
Control design methods for floating wind turbines for

optimal disturbance rejection
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Abstract. An analysis of the floating wind turbine as a multi-input-multi-output system
investigating the effect of the control inputs on the system outputs is shown. These effects are
compared to the ones of the disturbances from wind and waves in order to give insights for
the selection of the control layout. The frequencies with the largest impact on the outputs due
to the limited effect of the controlled variables are identified. Finally, an optimal controller is
designed as a benchmark and compared to a conventional PI-controller using only the rotor
speed as input. Here, the previously found system properties, especially the difficulties to
damp responses to wave excitation, are confirmed and verified through a spectral analysis with
realistic environmental conditions. This comparison also assesses the quality of the employed
simplified linear simulation model compared to the nonlinear model and shows that such an
efficient frequency-domain evaluation for control design is feasible.

1. Introduction
An increasing number of prototypes of floating offshore wind turbines (FOWT) is being devel-
oped in Europe, the US and Asia. With these prototypes the design methods and standards
improve, which reduces the uncertainty in the design process and supports the progress on
the learning curve of this novel technology. This is a main objective of the ongoing research
project LIFES50+, in which four commercial platform concepts are upscaled to hold a 10 MW
wind turbine. Advanced numerical and experimental methods support this process, which is
followed by a detailed design of two selected concepts. Due to the large coupled dynamic re-
sponse of FOWTs, multi-physics models are necessary. Simplified models are mainly used for
system understanding and also for integrated design optimization. The dynamics of conventional
oil & gas platforms are usually modeled through a rigid-body model including frequency-domain
hydrodynamics. Besides extreme sea-states, the slow-drift motion in medium sea-states is a chal-
lenge here for the hull shape and the mooring system design. With the offshore wind turbine
mounted on the platform a large and complex rotor-dynamic system is added, which includes
dynamics from elastic deformations of the tower and the rotor blades. Also here, the rejection
of stochastic loads from wind and waves is key to reducing fatigue loads and stabilizing the
power production. The blade-pitch controller for above-rated wind speeds is critical for the
overall system stability as it can introduce a negative damping of the tower-top displacement
for onshore turbines, as investigated by [1], or, a negative damping of the floating foundation as
investigated by, e.g. [2], [3], [4] and both of [5] and [6], who studied different control approaches.
Therefore it is necessary to look at the coupled FOWT system including blade-pitch control.
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The goal of this paper is to improve blade pitch controllers for better disturbance rejection in
wind and waves through a better control layout with more control inputs than the rotor speed.
The frequency response to wind and waves is a focus in order to gain system understanding.
In offshore engineering the response amplitude operator (RAO) is analyzed, which is the
linear disturbance transfer function from the wave height to the six rigid-body degrees of
freedom (DOF). With the FOWT such a transfer function from waves but also from wind
gives useful insight into the effect of the stochastic wind and wave forces on the platform
rigid-body modes but also on the wind turbine drivetrain and therefore the power production.
Using methods from control engineering improves the understanding of the system: How does
a wind turbine excited by wind and waves of specific frequencies react and which modes of
motion yield high loads and should be attenuated by the controller? The wind disturbance
rejection problem for floating wind turbines has been studied by [7] with feedforward control
using LiDAR measurements. The wave disturbance rejection problem with feedback control was
recently studied by [8] and [9] showing that it is difficult to effectively cancel out the wave forces.
A multi-input multi-output (MIMO) system analysis can help here to rate the importance of
the control inputs generator torque and blade pitch angle with the different (measurable or
observable) system outputs for the rejection of wind and wave loads, see [10].

A generic floating platform, originally developed in the project INNWIND.EU, is used with
a 10 MW wind turbine, [11], in this work. It will be shortly introduced in section 2. For the nu-
merical analysis a simplified nonlinear FOWT model, developed at the University of Stuttgart is
used. It is introduced in section 3. The linearized equations will be applied in section 4: First for
a modal analysis and then for an input-output analysis of the system equations. Subsequently,
an optimal controller will be designed in section 5 and compared to a conventional single-input-
single-output (SISO) controller, comparable to [12] and [13]. Finally, the response spectra from
given wind and wave spectra of the design basis of LIFES50+ will be shown, for the linearized
system and also from a nonlinear time-domain simulation in section 5.2.
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Figure 1: INNWIND.EU TripleSpar concept for
DTU10 MW wind turbine.

