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Abstract—Software repositories contain valuable information
about the history of software changes. Using data mining,
researchers have identified file changes that happened together
frequently to present hints for necessary changes to developers.
However, not all file change sets are related. This can affect
the recommendations about coupled file changes negatively by
delivering irrelevant couplings to the developers. The commit
time and branching characteristics of Git have not been in-
vestigated together in previous heuristics for grouping related
change sets. We exploit the mappings between commit messages
and issue ids for judging the relatedness of change sets. We
propose a heuristic for Git and investigate the influence of
two factors, the time between the commits and their branching
on the relatedness of change sets using the repositories of five
open-source systems using logistic regression. According to our
findings, the combination of these two factors influences the
relatedness of change sets. Individually measured, only the time
significantly influences the relatedness, the branching itself does
not. Our results support previous heuristic that also in Git
repositories the commit time is important for grouping related
change sets.

I. INTRODUCTION

Version control systems store information concerning which
files were changed, when they were changed, who made the
change and what the files contained before the change [18].
Two main types of version control systems are used today:
centralized version control systems (CVCS) like CVS or
Subversion and distributed version control systems (DVCS)
like Git or Mercurial. In CVCS we have a central server
holding the version database where the developers check out
their projects on their local computers. In DVCS each team
member has the complete repository on local machine called
local repository. It contains the entire project and its history.
The developers can clone the remote repository into their local
repositories and commit in the local repository.

In many version control systems, especially in DVCS, file
changes are organized in commits or change sets. In the
commits, the information about the commit time and the
branching is preserved. Branching is used to separate commit
changes from each other.

Software change issues like features or bugs can be tracked
using issue tracking systems [8]. Every issue contains specific
information about the problems we need to solve like id,
description, type, status and other attributes.

Over time, the amount of data in the repositories becomes
very large. To learn from it, we need a technique to extract
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useful information stored in it. Frequently, data mining is used
to analyze software repositories. Mining software repositories
(MSR) is a term that has been coined to describe the investi-
gation of software repositories using data mining [19], [28].

Coupled changes describe a situation where the developer
changes a file and also changes another file shortly afterwards.
Using MSR we can find the files in the repositories that
changed frequently together in the past and propose change
couplings to the developers for bug fixing or maintenance
tasks.

A. Problem Statement

Coupled file changes can be found in different change sets.
However, not all file change sets are related. Files can be
changed on several occasions dealing with different issues. We
identify the relatedness of file change sets, meaning that we
report only those including changes having the same change
context.

Several heuristics for grouping file changes have been de-
fined in the literature [16], [20]. They are used to group related
change sets in repositories which support atomic change sets.
They use factors like the developer who committed the file
changes and the time of commit. However, there is no heuristic
to examine repositories in DVCS like Git which is a very
popular versioning system. The committing and the branching
as an important DVCS feature, have not been previously
investigated together to find related file change sets.

Although there are also CVCS that support committing
and branching, the fact the developers in Git work locally
and commit their changes on the remote server, motivates us
to investigate how these factors influence the relatedness of
change sets.

Not examining these DVCS characteristics can lead to
the grouping of unrelated change sets suggesting irrelevant
coupled file changes to the developers.

B. Research Objective

The overall goal is to improve the coupled change sugges-
tions generated from DVCS data. The aim of this research is
to examine a heuristic for Git to group related file change sets
in a repository for extracting coupled file changes. We include
important DVCS characteristics like the dealing with the time
of commit and the commit location in the branches.
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C. Contribution

We present a quasi-experiment where we extract related
change sets from Git repositories. The basic idea is that change
sets are related if they are associated with the same issue.
We use a mapping of commit messages with the issue ids to
identify related change sets. We measure the time between
the commits and their branching status to define a heuristic to
find related change sets. We investigate the influence of these
two factors on their relatedness using logistic regression and
can show that their combination has a significant influence on
the relatedness of change sets, whereby individually measured,
only the commit time has an significant influence on the
relatedness.

D. Context

We use Git repositories from five different open source
software project repositories. Two of the projects are open-
source projects from the University of Stuttgart. The rest of
the projects are open source projects on GitHub'.

II. BACKGROUND
A. Git Version Control

Git? is one of the most used DVCS today. A Git repository
provides a copy of all files in the repository and a copy of the
repository we work with [21]. It organizes the changed files
in commits which represent atomic change sets.

