
Will My Tests Tell Me If I Break This Code?∗

Rainer Niedermayr, Elmar Juergens
CQSE GmbH

Garching b. München, Germany
{niedermayr, juergens}@cqse.eu

Stefan Wagner
University of Stuttgart
Stuttgart, Germany

stefan.wagner@informatik.uni-
stuttgart.de

ABSTRACT
Automated tests play an important role in software evolu-
tion because they can rapidly detect faults introduced during
changes. In practice, code-coverage metrics are often used as
criteria to evaluate the effectiveness of test suites with focus
on regression faults. However, code coverage only expresses
which portion of a system has been executed by tests, but
not how effective the tests actually are in detecting regres-
sion faults.

Our goal was to evaluate the validity of code coverage as
a measure for test effectiveness. To do so, we conducted
an empirical study in which we applied an extreme muta-
tion testing approach to analyze the tests of open-source
projects written in Java. We assessed the ratio of pseudo-
tested methods (those tested in a way such that faults would
not be detected) to all covered methods and judged their
impact on the software project. The results show that the
ratio of pseudo-tested methods is acceptable for unit tests
but not for system tests (that execute large portions of the
whole system). Therefore, we conclude that the coverage
metric is only a valid effectiveness indicator for unit tests.

CCS Concepts
•Software and its engineering → Software testing
and debugging;

Keywords
Regression Testing, Test Suite Effectiveness, Code Coverage,
Mutation Testing.

1. INTRODUCTION
Code might get unintentionally broken during software

evolution. Automated tests ensure the correctness of the

∗This work was partially funded by the German Federal
Ministry of Education and Research (BMBF), grant “Q-
Effekt, 01IS15003A”. The responsibility for this article lies
with the authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CSED ’16 May 14–15, 2016, Austin, TX, USA
c© 2016 ACM. ISBN 000-0000-00-000/00/00.

DOI: 00.000/000 0

software under test and can reveal newly introduced faults
in code chunks that previously worked properly. Automated
tests are executed regularly (periodically or after each com-
mit) in a development process with continuous integration.
Thereby, faults can be discovered at an early stage in the
software life cycle, saving failure follow-up costs.

An important question is how good are these automated
tests at revealing regression faults. A measure of how likely
test cases will detect broken code helps us better allocate
quality-assurance (QA) efforts. Code coverage metrics are
often used in practice for judging test effectiveness.

Problem Statement. Code coverage only measures which
portion of the whole code was executed by tests. It does not
take into account if a method was tested with appropriate
assertions or if it was executed without any assertions or
incomplete ones. It is unclear if code coverage is a valid
effectiveness indicator, or if it is misleading and provides a
false sense of effectiveness.

Research Objective. Continuous integration uses auto-
mated tests to detect regression faults. Therefore, we need
a good understanding of the effectiveness for the fault-detec-
tion capability of test cases. Our goal is to support continu-
ous integration by evaluating if code coverage at the method
level is a valid measure for the test effectiveness of unit and
system tests.

We conducted an experiment in which we analyzed 14
open-source projects. First, we used an extreme mutation
testing approach to remove the logic of the methods and re-
run the test cases. We then assessed the number of methods
with which the test cases still run successfully and investi-
gated the role these methods play in their respective system.

Contribution. In this paper, we show that code coverage
at the method level is a valid indicator for the effectiveness
of unit tests but not for system tests.

This code snippet demonstrates that high code coverage
does not imply test effectiveness:

public class Calculation {

private int value;

public Calculation() {

this.value = 0;

}

public void add(int x) {

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Publikationen der Universität Stuttgart

https://core.ac.uk/display/147556069?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


this.value += x;

}

public boolean isEven() {

return this.value % 2 == 0;

}

}

The class Calculation consists of an integer field named
value and two public methods. The add method allows for
adding an integer to the internal value. The isEven method
returns a boolean value, which indicates if the current inter-
nal value is an odd or even number. This class is tested by
a JUnit test in the CalculationTest class.

public class CalculationTest {

@Test

public void testCalculation() {

Calculation calc = new Calculation();

calc.add(6);

assertTrue(calc.isEven());

}

}

The test case creates a new instance of the Calculation

class and implicitly assigns 0 to the field value. It then uses
the add method to increase the internal value by 6. Finally,
the test case verifies that the isEven method returns true,
which is expected for 6.

