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Abstract: We report evidence that the experimentally found antiferromagnetic structure as well as
the semiconducting ground state of BaMn2As2 are caused by optimally-localized Wannier states
of special symmetry existing at the Fermi level of BaMn2As2. In addition, we find that a (small)
tetragonal distortion of the crystal is required to stabilize the antiferromagnetic semiconducting state.
To our knowledge, this distortion has not yet been established experimentally.
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1. Introduction

The electronic ground state of BaMn2As2 shows resemblances but also striking differences,
as compared with the ground state of the isostructural compound BaFe2As2. Both materials become
antiferromagnetic below the respective Néel temperature. However, while the magnetic moments in
BaMn2As2 are orientated along the tetragonal c-axis [1] (see Figure 1), they are orientated perpendicular
to this axis in BaFe2As2 [2].
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Figure 1. Experimentally observed [1] antiferromagnetic structure in undistorted (a); and distorted (b)
BaMn2As2. While sufficient Ba atoms are depicted to recognize the orientation of the crystal, the Mn
atoms are shown only within the respective unit cell. The As atoms are not included. The indicated
(small) displacements of the Mn atoms in exact ±T3 direction realize the tetragonal primitive space
group P421c. As argued in the text, they are required to stabilize the antiferromagnetic semiconducting
state in BaMn2As2.
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Also very interesting is the observation that, unlike BaFe2As2, BaMn2As2 is a small band gap
antiferromagnetic semiconductor [3,4]. Calculations of An et al. [3] show that the gap amounts to
approximately 0.1 eV. No structural transformation or distortion of BaMn2As2 in this antiferromagnetic
semiconducting state was experimentally detected [1].

The present paper reports evidence that the remarkable features of the electronic ground state
of BaMn2As2 are connected with optimally-localized Wannier functions existing at the Fermi level of
BaMn2As2. These Wannier functions are adapted to the symmetry of the antiferromagnetic structure
and constructed from Bloch functions of well-defined symmetry forming narrow “magnetic bands”.
A precise definition of magnetic bands is given in Ref. [5] (Definition 16 ibidem).

The group-theoretical tables, together with the notes to these tables given in the appendix, form
the core of the paper. The two tables listing the symmetry labels of all the magnetic bands in undistorted
(Table A3) and distorted (Table A6) BaMn2As2 are the key tables. They are determined following the
group-theoretical methods detailed in Ref. [5]. Tables A1, A4 and A7 serve to define the symmetry
labels of the representations of the space groups considered in the paper and give the dimension
of the irreducible co-representations of the related magnetic groups. Knowledge of this dimension
is required to decide whether a magnetic structure with the considered magnetic group may be
stable (see Theorem 1 in Ref. [6]). This question, however, is not critical in BaMn2As2 because all
the considered magnetic groups possess suitable co-representations (see Section 2.3). When a band
structure in a space group G is folded into the Brillouin zone for a subgroup G′ of G, then the symmetry
labels of the Bloch functions at the points of symmetry comply with certain compatibility relations.
Tables A2 and A5 list the compatibility relations used in this paper. They are determined following the
methods detailed in Ref. [7].

In Section 2.1, we shall identify the tetragonal space group I42m (121) as the space group of the
antiferromagnetic structure observed in BaMn2As2 (the number in parenthesis is the international
number) and determine the magnetic group M121 of this structure. We will show that no magnetic
band related to M121 exists in the band structure of BaMn2As2. The situation changes drastically when
in Section 2.2, we shall consider a slightly distorted crystal. We will define and verify the existence of a
magnetic “super” band in distorted antiferromagnetic BaMn2As2. This super band consists of three
magnetic bands with Wannier functions situated at the Ba, the Mn, and the As atoms, respectively.

Our group-theoretical results in Section 2 will be physically interpreted in Section 3. We will
argue in Section 3.1 that a small tetragonal distortion of the crystal is required to stabilize the
antiferromagnetic semiconducting ground state of BaMn2As2. This distortion alters the space group
I42m = Γv

q D11
2d of the undistorted antiferromagnetic crystal into the space group P421c = ΓqD4

2d
(which is still tetragonal) and may be realized by the displacements of the Mn atoms depicted in
Figure 1b. These displacements are evidently so small that they have not yet been experimentally
verified [1]. In Section 3.2, we shall show that evidently the magnetic super band is responsible for the
small band gap in the antiferromagnetic semiconducting ground state, and, in Section 3.3, why the
space groups of the magnetic structures in BaFe2As2 and BaMn2As2 differ so strikingly.

1.1. Nonadiabatic Heisenberg Model

The existence of magnetic bands in the band structure of BaMn2As2 is physically interpreted
within the nonadiabatic Heisenberg model (NHM) [8]. The second postulate of the NHM
(Equation (2.19) of [8]) states that, in narrow bands, the electrons may lower their total correlation
energy by condensing into an atomic-like state, as it was described by Mott [9] and Hubbard [10]:
the electrons occupy the localized states as long as possible and perform their band motion by hopping
from one atom to another. Within the NHM, however, the localized states are not represented by (hybrid)
atomic orbitals but consequently by symmetry-adapted optimally-localized Wannier states. In contrast to
atomic functions, Wannier functions situated at adjacent atoms are orthogonal and form a complete set
of basis functions within the considered narrow, partially filled band. Consequently, Wannier functions
contain all the physical information about the band.
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In the atomic-like state, the electrons are strongly correlated, leading to the consequence that
a consistent description of the localized Wannier states must involve the nonadiabatic motion of
the atomic cores. Hence, the nonadiabatic localized functions representing these nonadiabatic
Wannier states depend on an additional coordinate characterizing the motion of the atomic cores.
Fortunately, these mathematically complicated functions need not be explicitly known. They can
be simply managed within the group-theoretical NHM because they have the same symmetry as
the related adiabatic optimally-localized Wannier functions. In this context, we speak of “adiabatic”
Wannier functions if they do not depend on the nonadiabatic motion of the atomic cores.