The commits are identified by commit id hashes, the at-
tributes describing the committer, commit date and commit
message. Git does not store a snapshot of all files. If one file
changes, the complete repository changes [23]. Developers can
fetch changes from the remote repository, pull to merge the
changes in the current repository branch and push changes to
the remote repository [23].

An important attribute of Git is the way it handles with
the time of changes in the source code. Since Git does not
track the timestamps when the files were originally modified,
it does not have an central time concept, it tracks only the time
of commit. Branches exist also in other versioning systems
and are very often used in Git. This allows the developers to
create many lines of development. To be able to leverage the
branches, we investigate the Git graph, a visual presentation
of branches in the repository.

B. Coupled Changes

One of the most popular data mining techniques is the
discovery of frequent item sets. Identifying item sets per-
formed together frequently is one of the most basic tasks
in data mining [15]. Developers change various source files
with different frequency during software development. As
transactions, we define the commits consisting of different
files. Let us have the following three transactions: 7T; =

{f1, f2, f3, fr}, To = {f1, f3, f5, fe}» T3 = {f1, fa, f3, fs}-

From these three transactions, we identify the rule that files
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f1 and fs are frequently changed together: f; and f3 are
coupled. This means that when the developers changed file
f1, they also changed file fs. If these files are changed
together frequently, it can help other persons by giving them
a recommendation that if they change fi, they should also
change f3. Let F' = {f1, fa,..., fa} be the set of all items
(files) f in a transaction and T = {#1,t2,...,t,} be the set
of all transactions ¢. Each transaction contains a subset of
chosen items from F' called item set. The support count ¢ is
an important property of an item set, reporting the number of
transactions containing an item. If the item-sets have a support
threshold greater than a minimum specified by the user, we
say they are frequent.

C. File Change Sets

Older versioning systems like CVS, do not maintain change
sets. The information which software artifacts were checked in
together is lost. Therefore, researchers investigate the change
history using the technique of fixed or sliding time win-
dows [10], [12], [29]. In a versioning system that provides
atomic change sets, such as Subversion or Git, commits
represent the atomic change sets. They include the basic set
of files used to extract coupled file changes.

The number of commits containing particular coupled file
changes identifies how frequent these changes are. The fact
that these couplings are spread through the repository and
committed by different authors in different time periods in-
troduces the need for grouping these change sets to find the
related ones. For this purpose, we need a proper heuristic.

III. RELATED WORK

There is a lot of scientific work dedicated to investigat-
ing software repositories to find logically coupled changes,
e.g. [3], [9], [11]. If we analyze the used methodology, most
of the studies investigating coupled changes use some kind of
data mining for this purpose [12], [17], [20], [25], [26], [28],
[29]. Here, the frequent item-sets technique is used to identify
frequent changes in the source code [20], [28], [29]. This data
mining technique uses various algorithms to determine the
frequency of these changes. Sometimes the Apriori algorithm
is used [20], [29], however other algorithms like the FP-Tree
algorithm are also in use [28].

If we consider the type of version control systems investi-
gated, the majority of the studies use CVCS typically CVS
or Subversion as a data source for their analysis. DVCS,
especially Git, are very popular in practice and have specific
characteristics how the data is tracked, related to the grouping
of changed files and tracking the time of change. To our knowl-
edge, there are few studies investigating Git repositories [4],
(6], [13].

Different heuristics have been proposed in the literature
for related change sets. Heuristics based on the data source
and pruning technique are introduced in [16] where several
techniques are introduced to group and reduce the change sets.
Entity data, developer data, name similarity data are consid-
ered and pruned by their frequency, recency or randomization.



Kagdi et al. in [20] suggest time interval, committer and
+time interval+committer heuristics. The time interval heuris-
tic includes file changes committed by different committers in
a predefined period of time. The total number of time periods
identifies the number of change sets groups.

Both studies propose heuristics and then evaluate them
classically using precision and recall measures.

For our analysis, we use the committer heuristic to generate
the starting set of coupled file changes. We add afterwards two
more factors: the time between the commits and the branching
location. For our new heuristic we consider the developer, the
time of commit and the branching of the commits. We identify
this heuristic as committer+time+branch.

Very few studies deal with investigating characteristics of
commit messages. They concentrate on creating vocabulary
terms [1] and the words that appear in the messages [7].

