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Abstract

Hydrological modeling through conceptual, empirical or even physical models has arisen to
be a fundamental element to solve water related issues. Rainfall-runoff models are widely
used to describe catchment behavior, and for subsequent use for flood forecasting, inte-
grated basin management, the prediction of the impacts of climate change and other pur-
poses. In general, the model applications require calibration procedure to identify the model
parameters and strongly depend on the how well the models are calibrated. The applica-
tions are often limited by the quality or quantity of input data, the model structure, the
uncertainty of model parameters and the change of climate conditions for both gauged and
ungauged regions. Improving the transferability of hydrological model parameters and
providing more reliable predictions of runoff characteristics is nowadays the primary goal
of modern hydrology.

This research is an attempt to investigate the spatial and temporal transferability of concep-
tual hydrological models in making better usage of the available knowledge and technology
on rainfall-runoff processes of catchments. Different conceptual models, like HBV, HYMOD,
and Xinanjiang (XAJ) models, are tested using Robust Parameter Estimation (ROPE) algo-
rithm in various catchments like American, German and Chinese catchments.

Conceptual rainfall-runoff models are usually calibrated for selected catchments individu-
ally using specific performance criteria. The calibration procedure assumes that the catch-
ments show the individual hydrological response. Therefore, the transfer of model param-
eters to ungauged basins is problematic. In this thesis, the spatial transferability of model
parameters is investigated. This study explores to what extent do different catchments share
a similar dynamical rainfall-runoff behavior and can be modeled using the same model pa-
rameters with the exception of the newly introduced individualized water balance param-
eter η. The models are restructured by introducing a new parameter η which exclusively
controls water balances. This parameter is considered as individual to each catchment, all
other parameters, which mainly control the dynamics of the discharge (dynamical param-
eters), are considered for spatial transfer. Three hydrological models combined with three
different performance measures are used in four different numerical experiments to investi-
gate the transferability of dynamical parameters. The first numerical experiment, involving
individual calibration of the models for 15 selected Model Parameter Estimation Experi-
ment (MOPEX) catchments shows that it is difficult to identify which catchments share
common dynamical parameters. Parameters of one catchment might be good for another
catchment but not the opposite. In the second numerical experiment, a common spatial
calibration strategy is applied. It is explicitly assumed that the similar catchments share
common dynamical parameters. This strategy leads to parameters which perform well on
all catchments. A leave-one-out simultaneous calibration shows that in this case a good
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parameter transfer to ungauged catchments can be achieved. In the third numerical exper-
iment, the common calibration methodology is used for 96 MOPEX catchments. Another
set of 96 MOPEX catchments is used to test the transferability of common dynamical pa-
rameters. The results show that even a large number of catchments share similar dynamical
parameters. The performance is worse than those obtained by individual calibration, but the
transfer to ungauged catchments remains possible. The performance of the common param-
eters in the second experiment is better than in the third one, indicating that the selection
of the catchments for common calibration is important. In the fourth numerical experiment,
the common parameters obtained from the 96 MOPEX catchments are used to model two
selected German and a Chinese catchment. The results indicate that the dynamical model
parameters have skill even under very different conditions.

Hydrological models highly relies on the observational data for parameter identification.
Studies show that the model parameters might be significantly different for different calibra-
tion time period. This questions the transferability of model parameters in time. The tempo-
ral transferability of model parameters under changing climatic conditions is investigated
in this thesis. HBV and HYMOD are used to test model performance in different periods for
50 selected MOPEX catchments. The effects of incorporating bias constraints into calibration
routines when model parameters are used for predicting runoff in various weather condi-
tions are tested by comparison of two different performance measures. Calibration result
shows that model parameters are strongly influenced by the climatic conditions during cal-
ibration time period. The sub-period calibration and cross-validation approaches indicate
that the variability of climate conditions often leads to different parameters for the same
catchment. The incorporation of bias constraint with Nash-Sutcliffe efficiency strategy al-
ways achieves better water balance than the unconstrained one when model parameters
are subsequently used for greatly different climate conditions. The transferability of model
parameters strongly depends on the data set that used for model calibration which is de-
tected by the dissimilarity of catchment characteristics using empirical copula density. To
cope with the instability of model parameters under non-stationary conditions, two model
calibration strategies, the common calibration for multi sub-periods and the weather adjust-
ment with weight function are tested on HBV model. These approaches tend to slightly
improve model performance for most of the simulations as compared to traditional calibra-
tion, although the benefit is small.

The reliability of hydrological models highly influenced by the quality and quantity of data
set used for parameter identification. However, the knowledge of how much data and which
period of data set should be selected to effectively calibrate the model is still lacking. How
to adequately use information for model calibration in data-limited regions also needs to
be explored. In this study, the impacts of input data quality and quantity on hydrological
model parameter identification are investigated. HBV model is calibrated using the differ-
ent length of data period for 15 MOPEX catchments. The transferability of the calibrated
model parameters is then validated in two different time periods. The result indicates that
the transferability of model parameters increases with the increasing of data length used for
calibration for most of the study catchments. The sensitivity of data length for parameter
estimation varies for the catchments. In general, a length of data ranging from five years to
ten years is sufficient to calibrate a particular rainfall-runoff process. The result also shows
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that the flood events have significant influence in model parameter estimation, especially for
the surface runoff correlated parameters. For catchments with limited data and ungauged
watersheds, the common calibration approach is presented by using information from spa-
tial proximity catchments. The result shows that for more than half of the simulations, the
model performance and transfer quantity can be slightly improved by using information
from similar catchments. However, for one-third of the simulations, the model parameters
calibrated by simultaneous calibration leads to worse model performances than the one by
individual calibration.





Zusammenfassung

Hydrologisches Modellieren mit konzeptionellen, empirischen und physikalischen Model-
len ist ein wesentliches Element bei der Bearbeitung wasserbezogener Fragestellungen.
Niederschlags-Abfluss-Modelle werden dabei im Wesentlichen dazu verwendet das Ver-
halten von Einzugsgebieten zu beschreiben, Hochwasservorhersagen zu treffen, integrierte
Bewirtschaftungspläne von Flusseinzugsgebieten zu erstellen und Vorhersagen über den
Einfluss des Klimawandels zu formulieren. Die Verwendung hydrologischer Modelle setzt
in der Regel einen Kalibrierungsprozess voraus, in welchem die Werte der Modellparame-
ter bestimmt werden. Die Güte hydrologischer Modelle und somit deren Anwendbarkeit
wird durch diese Modellparameter, sowie durch die Qualität und Quantität der Eingangs-
daten, die Modellstruktur und die klimatischen Verhältnisse im betrachteten Einzugsgebiet
bestimmt. Ein Primärziel der modernen Hydrologie ist dabei, die Verbesserung der Übert-
ragbarkeit hydrologischer Modellparameter von beobachteten auf unbeobachtete Regionen
bzw. Zeiträume und somit die Bereitstellung zuverlässigere Prognosen über die Abflusscha-
rakteristik für unbeobachtete Regionen oder Zeiträume.

In der vorliegenden Arbeit soll untersucht werden, in wie fern die zeitliche und räumli-
che Übertragbarkeit von konzeptionellen hydrologischen Modellen mithilfe des derzeitigen
Kenntnisstandes über Niederschlags-Abfluss-Prozesse verbessert werden kann. Dazu wer-
den unterschiedliche konzeptionelle Niederschlags-Abfluss-Modelle, wie das HBV-Modell,
HYMOD und Xinanjiang (XAJ) unter der Verwendung eines robusten Algorithmus zur Pa-
rameterschätzung (ROPE) in verschiedenen Einzugsgebieten in den USA, Deutschland und
China getestet.

Konzeptionelle Niederschlags-Abfluss-Modelle werden in der Regel individuell für jedes
Einzugsgebiet kalibriert, wobei angenommen wird, dass jedes Einzugsgebiet eine individu-
elle hydrologische Reaktion zeigt. Aus diesem Grund stellt sich die einfache Übertragung
der Modellparameter von einem beobachteteten in ein unbeobachtetes Einzugsgebiet als
problematisch dar. Um diese Übertragbarkeit von Modellparametern zu bewerten, wird
untersucht bis zu welchem Ausmaß verschiedene Einzugsgebiete ein ähnliches dynami-
sches Niederschlags-Abfluss-Verhalten zeigen und ob diese mit den gleichen Werten der
Modellparameter modelliert werden können. Die drei verwendeten Modelle werden dafür
so umstrukturiert, dass ein zusätzlicher neu eingeführte Parameter η die Wasserbilanz steu-
ern kann. Dieser Wasserbilanzparameter η wird dabei individuell für jedes Einzugsgebiet
bestimmt, während die weiteren Modellparameter, die die Abflussdynamik steuern, für die
Übertragung verwendet werden. Zur Untersuchung der Übertragbarkeit werden die drei
hydrologischen Modelle jeweils mit drei verschiedenen Modellgüteparametern kombiniert
und in vier verschiedenen numerischen Experimenten analysiert. Im ersten numerischen
Experiment werden die Modelle für 15 ausgewählte Einzugsgebiete des Modellparame-
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terschätzung Experiments MOPEX jeweils individuell kalibriert. Dabei zeigt sich, dass es
schwierig ist, herauszufinden, welche Einzugsgebiete gleiche Abflussparameter besitzen.
Überträgt man die Parameter von einem Einzugsgebiet A in ein anderes Einzugsgebiet B,
erhält man eine gute Modellgüte für beide Einzugsgebiete. Beim umgekehrten Übertragen
der Parameter vom Einzugsgebiet B ins Einzugsgebiet A jedoch nicht. Im zweiten numeri-
schen Experiment wird die gleichzeitige räumliche Kalibrierungsweise angewandt, wobei
explizit angenommen wird, dass ähnliche Einzugsgebiete die gleichen dynamischen Mo-
dellparameter besitzen. Mit dieser Vorgehensweise erhält man Modellparameter, die mit
allen Einzugsgebieten gute Ergebnisse zeigen. Eine Kreuzvalidierung zeigt, dass in die-
sem Fall eine gute Parameterübertragung in unbeobachtete Einzugsgebiete erreicht werden
kann. Im dritten numerischen Experiment werden 96 MOPEX Einzugsgebiete mit dersel-
ben Methode wie im zweiten numerischen Experiment kalibriert. Anschließend werden die
dynamischen Modellparameter auf 96 andere MOPEX Einzugsgebiete übertragen. Die Er-
gebnisse zeigen, dass eine große Anzahl an Einzugsgebieten ähnliche dynamische Modell-
parameter besitzen. Die Modellergebnisse sind dabei schlechter als bei einer individuellen
Kalibrierung, jedoch führt diese Übertragung der Modellparameter in unbeobachtete Ein-
zugsgebiete dennoch zu vernünftigen Ergebnissen. Die Modellgẗe im zweiten Experiment
ist besser als im dritten Experiment. Dies lässt schlussfolgern, dass die richtige Auswahl
an Einzugsgebieten für die gemeinsame Kalibrierung wichtig ist. Im vierten numerischen
Experiment werden die Modellparameter aus den 96 MOPEX Einzugsgebieten auf zwei
ausgewählte Einzugsgebiete in Deutschland und China angewandt. Die Ergebnisse zeigen
dabei, dass die dynamischen Modellparameter auch auf Einzugsgebiete mit anderen Bedin-
gungen angewandt werden können.

Hydrologische Modelle sind für die Parameterbestimmung zu einen hohem Anteil auf Be-
obachtungsdaten angewiesen. Untersuchungen zeigen, dass Modellparameter signifikante
Unterschiede bei der Kalibrierung mit Daten aus unterschiedlichen Zeiträumen aufweisen
können. In dieser Arbeit wird der Fragestellung nachgegangen, in wie weit sich Modellpa-
rameter unter wechselnden Klimabedingungen auf andere Einzugsgebiete übertragen las-
sen. Dabei werden mithilfe des HBV-Modells und HYMOD 50 ausgewählte MOPEX Ein-
zugsgebiete in unterschiedlichen Zeiträumen untersucht. Den Einfluss zusätzlicher Randbe-
dingungen in der Kalibrierung wird durch den Vergleich zweier Modellgüteparameter be-
stimmt. Die Ergebnisse aus der Kalibrierung zeigen, dass die Modellparamater stark durch
die klimatischen Verhältnisse im Kalibrierungszeitraum beeinflusst werden. Die Kalibrie-
rung und Kreuzvalidierungsansätze des in kleine Zeitschritte unterteilten Kalibrierungs-
zeitraums zeigen, dass die Variabilität der klimatischen Verhältnisse oftmals zu verschiede-
nen Modellparametern für das gleiche Einzugsgebiet führen. Werden die Modellparameter
nach der Kalibrierung auf Einzugsgebiete mit stark unterschiedlichen Klimabedingungen
angewandt, können durch die Kombination des Nash-Sutcliffe-Gütemaß mit zusätzlichen
Randbedingungen für die Wasserbilanz immer bessere Ergebnisse erzielt werden, also ohne
diese Randbedingungen. Die Übertragbarkeit der Modellparameter hängt dabei stark vom
verwendeten Datensatz für die Kalibrierung ab. Dieser wird über die Ungleichheit der Ein-
zugsgebietscharakteristik unter Verwendung der empirischen Copula-Dichte ermittelt. Um
den wechselnden Größen der Modellparameter unter nicht-stationären Bedingungen zu be-
gegnen, werden zwei Kalibrierungsstrategien anhand des HBV-Modells getestet. Die erste
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Strategie beinhaltet eine gewöhnliche Kalibrierung mit vielen Teilzeiträumen. Die zweite
Strategie beinhaltet eine Wetterkorrektur mithilfe einer Gewichtsfunktion. Diese Ansätze
führen dabei für die meisten Simulationen zu leichten Verbesserungen der Modellgüte im
Vergleich zur ursprünglichen Kalibrierung. Die Zuverlässigkeit von hydrologischen Model-
len hängt stark von der Qualität und Quantität des Datensatzes ab, der für die Parame-
terbestimmung verwendet wird. Dabei fehlt jedoch immer noch das Wissen darüber, wel-
chen Umfang und welche Zeitperiode der Kalibrierungsdatensatz für eine effiziente Kali-
brierung des Modells umfassen soll. Zudem muss untersucht werden, wie die begrenzte
Datenmenge in bestimmten Regionen für eine Modellkalibrierung sinnvoll genutzt werden
kann. In dieser Arbeit werden die Einflüsse von Quantität und Qualität der Eingangsda-
ten auf die Bestimmung von Modellparametern untersucht. Das HBV-Modell wird dazu
unter der Verwendung von Datensätzen verschiedener Quantität an 15 MOPEX Einzugsge-
bieten kalibriert. Die Übertragbarkeit der kalibrierten Modellparameter wird anschließend
anhand zweier verschiedener Zeitperioden validiert. Die Ergebnisse zeigen, dass sich mit
ansteigendem zeitlichen Umfang der Datensätze für die Kalibrierung bei der Übertragung
der Modellparameter für die meisten Einzugsgebiete bessere Ergebnisse erzielen lassen. Der
genaue zeitliche Umfang des Datensatzes für die Parameterbestimmung variiert dabei von
Einzugsgebiet zu Einzugsgebiet. Im Allgemeinen ist jedoch ein Datenumfang von fünf bis
zehn Jahren ausreichend für die Kalibrierung eines Niederschlag-Abfluss-Prozesses. Das Er-
gebnis zeigt auch, dass Hochwasserereignisse einen maßgeblichen Einfluss auf die Bestim-
mung der Parameter für den Oberflächenabfluss haben. Für Einzugsgebiete mit begrenztem
Datensatz und für unbeobachtete Einzugsgebiete wird der gemeinsame Kalibrierungsan-
satz mithilfe von Informationen aus räumlich nahen Einzugsgebieten gewählt. Das Ergebnis
zeigt, dass für mehr als die Hälfte der Simulationen, die Modellgüte durch die Verwendung
von Informationen ähnlicher Einzugsgebiete leicht verbessert werden kann. Bei einem Drit-
tel der Simulationen führt jedoch eine gemeinsame Kalibrierung zu schlechteren Modeller-
gebnissen als bei einer individuellen Kalibrierung.





1 Introduction

1.1 Background

Hydrological models are the simplified representations of the hydrological process [Kacz-
marek et al., 1996]. They are widely used around the world for multiple purposes such as
water management, flood forecasting, climate change impact analysis and so forth. There
are many different ways of classifying hydrological models [Clarke, 1973; Wheater et al.,
1993; Beven, 2005]. The most fundamental distinction of models is usually made based on
various spatial resolutions: lumped models and distributed models [Gharari, 2016]. The
lumped models often deal with the entire study region as a single unit while the distributed
models attempt to take account of the spatial patterns of the rainfall-runoff response within
a catchment area. Along with the rapid growth of computer science and technology, the
past several decades have seen a prompt development of rainfall-runoff models of various
types and complexities of physical processes and spatial representations [Singh et al., 1995].
They range from simple empirical models, conceptual bucket models, to physically-based
models.

No matter what type or scale a rainfall-runoff model belongs to, it was usually designed
to be implemented in a particular watershed to fulfill a specific set of objectives, and its as-
sumptions and approaches may not be valid under all conditions across different kinds of
watersheds [Shamseldin, 1997; Abrahart et al., 2002]. Nearly, most of the model applica-
tions require calibration procedure to identify the model parameters and strongly depend
on the how well the models are calibrated. The applications are often limited by the qual-
ity or quantity of input data, the model structure, the uncertainty of model parameters and
the change of climate conditions for both gauged and ungauged regions [Beven and Freer,
2001; Beven, 2005]. Improving the transferability of hydrological model parameters and
providing more reliable predictions of runoff characteristics is nowadays the primary goal
of modern hydrology.

Hydrological modeling is always done for a specific catchment with observed precipita-
tion, temperature and discharge data [Bárdossy et al., 2016]. The unknown and partly not
measurable model parameters of a conceptual or to some extent physical-based model are
typically adjusted in a calibration procedure to reproduce the measured runoff from the
observed meteorological data and catchment characteristics. Due to the high variability
of catchment properties and hydrological behavior [Beven, 2000], this modeling procedure
is usually performed individually for each catchment. Different catchments are normally
modeled using different models. This great variety of models and catchments makes a gen-
eralization of the description of the hydrological processes very challenging [Sivapalan,
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2003]. Additionally, even for a selected model applied for a specific catchment, the parame-
ter identification is still not unique. A great number of parameter sets might lead to a very
similar performance for the model calibration [Beven and Freer, 2001].

Moreover, due to over-reliance on measured discharge for model calibration and validation,
estimation of model parameters for ungauged basins is a tremendous challenge. Instead of
model calibration, parameters should rather be estimated on the basis of other information
[Sivapalan, 2003]. A decade of worldwide research efforts have been carried out for the
runoff Prediction in Ungauged Basins (PUB) [Hrachowitz et al., 2013]. The PUB synthesis
book [Blöschl, 2013] takes a comparative approach to learning from similarities between
catchments and summarizes a great number of interesting methods that are being used for
predicting runoff regimes in ungauged basins.