The test case executes all methods, statements, and bran-
ches of the class under test. This results in 100% code cov-
erage at the method, statement and branch levels. Con-
sequently, one could assume that the Calculation class is
effectively tested.

However, this is not the case. Let’s assume that the pro-
grammer forgot to implement the logic of the add method so
that its body is empty. Although the test case covers that
method, it will not detect the fault, because both 0 and 6
are even numbers. Therefore, the add method is executed,
but not effectively tested, because the test case would not
detect any faults. We call this a pseudo-tested method.

According to Fowler [4], test cases that do not contain
any assertions are another example of tests that increase the
coverage, but are useless (unless their purpose is to check if
exceptions are thrown).

2. FUNDAMENTALS AND TERMS
This section describes the terms used in this paper.

A unit test examines a small unit of code (usually a method
or a class). It consists of a sequence of method calls and
assertions that verify that the computed results of the invo-
cations equal the expected ones. A unit test can also check
the absence of thrown exceptions for a given program flow.

A system test examines a complete software system, which
may consist of several components. Unlike a unit test, it
covers many methods by executing a large proportion of the
whole system. A system test often triggers the execution of
a large functionality and compares the end result (which can
be aggregated data, a report, or a log file) with the expected
one.

Code coverage is a metric that expresses which ratio of
application code of a software project is executed when run-

ning all test cases. It can be computed at different levels;
widely used are measures at method/function, statement or
branch level. When we refer to code coverage in this paper,
we mean method coverage. It corresponds to the ratio of
methods that are executed by tests.

We consider a method to be test-executed if it is covered
by at least one test case. A test-executed method is consid-
ered tested if at least one covering test case fails when the
whole logic of the method is removed. In contrast, a test-
executed method is considered pseudo-tested if none of the
covering test cases fails when the whole logic of the method
is removed.

We define test effectiveness as the capability of test cases
to detect regression faults in methods that they execute.
Intuitively, we understand the overall ratio of code that is
effectively tested as the upper bound of the probability that
test cases detect a novel regression fault in a project.

3. RELATED WORK
This paper is based on the master’s thesis of the first au-

thor [11]. Related work is in the areas of code coverage, test
suite effectiveness and mutation testing.

3.1 Code Coverage, Test Suite Effectiveness
Wong, Horgan, London and Mathur [12] showed that the

correlation between fault detection effectiveness and block
coverage is higher than between effectiveness and the size
of the test set. This indicates that coverage can be a valid
measure for test effectiveness. However, they did not differ-
entiate between different test types.

In [2], Andrew, Briand, Labiche and Namin conducted an
empirical study on one industrial program with known faults
to investigate test coverage criteria on fault-detection effec-
tiveness. Their results showed that no one coverage criteria
is more cost-effective than any other, but more demanding
criteria lead to larger test suites that detect more faults. In
contrast, we analyzed open-source systems and made use of
mutation testing.

In [9], Mockus, Nagappan and Dinh-Trong revealed that
an increase in coverage exponentially increases the test effort
and linearly reduces the field problems. They suggested that
“code coverage is a sensible and practical measure of test
effectiveness”, but did not differentiate between unit and
system tests.

Namin and Andrews [10] studied the relationship between
size, coverage, and fault-finding effectiveness of test suites.
They found that both size and coverage are important for
effectiveness and suggested a nonlinear relationship between
them. They analyzed very small C programs (the largest one
consisted of less than 6,000 lines of code).

Inozemtseva and Holmes [7] came to different conclusions.
They evaluated the relationship between test suite size, cov-
erage, and effectiveness for Java programs. They found that:
“High levels of coverage do not indicate that a test suite is
effective.” In addition, they discovered that the type of cov-
erage had little effect on the correlation between coverage
and effectiveness. They also used mutation testing, but they
generated test suites of a fixed size by randomly selecting
test cases.

Marick [8] critically analyzed code coverage as a metric
for test effectiveness. He showed how code coverage is com-



monly misused and argued for a cautious approach to the
use of coverage. His work did not assess the validity of code
coverage as effectiveness indicator.

3.2 Mutation Testing
Mutation testing was first proposed in the 1970s and is an

established, powerful technique to evaluate test suites. The
general principle is to generate mutants by introducing faults
into a program and check if the tests can detect (kill) these.
Experimental studies ([1], [3], [6], [?]) provide evidence that
mutation testing is a good indicator for the fault-detection
capability of test suites.