At the transition from an adiabatic band-like motion of the electrons into the nonadiabatic
atomic-like state, the total Coulomb energy of the electron system decreases by the nonadiabatic
condensation energy ∆E defined in Equation (2.20) of [8].

2. Magnetic Bands in the Band Structure of BaMn2As2

2.1. The Space Group I42m (121) of the Antiferromagnetic Structure in Undistorted BaMn2As2

The space group I4/mmm of paramagnetic BaMn2As2 [1] contains symmetry operations not
leaving invariant the antiferromagnetic structure. Removing these symmetry operations from I4/mmm,
we obtain the space group I42m (121) of undistorted antiferromagnetic BaMn2As2. Just as I4/mmm,
the group I42m has the tetragonal body-centered Bravais lattice Γv

q .
The group I42m may be defined by the two “generating elements”

{S+
4z|000} and {C2x|000} (1)

(see Table 3.7 of Ref. [11]). Just as in all of our papers, we write the symmetry operations {R|pqr}
in the Seitz notation detailed in the textbook of Bradley and Cracknell [11]: R stands for a point
group operation (as defined, e.g., in Table 1.4 ibidem) and pqr denotes the subsequent translation
t = pT1 + qT2 + rT3, where the T1, T2 and T3 denote the basic vectors of the respective Bravais lattice
given in Figure 1. A (magnetic) structure is invariant under a space group G if it is already invariant
under the generating elements of G. The two generating symmetry operations (1) leave invariant the
atoms of BaMn2As2 since both operations are elements of I4/mmm. By means of Figure 1a, we can
realize that they additionally leave invariant the magnetic structure, cf. Section 3.1 of Ref. [12].

The associated magnetic group reads as

M121 = I42m + {KI|000}I42m (2)

where K and I denote the operator of time inversion and the inversion, respectively. {KI|000} leaves
invariant both the atoms and the magnetic structure since {I|000} ∈ I4/mmm.

With consideration of the change of symmetry by the magnetostriction, but neglecting all other
magnetic interactions, we receive from the band structure of BaMn2As2 given in Figure 2 the band
structure of antiferromagnetic undistorted BaMn2As2 depicted in Figure 3. All the possible magnetic
bands (Definition 16 of Ref. [5]) in the magnetic group M121 are listed in Table A3. The “best” magnetic
band would be band 2 of Mn as highlighted in Figure 3 by the red labels.

Band 2 of Mn, however, is not a magnetic band in BaMn2As2 because it misrepresents the Bloch
functions at parts of the Fermi level. Between the N1 and P3 states, it jumps over the Fermi level
simulating in this way Bloch states at the Fermi level that do not exist. We have the same situation
between the Z5 state and the two X3, X1 states. Along the lines F, Σ, the Γ5 state is connected with two
Bloch states at the Fermi level, which, however, are not connected to Z5.
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Figure 2. Band structure of BaMn2As2 as calculated by the “Fritz Haber Institute ab initio molecular
simulations” (FHI-aims) program [13,14], using the structure parameters given in Ref. [1]. The space
group of BaMn2As2 is the tetragonal group I4/mmm (139) [1], the given symmetry labels are
determined by the author. The notations of the points and lines of symmetry in the Brillouin zone for
Γv

q follow Figure 3.10b of Ref. [11], and the symmetry labels are defined in Table 2 of Ref. [6]. EF denotes
the Fermi level. The band structure of BaMn2As2 essentially coincides with the band structure of
BaFe2As2 (depicted in Figure 2 of Ref. [6]) when the Fermi level is moved upwards to the dashed line.
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Figure 3. Band structure of BaMn2As2 as given in Figure 2 with symmetry labels of the space group
I42m (121) of the antiferromagnetic structure in undistorted BaMn2As2. The symmetry labels are
determined from Table A2. The labels highlighted in red define band 2 of Mn in Table A3.
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We could try to render ineffective these unfavorable jumps by adding further bands to the Mn
band, as it will be successful in the space group P421c considered in the following Section 2.2. By means
of Table A3, we may satisfy ourselves that this procedure is not possible. For instance, we neither can
add band 1 nor band 2 of As to band 2 of Mn because there is neither a Γ4 state nor an additional P3

state available in the band structure.

2.2. The Space Group P421c (114) of the Antiferromagnetic Structure in Distorted BaMn2As2

The situation described in the preceding Section 2.1 changes drastically when we consider the
space group P421c. This group no longer has the tetragonal body-centered Bravais lattice Γv

q , but the
tetragonal primitive lattice Γq and may be defined by the two generating elements

{S+
4z|000} and {C2x| 12

1
2

1
2} (3)

(see Table 3.7 of Ref. [11] (note that the basis vectors now are given in Figure 1b)). As well as the
generating elements of I42m (1), they leave invariant both the positions of the atoms and the magnetic
structure since the vector t = ( 1

2
1
2

1
2 ) is a lattice vector in Γv

q . In addition, the generating elements (3)
leave invariant the displacements of the Mn atoms depicted in Figure 1b. Thus, these displacements
“realize” the space group P421c in the sense that the electrons now move in a potential adapted to
the symmetry of the distorted crystal. The group P421c represents only a small distortion of the
crystal because it is still tetragonal and possesses the same point group as the space group I42m of
antiferromagnetic undistorted BaMn2As2. It is only the translation t = ( 1

2
1
2

1
2 ) that is no longer a

symmetry operation in P421c.
At first, the two anti-unitary operations {KI|000} and {KI| 12

1
2

1
2} may define the magnetic group

of the magnetic structure since both operations leave invariant the magnetic structure. However, only
{KI| 12

1
2

1
2} leaves additionally invariant the displacement of the Mn atoms depicted in Figure 1b.