Platform draft [m] 54.5
Platform column diameter [m] 15.0
Platform column

26.0
spacing (to centerline) [m]
Platform mass [106 kg] 28.3
Platform mass moment of

18.7inertia about hor. axis
@SWL [109 kgm2]
Platform added mass moment of

10.9inertia about hor. axis
@SWL [109 kgm2]
Platform linear damping

1.5
about hor. axis @SWL [109 Nms]
Number of mooring lines [-] 3
Water depth [m] 180.0
Mooring line length [m] 610.0
Turbine mass [106 kg] 1.1
Rated rotor speed [rpm] 9.6
Rated wind speed [m/s] 11.4

Table 1: INNWIND.EU TripleSpar platform and
DTU10 MW wind turbine main parameters.



2. Floating wind turbine concept
The concept used for the analyses of this paper is a generic concrete design from the
project INNWIND.EU, see [14]. It consists of three concrete cylinders, comparable to the
cylinders of spar-type floating platforms, connected through a steel tripile above the water
surface. Figure 1 shows the design with steel heave plates at the lower end of the concrete
columns and the steel interface between the upper end of the columns and the tower. The main
parameters can be found in table 1. Due to concrete as main material the mass and inertia is
significantly higher than for steel platforms. The floating platform rigid-body eigenfrequencies
are comparable to other concepts, though, see section 4. The system description is public see [15],
as well as the input files1 for FAST v8 [16]. The concept was published in order to be further
developed, improved and detailed by the community.

3. Simulation models
The numerical FOWT model and the sub-models for aerodynamic, hydrodynamic and
mooring line forces used for this work are simplified research models focusing on the most
significant DOFs, only. They have been developed with the focus of a computationally efficient
representation of the overall dynamics for control design and an overview of critical load
situations. The models were developed by first simplifying state-of-the-art models keeping the
basic nonlinearities. These resulting models show a good agreement with models like FAST, [16].
As a next step the nonlinear models are linearized about the operating point with a reduced
validity for the range of system states and inputs for a study on the linear system dynamics.

3.1. Structural models
The employed model is based on a flexible multibody formulation with rigid and flexible bodies.
The equations of motion are set up symbolically, depending on the definition of symbolic position
vectors as a function of generalized coordinates, and exported to C for a fast model execution.
In this work the equations of motion have been set up for five DOFs in 2D: Four rigid DOFs
as platform surge xp, platform heave zp, platform pitch βp and rotor azimuth ϕ combined in qr
and the elastic tower fore-aft deformation xt in qe

q =


xp
zp
βp
ϕ
xt

 , qr =


xp
zp
βp
ϕ

 , qe =
[
xt
]
. (1)

For a state-space description the state vector x results with the rotor speed Ω as

x =
[
xp, zp, βp, ϕ, xt, ẋp, żp, β̇p, Ω, ẋt

]T
. (2)

These DOFs are selected in order to reduce the system to the most important dynamics, which
are critical for conceptual design and control. Therefore, side-side dynamics (and every motion
in lateral direction) are neglected following the recommendation of [17]. Also disturbances will
only act in axial direction (x), see figure 2. The rigid bodies are the platform, nacelle and the
rotor and the only elastic body is the tower. The tower shape function used is the first fore-aft
mode shape. The individual rotor blades are not included in this model but the rotor is modeled
as a rigid disk. This method neglects the coupling of flapwise blade dynamics with the tower
modes. It is still used here because it simplifies the model to a significant extent and allows a
clearer view on the main system dynamics.

1 http://www.ifb.uni-stuttgart.de/windenergie/downloads
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Figure 2: General topology of the simplified
multibody system.
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Figure 3: Mode shapes of simplified model.

