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Abstract

The cellular networks have gone through rapid evolution during the past decade. However,

their performance is still limited due to the problem of interference. Therefore, interference

management in current and future cellular networks is still an ongoing research topic. In-

terference Alignment is one of the techniques to manage the interference efficiently by using

“align” and “suppression” strategy.

In the first part of this thesis we focus on Coordinated inter cell interference alignment in

a large cellular network. We assess the performance of interference alignment based transmit

precoding under specific receiver strategies and coordination scenarios by comparing with

different state of the art precoding schemes. We continue our assessment by considering

imperfect channel state information at the transmitter. The results show that the gains

of coordinated alignment based transmission are very sensitive to the receiver strategies and

imperfections as compared to the other precoding schemes. However, in case of the availability

of good channel conditions with very slow moving users, coordinated interference alignment

outperforms the other baselines even with imperfect channel state information. In addition to

that, we propose efficient user selection methods to enhance the performance of coordinated

alignment. The results of our assessment draws important conclusions about the application

of coordinated interference alignment in practical systems.

In the second part of the thesis we consider a cellular system where each cell is serving

multiple users simultaneously using the same radio resource. In this scenario, we have to

manage not only the inter cell interference but also the multi user interference. For this

purpose, we propose a novel Uncoordinated transmit precoding scheme for multi user cellular

networks which is based on the alignment of multi user interference with partial and outdated

inter cell interference. We show analytically that our scheme approaches the performance

optimal transmission scheme. With the help of simulations we show that our proposal out-

performs the state of the art non-alignment based multi user transmit precoding schemes.
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Abstract

We further propose user selection methods which exploit the diversity gains and improve the

system spectral efficiency. In order to assess the feasibility of our proposal in a real system,

we evaluate our scheme with practical constraints like imperfect information at the trans-

mitter and limited feedback in uplink channel. For the proof of concept we also evaluate the

performance of our scheme with measured channels using a software defined measurement

platform. Finally, we also assess the application of our proposal in future heterogeneous net-

works. The outcome of our efforts states that as an interference alignment based transmission

scheme, our scheme is a good candidate to manage the two dimensional interference in multi

user cellular networks. It outperforms the non-alignment baselines in many scenarios even

with practical constraints.

x



Kurzfassung

Die Mobilfunknetze haben sich während den letzten zehn Jahren sehr rasch entwickelt. Aber

ihre Leistungsfähigkeit ist noch durch die Interferenz begrenzt. Für aktuelle und zukünftige

Mobilfunknetze ist daher das Interferenzmanagement ein andauerndes Forschungsthema. In-

terference Alignment ist eine der Techniken, die die Interferenz durch räumliche Vorcodierung

im Sender vektoriell ausrichtet, um sie im Empfänger unterdrücken zu können.

Im ersten Teil der Arbeit konzentrieren wir uns auf Coordinated Inter Cell Interference

Alignment in einem großen Mobilfunknetz. Wir bewerten die Leistungsfähigkeit von Sende-

verfahren basierend auf Interference Alignment unter Berücksichtigung spezifischer Emp-

fangsalgorithmen und Koordinierungsszenarien mit verschiedenen Sendeverfahren die Stand

der Technik sind. Unsere Beurteilung berücksichtigt unvollständige Kanalinformationen am

Sender. Die Ergebnisse zeigen, dass die Gewinne der Coordinated Interference Alignment

basierten Übertragungen sehr empfindlich hinsichtlich der Empfangsalgorithmen und un-

vollständigen Kanalinformationen sind im Vergleich zu bereits bekannten Sendeverfahren.

Jedoch im Falle von guten Kanalbedingungen für sehr langsam bewegte Benutzer übertrifft

Interference Alignment die anderen bekannten Sendeverfahren auch bei unvollständigem

Kanalwissen. Zusätzlich schlagen wir effiziente Scheduler-Verfahren vor, die die Leistung von

Coordinated Interference Alignment erhöhen. Die Ergebnisse unserer Untersuchung treffen

wichtige Aussagen über die Anwendbarkeit von Interference Alignment in realen Systemen.

Im zweiten Teil der Arbeit betrachten wir ein zellulares System, in dem jede Zelle mehrere

Mobilifunknutzer gleichzeitig mit der gleichen Funkressource bedient. In diesem Szenarium

müssen wir nicht nur die Inter Cell Interference, sondern auch Multi User Interference berück-

sichtigen. Für diesen Zweck schlagen wir ein neues Uncoordinated Sendeverfahren für Mobil-

funknetze mit mehreren Nutzern vor. Dieses Verfahren basiert auf Alignment von Multi User

Interference mit Partial and Outdated Inter Cell Interference. Wir zeigen analytisch, dass

die Leistungsfähigkeit unseres Systems sich dem optimalen Sendeverfahren annähert. Mit

xi



Kurzfassung

Hilfe von Simulationen zeigen wir, dass unser Ansatz die Leistung anderer Multi User Sende-

verfahren des Stands der Technik übertrifft. Weiterhin schlagen wir Nutzerauswahlmethoden

vor, welche die Kanaldiversität ausnützen und die spektrale Effizienz des Systems verbessern.

Um unseren Vorschlag in einem realen Systems zu bewerten, evaluieren wir unsere Metho-

den unter praxisnahen Bedingungen, wie dem senderseitig unvollständigen Kanalwissen und

unter begrenztem Feedback auf dem Uplink-Kanal. In einer Machbarkeitsstudie bewerten

wir auch die Leistungsfähigkeit unseres Verfahrens mit real gemessenen Kanälen und einem

softwarebasierten Messaufbau. Am Ende der Arbeit haben wir die Anwendbarkeit unseres

Vorschlags für zukünftige heterogene Netzwerke bewertet. Das Ergebnis unserer Arbeit zeigt,

dass unter den Interference Alignment Sendeverfahren unser Verfahren ein guter Kandidat

ist, um die zweidimensionale Interferenz in Mobilfunknetzen mit mehrerern Nutzern zu re-

duzieren. Unser Verfahren übertrifft andere Multi User Sendeverfahren in vielen Szenarien

sogar unter realen Bedingungen.
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Chapter 1

Introduction

Wireless communication systems enable humans, sensors, machines or any two entities (com-

monly called as nodes or users) to communicate through wireless channels using electro-

magnetic waves. Like any other system in our daily life, one of the main objectives in the

development of a wireless system is to improve the system efficiency. In general, the effi-

ciency can be defined as the ratio of useful output to the given input resources. For a given

amount of resources, the efficiency can be improved by increasing the system performance

to enhance the useful output. The primary resource of a wireless communication system is

the frequency spectrum (bandwidth, expressed in Hertz) and the desired output is the rate of

information (communication, expressed in bits per seconds). Therefore, the information rate

per Hertz which is commonly known as Spectral Efficiency is our primary concern in this

thesis. In particular, we are interested to achieve a higher spectral efficiency for a cellular

wireless communication network.

As there may be many simultaneously active users in the network, there will be more

than one wireless link that will share the limited resources over the wireless channel. If more

than one link starts communicating actively, using the same frequency spectrum in a given

time, they will interfere with each other and the information transfer for each individual link

will suffer loss. This information loss due to the interference reduces the system efficiency.

In order to allow loss-less communication of multiple links simultaneously, the interference

between the links should be managed and treated if necessary. One way of managing would

be to distribute the frequency spectrum between the links orthogonally in time. It resolves

the problem of interference. However, it reduces the spectral efficiency of the system. The

challenging goal of this work is to find advanced methods which deal with this interference

1



1. INTRODUCTION

and maintain or improve the spectral efficiency of the system. Until now for cellular networks,

there are many techniques that have been developed to approach this goal such as, frequency

reuse [1], Code Division Multiple Access (CDMA) [2] and interference coordination ( [3] and

references there in). One of the recently developed techniques that deal with interference

is called the Interference Alignment (IA) as proposed in [4] and [5]. Here we focus on

this technique, as it promises the optimum achievable performance for a given interference

network.

1.1 Motivation and Focus

The transmission from the network side towards the end user is generally referred as downlink.

The basic transmitting entity in downlink transmission is commonly known as base station.

The coverage area of a base station is known as a cell, therefore in literature, the term cell also

refers to the base station or the network side transmitter. In a cellular network, many cells

are deployed to cover a large geographical area with careful cellular planning. For efficient use

of spectrum, typically the operator of the network would like to use the same frequency in all

the cells. However, the problem of interference arises when the geographically neighbouring

cells serve their users simultaneously on the same frequency resources. This interference is

called the inter cell interference (ICI) and this problem makes the cellular networks inherently

interference limited.

Frequency reuse [1] is one of the solutions to this problem. The spectrum is divided

into subsets and each subset is allocated to the cell such that the subsets of geographically

direct neighbouring cells are mutually exclusive. In Europe, the 2nd generation of the cellu-

lar systems (Global System for Mobile Communications (GSM)) employed this solution [6].

However, this solution reduces the spectral efficiency. Therefore, the next generations like

Universal Mobile Telecommunication Systems (UMTS), Wideband CDMA (WCDMA), High

Speed Packet Access (HSPA) [7], Long Term Evolution (LTE) and LTE-Advanced [8]) did

not rely only on the frequency reuse. For these systems, other methods were adopted to over-

come this problem and still maintain the requirements of achievable system spectral efficiency.

Therefore, the 3rd generation systems, WCDMA/UMTS/HSPA, used spreading codes and

combining techniques [7]. The 4th generation and beyond, LTE and LTE-Advanced, which

are based on OFDM based radio interface, came up with fractional/soft frequency reuse [8].