These displacements, however, are required to realize the space group P421c. Hence, the magnetic
group of antiferromagnetic distorted BaMn2As2 may be written as

M114 = P421c + {KI| 12
1
2

1
2}P421c. (4)

Folding the band structure of BaMn2As2 as given in Figure 2 into the Brillouin zone for P421c, we
receive the band structure depicted in Figure 4. All the magnetic bands in the magnetic group M114 are
listed in Table A6. Now, we have a very interesting situation not yet considered in our former papers:
we are able to assign optimally-localized symmetry-adapted Wannier functions to all the atoms in the
unit cell of Γq, meaning that we have a band of ten branches with Wannier functions at the two Ba,
the four Mn and the four As atoms. Such a magnetic band related to all the atoms in the unit cell we
call magnetic “super” band. It is highlighted in red in Figure 4 and consists of band 1 of Mn, band 2 of
As and band 3 of Ba in Table A6 and, hence, is defined by the symmetry labels

Γ1, Γ2, Γ3, Γ4, 2Γ5, Γ3, Γ4,
M1, M2, M3, M4, M1, M2, M3, M4, M5,
2Z5, Z1, Z2, Z3, Z4, Z5,
2A5, 2A5, A1, A2,
2R1, 2R1, R1,
2X1, 2X1, X1.

(5)
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Figure 4. The band structure of BaMn2As2 as given in Figure 2 folded into the Brillouin zone for
the tetragonal primitive Bravais lattice Γq of the space group P421c (114). The symmetry labels are
defined in Table A4 and are determined from Figure 2 by means of Table A5. The notations of
the points of symmetry follow Figure 3.9 of Ref. [11]. EF denotes the Fermi level. The lines and
symmetry labels highlighted in red form the magnetic “super” band of the experimentally observed [1]
antiferromagnetic structure in BaMn2As2. Whenever a black and a red line overlap, the red line lies
on the top.

While the magnetic super band in BaMn2As2 satisfies the condition (38) of Theorem 5 of Ref. [5]
at all the points of symmetry, there are few complications on the lines Σ and ∆ in two branches:
The four circles in Figure 4 mark regions with unavoidable transitions from ∆2 to ∆1, ∆1 to ∆2, Σ1

to Σ2, and Σ2 to Σ1 symmetry. These transitions clearly destroy the P421c symmetry of the Wannier
functions. However, since these transitions only occur in two lines of two branches far away from the
Fermi level, we assume that the magnetic structure of BaMn2As2 may be described with high accuracy
in the space group P421c. Nevertheless, these transitions produce an additional small distortion of the
crystal going beyond the displacements of the Mn atoms depicted in Figure 1b. This additional small
distortion is not considered in this paper. However, we should keep in mind (see Note (v) of Table A7)
that the Wannier functions are exactly adapted to the space group P4 = ΓqS1

4 (81) since, in this space
group, the mentioned complications on the lines Σ and ∆ disappear. The related exact magnetic group
is a subgroup of M114 (4). First, there exist two subgroups of M114 defined by the two anti-unitary
operations {KC2a|000} and {KI| 12

1
2

1
2}, respectively. A detailed examination shows that only the group

M81 = P4 + {KC2a|000}P4 (6)

allows an additional distortion of the crystal.

2.3. Time-Inversion Symmetry

The time-inversion symmetry is no essential object in antiferromagnetic BaMn2As2: all three
of the space groups I42m (121), P421c (114), and P4 (81) possess one-dimensional representations
allowing a stable magnetic state with the magnetic group M121 (2), M114 (4), and M81 (6), respectively
(see Tables A1, A4 and A7 and the notes to these tables). Consequently, time-inversion symmetry
influences neither the antiferromagnetic structure nor the structural distortions in BaMn2As2 (as it
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is the case, for instance, in BaFe2As2 [6]). Time-inversion symmetry only forbids magnetic moments
located at the As atoms (see Note (x) of Table A6).

3. Physical Interpretation

The existence and the properties of the roughly half-filled magnetic super band in the band
structure of BaMn2As2 yield to an understanding of three phenomena that shall be considered in
this section:

• the experimentally observed [1] antiferromagnetic order together with a structural distortion not
yet experimentally found;

• the semiconducting ground state; and
• the different magnetic structures in BaMn2As2 and BaFe2As2.

3.1. The Antiferromagnetic Order and the Structural Distortion in BaMn2As2

In a material possessing a narrow, roughly half-filled magnetic band or super band related to
a magnetic group M, the NHM defines a nonadiabatic Hamiltonian Hn representing atomic-like
electrons (Section 1.1) within this band [8]. An important feature of Hn is that it only commutes
with the symmetry operations of M, but does not commute with the remaining symmetry operations
of the paramagnetic group of the crystal. This follows from the fact that the optimally-localized
Wannier functions in a magnetic band may be chosen symmetry-adapted to M, but cannot be chosen
symmetry-adapted to the complete paramagnetic group (see the detailed discussion of this problem in
the introduction of Ref. [5]).

Hence, the electrons in such a narrow, roughly half-filled magnetic band or super band may
condense into an atomic-like state only if the electrons really move in a potential with the magnetic
group M. Thus, the electrons may gain the nonadiabatic condensation energy ∆E (Section 1.1) only if a
magnetic structure with the magnetic group M really exists. As a consequence, the electrons activate in the
nonadiabatic system a spin dependent exchange mechanism producing a magnetic structure with the
magnetic group M [15,16].

In the case of BaMn2As2, the group I42m (121) is the space group of the antiferromagnetic
structure in undistorted BaMn2As2. However, within this group, there does not exist a magnetic band
(see Section 2.1). Indeed, a magnetic band, even a magnetic super band, exists in the space group
P421c (114) of distorted BaMn2As2 (see Section 2.2).