The three catenary mooring lines are represented by a nonlinear quasi-static model, which is
based on the mooring line formulation of FAST v7, see [18]. It gives, for each mooring line, the
horizontal and vertical forces on the platform depending on its position. For the linearization
a perturbation analysis is done at the respective operating point resulting in a 6 × 6 stiffness
matrix. The still-water hydrodynamics are represented through a constant added-mass in all
considered directions, interpolated at the eigenfrequency of the respective DOF of the frequency-
dependent panel-code results. Radiation memory effects are neglected as they are usually small
for FOWTs.

The symbolic equations of motion are linearized analytically about the set point of the
states x0 and the inputs u0

x = x0 + ∆x u = u0 + ∆u, (3)

where ∆x and ∆u are the new vectors of differential states and inputs, respectively. For
simplicity, the ∆ is omitted in the following, where we always talk about the differential states,
inputs and outputs. The coupled nonlinear equations of motion in state-space description can
be separated for position- and velocity-dependent terms. It remains with the input matrix B
and the identity matrix E

ẋ =

[
0 E

−M−1Q −M−1P

]
︸ ︷︷ ︸

A

x+Bu. (4)

One can identify the position-dependent matrix Q and the velocity-dependent matrix P , which
result from the transformation of the vector of Corliolis, centrifugal and gyroscopic forces and
the applied forces. The linearization is especially critical for the aerodynamic force coefficients
due to the high nonlinearity. A more detailed introduction to the model is given in [19] and [20].

3.2. Disturbance models
External disturbances on the model arise from wind and waves. The aerodynamic thrust force
and torque are calculated based on thrust and power coefficients depending on the tip-speed
ratio λ and the blade-pitch angle θ. These coefficients have to be calculated using blade-element



momentum theory (BEM) as a pre-processing step. During runtime the relative rotor-effective
wind speed v0 is used to calculate the aerodynamic forces. The aerodynamic coefficients are
highly nonlinear depending on the angle of attack, which in turn, depends on the tip-speed ratio
and the blade pitch angle. Therefore, the linearization is only valid close to the operating point.
The derivation of the linear aerodynamic coefficients can be found in [13]. The aerodynamic
model uses the rotor-effective wind speed v0 as input, which is the scalar wind speed relative to
the rotor-plane, calculated by filtering the three-dimensional turbulent wind field to get only the
components which excite the drivetrain rotation, see [21]. This means that the rotational DOF
of the rotor is prioritized over the tower-top displacement xt. The filtering of the turbulent wind
speed can yield less high-frequency excitation of the tower and underestimate the tower fatigue
loads, see [22]. In summary, the model neglects dynamic inflow and dynamic stall effects, any
dependency on the rotor azimuth angle and effects from blade deformation. These simplifications
allow for a clear representation of the main aerodynamic sensitivities, which means derivatives

with respect to the wind speed ∂(∗)
∂v , and to the blade pitch angle ∂(∗)

∂θ and rotor speed ∂(∗)
∂Ω .

The frequency-dependent wave excitation force vectors are calculated by a hydrodynamic
panel code. The resulting frequency-domain representation of the six forces on the (fixed)
floating body is subject to a system identification problem giving a parametric linear transfer
function. The approach is detailed in [20]. Eventually, both disturbance models can be included
in the nonlinear time-domain model as well as the linearized system description. Both use only
the scalar inputs of rotor-effective wind speed v0 and incident wave height η0, see figure 4. The
linear system without control will be analyzed in the next section.

4. Linear system analysis without feedback control
In this section the system properties will be first presented through an eigenanalysis. An input-
output (I/O) scaling will then allow for a better quantization of the effects of different system
inputs on the outputs. The disturbance transfer functions will give an insight into the effects
of wind and waves compared to the available control inputs. The FOWT model is here seen
as a MIMO system, meaning that various system inputs u determine the system outputs y.
The vector u consist of control and disturbance inputs u = [uc,ud]

T . As outputs different
system states of the state vector x will be considered. Figure 4 shows the basic open-loop (OL)
configuration of the linear system. In our case the coupled system transfer function G(s) is not
diagonal but coupled, which means that also off-diagonal elements are present and using one
control input, like the generator torque Mg does not only affect the rotor speed Ω but also other
states like the tower-top displacement xt or the platform pitch angle βp.

