. 1-122, 2011.

[BoydVandenbergheo4] Boyd, S.; Vandenberghe, L.: Convex optimization.
Cambridge university press, 2004.

143



Literaturverzeichnis

[ChenAllgowergy] Chen, H.; Allgower, F.: A quasi-infinite horizon nonlinear
model predictive control scheme with guaranteed stability. In Control
Conference (ECC), 1997 European, S. 1421-1426, IEEE, 1997.

[ChisciRossiterZappao1] Chisci, L.; Rossiter, J.A.; Zappa, G.: Systems with
persistent disturbances: predictive control with restricted constraints.
Automatica, Bd. 37, Nr. 7, S. 1019-1028, 2001.

[ConteEtAli2a] Conte, C.; Summers, T.; Zeilinger, M.N.; Morari, M.; Jo-
nes, C.N.: Computational aspects of distributed optimization in mo-
del predictive control. In 2012 IEEE 51st IEEE Conference on Decision
and Control (CDC), S. 6819—6824, IEEE, 2012.

[ConteEtAl12b] Conte, C.; Voellmy, N.R.; Zeilinger, M.N.; Morari, M.; Jo-
nes, C.N.: Distributed synthesis and control of constrained linear
systems. In 2012 American Control Conference (ACC), S. 6017-6022,
IEEE, 2012.

[ConteEtAl12c] Conte, C.; Voellmy, N.R.; Zeilinger, M.N.; Morari, M.; Jo-
nes, C.N.: Distributed synthesis and control of constrained linear
systems. In 2012 American Control Conference (ACC), S. 6017-6022,
IEEE, 2012.

[ConteEtAl13] Conte, C.; Zeilinger, M.N.; Morari, M.; Jones, C.N.: Robust
distributed model predictive control of linear systems. In Proc. of the
12th European Control Conf, S. 2764-2769, 2013.

[ConteEtAl16] Conte, C.; Jones, C.N.; Morari, M.; Zeilinger, M.N.: Distribu-
ted synthesis and stability of cooperative distributed model predictive
control for linear systems. Automatica, Bd. 69, S. 117-125, 2016.

[DammEtAl14] Damm, T.; Griine, L.; Stieler, M.; Worthmann, K.: An expo-
nential turnpike theorem for dissipative discrete time optimal control
problems. SIAM Journal on Control and Optimization, Bd. 52, Nr. 3,
S. 1935-1957, 2014.

[DiehlAmritRawlings11] Diehl, M.; Amrit, R.; Rawlings, J.B.: A Lyapunov

function for economic optimizing model predictive control. IEEE
Transactions on Automatic Control, Bd. 56, Nr. 3, S. 703—707, 2011.

144



Literaturverzeichnis

[DoanKeviczkyDe Schutter11] Doan, M.D.; Keviczky, T.; De Schutter, B.: A
distributed optimization-based approach for hierarchical MPC of
large-scale systems with coupled dynamics and constraints. In 2011
soth IEEE Conference on Decision and Control and European Control
Conference, S. 52365241, IEEE, 2011.

[ErsdalEtAl16] Ersdal, A.M.; Imsland, L.; Uhlen, K.; Fabozzi, D.; Thorn-
hill, N.E.: Model predictive load—frequency control taking into ac-
count imbalance uncertainty. Control Engineering Practice, Bd. 53,
S. 139-150, 2016.

[FagianoTeel12] Fagiano, L.; Teel, A.R.: Model Predictive Control with gene-
ralized terminal state constraint. IFAC Proceedings Volumes, Bd. 45,
Nr. 17, S. 299-304, 2012.

[FarinaScattolinii2] Farina, M.; Scattolini, R.: Distributed predictive control:
a non-cooperative algorithm with neighbor-to-neighbor communi-
cation for linear systems. Automatica, Bd. 48, Nr. 6, S. 1088-1096,
2012.

[FerrantiEtAl15] Ferranti, L.; et al.: A parallel dual fast gradient method for
MPC applications. In 2015 54th IEEE Conference on Decision and
Control (CDC), S. 24062413, IEEE, 2015.

[GhadimiEtAl15] Ghadimi, E.; Teixeira, A.; Shames, I.; Johansson, M.: Op-
timal parameter selection for the alternating direction method of
multipliers (ADMM): quadratic problems. IEEE Transactions on
Automatic Control, Bd. 60, Nr. 3, S. 644658, 2015.

