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ABSTRACT
One of the main cost factors in software development is
the detection and removal of defects. However, the rela-
tionships and influencing factors of the costs and revenues
of defect-detection techniques are still not well understood.
This paper proposes an analytical, stochastic model of the
economics of defect detection and removal to improve this
understanding. The model is able to incorporate dynamic
as well as static techniques in contrast to most other models
of that kind. We especially analyse the model with state-of-
the-art sensitivity analysis methods to (1) identify the most
relevant factors for model simplification and (2) prioritise
the factors to guide further research and measurements.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management; D.2.8 [Soft-
ware Engineering]: Metrics; D.2.5 [Software Engineer-
ing]: Testing and Debugging

General Terms
Economics, Verification, Reliability

Keywords
Software quality economics, quality costs, cost/benefit, defect-
detection techniques, sensitivity analysis

1. INTRODUCTION
The quality of a software system can be described using

different attributes such as reliability, maintainability etc.
There are also various approaches to improve the quality of
software with differing emphasis on these attributes. Con-
structive methods comprise one group that tries to improve
the overall development process in order to prevent the in-
troduction of faults. However, the prevalent approach is still
to use analytical methods, also called defect-detection tech-
niques, to find and remove faults. The main representatives
of this approach are tests and reviews.

c©ACM. This is the author’s version of the work. It is posted here for your
personal use. Not for redistribution. The definitive Version of Record was
published in Proceedings of the 2006 International Symposium on Software
Testing and Analysis, http://dx.doi.org/10.1145/1146238.1146247.

An often cited estimate [26] relates 50% of the overall de-
velopment costs to testing. Jones [14] still assigns 30–40% to
quality assurance and defect removal. Hence, defect-detec-
tion techniques are a promising field for cost optimisations.
However, to be able to optimise the usage of defect-detection
techniques, we need a suitable economical model first. There
are some approaches that model software quality costs but
mostly on a high level of abstraction. The effects of individ-
ual faults and the effectiveness of different defect-detection
techniques regarding these faults are not taken into account.
Also in [28] it is discussed that “cost is clearly a central fac-
tor in any realistic comparison but it is hard to measure,
data are not easy to obtain, and little has been done to deal
with it.” Rai et al. identify in [31] mathematical models
of the economics of software quality assurance as an impor-
tant research area. “A better understanding of the costs and
benefits of SQA and improvements to existing quantitative
models should be useful to decision-makers.”

1.1 Problem
The underlying question is how we can optimally use de-

fect-detection techniques to improve the quality of software.
In particular, we investigate in this paper how the econom-
ical relationships of defect-detection techniques and quality
can be modelled and the importance of the factors in terms
of the influence on the output and especially its variance.

1.2 Contribution
We propose an analytical model of the economics of de-

fect-detection techniques incorporating different types of de-
fect costs, the difficulty of finding a fault of different tech-
niques and the probability of failure for a fault. This allows
an evaluation of different techniques and gives a better un-
derstanding of the relationships. The used input factors are
prioritised to simplify the model and to identify the factors
that are most beneficial to be further investigated. Fur-
thermore, a model based on defect types is derived to allow
a simpler application on real world projects. This model
could be used to predict optimal usage of defect-detection
techniques in the future based on old project data.

1.3 Outline
We start by describing software quality costs in general

and our understanding of the various cost factors in Sec. 2.
Sec. 3 proposes an analytical model of the economics of de-
fect-detection techniques that contains the costs associated
with each fault. This model is subject to a sensitivity analy-
sis based on the data from an older study in Sec. 4. For the
practical application of the model a simplified version based
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on defect classes is derived in Sec. 5. Sec. 6 gives related
work and final conclusions can be found in Sec. 7.

2. SOFTWARE QUALITY COSTS
Quality costs are the costs associated with preventing,

finding, and correcting defective work. Based on experience
from the manufacturing area [15, 5] similar quality cost mod-
els have been developed explicitly for software [18, 35, 19].
These costs are divided into conformance and nonconfor-
mance costs, also called control costs and failure of control
costs. The former comprises all costs that need to be spent
to build the software in a way that it conforms to its quality
requirements. This can be further broken down to preven-
tion and appraisal costs. Prevention costs are for example
developer training, tool costs, or quality audits, i. e. costs
for means to prevent the injection of faults. The appraisal
costs are caused by the usage of various types of tests and
reviews.

The nonconformance costs come into play when the soft-
ware does not conform to the quality requirements. These
costs are divided into internal failure costs and external fail-
ure costs. The former contains costs caused by failures that
occur during development, the latter describes costs that
result from failures at the client. A graphical overview is
given in Fig. 1. Because of the distinction between preven-
tion, appraisal, and failure costs this is often called PAF
model.

cost of quality

appraisal costsprevention costs external failure

nonconformanceconformance

internal failure

executionsetup fault removal effect

Figure 1: Overview over the costs related to quality

We add further detail to the PAF model by introduc-
ing the main types of concrete costs that are important for
defect-detection techniques. Note that there are more types
that could be included, for example, maintenance costs. How-
ever, we concentrate on a more reliability-oriented view. The
appraisal costs are detailed to the setup and execution costs.
The former constituting all initial costs for buying test tools,
configuring the test environment, and so on. The latter
means all the costs that are connected to actual test exe-
cutions or review meetings, mainly personnel costs.