2



1.1 Motivation and Focus

However, it requires enormous effort of frequency planning. Furthermore, it needs coordina-

tion between the cells which comes with extra cost on backhaul. Great efforts have been put

in the research to find optimum solutions for ICI problem and it is still an ongoing research

topic (please refer to [9] and references therein).

Inspired by the antenna arrays in radars, multiple transmit and receive antennas were also

introduced in the communication systems [10]. This started an era of research for Multiple

Input and Multiple Output (MIMO) wireless communication. The initial objective of using

multiple antennas was to exploit the spatial diversity of the wireless channel in order to achieve

robustness in communication [11]. Later it lead to enhancement in the spectral efficiency.

The work in [12, 13] showed that there can be a linear increase in spectral efficiency with the

increase in the number of antennas in the system. The advancement in MIMO technology has

also evolved the objectives of MIMO. At present, the MIMO transmission methods can be

used to enhance the signal quality and robustness [14] or to mitigate the interference in the

system [15]. On the basis of the use of channel state information (CSI) at the transmitter,

MIMO methods can be categorized as open loop methods and closed loop methods. The

open loop methods do not require any CSI at the transmitter. Their objective is mainly to

achieve robustness against the errors induced by the channel using the channel diversity. The

closed loop methods require the CSI at the transmitter. This CSI can be used to design the

transmission such that a greater amount of desired signal energy reaches the desired receiver.

It can also be used to ensure less interference at the desired receiver. Either way, the goal is

to enhance the spectral efficiency of the system. These transmission methods, which use the

spatial dimension (multiple antennas) to design the transmit signal are in general known as

transmit precoding methods.

Jafar et al [5] presented the application of the interference alignment technique in the

design of closed loop transmit precoding in a universal reuse fully coordinated cellular sys-

tem to deal with the ICI problem. For this purpose, they considered multiple antennas as

the spatial resource and showed that interference alignment is close to optimum even with

universal reuse. The main idea behind interference alignment is to confine the interference at

the desired receiver in a subspace non-overlapping to the desired signal space. Once the in-

terference is confined, the receiver can suppress it with a proper design of receiver algorithm.

We do not want to go into the details of the alignment technique now, but we would like to

mention that it is a concept that can be applied using any resource dimension e.g. frequency

or time. Initially, it was presented over time by symbol extension in [4].

3



1. INTRODUCTION

Motivated by Jafar’s approach, we focus on interference alignment using spatial dimension

in cellular network. We start by analysing the fact that coordination in a network is possible

only on a limited scale. It implies that the uncoordinated transmissions would perturb the

optimality of alignment in a practical cellular network. Hence as a first step, in the first part

of this thesis we investigate the realization of IA in a coordination-cluster based large cellular

network. In line with the practical feasibility, we analyse the loss in the performance due

to the channel estimation errors and various levels of interference suppression capabilities

of present day receivers. Following the critical aspects of real world, we also exploit the

opportunities provided by the practical conditions such as channel diversity. We explore user

selection diversity and propose user selection methods to improve the system performance

with IA as transmit precoding in a clustered cellular network.

The use of MIMO opens a new door of multiple access which is called Spatial Division Mul-

tiple Access (SDMA) and generally referred as Multi User MIMO (MU-MIMO) in literature.

It enables the transmitter to schedule and transmit multiple users in a cell simultaneously

on the same radio resource. However, this benefit does not come without a cost. The co-

scheduling of multiple users on the same resource causes an extra dimension of interference

in the system which can be called as Intra Cell Interference. To differentiate easily between

the two interferences in this thesis, we call intra cell interference as Multi User Interference

(MUI). There are many transmission methods and studies like [15, 16] and [17] which ex-

plore the potential of SDMA by designing the appropriate transmit precoding to deal with

MUI but they neglect the impact of ICI by considering a single cell system. Therefore, after

dealing with ICI through coordinated IA, we shift our focus to deal with both ICI and MUI.

We propose an interference alignment based precoding technique which aligns the MUI and

ICI in a multi cell system. Similar to the first part, we also analyse our approach with some

practical constraints like feedback limitations, channel estimation errors and different receiver

capabilities. As a proof of concept, we also demonstrate the performance of our scheme using

measured channels on a software defined measurement test-bed. The results show that our

proposed interference alignment based transmit precoding scheme outperforms the state of

the art non-alignment based MU-MIMO transmit precoding schemes in the presence of ICI

in a multi cell system.

We also exploit the user selection diversity for our scheme. Especially in the case of

MU-MIMO, user selection improves the performance of the transmit precoding scheme. In

principle, the users which are facing spatially orthogonal channels from its serving cell they
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will cause least interference on each other and make the most of multi user transmission

[16]. We propose user selection methods that bring sustainable gains to the system which is

serving multiple antenna user equipments.

Due to the increasing demand of capacity and traffic density, it has been proposed to

deploy an additional layer of cells on top of the macro cellular layer. Now the primitive

approach of single layer is termed as Homogeneous Network and the multi layer approach is

known as Heterogeneous Network (HetNets). The additional layer of cells can be deployed

on the same or on additional frequency spectrum. The deployment on the same frequency

is known as co-channel deployment. In either way the power is kept very small in order to

reduce additional interference in the system and thus often the name small cells is used for

the additional layer. The initial purpose of the small cells is to provide a good signal to noise

ratio to the users present at the border of macro cells. Notice that the ICI characteristics

in a co-channel deployed HetNet would be different than a plane homogeneous network. In

principle, we have a two-layer universal frequency reuse in HetNets which imposes a big

challenge to deal with the ICI. This gives us the motivation to study further the interference

alignment and user selection algorithms in HetNets with MU-MIMO. Hence as a last part of

the thesis we investigate the performance of our proposed multi user interference alignment

technique in HetNet. We not only analyse interference alignment as a transmit precoding

method but also as an interference management technique in HetNet. For this purpose, we

also compare it with the state of the art interference coordination techniques and show that

in relevant scenarios interference alignment out performs the interference coordination with

respect to the system performance and system resource utilization.

1.2 Thesis Outline and Contributions

After explaining the major focus of the thesis, in this section we will explain briefly the

structure in which we have distributed our efforts. The rest of the work is organized in six

chapters. The brief description of each is given as follows;

In Chapter 2, we provide a short review of the essential characteristics and issues in a

cellular wireless system that will help us understanding the approaches and results in later

chapters. These essentials include the modelling of the wireless channel. We explain different

types of channel models with extensive details to MIMO spatial channel model as we have

used this model throughout the thesis for our simulation based analysis. Then we briefly
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describe the OFDM based radio access as we have considered a MIMO-OFDM system in this

thesis. An overview of the closed loop transmit precoding techniques is also given in order

to develop the understanding of problems related to these techniques.

In Chapter 3, we mainly consider the interference alignment based transmit precoding as

proposed in [5]. This precoding provides optimum performance in a fully coordinated cellular

system. We assess the performance of this scheme in a coordination-cluster based downlink

single user multi cell MIMO-OFDM transmission system with ideal assumptions on acquiring

CSI at the transmiter and the ideal feedback. We also compare the performance with other

baseline precodings and with different receiver algorithms. With the help of a simple channel

estimation model we evaluate the performance of this scheme with channel estimation errors.

After the step of rigorous performance analysis of the scheme we also provide some solutions

for the performance improvement by exploiting the user selection diversity. Parts of this

chapter are also published in [18] and [19].

In chapter 4, we propose the concept of an uncoordinated transmit precoding scheme

based on multi user inter cell interference alignment. At first, we present the concept and

prove it analytically. Then we assess the concept with system level simulations using spatial

channel model and different receivers. Furthermore, we show the improvement in the per-

formance by using the user selection diversity. We propose new methods for user-selection

which support alignment based and non-alignment based transmit precodings. Parts of this

chapter are also published in [20], [21], [22] and [23].

In Chapter 5, we assess our proposed scheme with practical constraints. At first we

consider the limited feedback and evaluate the performance with random and hierarchical

codebooks. Then we analyse the impact of channel estimation errors. Continuing the efforts

with realistic environments we further evaluate the performance with measured channels.

Parts of this chapter are published in [24] and submitted for peer review through [25].

In Chapter 6, we apply our scheme in HetNets. We show that alignment based precoding

provides higher gains in HetNets. We explain the concept of enhanced inter cell interference

coordination in HetNets and compare the performance of interference alignment and inter-

ference coordination. We show that until some resource utilization level in macro cell, our

scheme outperforms the interference coordination. Parts of this chapter are published in [26]

and [27].

In Chapter 7, we conclude with the highlights of our main findings and the possibilities

for future works.
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Chapter 2

Fundamentals

The purpose of this chapter is to provide an overview of the essentials which lay the basis

for our assumptions and the concepts that follow further in this work. At first we talk about

the characteristics and the modelling of the wireless channel which serves as the backbone to

the analysis of any wireless access system. Then we present some details of an OFDM based

wireless access design which is considered throughout this work. A brief review of closed loop

downlink transmission schemes is also presented as we deal with these schemes. At the end

we give a short overview on the characteristics of the interference in cellular systems. This

helps us to understand and devise methods to mitigate this interference.