[GiselssonBoyd14] Giselsson, P.; Boyd, S.: Diagonal scaling in Douglas-
Rachford splitting and ADMM. In Decision and Control (CDC),
2014 IEEE 53rd Annual Conference on, S. 5033-5039, IEEE, 2014.

[GiselssonRantzer14] Giselsson, P.; Rantzer, A.: On feasibility, stability and
performance in distributed model predictive control. IEEE Transacti-

ons on Automatic Control, Bd. 59, Nr. 4, S. 1031-1036, 2014.

[Griine13] Griine, L.: Economic receding horizon control without terminal
constraints. Automatica, Bd. 49, Nr. 3, S. 725734, 2013.

145



Literaturverzeichnis

[GriineMiiller16] Griine, L.; Miiller, M.A.: On the relation between strict
dissipativity and turnpike properties. Systems & Control Letters,
Bd. 90, S. 45-53, 2016.

[GriinePaninis] Griine, L.; Panin, A.: On non-averaged performance of
economic MPC with terminal conditions. Universitat Bayreuth, 2015.

[GriinePannek11] Griine, L.; Pannek, J.: Nonlinear model predictive control.
In Nonlinear Model Predictive Control, S. 43-66. Springer, 2011.

[GriineStieler14] Griine, L.; Stieler, M.: Asymptotic stability and transient
optimality of economic MPC without terminal conditions. Journal of
Process Control, Bd. 24, Nr. 8, S. 1187-1196, 2014.

[HeidarinejadLiuChristofides12] Heidarinejad, M.; Liu, J.; Christofides, P.D.:
Economic model predictive control of nonlinear process systems
using Lyapunov techniques. AIChE Journal, Bd. 58, Nr. 3, S. 855-870,
2012.

[HercegEtAl13] Herceg, M.; Kvasnica, M.; Jones, C.; Morari, M.: Multi-
Parametric Toolbox 3.0. In Proc. of the European Control Conference,
S. 502-510, Ziirich, Switzerland, 2013. http://control.ee.ethz.ch/
~mpt.

[HorssenLazarWeiland14] van Horssen, E.P,; Lazar, M.; Weiland, S.: On
Synthesis of Stabilizing Distributed Controllers with an Application
to Power Systems. IFAC Proceedings Volumes, Bd. 47, Nr. 3, S. 11917-
11925, 2014.

[HouskaFraschDiehl16] Houska, B.; Frasch, J.; Diehl, M.: An Augmented La-
grangian Based Algorithm for Distributed NonConvex Optimization.
SIAM Journal on Optimization, Bd. 26, Nr. 2, S. 1101-1127, 2016.

[JokicLazarog] Jokic, A.; Lazar, M.: On decentralized stabilization of discrete-
time nonlinear systems. In 2009 American Control Conference,
S. 5777-5782, IEEE, 2009.

[KogelFindeisen12] Kogel, M.; Findeisen, R.: Cooperative distributed MPC
using the alternating direction multiplier method. IFAC Proceedings
Volumes, Bd. 45, Nr. 15, S. 445—450, 2012.

146


http://control.ee.ethz.ch/~mpt
http://control.ee.ethz.ch/~mpt

Literaturverzeichnis

[KogelFindeisen14] Kogel, M.; Findeisen, R.: Stabilization of inexact MPC
schemes. In 53rd IEEE Conference on Decision and Control, S. 5922—
5928, IEEE, 2014.

[KumarKothariotherso5] Kumar, P; Kothari, D.P; et al.: Recent philosophies
of automatic generation control strategies in power systems. IEEE
transactions on power systems, Bd. 20, Nr. 1, S. 346357, 2005.

[LangsonEtAlo4] Langson, W.; Chryssochoos, I.; Rakovi¢, S.; Mayne, D.Q.:
Robust model predictive control using tubes. Automatica, Bd. 40,
Nr. 1, S. 125-133, 2004.

[LiEtAl14] Li, N.; Chen, L.; Zhao, C.; Low, S.H.: Connecting automatic
generation control and economic dispatch from an optimization view.
In 2014 American Control Conference, S. 735-740, IEEE, 2014.

[LimonEtAlo8a] Limon, D.; Alvarado, I.; Alamo, T.; Camacho, E.: On the
design of Robust tube-based MPC for tracking. IFAC Proceedings
Volumes, Bd. 41, Nr. 2, S. 15333-15338, 2008.