The studies we presented in this section miss a complete
solution for reporting coupled changes considering Git char-
acteristics. Unlike other studies we do not simply propose a
heuristic, we investigate the influence on the relatedness using
the following two factors: time between the commits and the
branching. We examine their influence on the grouping of
related change sets.

IV. RELATED CHANGE SETS

A heuristic is necessary to identify groups of related change
sets from which we can extract coupled file changes. The same
file changes can be found in different commits performed
on different occasions by various developers. In a set of
coupled file changes, although we deal with the same files,
the commit messages can describe different changes which are
not necessarily related (Table I). Here the commit messages
describe totally different issues. This means that also unrelated
changes happen to be grouped together as coupled file change
suggestions.

TABLE 1
UNRELATED CHANGE SETS MESSAGES

Commit 1 Commit 2
synchronizing layouts done added highlighter to the con-
refs #827 nection anchors refs #347

TABLE II

RELATED CHANGE SETS MESSAGES

Commit 1 Commit 2
began to adapt controller struc-  Adapt controller structure refs
ture refs #503 #503

added icons to export wizard
refs #868

added new icons and new png
filter to export wizard refs #868

To avoid this, we need to identify the related change sets
out of which we can extract the coupled file changes.

Previous studies test the relatedness of file changes by
checking whether they are part of the solution for some task.
The performance is usually based on the calculated precision
and recall [16], [20].

So what makes change sets related? The developers want
relevant suggestions. We assume this is the case if all of
the file changes deal with a single task. The change set can
have various granularities and composition across different
tasks [20]. One task can be solved in several steps in more than
one commit. In case a task cannot be solved in a short time,
the work on it can be interrupted and continued at another
time. Here, a single issue id can be found in several commits.
The first example in Table II shows that the task is addressed
in two steps, the developer started dealing with the controller
structure in one occasion and finished the changes later in
another one.

The same change can be committed many times in different
occasions. The second example in Table II, the change set
commented as “added icons to export wizard” and the change
set commented as “added new icons and new png filter to
export wizard” represent the same file changes repeatedly in
different commits. We assume that the change sets are related
if they are addressing the same issue either solving the issue
in many steps or repeating the change in several occasions.

The comments stored as commit messages in Git contain
some description about the changed files committed in the ver-
sion system and describe the change purpose [22]. However,
the commit messages do not always deliver understandable
textual content. The analysis of these messages even with
the help of natural language processing is not always useful.
The use of merge points to map the commit messages and
the issues from the issue tracking system is a useful practice
today. Here, the commit messages contain the issue ids which
identify a particular task, a feature or a bug. We use these
merge points to compare the issue ids in the commit messages
and investigate the relatedness of change sets.

There are three cases of mapping commits and issues: one
commit mapped to one issue, where the commit and issue are
not used in further mappings, one commit mapped to several
issues, a quite rare case where one change can lead to another
change in a similar issue and many commits mapped to one
issue which represents the most considered mapping.

V. EXPERIMENTAL DESIGN

In this section we define the research questions, hypotheses
and metrics used in our analysis.

We select our metrics using the GQM approach [2] and
its MEDEA extension [5]. Our goal is to define a heuristic
for related change sets in Git. Our objective is to determine
the relation of the commit time and branching towards the
relatedness of change sets. The purpose is to measure the
relatedness for different time commit and branching values.
Our viewpoint is as software developers and the targeted
environment is open source systems.

A. Research Questions

We investigate the influence of the time between the com-
mits and branching location of commits on the relatedness of
change sets. For that purpose we define the following research
questions:



RQ1: Is there an influence of the time between the commits
and the existence of branching on the relatedness of file
change sets? This question is relevant to investigate since Git
maintains the time of commit of file changes and supports local
and remote branching in the development. This is our main
research question. We investigate the combination of these two
factors on the relatedness of change sets which leads us to the
formulation of the heuristic we proposed.

Considering the fact that we have two factors which can
influence the relatedness, we define two additional research
questions questions:

RQ2: Is there an influence of the time between the commits
on the relatedness of file change sets? Here we refer to
the first individual factor, the commit time. We investigate
different time periods between the commits to find out if this
influences their relatedness.

RQ3: Is there an influence of the existence on branching
on the relatedness of file change sets? We concentrate on
the second factor, the branching location. We investigate how
the commit location in the same or different branches takes
effect on their relatedness.