On the nonconformance side, we have fault removal costs
that can be attributed to the internal failure costs as well
as the external failure costs. This is because if we found a
fault and want to remove it, it would always result in costs
no matter whether caused in an internal or external fail-
ure. Actually, there does not have to be a failure at all.
Considering code inspections, faults are found and removed
that have never caused a failure during testing. It is also
a good example that the removal costs can be quite differ-
ent regarding different techniques. When a test identifies a

failure, there needs to be considerable effort spent to find
the corresponding fault. During an inspection, faults are
found directly. Fault removal costs also contain the costs
for necessary re-testing and re-inspections.

External failures also cause effect costs. These are all
further costs with the failure apart from the removal costs.
For example, compensation costs could be part of the ef-
fect costs, if the failure caused some kind of damage at the
customer site. We might also include further costs such as
loss of sales because of bad reputation in the effect costs but
do not consider it explicitly because its out of scope of this
paper.

3. ANALYTICAL MODEL
We describe a general, analytical model of defect-detec-

tion techniques in the following. It is general with respect
to the various types of techniques it is able to analyse. We
mainly analyse different types of testing which essentially de-
tect failures and static analysis techniques that reveal faults
in the code or other documents. A model that incorporates
all important factors for these differing techniques needs to
use the universal unit of money, i.e., units such as euro or
dollar. We first describe the model and its assumptions in
general, and then give equations for each component of the
model for a single technique and for the combination of sev-
eral techniques.

3.1 General
In this section, we concentrate on an ideal model of quality

economics in the sense that we do not consider the practical
use of the model but want to mirror the actual relationships
as faithfully as possible.

3.1.1 Components
We divide the model in three main components:

• Direct costs dA

• Future costs tA

• Revenues / saved costs rA

The direct costs are characterised by containing only costs
that can be directly measured during the execution of the
technique. The future costs and revenues are both concerned
with the (potential) costs in the field but can be distin-
guished because the future costs contain the costs that are
really incurred whereas the revenues are comprised of saved
costs.

3.1.2 Assumptions
The main assumptions in the model are:

• Found faults are perfectly removed.

• The amount or duration of a technique can be freely
varied.

The first assumption is often used in software reliability
modelling to simplify the stochastic models. It states that
each fault detected is instantly removed without introducing
new faults. Although this is often not true in real defect re-
moval, it is largely independent of the used defect-detection
technique and the newly introduced faults can be handled
like initial faults which introduces only a small blurring.



The second assumption is needed because we have a no-
tion of time effort in the model to express for how long and
with how many people a technique is used. This notion
of time can be freely varied although for real defect-detec-
tion techniques this might not always make sense, especially
when considering inspections or static analysis tools where a
certain basic effort or none at all has to be spent. Still, even
for those techniques, the effort can be varied by changing
the speed of reading, for example.

3.1.3 Difficulty
We adapt the general notion of the difficulty of a technique

A to find a specific fault i from [23] denoted by θA(i) as a
basic quantity for our model. In essence, it is the probability
that A does not detect i. Furthermore, we denote the length
of a technique application with tA. With length we do not
mean calendar time but effort measured in staff-days, for
example.

In the following equations we are often interested in the
case when a fault is detected at least once by a technique.
From the above we can conclude that the probability that
A detects i is 1− θA(i). However, as stated above, we have
a concept of timing and effort for a technique that has to be
incorporated in the difficulty. Hence, with tA denoting the
effort spent for A, the probability that i is at least detected
once is 1− θA(i, tA).

3.1.4 Defect Propagation
A further aspect to consider is that the defects occurring

during development are not independent. There are vari-
ous dependencies that could be considered but most impor-
tantly there is dependency in terms of propagation. Defects
from earlier phases propagate to later phases and over pro-
cess steps. We actual do not consider the phases to be the
important factor here but the document types. In every de-
velopment process there are different types of documents,
or artifacts, that are created. Usually, those are require-
ments documents, design documents, code, and test specifi-
cations. Then one defect in one of these documents can lead
to none, one, or more defects in later derived documents. A
schematic overview is given in Fig. 2.
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Figure 2: How defects propagate over documents

We see that a requirements defect can lead to several de-
fects in design documents as well as test specifications. The
design defects can again propagate to the code and to (glass-
box) test specifications. For each document type k we have
the set of defects Ik and hence the total set of defects I is
I =

⋃
Ik. Furthermore, for each defect, we also look at its

predecessor defects Ri. For the model this has the effect
that a defect can only be found by a technique if neither the
defect itself nor one of its predecessors was detected by an
earlier used technique.

3.2 Equations
We give an equation for each of the three components with

respect to single defect-detection techniques first and later
for a combination of techniques.

3.2.1 Direct Costs
The direct costs are those costs that can be directly mea-

sured from the application of a defect-detection technique.
They are dependent on the length t of the application. Fig. 3
shows systematically the components of the direct costs.
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From this we can derive the following equation containing
the three cost types for a technique.

dA = uA + eA(t) +
X

i

(1 − θA(i, t))vA(i), (1)

where uA are the setup costs, eA(t) the execution costs,
and vA(i) the fault removal costs specific to that technique.
Hence, we have for a technique its fixed setup costs, execu-
tion costs depending on the length of the technique and for
each fault in the software removal costs if the technique is
able to find it.

3.2.2 Future Costs
In case we were not able to find defects, these will result

in costs in the future. We divide these costs into the two
parts fault removal costs in the field vF (i) and failure effect
costs fF (i). The latter contain all support and compensa-
tion costs as well as annoyed customers as far as possible.

tA =
X

i

πiθA(i, t)(vF (i) + fF (i)), (2)

where πi = P (fault i is activated by randomly selected in-
put and is detected and fixed) [23]. Hence, it describes the
probability that the defect leads to a failure in the field.