Hence, in BaMn2As2, the electron system cannot condense into the atomic-like state by the
production of the magnetic structure alone but must additionally produce a spatial distortion of the
crystal realizing—together with the magnetic structure—the magnetic group M114 (4). By “realize,”
we mean that this distortion

(i) no longer possesses the space group I42m;
(ii) but is invariant under the space group P421c and, additionally,
(iii) is invariant under the anti-unitary operation {KI| 12

1
2

1
2} defining the magnetic group M114 (4).

This is achieved by the displacements of the Mn atoms depicted in Figure 1b. These displacements
of the Mn atoms in opposite direction to each other form the only distortion realizing the magnetic
group M114 (4). Displacements in the same direction, for instance, neither are invariant under the
space group I42m nor under P421c. Each displacement of the As atoms is either invariant under the
full space group I42m or it is not invariant under both I42m and P421c; and no displacement of the Ba
atoms is possible in the space group P421c.

Consequently, the magnetically ordered ground state of BaMn2As2 is accompanied by the
displacements of the Mn atoms depicted in Figure 1b. With our group-theoretical methods, however,
we cannot determine the size of these displacements. Likely, they have the same order of magnitude as
the displacements of the Fe and O atoms in LaOFeAs as established by the excellent neutron diffraction
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experiments of Clarina de la Cruz et al. [17]. Evidently, these displacements in LaOFeAs exist because
the magnetic group of the undistorted crystal does not possess suitable co-representations [6].

3.2. The Semiconducting Ground State of BaMn2As2

The magnetic super band defines not only Wannier functions situated at all the atoms of BaMn2As2,
but it also comprises all the Bloch states at the Fermi level (see Figure 4). Thus, if the magnetic super band
is exactly half filled, the nonadiabatic Hamiltonian Hn produces very specific atomic-like electrons:
at any atom of BaMn2As2, there exists a localized Wannier state occupied by exactly one electron,
and, besides these atomic-like electrons, there do not exist band-like electrons that would be able to
transport electrical current. Thus, Hn possesses a semiconducting ground state since the atomic-like
state is separated from any band-like state by the nonadiabatic condensation energy ∆E mentioned in
Section 1.1. The experimental observation of an insulating ground state in BaMn2As2 suggests that,
indeed, the magnetic super band is exactly half-filled.

3.3. Different Magnetic Structures in BaMn2As2 and BaFe2As2

While both compounds BaMn2As2 and BaFe2As2 exhibit an antiferromagnetic ordering below
the respective Néel temperature, the space groups of the magnetic structures are quite different:
in BaMn2As2, the space group of the magnetic structure is the tetragonal group P421c (114) with
magnetic moments oriented along the tetragonal c-axis, and, in BaFe2As2, it is the orthorhombic group
Cmca with magnetic moments orientated perpendicular to the c-axis (see Figure 1 of [1] and Figure 3
of [2], respectively).

This surprising experimental observation can be understood comparing the band structures of
both compounds as given in Figure 2 and Figure 2 of Ref. [6]. The band structure of BaFe2As2 is very
similar to the band structure of BaMn2As2. The essential difference is the position of the Fermi level,
as mainly caused by the one additional electron in BaFe2As2: we may approximate the band structure
of BaFe2As2 by the band structure of BaMn2As2 by shifting the Fermi level upwards by about 0.3 eV,
as it is indicated in Figure 2.

A magnetic (super) band may be physically active only if the band is nearly half-filled. The band
width of the (red) magnetic super band in Figure 4 may be approximated by 2σ, where

σ =

√
1
N ∑

k
(Ek − EF)2 ≈ 0.5eV (7)

denotes the standard deviation of the N = 6× 10 energy values Ek in the six points of symmetry of
the magnetic super band.

Thus, the Fermi level is shifted in BaFe2As2 nearly to the top of the magnetic super band. Hence,
in BaFe2As2, this band is far from being half-filled and determines neither the magnetic structure
nor produces an isolating ground state in BaFe2As2. Instead, the magnetic structure in BaFe2As2 is
determined by the nearly half-filled magnetic band presented in Figure 3 of Ref. [6], which is related to
the space group Cmca of the magnetic structure experimentally found in BaFe2As2 [2].

3.4. Discussion

As stated in Section 1.1, the NHM starts from the symmetry of the best localized nonadiabatic
Wannier functions representing the magnetic super band, and considers in this way the true atomic-like
motion in the nonadiabatic electron system. By “true,” we mean that no simplifying assumptions
in respect of the electronic motion were made. On this basis, the NHM gives clear group-theoretical
statements on which magnetic structure may be realized and which structural distortions are required
to stabilize this structure. In addition, it may predict a small band gap semiconducting ground state.
This can be compared with the selection rules in atomic physics. Here, group theory does not make
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statements on the physical nature of the atomic transitions, but only states which transitions are
allowed and which are not.

Likewise, the group-theoretical NHM has clear limits: it does not provide any method to calculate
the exchange couplings responsible for the magnetic structure, the value of the magnetic moments,
the size of the displacements of the Mn atoms, or the value of the band gap. These limitations are due
to the fact that the highly complex nonadiabatic Wannier functions are, apart from their symmetry,
unknown. A basis for an understanding of the nature of the exchange mechanism still are (hybrid)
atomic functions. I believe that the selection of the optimal atomic basis in the Heisenberg model will be
affected by the NHM. Nevertheless, the exchange mechanism activated within the NHM in BaMn2As2

and BaFe2As2 should largely coincide with the mechanism described by Singh et al. [1], according
to which the magnetic structure in BaMn2As2 is produced by exchange interaction among nearest
neighbors, while, in BaFe2As2, it is also produced by a strong coupling among next-nearest neighbors.

The electrons in the magnetic super band may lower their total Coulomb energy by condensing
into the strongly correlated atomic-like state, which is represented by the nonadiabatic Wannier functions.
In this way, the electron system gains the nonadiabatic condensation energy ∆E. Thus, the phenomena
discussed in this section are caused by strongly correlated electrons and cannot be directly observed in
the band structure. The band structure only provides the symmetry of the Bloch functions that defines
the symmetry of the nonadiabatic Wannier functions.