Mutation testing has two major drawbacks, which explain
why it is not widely used in practice. First, the computa-
tional costs are high because mutation testing involves creat-
ing a large number of mutants and the execution of all tests
that cover the mutated code chunk for each mutant. Second,
some of the generated mutants are semantically equivalent
to the original code. The so-called equivalent mutants do not
represent injected faults, cannot be killed by tests and so dis-
tort the results. The detection of these mutants is generally
undecidable. Grün, Schuler and Zeller [5] identified equiv-
alent mutants as an important problem because they are
surprisingly common. Our approach addressed these issues
and is explained in the next section.

4. MUTATION APPROACH
The general idea is to apply mutation testing as mean

to collect data for assessing test effectiveness. We used
an extreme mutation operator in which we eliminated the
whole logic from a method and determined whether or not
a method is pseudo-tested. Therefore, we got around the
two drawbacks of mutation testing (mentioned in Section
3.2). First, we created, at most, two different mutants for
a method, keeping the number of mutants manageable and
the execution time for analyzing a medium-sized software
project within a few hours. Second, the mutation operator
radically changes the methods and generates less equivalent
mutants. The majority of the generated equivalent mutants
can be identified automatically.

Our approach consists of four steps and is depicted in
Figure 1. The first two steps are executed once and are nec-
essary to collect information about the test cases. The latter
two steps comprise the actual mutation process. They are
executed for each method under test and can be run con-
currently.
In Step 1, the project code is instrumented. This is done by
inserting logging statements.
In Step 2, all test cases are executed once on the instru-
mented code. This allows us to determine the relationships
between test cases and methods. From the information of
the test-executed methods for a given test case, the oppo-
site direction of the relation (all test cases covering a given
method) can be computed. Test cases that fail at this point
are excluded from further analysis.
In Step 3, the mutation of one method under test is per-
formed. The mutation operator removes the whole logic of
the method. This is done as follows:

• For void methods, all statements are removed. No fur-
ther actions are necessary.

Table 1: Return values for primitive types and string

Return Type Mutant 1 Mutant 2

boolean false true
byte, short, int, long 0 1
float, double 0.0 1.0
char ’ ’ ’A’
string "" "A"

Figure 1: Steps of the mutation analysis process.
The first two steps are executed once, the latter ones
are executed for each considered method.

• For methods that return a primitive or a string value,
two mutants are generated. The mutation removes the
original code by replacing it with a return statement.
The value to be returned depends on the return type
and is different for both created mutants. Table 1 lists
the return values for the primitive types and string.
• For methods that return an object, a factory is used

to generate a suitable instance. The original code is
removed and the generated instance is returned. We
developed factories for three study objects (see Section
5.4).

A method is excluded from the mutation analysis if it:

• does not contain any statements (otherwise an equiv-
alent mutant would be generated).
• is a setter or getter method consisting of exactly one

statement (we consider such a method as too trivial to
test).
• is a constructor.
• is a special method generated by the compiler (such as

Java synthetic methods).
• returns an object but no factory is provided, or the

factory cannot create an appropriate instance.

In Step 4, all test cases that cover the mutated method
are executed against the mutated code. The outcome of this
step shows which test cases fail and which still succeed after
the mutation.

5. EXPERIMENTAL DESIGN
We analyze open-source projects to investigate pseudo-

testing and the validity of the code-coverage metric at the
method level.

5.1 Study Objects
To perform the experiment, we chose 14 open-source pro-

jects. The projects satisfied the following criteria: They



Table 2: Study Objects

Name LOC Tests Test Type

Apache Commons Collections 109,415 4,468 unit
Apache Commons Lang 100,422 2,000 unit
Apache Commons Math 275,570 3,463 unit
Apache Commons Net 53,601 133 unit
ConQAT Engine Core 27,481 107 unit
ConQAT Lib Commons 43,419 468 unit

ConQAT dotnet 8,239 22 system
DaisyDiff 11,288 11 system
Histone 24,412 93 system
LittleProxy 7,300 93 system
Predictor 7,733 21 system
Struts 2 148,486 6 system
Symja 443,092 448 system
Tspmccabe 44,999 10 system

must use Java as a programming language because the muta-
tion approach is performed on the Java bytecode. Moreover,
the projects must contain tests that use either the JUnit or
testNG framework.