3.2.3 Revenues
We do not only have costs with defect-detection tech-

niques but also revenues. These revenues are essentially
saved future costs. With every fault that we find in-house
we avoid higher costs in the future. Therefore, we have the
same cost categories but look at the faults that we find in-
stead of the ones we are not able to detect.

rA =
X

i

πi(1 − θA(i, t))(vF (i) + fF (i)) (3)

3.2.4 Combination
Typically, more than one technique is used to find defects.

The intuition behind that is that they find (partly) differ-
ent defects. These dependencies are often ignored when the
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From this we can derive the following equation containing
the three cost types for a technique.

dA = uA + eA(t) +
∑
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(1− θA(i, t))vA(i), (1)

where uA are the setup costs, eA(t) the execution costs,
and vA(i) the fault removal costs specific to that technique.
Hence, we have for a technique its fixed setup costs, execu-
tion costs depending on the length of the technique and for
each fault in the software removal costs if the technique is
able to find it.

3.2.2 Future Costs
In case we were not able to find defects, these will result

in costs in the future. We divide these costs into the two
parts fault removal costs in the field vF (i) and failure effect
costs fF (i). The latter contain all support and compensation
costs as well as annoyed customers as far as possible.

tA =
∑
i

πiθA(i, t)(vF (i) + fF (i)), (2)

where πi = P (fault i is activated by randomly selected in-
put and is detected and fixed) [23]. Hence, it describes the
probability that the defect leads to a failure in the field.

3.2.3 Revenues
We do not only have costs with defect-detection tech-

niques but also revenues. These revenues are essentially
saved future costs. With every fault that we find in-house
we avoid higher costs in the future. Therefore, we have the
same cost categories but look at the faults that we find in-
stead of the ones we are not able to detect.

rA =
∑
i

πi(1− θA(i, t))(vF (i) + fF (i)) (3)

3.2.4 Combination
Typically, more than one technique is used to find defects.

The intuition behind that is that they find (partly) differ-
ent defects. These dependencies are often ignored when the
efficiency of defect-detection techniques is analysed. Nev-
ertheless, this has a huge influence on the economics and



efficiency. In our view, the notion of diversity of techniques
from Littlewood et al. [23] is very useful in this context. The
covariance of the difficulty functions of faults describes the
similarity of the effectiveness regarding fault finding. We
already use the difficulty functions in the present model and
therefore are able to express the diversity implicitly.

For the direct costs it means that we sum over all different
applications of defect-detection techniques. We define that
X is the ordered set of the applied defect-detection tech-
niques. In each application we use Eq. 1 with the extension
that we not only take the probability that the technique
finds the fault into account but also that the ones before
have not detected it. Here also the defect propagation needs
to be considered, i.e., that not only the defect itself has not
been detected but also its predecessors Ri.

dX =
∑
x∈X

[
ux + ex(tx) +

∑
i

(
(1− θx(i, tx))

∏
y<x

θy(i, ty)
∏
j∈Ri

θy(j, ty)
)
vx(i)

] (4)

The total future costs are simply the costs of each fault
with the probability that it occurs and all techniques failed
in detecting it and its predecessors.

tX =
∑
i

[
πi
∏
x∈X

θx(i, tx)

∏
y<x

∏
j∈Ri

θy(j, ty)(vF (i) + fF (i))

] (5)

The equation for the revenues uses again a sum over all
technique applications. In this case we look at the faults
that occur, that are detected by a technique and neither
itself nor its predecessors have been detected by the earlier
applied techniques.

rX =
∑
x∈X

∑
i

[(
πi(1− θx(i, tx))

∏
y<x

θy(i, ty)

∏
j∈Ri

θy(j, ty)
)(
vF (i) + fF (i)

)] (6)

3.2.5 ROI
One interesting metric based on these values is the return

on investment (ROI) of the defect-detection techniques. If
we look at the total ROI we have to use Eqns. 4, 5, and 6
for the calculation.

ROI =
rX − dX − tX
dX + tX

(7)

This metric is suitable for a single post-evaluation of the
quality assurance of a project. However, it alone cannot give
an answer whether the effort was cost-optimal.

3.3 Forms of the Difficulty Functions
The notion of difficulty of the defect detection is a very

central one in the described model. As mentioned this no-
tion is based on an idea from [23]. However, the original
difficulty functions have no concept of time or effort spent
but only of one usage or two usages and so on. To be able

to analyse and optimise the spent effort for each technique,
we need to introduce that additional dimension in the dif-
ficulty functions, i.e., the functional form depending on the
spent effort. Actually, the equations given for the model
above already contain that dimension but it is not further
elaborated. This gap is closed in the following.

Firstly, we do not have sufficient data to give an empiri-
cally founded basis for the forms of the difficulty functions.
Nevertheless, we can formulate hypotheses to identify the
most probable distributions for different defects. Secondly,
keep in mind that a difficulty function is defined for a spe-
cific defect-detection technique detecting a specific defect.
That means that each defect can have distinct distribution
for each possible technique.

3.3.1 Exponential Function
The function that most obviously models the process un-

der investigation is an exponential function. The intuition
is that with more effort spent the difficulty decreases, i.e.,
the probability of detecting that defect increases. However,
with increasing effort the rate of difficulty reduction slows
down. The defect detection gets more and more complicated
when the “obvious” cases all have been tried.

For this we use a function similar to the density function
of an exponential distribution:

θ(i, t) =

{
λe−λt if t > 0
1 otherwise

, (8)

with λ being a parameter that is determined from empirical
data from the technique and the defect. It is the inverse of
the mean value of the empirically measured difficulty.