[LiménEtAlo8b] Limén, D.; Alvarado, I.; Alamo, T.; Camacho, E.E.: MPC for
tracking piecewise constant references for constrained linear systems.
Automatica, Bd. 44, Nr. 9, S. 2382—2387, 2008.

[Lofbergo4] Lofberg, J.: YALMIP: A toolbox for modeling and optimization
in MATLAB. In Computer Aided Control Systems Design, 2004 IEEE
International Symposium on, S. 284-289, IEEE, 2004.

[MaestreNegenbornothersi4] Maestre, ].M.; Negenborn, R.R.; et al.: Distri-
buted model predictive control made easy, Bd. 69. Springer, 2014.

[MayneEtAlog] Mayne, D.Q.; Rakovi¢, S.; Findeisen, R.; Allgower, F.: Robust
output feedback model predictive control of constrained linear sys-
tems: Time varying case. Automatica, Bd. 45, Nr. 9, S. 2082—2087,
2009.

[MayneSeronRakovi¢os] Mayne, D.Q.; Seron, M.M.; Rakovi¢, S.: Robust mo-
del predictive control of constrained linear systems with bounded
disturbances. Automatica, Bd. 41, Nr. 2, S. 219-224, 2005.

[Mosekio] Mosek, A.: The MOSEK optimization software. Online at
http:/ /www. mosek. com, Bd. 54, S. 2-1, 2010.

147



Literaturverzeichnis

[MiillerAllgower1y] Miiller, M.A.; Allgower, F.: Economic and Distributed
Model Predictive Control: Recent Developments in Optimization-
Based Control. SICE Journal of Control, Measurement and Systems
Integration, Bd. 10, Nr. 2, 2017.

[MiillerAngeliAllgower13] Miiller, M.A.; Angeli, D.; Allgéwer, F.: On con-
vergence of averagely constrained economic MPC and necessity of
dissipativity for optimal steady-state operation. In 2013 American
Control Conference, S. 31413146, IEEE, 2013.

[MiillerAngeliAllgower14] Miiller, M.A.; Angeli, D.; Allgéwer, F.: On the
performance of economic model predictive control with self-tuning
terminal cost. Journal of Process Control, Bd. 24, Nr. 8, S. 1179-1186,
2014.

[MiillerEtAl14] Miiller, M.A.; Angeli, D.; Allgower, F; Amrit, R.; Raw-
lings, J.B.: Convergence in economic model predictive control with
average constraints. Automatica, Bd. 50, Nr. 12, S. 3100-3111, 2014.

[MiillerGriineAllgower1s] Miiller, M.A.; Griine, L.; Allgéwer, E: On the
role of dissipativity in economic model predictive control. IFAC-
PapersOnLine, Bd. 48, Nr. 23, S. 110-116, 2015.

[NecoaraDoanSuykenso8] Necoara, I.; Doan, D.; Suykens, J.A.: Application
of the proximal center decomposition method to distributed model
predictive control. In Decision and Control, 2008. CDC 2008. 47th
IEEE Conference on, S. 2900—2905, IEEE, 2008.

[NecoaraEtAlog] Necoara, I.; Savorgnan, C.; Tran, D.Q.; Suykens, ].;
Diehl, M.: Distributed nonlinear optimal control using sequential
convex programming and smoothing techniques. In Decision and
Control, 2009 held jointly with the 2009 28th Chinese Control Confe-
rence. CDC/CCC 2009. Proceedings of the 48th IEEE Conference on,
S. 543-548, IEEE, 2009.

[NecoaraNedelcu14] Necoara, I.; Nedelcu, V.: Rate analysis of inexact dual
first-order methods application to dual decomposition. IEEE Transac-
tions on Automatic Control, Bd. 59, Nr. 5, S. 1232-1243, 2014.

[NecoaraNedich15] Necoara, I.; Nedich, A.: A fully distributed dual gradi-
ent method with linear convergence for large-scale separable convex

148



Literaturverzeichnis

problems. In Control Conference (ECC), 2015 European, S. 304-309,
IEEE, 2015.

[NecoaraSuykenso8] Necoara, I.; Suykens, J.A.: Application of a smoothing
technique to decomposition in convex optimization. IEEE Transacti-
ons on Automatic Control, Bd. 53, Nr. 11, S. 2674—2679, 2008.

[Nesterovos] Nesterov, Y.: Smooth minimization of non-smooth functions.
Mathematical programming, Bd. 103, Nr. 1, S. 127-152, 2005.