The mode shapes are visualized in figure 3 together with the respective eigenfrequencies at a
mean wind speed v̄ = 13.9 m/s. These main system frequencies will be highlighted in all of the
following graphs. The poles and zeros of the SISO transfer function from blade pitch angle θ
to the rotor speed Ω are shown in the pole-zero map in figure 5. The zeros in the right-half-
plane (RHPZ), with Re > 0, close to the tower eigenfrequency can be seen. For wind speeds
closer to rated there are also two complex conjugate RHPZ at the platform pitch eigenfrequency,
in figure 5 they are right next to the imaginary axis in the left half plane. The RHPZ yield
an inverse response behavior, which poses a hard constraint for control design, especially if
only SISO control is used. Then it can be remedied by limiting the control bandwidth to
frequencies below this RHPZ, which, on the other hand, reduces the controller performance.
This RHPZ for wind turbines in general has been investigated by [1] and by [3] for floating wind
turbines. The platform pitch poles are especially critical for the system dynamics, as well as
the tower fore-aft poles, since they are highly coupled with the drivetrain. The surge mode is
usually highly damped and at a very low frequency for platforms with catenary mooring lines,
which can be a problem with second order slow-drift wave excitation. The platform heave mode
does not pose problems since it is almost completely decoupled from the drivetrain.
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Figure 4: FOWT system block diagram with SISO control.
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Figure 5: Pole-zero map of SISO transfer function from blade pitch angle θ to rotor speed Ω
(poles ×, zeros ◦).

Next, an input-output scaling will be applied to the transfer function from disturbance
inputs ud and control inputs uc to the outputs y. This allows for a quantization and comparison
of the effects from the different system inputs u as shown in the next section. The scaling law
remains for the dimensionless system transfer function Ĝ following [10] as

Ĝ = D−1
y GDu. (5)

The scaling matrices for inputs Du and for outputs Dy have been selected based on maximum
allowed or desired excursions, mostly based on the operating point of inputs u0 and states x0

as

Du =


0.1Mg,0 0 0 0

0 5.0 π
180 0 0

0 0 0.1 v̄ 0
0 0 0 4.0

 Dy =

[
0.13 Ω0 0

0 0.5xt,0

]
(6)

4.1. Control and disturbance inputs to outputs
Figure 6 shows the scaled transfer function bode diagram for the control inputs uc = [Mg, θ]

T

and the outputs y = [Ω, xt]
T at a wind speed of v̄ = 13.9 m/s. This MIMO transfer function

matrix gives good insight into the diagonal and cross-coupling dynamics of the system. With
this MIMO description the zeros (and RHPZ) seen for the SISO transfer function from blade
pitch angle θ to rotor speed Ω of figure 5 are no longer visible. However, the transfer function
matrix G can loose rank at frequencies of MIMO zeros. On the top right graph the frequency-
dependent effect of, e.g., the blade pitch angle (which is the main control input for above rated



wind speeds) on the rotor speed Ω can be seen. A smaller amplification of the sinusoidal blade
pitch angle on the rotor speed is visible when getting close to the tower eigenfrequency. This is
due to the rotor inertia, which attenuates any high-frequency excitation. Staying in the right
column but now looking at the lower graph shows that changing the blade pitch angle does not
only result in a change of the rotor speed but also of the tower-top displacement xt, which is the
reason why a decoupling, diagonal controller is hardly feasible for wind turbines. The generator
torque (left column) shows about five times less amplification on the rotor speed than the blade
pitch angle and even more, about twenty times less amplification on the tower-top displacement.
This is generally advantageous as one could decouple the system and control the rotor speed
with the generator and the tower-top displacement with the blade pitch angle. The same can be
found analyzing the relative gain array (RGA), see [10]. Unfortunately, the actuator constraints
prohibit such a realization, since the generator is usually not designed with an excessive safety
factor on the electrical current and therefore only small fluctuations of the torque at rated wind
speed are allowed.