2.1 Wireless Channel Models

A simple example of wireless communication system consists of two nodes, a transmitter

and a receiver communicating with each other over the wireless channel with the help of a

transmit and a receive antenna respectively. The information signal over the wireless channel

is carried by the electromagnetic waves which undergo the physical propagation phenomena

of absorption, reflection, scattering and diffraction. Due to these propagation phenomena,

the transmitted power of the information signal carried by the waves faces two types of effects

which are generally categorized as long term (large scale) effects and short term (small scale)

effects. The characterization of these effects requires modelling of the wireless channel. There

are many approaches to model these effects. In the following we divide these approaches in

three broad categories which provide us with Deterministic Models, Empirical Models, and

Statistical Models of the wireless channels.
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The deterministic models are mostly used in the wireless network planning stage and

therefore they are based on the real world geographical information of a particular coverage

area. The Ray Tracing is one of the examples of such models (please refer to [28] for details).

For the purpose of analysis and research, such models are computationally complex and finan-

cially very expensive. Moreover, they are needed mostly when absolute system performance

is required. When the objective is to perform a comparative analysis of the methods in a

given environment, then the deterministic models are not needed. As the other two categories

are sufficient enough for comparison of methods, they are most widely used in research and

analysis studies. We also consider the later two models for further discussion.

2.1.1 Empirical Models

The communicating nodes are typically separated by a given distance d. Due to the absorption

phenomena in the environment, the transmitted signal power suffers a loss over the path

travelled by the waves to reach the receiving node. The transmit power dissipates even if

there is a free space between the communicating nodes. The dissipation in free space is

characterised by the well known Free Space Loss and is given by,

Prx =
PtxGtxGrxλ

2

(4πd)2
(2.1)

where, Prx is the power received by the receive antenna with the antenna gain Grx in free

space at a distance d, Ptx is the power transmitted by the transmitter with antenna gain Gtx,

λ is the wavelength of the electromagnetic waves.

This expression can be used to find the received power for a given location at a distance

d in free space. However, in a real environment the path between the nodes is usually

obstructed and surrounded by the real objects. Hence the received power depends upon

many other parameters (in general known as propagation and environment parameters).

Therefore, finding the received power at a given distance in real environments is not a simple

task. However, if the average path loss can be characterized for a given location, the average

received signal power can be predicted for that location provided the transmitted power is

known. The ratio of the received signal power at a given location to the transmitted power

is known as the path loss. Therefore, these models are also known as Path Loss Prediction

models as they predict the average loss of transmitted signal power over the path travelled

by the waves to reach the receiving node.
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For the determination of path loss in our system-level simulation studies, we have used

the path loss prediction models which are specified by 3GPP in [29]. The models are classified

in different propagation scenarios, frequency ranges, Line-of-Sight (LOS), Non-Line-of-Sight

(NLOS) situations and network layouts. These models are based on the extensive measure-

ment campaigns within a European funded project which are reported in [30] and in standard

studies available in literature. The general form for the path loss model that we have used

can fit to different scenarios and parameters, it is given by,

PdB = A+B log10(
d

1km
) + C + κ (2.2)

where, PdB represents the path loss in dB, d represents the separation between the communi-

cating nodes in km, the parameters A, B and C depend on carrier frequency, antenna height

and the scenario, κ can include any other losses specific to the environment or propagation

characteristics such as indoor penetration losses.

The empirical models average their received power measurements in the proximity of a

given distance to provide mean path loss. However, this averaging removes the random effects

of the wireless channel which occur due to other propagation mechanisms. The averaged path

loss values are good for planning a network and calculating a link budget but for the purpose

of analysis and evaluation of new methods related to the transmission it is essential to take

into account the random effects of the channel. Therefore, in the following we give an account

of the models that characterize the random effects statistically.

2.1.2 Shadow Fading Models

Due to the effects of propagation mechanisms, the received power varies over a mean even

for a fixed location. This phenomena is known as shadowing or shadow fading or large

scale fading. The variations are mainly caused by the spatial structures, trees and moving

obstacles present in the environment. Therefore, it is difficult to predict them empirically.

However, the measurements of received power have shown that the impact of these variations

can be modelled with log-normal distribution. That is why it is also called as Log-normal

Shadowing. The effect of shadowing is typically the same in a close proximity of a given

location. Therefore there should be a correlation between two points spatially close to each

other suffering shadow fading. This effect is modelled by Gudmundson in [31] and it is widely

used for accounting the shadowing effect.
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The Gudmundson model is good to characterise the spatial correlation of the shadowing

effect however, it is not possible to recreate the effect in a different time interval or for

a different link at the same location. In reality, if two receivers are present at the same

location, they should suffer the same shadowing effect. If the same user comes in the same

location at a different time and there is no major change in environment then it should suffer

the similar shadowing loss. Hence, the Gudmundson model is updated and a new model

is developed which accounts for the two dimensional (2-D) correlation of shadowing. We

also use the 2-D shadowing model for our system-level simulation studies. It provides better

modelling of the shadowing effect. For the details of the model and the efficient generation

of shadowing coefficients we refer to [32] and references therein.

2.1.3 Multipath Fading Models

So far we have learned about the models that predict the long term attenuation due to the

propagation phenomena. In this section we learn more about the statistical modelling of the

effects that cause the short term fading of the signal.

The scattering, reflection and diffraction not only cause the shadow fading attenuation

but also cause multiple copies of the signal to arrive at a given receiving point with different

powers and delays. This phenomenon is generally known as Multipath Propagation. The

parameters characterising multipath propagation can be taken as random variables and their

combined effect is a random process which can be modelled statistically. If we assume that

each path is independent and can be characterised with an attenuation factor and a delay then

the channel impulse response can be described as the sum of the impulses each arriving with

time varying amplitudes and delays. In the absence of noise, the channel impulse response

can be written in discrete representation form as follows:

h(t, τ) =

L∑
i=1

ai(t)δ(τ − τi) (2.3)

Where, h(t, τ) represents the time variant channel impulse response, i is the index of multi-

path, ai(t) is the time dependent amplitude (attenuation) of the ith path which accounts for

the long term losses (path loss, shadowing) and τi is the delay corresponding to the ith path.

Notice that we have limited the number of multipaths to L, in practice, we neglect the paths

whose attenuation is around or below noise level. If a signal is transmitted through this time

variant multipath channel in a very rich scattering environment with no LOS between the

10



2.1 Wireless Channel Models

communicating nodes and with a high number of independent multipaths, then using the

central limit theorem, the channel can be modelled as zero mean complex Gaussian random

coefficient. It is well known that the absolute value of this coefficient is Rayleigh distributed

and the phase is uniformly distributed between 0 and 2π. For some of our simulation studies

we have considered a highly scattered, uncorrelated environment and channel with Rayleigh

distribution.

2.1.4 MIMO Spatial Channel Model

Until now we have discussed the models that characterize the fading behaviour of channel

between transmitter and receiver each equipped with single antenna. With multiple antennas

at both nodes, the channel is known as Multiple Input Multiple Output (MIMO) channel. For

MIMO channel, the spatial diversity primarily depends upon the antenna array parameters

and then secondarily on the environment and signal characteristics. Until now for single

antenna case, we have considered only the latter two (secondary factors) for the modelling

of wireless channel. For multiple antennas, we also need to account for the antenna related

parameters in the modelling of the channel.

Many approaches to model MIMO channel are already available in the literature which

provide the transfer function for MIMO channel. In [33] a detailed overview of these ap-

proaches and classification is given. Most of these approaches are antenna-centric and array-

dependent. However, in this thesis we have considered a channel-centric, array-independent

approach proposed by 3GPP in [34] for a given set of environments to facilitate system-level

simulations with MIMO channels. It is also commonly known as Spatial Channel Model

(SCM). Many of the concepts used in SCM were developed under the COST-259 European

project which is well described in [35].

Modelling Methodology of SCM

The distinguishing feature of SCM is that it is a generic model which allows the generation

of the channel coefficients by simply choosing a set of parameters separately for antenna array

and propagation environment. Another salient feature of SCM is that the model already in-

corporates the simulation approach for both link and system level simulations. The approach

is based on Monte-Carlo snapshots [36]. A simulation is based on multiple snapshots and

there are several transmissions within each snapshot. The mobile users are uniformly dropped

in the start of the snapshot over the simulation area (cellular coverage area). The long term

effects such as path loss and shadow fading remain the same in the snapshot. However, the
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short term multipath fading varies for each transmission within the snapshot. With respect

to the long term and short term effects, the model parameters are broadly categorized in large

scale and small scale parameters. The large scale parameters remain the same for a snapshot

but the small scale parameters may change. In SCM, the snapshots are independent with

respect to the parameters. The number of snapshots and the transmissions during each can

be selected suitably for stable statistical results.

Figure 2.1: Geometrical representation of paths and sub-paths where each Tx and Rx are

equipped with two antenna elements

Channel Matrix Generation

Figure 2.1 shows an example of the geometry of a multipath component due to the

scattering in the environment between the transmitter and the receiver which are equipped

with uniform linear antenna arrays. Each multipath component is further divided into a

number of sub-paths. For a given environment, the average number of paths, sub-paths and

other parameters required for random distributions have been estimated through extensive

measurements [35].