The selected projects are of different sizes. The smallest
one consists of about 7,000 lines of code (LOC), and the
largest project measures about 500,000 LOC. The projects
can be classified into libraries with unit tests and systems
with system tests. For systems, we considered only system
tests, even if they also had unit tests. Table 2 lists the
projects and their characteristics.

5.2 Research Questions
In this experiment, we wanted to determine the validity

of code coverage as a criterion for test effectiveness. The
effectiveness expresses how likely it is that newly introduced
faults in test-executed methods are revealed by test cases.

RQ 1: What is the ratio of pseudo-tested methods?
Research Question 1 evaluates how many methods are

test-executed but are actually only pseudo-tested. As pseudo-
tested methods contribute to the overall code coverage of a
software project, the amount of test-executed code suggested
by the code-coverage metric is higher than the amount of (ef-
fectively) tested code. Therefore, code coverage might not
be a valid indicator for test effectiveness.

RQ 2: Does the ratio of pseudo-tested methods de-
pend on the type of test?

Research Question 2 investigates the influence of the type
of test (unit tests versus system tests) on the ratio of pseudo-
tested methods. We expect methods that are test-executed
by system tests to more likely be pseudo-tested because sys-
tem tests execute many methods in one run. Therefore, we
want to find out if code-coverage validity should be assessed
separately for these two types of tests.

RQ 3: How severe are the pseudo-tested methods?
Research Question 3 analyzes the functional purpose and

the severity of pseudo-tested methods. We want to under-
stand how severe is the lack of test effectiveness of these
methods for a project. Some methods may not warrant be-
ing tested (because they are too trivial or non-deterministic),

1The single system test is parameterized and executed with
247 different input files.

but others may be relevant and need more thorough testing
to detect regression faults.

5.3 Experiment Design
First, we ran the mutation testing analysis for the study

objects using our Java program. It already comprises the
exclusion of provably equivalent mutants and simple setters
and getters (see Section 4). Then, we analyzed the obtained
data to answer the research questions. The design for each
research question is as follows:

RQ 1. We denoted the number of pseudo-tested methods
as MPT and calculated the ratio of pseudo-tested methods
as follows:

r(MPT ) = number of pseudo-tested methods (MPT )
number of mutated test-executed methods

The mutated test-executed methods comprise all methods
for which a mutant is created and tested (by at least one test
case without timeout) during the mutation analysis (refer to
Section 4 for excluded methods).
Consequently, the ratio of tested methods is:

r(MT ) = 1− r(MPT )

We also presented the method coverage (CC) of the study
objects and computed the overall ratio of tested methods to
all existing methods:

r(CT ) = CC ∗ r(MT )

(assuming that the test-executed methods that were ex-
cluded from the mutation analysis provide an approximately
similar result). We considered r(CT ) as an upper bound for
the ratio of tested code to the whole project. Test cases can
find faults in this portion of the project.

RQ 2. To answer this question, we examined the ratio of
pseudo-tested methods for unit and system tests separately.
We then compared the mean ratio of pseudo-tested meth-
ods per test type, computed the standard deviation, and
compared the data using boxplots.

RQ 3. We investigated all pseudo-tested methods and as-
signed each one to a functional category. The mapping was
done by manual inspection based on the method name. We
then assigned a severity to each functional category. Table
3 presents the categories and their severities. The severities
are defined as follows:

• Functional categories with methods that are not de-
terministic (such as generating a random number) or
not intended to be tested were assigned a severity of
irrelevant.
Moreover, unless the hash generation is explicitly tested,
the hashcode() method belonged to the severity irrele-
vant because the logic of this method still corresponds
with its specification after the mutation if it always
returns the same constant value.
• The severity low is assigned to functional categories

that contain methods that do not significantly influ-
ence the program execution. The most prominent ex-
amples are validation and optimization methods, as
well as those to close streams and connections.
• The severity medium was for categories with methods

that are likely to influence the program execution to



Table 3: Functional categories and their severity

Functional Category Examples

Irrelevant

hashcode hashcode()
non-deterministic setSeed(int)
test-related updateTestData()

Low severity

finalization finalize(),
closeStream()

monitoring logInfo(String)
optimization estimateLength(),

addToCache(Object)
validation checkIndex(int),

validateParam(Object)