3.3.2 Linear and Constant Function
The linear difficulty function models the intuition that

there is a steady decrease in difficulty. A review might be
an example that employs such a behaviour. The more I read,
the higher the possibility that I detect that specific defect.
The function can be formulated as follows:

θA(τi, t) = mt+ 1, (9)

where m is the (negative) slope of the straight line.
The constant function constitutes a special case of the

linear form of the difficulty functions. In this case the spent
effort does not matter because the difficulty of detecting the
defect is always the same. The intuitive explanation for
this functional form is best explained using the example of
a static analysis tool. These tools often use bug patterns
specific for a language and thereby identify code sections
that are critical. When searching for a specific bug pattern
it is of no importance how much effort is spent but if the
tool is not able to detect a specific pattern – or only in
seldom cases – the probability of detection does not change.
We can also use this distribution to model that a specific
technique A cannot detect a specific defect i by specifying
that θA(i, t) = 1 for all t.

3.3.3 Sigmoid Function
For our purposes it is sufficient to see the sigmoid func-

tion as a variation of the exponential function. Its graph
has an S -like shape and hence one local minimum and one
local maximum. In this special case we actually use a com-
plementary sigmoid function to get a turned S.



In contrast to the exponential function, the sigmoid func-
tion models the intuition that in the beginning it is hard
to detect a specific defect and the difficulty does decrease
only slowly. However, when a certain amount of effort is
spent, the rate increases and chance of detecting the defect
increases significantly until we reach a point of satisfaction
– similar to the exponential function – where additional ef-
fort does not have a large impact. This distribution is also
backed by the so-called S-curve of software testing [16]. That
S-curve aims in a slightly different direction but also shows
that early in testing only a limited number of failures are
revealed, then the detection rate increases until a plateau of
satisfaction is reached.

3.4 Discussion
The model so far is not suited for a practical application

in a company as the quantities used are not easy to measure.
Probably, we are unable to get values for θ of each fault and
defect-detection technique. Also the somehow fixed and dis-
tinct order of techniques is not completely realistic as some
techniques may be used in parallel or only some parts of
the software are analysed. However, in a more theoretical
setting we can already use the model for important tasks in-
cluding sensitivity analysis to identify important input fac-
tors.

Another application can be to analyse which techniques
influence which parts of the model. For instance, in the auto-
matic derivation of test cases from explicit behaviour mod-
els (model-based testing) is a relatively new technique for
defect detection. This technique can be analysed and com-
pared with traditional, hand-crafted test techniques based
on our model. Two of the factors are obviously affected by
model-based testing: (1) the setup costs are considerably
higher than in hand-crafted tests because not only the nor-
mal test environment has to be set up but also a formal (and
preferably executable) behaviour has to be developed. On
the contrary, the execution cost per test case is then sub-
stantially smaller because the generation can be automated
to some extent and the model can be used as an oracle to
identify failures. Further influences on factors like the diffi-
culty functions are not that obvious but need to be analysed.
This example shows that the model can help to structure the
comparison and analysis of defect-detection techniques.

4. SENSITIVITY ANALYSIS
Every newly proposed mathematical model should be sub-

ject to various analyses. Apart from the appropriateness of
the model to the modelled reality and the validity of esti-
mates and predictions, the dependence of the output on the
input parameters is of interest. The quantification of this
dependence is called sensitivity analysis. Local sensitivity
analysis usually computes the derivative of the model re-
sponse with respect to the model input parameters. More
generally applicable is global sensitivity analysis that appor-
tions the variation in the output variables to the variation
of the input parameters. We base the following description
of the global sensitivity analysis we use mainly on [33].

4.1 Settings and Methods
Sensitivity analysis is the study of how the uncertainty

in the output of a model can be apportioned to different
sources of uncertainty in the model input. Still, what do we
gain by that knowledge? There are various questions that

can be answered by sensitivity analysis. As pointed out in
[32] it is important to specify its purpose beforehand. In
our context two settings are of most interest: (1) factors
priorisation and (2) factors fixing.

4.1.1 Factors Priorisation
The most important factor is the one that would lead to

the greatest reduction in the variance of the output if fixed
to its true value. Likewise the second most important factor
can be defined and so on. The ideal use for the Setting FP is
for the prioritisation of research and this is one of the most
common uses of sensitivity analysis in general. Under the
hypothesis that all uncertain factors are susceptible to de-
termination, at the same cost per factor, Setting FP allows
the identification of the factor that is most deserving of bet-
ter experimental measurement in order to reduce the target
output uncertainty the most. In our context, that means
that we can determine the factors that are most rewarding
to measure most precisely.

4.1.2 Factors Fixing
This setting is similar to factors priorisation but still has

a slightly different flavour. Now, we do not aim to prioritise
research in the factors but we want to simplify the model.
For this we try to find the factors that can be fixed without
reducing the output variance significantly. For our purposes
this means that we can fix the input factor at any value in
its uncertainty range without changing the outcome signifi-
cantly.

4.1.3 FAST
There are various available methods for global sensitivity

analysis. The Fourier amplitude sensitivity test (FAST) is a
commonly used approach that is based on Fourier develop-
ments of the output functions. It also allows an ANOVA-like
decomposition of the model output variance. In contrast to
correlation or regression coefficients, it is not dependent on
the goodness of fit of the regression model. The results give
a quantification of the influences of the parameters, not only
a qualitative ranking as the Morris method, for example.

With the latest developments of this method, it is able
not only to compute the first-order effects of each input pa-
rameter but also the higher-order and total effects. The first
order effect is the influence of a single input parameter on
the output variance, whereas the total effects also capture
the interaction between input parameters. This is also im-
portant for the different settings as the first-order effects
are used for the factors priorisation setting, the total-order
effects for the factors fixing setting.