A commonly used way to obtain variables in ungauged catchments is to transfer informa-
tion from gauged catchments. Central to this approach is the selection of supposedly sim-
ilar catchments. In general, catchment similarity can be defined as apparent similarity as
well as functional similarity [Oudin et al., 2008, 2010]. The apparent similarity is defined
on the basis of observable catchment properties (e.g. drainage area, shape factor or land
use), while the functional similarity, which reflects the transformation of precipitation to dis-
charge, could be formulated using dependence measures relating discharge series or tested
through the utilizing of hydrological models. For understanding target catchment processes
based on previously studied catchments, information needs to be transferred from a similar
catchment based on the similarity between donor and receiver catchments. The drawback of
using only catchment characteristics as attributes for classification is that similarity in catch-
ment properties does not necessarily result in similarity in catchment hydrological response
[Oudin et al., 2010]. The point is how to increase our knowledge about the overlap between
the apparent similarity and the functional similarity, how can we best represent catchment
characteristics of form. Many attempts have been made to develop catchment classification
schemes to identify groups of catchments which behave similarly [Grigg, 1965; Sawicz et al.,
2011; Ali et al., 2012; Sivakumar and Singh, 2012; Toth, 2013]. However, the task is of great
importance. McDonnell and Woods [2004] discussed the need for a widely accepted classi-
fication system and Wagener et al. [2007] pointed out that a good classification would help
to model the rainfall–runoff process for ungauged catchments.

Razavi and Coulibaly [2012] give a comprehensive review of catchment regionalization
methods for predicting streamflow in data-limited and ungauged basins. Catchment simi-
larity can be determined by comparing their corresponding discharge series. Correlations
[Archfield and Vogel, 2010] or copulas [Samaniego et al., 2010] can be used for this purpose.
Much of the variability in discharge time series is controlled by the climate patterns. There-
fore, it is likely that similarity in discharge is higher for catchments with well correlated
weather, which often requires geographical closeness [Archfield and Vogel, 2010]. How-
ever, discharge series generated by similar catchments can be significantly different under
different meteorological conditions. Even the same catchment behaves differently in a dry
and a wet period. Due to the different weather forcing, the above methods would consider
that the same catchment in one time period as dissimilar to itself in another period.

The functional similarity can be defined using hydrological models [McIntyre et al., 2005;
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Oudin et al., 2010; Razavi and Coulibaly, 2012]. Catchments are similar if they can be mod-
eled reasonably well by the same model using the same model parameters [Bárdossy, 2007].
Due to observational errors and specific features in the calibration period, the adjustment
of the model can be very specific to the observation period leading to an overcalibration
[Andréassian et al., 2012]. To overcome such limitations, a regional calibration [Fernandez
et al., 2000] approach is suggested to identify single parameter sets that perform well for
all catchments within the modeled domain. Parajka et al. [2007] indicate that the iterative
regional calibration indeed reduced the uncertainty of most parameters. Regional calibra-
tion can result in a better temporal robustness than normal individual calibration [Gaborit
et al., 2015]. It provides an effective approach in large-scale hydrological assessments [Ri-
card et al., 2012] and prediction in ungauged catchments [Bárdossy et al., 2016].

Since climate change becomes a major issue in both science and society, the impacts of cli-
mate change on hydrology have been extensively investigated over the past two decades
[Vaze and Teng, 2011; Vaze et al., 2011; Coron et al., 2012]. Previous studies have shown
that climate change caused by increasing atmospheric concentration of greenhouse gases
may have significant influence on the water availability and hydrological circulations [Rind
et al., 1992]. Floods and droughts are the greatest potential natural disasters that “stim-
ulates” other factors such as economics, industry, agriculture and others to adapt to the
changes in climate behavior [Barnett and Adger, 2007]. It is really important for hydrolo-
gists to be able to predict the potential impact of climate change on catchment behaviors
and therefore develop sustainable water management strategies. Under the changing cli-
mate conditions and land use types, the hydrological process may be considered as non-
stationary. The statement “hydrological non-stationarity” has been widely used to describe
climate and runoff variability evident in different time periods within a long hydro-climate
time series to changes in hydrological responses and catchment characteristics [Chiew et al.,
2014; Vaze et al., 2015]. Milly et al. [2007] initiated significant discussions and considerable
investigations on the researches of hydrological non-stationarity.

The non-stationarity conditions also cause several inconveniences for the application of hy-
drological models. An applicable rainfall-runoff model should be able to capture the es-
sential features of the target catchment and therefore be transferable to different conditions.
As many model applications are based on the stationary assumptions, this questions the
sufficiency for predicting further changes or time variability. A considerable amount of re-
searches have shown that parameter estimations for different calibration time period might
be significantly different. This limits the application of hydrological models under non-
stationary conditions [Bastola et al., 2011; Li et al., 2012].

In addition, the reliability of hydrological models is highly influenced by the quality and
quantity of data sets used for model parameter identification [Yapo et al., 1996; Beven, 2011].
Previous studies [Duan et al., 1994; Yapo et al., 1996] have indicated that the data selected
for model calibration should be “representative” of the various phenomena experienced by
the catchments. Some people have attempted to satisfy this requirement by using as large as
data sets possible. However, observation records of continuous hydro-meteorological data
that used for model calibration and validation are available only for a small number of sites.
Thus, the application of hydrological models is often limited due to the lack of observation
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data.

This thesis is an attempt to investigate the spatial and temporal transferability of conceptual
hydrological models in making better usage of the available knowledge and technology on
rainfall-runoff processes of catchments. The simultaneous calibration of hydrological mod-
els in geographical space was introduced and applied in different regions. The transferabil-
ity of model parameters in time within different climate conditions was tested. The strate-
gies of simultaneous calibration for multi sub-periods and weight functions were applied to
reduce the uncertainty of hydrological model parameters under non-stationarity conditions.
Moreover, the influences of data quality and quantity over the calibration period on model
parameters parameterization were evaluated.

1.2 Outline of the thesis

This thesis is an attempt to pave a way toward a framework which can: lead to a better
understanding of conceptual hydrological models, a better understanding of the interaction
of model performance and catchment characteristics, robust estimation of model parameters
and prediction in ungauged basins.

In the next chapter (chapter 2), this work starts with a description of the three selected re-
gions used in this study.

The theoretical background of hydrological models and performance criteria is briefly
viewed in Chapter 3.

Chapter 4 elaborates the parameter optimization strategy used for model calibration. The
basic idea and an example of the Robust Parameter Estimation(ROPE) algorithm [Bárdossy
and Singh, 2008] is explained.

In Chapter 5, the development of a new technique for simultaneous calibration of hydrologi-
cal models in a geographical space is described. The models are restructured by introducing
a new parameter η which exclusively controls water balances. Three hydrological models
combined with three different performance measures are used in four different numerical
experiments to investigate the transferability of dynamical parameters.

In Chapter 6, the temporal transferability of model parameters under changing climatic con-
ditions is investigated. The effects of incorporating bias constraints into calibration rou-
tines when model parameters are used for predicting runoff in different weather conditions
are tested by a comparison of two different performance measures. The common calibra-
tion for multi sub-periods and the weather adjustment with weight function strategies are
introduced to cope with the instability of hydrological model parameters under the non-
stationary circumstance.

Chapter 7 deals with the impacts of quality and quantities of data series on model calibra-
tion. This chapter also provides the use of the method for data limited area and ungauged
basins.

At the end of this thesis (Chapter 8), a summary of this study and a short outlook of the
future work are outlined.



2 Study Area

The studies were held in three different regions. The research experiments were mainly
carried out on the 279 MOPEX catchments located in the eastern United States. The Upper
Neckar catchment, located in the southern part of Germany and the Chengcun catchment,
located in eastern of China were selected for testing the spatial transferability of hydrological
models. The overview of the study areas is presented in this chapter.

2.1 The MOPEX catchments

The first study area consists of 279 catchments distributed in the eastern half of the United
States. Figure 2.1 shows the location of the streamgauges for these catchments. The catch-
ments are a subset of the catchments used for the international Model Parameter Estimation
Experiment (MOPEX) project [Duan et al., 2006; Brooks et al., 2011]. MOPEX is an inter-
national project aimed at developing enhanced techniques for the a priori estimation of
parameters in hydrologic models and in land surface parameterization schemes of atmo-
spheric models [Duan et al., 2006]. The MOPEX hydrological dataset has been widely used
for hydrological model comparison studies and catchment classification research in recent
decades [Sawicz et al., 2011; Kollat et al., 2012; Arsenault et al., 2013; Sawicz et al., 2014].

The MOPEX data set includes hydro-meteorological data for more than 400 U.S. catch-
ments. Data available at each catchment contains daily precipitation, maximum and min-
imum air temperature, potential evapotranspiration and streamflow. Streamflow informa-
tion within this dataset was originally provided by the United States Geological Survey
(USGS) gauges, while precipitation and temperature were supplied by the National Climate
Data Center (NCDC).The daily potential evapotranspiration was calculated based on the
National Oceanic and Atmospheric Administration (NOAA) Evaporation Atlas [Farnsworth
and Thompson, 1983]. A total of 279 catchments which are minimally impacted by human
influences were considered in this study (Figure 2.1). Data for most of the selected catch-
ments is available from the first day of 1948 to the end of 2003.

These study catchments range in size from 67 km2 to 10 096 km2 and range in elevation
between 21 m and 1 212 m above sea level. The climates in this region vary considerably due
to a great variety of topographic and geographical conditions. The environment situation
changes from marine to dry to moist from the west to the east coast while ranging from cold
to hot climate from northern to southern part of the United States, The study area lies in the
moist environment with three different climate conditions based on Koeppen-Geiger climate
classification, which is still the most frequent classification system used today [Kottek et al.,
2006]. The runoff coefficients which relate observed discharge volumes to precipitation are
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Figure 2.1: Study area: 279 MOPEX catchments in the eastern United States.

between 0.046 and 0.754 for these catchments. Figure 2.3 plots the value of runoff coefficients
for the selected MOPEX catchments. From this color map, we can see clearly that the runoff
coefficients show a quite smooth spatial behavior and the climate situation changes from
dry to moist from the west to the east coast.

The study was mainly tested on 15 selected catchments with reliable data and slightly vary-
ing catchment properties. The locations of the streamgauges for these 15 selected catchments
are shown in Figure 2.4. These 15 catchments are all influenced by humid continental climate
with relatively cool summers and heavy snow in winters. Table 2.1 lists the core catchment
properties [Falcone et al., 2010] and Table 2.2 summarizes the meteorological conditions for
the selected 15 catchments, respectively. The tables indicate that despite their geographical
proximity, these catchments have quite different climate and hydro-graphic properties.

2.2 The Upper Neckar Catchments

The Upper Neckar catchment, with a drainage area of about 4 000 km2, is situated in
South-West Germany in the state of Barden-Württemberg. A great number of hydrologi-
cally related researches have been done in this region [Samaniego, 2003; Hartmann, 2007;
Götzinger, 2007; Singh, 2010] with elevations ranging from 238 m above sea level at the wa-
tershed outlet to about 1 000 m in the upstream site that is covered by vegetation and forest.
The study region is influenced by Atlantic climate and is that semi-humid and temperate.
The high variability in altitude is responsible for variations in climatic conditions on the lo-
cal scale. Summers are relatively warm and the winters tend to be cold, the annual average
temperature across the Upper Neckar catchment is about 8.7 0C. The precipitations are dis-
tributed along the whole year and show a weak seasonality. The wettest period is around
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Figure 2.2: Distribution of climate zones of the continental United States. [Source:
https://www.imagepermanenceinstitute.org/webfm send/635]

the month of June, and the driest one is around the month of October. The minimum an-
nual precipitation is around 650 mm/year in the region of Stuttgart and increases to 1 800
mm/year in the western part of the catchment.

The whole Upper Neckar catchment was divided into 13 subcatchments representing differ-
ent land use and elevation types [Hartmann, 2007]. Two upstream subcatchments where the
runoff characteristics are not affected by larger hydropower plants or other human activities
were considered in this study. Figure 2.5 shows the locations of the selected subcatchments
and Table 2.3 lists the physical and hydrological characteristics.

The historical data from 1971 to 1980 that used in this study was provided by the State
Institute for Environmental Protection Baden-Württemberg. The daily precipitation from
151 rain gauges and average air temperature from 74 climatic stations were used in this
research. The hydro-meteorological input required for the rainfall-runoff model was inter-
polated from the observations with External Drift Kriging [Ahmed and De Marsily, 1987]
using topographical elevation as external drift [Das et al., 2008]. The discharge data from
Rottweil and Suessen streamgauges was collected for modeling.
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Figure 2.3: Spatial distribution of runoff coefficients for the 279 selected MOPEX catchments
in the eastern United States.

2.3 The Chengcun Catchment

The chengcun catchment is located in the southern mountainous area of Anhui Province,
China (Figure 2.6). The size of this catchment is 290 km2 and the longest stream length is
around 3.6 km. The long-term annual average precipitation is nearly 1 600 mm/year. Due
to the dominance of monsoon climate [Yao et al., 2012], more than 60% of annual rainfall
occurs during the flood season (mainly from May to August). The annual potential evap-
otranspiration is approximately 670 mm/year. The average maximum and minimum air
temperature are about 24 0C and 0 0C, respectively.

For the Chengcun catchment, daily precipitation, potential evapotranspiration and observed
streamflow were provided by Anhui Hydrological Bureau, China. The available data from
1986 to 1995 was selected for model simulation in this study.
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Figure 2.4: Location of the MOPEX catchments selected for the experiments. The red plus
symbols show the location of 15 selected catchments in a close geometrical set-
ting; the blue circles show 96 randomly selected catchments and the green trian-
gles show another set of 96 catchments.
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Table 2.1: Catchment characteristics for the 15 selected MOPEX catchments.
Streamgauge Streamgauge Drainage Shape Field Average Base Snow

ID name area factor capacity porosity flow proportion
(km2) index (%)

01548500 Pine Creek 1564 0.14 0.32 0.42 0.44 26.6
at Cedar Run, PA

01606500 So. Branch Potomac River 1663 0.15 0.31 0.28 0.45 19.5
near Petersburg, WA

01611500 Cacapon River 1753 0.17 0.269 0.27 0.41 15.6
near Great Cacapon, WV

01663500 Hazel River at Rixeyville 743 0.16 0.30 0.39 0.51 12.1
at Rixeyville, VA

01664000 Rappahannock River 1606 0.11 0.294 0.40 0.50 11.8
at Remington, VA

01667500 Rapidan River 1222 0.13 0.32 0.40 0.51 10.6
near Culpeper, VA

02016000 Cowpasture River 1194 0.18 0.28 0.27 0.43 16.0
near Clifton Forge, VA

02018000 Craig Creek 852 0.24 0.27 0.30 0.44 11.3
at Parr, VA

02030500 Slate River 585 0.20 0.30 0.46 0.48 8.5
near Arvonia, VA

03114500 Middle Island Creek 1186 0.14 0.36 0.27 0.21 15.6
at Little, WV

03155500 Hughes River 1171 0.14 0.36 0.27 0.22 14.9
at Cisco, WV

03164000 New River 2929 0.09 0.29 0.43 0.64 13.3
near Galax, VA

03173000 Walker Creek 790 0.24 0.32 0.37 0.46 13.5
at Bane, VA

03180500 Greenbrier River 344 0.26 0.36 0.27 0.37 25.3
at Durbin, WV

03186500 Williams River 332 0.33 0.36 0.28 0.36 24.3
at Dyer, WV
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Table 2.2: Climate variables for the 15 selected MOPEX catchments.

Streamgauge Annual Average Annual potential Annual

No ID precipitation temperature evapotranspiration runoff

(mm) (oC) (mm) (mm)

1 01548500 951.7 7.2 727.0 495.1

2 01606500 948.6 10.3 716.3 378.3

3 01611500 905.6 10.8 800.0 310.5

4 01663500 1049.9 11.7 897.2 402.6

5 01664000 1027.7 12.0 906.1 367.5

6 01667500 1087.4 12.3 915.2 380.4

7 02016000 1029.5 11.0 746.0 402.9

8 02018000 1010.6 11.4 764.6 406.3

9 02030500 1075.9 13.5 918.2 350.3

10 03114500 1089.7 11.4 737.4 483.9

11 03155500 1057.8 11.6 740.0 443.7

12 03164000 1247.9 10.6 807.4 593.3

13 03173000 958.6 11.1 762.7 371.9

14 03180500 1224.2 8.3 710.9 543.2

15 03186500 1401.5 9.1 710.9 945.0

Table 2.3: Catchment characteristics for the two selected subcatchments in the Upper Neckar
catchment.

Subcatchments Drainage Mean Annual Average Annual

area elevation precipitation temperature runoff

(km2) (m) (mm) (oC) (mm)

Rottweil, Neckar 454.7 700.0 929.0 7.5 363.2

Süssen, Fils 345.7 625.2 1003.5 8.5 543.3
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Figure 2.5: Study area: two selected subcatchments in the Upper Neckar catchment,
Germany.

Figure 2.6: Study area: Chengcun catchment in the southeast of China.



3 Hydrological Models and Performance
Criteria

Hydrological models are widely used to describe the rainfall-runoff behaviors for catch-
ments. Different models always have different levels of complexity in conceptualization
and parameterization. Therefore, it is critical to see if the simulation results are similar to
different models and performance measures. In this study, three conceptual models with
five different performance measures were considered and compared. The overview of the
models and performance criteria used in this research are presented in this chapter.

3.1 Hydrological Models

In this research, we used three simple conceptual rainfall-runoff models: HBV, HYMOD and
Xinanjiang model. The reason for this is that the vast number of calibration and validation
experiments could only be easily performed with relatively simple model structures.

3.1.1 HBV Model

The conceptual HBV model was developed by the Swedish Meteorological and Hydrologi-
cal Institute (SMHI) in early 1972 [Bergström and Forsman, 1973]. It has been widely used
in rainfall-runoff simulation for the reason of few free calibration parameters and simple to
use and calibrate. The model version used in this research has been modified at the Institute
for Modeling Hydraulic and Environmental Systems (IWS), University of Stuttgart. Figure
3.1 shows the schematic representation of HBV-IWS model [Singh, 2010]. The model con-
sists of conceptual routines for snow accumulation and snowmelt, soil moisture and runoff
generation, runoff concentration within the subcatchments, and flood routing of the flow in
the river network [Hartmann, 2007; Singh, 2010].