Additionally we are interested to see if there is a difference
in the influence of these two factors across the projects we
investigate.

RQ4: Is there any difference in the relatedness of the time
between the commits and the branching on the relatedness
of change sets across projects. We investigate the spread out
of the relatedness for every repository individually to explore
how it varies across the projects.

B. Hypotheses

We formulate the following hypotheses to answer the re-
search questions in our study.

For RQ1 we define the following hypotheses:
Hg 1: There is no influence of the time between the commits
and branching on the relatedness of file change sets.
H A 1: There is an influence of the time between the commits
and branching on the relatedness of file change sets.

To answer RQ2 we formulate these hypotheses:
Hy 2: There is no influence of the time between the commits
on the relatedness of file change sets.
H 2: There is an influence of the time between the commits
on the relatedness of file change sets.

For RQ3 we derive the hypotheses as follows:
Hy 3: There is no influence of the branching on the relatedness
of file changes-sets
H 3: There is an influence of the branching on the related-
ness of file change sets.

C. Experimental Variables

1) Independent Variables: In this experiment, we define
two independent variables: time between commits and branch-
ing. The first independent variable, represents a continuous
numerical variable, measuring the time between a pair of
commits. We use calendar days as measure for this variable.
The second independent variable is a dichotomous variable

having two categorical states representing the branching status:
are the commits in the same branch or not.

2) Dependent Variables: We have one dependent variable
called relatedness of file changes. This variable is also dichoto-
mous and has two categorical values: related and not related.

D. Experiment Design

The specific type of the variables directly influences the type
of our experiment design. We use an experiment to investigate
the effects of two independent variables (continuous and cate-
gorical) on a single dependent categorical variable. When the
independent variables are either continuous and/or categorical,
we have a regression layout [24]. If the dependent variable is
categorical we use logistic regression [14].

This is an extended situation as we have multiple indepen-
dent variables measured along with a single dependent variable
so we use multiple logistic regression.

E. Objects

The prerequisite to include the repositories for analysis is
that most of their commits must contain references to the
issue ids. We use Git repositories of five different open-
source software projects. The first project, ASTPA3, is an
Eclipse RCP application. The second, RIOT* is a Java web
services and Android project. Project number three is Metrics>,
a JavaScript library for visualizing time-series data. The fourth
project is Akka®, a toolkit for message-driven applications
on the JVM. Project number five is an Add-on builder for
Firefox’. The first two projects were found in the local GitLab
on the University of Stuttgart. The other projects are popular
projects hosted on GitHub.

F. Experiment Instruments

We collect the log data from Git repositories using a self-
developed program written in Java. We use it to automatically
extract the commits, their attributes, like commit messages
and commit times, as well as the committed file. This data
is stored in a relational database. We use the SPMF® data
mining framework to generate the coupled file changes. We
have adjusted the framework to work with databases instead
of text files. The data analysis is performed using the statistical
software SPSS’.

G. Data Collection Procedure

First of all we extract the logs from the repository. We gather
the commits, the files changed and the attributes for all the
developers who committed the file changes and store them in
the database.

We prepare the log data for data mining whereby we exclude
the empty commits, the commits containing single entries and

3http://sourceforge.net/projects/astpa/
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the commits which do not contain references to the issue
ids in the commit messages. We do not consider the data
from those developers who did less than 50 commits. This
filtering is performed to set a rule for the minimum frequency
of coupled file changes. In this case, we set the minimum
frequency to be 5. We set a minimum support level of 10%
meaning that we do not consider the file changes found in less
than 5 commits. This way we have a user-set degree of the
frequency of coupled changes.

For every developer we choose single random set of coupled
file changes. We join the appropriate set of attributes to the
coupled file changes. Using our scripts for automated Git
log extraction, we enlist the information about the committer,
commit time, commit message and files changed. We take the
chosen coupled file change and pair all the commits where this
change was detected. The pairs are generated by combining
all the change sets for a specific coupled change. We start with
the latest commits and continue with previous commits. For
example, if a set of files changed together was found in the
commits with ids of 6¢08c5a, e7c56dd, cfc90b3 and 9d29bd5,
we will examine the relatedness of all the combined pairs of
commits.