4. Conclusions

This paper emphasizes the importance of the nonadiabatic condensation energy ∆E defined in
Equation (2.20) of Ref. [8] (and already mentioned in Section 1.1), which is evidently responsible for the
striking electronic features of BaMn2As2. ∆E is released at the transition from an adiabatic band-like
motion of the electrons to the nonadiabatic strongly-correlated atomic-like motion.

This finding is in accordance with former observations on a great number of superconducting and
magnetic materials (see Section 1 of [5]), suggesting that superconductivity and magnetism are always
connected with superconducting (Definition 22 of Ref. [5]) and magnetic bands, respectively. Thus,
in superconducting and magnetic bands, the nonadiabatic condensation energy ∆E may evidently
produce superconductivity and magnetism, respectively, and, in some cases, even a small band
gap semiconductor.

Acknowledgments: I am very indebted to Guido Schmitz for his support of my work.
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Appendix A. Group-Theoretical Tables

This appendix provides Tables A1–A7 along with notes to the tables.

Table A1. Character tables of the irreducible representations of the tetragonal space group
I42m = Γv

q D11
2d (121) of the experimentally observed [1] antiferromagnetic structure in BaMn2As2.

Γ(000), Z( 1
2

1
2

1
2 )

S−4z C2y σda

K KI E C2z S+
4z C2x σdb

Γ1, Z1 (a) (a) 1 1 1 1 1
Γ2, Z2 (a) (a) 1 1 1 −1 −1
Γ3, Z3 (a) (a) 1 1 −1 1 −1
Γ4, Z4 (a) (a) 1 1 −1 −1 1
Γ5, Z5 (a) (a) 2 −2 0 0 0

P( 1
4

1
4

1
4 )

S−4z C2y σda

K KI E C2z S+
4z C2x σdb

P1 (x) (a) 1 1 1 1 1
P2 (x) (a) 1 1 1 −1 −1
P3 (x) (a) 1 1 −1 1 −1
P4 (x) (a) 1 1 −1 −1 1
P5 (x) (a) 2 −2 0 0 0
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Table A1. Cont.

X(00 1
2 )

E C2z σdb σda

X1 1 1 1 1
X3 1 1 −1 −1
X2 1 −1 1 −1
X4 1 −1 −1 1

N(0 1
2 0)

E C2y

N1 1 1
N2 1 −1

Notes to Table A1

(i) The notations of the points of symmetry follow Figure 3.10b of Ref. [11].
(ii) The character tables are determined from Table 5.7 of Ref. [11].
(iii) K denotes the operator of time inversion. The entry (a) indicates that the related

co-representations of the magnetic groups I42m + {K|000}I42m and I42m + {KI|000}I42m
follow case (a) as defined in Equation (7.3.45) of Ref. [11] (and determined by Equation (7.3.51) of
Ref. [11]). This information is interesting only in symmetry points invariant under the complete
space group. (x) indicates that K does not leave invariant the point P.

(iv) The one-dimensional representations at point P would be possible representations of a stable
antiferromagnetic state because they comply with the demands in Section III C of Ref. [15].

Table A2. Compatibility relations between the Brillouin zone for the space group I4/mmm (139) of
paramagnetic BaMn2As2 and the Brillouin zone for the space group I42m (121) of the antiferromagnetic
structure in undistorted BaMn2As2.

Γ(000)

Γ+
1 Γ+

2 Γ+
3 Γ+

4 Γ+
5 Γ−1 Γ−2 Γ−3 Γ−4 Γ−5

Γ1 Γ2 Γ3 Γ4 Γ5 Γ3 Γ4 Γ1 Γ2 Γ5

N(0 1
2 0)

N+
1 N−1 N+

2 N−2
N1 N1 N2 N2

X(00 1
2 )

X+
1 X+

2 X+
3 X+

4 X−1 X−2 X−3 X−4
X1 X4 X3 X2 X3 X2 X1 X4

Z( 1
2

1
2

1
2 )

Z+
1 Z+

2 Z+
3 Z+

4 Z+
5 Z−1 Z−2 Z−3 Z−4 Z−5

Z1 Z2 Z3 Z4 Z5 Z3 Z4 Z1 Z2 Z5

P( 1
4

1
4

1
4 )

P1 P2 P3 P4 P5
P1 P2 P3 P4 P5

Notes to Table A2

(i) The Brillouin zone for I42m is identical to the Brillouin zone for I4/mmm.
(ii) The upper rows list the representations of the little groups of the points of symmetry in the

Brillouin zone for I4/mmm. The lower rows list representations of these groups in I42m.

The representations in the same column are compatible in the following sense: Bloch functions
that are basis functions of a representation Di in the upper row can be unitarily transformed into
the basis functions of the representation given below Di.

(iii) The notations of the representations are defined in Table 2 of Ref. [6] and Table A1, respectively.
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Table A3. Representations of the Bloch functions at the points of symmetry in the space group
I42m = Γv

q D11
2d (121) of all the energy bands of antiferromagnetic BaMn2As2 with symmetry-adapted

and optimally localized Wannier functions centered at the Mn, As, and Ba atoms, respectively.