For the linear arrays of transmitter and receiver as shown in figure 2.1 the expression for

the channel impulse response of the mth path between the transmit antenna element s and
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receive antenna element u from [34] is given as:

(2.4)
h(u,s,m)(t, τ) =

√
Pmσ

N

N∑
n=1

(√
Gtx(θ(m,n))e

j( 2π
λ
ds sin θ(m,n)+ψ(m,n))

√
Grx(φ(m,n))e

j 2π
λ
du sinφ(m,n)ej

2π
λ
||v||cos(φ(m,n)−ϕv)t

)
δ(τ − τ(m,n))

where,

• m: the index of mth path

• n: the index of nth subpath in mth path

• N : the total number of subpaths

• u: the index of uth antenna element of the receiver

• s: the index of sth antenna element of the transmitter

• Pm: mth path power

• σ: shadow fading value for the link

• θ(m,n): angle of departure of the nth subpath

• φ(m,n): angle of arrival of the nth subpath

• ψ(m,n): phase difference of the nth subpath

• Gtx: transmit antenna array response

• Grx: receive antenna array response

• ds: distance of transmit antenna element s from the reference transmit antenna element

which is s = 1

• du: distance of receive antenna element u from the reference receive antenna element

which is u = 1

• ||v||: magnitude of the receiver velocity vector

• ϕv: angle of the velocity vector
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• τ(m,n): delay corresponding to the nth subpath of the mth path

With an array of U receive and S transmit antennas, a U × S MIMO channel impulse

response matrix is generated for each path and then the final MIMO channel matrix is formed

with the sum over all the paths.

Our purpose is to establish an understanding of the modelling approach and the idea

that SCM is an appropriate model which incorporates the important physical effects of the

environment and the antenna geometry with proper modelling. For the detailed description

of the environments, distributions of parameters and their dependencies, we refer to [29, 34].

However, for the basic understanding of the framework, we provide a brief overview of the

major steps with the help of a flow chart as shown in figure 2.2.

Figure 2.2: Steps for the generation of channel coefficients using SCM model

The steps are broadly categorized in the generation of large scale parameters, small scale

parameters and channel coefficients. At first, we select the simulation scenario and the an-

tenna geometry. The simulation scenario is based on a given environment (urban, rural,

indoor, outdoor, etc.) and the network layout (hexagonal arrangement, network size, etc.).

After the deployment of the network, the mobile users are dropped in the simulation area

according to a given distribution function. Once the locations of the transmitters and the

receivers are fixed then we determine the path losses and large scale parameters for all the

channels in the system. This process of dropping users and generating large scale parameters

is updated in the beginning of each snapshot (also known as drop with respect to user drop-

ping). In the beginning of each subframe, small scale parameters are updated and channel
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coefficients are generated by following the steps listed in figure 2.2 for all the channels in the

system.

2.2 OFDM Based Wireless Access

The choice for the modulation of an information signal mainly depends upon the quantifi-

cation of the time varying nature of the two properties of multipath channel namely the

time-dispersion and the frequency-dispersion. The channel coherence bandwidth (a measure

of frequency dispersiveness) in a micro cellular environment with carrier frequency around 2

GHz is typically of the order of 100-300 kHz. If we choose a wideband single carrier modu-

lation with the transmission bandwidth e.g. 1.25 MHz, then it is greater than the channel

coherence bandwidth. The communication will suffer with frequency selective channel fading.

Hence in most of the current wireless systems, Orthogonal Frequency Division Multiplexing

(OFDM) based narrowband multi carrier modulation and access is used. The OFDM is a

special case of multi-carrier system which was proposed by the Bell Labs researchers [37].

The current multi user wireless systems employ OFDM for radio interface e.g. IEEE-WiMax

(WLAN), 3GPP-LTE (Cellular). In the following we take an example of LTE-FDD Downlink

and explain how the physical transmission layer for radio access is designed using the OFDM.

Figure 2.3: Representation of time-frequency OFDM resources in a PRB for the case of two

transmit antenna elements

LTE Downlink Physical Layer Parameters

The LTE based cellular system supports a range of bandwidth from 1.25 MHz to 20 MHz

without carrier aggregation. The complete bandwidth is divided into a number of equally
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spaced sub carriers. The sub carrier spacing is set to be 15 kHz. Each sub carrier carries a

number of OFDM symbols which is defined with the help of a radio frame structure. The

duration of one radio transmission frame is 10 ms. Each frame consists of 10 subframes

which are also known as Transmission Time Intervals (TTIs). Each subframe has two slots.

Each slot is further divided in a number of OFDM symbols which depends upon the length

of the Cyclic Prefix (CP) which is used to mitigate inter symbol interference. Two types of

CP settings are possible namely Normal and Extended. With normal CP which is mostly

used in urban and dense urban environments, there are 7 OFDM symbols in a slot. One

OFDM symbol on a sub carrier represents a radio Resource Element (RE) which defines the

allocation of wireless channel in time and frequency dimension. The radio resource allocation

can be done on subframe basis. For the ease of scheduling, a set of REs in a subframe over 12

consecutive sub carriers is further classified as a Physical Resource Block (PRB). Figure 2.3

illustrates an example of downlink OFDM resource structure in a PRB for transmit antenna

array of 2 elements.

Three symbols in each subframe over the whole bandwidth are reserved to carry the control

information. Rest of the symbols are used for data and reference signals. The reference signals

are used for multiple purposes. Here we highlight two main types of reference signals which

are Cell Specific Reference Signals (CSRS) and User Specific Reference Signals (USRS). The

CSRS are commonly known as Pilot Signals and they are used for channel estimation. In

case of multiple antennas, they are defined with respect to each antenna element. They are

also shown in figure 2.3. The CSRS are common for all the users in the cell. The USRS are

dedicated to each user and used by the user to find out the transmission details e.g. transmit

precoding. For further details on the complete set of signalling information we refer to [38]

In our system level simulations, we have modelled the OFDM resources with the help of

LTE specifications. We assume that the channel is block faded over the PRB. The channels

have temporal correlations which depend upon the speed of the users. In a real network,

special pilot sequences are used to generate orthogonal pilots in the system which improve

the performance of channel estimation. However, to compute the achievable performance

bounds, we assume ideal channel estimation and therefore we do not use any pilot sequences.

For the simulation analysis with imperfect channel estimation, we still do not use the pilot

sequences rather we only model the error due to the imperfect channel information. Further

details on modelling the imperfect channel estimation are given in chapters 3 and 5.

16



2.3 Closed Loop Downlink MIMO Transmission Schemes

2.3 Closed Loop Downlink MIMO Transmission Schemes

In a broad sense, the term Closed Loop Downlink refers to the aspect of the wireless network

which allows the network to perform optimization of any network process in the communica-

tion link chain based on the user feedback. In this thesis, we refer to the closed loop downlink

in the context of MIMO transmit precoding schemes. If the instantaneous channel response is

known at the transmitter then it can be used to adaptively design the transmit precoding to

overcome the effects of the channel. Figure 2.4 shows the application of the MIMO transmit

precoding in the downlink communication chain of LTE based systems.

Figure 2.4: Representation of transmit precoding and layer mapping in the downlink

In the past decade, closed loop MIMO transmission has been extensively investigated. For

simple understanding, we broadly categorize the transmission schemes based on the usage

of radio resource and based on the coordination among the cells. Based on the resource

usage, we can further classify the transmission schemes as single user and multi user MIMO

transmissions. The basic single user transmission scheme (with multiple streams) was applied

by [13] to find optimum capacity with the perfect CSI known at the transmitter. Now the

spatial multiplexing of multiple independent data streams for single user is even possible in

the commercial systems like LTE [38]. However, in the presence of spatial correlation, the

multiplexing of independent streams does not bring gains for single user MIMO. This gives

rise to the idea of multi user transmission. If there are spatially orthogonal users present in

the system then multiple streams for different users can be multiplexed and transmitted if the

CSI of both users is known at the transmitter. Zero-forcing based precoding for single antenna

users is one of the famous schemes [15]. The system antenna constraints of zero-forcing with

multiple antenna users are very well overcome by two different proposals namely Effective

Zero-forcing in [39] and Leakage Based Transmit Precoding [17]. We explicitly mention these
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two proposals as we are going to consider them as baselines for our proposed un-coordinated

multi user transmit precoding scheme in chapter 4. For further details on this classification

of closed loop schemes we refer to a comprehensive survey of single user and multi user

transmission in [40].

Now we proceed to the next class which is based on the coordination between the cells. The

coordinated transmission schemes are themselves a rich area of research. They are further

classified based on their level of information sharing between the cells and the formation

of coordination clusters in a cellular network. In chapter 3 we deal with the single user

coordinated transmit precoding schemes where coordination clusters are fixed and only the

channel state information is shared between the cells in the cluster. For further details on

the coordinated tranmission schemes we refer to [41].

2.4 Interference in Cellular Networks

Figure 2.5 shows the surface plot of average received signal to inter cell interference and noise

ratio (SINR) over the area covered by 7 sites arranged in a hexagonal grid in a frequency

reuse 1 system, where each site consists of three sectorized antennas, each sector represents

a cell and bears a unique cell identification. We see a high SINR in the direction of the

Figure 2.5: Contour plot for the average received SINR by the users in the coverage area of a

universal frequency reuse cellular network with 7 sites and 21 cells

antenna. As we go far away from the antenna, the path loss increases and the ICI increases

due to which the SINR decreases. This shows that even if the users have a low path-loss, the

performance of the system is limited due to the ICI.
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Chapter 3

Coordinated Inter-Cell Interference

Alignment

In this chapter we describe briefly the concept of interference alignment (IA) as presented in

[4] and its application as transmit precoding [5] for a coordinated cellular system. We explain

the importance of IA in characterizing the achievable system capacity. Then we assess the loss

in maximum achievable capacity in a cluster-based coordinated cellular network. We extend

our performance assessment by taking into account different practical receiver algorithms

and the impact of channel estimation errors. In the last section of the chapter, we discuss

the improvements to the IA based system performance through user selection diversity. We

propose sub optimal but computationally less complex user selection algorithms that target

the enhancement of system spectral efficiency.