[PakazadEtAlis] Pakazad, S.K.; Hansson, A.; Andersen, M.S.; Rantzer, A.:
Distributed Semidefinite Programming with Application to Large-
scale System Analysis. arXiv preprint arXiv:1504.07755, 2015.

[RawlingsEtAlo8] Rawlings, J.B.; Bonné, D.; Jorgensen, J.B.; Venkat, A.N.;
Jorgensen, S.B.: Unreachable setpoints in model predictive control.
IEEE Transactions on Automatic Control, Bd. 53, Nr. 9, S. 22092215,
2008.

[RawlingsMayneog] Rawlings, ].B.; Mayne, D.Q.: Model predictive control:
Theory and design. Nob Hill Pub., 2009.

[RubagottiPatrinosBemporadi4] Rubagotti, M.; Patrinos, P.; Bemporad, A.:
Stabilizing linear model predictive control under inexact numerical
optimization. IEEE Transactions on Automatic Control, Bd. 59, Nr. 6,
S. 1660-1666, 2014.

[StewartEtAlio] Stewart, B.T.; Venkat, A.N.; Rawlings, J.B.; Wright, S.J.; Pan-
nocchia, G.: Cooperative distributed model predictive control. Sys-
tems & Control Letters, Bd. 59, Nr. 8, S. 460469, 2010.

[StewartWrightRawlings11] Stewart, B.T.; Wright, S.J.; Rawlings, J.B.: Co-
operative distributed model predictive control for nonlinear systems.
Journal of Process Control, Bd. 21, Nr. 5, S. 698-704, 2011.

[Tran-DinhNecoaraDiehl16] Tran-Dinh, Q.; Necoara, I.; Diehl, M.: Fast in-
exact decomposition algorithms for large-scale separable convex opti-
mization. Optimization, Bd. 65, Nr. 2, S. 325-356, 2016.

[VenkatEtAlo8] Venkat, A.N.; Hiskens, I.A.; Rawlings, J.B.; Wright, S.J.: Dis-
tributed MPC strategies with application to power system automatic
generation control. IEEE transactions on control systems technology,
Bd. 16, Nr. 6, S. 1192-1206, 2008.

149



Literaturverzeichnis

[ZhangLiPapachristodoulou1s] Zhang, X.; Li, N.; Papachristodoulou, A.:
Achieving real-time economic dispatch in power networks via a
saddle point design approach. In 2015 IEEE Power & Energy Society
General Meeting, S. 1-5, IEEE, 2015.

[ZhaoEtAl16] Zhao, C.; Mallada, E.; Low, S.; Bialek, J.: A unified framework
for frequency control and congestion management. In Power Systems
Computation Conference, 2016.

150



	Introduction
	Problem Description
	Contribution
	Outline
	Notation

	Distributed Economic Model Predictive Control - Theory
	Overview
	Distributed Economic Model Predictive Control with terminal sets and terminal costs
	Economic Model Predictive Control with terminal set and terminal cost
	Distributed Economic Model Predictive Control with terminal sets and costs

	Distributed Economic Model Predictive Control without terminal constraints
	Robust Distributed Model Predictive Control
	Tube based Robust Model Predictive Control
	Robust Distributed Model Predictive Control


	Distributed Optimization for Distributed Model Predictive Control
	Overview
	Alternating Direction Method of Multipliers
	Rewrite central optimization problem
	Distributed Algorithm
	Stopping Condition


	Distributed Economic Model Predictive Control with inexact optimization
	Overview
	A Robust Model Predictive Control approach
	Constraint Violations - Recursive Feasibility
	Suboptimality - Stability

	Economic Model Predictive Control without terminal constraints
	Performance Guarantees
	Performance Guarantees with terminal sets and terminal costs
	Performance Guarantees without terminal constraints
	Interpretation


	Real time Economic Dispatch for Power Systems with Model Predictive Control
	Overview
	The Economic Dispatch Problem for Power Systems
	Distributed Power System Model
	Constraints and Objectives

	Classical Control Structure - Power Systems
	Automatic Generation Control
	Economic Automatic Generation Control

	Distributed Economic Model Predictive Control
	Assumptions
	Distributed Observers
	Discussion

	Simulation Experiment - Test Case based Comparison
	Setup - Parameters and Controller Configuration
	Scenario 1 - Operation along the Constraints
	Scenario 2 - Random load changes
	Qualitative Comparison


	Summary and Outlook
	Conclusions
	Future Work