In a next step the same transfer function matrix is shown but now with the disturbance
inputs ud in order to see how much the outputs y are affected by wind and waves and
to which extent the control inputs uc can reduce these effects. Figure 7 shows the scaled
disturbance transfer function Bode diagram with the disturbance inputs ud = [v0, η0]T and the
outputs y = [Ω, xt]

T at the wind speed v̄ = 13.9 m/s. Generally, both scaled disturbances have a
comparable effect on the scaled outputs. The cut-off frequency of the rotor speed on the top-left
is in the same range as for the blade pitch angle. The waves mostly affect the rotor speed at
the platform surge and around the platform pitch eigenfrequency. The tower-top displacement
is excited by the wind (lower-left) mostly at its eigenfrequency but also at the other platform
frequencies for the waves (lower-right). Although there is a trough visible at the lower-right plot
at the peak wave frequency used here (fwave ≈ 0.1 Hz) this excitation of the tower from waves
is not negligible.

This open-loop analysis can be also done systematically through a singular-value
decomposition (SVD), see [10]. The SVD shows the strongest and weakest input directions V

and output directions U together with the associated amplifications σ. With the system Ĝ
considered here with the control inputs uc = [Mg, θ]

T and outputs y = [Ω, xt]
T one can

investigate the combination of the inputs that yield the highest gain on the outputs. This
gain σ is associated with the strongest output direction. On top of figure 8 one can see that the
strongest singular value (SV) in dark color contains only a little contribution of the generator
torque Mg but a high portion of the blade pitch angle θ, which confirms the findings from
the I/O transfer function matrix of figure 6. Looking at frequencies up to the platform pitch
eigenfrequency this input direction affects mostly the rotor speed Ω with a decreasing gain.
Above the platform pitch eigenfrequency the strongest output direction (second row, dark color)
points again towards the rotor speed Ω with a peak at a MIMO-zero, before the strongest input
affects more the tower at higher frequencies up to the tower eigenfrequency.

One can assess the effect of using the two control inputs (Mg, θ) as compared to blade pitch
angle only: The strongest SV yields slightly higher gains (figure 8, bottom) than the blade
pitch angle only (figure 6, upper right). Consequently, the generator torque is a useful actuator,
although figure 6 (left column) shows very small gains associated with Mg. The strongest
(control) output direction (figure 8) can now be compared to the output disturbance directions
from wind and waves (figure 9). For low frequencies wind and waves affect more the rotor speed
than the tower-top displacement (figure 9, top). Interesting are now the gains of the disturbance
output directions, compared to the strongest control output directions: One can see that the gain
of the strongest control input (figure 8, bottom) is of about half the magnitude as the gain from
wind on the outputs (figure 9, middle left). For the waves it is different: The amplifications of
the waves on the outputs is of comparable magnitude as of the control inputs. This is confirmed
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Figure 7: Open-loop disturbance transfer function Bode diagram with inputs u = [v0, η0]T and
outputs y = [Ω, xt]

T @v0 = 13.9 m/s, scaled.

by the disturbance condition number γ, which takes high values if the disturbance direction is
aligned with the weakest control output direction. This means that it is high if the disturbance
affects directions which are hard to control, see [10]. Here, this is the case for wind excitations
of high frequencies and for waves, around the MIMO zero at 0.05 Hz, see figure 9, bottom
row. This analysis shows that waves significantly impact the rotor speed Ω and the tower-top
displacement xt and it is difficult to counteract these excitations with θ and Mg.
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Figure 9: Singular-value decomposition of open-loop disturbance transfer function for wind (left)
and waves (right): The first row shows the first coordinate of the output coordinates y = [Ω, xt]

T ,
the second row shows the associated gain and the third plot shows the disturbance condition
number γd.

5. Linear system analysis with feedback control
A conventional SISO controller, designed in [22], will be presented and an optimal model-
based Linear Quadratic Regulator (LQR) will be designed assuming full state knowledge as
a benchmark for comparison.



Table 2: Comparisons of feedback gains of LQR and SISO controller @ v̄ = 13.9 m/s.