4.1.4 SimLab
We use the sensitivity analysis tool SimLab [34] for the

analysis. Inside the tool we need to define all needed in-
put parameters and their distributions of their uncertainty
ranges. For this, different stochastic distributions are avail-
able. The tool then generates the samples needed for the
analysis. This sample data is can be read from a file into
the model – in our case a Java program – that is expected to
write its output into a file with a specified format. This file is
read again from SimLab and the first-order and total-order
indexes are computed from the output.

4.2 Input Factors and Data



We describe the analysed scenario, factors and data needed
for the sensitivity analysis in the following. The distribu-
tions are derived from the survey [38, 37]. We base the
analysis on an example software with 1000 LOC and with
10–15 faults. The reason for the small number of faults is
the increase in complexity of the analysis for higher numbers
of faults.

4.2.1 Techniques
We have to base the sensitivity analysis on common or

average distributions of the input factors. This also implies
that we use a representative set of defect-detection tech-
niques in the analysis. We choose seven commonly used de-
fect-detection techniques and encode them with numbers:
requirements inspection (0), design inspection (1), static
analysis (2), code inspection (3), (structural) unit test (4),
integration test (5), and (functional) system test (6). As
indicated we assume that unit testing is a structural (glass-
box) technique, system testing is functional (black-box), and
integration testing is both. The usage of those seven tech-
niques, however, does not imply that all of them are used in
each sample as we allow the effort t to be null.

4.2.2 Additional Factors
To express the defect propagation concept of the model we

added the additional factor ρ as the number of predecessors.
The factor c represents the the defect class meaning the type
of artifact the defect is contained in. This is important for
the decision whether a certain technique is capable to find
that specific defect at all. The factor φ encodes the form of
difficulty function that is used for a specific fault and a spe-
cific technique. We include all the forms presented above in
Sec. 3.3. The sequence s of techniques determines the order
of execution of the techniques. We allow several different
sequences including nonsense orders in which system testing
is done first and requirements inspections as the last tech-
nique. Finally, the average labour costs per hour l is added
because it is not explicitly included in the model equations
from Sec. 3.2. Note, that we excluded the effect costs from
the sensitivity analysis because we have not sufficient data
to give any probability distribution.

4.3 Results and Observations
This section summarises the results of applying the FAST

method for sensitivity analysis on the data from the exam-
ple above and discusses observations. The analysed output
factor is the return-on-investment (ROI).

4.3.1 Abstract Grouping
We first take an abstract view on the input factors and

group them without analysing the input factors for different
techniques separately. Hence, we only have 11 input factors
that are ordered with respect to their first and total order
indexes in Tab. 1. The first order indexes are shown on the
left, the total order indexes on the right.

The first order indexes are used for the factors priorisa-
tion setting. We see that the types of documents or artifacts
the defects are contained in are most rewarding to be inves-
tigated in more detail. One reason might be that we use
a uniform distribution because we do not have more infor-
mation on the distribution of defects over document types.
However, this seems to be an important information. The
factor that ranks second highest is the spent effort. This

Table 1: The first and total order indexes of the
abstract grouping

c 0.4698 c 0.8962
t 0.1204 vf 0.4473
θ̄ 0.0699 θ̄ 0.4255
vf 0.0541 u 0.3916
φ 0.0365 t 0.3859
u 0.0297 φ 0.2888
v 0.0264 ρ 0.2711
ρ 0.0256 v 0.2546
π 0,0158 π 0,2068
s 0,0083 s 0,1825
l 0,0010 l 0,1489

approves the intuition that the effort has strong effects on
the output and hence needs to be optimised. Also the aver-
age difficulty of of finding a defect with a technique and the
costs of removing a defect in the field are worth to be inves-
tigated further. Interestingly, the labour costs, the sequence
of technique application, and the failure probability in the
field do not contribute strongly to the variance in the out-
put. Hence, these factors should not be the focus in further
research.

For the factors fixing setting, the ordering of the input
factors is quite similar. Again the failure probability in the
field, the sequence of technique application and the labour
costs can be fixed without significantly changing the output
variance. The factors that definitely cannot be fixed are
again the document types, the removal costs in the field, and
the average difficulty values. The setup costs rank higher
with these indexes and hence should not be fixed.

4.3.2 Detailed Grouping
After the abstract grouping, we form smaller groups and

differentiate between the factors with regard to different de-
fect-detection techniques. The first and total order indexes
are shown in Tab. 2 again with the first order indexes on the
left and the total order indexes on the right.

The main observations from the abstract grouping for the
factor priorisation setting are still valid. The type of arti-
fact the defect is contained in still ranks highest and has the
most value in reducing the variance. However, in this de-
tailed view, the failure probability in the field ranks higher.
This implies that this factor should not be neglected. We
also see that for some techniques the form of the difficulty
function has a strong influence and that the setup costs of
most techniques rank low.

Similar observations can be made for the factors fixing set-
ting and the total order indexes. The main observations are
similar as in the abstract grouping. Again, the failure prob-
ability in the field ranks higher. Hence, this factor cannot
be fixed without changing the output variance significantly.
A further observation is that some of the setup costs can be
set to fixed value what reduces the measurement effort.