In HBV model, the amount of snow accumulation and snowmelt is calculated by a degree-
day method [Rango and Martinec, 1995] as shown in Equation 3.1, including two parameters
of degree-day factor (DD) and threshold temperature for snowmelt (TT). In this approach, it
is assumed that if the air temperature (T ) is above the threshold temperature, the observed
precipitation is considered to occur as rainfall, otherwise, as snowfall.

Snowmelt = DD · (T − TT ), if T > TT (3.1)
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Figure 3.1: Schematic representation of lumped HBV model [Singh, 2010].

In general, soil moisture is calculated by balancing precipitation and evapotranspiration
using field capacity (FC) and permanent wilting point (PWP) as parameters. The index of
wetness (∆Q

∆P ) can be calculated as follow:

∆Q

∆P
= (

SM

FC
)Beta (3.2)

Here SM represents the actual soil moisture and Beta is a shape factor. The potential evap-
otranspiration for a given day (Etp) is calculated by long-term monthly average potential
evapotranspiration (PEM ) and long-term monthly average temperature (TM ) that based on
the Penman formula [Penman, 1948]:

Etp = (1 + C(T − TM ))PEM (3.3)

Here C is the coefficient of evapotranspiration. The actual evapotranspiration (Eta) is calcu-
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lated as below:

Eta =

{
Etp if SM > PWP
SM
PWP · Etp else

(3.4)

Runoff generation is calculated by a non-linear function of actual soil moisture and effective
precipitation as shown in Equation 3.2. Afterwards, runoff routing on the hill slopes is
modeled by two parallel non-linear reservoirs representing the direct surface flow and the
groundwater response:

Q0 = K0(S1 −HL) (3.5)

Q1 = K1S1 (3.6)

Qd = KdS1 (3.7)

Q2 = K2S2 (3.8)

Where Q0 is the surface runoff, Q1 is the interflow, Qd is the percolation from the upper
reservoir to the lower reservoir and Q2 is the baseflow. K0, K1, Kd and K2 represent the
surface flow storage constant, interflow storage constant, percolation storage constant and
baseflow storage constant respectively. S1 is the upper reservoir water level while S2 is the
lower reservoir water level. HL is the threshold water level for surface discharge.

The sum of the outflows from upper and lower reservoirs (Q0 +Q1 +Q2) represents the total
runoff. The total outflow is then smoothed using a transformation function, consisting of a
triangular weighting function with parameter MAXBAS.

Inputs for lumped HBV model are daily precipitation, average air temperature, long-term
mean monthly potential evapotranspiration and temperature. There are in total 15 parame-
ters to describe the model, out of which nine parameters are selected for calibration in this
study. Table 3.1 shows the general range of the parameters which need to be calibrated by
the model.

Table 3.1: Description of the HBV model parameters and parameter ranges for model
calibration.

Parameter Description Max Min

TT Threshold temperature for snowmelt (0C) 2 -2

DD Degree-day factor 3 1.5

FC Field capacity (mm) 600 50

Beta Shape coefficient 8 0.2

K0 Near surface flow storage constant 0.8 0.2

K1 Interflow storage constant 0.25 0.1

K2 Baseflow storage constant 0.1 0.01

Kd Percolation storage constant 0.2 0.05

HL Threshold water level for near surface flow (mm) 100 1
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3.1.2 HYMOD Model

The HYMOD [Boyle et al., 2001] is a conceptual rainfall-runoff model based on the
probability-distributed principle of Moore [1985]. Figure 3.2 shows the schematic repre-
sentation of HYMOD model. The model assumes that the soil moisture storage capacity
varies across each catchment and the proportion of the catchment with saturated soils varies
with time. The soil moisture accounting module of HYMOD utilizes a Pareto distribution
function of storage elements of varying sizes. The storage elements of the catchment are dis-
tributed according to a probability density function defined by the maximum soil moisture
storage CMAX and the distribution of soil moisture store β [Wagener et al., 2001]. Evapo-
ration from the soil moisture store occurs at the rate of the potential evaporation estimates
using the Hamon approach [Hamon, 1963]. After evapotranspiration, the remaining rainfall
and snowmelt are used to fill the soil moisture stores. A routing module divides the excess
rainfall using a split parameter α which separates fluxes amongst two parallel conceptual
linear reservoirs meant to simulate the quick (Rq) and slow flow response (Rs) of the system
(defined by residence times kq and ks). More detailed description of the model can be found
in Moore [1985]; Boyle et al. [2001] and Wagener et al. [2001].

Figure 3.2: Schematic representation of lumped HYMOD model.

In this study, the model is configured as a lumped version that using the entire catchment
as the computing unit. Table 3.2 shows the general range of the seven parameters that need
to be calibrated by model with historical data.

3.1.3 Xinanjiang Model

The Xinanjiang model (XAJ) was established by Hohai University, China in the early 1970s
[Zhao and Liu, 1995]. Similar to the HBV and HYMOD model, the XAJ model is a general
purpose model for rainfall-runoff simulation, flood forecasting and water resources plan-
ning and management. The main feature of XAJ model is the concept of runoff formation
on the repletion of storage, which means the flow is not produced until the soil moisture
concern of the aeration zone reaches field capacity, and thereafter runoff equals the rainfall
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Table 3.2: Description of HYMOD model parameters and parameter ranges for model
calibration.

Parameter Description Max Min

TT Threshold temperature for snowmelt (0C) 2 -2

DD Degree-day factor 3 1.5

CMAX Maximum soil moisture storage (mm) 600 50

β Degree of spatial variability of the soil moisture capacity 8 0.2

α Flow distributing factor 0.8 0.2

ks Residence times of the slow reservoir 0.2 0.01

kq Residence times of the quick reservoirs 0.8 0.2

excess without further loss [Yao et al., 2012]. This conceptual rainfall-runoff model has been
applied to a large number of catchments in the humid and semi-humid regions in China.
The lumped version of XAJ model consisted of four main components [Zhao and Liu, 1995].
The evapotranspiration is represented by a three-layer soil moisture module which differen-
tiates upper, lower and deeper soil layers. Runoff generation is calculated based on rainfall
and soil storage deficit; tension water capacity curve is introduced to provide a non-uniform
distribution of tension water capacity throughout the whole catchment. The runoff separa-
tion module separates the determined runoff into three parts, namely surface runoff, inter-
flow and groundwater. Finally, the flow routing module transfers the local runoff to the
outlet of the catchment. The flow chart of the XAJ model is shown in Figure 3.3.

In XAJ model, the actual evapotranspiration depends on the soil moisture conditions and
the potential evaporation. The areal mean soil moisture capacity (WM) is normally divided
into three components: the upper part (WUM), the lower part (WLM) and the deeper
part (WDM). Here, WU, WL and WD represent the storage state corresponding to these
three-layers, while EU, EL and ED stands for the evapotranspiration from corresponding
layers [Zhao and Liu, 1995]. Firstly, the evapotranspiration occurs at the potential rate
until the storage on the upper layer is exhausted. Afterwards, according to the water
storage in the lower layer, any remaining potential evapotranspiration is applied to it
with certain reduction by parameter C. Finally, the evapotranspiration is applied to the
deeper layer when the lower storage WL is reduced to a specified proportion. The actual
evapotranspiration can be calculated by the following formulas:

if P +WU > Etp, then
EU = Etp, EL = 0, ED = 0 (3.9)

if P +WU < Etp, then
EU = P +WU (3.10)

if WL > C ×WLM , then

EL = (Etp − EU)× WL

WM
,ED = 0 (3.11)
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Figure 3.3: Flow chart of the XAJ model [Zhao and Liu, 1995].

else if WL < C ×WLM and WL � C × (Etp − EU), then

EL = C × (Etp − EU), ED = 0 (3.12)

else if WL < C ×WLM and WL < C × (Etp − EU), then

EL = WL,ED = C × (Etp − EU)−WL (3.13)

Where P is the effective rainfall amount. Etp represents the potential evapotranspiration
and C is the coefficient of tension water capacity.

In XAJ model, a distribution of tension water capacity is suggested by Zhao and Liu [1995]
to deal with the non-uniform distribution of soil moisture deficit. Figure 3.4(a) represents
the proportion of the previous area of the study catchment whose tension water capacity is
less than or equal to the value of the ordinate W ′M . WMM is the maximum tension water
capacity and the tension water capacity at a given point can be estimated by the following
relationship:

(1− f/F ) = (1−W ′M/WM)B · (1− IM) (3.14)

Here B is the index of tension water capacity and IM represents the ratio of impervious
area to the whole catchment.
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Figure 3.4: The distribution of tension water capacity (a) and rainfall-runoff relationship (b)
of XAJ model.

The area mean tension water capacity WM constitutes an alternative parameter to WMM
Zhao and Liu [1995]. These are connected by the shape factor parameter B, which can be
shown by the integration of Equation 3.14:

WMM = WM · (1 +B)/(1− IM) (3.15)

As shown in Figure 3.4(a), the soil state of the catchment is assumed to be represented by
a point x on the curved line. The area to the right and below this point is proportional to
the areal mean tension water storage W . By doing this, we assumed that each point in the
catchment is either at capacity tension (points to the left of x) or at a constant tension (points
to the right of x) [Zhao and Liu, 1995].

If the effective rainfall amount exceeds the actual evapotranspiration, the ordinate of Figure
3.4(a) is increased by the excess, then point x moves upwards along the curve and runoff is
generated proportional to the gray area as shown in Figure 3.4(a). The generated runoff can
be calculated as below:

If P − Etp +AU is less than MM, the generated runoff R is:

R = P − Etp −WM +W +WM · (1− (P − Etp +AU)/WMM)(1+B) (3.16)

otherwise,
R = P − Etp −WM +W (3.17)

Similar to HBV model, the runoff produced of XAJ model during relatively wet time period
is further separated into three parts: surface runoff (RS), interflow (RI) and groundwater
(RG) (Figure 3.5). These three different components normally take different ways from the
location where they were produced to the local streams. Afterwards, they will flow together
towards the catchment outlets, forming the outflow of the catchment. The surface runoff



20 Hydrological Models and Performance Criteria

Figure 3.5: Structure of free-water reservoir [Zhao and Liu, 1995].

is treated to be unmodified passing over the hillslope while the interflow and groundwater
are routed through linear reservoirs by parameter KI and KG [He, 2008].

XAJ model was originally applied for the southeast region of China and the snowmelt rou-
tine was not considered in the model. In this study, to account for the precipitation that
is contributed from snowmelt, the degree-day snowmelt approach is added in the model.
A total of 16 parameters were selected to be adjusted using calibration. Table 3.3 lists the
general range of the parameters needed to be calibrated by the model.

3.2 Model Performance Criteria

Hydrological models are often used for different purposes and usually different objective
functions are used for model calibration. Previous studies have shown that model calibra-
tion depends strongly on the performance criteria used [Yapo et al., 1998; Madsen, 2000].
In this study, in order to obtain reasonable general results and investigate the effect for
the selection of objective functions, five different criteria including Nash-Sutcliffe efficiency,
Kling-Gupta, the logarithm transformed flow Nash-Sutcliffe efficiency, the combination of
Nash-Sutcliffe and logarithm transformed flow Nash-Sutcliffe and the combination of Nash-
Sutcliffe and Bias constraint were applied to evaluate the model performance.
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Table 3.3: Description of XAJ model parameters and parameter ranges for model calibration.

Parameter Description Max Min

TT Threshold temperature for snowmelt (0C) 2 -2

DD Degree-day factor 3 1.5

K Evapotranspiration coefficient 1.2 0.3

B Exponent of tension water capacity 0.9 0.3

C Coefficient of tension water capacity 0.4 0.02

WM Areal mean tension water capacity (mm) 250 100

WUM Upper layer areal mean tension water capacity (mm) 50 5

WLM Lower layer areal mean tension water capacity (mm) 100 30

IM Area of impervious/total area 0.03 0.01

SM Areal mean of water capacity (mm) 200 10

EX Exponent of freewater capacity curve 1.8 1

KG Outflow coefficient of freewater storage to groundwater 0.5 0.1

KI Outflow coefficient of freewater storage to interflow 0.5 0.1

CG Recession constant of groundwater storage 1 0.95

CI Recession constant of lower interflow storage 0.9 0.6

CS Recession constant of near surface flow 0.7 0.01

3.2.1 Nash-Sutcliffe Efficiency

The Nash-Sutcliffe Efficiency [Nash and Sutcliffe, 1970] between the observed and modeled
runoff is the most frequently taken as the first evaluation criterion.

O(1) = 1−
∑T

t=1 (Qo(t)−Qm(t))2∑T
t=1

(
Qo(t)− Q̄o

)2 (3.18)

Here Qo(t) is the observed discharge and Qm(t) is the simulated discharge on a given day t.
The abbreviation NS is used subsequently for this performance measure.

3.2.2 Kling-Gupta Efficiency

This model performance criterion was often criticized [Schaefli and Gupta, 2007] and several
modifications and other criteria were suggested. One interesting suggestion was published
in Gupta et al. [2009], the authors suggest using a performance measure which accounts
for the water balances and the correlation of the observed and modeled time series sepa-
rately. Their approach was slightly modified, and the following performance criterion was
introduced:

O(2) = 1− α

(∑T
t=1 (Qo(t)−Qm(t))∑T

t=1Qo(t)

)2

− (1− r(Qo, Qm))2 (3.19)



22 Hydrological Models and Performance Criteria

Here r(Qo, Qm) is the correlation coefficient between the observed and modeled time series
of discharge. α is a weight to express the importance of the water balance - in our case
α = 5 was chosen. The reason for selecting this version of the coefficient is that a model
should produce good water balances and appropriate discharge dynamics simultaneously.
The quadratic form in Equation (3.19) assures that both aspects are considered, and the worst
of them is dominating. The abbreviation GK is used subsequently for this performance
measure.

3.2.3 Logarithm Transformed Flow NS

The Nash-Sutcliffe coefficient of the logarithm of the discharges is focusing on the low flow
conditions more than the traditional NS efficiency.

O(3) = LNS = 1−
∑T

t=1 (log(Qo(t))− log(Qm(t)))2∑T
t=1

(
log(Qo(t))− ¯log(Qo)

)2 (3.20)

The abbreviation LNS is used subsequently for this performance measure.

3.2.4 Combination of NS and Logarithm Transformed Flow NS

To equally concentrate on high and low flows, a combination of the original and the loga-
rithmic NS is used as a fourth measure:

O(4) =
O(1) +O(3)

2
(3.21)

The abbreviation (NS+LNS) is used subsequently for this performance measure.

3.2.5 Combination of NS and Bias Constraint

There are many methods of incorporating a bias constraint in model objective function
[Madsen et al., 2002; Chiew et al., 2009]. One useful suggestion was offered by Viney et al.
[2009], the authors propose to incorporate bias constraints into calibration routines by using
the following performance criterion:

O(5) = NS − 5 |ln(1 +B)|2.5 (3.22)

Here B is the the bias value, representing the difference between the modeled and observed
discharges over the whole calibration time period with respect to the total observed dis-
charges:

B =

∑T
t=1Qm(t)−

∑T
t=1Qo(t)∑T

t=1Qo(t)
(3.23)
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The constants in Equation (3.22) are the balancing factors to control the severity and shape
of the resulting constraint penalty. Figure 3.6 shows the form of the log-bias constraint.
The coefficients of Equation (3.22) control the severity and shape of the resulting constraint
penalty. This kind of coefficient could help a model simulation to produce appropriate dis-
charge dynamics and achieve good water balances simultaneously [Viney et al., 2009]. The
abbreviation NSB is used subsequently for this performance measure.

Figure 3.6: Graphical representation of the penalty for the log-bias constraint.

In the model application, all these five performance criteria have been modified as the higher
their value, the better the model performs. The best possible value for all of them is 1.



4 Robust Estimation of Model Parameters

As the performance of a hydrological model strongly depends on the model parameters
that calibrated using historical data, obtaining model parameters is a very important task to
be done. The value of those parameters should be estimated in such a good way in order
to reproduce runoff series using the historical data as closely as possible to the observed
discharge. This approach leads to minimizing the errors in order to achieve a good model
performance. Gupta et al. [2003] defined this simulation process as a model calibration.
Generally, model calibration can be carried out in two ways. A prior type called manual
calibration is a method which relies on the determination of model parameters chosen by
the experts and hydrologists [Gupta et al., 1998]. However, this approach still has some
shortcomings as it is a very subjective case and time-consuming [Gupta et al., 2003]. The
second method for model calibration is the automatic calibration which takes the algorithm
to optimize the parameters based on the predetermined objective functions. Boyle et al.
[2001] pointed out that the automatic calibration beats the manual calibration in terms of
relatively fast and easiness of its implementation. In this research, model parameters were
estimated by automatic calibration after firstly setting the initial values of parameters within
certain ranges. The automatic Robust Parameter Estimation (ROPE) algorithm [Bárdossy
and Singh, 2008], which was developed by Bardossy and Singh at University of Stuttgart,
was taken for model calibration and parameter optimization in this research.

The non-uniqueness of the model parameters makes the model calibration complicated
[Bárdossy, 2007]. With the help of the ROPE algorithm, it is possible to find multiple sets of
proper parameters and to identify the deep parameter vectors, which could efficiently min-
imize the uncertainty of model parameters [Bárdossy and Singh, 2008; Krauße et al., 2013a].
This chapter gives a brief introduction about the concept and the general idea of the ROPE
algorithm.

4.1 Data Depth

The ROPE algorithm was developed based on the concept of data depth. A great number of
mathematicians have focused on the studies of computational geometry and multi-variate
statistics, and they have found that points being geometrically deep within a data set are
more robust to represent the whole data set [Krauße et al., 2013a]. Researches also indicate
that these robust points can be estimated by the concept of data depth [Liu et al., 2006;
Serfling, 2006].
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4.1.1 Definition

Data depth, as a key concept of non parametric approach for the analysis of multivariate
data[Vencálek, 2011], was first introduced by Tukey [1975] in the 1970S. Data depth is a
function of measuring how deep (central) a given point is relative to the whole dataset [Liu
et al., 1999].It is a useful tool for defining order or ranks of multivariate data. According to
the definition of depth function, a point that is located at the boundary has a lower depth
value, and a position close to the center always has a higher depth. Data depth increase
monotonically from the boundary that has a low depth to a higher depth at the center.

In a multivariate data set, in order to have a consistent and well-founded center-outward or-
dering of data points, a depth function normally should fulfill the following four properties
[Zuo and Serfling, 2000]:

• Affine invariance: The depth of a given point should not depend on the underlying
coordinate system. In other words, the depth values will not be changed by the choice
of axes and it is useful to remove the scale effect when treating several variables.

• Maximality at Center: For a multivariate data set, the depth function should always
reach maximum value at the center.

• Monotonicity Relative to Deepest Point: The data depth should decrease monotoni-
cally as moving away from the deepest point.