3.1 Introduction

The optimality of IA in terms of achievable capacity has been proved with the help of spatial

degrees of freedom (DoF) in the network. Therefore, at first we discuss the role of DoF in

the characterization of the capacity of networks facing co-channel interference.

The bandwidth limited (universal frequency reuse) multi-user cellular wireless network

is inherently also interference limited. When a cell transmits to the desired user on a given

radio resource, it also generates interference to the users of other cells that are using the same

radio resource for transmission. Hence the network faces interfering channels for the com-

munications. In literature, the communication link between a transmitter-receiver (Tx-Rx)
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pair in such a scenario is termed as interference channel. Unlike point to point communi-

cation link (where noise is the major concern), the precise characterization of the capacity

of interference channels is still an open problem. Until now, a great effort has been done

to characterize the capacity of two-user interference channel. At very high signal to noise

ratios (SNR), the capacity for MIMO Tx-Rx pair with M and N antennas (respectively for

Tx and Rx) is proportional to min(M,N)log(SNR) [12]. This pre-log factor (scaling factor)

is also known as the multiplexing gain and in this case, it represents the spatial DoF [42].

This gain comes due to the fact that the new dimension of space provides extra DoF to the

communicating pair. Hence it infers that in cases where precise capacity characterization

is difficult, the performance can be approximately characterized using the notion of DoF.

Following the objective of performance characterisation, interestingly [4] showed that for a

given radio resource (time-frequency), in a fully cooperative network with two single antenna

Tx-Rx pairs, 4/3 DoF can be achieved. The transmission scheme to achieve the DoF was

based on message splitting and IA over the symbol extension in time dimension. Although

spatial dimensions were not used, but the work in [4] introduced the concept of IA which

lead to characterize the spatial DoF.

In [5] Jafar et al. first used the IA to achieve maximum spatial DoF in a K-user inter-

ference network. In contrast to [4], more generalized results over the characterization of the

capacity were presented in [5]. Using the IA based transmit precoding scheme, Jafar et al.

showed that “MK/2” DoF can be achieved at high signal to noise ratio (SNR) in a K-user

coordinated interference network when each node is equipped with M antennas. The key in

achieving this result is the idea of IA. It is based on the effort of limiting the interference

over half of the signal space whereas leaving the other half for the desired signal space. At

the receiver node, if the interferences are confined in a subspace which is possibly be non-

overlapping to the desired signal space then zero forcing the interference subspace will simply

let the receiver to successfully decode its desired signal.

One of the critical assumption in [5] is the cooperation of all the cells for the design

of transmit precoding. For a small network consisting of small number of cells, the size of

cooperation cluster and the overheads of CSI and computational complexity are acceptable.

However, in a real-world cellular network with very high number of cells, the realization of

fully coordinated IA would be an impossible task. The first efforts towards the realization

of IA based precoding in real-world were carried out by the contributions in [43] and [44].

In [43], IA is evaluated with measured MIMO-OFDM interference channels. However, the
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assessments were carried out assuming a set-up with only three Tx-Rx pairs without any

interference outside the coordination area. The numerical study in [44] investigated a larger

cellular setup, under the assumption of zero forcing receivers. The large network is divided

into coordination clusters and IA is used within each cluster. However, the focus is to

compare the IA with a non-coordinated baseline employing eigen-mode transmission and

fractional frequency reuse. The contribution in this chapter is another step down the path

marked by these references, with a threefold objective.

Our first objective is to evaluate the loss in DoF due to the consideration of practical

limitations in the system and the impairments in the assumptions considered by [5]. Even-

tually, the loss in DoF infers the loss in the network capacity due to these impairments. We

achieve this goal by assessing the impact of: a) Out-of-Cluster Interference (OCI), b) different

receiver algorithms and c) imperfect CSI.

Our second objective is to compare the performance of IA with the state of the art

baseline presented in [45] performing coordinated beamforming based on signal to leakage

and noise ratio (SLNR) optimization [17]. We emphasize that the references [43] and [44]

are instead comparing IA (that needs a degree of coordination between cells) with non-

coordinated baselines.

The third objective after the analysis of real world impairments is to explore the real

world opportunities. For this purpose, we exploit the user selection diversity. We propose

user selection methods that improve the performance of IA based transmission scheme.

3.2 System Model

We consider a MIMO-OFDM based downlink cellular system such as LTE [29], with I base

stations (BSs)(please note that in this document, the terms BS and cell are equivalent)

equipped with M transmit antennas each serving a single user equippment (UE) equipped

with N receive antennas with ri independent data streams on a single time-frequency resource

element. We refer to the ith UE as to the UE served by the ith BS. Each BS covers an area

of a cell and a UE is dropped randomly in the coverage area of the BS. An example of such a

system with I = 21 BSs is shown in figure 3.1. We assume the narrowband flat fading channel

between each pair of BS and UE. The OFDM based system lets us make this assumption

and carry out our analysis for single time-frequency resource element, whereas the simulation
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3. COORDINATED INTER-CELL INTERFERENCE ALIGNMENT

results will be given for a wideband system. The received signal by the ith UE, yi ∈ CN×1

is given as:

yi = HiiFisi +
I∑

j 6=i,j=1

HijFjsj + ni (3.1)

Where, Hii ∈ CN×M is the channel matrix between the ith BS and the corresponding UE,

Fi ∈ CM×ri is the precoding matrix used by the ith BS for the transmission of si ∈ Cri×1

vector of symbols corresponding to ri independent data steams, (
I∑

j 6=i,j=1

HijFjsj) is the in-

terfering term due to the transmission of the other (I − 1) BSs to their corresponding UEs

and ni ∼ CN(0, η2) is the N × 1 complex Gaussian noise vector. We assume total power

constraint at each BS, equal power is allocated to each stream and the precoding matrices

are with unit norm. The signal after receive combining, y
′
i ∈ Cri×1 is obtained as,

y
′
i = GH

i yi (3.2)

where, Gi ∈ CN×ri is the receive combiner matrix which is also unit norm.

Figure 3.1: Example of a system with I=21 BSs arranged in a hexagonal grid. The arrow

represents the antenna bore-sight

3.2.1 Coordination Clusters

To realize IA based transmit precoding in a large cellular network like in figure 3.1, we define

the sets of coordinating cells which are called clusters. The optimum cluster design is itself

a separate problem to deal with in a large network. Our target here is to find a nominal
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(a) Intra-Site cluster (b) Inter-Site cluster

Figure 3.2: Examples of clustering scenarios in a network of 21 BSs with Nc = 1 and K = 3

cluster size to realize IA. Therefore, we simply choose two types of static clusters to analyse

the performance of clustered network with IA based transmit precoding.

Clustering Requirements: As our primary focus is to analyse the IA based solution in

a large cellular network, the clustering arrangement is derived on the basis of the feasibility

conditions given for IA in [46]. Let the considered network of I BSs be divided into Nc

clusters. Let Πl (l = 1, 2, 3...Nc) be the set containing indices of BSs belonging to the lth

cluster such that |Πl|= K where, K represents the size of the cluster i.e. total number of

BSs in a cluster. When all the channel matrices in the cluster are full rank then the size of

a cluster is limited by the following inequality [46].

M +N > (K + 1)ri (3.3)

For the ease of analysis, we assume M = N = 2 and each BS can send at least ri = 1

independent data stream towards the desired UE. The required size of cluster for the feasibility

of IA can be found from equation (3.3) as K = 3. For the purpose of the analysis of IA in a

large cellular network, we limit ourselves to this cluster size because of two reasons. The first

is the number of alignment constraints which will increase quickly with the size of cluster.

The second is the high amount of CSI sharing among the cluster for the design of precoding.

High amount of CSI would also require the consideration of the feedback issues, the delay

tolerance at backhaul and backhaul-capacity.

Clustering Scenarios: Here we consider two types of clusters which can be differentiated

based on the coordination feasibility within the cluster. We refer to them as intra-site cluster
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3. COORDINATED INTER-CELL INTERFERENCE ALIGNMENT

and inter-site cluster. Figures 3.2(a) and 3.2(b) show the two cluster formations. With intra-

site cluster, three BSs belonging to the same site form a coordination cluster. CSI sharing

and centralized processing comes natural, as BSs belong to the same site. With inter-site

cluster, three BSs belonging to different sites form a coordination cluster. Clearly, this case

implies some high requirements on the backhaul. CSI sharing and precoding design can be

realized either by a centralized entity or by choosing a master BS within the cluster. Let the

ith BS belongs to the lth cluster. Now we can re-write equation (3.1) as,

yi = HiiFisi +
∑

∀j,j∈Πl,j 6=i
HijFjsj +

∑
∀m,m 6∈Πl

HimFmsm + ni (3.4)

where, (
∑

∀m,m 6∈Πl

HimFmsm) represents the interference term due to the out-of-cluster BSs.

3.3 Loss in Degrees of Freedom

As we have described the cellular network that we consider and the clustering requirements,

now we proceed towards the loss in DoF due to the OCI in the network. We characterize the

loss in DoF or the lower bound on maximum achievable DoF of any cluster Πl in a cellular

network which consists of Nc such clusters. The transmitters in the cluster are coordinating

to design IA based transmit precoding and the receivers are independently zero-forcing the

aligned interference.