H. Analysis Procedure

1) Commit Time Analysis: Every commit in Git has its own
time stamp marking the time of commit in the repository. We
calculate the difference of time between the paired commits
for the investigated set of coupled file changes. The time
difference is stored in a data sheet for every commit pair entry
included in the analysis. We use calendar days as time units
for our measurement.

2) Branching Analysis: We analyze the placement of the
commits considering their branching. We leverage the branch
of the investigated commit and compare its position with the
second commit in the pair. If they are found on the same
branch, we set the value of the branching variable to yes,
otherwise if they are committed in different branches, we
denote it as no.

3) Relatedness Analysis: To find related change sets, we
analyze the messages content for all possible pairs of commits
where the file change coupling was found.

We parse the commit message text for mappings with issue
ids. For the first commit in the pair, we look up the issue id
in the commit message text.

Next, we repeat this for the second commit in the pair. To
determine if these two commits are related, we compare their
ids. If in both commit messages, the references to the issues
match, we denote them as related. Commit pairs with different
issue references are classified as not related.

4) Logistic Regression Analysis: We follow the procedure
for statistical analysis with logistic regression presented by
Schwab in [27] which includes the determining the sample
size, possible numerical problems, the relationship between
the combination of the independent variables and the depen-
dent variable, the relationship between the individual inde-
pendent variables and the dependent variables, the strength

of logistic regression relationship and the logistic regression
model validation. The description of all steps is available at
http://dx.doi.org/10.5281/zenodo.49187.

The ratio of the dependent variable values is 1 to 4 in favor
of the negative values to the positive ones for the relatedness.
This ratio produces over-fitting of the regression model. To
avoid this, we perform down-sampling where we divide the
population of the negative values for the dependent variable in
double size subsets than the number of positive values subsets
for the dependent variable. We use 80-20 cross strategy to
validate the regression model.

VI. RESULTS AND DISCUSSION

The data sets for the study results are available at http:
//dx.doi.org/10.5281/zenodo0.49187.

A. Descriptive Statistics

The summary of the descriptive statistics for the experiment
are presented in Table III.

From 1641 commit pairs from all five projects, after the
removal of commit messages without issue references, there
are 1218 left for analysis. We have 136 related and 1082
unrelated pairs of commits.

We also report the minimum, maximum, mean, mode and
standard deviation for the time between the related commits.
The minimum commit time difference between the related
change sets is O or in a single day. The maximum varies over
the five projects between 4 and 25 days, whereby these values
are very rare and extreme. Calculating the mean, we found
that the average time difference between two related commits
varies between 0.35 and 3.33 days. The overall value is around
2 days. The value of the standard deviation varies between
0.933 and 6.457 days depending on the project. The standard
deviation value for all the related change sets is around 3.17.
This value is close to the mean. Hence, we have a low spread
of the commit dates for the related change sets. The mode
shows that the most frequent difference in the time of change
for the related change sets is between 0 and 1 days. For the
complete data set it is 0 days, which means that most of the
related change sets were committed together during one day.

The relatedness distribution is presented in Table IV. For the
time between the commits, we have created two groups based
on the mean value which is 2 days. The first group includes
the change sets where the commit time difference is less or
equal than 2 days. The second group includes the change set
where the commit time difference is more than two days.

From 136 pairs of related change sets, 97 commits or 71.3%
were committed in less than 2 days, 39 commits or 28.6% of
them were committed in more than 2 days. Here we see that
most of the related change-sets were committed in less than
two days difference.

The relatedness distribution of the unrelated change sets, 64
or 5.9% of the unrelated commits happened in less than 2 days,
1018 or 94.1% were committed in more than 2 days. Almost
95 percent of the unrelated change sets were committed in
more than two days difference.



TABLE III
DESCRIPTIVE STATISTICS

Project Commit pairs ~Commit pairs related ~ Commit pairs unrelated  Time between related commits in days

min  max mean st.dev  mode
ASTPA 520 36 484 0 15 1.94 2.714 1
RIOT 149 48 191 0 25 319 4.088 1
Metrics 70 20 50 0 11 2.1 3.478 1
Akka 201 20 81 0 4 035 0.933 0
Mozilla Addon 365 12 266 0 22 333 6.457 0
All Projects 1218 136 1082 0 25 213 3.17 0

TABLE IV threshold which reports that there are no numerical problems

RELATEDNESS DISTRIBUTIONS

Related Not related

Time between commits 97 (71.3%) 64 (5.9%)
< 2 days

Time between commits 39 (28.6%) 1018 (94.1%)
> 2 days

Commits in the same 55 (40.4%) 49 (4.6%)
branch

Commits not in the 81(59.6%) 1033 (95.4%)

same branch

Considering the branching of related change sets, 55 com-
mits or 40% are in the same branch, 80 or near 60% are
not in the same branch. In both cases, in the same and
in different branches, we have related change sets. For the
unrelated changes, 49 of them or 4.6% are in the same branch,
1033 commits or 95,4% are not. Most of the unrelated change
sets were found in different branches.