• Vanishing at Infinity: When moving away from the deepest position to infinity, the
depth of a given point should reach the minimum value.

4.1.2 Half-space Depth

There are several types of data depth functions that have been widely used in different fields
of scientific research. Among them, Mahalanobis depth [Mahalanobis, 1936], convex hull
peeling depth [Liu et al., 1999] and half-space depth [Tukey, 1975] are the well-known mea-
sures in non-parametric statistics and computational geometry. Liu et al. [2006] provided a
detailed overview of different kinds of depth functions and the corresponding applications
for multivariate data analysis.

The data depth measure used in this study is the half-space depth. The reasons for the
selection of half-space depth is that it has proved to be a very robust measure to identify the
center of a multivariate data set. In the following, a brief introduction of half-space depth is
described.

For a given set X in the d dimensional space Rd, the half-space depth for a specific point p
is defined as the minimum value of points of the whole data set that lying on one side of
a hyperplane through p [Bárdossy and Singh, 2008]. It should be noted that the minimum
number is estimated over all possible hyperplanes. Therefore, the half-space depth of the
given point p with respect to the data set X in the d dimensional space Rd is:
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DX(p) = min
nh

(min(|{x ∈ X(nh, x− p) > 0}|), (|{x ∈ X(nh, x− p) < 0}|)) (4.1)

Here nh is an arbitrary unit vector that denoting the standard vector of a selected hyper-
plane. Points on the center have high depth value while points near the boundary have
relatively low depth. In this section, as shown in Figure 4.1, we took a two dimension data
set to illustrate the systematic estimation of data depth for half-space depth. The x-axis rep-
resents the first parameter and the y-axis represents the second parameter, respectively. Ten
black circulars were distributed in these two dimensional space and the data depth of the
rectangular point was assumed to be calculated using half-space depth. Firstly, as shown
in Figure 4.1(a), a random hyperplane was drawn passing through the rectangular point.
The total number of circulars at each side of this hyperplane was measured and the mini-
mum value of these two sides was recorded. Afterwards the hyperplane was turned around
continuously in clockwise direction for all 360-degree (Figure 4.1(b∼d)) For each rotation,
the number of circulars lying on both sides was counted and the minimum number of them
was recorded. Finally, the minimum value of all these minimum numbers was considered
as the data depth for the rectangular point. In this example, the minimum value of the min-
imums is 4, so the depth of the rectangular point is 4 in the bivariate data set. The half-space
depth function fulfilled all the properties of depth function [Zuo and Serfling, 2000] and it
is invariant to affine transformations of the space [Liu et al., 1990; Singh, 2010].

Figure 4.1: Schematic example of the half-space depth function [Singh, 2010].
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4.2 Robust Parameter Estimation algorithm

Based on the concept of half-space depth function, Bárdossy and Singh [2008] introduced
the ROPE algorithm to identify robust model parameter vectors. The benefits of the ROPE
algorithm is that it could ensure the calibrated model parameter sets are representative and
insensitive. The following describes the general procedure of the ROPE algorithm [Bárdossy
and Singh, 2008]:

(1) Determination of the possible range of the d selected model parameters;

(2) Generation of a predetermined number (n) of random parameter vectors forming the set
XN in the d dimensional rectangle boundary by the ranges defined in step 1;

(3) Operation of the hydrological model for each parameter vector in XN and assessment
of the corresponding model performances;

(4) Identification of the subset X∗N of the good performing parameters;

(5) Generation of new random parameter sets YM according to the “good” subsetX∗N based
on the half-space depth function;

(6) Replacement of the set XN with YM and repetition of step 3∼6 until the model perfor-
mances corresponding to XN and YM do not differ more than the expected observation
errors [Singh, 2010].

Figure 4.2 shows a pictorial explanation of the ROPE algorithm. As a first step, based on
the possible range of model parameters, a large pre-determined number of parameter sets
(XN ) is generated randomly as shown in Figure 4.2(a). Afterward, the hydrological model
is run for all parameter sets and the best subset (X

′
N ) of the parameters is selected as shown

in Figure 4.2(b). After removing the parameters outside the boundary of the subset X
′
N ,

another set of the same number of parameters is generated such that it has higher depth and
the parameters are within the boundary space (Figure 4.2(c)). The model is run again and the
new “best” subset of parameters is selected according to the simulated model performance.
The cycle of iteration is continued until the pre-determined number of iterations is over or
the variation in model performance is within a selected range. By doing this, calculation
goes deeper and deeper into a data set which gives a more structured combination of model
parameters.

The ROPE algorithm is a powerful tool for the model parameter optimization as the study
shows that the parameter vectors with high depth are more insensitive and transferable to
other time period. More details about the ROPE algorithm can be found in Singh [2010] and
Krauße et al. [2013b].

Figure 4.3 and Figure 4.4 present an example for the distribution of calibrated HBV model
parameters and model performance, respectively. For a MOPEX catchment (catchment ID:
01548500), HBV model was selected to simulate the rainfall-runoff behavior for the period
1971-1980 using NS as objective function. And the observed data from 1991 to 2000 was used
to validate the model performance. A total of 9 parameters were adjusted in the model and
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Figure 4.2: Systematic representation of the ROPE algorithm.

a pre-determined number (10 000 in this example) of parameter sets was identified using the
ROPE algorithm. We can see clearly from Figure 4.3 that the calibrated parameters are very
heterogeneous. However, the model performances are similar for the calibration period
and the transfer to a different time period works quite well. The example denotes that
the data depth based parameter sampling can be beneficial for the identification of robust
hydrological model parameters.
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Figure 4.3: An example of model parameters calibrated using the ROPE algorithm. A total
of 9 HBV model parameters were calibrated for a MOPEX catchment (stream-
gauge ID: 01548500) using the data set from 1971 to 1980. NS was taken as the
performance measure.

Figure 4.4: An example of the NS model performance that parameters were calibrated us-
ing the ROPE algorithm. HBV model was calibrated for a MOPEX catchment
(streamgauge ID: 01548500) for the period 1971-1980 and validated for 1991-2000.



5 Simultaneous Calibration of Hydrological
Models

This chapter presents the approach of simultaneous calibration of hydrological model pa-
rameters in geographical space and its application in ungauged basins.

5.1 Introduction

Hydrological models are widely used to describe catchment behavior, and for subsequent
use for water management, flood forecasting, and other purposes. Hydrological modeling is
usually done for catchments with observed precipitation and discharge data. The unknown
(and partly not measurable) parameters of a conceptual or to some extent physics-based
model are adjusted in a calibration procedure to reproduce the measured discharge from
the observed weather and catchment properties. Due to the high variability of catchment
properties and hydrological behavior [Beven, 2000], this modeling procedure is usually per-
formed individually for each catchment. Different catchments are often modeled using dif-
ferent models. This great variety of models and catchments makes a generalization of the
description of the hydrological processes very challenging [Sivapalan, 2003]. Additionally,
even for a selected model applied for a specific catchment, the parameter identification is
not unique. A great number of parameter vectors might lead to a very similar performance
[Beven and Freer, 2001].

Moreover, due to over-reliance on measured discharge for model calibration, estimation of
model parameters for ungauged basins is a big challenge. Instead of model calibration,
parameters should rather be estimated on the basis of other information [Sivapalan, 2003].
A decade of worldwide research efforts have been carried out for the runoff prediction in
ungauged basins (PUB) [Hrachowitz et al., 2013]. The PUB synthesis book [Blöschl, 2013]
takes a comparative approach to learning from similarities between catchments and sum-
marizes a great number of interesting methods that are being used for predicting runoff
regimes in ungauged basins. Many attempts have been made to develop catchment clas-
sification schemes to identify groups of catchments which behave similarly [Grigg, 1965;
Sawicz et al., 2011; Ali et al., 2012; Sivakumar and Singh, 2012; Toth, 2013]. However, the
task is of great importance. McDonnell and Woods [2004] discussed the need for a widely
accepted classification system and Wagener et al. [2007] pointed out that a good classifica-
tion would help to model the rainfall–runoff process for ungauged catchments.

Razavi and Coulibaly [2012] give a comprehensive review of regionalization methods for
predicting streamflow in ungauged basins. Catchment similarity can be determined by com-
paring their corresponding discharge series using correlation [Archfield and Vogel, 2010] or
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copulas [Samaniego et al., 2010]. Much of the variability in discharge time series is con-
trolled by the weather patterns. Therefore, it is likely that similarity in discharge is higher
for catchments with well correlated weather, which often requires geographical closeness
[Archfield and Vogel, 2010]. However, discharge series produced by similar catchments can
be very different under different meteorological conditions. Even the same catchment be-
haves differently in a dry and in a wet year. Due to the different weather forcing, the above
methods would consider the same catchment in one time period as dissimilar to itself in
another time period.

One can also define catchment similarity using hydrological models [McIntyre et al., 2005;
Oudin et al., 2010; Razavi and Coulibaly, 2012]. Catchments are similar if they can be mod-
eled reasonably well by the same model using the same model parameters [Bárdossy, 2007].
Due to observational errors and specific features in the calibration period, the adjustment
of the model can be very specific to the observation period leading to an overcalibration
[Andréassian et al., 2012]. To overcome such limitations, a regional calibration [Fernandez
et al., 2000] approach is suggested to identify single parameter sets that perform well for all
catchments within the modeled domain. Parajka et al. [2007] indicate that the iterative re-
gional calibration indeed reduced the uncertainty of most parameters. Regional calibration
can result in a better temporal robustness than normal individual calibration [Gaborit et al.,
2015] and it provides an effective approach in large-scale hydrological assessments [Ricard
et al., 2012].

The focus of this chapter is to investigate if the transformation of precipitation to discharge
can possibly be independent of the weather. For this purpose, the hydrological model pa-
rameters are separated into two groups:

1. Parameters describing the water balances which are strongly related to climate; and

2. Parameters describing the dynamics of the runoff triggered by weather.

The second group of parameters is supposed to be climate independent and represent the
focus of this study. To simplify the problem, a single new parameter η was introduced to
describe water balance. This parameter is conditional on the other model parameters and
adjusts the long-term water balances.

The purpose of this study is to investigate to what extent do different catchments share
a similar dynamical rainfall-runoff behavior and can be modeled using the same model
parameters with exception of the newly introduced individualized water balance parameter
η.

Hydrological models are usually judged according to the degree of reproducing discharge
dynamics and water balances, while water balances are mainly driven by weather in terms
of precipitation, temperature, radiation and wind. Dynamics are controlled by catchment
properties in terms of size, terrain, slopes, soils, etc. Formation of Landscapes as a result of
long-time climate is a quasi-equilibrium process. The hypothesis of this study is that this
equilibrium is mirrored in a similar dynamic behavior. Thus a large number of catchments
can be modeled by using the same dynamic parameters.
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5.2 Methodology

5.2.1 Water Balance Parameter η

Climatic conditions are of central importance for water balances. The relationship of poten-
tial to actual evapotranspiration can differ strongly due to water or energy limitations. This
suggests that catchments might have similar dynamical behavior but with different water
balances. In order to account for this, the model parameters could be separated to form two
groups, one group with parameters controlling the water balances and another controlling
the discharge dynamics. This separation of existing model parameters is difficult, as they
often influence simultaneously both components. Instead of an artificial model specific sep-
aration, a new parameter η was introduced to all three models. This parameter controls
the ratio between daily potential and actual evapotranspiration depending on the available
water and depends on the long-term water balance only. This parameter η gives:

Eta =

{
Etp if SM

CMAX > η

min
(

SM
η·CMAXEtp, SM

)
else

(5.1)

Here SM is the actual soil water available for evapotranspiration. CMAX is the maximum
possible soil moisture. Etp stands for the potential and Eta for the actual evapotranspiration,
respectively.

The parameter η regulates the water balances in accordance with the dynamical parameters.
It can be calculated directly for each parameter vector θ. This is necessary as it is thought
to establish correct water balances. Thus it is a catchment and parameter vector dependent
parameter. Let ViO denote the total observed discharge volume and ViM denote the total
modeled discharge volume, respectively. f(η) = ViM (η, θ) is a monotonically decreasing
function of η. If the model can provide correct long-term water balances then:

ViM (1, θ) < ViO < ViM (0, θ) (5.2)

As f(η) = ViM (η, θ) is continuous, there is a unique η(θ) for which:

ViM (η(θ), θ) = ViO (5.3)

If Equation (5.2) is not fulfilled, then the parameter vector θ is not appropriate for the model.

The parameter η is fitted individually for each θ - this way a correct water balance is assured
for the calibration period.
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5.2.2 Design of Numerical Experiments

All three conceptual hydrological models, HBV, HYMOD and XAJ models were considered,
the descriptions of these models have been presented in Chapter 3. The models were re-
structured by the new parameter η which exclusively controls water balances. This param-
eter was considered as individual to each catchment. All other parameters, which mainly
control the dynamics of the discharge (dynamical parameters), were considered for spatial
transfer. The NS, GK and NS+LNS performance criteria were selected for evaluating the
model performance. The ROPE algorithm was applied for model parameter optimization,
each calibration yielded 10 000 convex sets of good parameter vectors.

Four different numerical experiments, including calibration and validation procedures, are
carried out for different sets of selected catchments:

1. The usual catchment-by-catchment calibration is carried out. In order to test if dy-
namical model parameters are shared, the parameters are directly transferred to all of
other catchments.

2. Instead of the traditional catchment by catchment calibration, it is assumed that the
model parameters are similar for a set of catchments in a close geometrical setting.
Thus a simultaneous calibration of the models is carried out and tested both in a
gauged and an ungauged version.

3. The geographical extent of the catchments used for simultaneous calibration is ex-
panded. A great number of assumed ungauged catchments are used for testing the
hypothesis.

4. Finally, the transferability of the model parameters to catchments under very different
climatic and geographical conditions is tested.

The hypothesis is that the rainfall-runoff process can be described using the same dynami-
cal hydrological model parameters for a number of catchments. The very different climatic
conditions and water balances of the catchments are considered by the newly introduced
specific parameter η controlling the long-term water balance of each catchment individu-
ally. The other model parameters control the discharge dynamics on both short and long
time scales. These dynamical parameters are supposed to be shared despite the great het-
erogeneity of the catchments. This procedure simplifies the hydrological model parameter
estimation for ungauged catchments, namely the procedure is reduced to the estimation of
a single parameter η, which can be related to long-term water balances.

For a clear explanation and understanding of the methods, the procedure and results of
these four experiments are presented in the following four sections.

5.3 Experiment 1: Normal Individual Calibration

As a first step, 15 MOPEX catchments with reliable data and slightly varying catchment
properties in the eastern United States were selected. The details of these 15 catchments
have been described in Section 2.1.
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For the 15 selected catchments, an individual calibration was performed using the ROPE
algorithm using all three models and three performance measures and the time period be-
tween 1971-1980. This leads to 9 calibrations for each catchment. Each calibration yielded
convex sets Gi of good parameters for each catchment i. A total of 10 000 parameter vectors
from each of these sets were generated. (Note that the corresponding parameter η was es-
timated for each element of the parameter set separately.) Let O(j)

i (θ) denote the value of
the objective function j for a parameter vector θ in catchment i. The best objective function
value for each individual catchment is denoted with O(j)∗

i .

Table 5.1 lists the average calibration model performance for all 15 catchments using three
hydrological models and three performance measures for the calibration time period 1971-
1980. As expected, the models perform differently in different catchments. The reasons for
this are observation errors both in input and output and a possible inability of the model to
reasonably well represent the main hydrological processes. The observed data between 1991
and 2000 were used to validate the model performance. Table 5.2 shows the average model
performance for the validation period using the model parameters calibrated on 1971-1980.

Table 5.1: The mean model performances for the calibration period 1971-1980 that using
three models (HBV, HYMOD and XAJ) and three modeling objectives (NS, GK
and NS+LNS).

Measure NS GK NS+LNS

Catchment HBV HYMOD XAJ HBV HYMOD XAJ HBV HYMOD XAJ

01548500 0.77 0.69 0.66 0.99 0.96 0.97 0.74 0.66 0.60

01606500 0.71 0.63 0.64 0.98 0.96 0.96 0.73 0.68 0.69

01611500 0.71 0.60 0.59 0.98 0.95 0.95 0.73 0.65 0.63

01663500 0.66 0.60 0.56 0.96 0.94 0.93 0.69 0.65 0.63

01664000 0.82 0.69 0.64 0.99 0.97 0.96 0.80 0.71 0.69

01667500 0.77 0.63 0.57 0.99 0.96 0.94 0.80 0.72 0.69

02016000 0.81 0.68 0.65 0.99 0.97 0.97 0.78 0.70 0.69

02018000 0.74 0.63 0.63 0.98 0.96 0.96 0.71 0.66 0.67

02030500 0.71 0.56 0.53 0.98 0.94 0.93 0.75 0.64 0.64

03114500 0.71 0.60 0.52 0.98 0.95 0.95 0.67 0.62 0.51

03155500 0.70 0.59 0.53 0.98 0.95 0.95 0.65 0.61 0.53

03164000 0.87 0.72 0.69 1.00 0.98 0.97 0.85 0.74 0.73

03173000 0.77 0.67 0.66 0.98 0.97 0.97 0.73 0.67 0.68

03180500 0.71 0.67 0.66 0.98 0.97 0.96 0.71 0.69 0.68

03186500 0.61 0.59 0.54 0.94 0.93 0.93 0.59 0.58 0.49

The ranges of the model parameters are relatively large. As a first step, we checked if the
catchments have common parameter vectors. For each pair of catchments (i, j), for the same
performance measure and time period, the intersection of the convex hull of the good pa-
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Table 5.2: The mean model performances for the validation period 1991-2000 that using
three models (HBV, HYMOD and XAJ) and three modeling objectives (NS, GK
and NS+LNS).

Measure NS GK NS+LNS
Model HBV HYMOD XAJ HBV HYMOD XAJ HBV HYMOD XAJ

01548500 0.71 0.68 0.68 0.97 0.96 0.97 0.73 0.69 0.65
01606500 0.58 0.55 0.59 0.94 0.91 0.95 0.67 0.64 0.65
01611500 0.57 0.54 0.60 0.97 0.95 0.95 0.66 0.65 0.65
01663500 0.54 0.50 0.51 0.82 0.91 0.92 0.59 0.56 0.61
01664000 0.64 0.57 0.55 0.96 0.95 0.94 0.70 0.66 0.64
01667500 0.63 0.54 0.49 0.94 0.93 0.92 0.70 0.63 0.62
02016000 0.70 0.61 0.63 0.95 0.95 0.96 0.71 0.63 0.68
02018000 0.64 0.57 0.61 0.95 0.94 0.96 0.69 0.64 0.66
02030500 0.72 0.69 0.63 0.95 0.97 0.95 0.72 0.67 0.67
03114500 0.65 0.57 0.54 0.96 0.95 0.95 0.65 0.62 0.56
03155500 0.70 0.57 0.54 0.97 0.96 0.95 0.69 0.62 0.58
03164000 0.81 0.70 0.71 0.99 0.97 0.98 0.82 0.76 0.77
03173000 0.69 0.60 0.62 0.95 0.95 0.96 0.72 0.66 0.69
03180500 0.66 0.65 0.66 0.96 0.97 0.97 0.70 0.69 0.69
03186500 0.58 0.60 0.57 0.93 0.94 0.94 0.58 0.58 0.53

rameter sets Gi∩Gj is empty showing that there are no common best parameters. Seemingly
none of the catchments are similar.