Kxp Kzp Kβp Kϕ Kxt Kẋp Kżp Kβ̇p
KΩ Kẋt

−Klqr,θ 0.0 0.0 0.7 0.043 -0.02 0.02 0.0 -0.9 0.52 0.057
KSISO,PI 0.0 0.0 0.0 0.054 0.0 0.0 0.0 0.0 0.54 0.0

5.1. Control design
For SISO control (rotor speed error to blade pitch angle) of FOWTs usually the bandwidth is
reduced in order to mitigate the effects from the RHPZ, see [2] and [4]. The SISO controller
used here is designed by determining the PI control gains such that the coupled platform pitch
pole has a given real-part close to the stability limit. This results in an optimal compromise of
rotor speed tracking and platform stability, see [15].

As a benchmark of a MIMO controller an LQR is designed using the blade pitch angle and
the generator torque as control inputs. Such optimal controllers have been already applied to
floating wind turbines as in [13], [23] and [24]. The LQR minimizes a quadratic cost function J
of a linear model with weights on the control inputs uc and outputs y, see [10] as

J = lim
T→∞

1

T

∫ T

0

[
xTQx+ uTc Ruc

]
dt. (7)

The weights R on the inputs uc, and the weights Q on the states x are selected through brute-
force optimizations at various environmental conditions above rated as

R = diag

([
0.05

M2
g,0

,
0.04(

5.0 π
180

)2
])

(8)

Q = diag

([
0.0, 0.0, 0.0,

1.0

(10.0 Ω0)2
, 0.0, 0.0, 0.0, 0.0,

1.0

Ω2
0

,
0.05

(0.5 ωeig,twr)2

])
.

(9)
This results in the state feedback matrix K lqr by solving the Riccati equation

uc(t) = −K lqrx(t). (10)

Integral action has been included on the rotor speed signal since the rotor azimuth ϕ = x(5) is
part of the state vector x. Usually, the state signals as inputs to the LQR need to be calculated
by an observer. In this work, however, the states are assumed to be perfectly measurable in
order to see the optimal control performance as a benchmark for comparison. The optimal state
feedback matrix K lqr has been calculated for the same cost function with only the blade pitch
angle as input, in order to compare the gains to the SISO controller, see table 2. Interestingly,
the feedback of the tower-top velocity ẋt is positive as expected (the blade pitch angle increases
when the nacelle velocity is positive) but the feedback of the platform pitch velocity β̇p is negative
and only the one of its integral, βp is positive. The gains of the rotor speed Ω and the azimuth
angle ϕ are well comparable to the SISO-PI controller.

5.2. System analysis
The closed-loop systems including the different controllers will be compared in this section.
Figure 10 shows the complementary sensitivity T (jω) or the transfer function from the reference
rotor speed Ωref to the output rotor speed Ω. Here, the bandwidth of the controllers can be
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Figure 10: Complementary sensitivity functions (transfer function from Ωref to Ω) for LQR (dark
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compared. Additionally to the SISO controller and the LQR, a PI-controller has been included
using a model of the drivetrain only (no floating platform, tower) with a drivetrain-closed-loop
eigenfrequency of ωdrive,CL = 0.3 rad/s and a damping ratio of ξdrive,CL = 0.7 [−] (orange).
Also, a PI-SISO controller with “detuned gains”, according to [4] with a drivetrain-closed-loop
eigenfrequency ωdrive,CL proportional to the platform pitch eigenfrequency ωeig,βp of ωdrive,CL =
0.8ωeig,βp has been designed (green). For the SISO controllers the zero at the platform pitch
eigenfrequency is well visible, which determines also the bandwidth (crossing at |T (jω)| = 0.707).
The LQR (dark red) on the other hand shows an increased bandwidth and no phase loss at the
platform pitch and the tower eigenfrequencies, showing the effect of the MIMO feedback. The
bandwidth is only slightly decreased compared to the drivetrain-only system.

5.3. Response to wind and waves
The sensitivity function S(jω) is the transfer function from the disturbance inputs d to the
system outputs y. It is now analyzed with the closed-loop system and shows how wind and
waves affect the FOWT. Figure 11 shows the transfer functions from wind speed v0 in the left
column and from the wave height η0 in the right column. The results for the LQR (red) are
significantly better, especially at the platform pitch and tower eigenfrequencies. However, at the
wave frequency fwave = 0.1 Hz there is no visible improvement with the LQR. This is aligned
with the issues encountered by [8] and confirms also the findings of the open-loop analyses of
section 4, where a high disturbance condition number γ was found slightly below the wave
frequency. The open-loop disturbance transfer function, figure 7 also showed large effects of the
waves on the rotor speed proving that it is difficult to damp the excitations from the waves.