Mn Mn( 1
4

3
4

1
2 ) Mn( 3

4
1
4

1
2 ) KI Γ P Z X N

Band 1 d1 d1 OK Γ1 + Γ2 P5 Z3 + Z4 X2 + X4 N1 + N2
Band 2 d2 d4 OK Γ5 P3 + P4 Z5 X1 + X3 N1 + N2
Band 3 d3 d3 OK Γ3 + Γ4 P5 Z1 + Z2 X2 + X4 N1 + N2
Band 4 d4 d2 OK Γ5 P1 + P2 Z5 X1 + X3 N1 + N2

As As(zz0) As(zz0) KI Γ P Z X N

Band 1 d1 d1 OK Γ1 + Γ4 P1 + P4 Z1 + Z4 2X1 N1 + N2
Band 2 d2 d2 OK Γ2 + Γ3 P2 + P3 Z2 + Z3 2X3 N1 + N2
Band 3 d3 d4 − Γ5 P5 Z5 X2 + X4 N1 + N2

Ba Ba(000) KI Γ P Z X N

Band 1 d1 OK Γ1 P1 Z1 X1 N1
Band 2 d2 OK Γ2 P2 Z2 X3 N2
Band 3 d3 OK Γ3 P3 Z3 X3 N1
Band 4 d4 OK Γ4 P4 Z4 X1 N2

Notes to Table A3

(i) z = 0.36 . . . [1]; the exact value of z is meaningless in this table.
(ii) The antiferromagnetic structure of undistorted BaMn2As2 has the space group I42m and the

magnetic group M = I42m + {KI|000}I42m with K denoting the operator of time-inversion.
(iii) Each row defines a band with Bloch functions that can be unitarily transformed into Wannier

functions being

• as well localized as possible;
• centered at the stated atoms;
• and symmetry-adapted to the space group I42m of the antiferromagnetic structure in

undistorted BaMn2As2.
(iv) The notations of the representations are defined in Table A1.
(v) The bands are determined following Theorem 5 of Ref. [5].
(vi) The Wannier functions at the Mn, As or Ba atom listed in the upper row belong to the

representation di included below the atom.
(vii) The di denote the one-dimensional representations of the “point groups of the positions” of the

Mn, As and Ba atom (Definition 12 of Ref. [5]), S4, C2v, and D2d, respectively, defined by

Mn atoms

E S+
4z C2z S−4z

d1 1 1 1 1
d2 1 i −1 −i
d3 1 −1 1 −1
d4 1 −i −1 i

As atoms

E C2z σda σdb

d1 1 1 1 1
d2 1 1 −1 −1
d3 1 −1 1 −1
d4 1 −1 −1 1

Ba atom

S−4z C2y σda

E C2z S+
4z C2x σdb

d1 1 1 1 1 1
d2 1 1 1 −1 −1
d3 1 1 −1 1 −1
d4 1 1 −1 −1 1 .
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Notes to Table A3 (continued)

(viii) The entry “OK” indicates whether the Wannier functions may even be chosen symmetry-adapted
to the magnetic group M = I42m + {KI|000}I42m of undistorted BaMn2As2 (see Theorem 7 of
Ref. [5]).

(ix) Hence, all the listed bands except for band 3 of As form magnetic bands as defined by
Definition 16 of Ref. [5].

(x) Each band consists of one or two branches (Definition 2 of Ref. [5]) depending on the number of
the related atoms in the unit cell.

Table A4. Character tables of the irreducible representations of the tetragonal space
group P421c = ΓqD4

2d (114) of the experimentally observed [1] antiferromagnetic structure in
distorted BaMn2As2.

Γ(000)

{S−4z|000} {C2y| 12
1
2

1
2} {σda| 12

1
2

1
2}

K {KI| 12
1
2

1
2} {E|000} {C2z|000} {S+

4z|000} {C2x| 12
1
2

1
2} {σdb| 12

1
2

1
2}

Γ1 (a) (a) 1 1 1 1 1
Γ2 (a) (a) 1 1 1 −1 −1
Γ3 (a) (a) 1 1 −1 1 −1
Γ4 (a) (a) 1 1 −1 −1 1
Γ5 (a) (a) 2 −2 0 0 0

M( 1
2

1
2 0)

K {KI| 12
1
2

1
2} {E|000} {C2z|010} {C2z|000} {E|010}

M1 (c) (a) 1 1 −1 −1
M2 (c) (a) 1 1 −1 −1
M3 (c) (a) 1 1 −1 −1
M4 (c) (a) 1 1 −1 −1
M5 (a) (a) 2 −2 2 −2

M( 1
2

1
2 0) (continued)

{σda| 12
3
2

1
2} {σdb| 12

3
2

1
2} {S−4z|010} {S+

4z|010} {C2x| 12
1
2

1
2} {C2y| 12

1
2

1
2}

{σdb| 12
1
2

1
2} {σda| 12

1
2

1
2} {S+

4z|000} {S−4z|000} {C2y| 12
3
2

1
2} {C2x| 12

3
2

1
2}

M1 1 −1 i −i i −i
M2 1 −1 −i i −i i
M3 −1 1 −i i i −i
M4 −1 1 i −i −i i
M5 0 0 0 0 0 0

Z(00 1
2 )

K {KI| 12
1
2

1
2} {E|000} {C2z|001} {C2z|000} {E|001}

Z1 (c) (a) 1 1 −1 −1
Z2 (c) (a) 1 1 −1 −1
Z3 (c) (a) 1 1 −1 −1
Z4 (c) (a) 1 1 −1 −1
Z5 (a) (a) 2 −2 2 −2
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Table A4. Cont.

Z(00 1
2 ) (continued)

{C2y| 12
1
2

3
2} {C2x| 12

1
2

3
2} {S−4z|001} {S+

4z|001} {σda| 12
1
2

1
2} {σdb| 12

1
2

1
2}

{C2x| 12
1
2

1
2} {C2y| 12

1
2

1
2} {S+

4z|000} {S−4z|000} {σdb| 12
1
2

3
2} {σda| 12

1
2

3
2}

Z1 1 −1 i −i i −i
Z2 1 −1 −i i −i i
Z3 −1 1 −i i i −i
Z4 −1 1 i −i −i i
Z5 0 0 0 0 0 0

A( 1
2

1
2

1
2 )

K {KI| 12
1
2

1
2} {E|000} {C2z|000} {E|001} {C2z|001}

A1 (c) (a) 1 1 −1 −1
A2 (c) (a) 1 1 −1 −1
A3 (c) (a) 1 1 −1 −1
A4 (c) (a) 1 1 −1 −1
A5 (b) (a) 2 −2 −2 2