TABLE V
REGRESSION RESULTS

Statistic Average  Average (validated)
Sample Size 270 227
Model Chi-Square 0.000 0.000
Standard error Time 0.043 0.048
Standard error Branch  0.441 0.488
B Coeff. (Time) -0.300 -0.291
B Coeff. (Branch) -0.607 -0.566
p Wald (Time) 0.000 0.000
p Wald (Branch) 0.194 0.221
Exp (B) (Time) 0.741 0.742
Exp (B) (Branch) 0.553 0.761
By chance Accuracy 66.5% 66%
Model Accuracy 90.4% 91.6%

B. Influence of the time between the commits and the branch-
ing on the relatedness

To answer R(@);, we test our main hypothesis investigating
if the combination of time and the branching influences the
relatedness of the coupled changes. The regression results are
presented in Table V.

The average sample size for all data sets after the down-
sampling is 270. This value is much larger than the minimum
number of 10 cases per variable, which satisfies the require-
ments for the sample size. The average value of the standard
error for both of the independent variables is lower than the 2.0

in the analysis.

The presence of a relationship between the combination
of the independent variables and the dependent variable is
based on the statistical significance of the model-chi square.
Our analysis shows that the model chi-square value is 0.000
which is far less than the 0.05 threshold. Therefore the null
hypothesis is rejected, meaning that the combination of time
between the commits and the branching has an influence on
the relatedness of the change sets. The values of the model
chi-square statistical significance presented in Table V for the
validated subsets are very close to the values for the full data
set. This satisfies the classification accuracy of our regression
model.

The values in Table IV indicates that related change sets
were found in both groups for the time between the commits.
Also they were found both in the same or in different branches.
This means that a combination of these two factors influences
the relatedness. According to the results, the possibility to have
related change sets drops with the rise of the time of commit
and the placement of the commits in different branches.

C. Influence of time between the commits on the relatedness

For R()2, we test our second hypothesis where we examine
the influence of the time between commits on the relatedness
of change sets. The average value for the Wald test for the time
variable as independent variable is 0.000 which is lower than
the 0.05 threshold. this result reports a significant presence
of a relationship between the individual independent variable
(time between the commits) and the dependent variable (re-
latedness), rejecting the null hypothesis in this case.

The average B coefficient value is negative, meaning that
one unit change in the time has a negative influence on the
relatedness odds. The average value of the exponent of the B
coefficient Exp (B) for the time of commit is 0.741 (0.742 for
the validated data set) which means that a change of one unit
in the commit time when the other independent variable is
constant is going to decrease the odds to have related change
sets by 26%.

Indeed the results in table IV show that the average commit
time period between related change sets is two days, whereby
most frequently, related change sets were committed during
one day. The frequency of the commit time differences be-
tween related change sets is presented in Figure 1. Here we
can see that the number of related change sets cases drops with
the increase of the time. This confirms the high influence of



the time between the commits on the relatedness of change
sets.
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Fig. 1. related change sets time distribution

D. Influence of the branching on the relatedness

For R()s, we test the null hypothesis about the influence on
the branching on the relatedness of change sets. The average
value of the Wald test statistics for the data set is 0.194 and
for the validated subsets is 0.221. These values are larger than
0.05. Therefore, the null hypothesis in this case is not rejected.
This means that individually measured, the branching does
not influence the relatedness of change sets when the other
variable is constant.

The results show that both in the same or in different
branches we have related and unrelated changes as presented
in table IV. There is no clear distribution between the related
and unrelated change sets considering the branch location of
the commits.