As a next step, the 10 000 generated best dynamical parameter vectors for a given time
period and hydrological model obtained for catchment i were applied to model all other
catchments using the same hydrological model and time period. Note that the value of
η is not transferred but adjusted to the true long-term water balance. Figure 5.1 shows
the color-coded matrices for the mean performance of the three hydrological models using
transferred parameters for all 15 catchments for a calibration period (1971-1980) for the NS,
GK, and NS+LNS performance measures.

The performance of the transferred parameter vectors shows a strongly varying picture.
While in some cases the catchments seem to share parameter vectors with reasonably good
performance, in other cases the transfer lead to weak performances. A further surprising
fact is that none of the matrices is symmetrical. One can see that some catchments are good
donors - their parameters are good for nearly all catchments, while others have parameters
which are hardly transferable.

The asymmetry of the parameter transition matrices cannot be explained by catchment
properties. Two different catchments seem to share well performing parameters if calibrated
on one catchment and no common good parameters if calibrated on the other one. Exam-
ples for the NS performance are catchments 1 and 12. Parameters for catchment 1 are not
good for catchment 12 for any of the hydrological models, but parameters of catchment 12
perform reasonably well for catchment 1. The matrices for NS show different performances
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HBV HYMOD XAJ

Performance measure: NS

Performance measure: GK

Performance measure: NS+LNS

Figure 5.1: Color-coded matrices for the mean NS, GK and NS+LNS performances for the
selected 15 catchments for the calibration period 1971-1980. The values of y-axis
represent the catchment taken as donor catchment for parameters estimation,
and the values of x-axis represent the catchment used for parameter transfer.
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- HBV being the best. From the viewpoint of parameter transferability, these three models
perform similarly, if a parameter transfer is reasonable from catchment i to j for one model
then it is also reasonable for another model. The results for the GK performance differ from
those of the NS. Here the XAJ model seems to give the generally best transferable param-
eters. Model parameters from other catchments are almost useless for catchment 15 for all
three models.

The difference of the transferability for these three performance measures could be ex-
plained by different focuses - while NS is mainly focusing on the squared difference between
the observed and modeled discharge, GK focuses on water balances and good timing and
log NS is strongly influenced by low flow events. It is interesting to observe that catchment
12 is a very bad receiver for model parameters for NS, while it is an excellent receiver for GK.
This means that different events have different influences on the performance. A possible
explanation for the asymmetry is the fact that the catchments have different weather forc-
ing in the calibration period. It could be that runoff events which are most important for a
performance measure occur in the calibration period frequently in one catchment leading to
good transferability and seldom in the other causing weak transferability of the parameters
from one catchment to another.

The transferability of the model parameters was also tested for an independent validation
period. Figure 5.2 shows the corresponding color-coded results for NS as the performance
measure. The matrices are similar to those obtained for calibration. Catchment 12 remained
a bad receiver but a good donor indicating that the bad performance is unlikely to be caused
by observation errors. Further for some columns, the off-diagonal elements are larger than
the diagonal ones which are a sign of a possible overcalibration.

HBV HYMOD XAJ

Figure 5.2: Color-coded matrix for the mean NS performances for the selected 15 catchments
for the validation period 1991-2000. The values of y-axis represent the catchment
taken as donor catchment for parameters estimation, and the values of x-axis
represent the catchment used for parameter transfer.

To investigate the influence of climate on calibration, the hydrological models calibrated for
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different time periods using the same model and the performance measure were compared.
As the different time periods represent different weather conditions, the calibrations lead to
different parameter sets. As a comparison, the differences in calibrated model parameters
using the same model and performance measure for different catchments were compared.
As an example, Figure 5.3 shows two parameters of the model from the good parameter
set obtained from the calibration for catchment 13 on three different ten-year time periods.
Figure 5.4 shows the same parameters obtained by calibration for three different catchments
(7, 8 and 13) that all calibrated on the time period 1951-1960. The structural similarity of
the two figures suggests that the difference between the different catchments is comparable
to the difference between the different time periods. In hydrological modeling, it is usually
assumed that model parameters are constant over time assuming no significant change in
climate or other characteristics. These results, however, show that the assumption that pa-
rameters are the same over space is not completely unrealistic. The figure even suggests
that there might be parameter vectors which perform reasonably well for all 15 catchments.
Thus as a next step, an experiment to test this assumption was devised.

Figure 5.3: An example of scatterplots for two selected HYMOD parameters CMAX (max-
imum soil moisture storage) and α (flow distributing factor) for different cali-
bration periods. HYMOD was calibrated using NS as the performance measure
for catchment 13 for the period 1951-1960 (black), 1971-1980 (blue) and 1991-2000
(red).

5.4 Experiment 2: Simultaneous Calibration

The result of experiment 1 (Chapter 5.3) shows for many pairs of catchments, that the pa-
rameter transfer worked reasonably well. As a next step, it was investigated if there are
parameters which perform reasonably well for all catchments. As seen in the previous sec-
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Figure 5.4: An example of scatterplots for two selected HYMOD parameters CMAX (max-
imum soil moisture storage) and α (flow distributing factor) for different catch-
ments. HYMOD was calibrated using NS as the performance measure for catch-
ment 7 (red), 8 (blue) and 13 (black) for the period 1951-1960.

tion, none of the catchments share optimal parameters. Therefore, common sub-optimal
parameters have to be found.

To identify parameter vectors which perform simultaneously well for each catchment, the
hydrological models were calibrated for all 15 catchments simultaneously. The simultane-
ous calibration of the model for all catchments is a multi-objective optimization problem.
The goal is to find parameter vectors which are almost equally good for all catchments
with no exception. As the models perform differently for the different catchments due to
data quality and catchment particularities, the performance was measured by the loss in
performance compared to the usual individual calibration. Thus the objective function is
formulated using the formulation of the compromise programming method [Zeleny, 1981]:

R(j)(θ) =

n∑
i=1

(O
(j)∗
i −O

(j)
i (θ))p (5.4)

Here index j indicates the type of the individual performance measures. The goal in this
objective function is to minimize R(j). Here p is the so called balancing factor. The larger p is
the more the biggest loss in performance contributes to the common performance. In order
to obtain parameters which are good for all catchments, a relatively high p = 4 was selected
for all three performance measures.

The same way as individual calibration, the ROPE algorithm was used for the simultane-
ous calibration. The optimized parameter sets H(j) performed simultaneously well for each
model and time period. Figure 5.5 compares the performance of the individually calibrated
and the common calibration for the 15 selected catchments for all three models using NS
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as the performance criterion. As expected, the results show that the individual calibrations
lead to better performances for all models, but the joint parameter vectors perform reason-
ably well for all catchments. The loss of the performance for HBV is larger than HYMOD
and XAJ.

Figure 5.5: Mean model performances of the individually calibrated (red rectangles) and the
common calibrated (blue triangles) models using NS as performance criterion for
the calibration period 1971-1980.

As the goal of this modeling is not the reconstruction of already observed data, the perfor-
mances on a different validation period (1991-2000) were also compared. Figure 5.6 shows
the mean model performances for the 15 individually calibrated and the commonly cali-
brated datasets. The result shows the use of the parameters obtained from the common
calibration for each catchment is sometimes even better than those obtained by using the in-
dividually calibrated parameters. The observation that parameter vectors obtained through
common calibration may outperform individual on-site calibration may also indicate the
weakness of the calibration process for an individual catchment, which should ideally be
able to identify the best parameters.

These results indicate that instead of transferring model parameters from a single catch-
ment, a parameter transfer might perform better if the parameters obtained through com-
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Figure 5.6: Mean model performances of the individually calibrated (red rectangles) and the
common calibrated (blue triangles) models using NS as the performance criterion
for the validation period 1991-2000.

mon calibration on all other catchments are used. In order to test this kind of parameter
transfer, a set of simple “leave-one-out” calibrations were performed. This means that for
a catchment i, the hydrological models were simultaneously calibrated for the remaining
14 catchments. Each time another catchment i was not considered for calibration, leading
to 15 simultaneous calibrations. These common model parameters were then applied for
the catchment which was left out. The performance of the models on these catchments in
the calibration period is reasonably good for all catchments. Figure 5.7 shows the result of
HBV, HYMOD and XAJ using the NS performance measure. It compares the performance
of the parameters obtained via individual calibrations (red x-mark), parameter transfers
from other catchments individually (blue plus) and the transfer of the common parameters
obtained by leave-one-out procedure (green diamond). The performance of common pa-
rameters is obviously weaker than that of the individual calibration but better than many
parameter transfers obtained using individual parameter transfer. To test the effective po-
tential of the transferability of the common parameters, a validation period was used. Figure
5.8 shows the results for the validation time period 1991-2000. In this case, the common cal-
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ibration performs very well. For HYMOD, it outperforms the model obtained by individual
calibration for 6 out of the 15 catchments. For the other catchments, the loss in performance
is relatively small. Note that this good performance of the common models was obtained
without using any information of the target catchment. The transfer of parameters obtained
from individual calibrations on other catchments shows a highly inhomogeneous picture as
described in the previous experiment. The transferred common calibration is better than
most of these performances. Further note that the results of individual transfer show that
there is no explanation why certain transfer work well and others do not. Thus for the
transfer of model parameters to ungauged catchments, common calibration seems to be a
reasonable method.

In order to illustrate how model parameters of the leave-one-out common calibration per-
form in validation, two hydrographs are presented. Figure 5.9 and 5.10 show a part of the
observed, the modeled and the common calibration transferred hydrographs for a randomly
selected parameter set obtained by individual calibration and leave-one-out common cali-
bration of HBV for catchments 5 and 14. While for catchment 5, the common calibration
leads to a hydrograph which is slightly better than that obtained by individual calibration,
in the second case for catchment 14 the performance is reversed. However, in both cases, the
common parameters, which were obtained without using any observations of the catchment
perform surprisingly well.

5.5 Experiment 3: Simultaneous Calibration on Great Number
of Catchments

The results of the previous experiment suggest that even more catchments might share pa-
rameters which perform well on all. The 15 catchments used in experiments 1 and 2 are all
influenced by humid continental climate. They are however to some extent similar and can
thus not necessarily be considered as representative of a great number of other catchments.
Thus, for the third experiment, 192 catchments of the MOPEX dataset were considered. 96
of them were randomly selected for common calibration (marked as blue circles in Figure
2.4) , the other 96 catchments were used as receivers to test the performance of the common
parameters (marked as green triangles in Figure 2.4). The HBV model using three selected
performance measures was considered in this experiment.

For each of the 192 catchments, an individual model calibration was carried out using 1971-
1980 as calibration period. Common calibration was performed for the selected 96 catch-
ments the same way as in the previous numerical experiment, for HBV and HYMOD using
all performance measures.

As a first step, the model performances for the individual and common calibration were
compared. As expected and already seen in previous results, the performance for the com-
mon calibration is lower than for the individual one. For example, the mean NS performance
over all 96 catchments drops from 0.69 to 0.50. When one applies the models for the vali-
dation period 1991-2000, the individually calibrated model mean performance is 0.65, while
for the common calibration, the mean value increases to 0.51.
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HBV

HYMOD

XAJ

Figure 5.7: Mean NS model performance of the individual calibration (red x mark), Indi-
vidual parameter transfer (blue plus) and for the leave-one-out transfer (green
diamond) for the selected 15 catchments for the calibration period 1971-1980.
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HBV

HYMOD

XAJ

Figure 5.8: Mean NS model performance of the individual calibration (red x mark), Indi-
vidual parameter transfer (blue plus) and for the leave-one-out transfer (green
diamond) for the 15 selected catchments for the validation period 1991-2000.
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Figure 5.9: An example of runoff hydrographs for catchment 14 obtained using individual
(red dot) and leave-one-out common (blue dash) calibrations. HBV model was
calibrated using GK as the performance measure for the period 1971-1980. The
black line indicates the observed discharge.

Figure 5.10: An example of runoff hydrographs for catchment 5 obtained using individual
(red dot) and leave-one-out common (blue dash) calibrations. HBV model was
calibrated using NS as the performance measure for the period 1971-1980. The
black line indicates the observed discharge.
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Figure 5.11 shows the histogram of the performance NS for both gauged and assumed un-
gauged catchments for the individual and the common calibrations for the calibration time
period for the HBV model. Figure 5.12 shows the results for HYMOD. The transfer to the
96 assumed ungauged catchments shows very similar performance for the common param-
eters as for the catchments selected for common calibration. Figure 5.13 and 5.14 show
the histograms of the performance NS for the validation time period. For both HBV and
HYMOD, there is very little difference between the performance for the gauged and the un-
gauged catchments. In 90% of catchments, the common calibration works reasonably well
even for the ungauged cases. The common parameters describing runoff dynamics of all
192 catchments indicate that there is a high degree of similarity of these catchments.

(a) Donor catchments (b) Assumed ungauged catchments

Figure 5.11: Histograms of the mean NS model performances of HBV model for the cali-
bration period 1971-1980. The blue bars show the model performances for the
common calibrated parameter sets and the red bars show the individually cali-
brated model performance for reference.

Comparing the results of the common calibration using the 96 catchments to that obtained
using the 15 catchments, one can observe that the increase of catchments considered for the
common calibration lead to a decrease in the performance. This is as expected, as there is a
less common behavior of a large set of catchments as for a few. Thus the parameters obtained
through common calibration can be regarded to describe the common dynamical behavior
of many very different catchments over a large geographical area. If one is interested to find
model parameters for a specific ungauged catchment, the common calibration using a more
careful selection of the donor set of catchments is likely to lead to good parameter transfers.

The water balances of the 192 catchments are different leading to different η parameters.
Figure 5.15 shows the distribution of η values for three randomly selected common good
parameter sets for HBV model using NS as the performance measure for the calibration
time period. It can be seen clearly from the curve that for the same catchment, η is specific
for different dynamical parameter sets. And due to the differences in water balance, dif-
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(a) Donor catchments (b) Assumed ungauged catchments

Figure 5.12: Histograms of the mean NS model performances of HYMOD model for the cal-
ibration period 1971-1980. The blue bars show the model performances for the
common calibrated parameter sets and the red bars show the individually cali-
brated mode performance for reference.

(a) Donor catchments (b) Assumed ungauged catchments

Figure 5.13: Histograms of the mean NS model performances of HBV model for the vali-
dation period 1991-2000. The blue bars show the model performances for the
common calibrated parameter sets and the red bars show the individually vali-
dated mode performance for reference.

ferent catchments requires different η-s to control actual evapotranspiration. Furthermore,
for all 192 catchments, parameter η present very similar tendency for different dynamical
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(a) Donor catchments (b) Assumed ungauged catchments

Figure 5.14: Histograms of the mean NS model performances of HYMOD model for the val-
idation period 1991-2000. The blue bars show the model performances for the
common calibrated parameter sets and the red bars show the individually vali-
dated mode performance for reference.

parameter sets. Figure 5.16 plots the mean η value against the ratio of the long-term actual
evapotranspiration to potential evapotranspiration (Eta/Etp) for each catchment. It shows
strong negative correlation (−0.72) between η and Eta/Etp. The relationship between po-
tential and actual evapotranspiration differs strongly for different catchments. The water
balances can be achieved by using parameter η.

5.6 Experiment 4: Application to Catchments in Other
Geographical Regions

The 96 catchments used for the previous numerical experiment represent a large variety of
hydrological and meteorological conditions. Their use for other catchments showed a quite
good performance for all performance criteria. Therefore, the question arises whether theses
parameters describe a general hydrological behavior independently of the location. In this
section, the common parameters obtained by common calibration for 96 MOPEX catchments
(see experiment 3) were used to model two German catchments and a Chinese catchment
that have been described in Chapter 2.

The hydrometeorological daily data for Rottweil catchment and Fils catchment at Süssen
from 1971 to 1980 and for Chengcun catchment from 1986 to 1995 were used to test the
transferability of common parameter sets calibrated for the 96 MOPEX catchments. The
simulation performances for these three catchments are listed in Table 5.3. THe result shows
that all dynamical model parameters obtained through simultaneous calibration for the 96
MOPEX catchments worked well for both German catchments. But for the Rottweil catch-
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Figure 5.15: Distribution of the parameter η for three randomly selected common parame-
ter vectors obtained via HBV using NS performance measure for 192 selected
catchments.

Figure 5.16: Scatterplots of mean η and ratio of actual evapotranspiration to potential evap-
otranspiraton for 192 selected catchments.

ment, model performance is worse than for the Fils catchment at Süssen. This indicates, that
there is some skill in the transferred parameters, but the differences are substantial. Figure
5.17 shows part of the observed and the modeled hydrographs of HBV using the NS perfor-
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mance measure. For these three catchment, the transfer is reasonable and the dynamics of
the discharge are similar to the U.S. case.

Table 5.3: Mean model performances of the German and Chinese catchments using the com-
mon parameter sets calibrated by the 96 MOPEX catchments.

Model HBV HYMOD
Measure NS GK NS+LNS NS GK NS+LNS

Rottweil, Neckar 0.47 0.90 0.52 0.48 0.92 0.55
Süssen, Fils 0.58 0.97 0.68 0.58 0.96 0.65
Chengcun 0.65 0.96 0.51 0.43 0.93 0.48

For the Chengcun catchment, the results are less encouraging when compared to the indi-
vidual calibration results. The models show some skill, but model performance is worse
than for the German catchments. This means that there is some skill in the transferred pa-
rameters, but the differences are substantial. A comparison of the observed to the modeled
hydrographs in Figure 5.17 shows this clearly. However note that the climatic conditions
of this catchment are very different from those of the 96 MOPEX catchments used for pa-
rameter transfer. The climate of the Chengcun catchment is warmer and wetter than that in
the selected U.S. catchments. This experiment demonstrated that a single set of dynamical
model parameters is unlikely to be good everywhere. On the other hand, even very distant
and different catchments may behave similarly.

5.7 Discussion

5.7.1 Robust parameter sets

The three experiments were carried out in a way that a set of parameters (usually repre-
sented by 10 000 individual parameter sets) was used. This leads to a considerable fluctu-
ation of the results. Modelers often prefer to use one single parameter vector. If a single
parameter vector is desired, then according to Bárdossy and Singh [2008], the deepest pa-
rameter set (which represents the most central point in the whole parameter vectors) is the
most likely candidate to be robust. This study also indicates, that the deepest parameter set
performs slightly better than the mean of the parameter sets considered.