Medium severity

events notifyListeners(),
firePropertyChange()

preparation initWorkflow(),
setUpBlock()

setter and getter isRed(Color),
getV(int)

toString toString()
transformation abs(int),

escape(String)

High severity

object identity equals(Object),
compareTo(T)

program logic computeLSB(),
solvePhase1()

some extent. These include methods that send events
to listeners, prepare a computation, or set or get prop-
erties2, or transform or convert a value. We also as-
signed the toString() method that returns a string
representation of an object to a severity of medium.
• The severity high was assigned to categories that con-

tain methods likely to be very relevant for the program
execution. They concern the computation logic or im-
portant data structures. Examples are: calculateAST(),
writeToFile(), storeObject().
Moreover, this severity comprises the equals(Object)

method, which checks if an object is semantically equal
to another one, and the compareTo(T) method, which
returns the natural order of two objects.

5.4 Experiment Procedure
This section describes the mutation testing analysis exe-

cution for the study objects.
We checked out the source code of the projects from the

repositories; built the code with Ant, Maven, or Gradle ac-
cording to the instructions; and imported the projects in the
Eclipse IDE. We then looked at the source code to select the
unit or system tests. We exported the compiled application
and test code as separate jar files and provided the necessary
test data. We specified the location of the jar files and other
dependencies in a configuration file. Moreover, we defined
timeouts for the test cases (twice as long as the longest du-
ration of any test case on the original code) and the number

2Note that our analysis results do not contain very simple
setters and getters consisting of a single statement (as de-
scribed in Section 4).

Table 4: Overview of results
Study Object MPT r(MPT ) CC r(CT )

Apache Comm. Coll. 124 9.5% 81.6% 73.9%
Apache Comm. Lang 22 1.9% 93.0% 91.3%
Apache Comm. Math 271 10.6% 84.8% 75.8%
Apache Comm. Net 28 18.4% 29.0% 23.7%
ConQAT Engine Core 41 18.9% 50.0% 40.5%
ConQAT Lib Commons 45 9.5% 56.3% 51.1%

ConQAT dotnet 154 36.3% 48.1% 30.7%
Daisydiff 7 6.4% 49.8% 46.7%
Histone 47 24.8% 73.0% 54.9%
LittleProxy 35 71.4% 45.4% 13.0%
Mut. Testing Prot. 7 25.0% 73.1% 54.8%
Predictor 80 52.7% 72.4% 34.2%
Struts 2 154 45.9% 27.0% 14.6%
Symja 234 25.0% 21.3% 15.9%
Tspmccabe 13 21.3% 39.1% 30.7%

of concurrently running tests. Some study objects required
the development of a tailored test runner to locate the test
cases and run them piecewise.

We then executed the mutation testing analysis for meth-
ods with void, primitive or string as return types. We ana-
lyzed the method signatures of the study objects and discov-
ered that about 50% to 65% of the methods belonged to this
group. We also developed factories to create instances for
three study objects (Apache Commons Lang, Apache Com-
mons Collections, and ConQAT Engine Core) to investigate
methods that return objects in a separate analysis. Since the
gained results were approximately comparable to the results
of methods with a primitive return type, we did not further
investigate methods returning objects in this experiment.

After the completion of the mutation analysis, we looked
at the log file to check for any unexpected problems. If seri-
ous problems were logged, we fixed the cause and restarted
the analysis. Finally, we imported the analysis results in
the form of SQL statements into a database and stored ad-
ditional execution information (such as the duration).

6. RESULTS
The answers to the research questions suggest that code

coverage is a valid effectiveness indicator for unit tests. This
does not apply to system tests because the ratio of pseudo-
tested methods is higher for this type of test and heavily
deviates, depending on the project.

RQ 1: What is the ratio of pseudo-tested methods?
The ratio of pseudo-tested methods varied heavily and

ranged between 6% and 53% for most study objects. Ac-
cording to the results, the Apache Commons Lang methods
are mostly effectively tested (according to the definition in
Section 2) because the code coverage at the method level
was 93% and less than 2% of the test-executed methods were
classified as pseudo-tested. Other study objects exhibited a
much higher ratio of pseudo-tested methods, including the
Predictor, Struts 2, and LittleProxy projects with more than
half of the test-executed methods being pseudo-tested.

Table 4 presents the number MPT and ratio r(MPT ) of
pseudo-tested methods, the method coverage CC, and the
overall ratio of tested methods r(CT ) for each study object.