A( 1
2

1
2

1
2 ) (continued)

{S−4z|000} {S−4z|001} {σda| 12
1
2

1
2} {C2x| 12

1
2

1
2} {σda| 12

1
2

3
2} {C2x| 12

1
2

3
2}

{S+
4z|000} {S+

4z|001} {σdb| 12
1
2

1
2} {C2y| 12

1
2

1
2} {σdb| 12

1
2

3
2} {C2y| 12

1
2

3
2}

A1 −1 1 i −i −i i
A2 −1 1 −i i i −i
A3 1 −1 −i −i i i
A4 1 −1 i i −i −i
A5 0 0 0 0 0 0

R(0 1
2

1
2 )

{C2y| 12
1
2

3
2} {C2z|001} {C2x| 12

1
2

3
2}

{E|000} {E|001} {C2y| 12
1
2

1
2} {C2z|000} {C2x| 12

1
2

1
2}

R1 2 −2 0 0 0

X(0 1
2 0)

{C2y| 12
3
2

1
2} {C2z|010} {C2x| 12

3
2

1
2}

{E|000} {E|010} {C2y| 12
1
2

1
2} {C2z|000} {C2x| 12

1
2

1
2}

X1 2 −2 0 0 0

Notes to Table A4

(i) The notations of the points of symmetry follow Figure 3.9 of Ref. [11].
(ii) The character tables are determined from Table 5.7 of Ref. [11].
(iii) K denotes the operator of time inversion. The entries (a), (b) and (c) indicate whether the related

co-representations of the magnetic groups P421c + {K|000}P421c and P421c + {KI| 12
1
2

1
2}P421c

follow case (a), (b) or (c) as defined in Equations (7.3.45), (7.3.46) and (7.3.47), respectively,
of Ref. [11] (and determined by Equation (7.3.51) of Ref. [11]). This information is interesting
only in symmetry points invariant under the complete space group.

(iv) The entries (a) and (c) for K and {KI| 12
1
2

1
2} show that all the one-dimensional representations

at M, Z, or A are possible representations of a stable antiferromagnetic state (see Theorem 1 of
Ref. [6] or Section III C of Ref. [15]).
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Table A5. Compatibility relations between the Brillouin zone for the space group I4/mmm (139) of
tetragonal paramagnetic BaMn2As2 and the Brillouin zone for the space group P421c (114) of the
antiferromagnetic structure in distorted BaMn2As2.

Γ(000)

Γ+
1 Γ+

2 Γ+
3 Γ+

4 Γ+
5 Γ−1 Γ−2 Γ−3 Γ−4 Γ−5

Γ1 Γ2 Γ3 Γ4 Γ5 Γ3 Γ4 Γ1 Γ2 Γ5

X(00 1
2 )

X+
1 X+

2 X+
3 X+

4 X−1 X−2 X−3 X−4
M5 M1 + M2 M5 M3 + M4 M5 M3 + M4 M5 M1 + M2

Z( 1
2

1
2

1
2 )

Z+
1 Z+

2 Z+
3 Z+

4 Z+
5 Z−1 Z−2 Z−3 Z−4 Z−5

Γ2 Γ1 Γ4 Γ3 Γ5 Γ4 Γ3 Γ2 Γ1 Γ5

P( 1
4

1
4

1
4 )

P1 P2 P3 P4 P5
A3 + A4 A3 + A4 A1 + A2 A1 + A2 2A5

ΛM( 1
4

1
4

1
4 ) line Λ

Λ1 Λ2 Λ3 Λ4 Λ5
Z5 Z5 Z5 Z5 Z1 + Z2 + Z3 + Z4

Notes to Table A5

(i) The Brillouin zone for P421c lies within the Brillouin zone for I4/mmm.
(ii) The upper rows list the representations of the little groups of the points of symmetry in the

Brillouin zone for I4/mmm, and the lower rows list representations of the little groups of the
related points of symmetry in the Brillouin zone for P421c.

The representations in the same column are compatible in the following sense: Bloch functions
that are basis functions of a representation Di in the upper row can be unitarily transformed into
the basis functions of the representation given below Di.

(iii) The notations of the representations are defined in Table 2 of Ref. [6] and Table A4, respectively.
(iv) ΛM( 1

4
1
4

1
4 ) denotes the midpoint between Γ and Z in the Brillouin zone for I4/mmm.

(v) The representations on the line Λ in the Brillouin zone for I4/mmm are simple: the branch
connecting Γ5 and Z5 in Figure 2 is labeled by the two-dimensional representation Λ5, all the
other branches are labeled by one of the one-dimensional representations Λ1, Λ2, Λ3, or Λ4.

(vi) The compatibility relations are determined in the way described in great detail in Ref. [7].

Table A6. Representations of the Bloch functions at the points of symmetry in the space group
P421c (114) of all the energy bands of distorted antiferromagnetic BaMn2As2 with symmetry-adapted
and optimally localized Wannier functions centered at the Mn, As, or Ba atoms, respectively.

Mn Mn( 1
2 0 1

4 ) Mn(0 1
2

1
4 ) Mn(1 1

2
3
4 ) Mn( 1

2 1 3
4 ) {KI| 12

1
2

1
2} Γ

Band 1 d1 d1 d1 d1 OK Γ1 + Γ2 + Γ3 + Γ4
Band 2 d2 d2 d2 d2 ∗ 2Γ5

(continued)

Mn M Z A R X

Band 1 M1 + M2 + M3 + M4 2Z5 2A5 2R1 2X1
Band 2 2M5 Z1 + Z2 + Z3 + Z4 A1 + A2 + A3 + A4 2R1 2X1
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Table A6. Cont.