5.7.2 Variability and estimation of η

As defined, the water balance related parameter η is specific for each catchment and each
model parameter vector. Therefore, each individual catchment has a large variation in η for
the calibrated 10 000 parameter sets. And for the same set of good parameters that match
different water balances well, different catchments always require very different η values
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(a) Rottweil catchment

(b) Fils catchment at Süssen

(c) Chengcun catchment

Figure 5.17: Observed (red) and modeled (gray) discharges for Rottweil, Süssen and Cheng-
cun catchments. Modeling was performed using the common parameter sets of
the 96 MOPEX catchments obtained by calibration using HBV for NS.

to control actual evapotranspiration. Parameter η is estimated because it controls the water
balance and can be estimated at other catchments. The remaining parameters (the dynamic
ones) are regionally calibrated (all catchments are given the same parameter set). Therefore
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only η varies between catchments. As η is specific for each parameter vector, regionaliza-
tion of η directly is not feasible and η remains different for different parameter vectors after
regionalization. In the numerical experiments, in order to estimate the water balance param-
eter η, the long-term discharge volumes were treated as known variables for both gauged
and ungauged catchments. For application in a practical system, the long-term discharge
volumes have to be estimated for ungauged catchments. The estimation of parameter η is
a limitation of the presented simultaneous calibration approach. Regionalization of long-
term discharge volumes is a prerequisite for the application in ungauged basins. For the
study area, the discharge coefficients which relate discharge volumes to (known) precipi-
tation show a quite smooth spatial behavior as shown on Figure 2.3 in Chapter 2. Thus
the regionalization of this parameter does not seem to be an extremely complicated task in
this particular region. According to the previous analysis of η, for each common dynamical
parameter set, one can have a possible estimator of η for a certain catchment based on the
regionalization of discharge coefficients. The potential application of this approach in other
regions needs to be investigated in future work.

5.7.3 Prediction in ungauged basins

The results of this study supported the general finding of Ricard et al. [2012] and Gaborit
et al. [2015], where the simultaneous calibration lead to weaker model performance than the
individual one for both the calibration and the validation time period. The loss of model
performance in validation is smaller than that in calibration. When applied to ungauged
catchments, the simultaneous calibration shows more robustness than the individual one.
Simultaneous calibration of models in geographical space offers a good possibility for the
runoff prediction in ungauged basins. Compared with traditional regionalization method,
only the water balance parameter η has to be estimated based on the regionalization of
discharge coefficients.

It was examined from the hydrographs that high flows are often underestimated and low
flows are probably overestimated. This kind of phenomenon has also been detected in pre-
vious regional calibration studies [Ricard et al., 2012; Gaborit et al., 2015]. This behavior is
mainly due to the uncertainty of model structure and the low spatial and temporal resolu-
tions of both models and input variables [Gaborit et al., 2015].

5.8 Conclusions

In this chapter, the transfer ability of the dynamical parameters of hydrological models was
investigated. In order to cope with the clear differences in water balances due to water or
energy limitations, a new model parameter η controlling the actual evapotranspiration was
introduced. This parameter is determined for each vector of other model parameters by
adjusting the long-term water balances. This parameter was not transferred, only the other
parameters controlling flow dynamics and short-term water balances were assumed to be
shared by many catchments. In order to assure the generality of the results, three different



5.8 Conclusions 53

lumped hydrological models were used in combination with three different performance
measures in four numerical experiments on a large number of catchments. The following
conclusions can be drawn:

• Hydrological models are often overfitted during calibration. The parameters are some-
times more specific for the calibration time period and their relation to catchment
properties seems to be unclear. This makes parameter transfers or parameter region-
alization based on individual calibration difficult.

• In the second experiment, a common calibration strategy was introduced and tested
on a small number (15) of catchments. For the common calibration an overall objective
function which considers all catchments simultaneously and allows little compensa-
tion is required. Compromise programming offers a good possibility for this purpose.
This methodology was able to identify parameter sets which work reasonably well for
all catchments. Testing the parameters on an independent time period shows that com-
mon parameters perform as well as those obtained using individual calibration. The
transfer of the common parameters to model ungauged catchments works well. Note
that the water balance parameters have to be estimated individually for the ungauged
catchments.

• Extending the number of catchments covering a gigantic spatial scale (continental) still
allows a reasonable common calibration and transfer of the dynamical parameters.
The performance on this scale is weaker than on the smaller sizes, but a transfer to
other ungauged catchments is still possible.

• Parameters obtained via continental scale calibration are transferable to model catch-
ments on other continents. This shows that there is a partly common behavior of most
catchments. However, note that the performance of these common parameters is sig-
nificantly worse than what can be obtained using individual calibration.

• The fact that many catchments share common parameters which describe their dy-
namical behavior does not mean that they really do have the same dynamical behavior.
The model output highly depends on the parameter η which varies from catchment to
catchment and also correlated to the other model parameters describing dynamic be-
havior.

• The results of the experiments were similar for all three hydrological models applied
independently of the choice of the performance measures. Note however, that the
common parameters corresponding to the different performance measures differ con-
siderably. A common behavior is dependent on how one evaluates the performance
of the models.

• The performance of the joint parameters depends strongly on the selection of the catch-
ments used to assess them. The optimal choice of the appropriate catchments was not
investigated in the framework of this research. The second experiment suggests that
a reasonable geographic proximity of the catchments might be a good choice for com-
mon calibration.
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Common parameters offer a good possibility for the prediction of ungauged catchments.
Only one single parameter η which controls the long-term water balances has to be esti-
mated individually. This, however, can be done using other modeling approaches including
regionalization methods.

In this study, all the models were tested on the daily time scale. The results show, that many
catchments behave similarly as the same dynamical parameter sets could perform reason-
able for all of them. This means that hydrological behavior on the daily scale is mainly
dominated by precipitation characteristics and actual evapotranspiration. Differences in
catchment properties seem to rather have significant effects on smaller temporal scales (e.g.,
hourly). Results also indicate that the differences in catchment properties cannot be cap-
tured well by simple lumped model parameters.



6 Model Calibration under Non-stationary
Conditions

This chapter tests the transferability of model performance under climate change conditions
and presents the approaches of improving the quality of model parameter transfer.

6.1 Introduction

As climate change becomes a major issue in both science and society, the impacts of climate
change on hydrology have been extensively investigated over the past two decades [Vaze
and Teng, 2011; Vaze et al., 2011; Coron et al., 2012]. Previous studies have shown that cli-
mate change may have a significant influence on the water availability and hydrological
circulations [Rind et al., 1992]. Floods and droughts are the greatest potential natural dis-
asters that “stimulates” other factors such as economics, social life, agriculture and others
to adapt to changes in climate behavior [Barnett and Adger, 2007]. It is really important
for hydrologists to be able to predict the potential impact of climate change on catchment
behaviors and therefore develop sustainable water management strategies. The statement
“hydrological non-stationarity” has been widely used to describe climate and runoff vari-
ability evident in different time periods within a long hydroclimate time series to changes
in rainfall-runoff relationships and catchment characteristics [Chiew et al., 2014; Vaze et al.,
2015]. Milly et al. [2007] initiated significant discussions and an increased focus towards
research on hydrological non-stationarity.

The hydrological process may be considered as non-stationary under the changing climate
and land use conditions. As described in Chapter 3, the model parameters of the concep-
tual hydrological models are not directly measurable. The unknown parameters are usually
adjusted in a calibration procedure to reproduce the measured signals from the observed
hydrometeorological data and catchment characteristics. The identification of conceptual
model parameters highly relies on the observed data sets that are used for model calibra-
tion. This kind of “stationarity” assumption challenges the sufficiency for predicting further
changes or time variability, as the final objective for hydrological modeling is not repeating
what was observed. As an applicable rainfall-runoff model, it should well capture the es-
sential features of the catchment process and therefore be transferable to various conditions.
A considerable number of studies have shown that the model parameters estimation during
different calibration time period might be significantly different. It limits the transferability
of hydrological models under non-stationary conditions [Bastola et al., 2011; Li et al., 2012].
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This chapter investigates the transferability of model parameters in time within different
climate conditions, and approaches are developed to overcome the hydrological model ex-
trapolation problem. The effects of incorporating bias constraints into calibration routines
when model parameters are used for prediction runoff in different weather conditions are
also tested. The dissimilarity of climate indicators for the different time periods was mea-
sured using pairwise copula density. Two new model calibration methods were introduced
to improve the transferability of model parameters. To cope with the instability of model
parameters calibrated on catchments in non-stationary conditions, the idea of simultaneous
calibration on streamflow records for the period with different climate characteristics was
investigated. In addition, a weather-based weight function is implemented to adjust the
calibration period to future climate conditions.

6.2 Methodology

The HBV model and HYMOD model were used to investigate the influence of climate con-
ditions. These two conceptual models have been applied for climate change impact assess-
ments in a significant number of basins around the world [Merz et al., 2011; Najafi et al.,
2011].

The Nash-Sutcliffe efficiency (NS) [Nash and Sutcliffe, 1970] and the combination of Nash-
Sutcliffe and bias constraint (NSB) [Viney et al., 2009] (see Chapter 3 for the Equations) were
taken as objective function for evaluating the model calibration and validation performance.
For each catchment, both HBV and HYMOD were calibrated for five different ten years
lasting sub-periods. The ROPE algorithm was used for model parameters identification.

The 10 000 calibrated model parameter vectors for each sub-period were used to simulate
the discharge series over the remaining four sub-periods. Afterwards, the simulated model
performance was compared with the corresponding calibrated model performance to inves-
tigate the temporal transferability of model parameters under different climate conditions.

In this study, empirical copula density was applied to detect the dissimilarity of observa-
tional data series for different sub-periods. The simultaneous calibration in temporal space
approach and the weight function method were introduced in the model calibration process
to enhance the transferability of model parameters under different climate conditions. The
general ideas of these methods are presented in the following.

6.2.1 Pairwise Empirical Copula Density

First, the concept of copula , empirical copula density estimation and the indicators that
used to define the copula-based dissimilarity measures are introduced. In probability theory,
copula is a distribution function on the multi-dimensional unit cube [Sklar, 1973]. In copula
function, the marginal distribution of each variable is uniform on [0, 1]. A n dimensional
copula C can be expressed as:

C : [0, 1]n → [0, 1] (6.1)
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C(u(i)) = 0 if u(i) = (, u1, ..., u(i− 1), 0, , ui+1, ..., , un) (6.2)

C(u(i)) = ui if u(i) = (1, ..., ui, 1, ..., 1) (6.3)

For every hyperrectangle, the corresponding probability should be non-negative:

2n−1∑
i=0

(−1)n−
∑n

i=1 jiC(u1 + j1∆1, ..., un + jn∆n) ≥ 0 (6.4)

if 0 ≤ ui ≤ ui + ∆i ≤ 1 and i =

n−1∑
k=0

jk2
k

Copulas are widely used to capture the dependence structure for the random variables
that join multivariate distribution functions to single dimension distribution functions
[Samaniego et al., 2010]. The applications of copula functions in the multi-dimensional case
can be found in Nelsen [1999]; Bárdossy [2006]; Li [2010] and Sugimoto [2014].

In practice, the marginal distribution functions for the given multi-dimensional variables
are usually not known in advance. The empirical copulas are defined as frequencies of
observations similar to empirical distribution functions and can flexibly be calculated from
a given sample [Sugimoto, 2014]. Therefore, the empirical copulas, which can be seen as
the empirical distribution of the rank-transformed data, is often used instead of original
copulas. Here we take a bivariate copula (u, v) as an example. (Ri, Si) denotes the ranks for
the random sample (Xi, Yi) for i = 1, 2, ..., n, and the empirical copula can be calculated by
the following formula:

cn(u, v) =
1

n

n∑
i=1

I(
Ri
n+ 1

≤ u, Si
n+ 1

≤ v) (6.5)

Where n is the number of the data set and I is an indicator function.

The concept of empirical copula frequency can be defined [Nelsen, 1999]:

cn(
i

n
,
j

n
) =

{
1
n if (Ri, Sj) is an element of the sample
0 else

(6.6)

For the given case (u, v), the empirical copula density between these two variables for a reg-
ular n× n lattice can be estimated by counting the number of points in each lattice [Nelsen,
1999; Bárdossy, 2006]:
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k

∣∣∣∣ (6.7)

Here k is the total number of lattices, i and j are the indices of lattices for u and v coordinates,
respectively.

Samaniego et al. [2010] used the empirical copula functions to define catchments dissim-
ilarity measures by a pair of streamflow time series at different catchment. In this study,
the Antecedent Precipitation Index (API) and the corresponding discharge series for the
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study catchment were taken as indices for measuring the dissimilarity between different
sub-periods.

API is usually calculated for rainstorms to determine the antecedent moisture conditions
prior to the corresponding flood event. The API value is calculated as:

API(t) = API(t− 1) + αP (t) (6.8)

Here α is a memory constant. For a selected rainstorm, the API value on any given day
(API(t)) is equal to the parameter α multiplied by the API on the previous day (API(t-1))
plus the effective precipitation on that day (P(t)). According to the references, the memory
constant α reported in the range between 0.8 and 0.9 for the MOPEX catchments.

As discussed before, for a specific catchment, the copula density between the API and ob-
served runoff depth is usually not known. Therefore, the empirical copula density of these
two variables has to be estimated from the historical data sample. An empirical copula of
API and Q is an estimate of the distribution function with uniform marginals that synthesize
the dependence of soil moisture condition and daily runoff depth at the same time during
the period t = 1, ..., T .

6.2.2 Simultaneous Calibration

In this chapter, the common calibration approach was used to calibrate models simultane-
ously for several sub-periods with different climate conditions. The objective of this method
was expected to identify parameter sets which perform simultaneously well for each sub-
period. A detailed description of the simultaneous calibration strategy can be found in
Section 5.4.

6.2.3 Weather Adjustment with Weight Function

According to the previous model calibration experiments, for a particular catchment, the
model parameters calibrated during different time periods are often not constant over time.
Parameters calibrated during different weather conditions indicate large differences. They
cause problems for model parameter transition and climate change impact assessments.
Here we propose the idea of adjusting the weather for the calibration time period to the
receiver period to improve the temporal transferability of model parameters. A weight
function [Gonzalez and Wu, 1999] is incorporated into the objective function to give the
time periods that have similar weather conditions as the receiver periods higher “weight”.
Therefore, the annual precipitation for each year was compared with the average value over
the decade, if the period with annual precipitation is less than the average value, this period
represents a relatively “dry” year and for all the “wet” years state the annual precipitation
greater than the mean value. Before the procedure of model calibration, the mean annual
precipitation for the donor sub-period and receiver sub-period are compared. If the average
annual precipitation for the receiver sub-period is bigger than the donor sub-period, repre-
senting the “wet” years within the donor sub-period are more similar to the general weather
of the receiver sub-period and vice versa.
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Take the NS model performance as an example. Here we emphasized the data record that
has similar climate conditions as the validation period using weighting function:

NSw = 1−
∑T

t=1wt(Qo(t)−Qm(t))2∑T
t=1wt(Qo(t)− Q̄o)2

(6.9)

Here w(t) is the weight for data record on a given day t. For the calibration time period
that has similar climate as the validation period, a relatively high weight (generally greater
than 1) was taken for evaluating the model performance. Meanwhile, for the calibration
year that has very different value for the annual precipitation, a small weight was applied
for calculating the model performance.

6.3 Case Study

6.3.1 Variability of Climatic data

This study was tested on a number of 50 MOPEX catchments with more than 50 years of
reliable data. Figure 6.1 shows the locations of the streamgauges for the study catchments.
These catchments are ranging in size from 189 km2 to 8 689 km2 with a median value of
1 844 km2. More details for the MOPEX catchments can be found in Chapter 2.

Figure 6.1: Location of the streamgauges for the 50 selected MOPEX catchments.

Table 6.1 lists the median, maximum and minimum values of basic catchment properties for
the selected catchments, as well as Table 6.2 summarizes the meteorological conditions [Fal-
cone et al., 2010]. The tables indicate that these 50 catchments differ greatly in both catch-
ment characteristics and climate conditions. The long-term average annual precipitation
displays a gradual decrease from the east coast to the central region. There is an apparent
decline in the average air temperature from about 16.0 0C in the south part to about 5.6 0C
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in the north along with an increase in the percentage of snowfall during cold seasons. The
annual potential evapotranspiration ranges from 660 mm to 1 397 mm and the annual runoff
ranges from 95 mm to 1 201 mm. The runoff coefficient which represents the ratio of annual
flow to annual precipitation varies from 0.12 to 0.63.

Table 6.1: Median, maximum and minimum values of the catchment characteristics for the
50 selected MOPEX catchments.

Drainage Shape Field Percent of Average Base flow Snow

area factor capacity relative porosity index proportion

(km2) humidity (%)

Median 1844.1 0.12 0.33 67.40 0.40 0.44 14.5

Max 8686.9 0.45 0.38 73.17 0.48 0.69 38.0

Min 189.1 0.06 0.22 63.05 0.24 0.10 2.6

Table 6.2: Median, maximum and minimum values of the meteorological conditions for the
50 selected MOPEX catchments.

Mean annual Average Annual potential Annual Runoff

precipitaion temperature evapotranspiration runoff coefficient

(mm) (oC) (mm) (mm)

Median 1019.8 10.8 831.8 426.9 0.36

Max 1943.3 16.0 1396.6 1200.6 0.63

Min 763.2 5.6 660.4 94.8 0.12

As a first step, the historical data series for each catchment from 1950 to 1999 was taken to
investigate the non-stationarity of climate conditions. The total 50 years data set was split
up into five sub-periods. Each sub-period contains consecutive ten-year daily data. It is
assumed that ten-year data record are sufficiently long time series to capture hydrological
behavior, and the catchment conditions remain unchanged [Refsgaard and Storm, 1996].
The first hydrological year of each sub-period was considered as a warm up period in mod-
eling and did not take account for model performance evaluation. In order to have a more
accurate assessment of the data set, the analysis of climate variations only using the data
period that considered for model performance evaluation. Figure 6.2 summarizes the aver-
age annual precipitation over each sub-period for all 50 catchments, note that the catchment
numbers are sorted by the value of mean annual precipitation. This graph demonstrates the
obvious fluctuating climatic conditions for different catchments at various time period. The
average annual precipitation for all 50 catchments varies from 673 mm/yr to 2 150 mm/yr.
The annual precipitation is considerable variable for different sub-periods. The differences
for the relatively wet catchments (with a high value of annual precipitation) are greater
than for the dry ones. For the 40 fairly wet catchments, the climate conditions show simi-
lar temporal trends. The average annual precipitation has significantly increased by almost
250 mm/yr from the the 60S to the 70S. The difference of mean annual precipitation be-
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tween the driest decade (50S) and the wettest decade (90S) are around 170 mm/yr for the
ten relatively dry catchments. The annual precipitation value shows a slight increase with
the increasing of the decade for these ten dry catchments that are located on the west region
of the study domain.