As a last step the load power spectral density Sy of the system outputs will be calculated
using the linear frequency-domain model with realistic wind and wave spectra as inputs. This
method allows a very efficient evaluation of new controllers as no computationally expensive
time-domain simulations are necessary but only a multiplication of disturbance spectra Sd with
the squared transfer functions G2

d

SΩ = G2
v0⇁ΩSd,v0 +G2

η0⇁ΩSd,η0 (11)
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Figure 11: Sensitivity functions (transfer functions from u = [v0, η0] to y = [Ω, xt] for LQR (dark
red) and PI-SISO control, [12] (grey).

and
Sxt = G2

v0⇁xtSd,v0 +G2
η0⇁xtSd,η0 . (12)

Due to the linearization this involves naturally errors depending on the deviation of inputs
and states from the operating point. Figure 12 shows the wind and wave frequency-domain
spectra Sd for a realistic load case of the design basis of LIFES50+, [25] at v̄ = 13.9 m/s in the
left column. On the top left an analytical result of the rotor-effective wind speed v0 from the 3D
turbulent wind field according to [21] is shown along with the result from timeseries. In the right
column the spectra of the rotor speed Ω and the tower-top displacement xt are shown, first from
the linear model and second, from a Fourier transform of the nonlinear time-domain results. It
can be seen that the difference between the LQR and the SISO controller is well captured by the
linear model. Only slight deviations are visible between the frequency-domain model and the
nonlinear time-domain model, mostly around and above the wave frequency of fwave = 0.1 Hz.
For the SISO controller more differences are visible between the models at low frequencies, which
is likely due to the larger deviations from the operating point. In conclusion, it can be seen that
this method is promising. Nonlinear and transient effects, at least for this simplified model,
appear not to be dominant, which allows to use frequency-domain methods for controller tuning
of FOWTs.

6. Conclusions
A thorough system analysis of a floating wind turbine has been performed considering
the MIMO description including control inputs and disturbances for the open-loop case.
Especially the wave disturbance could be included here through a previously developed
parametric model for first-order wave loads, which allows to assess the coupled system frequency
response at realistic environmental conditions. It has been shown which “output directions” are
critically affected by wind and wave loads due to the limited effect of the actuated variables
in these directions. The blade pitch angle can most effectively control rotor speed and tower-
top displacement for low frequencies, whereas the generator torque has a much smaller impact.
However, the generator torque, together with the blade pitch angle (multi-input), can effectively
mitigate the present right-half plane zero. A linear quadratic regulator (LQR) assuming perfect
state measurements has been designed. The comparison to a previously developed SISO-
controller shows that the LQR can significantly reduce the system responses and attenuate
various resonances. However, even the LQR, can hardly attenuate the excitations from the waves,
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Figure 12: Left column: Disturbance spectra of wind speed v0 and wave height η0 (analytic: lite
color; timeseries: dark color). Right column: Output spectra of rotor speed Ω (top) and tower-
top displacement xt (bottom) from linear frequency-domain model (dark red), nonlinear time-
domain (light red) and linear time-domain simulation (yellow) with LQR controller. Turbulent
wind of v̄ = 13.9 m/s of Kaimal spectrum with turbulence intensity TI = 13.8 % and wave
spectrum with significant wave height Hs = 3 m and peak spectral period Tp = 9.5 s.

which confirms the results of the preceding MIMO analyses of the open loop. The comparison
of nonlinear time-domain simulations with linear frequency-domain calculations showed good
agreement, which endorses the use of these computationally efficient methods for controller
tuning under realistic environmental conditions. In further steps such lessons on limitations
of the control actuators at certain frequencies can be taken into account for a design which
mitigates the critical responses, also through the formulation of an optimization problem. This
will be subject of further studies in LIFES50+.
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