Based on the “Corollary 1 of Theorem 3 ” in [47], the maximum achievable spatial DoF

on a time-frequency resource element in a cluster Πl are exactly characterized by MK/2.

Where, K is the number of Tx-Rx pairs in the cluster and M is the number of antennas on

each node. We extend these results further by formulating the following statement:

Theorem 3.1: In a cluster based cellular network, if interference alignment is applied

within a cluster to achieve MK/2 maximum achievable spatial DoF, then a cluster can be

considered as a point to point communication link even though the receivers within the cluster

are independent and distributed.

The proof of above theorem is given with the help of following corollaries.

Corollary 3.1.1: The lower bound on the maximum achievable spatial DoF of lth cluster

on single time-frequency resource element in a network of Nc uncoordinated clusters is given

by,

κl = (
MK

2
).

1

Nc
(3.5)
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where, κl represents the lower bound on maximum achievable DoF by lth cluster.

Proof: The proof is rather trivial. An orthogonal scheme over the clusters can achieve

this lower bound. Consider the orthogonal allocation of Nc time-frequency resource samples

to all the clusters such that in each resource only one cluster performs transmission. Then

the DoF of each cluster normalized over the Nc resources will be (MK
2 ). 1

Nc
.

Corollary 3.1.2: The lower bound on the maximum achievable spatial DoF of a clustered

cellular network on single time-frequency resource element is independent of the size of the

network and is given by,

% =

Nc∑
l=1

κl

=

Nc∑
l=1

(
MK

2
).

1

Nc

% = (
MK

2
) (3.6)

where, % represents the lower bound on maximum achievable DoF by the network of Nc

clusters. The proof of the corollary is straight forward.

Corollary 3.1.3: The theoretical upper bound on the maximum achievable spatial DoF

in a clustered cellular network is directly related to the number of clusters in the network and

is given by,

ς = (
MK

2
).Nc (3.7)

where, ς represents the theoretical upper bound on maximum achievable spatial DoF by the

network of Nc clusters. It implies that if for instance, the fading realizations in the network

occur coincidently in such a way that all the inter cluster interference in the network vanishes,

then all the clusters can achieve their maximum DoF when IA is applied within the cluster.

On the other hand if the coordination between all the nodes of the network is possible and

IA is feasible in the network, then as per [47] there will be (KNc) Tx-Rx pairs and (MK
2 .Nc)

DoF can be achieved. This also proves Theorem 3.1. The Dirty Paper Coding (DPC) [48]

can achieve this DoF theoretically but, practically there is no scheme available at hand which

achieves this limit. Moreover, in the absence of such a scheme it is not an easy task to

characterize the DoF or the capacity of such network. The achievable system performance

then depends upon the fading realizations in the network. Therefore, in the next sections,
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3. COORDINATED INTER-CELL INTERFERENCE ALIGNMENT

we characterize the rate expression for this network with the help of transceiver design and

heuristically find out the system performance.

3.4 Transmit Precoding using Interference Alignment

The IA based transmit precoding scheme [5] adjusts the interference space at the ith UE,

such that the UE has enough DoF to cancel the interference. For example, assuming ri be the

number of independent data streams for the ith UE, then the interference signal space should

be confined to N−ri dimensions. In other words, the transmitters in the coordination cluster

Πl design their precoding matrices for each time-frequency resource element in such a way

that the interference at the undesired receivers in Πl is aligned in a subspace non overlapping

to the desired signal subspace. We refer to [5] for a detailed description of the IA concept.

In the following, we only briefly recall the precoding-matrix and receiver-matrix construction

for the case of a coordination cluster with K = 3 BSs, ri = 1 and M = N = 2, as this case is

relevant for our coordination setup described in subsection 3.2.1. Let Πl = {i, j, k} be the set

representing the cluster of coordinating BSs and contains their indices. The BS index also

corresponds to the UE served by the BS.

• The alignment condition for the ith UE side assuming BSs j and k as interferers can

be written as:

span(HijFj) = span(HikFk)

span(Fj) = span(H−1
ij HikFk) (3.8)

The corresponding conditions for UEs j and k can be given with an equivalent formulation.

• The condition for the jth UE:

span(HjiFi) = span(HjkFk)

span(Fi) = span(H−1
ji HjkFk) (3.9)

• The condition for the kth UE:

span(HkiFi) = span(HkjFj) (3.10)
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By combining the alignment conditions in (3.8), (3.9) and (3.10) we get:

span(HkiH
−1
ji HjkFk) = span(HkjH

−1
ij HikFk)

span(Fk) = span(H−1
ki HjiH

−1
jk HkjH

−1
ij HikFk) (3.11)

Let E = H−1
ki HjiH

−1
jk HkjH

−1
ij Hik be the N ×M matrix with N = M then (3.11) can be

written as:

span(Fk) = span(EFk) (3.12)

From (3.12) Fk ∈ CM×rk can be obtained by taking the dominant rk eigenvectors of E.

With the help of Fk, (3.8) and (3.9) the calculation of Fi ∈ CM×ri and Fj ∈ CM×rj is

straight forward. The design of precoding matrices enables us to align the interference on

the undesired UEs within the cluster. For example, the interference from the jth and kth

BSs on the ith UE will be aligned. To ensure the suppression of the aligned interference at

the receiver of the ith UE, weights for zero-forcing receiver are computed in [5] using the

following conditions:

GH
i HijFj = 0,∀j 6= i (3.13)

rank(GH
i HiiFi) = ri (3.14)

Under the assumption of non-degenerate (full rank) channels, the condition in (3.13) will

always be fulfilled. Some parts of signal energy present in the interference space will be lost

due to zero-forcing operation. However, due to rich-scattering environment enough energy

for detection will be available in a non overlapping desired signal space and the condition in

(3.14) will also be almost surely satisfied. Let HZFi ∈ CN×(ri+rj) be the combined matrix of

the effective serving channel and any one effective interfering channel (from the cluster) seen

by the ith UE.

HZFi =
[

HiiFi HijFj

]
Let H†ZFi ∈ C(ri+rj)×N be the pseudo inverse of HZFi and it can be written as:

H†ZFi = HH
ZFi(HZFiH

H
ZFi)

−1 =
[

GZF1 GZF2

]T
GH
i = (GZF1)T (3.15)
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We call the receiver algorithm fulfilling the conditions in (3.13) and (3.14) as ZF-IA. It will

be used only for IA based transmit precoding. We emphasize that in the following we will

refer to IA as a precoding technique independently of the receiver technique used. In section

3.6 we will discuss in detail about different receiver algorithms available at hand.

3.5 Baseline Transmit Precoding Schemes

In this section we present the baseline transmit precoding schemes. We have considered two

types of baselines. One is based on the clustered network processing like IA and the other is

based on the single cell processing.

Coordinated Precoding based on SLNR: We consider a state-of-the-art Coordinated

Precoding (CP) scheme which is applied in [45, 49] based on Signal to Leakage-Interference

and Noise Ratio (SLNR) criterion given in [17]. The optimization function can be written as:

Fi = arg max
Fi:||Fi||2=1

||HiiFi||2∑
∀j∈Πl,j 6=i

||HjiFi||2+Mη2
(3.16)

Where, Hji ∈ CN×M is the channel between the ith BS and the UE served by the jth BS, Πl

is the set of indices of BSs belonging to the same cluster. It is shown in [17] and references

therein that the optimization in (3.16) is a generalized eigenvalue problem for which the

solution is given as:

Fi = ξ

 ∑
∀j∈Πl,j 6=i

HH
jiHji +Mη2IN

−1

HH
ii Hii

 (3.17)

The function ’ξ’ gives the matrix of ri dominant eigenvectors. The power constraint and

normalization of the precoder has been taken care of. We emphasize that, in general, CP via

SLNR is more flexible than the IA with respect to the constraints on the number of BSs in

the coordination set. However, in this work we fix the number of BSs and the data streams

per UE for both the schemes then the amount and type of feedback required for the design

of their precoders is the same. This gives us a fair comparison between the performance.

Uncoordinated Maximum Ratio Transmission: For the sake of comparison, we

have considered the well known single cell, single user eigen-beamforming based transmission

for which the optimization function can be written as:

Fi = arg max
Fi:||Fi||2=1

||HiiFi||2 (3.18)
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The optimal solution to the (3.18) can be found by taking the ri dominant right singular

vectors of the desired channel which is obtained through Singular Value Decomposition (SVD)

of Hii. Please note that in the following we refer to single cell processing as SVD only with

respect to the precoding scheme irrespective of the reciever technique.

3.6 Linear Receiver Design

We consider four different types of receivers. The objective of this receiver study is to capture

real-world effects into our analysis. As a matter of fact, commercial UEs are characterized

by large differences between receiver implementations, ranging from very simple algorithms

implemented in low-end terminals to sophisticated algorithms implemented in high-end ter-

minals.

Signal Maximization: Based on the maximization of the desired signal power at the

receiver (using multiple antennas) we consider the well-known Maximum Ratio Combining

(MRC) receiver for which the receive matrix is calculated as follows:

GH
i = (HiiFi)

H (3.19)

Interference Minimization: We assume that each UE is able to perfectly estimate

the total interference covariance matrix Qi ∈ CN×N which can be written as the sum of the

Intra Cluster Interference (INCI) covariance matrix Ri(INCI) ∈ CN×N and the OCI covariance

matrix Ri(OCI) ∈ CN×N .