E. Influence of the time between the commits and branching
on the relatedness across projects

Regarding R();, we explore if there is a difference in the
influence of these two factors on the relatedness across the
five project repositories. We use the mean and the standard
deviation values to investigate the spread of the Wald Statistic
values for all five projects. The results presented in Table VI
show that the data from the first three projects delivers useful
data. The last two projects do not deliver data ready for
analysis. The Wald statistic value which is equal to O for all
three projects, reports that there is a strong relation between
the time of commit and the relatedness. The value of the
Wald statistics for the branching in all three projects is above
the 0.05 threshold which identifies that there is no significant
influence of the branching on the relatedness of the change
sets.

The mean value of the Wald Statistics for the commit is
0.000 for all projects. This shows that across all projects,

the time has a significant influence on the relatedness of
the change sets. For all projects, the value of the Wald Test
for the branching is larger than 0.05. This means that in all
five projects, the branching does not influence the relatedness
of the change sets. The standard deviation for both factors
identifies low spread meaning that there is no a significant
difference in the influence across the projects.

The last two projects do not deliver measurable interaction
between the time of commit and the branching because that
there is no variance in the branching. In these projects, all
unrelated cases of change sets are found in different branches.
There is not a single case of an unrelated change set where
the commits are in the same branch. This make the regression
analysis not possible. A possible reason for this situation could
be that these two projects include heavy branching. This may
influence the way the related change sets are organized in
branches. To be able to further investigate this kind of projects,
we need to analyze a larger number of change sets per project.

TABLE VI
INFLUENCE ON RELATEDNESS ACROSS PROJECT

Project Wald Test (Time) Wald Test (Branch)
ASTPA 0.000 0.396

RIOT 0.000 0.157

Metrics 0.000 0.310

Akka - -

Firefox Addon - -

Mean 0 0.287

St. Deviation 0 0.157

VII. THREATS TO VALIDITY

The mapping between the commits and the issues represents
a central construct validity threat for our study whereby the
developers could provide false references. Using data from
different projects and various developers having high rate of
commit mappings decreases the possibility for this threat.

The relatively high data mining support threshold of 10%
excludes a number of coupled changes and commits. However,
this threshold ensures a relatively high level of frequency of
the reported coupled file changes which avoids the possibility
to have changes that could happen by chance.

The influence of the experimenter during the execution of
the experiment could affect the internal validity of the study.
The experimenter needs to define the relatedness of the change
sets by manually examining the commit messages. We use an
additional review of a sample of the relatedness of the file
changes by a second person.

A potential internal threat could also be the influence of
particular developer data on the change sets for the analysis.
The commit behavior of the developers and the discipline in
the referencing of the commits with the issue can influence
the truthfulness of this relation. We minimize the influence
on the results by randomly selecting a single set of commits
per developer before the logistic regression analysis has been
performed.



An external validity threat is the limitation of our analysis
generalization on other projects. The analysis is performed on
projects which include mapping between the commits and the
issues. However, on GitHub there are many projects where this
mapping is implemented. We have also used different project
repositories developed in various environments. Although we
have used relatively small repositories, the use of well known
analysis methods ensures that we can repeat the analysis on
larger projects.

VIII. CONCLUSION AND FUTURE WORK

We have investigated five Git repositories to determine the
influence of time between the commits and the branching on
the relatedness of change sets. The regression results give
evidence that the combination of these two factors influences
the relatedness. This supports the heuristic we proposed.
Individually measured, the time of commit has a significant
influence on the relatedness. Our findings show that most
of the related change sets are committed in single day. The
branching itself did not play a significant role towards the
relatedness. The values for these factors measured across the
projects show that in cases of heavily branched projects, we
need more coupled change cases for analysis. Our results
confirm the heuristics presented in [19] where the developer
and the time of commit groups related change sets. We support
the influence on the time factor on the relatedness of change
sets.

Our study targets Git which is not particularly investigated
for mining repositories. We give evidence that time does
influence the relatedness of change sets, yet the branching
does not have this relation in our results. The developer+time
heuristic can be implemented in a tool to recommend coupled
file changes for the developers during maintenance of bug-fix
tasks. Using this heuristics we can decrease the number of
change sets we investigate for coupled changes and lower the
time effort for the data mining analysis.

Our approach limitation is the content of the commit mes-
sages we analyzed. We do not involve comments which do not
include the issue ids. Also the size of the repositories and the
number of committers limits the number of coupled changes
and the change sets we investigate.

The next steps in our research is to investigate larger
repositories and examine higher number of change sets for
a deeper investigation about the relatedness of change sets.
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