RQ 2: Does the ratio of pseudo-tested methods de-



0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Unit tests

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

System tests

Figure 2: Boxplot comparing the ratios of pseudo-
tested methods between unit and system tests

pend on the type of test?
The mean ratio of pseudo-tested methods of the study ob-

jects differs for unit and system tests. The mean ratio was
11.41% for unit tests and 35.48% for system tests. It is strik-
ing that the ratio is within a small range for unit tests but
greatly deviates among systems tests. The standard devia-
tion of the ratio of pseudo-tested methods (6.42% for unit
and 20.60% for system tests) confirms this observation. The
boxplot in Figure 2 depicts the key figures and the deviation
between unit and system tests. The results show that the
type of test influences the ratio of pseudo-tested methods.

RQ 3: How severe are the pseudo-tested methods?
Figure 3 presents the absolute and relative number of

pseudo-tested methods, grouped by severity. For 11 study
objects, more than half of the pseudo-tested methods were
of medium or high severity. This was not the case for Apache
Commons Math, which contains a significant amount of ir-
relevant pseudo-tested methods (some test utility methods
were mutated in the analysis); and Apache Commons Lang
as well as ConQAT Lib Commons with some low-importance
methods. The results confirm the relevance of pseudo-tested
methods and suggest that the lack of test effectiveness is a
problem for a software project.

7. THREATS TO VALIDITY
We separated the threats to validity into internal and ex-

ternal threats.

7.1 Internal Threats
The threats to internal validity comprise reasons why the

results could be invalid for the study objects.
One threat to the internal validity is that some methods

considered pseudo-tested might actually result in equivalent
mutants. We tried to mitigate this issue by the choice of the
mutation operator and additional filtering. The mutation
operator modifies the whole method body, while many com-
mon operators only mutate single lines, and is therefore less
likely to create an equivalent mutant. Additionally, we fil-
tered out empty and trivial methods such as one-line setters
and getters (see Section 4). As we generated two mutants
for methods with primitive or string return types, the re-
sults were not distorted if only one mutants was equivalent.
We manually reviewed a random sample to make sure that
the number of remaining undetected equivalent mutants was
negligible.

Study objects with test cases that fail on the original code
are a further threat to internal validity. This can happen
because of the test environment or faulty code in the study
object. Some test cases rely on further data stored in files,
a database with a certain data model and content, other
connected systems, or the network connection. We tried to
supply all the needed and available files in the test execution
folder and set up the databases according to the project
manuals. Nevertheless, some test cases still failed. This
was the case for the Apache Commons Net project, which
presumably required certain firewall settings for some of its
test cases. We excluded these failing test cases from the
analysis. If the excluded test cases had worked, they might
have killed some mutants that were not killed by the other
test cases (and therefore categorized as pseudo-tested). For
this reason, we only selected projects as study objects in
which most test cases could be successfully executed on the
original code.

Another threat to internal validity is custom class loaders
that could interfere with the test execution on mutated code
and affect the results in some seldom cases. This may occur
if a class is loaded multiple times by different class loaders
during the execution of a single test case. In this case, an-
other class version is loaded in addition to the mutated one.
We consider this threat to be negligible.

One threat regarding the definition of test effectiveness
is the fact that test cases can reveal faults that cause an
exception to be thrown, even in pseudo-tested methods (that
are considered as not effectively tested).

Concerning Research Question 3, the categorization of
pseudo-tested methods according to their purpose was per-
formed by considering the method name. Due to the high
number of methods, it was not feasible to inspect all the
code to determine their purpose. Therefore, some methods
might actually belong to another category and severity than
the assigned one.

7.2 External Threats
The external validity concerns the generalization of the

results of the experiment. One threat to external validity
is that analyses were performed only for void methods and
methods returning a primitive or string value. Although we
additionally executed the analysis for three study objects
with methods returning objects and observed comparable
results, the obtained results might not be representative of
methods returning objects.

Furthermore, the results of the selected open-source pro-
jects might not be representative of closed-source systems.
We tried to mitigate this issue by considering several projects
with different characteristics and application domains as
study objects. Further studies are necessary to determine
if the results also apply to closed-source systems.