Qi = Ri(INCI) + Ri(OCI) (3.20)

Where, Ri(INCI) is given by:

Ri(INCI) =
∑

∀j,j∈Πl,j 6=i
E[(HijFjsj)(HijFjsj)

H ] (3.21)

We assume that the HijFj and HimFm are known at the receiver. Moreover, independent

data streams are transmitted towards each UE and the data streams from interfering BSs are

also independent which leads to E[sjs
H
j ] = (Pj/rj)Irj , where, sj ∈ Crj×1, rj is the number

of independent streams transmitted by the BS j, Irj represents the rj × rj identity matrix

and Pj is the total power transmitted by BS j. We assume unit power transmission by all
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the BSs (i.e. Pj = 1) and rj = 1. With these assumptions we proceed further to simplify

Ri(INCI) as follows:

Ri(INCI) =
∑

∀j,j∈Πl,j 6=i
(HijFj)E[sjs

H
j ](HijFj)

H

Ri(INCI) =
∑

∀j,j∈Πl,j 6=i
(HijFj)(HijFj)

H (3.22)

Similarly, we can write Ri(OCI) as follows:

Ri(OCI) =
∑
∀m 6∈Πl

(HimFm)(HimFm)H (3.23)

Substituting equations (3.22) and (3.23) in (3.20) we get:

Qi =
∑

∀j∈Πl,j 6=i
(HijFj)(HijFj)

H +
∑
∀m 6∈Πl

(HimFm)(HimFm)H (3.24)

The desired signal can be recovered by projecting the received signal on to the subspace

occupied by minimum interference. The subspace spanned by the eigenvectors corresponding

to the ri lowest eigenvalues of Qi is the subspace where we have minimum interference [50].

Hence, the receiver matrix can be calculated as follows:

GH
i = (arcξ(Qi))

H (3.25)

The function arcξ provides the eigenvectors corresponding to the ri lowest eigenvalues of Qi.

As we are not perfectly zero forcing the interference but only minimising it so we call it the

Interference Minimization (IM) receiver.

SINR Maximization: At medium and high SNR values, we expect to get high perfor-

mance with IM receiver. However, for low SNR values, the desired signal at the receiver is

weak. In this case a better optimization is to maximize the output SINR at the receiver. This

objective can be achieved by Minimizing the Mean Square Error (MMSE) in the detected

symbol at the receiver. This is a well known objective function and the solution is given by:

GH
i =

((
Qi + η2IN

)−1
HiiFi

)H
(3.26)

Like the IM receiver, the receive matrix in (3.26) requires ideal calculation of Qi. With this

respect we name this as MMSE-I receiver. Calculating the perfect interference covariance

depends upon the method of interference estimation at the receiver. One method could be
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to estimate the interference components via the corresponding reference signals (when pilots

are orthogonal). This task is not trivial in real world receivers, for different reasons. First,

estimating the channel of a high number of interferences involves a high computational-

complexity and a high overhead due to the reference signals. Second, the strength of the

reference signals received from weak interferences, usually does not allow a precise estimation.

Third, the interference is by nature highly time-variant, in particular when multiple antennas

are used at the base station side. To incorporate the influence of these problems in practice,

we compute an approximated total interference covariance matrix Q̃i ∈ CN×N such that:

Q̃i = diag(Qi) (3.27)

Where, Q̃i is a diagonal matrix where each diagonal element represents the total average

interference power received by the corresponding receive antenna element. The expression

for Gi with approximated interference information can be written as follows:

GH
i =

((
Q̃i + η2IN

)−1
HiiFi

)H
(3.28)

We refer to the receiver given by equation (3.28) as MMSE-A.

3.7 CSI Sharing Requirements

We assume that there is perfect CSI available in the coordination cluster. Both the IA

algorithm described in section 3.4 and the CP via SLNR algorithm described in section 3.5

require a certain degree of CSI sharing between the BSs in the same coordination cluster.

For IA it is assumed that a logical central unit gathers the channel samples within Πl where,

Πl has already been defined as the set of indices of BSs belonging to a given coordination

cluster. This means that the calculation of the IA precoding matrices must be carried out

in this logical central unit and cannot be realized using a distributed implementation. For

CP via SLNR it is required that the BS i gathers the channel samples Hji, ∀j ∈ Πl, j 6= i.

Based on this information, the precoding matrix design can be realized in a distributed way,

without the need of any logical central unit. In other words, each BS is able to calculate its

precoding coefficients independently from the other BSs in the coordination cluster.
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3.8 Performance with Ideal Channel Estimation

In this section, we present the heuristic evaluation of the ergodic capacity of the clustered

cellular network with IA based precoding applied within each cluster. At first we show

the impact of the receive algorithm on the performance of transmission scheme and on the

achievable DoF in a cluster. Then we further strengthen our understanding by analysing

this impact in a clustered cellular network. Our second focus is on the impact of OCI. This

causes the loss in alignment gains and eventually loss in DoF. All the results are based on

the availability of perfect CSI at the BSs. The effects of imperfect CSI will be considered in

section 3.9.

3.8.1 Simulation Assumption and Parameters

The performance evaluation is based on a system level simulator which is compliant (mainly

in deployment, propagation scenarios, channels generation) with 3GPP [29]. For the 3 BSs

case, we use one site with 3 sectorized antennas with inter antenna angle of 120 ◦. This is

specified as the baseline scenario for the evaluation of clustered based transmission scheme in

[29]. For the 21 BSs case, a central site is surrounded by 6 other sites arranged in a hexagonal

gird. In order to obtain reliable results, we apply wraparound with 6 mirrors system. The

salient simulation parameters are depicted in Table 1. For the complete set of simulation

parameters we refer to [29].

Parameters Values

TX x RX Antennas 2 x 2

Channel Model Spatial Channel Model, Urban Micro

Channel Structure 600 subcarriers used, subcarrier spacing f = 15 kHz

Transmission Layers 1

Speed 3 km/h

Table 3.1: Salient simulation parameters for the performance evaluation

During a simulation run several Monte Carlo drops are performed. At the start of a drop,

the position of all the UEs is randomly chosen with uniform distribution. Furthermore, the

realization of all time and frequency selective spatial channels is calculated according to [34].

During each drop an event driven simulation is performed with sufficient duration in order to

obtain reliable results. All channels are sampled with sufficient resolution in frequency and
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time. The number of transmit layers is set to one. The UEs are scheduled randomly on each

resource block. The SINR for unit transmit power after the receiver processing is measured

for each allocated OFDM resource element as given in equation (3.29). A Mutual Informa-

tion Effective SINR Mapping (MIESM) based virtual decoder is used in order to translate

the SINR time/frequency samples delivered by the receiver into BLER. The adaptation of

Modulation and Coding Schemes (MCS) to the channel quality (link adaptation) is performed

ideally, i.e. the decision for a certain MCS is done at the reception time. However, for the sin-

gle site case we preferred a Shannon estimation of the throughput due to the extremely high

SINR values that would cut the performance differences between the investigated algorithms

when using our virtual decoder, even when choosing the highest possible 64-QAM based MCS

with the highest code rate. Perfect channel estimation and instantaneous feedback of CSI

without delay to all the BSs in a cluster is assumed. Furthermore, it is also assumed that

the feedback is error free. We emphasize on the fact that for comparative analysis, all the

baseline schemes are also implemented in the same simulation system and evaluated like IA.

3.8.2 Spectral Efficiency Evaluation

Assuming single stream transmission with unit power by all the BSs in the network, the SINR

for ith UE after receive combiner can be written as:

SINRi =
|GH

i HiiFi|2∑
∀j∈Πl,j 6=i

|GH
i HijFj |2+

∑
∀m6∈Πl

|GH
i HimFm|2+||GH

i ||2η2
(3.29)

In case of SINR to Shannon Mapping, the Shannon formula is used to calculate the rate for

the ith UE as Ri = log2(1 + SINRi) and the network spectral efficiency in terms of mean

cell rate is given as:

Rsystem =
1

I

I∑
i=1

Ri (3.30)

When the IA is applied with zero-forcing receiver then the expression in (3.29) will be reduced

to the following:

SINRIA−ZFi =
|GH

i HiiFi|2∑
∀m 6∈Πl

|GH
i HimFm|2+||GH

i ||2η2
(3.31)

In case of only 3BSs, the OCI in equations (3.29) and (3.31) is zero.
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3.8.3 Impact of Receivers

At first, we consider the scenario where a cluster is based on a single site (with only 3 BSs

as shown in figure 3.2(a) and take IA only as a transmission technique. We analyse the

performance of five different receiver algorithms given in section 3.6 along with the zero-

forcing receiver.

Figure 3.3: Performance comparison of receivers with IA for 3BSs

Figure 3.3 shows the CDF of mean cell rate. Due to the absence of OCI and due to the ideal

and unlimited Shannon (SINR-to-RATE) mapping, we obtain a very high absolute system

performance. We observe that, in the absence of OCI, the three receiver techniques namely

ZF-IA, MMSE-I and IM overlap with each other. All these three receivers perfectly calculate

and suppress the aligned interference and achieve the optimum performance. However, the

other two receivers, MMSE-A and MRC are far away from reaching the optimum performance

due to their inability to suppress the aligned interference. This outcome indicates that in

a practical system, IA can be applied when the network would have the knowledge of the

receivers’ architecture. Moreover, the performance of MMSE-A shows that the optimum

performance is highly sensitive to the accuracy of the estimated interference at the receiver.