Figure 6.2: Ten-year average annual precipitation for the 50 selected MOPEX catchments.

Figure 6.3 shows the corresponding result of average air temperature. The temporal trend
of air temperature seems not as clear as that of precipitation. It can be concluded from this
figure that for most of the catchments, the average temperature decreased from the warmest
decade 50S to the coldest period 60S by nearly 0.6 0C.

Figure 6.3: Ten-year average air temperature for the 50 selected MOPEX catchments.
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6.3.2 Calibration Results

Figure 6.4 shows a typical example of the model calibration and validation results using NS
as performance criteria. The color coded matrices express the mean value of the objective
function NS for the 10 000 parameter vectors of catchment 01321000 for HBV and HYMOD
model, respectively. Firstly, HBV and HYMOD models perform differently for the same
historical data set. For most of the sub-periods, HBV leads to better model performance
because of the more flexible representation of the model structure. Besides, from the color-
coded matrices, we can see that the model performance varies for different sub-periods,
and the performance of the transferred parameter vectors shows a sharply varying picture.
While in some cases the different sub-periods seem to share parameter vectors with reason-
ably good performance, in other cases, the transfer lead to weak performance. Moreover, the
matrix for a specific sub-period is not symmetrical. For example, all the calibrated param-
eters are actually good for the sub-period 90S, but the parameters identified by sub-period
90S lead to relatively weak performance for the 80S for both HBV and HYMOD. We also
found that some parameter sets perform well for all sub-periods, while others are not trans-
ferable. The main reason for the asymmetry of the parameter transition matrix is that each
catchment has different climate forcing during different sub-periods and this leads to very
different model parameter sets. The calibrated parameter sets are highly influenced by the
climate conditions during the calibration periods.

HBV HYMOD

Figure 6.4: Color-coded matrices for the mean NS model performance for calibration and
cross-validation period for catchment 01321000.

The left part of Figure 6.5 shows the cumulative distribution function of NS model perfor-
mance for all model calibration results, while the right part of Figure 6.5 shows the corre-
sponding results of the absolute value of bias. It can be seen clearly from the curves that for
the same data sets, HBV and HYMOD show different model performance. In general, HBV
performs better than HYMOD because it contains more flexible parameters. This figure also
compares the difference of using different objective functions (NS, NSB) for model calibra-
tion. For both models, the best NS efficiencies are obtained for the objective function that
maximizes efficiency only and has no bias constraint. When considering the bias constraint,
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the NS model performances are slightly decreased. However, with the bias constraints, the
water balance could be apparently improved for both HBV and HYMOD as the bias errors
are significantly smaller than the unconstrained case.

Figure 6.5: Cumulative distribution of NS coefficient (left) and absolute bias value(right) for
HBV (black) and HYMOD (grey) model calibration. Models were calibrated us-
ing two different objective functions: non constraint (solid line) and bias con-
straint (dash line).

The spatial mean model performances that used NSB as the objective function for different
sub-periods are summarized in Figure 6.6. For both HBV and HYMOD, the average NS effi-
ciencies for the dry period (60S) are slightly worse than the performances calibrated on other
sub-periods. The losses in NS performance of the HBV model are greater than that of the
HYMOD. This is mainly because, during the dry period, there might be limited flood events
for the models to capture the fundamental characteristics of the rainfall-runoff behaviors for
the catchment.

6.3.3 Validation Results

For every sub-period, there are four sets of simulation results when transferring parameter
sets from other sub-periods. Therefore, for in total 50 catchments, it results in 1 000 sets of
simulation results. Figure 6.7 shows the cumulative distribution of the simulated NS coeffi-
cient and absolute biases for both HBV and HYMOD. From the cumulative probability plots,
we could see clearly that the statistics for both efficiency NS and absolute biases are poorer
for validation than for calibration. The cross validation efficiency NS for non-constraint
cases tends to be greater than the bias constraint cases. But the differences are lighter than
the calibration results. The water volume error could be effectively reduced by using bias
constraints. From the right side of the Non-exceedence probability curves for the absolute
bias, we could see that some of the simulation results lead to significant bias error (close to
0.5) for using bias constraint as well as the non-constraint cases. It represents that for a few
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Figure 6.6: Mean NS model performance over 50 catchments for five calibration period for
HBV (blue) and HYMOD (pink) using NSB as objective function.

catchments, the model validation leads to a relatively big problem for the water balance as
well as to lower efficiency values in the simulation.

Figure 6.7: Cumulative distribution of NS coefficient (left) and absolute bias value(right) for
HBV (black) and HYMOD (grey) model validation. Models were calibrated using
two different objective functions: non constraint (solid line) and bias constraint
(dash line).

The calibration and validation results of this study supported the finding of [Viney et al.,
2009], where the incorporation of bias constraint with NS efficiency strategy frequently leads
to slightly poorer NS performance than the unconstrained case. However, the biases can be
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significantly reduced with the bias constraint. This provides support for incorporating bias
constraints into the model calibration process. In the following study, the NS efficiency com-
bined with bias constraint(NSB) was taken as the objective function for model evaluation.

6.3.4 Transferability and Climate Change Indicators

In order to investigate the transferability of parameters under changed climatic conditions,
the transfer performance has been normalized with respect to the model calibration perfor-
mance for the data period. The percentage difference between the normalized model per-
formance and the maximum possible value (1) denotes the accuracy of the simulated model
performance. The smaller the value, the worse the transferred quality. A value of zero repre-
sents the simulation result is as good as the model calibration. Figure 6.8 shows the percent-
age reduction in efficiency NS for all sub-periods and Figure 6.9 shows the absolute value
of the simulated biases, respectively. Here the percentage reduction in model performance
is plotted against the percentage difference in average annual precipitation in the validation
period relative to the calibration period, and the average annual precipitation of the calibra-
tion period is taken as the denominator [Vaze et al., 2010]. All the scatters on the left side
of the y-axis represent the simulated performance where the precipitation in the simulation
sub-period is lower than in the calibration sub-period and vice versa. As expected, the sim-
ulation results are very similar for both HBV and HYMOD because of the similar model
structure. Figure 6.8 shows that in a few number of simulations (HBV: 5 % and HYMOD:
2%), the simulation NS values are close to the individual calibration results, which demon-
strates the calibrated model parameters are well transferred to the receiver sub-periods. The
lines of best fit in this figure show the clear correlation between the differences in weather
conditions for the calibration and validation sub-periods and the reduction in model effi-
ciency NS. With the increasing of difference in rainfall conditions between calibration and
validation sub-periods, the reduction in model performance usually becomes higher. Figure
6.9 indicates that the mean value of the absolute biases are significantly higher if there are a
larger difference between precipitation in the calibration and validation sub-periods. It also
indicates that the absolute biases are usually greater when the model parameters calibrated
in a high precipitation sub-period is used to model the discharge in a low precipitation sub-
period than when the parameters calibrated in a low precipitation sub-period is used to
model the discharge in a high precipitation sub-period. It can be found from the figure that
some simulations for the relatively wet sub-periods by transferring parameters from the dry
ones lead to significant water balance error.

Figure 6.10 plots the percentage reduction in model efficiency NS against the difference in
the rate of runoff and precipitation between the validation and calibration sub-periods, Fig-
ure 6.11 plots the absolute bias, respectively. The ratio of runoff (Q) and precipitation (P )
represents the long-term water balance separation between water being released from the
catchments as streamflow and as evapotranspiration [Milly, 1994; Sawicz et al., 2011]. The
correlation between the transferability of model parameters and the ratio of runoff and pre-
cipitation seems stronger than if one considers annual precipitation as the indicator. Reduc-
tion in model performance become higher for a larger difference between the Q/P values
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HBV HYMOD

Figure 6.8: Scatterplots of percentage reduction in transfer model performance (NS) against
percentage difference in precipitation between the validation and calibration sub-
periods for HBV (left) and HYMOD (right).

HBV HYMOD

Figure 6.9: Scatterplots of absolute biases for validation periods against percentage differ-
ence in precipitation between the validation and calibration sub-periods for HBV
(left) and HYMOD (right).

in calibration and validation periods. If the Q/P values are very different, the simulated
qualities are generally poor.

The correlations between model performance and the difference between average air tem-
perature in calibration and simulation sup-periods are plotted in Figure 6.12 for the per-
centage reduction in model performance and Figure 6.13 for absolute bias, respectively. The
percentage difference in air temperature is calculated such that the mean temperature for
the calibration sub-period is taken as the denominator. The negative value on the x-axis rep-
resent the transfer results that the temperature in the simulation sub-period is lower than
in the validation period and vice versa. The air temperature for the study catchments are
relatively stable over the time period, and the relationship between the reduction in model
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HBV HYMOD

Figure 6.10: Scatterplots of percentage reduction in validation performance against differ-
ence in the ratio of runoff and precipitation between the validation and calibra-
tion sub-periods for HBV (left) and HYMOD (right).

HBV HYMOD

Figure 6.11: Scatterplots of absolute biases for validation periods against difference in the
ratio of runoff and precipitation between the validation and calibration sub-
periods for HBV (left) and HYMOD (right).

efficiencies and the changes in temperature conditions are very feeble. If the percentage
difference in temperature becomes greater than 6%, the absolute bias shows slight increases.

In order to provide more insight of the temporal transferability of model parameters, the
transfer results for 10 000 individual parameter sets have been investigated. Figure 6.14
shows an example of the validation results for catchment 01649500. The left histogram
shows the validation performance of sub-period 70S by transferring parameters calibrated
using the historical data of sub-period 50S. As a comparison, the calibration result is shown
in the figure for reference. The simulated model efficiency for the 70S is similar to the cal-
ibration results, only about 5% of these 10 000 parameter sets are slightly worse. We can
conclude that the parameters calibrated on the 50S are suitable for performing the rainfall-
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HBV HYMOD

Figure 6.12: Scatterplots of percentage reduction in validation performance against per-
centage difference in temperature between the validation and calibration sub-
periods for HBV (left) and HYMOD (right).

HBV HYMOD

Figure 6.13: Scatterplots of absolute biases for validation periods against percentage dif-
ference in temperature between the validation and calibration sub-periods for
HBV (left) and HYMOD (right).

runoff response of the 70S. However, the simulated model efficiency of the 50S by transfer-
ring parameter sets from the 70S is not as good as expected. The 10 000 individual parameter
sets lead to a considerable fluctuation of the results. Only 3% of the parameter sets calibrated
on the 70S are reliable for the 50S. For a few number of parameter sets, the reduction even
reaches down to 0.3. This is mainly because of the difference weather conditions for these
two sub-periods. The annual precipitation for sub-period 70S is greater than for the 50S,
and more parameter sets could reasonably perform the rainfall-runoff process than for the
dry periods. This study indicates that the calibration procedure should be performed very
carefully if the modelers choose to use single parameter vectors for model application.
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Figure 6.14: Histogram of transferred NS efficiency (gray) of HBV for catchment 01649500
for the sub-periods of 70S (left) and 50S (right). The individual calibrated NS
model performances (black) were shown as the reference.

6.3.5 Transferability and Dissimilarity of Sub-periods

Figure 6.15 shows an example of the bivariate empirical copula density of API and runoff
depth for four different sub-periods for catchment 01562000. The distance Li,j of copula
density for two different sub-periods i and j was calculated as:

Li,j =
n∑
l=1

n∑
k=1

[Cn−l,n−k(i)− Cn−l,n−k(j)]2 (6.10)

Here the distance value represents the level of dissimilarity between two different sub-
periods. A high value of L indicates greater dissimilarity in the hydrological response. This
kind of dissimilarity was estimated for all sub-periods that involved in this study. Figure
6.16 plots the transfer model efficiency NS against the difference in empirical copula densi-
ties of API and runoff depth between the calibration and validation sub-periods for all study
catchments. The results indicate that with the increasing of the distance between the bivari-
ate empirical copula densities, the model validation leads to worse model performance. It
can be seen clearly from the plots that the model performance displays dramatically de-
crease if the distance values are greater than 400.

6.3.6 Long Time Period Transition

For all the study catchments, the HBV model was calibrated using 40-year data series, and
the parameter sets were then applied to the remaining sub-period. Figure 6.17 shows the
transfer NS model performance for each sub-period. The transfer results from the ten-year
data based calibration are plotted in the illustration as a comparison. For all the sub-periods,
the long time data based calibration usually leads to a better-transfer model performance
than the short one. The long time calibration data covers various climate conditions for the
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50S 60S

70S 80S

Figure 6.15: An example of empirical copula density of API (y-axis) and Q(x-axis) for four
sub-periods for catchment 01562000.

rainfall-runoff process and can reduce the uncertainty of model parameters. The models
are better constrained when they use 40-year data compared to using ten-year data. The
simulation results indicate that the effect of calibration data length and variability on the
transferability of model parameters.

6.3.7 Common Transition

Simultaneous calibration was taken for the driest sub-period 60S and the wettest sub-period
70S for both HBV and HYMOD. Firstly, the model performances for the individual and
common calibration were compared. The individual calibration approach logically leads to
better model performance than the common calibration, following the finding in Chapter 5.
The mean NS performance over the all study catchments for sub-period 60S drops from 0.75
to 0.72 for HBV model and from 0.71 to 0.68 for HYMOD model, respectively.

When one applies the models for the validation sub-periods 90S, for the individual cali-
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HBV HYMOD

Figure 6.16: Scatterplot of transfer model performance (NS) against distance of bivariate
copula densities between the validation and calibration sub-periods for HBV
(left) and HYMOD (right).

brated model parameters, the average model performance is around 0.67. While for the
common calibration, the mean value increases to 0.51. It indicates the robustness of the
commonly calibrated parameter sets.

As shown in Figure 6.2, the 60S are generally the driest sub-periods and the 70S are the
wettest sub-periods for most of the study catchments. This assumed that the data set of
these two decades could cover most of the weather conditions of other sub-periods. Figure
6.18 shows the average simulation efficiency NS for the rest three sub-periods by using the
parameter sets calibrated on common calibration against the case of using individually cal-
ibrated parameter sets. The results indicate that the simulated efficiency are slightly better
for the common parameters, especially for HYMOD. For the minimum NS coefficient for all
the 10 000 parameter sets, as shown in Figure 6.19, it could be well improved if simulated by
the common parameter sets were used instead of individual parameter sets. For about 60%
of HBV and 57% of HYMOD, the common parameters lead to model efficiency NS where
the minimum values are better than that obtained by individual calibration parameters.

Figure 6.20 shows the absolute bias values of using common parameter sets comparing with
the one obtained from individual parameter sets. As expected, the absolute biases for the
commonly calibrated parameters are lower than for the individual ones. For example, the
mean absolute bias over all catchments drops from 0.07 to 0.06 for HBV and from 0.06 to
0.05 for HYMOD, respectively. However, the absolute biases show opposite tendency for
the donor sub-period of the 60S and the 70S. For some simulation runs, the transfer absolute
bias increase if using 60S data set for model calibration and decrease if using the data period
of 70S for model calibration. This might be due to the different weather conditions for these
two decades.
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Figure 6.17: Transferred NS coefficient of HBV model for 50 MOPEX catchments for five sub-
periods. Model parameters were calibrated using NSB as performance criteria
based on 10-year (blue) and 40-year (red) data records, respectively.
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HBV HYMOD

Figure 6.18: Mean NS model performance for 50 MOPEX catchments for the sub-period 60S
(gray circles) and the 70S (blue triangles) for HBV (left) and HYMOD (right).
Model parameters were estimated by individual calibration for one sub-period
and simultaneous calibration for two sub-periods, respectively.

HBV HYMOD

Figure 6.19: Minimum NS model performance for 50 MOPEX catchments for the sub-period
60S (gray circles) and the 70S (blue triangles) for HBV (left) and HYMOD (right).
Model parameters were estimated by individual calibration for one sub-period
and simultaneous calibration for two sub-periods, respectively.

6.3.8 Weather Adjustment

The weight function approach was applied for the sub-periods with a large difference in
mean annual precipitation to detect the change of model performance and the transferability
of model parameters. The sub-periods with the percentage difference in annual precipitation
greater than 20% were considered in this study. For a total of 27 simulations, the annual
precipitation for the receiver sub-period is 20% smaller than the one for the donor sub-
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HBV HYMOD

Figure 6.20: Absolute biases for 50 MOPEX catchments for the sub-period 60S (gray circles)
and the 70S (blue triangles) for HBV (left) and HYMOD (right). Model param-
eters were estimated by individual calibration for one sub-period and simulta-
neous calibration for two sub-periods, respectively.

period. For a total of 74 simulations, the annual precipitation for the receiver sub-period is
20% greater than the donor sub-period with respect to the donor sub-period. For all these
donor sub-periods, HBV model was recalibrated based on weight function to adjust the
climate conditions similar to the receiver sub-periods. For comparison, two different weight
function were used in this study. For case 1, value w(t) = 1.2 was applied to the years where
the weather is similar to the weather of the receivers, w(t) = 0.8 was given to the so-called
dissimilar years. For case 2, a higher weight w(t) = 1.5 was applied to the similar years and
w(t) = 0.7 was used for dissimilar years.

Figure 6.21 shows the simulation results for the receiver sub-periods where the annual pre-
cipitation is much lower than for the donor sub-periods by using two different weight func-
tions. The individual transferred results are also presented as comparison. The result shows
that for 9 out of 27 simulations, the NS efficiency slightly increases if applying weight func-
tion into calibration strategy. The higher the weight for the similar years, the better the sim-
ulation results are. However, a total of 7 simulations show decreasing NS performance with
the increasing weight for the period has similar climate conditions, while for 11 simulations
the weight functions did not affect the simulation results.

Figure 6.22 shows the results for the receiver sub-periods where the rainfall is greater than
for the donor sub-periods. The change of NS coefficient seems smaller than the application
for the opposite way. For 10 out of 74 simulations, the model performance improved slightly
by using weight functions and one-third of the simulations do not show clear change. How-
ever, for at least 16 simulations, the model performance decreases if weight function are
incorporated in the model calibration procedure.
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Figure 6.21: Mean NS model performance for the relatively dry sub-periods by transferring
model parameters from wet sub-periods.

Figure 6.22: Mean NS model performance for the relatively wet sub-periods by transferring
parameters from dry sub-periods.

6.4 Conclusions

In this chapter, the transferability of model parameter sets under different climate conditions
was investigated. The result shows that model parameters are strongly influenced by the cli-
matic conditions of the calibration period. The sub-period calibration and cross-validation
approaches indicate that the variability of climate conditions often leads to different param-
eters for the same catchment. The incorporation of bias constraint with NS efficiency strat-
egy could achieve better water balances compared to the unconstrained one when model
parameters are subsequently used for very different climate conditions.