8. CONCLUSIONS AND FUTURE WORK
The results of the experiment show that approximately

9% to 19% of the test-executed methods are pseudo-tested
in projects with unit tests. The ratio does not heavily de-
viate among study objects with unit tests (mean: 11.41%,
standard deviation: 6.42%). Therefore, code coverage at the
method level is not completely misleading and can be used
as an approximation for the effectiveness of unit tests.

In contrast, the ratio of pseudo-tested methods for system
tests is generally higher than the ratio for unit tests. It



Comm. Coll. Comm. Lang Comm. Math Comm. Net ConQAT Eng. ConQAT Lib ConQAT dotnet Daisydiff Histone LittleProxy Predictor Struts 2 Symja tspmccabe

0
50

10
0

15
0

20
0

25
0 high medium low irrelevant

Comm. Coll. Comm. Lang Comm. Math Comm. Net ConQAT Eng. ConQAT Lib ConQAT dotnet Daisydiff Histone LittleProxy Predictor Struts 2 Symja tspmccabe

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 3: Pseudo-tested methods by their severity (top: absolute numbers, bottom: ratios)

ranges between 6% and 72% for the analyzed study objects
and heavily deviates (mean: 35.48%, standard deviation:
20.60%). Therefore, code coverage at the method level is
not a valid indicator for the effectiveness of system tests.

The assessment of the functional purpose and severity of
pseudo-tested methods confirms the relevance of these meth-
ods for the software. Faults in these methods would not be
detected and could cause failures.

For future work, we intend to investigate characteristics of
pseudo-tested methods and their relationship to test cases.
We want to find indicators that reveal pseudo-tested meth-
ods. Such indicators would enable rapid detection of these
methods in a static code analysis and make the computation-
ally expensive mutation testing approach superfluous. This
static code analysis could support developers in a continu-
ously integrated development process. Moreover, we plan to
replicate the experiment with closed-source study objects.

9. REFERENCES
[1] J. H. Andrews, L. C. Briand, and Y. Labiche. Is

mutation an appropriate tool for testing experiments?
In Proc. 27th International Conference on Software
Engineering (ICSE). IEEE, 2005.

[2] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S.
Namin. Using mutation analysis for assessing and
comparing testing coverage criteria. IEEE
Transactions on Software Engineering, 32(8), 2006.

[3] M. Daran and P. Thévenod-Fosse. Software error
analysis: a real case study involving real faults and
mutations. In ACM SIGSOFT Software Engineering
Notes, volume 21. ACM, 1996.

[4] M. Fowler. AssertionFreeTesting. http:
//martinfowler.com/bliki/AssertionFreeTesting.html.
Visited on December 21st, 2015.

[5] B. J. Grün, D. Schuler, and A. Zeller. The impact of
equivalent mutants. In Proc. International Conference

on Software Testing, Verification and Validation
Workshops (ICSTW). IEEE, 2009.

[6] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand.
Experiments of the effectiveness of dataflow-and
controlflow-based test adequacy criteria. In Proc. 16th
International Conference on Software Engineering
(ICSE). IEEE, 1994.

[7] L. Inozemtseva and R. Holmes. Coverage is not
strongly correlated with test suite effectiveness. In
Proc. 36th International Conference on Software
Engineering (ICSE). ACM, 2014.

[8] B. Marick. How to misuse code coverage. http://www.
exampler.com/testing-com/writings/coverage.pdf.
Visited on January 14th, 2016.

[9] A. Mockus, N. Nagappan, and T. T. Dinh-Trong. Test
coverage and post-verification defects: A multiple case
study. In Proc. 3rd International Symposium on
Empirical Software Engineering and Measurement
(ESEM). IEEE, 2009.

[10] A. S. Namin and J. H. Andrews. The influence of size
and coverage on test suite effectiveness. In Proc. 18th
International Symposium on Software Testing and
Analysis. ACM, 2009.

[11] R. Niedermayr. Meaningful and practical measures for
regression test reliability. Master’s thesis, Technische
Universität München, Munich, Germany, 2013.

[12] A. J. Offutt, J. Pan, K. Tewary, and T. Zhang. An
experimental evaluation of data flow and mutation
testing. Software: Practice and Experience, 26(2),
1996.

[13] W. E. Wong, J. R. Horgan, S. London, and A. P.
Mathur. Effect of test set size and block coverage on
the fault detection effectiveness. In Proc. 5th
International Symposium on Software Reliability
Engineering (ISSRE). IEEE, 1994.