4.4 Discussion and Consequences
From the observations above we can conclude that the

labour costs, the sequence of technique application and the
removal costs of most techniques are not an important part



Table 2: The first and total order indexes of the
detailed grouping

c 0.2740 c 0.7750
t1 0.0601 φ4 0.3634
π 0.0528 t1 0.3332
φ4 0.0492 π 0.3200
φ1 0.0391 vf 0.2821
v3 0.0313 v3 0.2802
φ0 0.0279 φ1 0.2728
ρ 0.0278 ρ 0.2706
φ2 0.0269 v1 0.2574
vf 0.0252 s 0.2524
φ6 0.0222 θ̄5 0.2493
v0 0.0219 θ̄0 0.2312
φ3 0.0216 θ̄3 0.2300
θ̄6 0.0214 φ6 0.2287
v5 0.0212 φ2 0.2240
θ̄0 0.0209 θ̄1 0.2077
s 0.0208 v5 0.2039
θ̄1 0.0203 φ0 0.1966
v1 0.0203 u3 0.1913
θ̄4 0.0197 v0 0.1907
φ5 0.0194 θ̄6 0.1894
θ̄5 0.0186 φ5 0.1892
t2 0.0185 φ3 0.1854
θ̄3 0.0181 v4 0.1807
v6 0.0142 t5 0.1719
v2 0.0139 v6 0.1709
v4 0.0120 θ̄4 0.1707
θ̄2 0.0109 v2 0.1633
t6 0.0089 t6 0.1619
t4 0.0058 u5 0.1451
t3 0.0051 t4 0.1409
t5 0.0034 u4 0.1404
u5 0.0018 t2 0.1378
u0 0.0013 t0 0.1268
u4 0.0010 l 0.1222
t0 0.0009 θ̄2 0.1125
u3 0.0007 u6 0.1122
u6 0.0007 u0 0.1085
u1 0.0005 t3 0.1053
u2 0.0005 u1 0.1034
l 0.0002 u2 0.0996

of the model and the variation in effort does not have strong
effects on the output, i.e., the ROI in our case. On the
other hand, the type of artifact or document the defect is
contained in, the difficulty of defect detection, and the re-
moval costs in the field have the strongest influences.

This has several implications: (1) We need more empirical
research on the distribution of defects over different docu-
ment types and the removal costs of defects in the field to
improve the model and confirm the importance of the factor,
(2) we still need more empirical studies on the effectiveness
of different techniques as this factor can largely reduce the
output variance, (3) the labour costs do not have to be de-
termined in detail and it does not seem to be relevant to
reduce those costs, (4) further studies on the sequence and
the removal costs are not necessary.

5. PRACTICAL APPLICATION
As we discussed above, the theoretical model can be used

for analyses but is too detailed for a practical application.
The main goal is, however, to optimise the usage of defect-
detection techniques which requires a applicability in prac-
tice. Hence, we need to simplify the model to reduce the
needed quantities.

5.1 General
For the simplification of the model, we use the following

additional assumptions:

• Faults can be categorised in useful defect types.

• Defect types have specific distributions regarding their
detection difficulty, removal costs, and failure proba-
bility.

• The linear functional form of the difficulty approxi-
mates all other functional forms sufficiently.

We define τi to be the defect type of fault i. It is deter-
mined using the defect type distribution of older projects.
In this way we do not have to look at individual faults but
analyse and measure defect types for which the determina-
tion of the quantities is significantly easier. In the practical
model we assumed that the defects can be grouped in “use-
ful” classes or defect types. For reformulating the equation
it was sufficient to consider the affiliation of a defect to a
type but for using the model in practice we need to further
elaborate on the nature of defect types and how to measure
them.

For our economics model we consider the defect classifica-
tion approaches from IBM [16] and HP [9] as most suitable
because they are proven to be usable in real projects and
have a categorisation that is coarse-grained enough to make
sensible statements about each category.

We also lose the concept of defect propagation as it was
shown not to have a high priority in the analyses above but
it introduces significant complexity to the model. Hence,
the practical model can be simplified notably.

5.2 Equations
Similar to Sec. 3.2 where we defined the basic equations of

the ideal model, we formulate the equations for the practical
model using the assumptions from above.



5.2.1 Single Economics
We start with the direct costs of a defect-detection tech-

nique. Now we do not consider the ideal quantities but use
average values for the cost factors. We denote this with a
bar over the cost name.

dA = ūA + ēA(t) +
∑
i

(1− θA(τi, t))v̄A(τi), (10)

where ūA is the average setup cost for technique A, ēA(t) is
the average execution cost for A with length t, and v̄A(τi)
is the average removal cost in defect type τi. Apart from
using average values, the main difference is that we consider
defect types in the difficulty functions. The same applies to
the revenues.

rA =
∑
i

πτi(1− θA(τi, t))(v̄F (τi) + f̄F (τi)), (11)

where f̄F (τi) is the average effect costs of a fault of type τi.
Finally, the future costs can be formulated accordingly.

tA =
∑
i

πτiθA(τi, t)(v̄F (τi) + f̄F (τi)). (12)

With the additional assumptions, we can also formulate a
unique form of the difficulty functions:

θA(τi, ta) = mtA + 1, (13)

where m is the (negative) slope of the straight line. If a
technique is not able to detect a certain type, we will set
m = 0.

5.2.2 Combined Economics
Similarly, the extension to more than one technique can

be done.

dX =
∑
x∈X

[
ūx + ēx(tx) +

∑
i

(1− θx(τi, tx))

∏
y<x

(
θy(τi, ty)

)
v̄x(τi)

] (14)

tX =
∑
i

πτi
∏
x∈X

(
θx(τi, tx)

)(
v̄F (τi) + f̄F (τi)

)
(15)

rX =
∑
x∈X

∑
i

πτi(1− θx(τi, tx))

∏
y<x

(
θy(τi, ty)

)(
v̄F (τi) + f̄F (τi)

) (16)

5.3 Sensitivity Analysis
Similar to the analyses in Sec. 4 we determined the first

and total order indexes of the practical model again with
data from [38, 37]. The results are shown in Tab. 3 with
the first order indexes left and the total order indexes right.
We have to note that we only looked at defects in the code
because we have no empirical data on defect types in other
kinds of documents. Furthermore, we introduced the factor
α that denotes the fraction of defects of a specific defect
type.