76 Model Calibration under Non-stationary Conditions

The transferability of model parameters highly depends on the data set used for model
calibration which can be detected by the dissimilarity of climate characteristics using copula
density. To cope with the instability of model parameters calibrated on catchments in non-
stationary conditions, two model calibration strategies, the common calibration of multi
sub-periods and the climate condition based weight function were applied. The transfer
quantities could be slightly improved by these approaches.



7 Influence of Data Quantity and Quality on
Model Parameterization

This chapter investigates the influences of calibration data length and data quality on model
parameterization and presents approaches for parameter estimation in data-limited catch-
ments.

7.1 Introduction

As discussed before, conceptual rainfall-runoff model parameters highly depend on the data
series that are used to calibrate the models [Yapo et al., 1996; Beven, 2011]. Previous studies
[Duan et al., 1994; Yapo et al., 1996] have indicated that the data selected for model calibra-
tion should be “representative” of the various phenomena experienced by the catchments.
Some people have attempted to satisfy this requirement by using as large a data set as possi-
ble. However, observations of continuous hydrometeological data for model calibration and
validation are available only at a small fraction of the basins. The application of hydrological
models is often limited due to the lack of observation data.

In this chapter, a number of catchments were calibrated using different length of data peri-
ods and the transferability of the calibrated model parameters was tested in two different
validation time periods. The objective of this study is to evaluate the influences of data qual-
ity and quantity on model parameterization, to investigate how much observational data are
sufficient or necessary to obtain a good model calibration, and to find a solution to reduce
the uncertainty of model parameters in data-limited regions.

7.2 Methodology

In the research presented in this chapter, the lumped HBV model was selected to simulate
the rainfall-runoff behaviors of the 15 MOPEX catchments that have been described in Sec-
tion 2.1. The combination of Nash-Sutcliffe efficiency and log-bias constraint (NSB) was
taken as model performance criterion (see Equation 3.22). As usual, each calibration obtains
10 000 parameter sets that perform very similar by using the ROPE algorithm.

In this chapter, two numerical experiments were carried out on the selected 15 catchments,
using a 40-year record of historical data from 1950 to 1989. The 40-year data set was split
into calibration (1950-1969) and validation (1970-1989) periods as shown in Figure 7.1.
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Figure 7.1: Separation of historical data: calibration (1950-1969), validation 1 (1970-1979) and
validation 2 (1980-1989).

In numerical experiment 1, the HBV model was simulated using data lengths of 1, 2, 5,
and 10 consecutive hydrological years from the period 1950-1969. This results in 20, 10, 4
and 2 calibration runs for every catchment. In each calibration, one-year data before the
selected period was taken as a warm up time period to minimize initialization error. Nev-
ertheless, the calculation of the objective function does not consider this warm up year. All
the calibrated parameters were used to verify two distinct validation time periods (1970-
1979,1980-1989) to investigate the transferability and sensitivity of model parameters.

In numerical experiment 2, in order to reduce the uncertainty of parameter estimation for
catchments with limited historical data, the common calibration is proposed to calibrate
models simultaneously for the target catchment and the neighboring catchment. Here it is
assumed that the calibration for the target catchment uses only one-year historical data as a
“data-limited” catchment. This kind of approach is expected to use extra information from
similar catchments to identify robust parameters for the data-limited catchments. The neigh-
boring catchment for common calibration was selected based on the geographical distance
between the streamgauges of the catchments. Table 7.1 lists the spatial proximity catchment
and the corresponding geographical distance for all 15 catchments. The ten-year data from
the nearest catchment for the period 1950-1959 was selected to conduct simultaneous cali-
bration with the target catchment using only one-year historical data. The model calibration
was carried out for the time period 1950 to 1969 and resulted in 20 simulations for each
“data-limited” catchment.
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Table 7.1: The selection of the nearest catchment and the corresponding distance.
No Catchment The nearest catchment Distance(km2)
1 01548500 01611500 228
2 01606500 03180500 76
3 01611500 01606500 99
4 01663500 01664000 15
5 01664000 01663500 15
6 01667500 01664000 25
7 02016000 02018000 19
8 02018000 02016000 19
9 02030500 01667500 80

10 03114500 03155500 46
11 03155500 03114500 46
12 03164000 03173000 73
13 03173000 03164000 73
14 03180500 03186500 60
15 03186500 03180500 60

7.3 Results

7.3.1 The Impact of Data Variability

Figure 7.2 plots the model performance of calibration based on a one-year data set and the
corresponding evaluated model performance for the validation period 1970-1979. For most
of the cases, the calibrated model performance is bigger than for the validation runs. This
also indicates that the parameter calibrated with higher efficiency usually result in better
performances than the ones calibrated with lower efficiency.

Figure 7.3 compares the model performance for the two different validation time periods
1970-1979 and 1980-1989 using the parameters estimated based on one-year data. The trans-
fer model performances for these two time periods are very similar. The correlation coef-
ficient of the model performance is about 0.80. This high correlation of the validation per-
formance for different data sets indicates the stability of the calibration parameters. It can
be seen from the plots that the low-performance calibrations are relatively more sensitive to
the particular validation period.

The bar chart shown in Figure 7.4 represents the individual calibration performance for the
period 1970-1979 for all 15 catchments. The models always perform differently for different
catchments which is assumed to be due to input and output errors. In order to compare
the transferred model performance for different catchments, all the transfer model perfor-
mances using parameters calibrated on different lengths of data were normalized by the
individual calibration performance for the target period. The higher the value represents
the better the parameter for transfer. A value of 100% means a perfect prediction. The upper
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Figure 7.2: Correlation of NS model performance for one-year data based calibration period
and the validation period 1970-1979.

Figure 7.3: Correlation of NS model performance for two different validation period: 1970-
1979 and 1980-1989. HBV model parameters were calibrated based on one-year
data.
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part of Figure 7.4 shows the relative model performance of 15 catchments by transferring
the one-year-based calibrated model parameters to the time period 1970-1979. We can see
clearly that the model parameters obtained by one-year calibration perform differently for
each catchment. Most of the parameters estimated by one-year data could capture more
than 60% of the model performance for the ten-year validation. For catchment 12 and 15, all
the parameters calibrated on one-year data perform well because the relative model perfor-
mances are bigger than 80%.

Figure 7.4: Mean NS model performance of individual calibration (bar chat) and the relative
NS model performance for the transfer of the one-year based calibrated model
parameters (scatterplots) for the sub-period 1970-1979. The relative model per-
formance was normalized by the individual calibration performance for the cor-
responding sub-period.

Figure 7.5 compares the mean model performance for the validation period 1970-1979 when
different lengths of data were used for calibration. As expected, the validation performance
increases with the increase of length of data used for calibration for most of the catchments.
The sensitivity of data length for parameter estimation varies for different catchments. For
example, the average model performance seems very similar for using 1, 2, 5 and 10 years
data for parameter estimates for catchment 9 and 15. However, for catchment 1, 5 and 11,
the validation performance improves a lot if more years were selected for model calibration.
For the 10 years data based model calibration, 11 out of 15 catchments obtain more than 90%
relative model performance for the validation period. This indicates that 10-year data are
sufficient good for a model calibration for most of the study catchments.

For the one-year data based model calibrations, the influences of data quality to the trans-
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Figure 7.5: Comparison of relative NS model performance for 15 study catchments for the
sub-period 1970-1979 for transferred parameters from different length of data
based model calibration.

ferability of model parameters were investigated. Figure 7.6 shows the correlation of the
transfer model performance for the validation period 1970-1979 with the observed runoff
during the calibration period. The left part of Figure 7.6 plots the correlation with peak flow
and the right part plots the correlation with 10% high flow value. We can see clearly from
the scatterplots that most of the poorly transferred parameters are estimated by the dataset
with relatively small peak flow. However, the correlation with 10% high flow values is not
as clear as the correlation with peak flow.

The relationship between the peak flow and the calibrated model parameters was also ex-
plored. The result shows that for one-year based model calibration, the peak flow value has
relatively high impact on threshold water lever HL and near surface flow storage constant
K0 as shown in Figure 7.7. In HBV model structure, these two parameters are highly related
to surface runoff. A low value of peak flow during the calibration procedure limits the in-
formation for the model parameter estimation and the models are not able to capture the
essential features of the catchments. Therefore, the model parameters could not be trans-
ferred to different conditions.

Figure 7.8 shows an example of the distribution of the parameters HL and K0 that were cal-
ibrated using the different lengths of data series. Both parameters display definite changes
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Figure 7.6: Correlation of the transferred NS model performance for the sub-period 1970-
1979 with the observed peak flow (left) and the 10% high flow value during the
calibration periods.

with the increasing of data length used for model calibration. The uncertainty of model pa-
rameters could be significantly reduced if more information was involved in the calibration
routine. Figure 7.9 shows the corresponding transferred model performance for the period
1970-1979. By increasing the length of data from one-year to two-year, the model perfor-
mances improved notably. But when the data used for calibration was increased from 5
to 10 years, the result was somewhat unexpected as the performance decreased. This may
be due to the observational errors and specific features in the calibration period, since the
adjustment of the model can be very specific to the observation period leading to an overes-
timation of model parameters.

7.3.2 Application in Data-limited Catchments

For all 15 catchments, the simultaneous calibration was performed for the target catchment
with one-year data and with ten-year data from 1950-1959 for the nearest catchment. Firstly,
the model performances for the individual and for the common calibration were compared.
The NS model performance for the common calibration is relatively lower than the individ-
ual one for the target catchment. Both of these parameter sets were used to simulate the
model for two validation periods. The result shows that for the period 1970-1979, the mean
model performance of the individual parameter sets over all study catchment is about 0.62
while for the common calibration the average value increases to 0.64, indicating the robust-
ness of the common calibration. Figure 7.10 compares the transfer model performance of
individually calibrated model parameters based on one-year data and the common calibra-
tion with a neighboring catchment for the validation periods. The scatterplots show that by
using the information from a neighboring catchment, the model might obtain much more
reliable parameter estimations. For about 65% of the validation period 1970-1979 and 64%
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Mean value of parameter sets Standard deviation of parameter sets

Figure 7.7: Correlation of peak flow value with the parameter threshold water lever HL (up-
per) and near surface flow storage constant K0 (lower). The left side of the scat-
terplots shows the mean value of parameter sets and the right side illustrates the
standard deviation value, respectively.

of the validation period 1980-1989, the common parameters lead to a model efficiency NS
where the average values are better than those obtained by individual calibration parame-
ters. Simultaneous calibration with a neighboring catchment offers a good way for model
calibration and prediction in data-limited catchments.

This chapter only shows the result of using single neighboring catchment for common cali-
bration. In our study, simultaneous calibration with multi neighboring catchments was also
tested. Unfortunately, none of the simulation results shows improvement when compared
with the single adjacent catchment approach.
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Figure 7.8: Scatterplots for two HBV parameters (HL and K0) obtained using different length
of data for catchment 01611500 .

Figure 7.9: Transferred NS model performance for catchment 01611500 for the sub-period
1970-1979. Parameters were calibrated using different length of data, all the
model performances were normalized by the individual calibration result for
1970-1979.
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(a) 1970-1979 (b) 1980-1989

Figure 7.10: Mean NS model performance of transfer parameters from individual calibra-
tion and common calibration for the sub-period 1970-1979 (left) and 1980-1989
(right), respectively.

7.4 Conclusions

In this chapter, the HBV model was calibrated based on different lengths of data sets and dif-
ferent time periods. The result shows that the transferability of model parameters increases
with the increasing of the length of data used for calibration for most of the catchments. The
sensitivity of data length for parameter estimation varies between different catchments. In
general, a 5-10 year data set is necessary to obtain a good model calibration. Results also
show that flood events have significant influence on model parameter identification, espe-
cially for the parameters that correlate to the generating of surface runoff. For the model
calibration in data-limited catchments, simultaneous calibration with a similar catchment
might lead to more reliable parameter estimations than only using the limited data.



8 Summary and Outlook

8.1 Summary

This thesis addresses a major concern of the transferability of conceptual hydrological model
parameters both on the spatial and temporal scales.

Due to observational errors and specific features in the calibration period, the adjustment
of the model can be very specific to the observation period leading to an overcalibration.
To overcome such limitations, a simultaneous calibration approach is introduced to identify
parameter sets that perform well for all catchments within the modeled domain. A new
model parameter η controlling the actual evapotranspiration was introduced to cope with
the clear differences in water balances due to water or energy limitations. Three hydrolog-
ical models were used in combination with three different performance measures in four
numerical experiments on a large number of catchments. The individual calibration and
transfer results indicate that models are often overfitted during calibration. The parameters
are sometimes more specific for the calibration time period and their relation to catchment
properties seems to be unclear. This makes parameter transfers or parameter regionalization
based on individual calibration difficult. The common spatial calibration strategy, which ex-
plicitly assumed that catchments share dynamical parameters, was tested on a number of 15
catchments and 96 catchments, respectively. The common calibration provides an efficient
way to identify parameter sets which work reasonably for all catchments within the mod-
eled domain. Testing the parameters on an independent time period shows that common
parameters perform comparably well as those obtained using individual calibration. The
transfer of the common parameters to model ungauged catchments works well. The perfor-
mance of common parameters on a small number (15) of catchments was better than on a big
number (96) of catchments covering a large spatial scale. It indicates that the performance of
the common parameters depends strongly on the selection of the catchments used to assess
them, and a reasonable geographic proximity of the catchments might be a good choice for
common calibration. The results of the experiments were similar for all three hydrological
models applied independently of the choice of the performance measures. Note however,
that the common parameters corresponding to the different performance measures differ
considerably. The common behavior is dependent on how one evaluates the performance of
the models. The fact that many catchments share common parameters which describe their
dynamical behavior does not mean that they really do have the same dynamical behavior.
The model output highly depends on the parameter η which varies from catchment to catch-
ment and also as a function of the other model parameters describing dynamical behavior.
Common parameters offer a good possibility for the prediction of ungauged catchments,
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because then only the parameter η which controls the long-term water balances has to be es-
timated individually. This however can be done using other modeling approaches including
regionalization methods.

The rainfall-runoff behavior for a specific catchment may be considered as non-stationary
under the changing climate and land use conditions. Parameter estimates for different cali-
bration time periods might be significantly different. This limits the applications of hydro-
logical models under non-stationary conditions. In this study, the transferability of model
parameter sets under different climate conditions is investigated. The result shows that
model parameters are strongly influenced by the climatic conditions of the calibration time
period. The sub-period calibration and cross-validation approaches indicate that the vari-
ability of climate conditions often leads to different parameters for the same catchment. The
incorporation of bias constraint with NS efficiency strategy could achieve better water bal-
ances than the unconstrained one when model parameters are subsequently used for very
different climate conditions. The transferability of model parameters highly depends on the
data set that is used for model calibration which can be detected by the dissimilarity of cli-
mate characteristics using copula density. To cope with the instability of model parameters
under non-stationary conditions, two model calibration strategies, the common calibration
for multi sub-periods and the weather adjustment with weight function are tested on the
HBV model. These approaches tend slightly to improve the model performance for most of
the simulations as compared to traditional calibration, although the benefit is small.

The reliability of hydrological models is highly influenced by the quality and quantity of
data sets used for parameter identification. This influences of data quantity and quality on
model parameterization are also investigated in this study. The model was calibrated based
on different lengths of data sets and different time periods. The result indicates that the
transferability of model parameters increases with the increasing of data length used for
calibration for most of the study catchments. The sensitivity of data length for parameter
estimation varies for different catchments. In general, a length of data ranging from five
years to ten years is sufficient to calibrate a particular rainfall-runoff process. The result also
shows that the flood events have significant influence on model parameter estimation, espe-
cially for the surface runoff correlated parameters. As observations of continuous hydrom-
eteological data for model calibration and validation are available only at a small fraction of
the basins, the application of hydrological models is often limited due to the lack of obser-
vation data. The common calibration approach was presented by using information from
spatial proximity catchments. The result shows that for more than half of the simulations,
the model performance and transfer quantity can be slightly improved by using information
from similar catchments. However, for one-third of the simulations, the model parameters
calibrated by simultaneous calibration leads to worse model performances than the one by
individual calibration.

8.2 Outlook

For applying the simultaneous calibration approach in geographical space, the long-term
discharge volumes have to be estimated for ungauged catchments. This problem is not ex-
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plicitly treated in this study. The estimation of parameter η is a limitation of the presented
simultaneous calibration approach. Regionalization of long-term discharge volumes is a
prerequisite for the application in ungauged basins. For the MOPEX catchments involved
in this study, the discharge coefficients which relate discharge volumes to (known) precipita-
tion show a quite smooth spatial behavior. Thus, the regionalization of this parameter seems
not to be an extremely complicated task in this particular region. The potential application
of this approach in other regions needs to be investigated in future work.

In this study, all the models were tested on the daily time scale. Differences in catchment
properties have significant effects on smaller temporal scales (e.g. hourly). Results also indi-
cate that the differences in catchment properties cannot be captured well by simple lumped
model parameters.

This study only tests the lumped conceptual models. The model performance and transfer-
ability for different temporal and spatial resolutions may be considered.

In this study, only the changes in climate conditions have been investigated. The land cover
information should also be considered as “non-stationary” in hydrological model simula-
tions.
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Götzinger, J. (2007). Distributed conceptual hydrological modelling-simulation of climate, land use
change impact and uncertainty analysis. Ph.D. dissertation No. 164, University of Stuttgart.

Grigg, D. (1965). The logic of regional systems 1. Annals of the Association of American Geog-
raphers, 55(3):465–491.

Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F. (2009). Decomposition of the
mean squared error and nse performance criteria: Implications for improving hydrologi-
cal modelling. Journal of Hydrology, 377(1):80–91.

Gupta, H. V., Sorooshian, S., and Yapo, P. O. (1998). Toward improved calibration of hydro-
logic models: Multiple and noncommensurable measures of information. Water Resources
Research, 34(4):751–763.

Gupta, R., Gigras, P., Mohapatra, H., Goswami, V. K., and Chauhan, B. (2003). Microbial
α-amylases: a biotechnological perspective. Process Biochemistry, 38(11):1599–1616.

Hamon, W. R. (1963). Computation of direct runoff amounts from storm rainfall. publisher not
identified.

Hartmann, G. M. (2007). Investigation of evapotranspiration concepts in hydrological modelling
for climate change impact assessment. Ph.D. dissertation No. 161, University of Stuttgart.

He, Y. (2008). Application of a non-parametric classification scheme to catchment hydrology.
Ph.D. dissertation No. 172, University of Stuttgart.



94 Bibliography
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