As As(00z) As(00z) As( 1
2

1
2 , 1

2 + z) As( 1
2

1
2 , 1

2 − z) {KI| 12
1
2

1
2} Γ

Band 1 d1 d1 d1 d1 OK Γ1 + Γ2 + Γ3 + Γ4
Band 2 d2 d2 d2 d2 ∗ 2Γ5

(continued)

As M Z A R X

Band 1 2M5 2Z5 A1 + A2 + A3 + A4 2R1 2X1
Band 2 M1 + M2 + M3 + M4 Z1 + Z2 + Z3 + Z4 2A5 2R1 2X1

Ba Ba(000) Ba( 1
2

1
2

1
2 ) {KI| 12

1
2

1
2} Γ M Z A R X

Band 1 d1 d1 OK Γ1 + Γ2 M5 Z5 A3 + A4 R1 X1
Band 2 d2 d4 OK Γ5 M1 + M4 Z1 + Z4 A5 R1 X1
Band 3 d3 d3 OK Γ3 + Γ4 M5 Z5 A1 + A2 R1 X1
Band 4 d4 d2 OK Γ5 M2 + M3 Z2 + Z3 A5 R1 X1

Notes to Table A6

(i) z = 0.36 . . . [1]; the exact value of z is meaningless in this table.
(ii) The space group P421c leaves invariant the experimentally observed [1] antiferromagnetic

structure and defines the distortion of BaMn2As2 that possesses the magnetic super band
consisting of band 1 of Mn, band 2 of As, and band 3 of Ba.

(iii) The appertaining magnetic group reads as M = P421c + {KI| 12
1
2

1
2}P421c, where K still denotes

the operator of time-inversion.
(iv) The notations of the representations are defined in Table A4.
(v) The bands are determined following Theorem 5 of Ref. [5].
(vi) Each row defines a band with Bloch functions that can be unitarily transformed into Wannier

functions being

• as well localized as possible;
• centered at the stated atoms; and
• symmetry-adapted to P421c.

(vii) The Wannier functions at the Mn, As or Ba atom listed in the upper row belong to the
representation di included below the atom.

(viii) The di denote the representations of the “point groups of the positions” of the Mn, As and Ba
atoms (Definition 12 of Ref. [5]), C2, C2, and S4, respectively, defined by

Mn Atoms

{E|000} {C2z|000}
d1 1 1
d2 1 −1

As Atoms

{E|000} {C2z|000}
d1 1 1
d2 1 −1

Ba Atoms

{E|000} {S+
4z|000} {C2z|000} {S−4z|000}

d1 1 1 1 1
d2 1 i −1 −i
d3 1 −1 1 −1
d4 1 −i −1 i .
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Notes to Table A6 (continued)

(ix) The entry “OK” indicates whether the Wannier functions may even be chosen symmetry-adapted
to the magnetic group M = P421c + {KI| 12

1
2

1
2}P421c (see Theorem 7 of Ref. [5]).

(x) The asterisk “∗” indicates that the Wannier functions may be chosen symmetry-adapted to
the magnetic group M, but they do not allow that the magnetic moments are situated at the
appertaining atoms. This complication (which has not yet been considered in Ref. [5]) may
(but does not necessarily) occur only if the representations of the space group at point Γ are
not one-dimensional, as it is the case in band 2 of both Mn and As, and in bands 2 and 4 of Ba.
Consider, for example, band 2 of Mn and the two Mn( 1

2 0 1
4 ) and Mn( 1

2 1 3
4 ) atoms. The magnetic

moments at the two positions A and B of these atoms are anti-parallel. Thus, the two Wannier
functions wA(~r) and wB(~r) at these positions are complex conjugate, wA(~r) = w∗B(~r), and,
hence, belong to co-representations dA and dB of the groups of these positions being also
complex conjugate,

dA = d∗B. (8)

The matrix N defined by Theorem 7 of Ref. [5] takes the form N =

(
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

)
in band 2 of

Mn, yielding the two co-representations dA and dB,

E C2z Kσx Kσy

dA 1 −1 1 −1
dB 1 −1 −1 1 .

Because dA and dB do not comply with Equation (8), the Wannier functions defined by band 2
of Mn do not form a magnetic band in antiferromagnetic BaMn2As2 since it is experimentally
proven that the ordered magnetic moments lie at the Mn atoms. The Wannier functions defined
by band 2 of As, on the other hand, form a magnetic band in BaMn2As2 because the As atoms
do not bear ordered magnetic moments.

(xi) Each band consists of two or four branches (Definition 2 of Ref. [5]) depending on the number
of the related atoms in the unit cell.

Table A7. Character tables of the single-valued irreducible representations of the tetragonal space
group P4 = ΓqS1

4 (81).

Γ(000), M( 1
2

1
2 0), Z(00 1

2 ), A( 1
2

1
2

1
2 )

K KC2a E S+
4z C2z S−4z

R1 (a) (a) 1 1 1 1
R2 (c) (a) 1 i −1 −i
R3 (a) (a) 1 −1 1 −1
R4 (c) (a) 1 −i −1 i

Notes to Table A7

(i) The notations of the points of symmetry follow Figure 3.9 of Ref. [11].
(ii) Only the points of symmetry invariant under the complete space group are listed.
(iii) The character tables are determined from Table 5.7 in Ref. [11].
(iv) K still denotes the operator of time inversion. The entries (a) and (c) indicate whether the

related co-representations of the magnetic groups P4 + {K|000}P4 and P4 + {KC2a|000}P4
follow case (a) or case (c) as defined in Equations (7.3.45) and (7.3.47), respectively, of Ref. [11]
(and determined by Equation (7.3.51) of Ref. [11]).

(v) The entries (a) and (c) for K and KC2a show that the representations R2 and R4 at any of the points
Γ, M, Z, or A are possible representations of a stable antiferromagnetic state (see Theorem 1
of Ref. [6] or Section III C of Ref. [15]). This is important since M81 (6) is the exact group of the
magnetic structure in BaMn2As2.
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