Table 3: The first and total order indexes from the
practical model

t 0.1196 t 0.8855
π 0.1138 vf 0.8670
θ̄ 0.1097 s 0.7881
α 0.0975 θ̄ 0.7857
vf 0.0694 l 0.7772
l 0.0634 α 0.6676
s 0.0592 π 0.6200
u 0.0476 u 0.4902
v 0.0018 v 0.0958

We see that the effort for the techniques ranks highest in
both settings. The failure probability again ranks high in
the factors priorisation setting. Hence, this factor should be
investigated in more detail. Similarly to the ideal model, the
setup and removal costs of the techniques do not contribute
strongly to the output variance.

In the factors fixing setting, we see that the setup and
removal costs can be fixed without changing the variance
significantly. This implies that we can use coarse-grained
values here. Also the failure probability can be taken from
literature values. More emphasis, however, should be put on
the effort, the removal costs in the field, and the sequence
of technique application. Of which the last one is surprising
as for the ideal model this factor ranked rather low.

5.4 Optimisation
For the optimisation only two of the three components of

the model are important because the future costs and the
revenues are dependent on each other. There is a specific
number of faults that have associated costs when they oc-
cur in the field. These costs are divided in the two parts
that are associated with the revenues and the future costs,
respectively. The total always stays the same, only the size
of the parts varies depending on the used defect-detection
techniques. Therefore, we use only the direct costs and the
revenues for optimisation and consider the future costs to
be dependent on the revenues.

Therefore, the optimisation problem can be stated by:
maximise rX − dX . By using Eq. 14 and Eq. 16 we get
the following equation to be maximised.∑

x

[
−ūx − ēx(tx) +

∑
i

(1− θx(τi, tx))

∏
y<x

(θy(τj , ty))
(
πτi v̄F (τi) + πτi f̄F (τi)− v̄x(τi)

)] (17)

The equation shows in a very concise way the important
factors in the economics of defect-detection techniques. For
each technique there is the fixed setup cost and the execu-
tion costs that depend on the effort. Then for each fault
in the software (and over all fault classes) we use the prob-
ability that the technique is able to find the fault and no
other technique has found the fault before to calculate the
expected values of the other costs. The revenues are the re-
moval costs and effect costs in the field with respect to the
failure probability because they only are relevant if the fault
leads to a failure. Finally we have to subtract the removal



costs for the fault with that technique which is typically
much smaller than in the field.

For the optimisation purposes, we probably also have some
restrictions, for example a maximum effort tmax with

∑
x tx ≤

tmax, either fixed length or none tA = {0, 100}, or some fixed
orderings of techniques, that have to be taken into account.
The latter is typically true for different forms of testing as
system tests are always later in the development than unit
tests.

Having defined the optimisation problem and the specific
restrictions we can use standard algorithms for solving it.
It is a hard problem because it involves multi-dimensional
optimisation over a permutation space, i.e., not only the
length of technique usage can be varied but also the sequence
of the defect-detection techniques.

5.5 Applications
In this section, we describe two possibilities how the prac-

tical model can be used.
We can use the model in experiments as well as during nor-

mal software development. As discussed in Sec. 3.4 we can
use the ideal model to explain the effects of techniques on the
economics. The practical model is suited to measure impor-
tant aspects of defect-detection techniques in software en-
gineering experiments by finding difficulty functions of cer-
tain techniques in certain domains. In software projects, the
practical model can also help to optimise the future quality
assurance by using the information from old projects.

5.5.1 In-House
The main idea is to predict the future economics based on

the data from finished projects. The approach should then
contain the following parts:

• Classify found faults

• Which technique found which fault?

• Which faults were found in the field?

• Estimate failure probability and costs for each fault

From this data, we can estimate the needed quantities. This
estimation process can have different forms. The failure
probability can either be estimated by expert opinion or
using field data if it was a field failure. The cost data can be
partly taken from effort measurements during development
and from the field. Then we can try to answer the two ques-
tions: What is the optimal length of a technique and what
is the optimal combination? However, not that the results
are in all cases dependent on the problem class and domain
because they have a huge influence on the costs.

5.5.2 Domain-Specific
A second application could be to try to generalise the

results of the model to a complete domain either from field
studies or experiments. There are probably specific defect
types in specific domains for which we might be able to
collect data that is not only valid inside one company but for
the whole domain. In this way, data from other companies
could be used for optimisation purposes.

6. RELATED WORK
Our own previous work on the quality economics of de-

fect-detection techniques forms the basis of this model. We

formulated some simple relationships of cost factors and how
this could be used in evaluating and comparing different
techniques in [36]. This is refined in [40] and additional
means to predict future costs are incorporated. Some first
results of the current model and sensitivity analysis can be
found in [39].

The available related work can generally classified in two
categories: (1) theoretical models of the effectiveness and
efficiency of either test techniques or inspections and (2)
economic-oriented, abstract models for quality assurance in
general. The first type of models is able to incorporate in-
teresting technical details but are typically restricted to a
specific type of techniques and often economical considera-
tions are not taken into account. The second type of models
typically comes from more management-oriented researchers
that consider economic constraints and are able to analyse
different types of defect-detection but often contain the tech-
nical details in a very abstract way.

Pham describes in [30] various flavours of a software cost
model for the purpose of deciding when to stop testing. It
is a representative of models that are based on reliability
models. The main problem with such models is that they
are only able to analyse system testing and no other de-
fect-detection techniques and the differences of different test
techniques cannot be considered.

Holzmann describes in [10] his understanding of the eco-
nomics of software verification. He describes some trends
and hypotheses that are similar to ours and we can support
most ideas although they need empirical justification at first.

Kusumoto et al. describe in [22, 21] a metric for cost effec-
tiveness mainly aimed at software reviews. They introduce
the concept of virtual software test costs that denote the
testing cost that have been needed if no reviews were done.
This implies that we always want a certain level of quality.

A model similar to the Kusomoto model but with an
additional concept of defect propagation was proposed by
Freimut et al. in [6].

The economics of the inspection process are investigated
in [1]. This work also uses defect classes and severity classes
to determine the specific costs. However, it identifies only
the smaller removal costs to be the benefit of an inspection.

An example of theoretical models of software testing is
the work of Morasca and Serra-Capizzano [25]. They con-
centrate on the technical details such as the different failure
rates. In this paper there is also a detailed review of similar
models.

Ntafos describes some considerations on the cost of soft-
ware failure in [27]. The difficulties of collecting appropriate
data are shown but the model itself is described only on an
abstract level.

In [20, 35] a metric called return on software quality (RO-
SQ) is defined. It is intended to financially justify invest-
ments in quality improvement. The underpinnings of this
metric are similar to the analytical model defined in this pa-
per although there are significant differences. Firstly, it aims
mainly on measuring the effects of process improvements,
i. e. constructive quality assurance, whereas we concentrate
on analytical quality assurance. Secondly, they base the cal-
culations mainly on average defect content in the software
and do not consider the important question if the faults lead
to failures.

In [18] the model of software quality costs is set into re-
lation to the Capability Maturity Model (CMM) [29]. The



emphasis is hence on the prevention costs and how the im-
provement in terms of CMM levels helps in preventing fail-
ures.

Galin extends in [8, 7] the software quality costs with man-
agerial aspects but the extensions are not relevant in the
context of defect-detection techniques.

Guidelines for applying a quality cost model in a business
environment in general are given in [17]. Mandeville de-
scribes in [24] also software quality costs, a general method-
ology for cost collection, and how specific data from these
costs can be used in communication with management.

Humphrey presents in [12] his understanding of software
quality economics. The defined cost metrics do not represent
monetary values but only fractions of the total development
time. Furthermore, the effort for testing is classified as fail-
ure cost instead of appraisal cost.

Collofello and Woodfield propose in [4] a metric for the
cost efficiency but do not incorporate failure probabilities or
difficulties.

Based on the general model for software cost estimation
COCOMO, the COQUALMO model was specifically devel-
oped for quality costs in [3]. This model is different in that
it is aiming at estimating the costs beforehand and that it
uses only coarse-grained categories of defect-detection tech-
niques. In our work, we want to analyse the differences
between techniques in more detail.

Boehm et al. also present in [2] the iDAVE model that
uses COCOMO II and COQUALMO. This model allows a
thorough analysis of the ROI of dependability. The main
difference is again the granularity. Only an average cost
saving per defect is considered. We believe that analysing
costs per defect type can improve estimates and predictions.

Building on iDAVE, Huang and Boehm propose a value-
based approach for determining how much quality assurance
is enough in [11]. In some respect that work is also more
coarse-grained than our work because it considers only the
defect levels from COQUALMO. However, it contains an
interesting component that deals with time to market costs
that are currently missing from our model.

A somehow similar model to COQUALMO in terms of the
description of the defect introduction and removal process is
described in [13]. However, it offers means to optimise the
resource allocation. The only measure for defect-detection
techniques used is defect removal efficiency.

7. CONCLUSIONS
We finally summarise our work and the main contributions

and give some directions for future work.

7.1 Summary
We propose an analytical model of quality economics with

a strong focus on defect-detection techniques. This focus is
necessary to be able to be more detailed than comparable
approaches. In this way, we incorporate different cost types
that are essential for evaluating defect-detection techniques
and also a notion of reliability or the probability of failure.
The latter is also very important because it is significant
which faults are found in terms of reliability. This distin-
guishes the model from more abstract approaches. On the
other hand we have models derived from software reliability
modelling. These models are typically simpler but can only
be used on techniques where reliability models can be ap-
plied, i. e. mainly system tests. We aim to incorporate all

types of defect-detection techniques.
One of the main contributions is also the research priorisa-

tion. We find that it is most rewarding to further investigate
the distribution of defect over document types, the removal
costs in the field, and the difficulty, especially the functional
form with respect to varying effort. All of these have not
been subject to extensive empirical work.

The main weakness of our model is that the ideal model
is not usable in real software projects. Hence, we derived
a practical model that is based on defect types. This gives
us a greater data basis for each type. The problem here is,
that it is not totally clear if this structuring in defect types
really is able to give useful distributions of the removal costs,
removal difficulty, and failure probability. Furthermore, it
strongly depends on how “good” these types are defined and
we currently have no requirements on the classes.

7.2 Future Work
As future work, we consider working on support for the

estimation of the needed quantities of the practical model,
especially the number of faults Ī and also on the probabil-
ity of failure of the defects as those are important factors.
An application of the model to a real project and thereby
analysing the predictive validity of the model is one of next
major steps.

The optimisation must be worked on in more detail and
effective tool support is essential to make the model applica-
ble in practice. Finally, an incorporation of time to market
might be beneficial because there are important costs asso-
ciated with time overruns that need to be considered. In
some markets this may be even more important than all the
other factors contained in the model.
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