For further results on the comparison of IA with other precoding schemes under different

receiver algorithms we refer to [18].

3.8.4 Impact of Residual Unaligned Interference

In the absence of OCI (due to single site network), the receiver is perfectly able to suppress

the well aligned intra cluster interference. However, in a large cellular network there will
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be OCI. The presence of unaligned OCI results in a residual interference part in the desired

signal space even after the receive processing. This is the main reason for the loss of DoF

in a clustered network. The residual unaligned interference part behaves like an increase in

the total noise floor. Therefore, at first we analyse the impact of residual unaligned OCI on

the performance of precoding schemes. For this purpose, we model a hypothetical unaligned

residual OCI in the simulation of a 3 BS single site cluster with the help of a simple input

parameter “Ψ”. The value Ψ = 0 dB represents no unaligned interference whereas higher

values of Ψ represent otherwise.

Figure 3.4: Impact of OCI on the performance of precodings with MMSE-I receiver

Figure 3.5: Mean cell rate CDF comparison of receivers with IA for 21BSs

Figure 3.4 shows the loss in mean cell rate performance in fully coordinated 3 BSs scenario

with the increase in Ψ for IA and other baselines using the MMSE-I receiver. We have chosen

this receiver as it is optimum for all precoding schemes. We can clearly see that for lower

values of Ψ, IA completely outperforms other precodings because the UEs in the cluster face
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Figure 3.6: Performance comparison of different precoders with intra and inter site clustering

in a 21 BSs scenario and under the assumption of a MMSE-A receiver

only INCI which can be perfectly aligned and suppressed. On the other hand, for higher

values of Ψ, the performance is even worse than the SVD based single cell processing due to

the fact that the system is now limited by the residual unaligned interference. In this case

alignment and suppression of the INCI is not enough.

Now we consider the impact of OCI on the performance of IA precoding in 21 BS scenario

with intra site clustering and with different receivers. Figure 3.5 presents the simulation

results which clearly show that MMSE-I and IM receivers completely outperform the ZF-IA

algorithm. The ZF-IA suppresses successfully only the intra cluster interference. Hence we

can see that it approaches the performance of MMSE-I and IM for 75-percentile and above.

This region of CDF represents the users near the cell center and with high signal strength

which face mostly the intra cluster interference.

For the impact of OCI on the performance of all the precodings in small and large cellular

networks we refer to the results in our publication [18]. For the sake of practical importance,

here we only report the results in large cellular networks with MMSE-A receiver and the two

clustering scenarios.

Figure 3.6 shows the tradeoff between mean cell rate and cell border throughput for the

simple, but realistic, MMSE-A receiver. Here we compare the performance for the IA and

SLNR precoders and for intra and inter site clusters as well as for the uncoordinated SVD

precoder. We note that SLNR shows the best mean cell rate performance. As a matter of

fact, with intra site clustering and SLNR precoding, we obtain approx. 25% gain in mean

cell rate over SVD. However, SVD outperforms the other schemes on cell edge performance.
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Concerning IA, it is outperformed by the other techniques. However, here we have considered

fixed clustering and random user scheduling. We expect to have higher gains through IA when

efficient clustering and user scheduling algorithms are used. In section 3.10 we address the

topic of user selection for the enhancement in the performance of IA.

3.9 Performance with Channel Estimation Errors

Until now our focus in this chapter was to analyse the effect of OCI, therefore, we have

assumed that the perfect CSI is available to design the transmit precoding. However, in

practice, the availability of ideal CSI at the transmitter is not possible due to the inherent

feedback delays and channel estimation errors. Therefore, in the following we intend to

perform a system level simulation based assessment of the performance of IA and other

baselines including the effect of channel estimation errors. The very initial study dealing

with the CSI imperfections for IA can be found in [51]. A very good information-theoretic

ground is given there for the performance of IA with imperfect CSI using zero-forcing receiver

and an empirical model of erroneous channels applied on Gaussian channels. In contrast to

[51], our study gives a detailed insight of the performance of IA considering near-to-practical

issues by realizing a pilot-aided OFDM based downlink system. Another recent work over

the impact of imperfect CSI on the performance of IA can be found in [52]. This work is

focused on a special parametric study for the performance of IA with correlated channels

using a zero-forcing receiver.

The focus of our study is to assess and compare the performance of IA with imperfect CSI

at the transmitter due to the channel estimation errors in a receiver. We consider a general

scattering environment where we have the probability of both LOS and NLOS reception with

uncorrelated channels. At first we derive a simple channel estimation error model for system

level simulations. This model is an extension of the model introduced in [45]. We apply this

model to the channels generated by the spatial channel model [34] which considers realistic

effects of environment in the simulations and is also recommended by 3GPP. Additionally,

our model provides the possibility to realize the availability of instantaneous and average

information of interference to be used by the estimator. In practice, the performance of real

estimators is influenced by this information. Furthermore, we have evaluated and compared

the impact of estimated interference at the receiver by realizing two different MMSE based

receiver algorithms as given in subsection 3.6. The receiver study circumscribes the fact
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that in reality we have a range (from efficient and complex to simple) of receive algorithms

implemented in high-end and low-end user terminals. Moreover, we have also compared the

performance of IA with other baseline coordinated and non-coordinated transmit precoding

schemes to state that when and where it makes sense to use IA for transmission.

For the complete description of the model and detailed assessment of the performance we

refer to our publication [19] and the master thesis report in [53]. With the help of selective

results, here we show the sensitivity of coordinated alignment to the imperfections in the

CSI.

Figure 3.7 presents the performance comparison of IA with other baselines in a scenario

with 3 BSs and MMSE-I receiver with two bias factor models (Inst-β and Avg-β) for channel

estimation as described in [19]. Notice that, the percentage loss in the performance of IA with

CSI imperfections is higher than other baselines. With Inst-β based model the performance

of IA is similar to the SVD whereas with Avg-β, IA is outperformed by the SVD. It implies

that to utilize the gains of IA we require very high channel estimation accuracy. It appears

from the figure that in this scenario, SLNR based precoding outperforms others in non-ideal

conditions and with any model of estimation errors. The number of effective pilots considered

here for estimation is T = 10. This parameters plays an important role in channel estimation.

For further results illustrating the impact of effective pilots on the performance we refer to

our publication [19] and the master thesis report in [53].

Figure 3.7: Performance of precoders with different scaling factors, T=10

The results have shown that IA promises very high gains and outperforms the other trans-

mit precoding strategies with MMSE-I receiver algorithm in all SINR regions with perfect
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CSI. However, these gains are receiver dependent and even with perfect CSI, IA is outper-

formed by other precodings if MMSE-A receiver is used. The MMSE-I receiver, relative to

MMSE-A receiver comes under very high loss with channel imperfections but still outper-

forms the MMSE-A receiver. The comparison of the two bias factor models shows that the

channel estimation errors can be reduced if bias factor can be adjusted to the instantaneous

situation of the channel. The comparison of the precoding schemes shows that even with

MMSE-I receiver, the IA is outperformed by SLNR with channel imperfections in all SINR

regions under channel conditions with a nominal value of T=10. Another strong conclusion

can be drawn that IA can only be applied in very limited practical scenarios with very low

or almost zero mobility as it requires high estimation accuracy.

3.10 User Selection Diversity for IA

Until now our focus was the evaluation of the loss in the DoFs and the system performance

due to the unaligned OCI and channel impairments in a clustered cellular network. Now

we shift our focus towards methods that bring the improvement in achievable performance.

On one hand, the existence of multiple active users in a network with the limited resources

(e.g. frequency spectrum) increases the probability of congestion and delays. On the other

hand, multiple users provide an additional opportunistic dimension (selection diversity) for

the enhancement of system performance in the presence of limited resources. For the later

reason, the user selection in a multi user system is of paramount importance. Therefore, in

this section we ignore the practical limitations and put our efforts in finding the achievable

performance limits of IA based precoding with user selection algorithms.

When the number of users is higher than the available radio resources, one of the easiest

way is to select the user randomly or in a round robin fashion. However, random selection

of users is not an optimum way to improve the system spectral efficiency. Hence in practice,

to increase the system spectral efficiency and to maintain a given user fairness, the users

are selected for transmission on the basis of a given metric. For this purpose, the decision is

made by the network on the basis of a selection criteria. For example, to improve the spectral

efficiency of the system, one of the criteria is to select the user with best radio channel quality.

In principle, IA is applied with the help of BS-coordination, several user selection methods

have been proposed in literature for coordinated-multi cell system (please refer to [54] and

references therein). We emphasize that most of these studies focus on user selection methods
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either with zero-forcing beamforming, eigen beamforming or random beamforming. To the

best of our knowledge there are no studies which have considered strict IA based precoding

from [5] with user selection diversity in a cellular network given in section 3.2. However, the

contributions in [55, 56, 57] show that the trend in research is to adopt user selection diversity

for opportunistic interference alignment or mitigation. The work in [55] uses zeroforcing

beamforming on a set of selected users in a Coordinated Multi Point (CoMP) setup with

two cells. In [55], the users are selected jointly in the coordinated cluster based on channel

norms. The contribution in [56] uses random beamformers for all the users in the system and

then perform user selection for opportunistic inter cell interference alignment. An iterative

algorithm to design optimal precoders and receiver filters in conjunction with user selection

for a cellular network is proposed in [57].

The contributions in some of the studies even consider joint user selection and clustering

problem [58] but our objective is to realize the gains of user selection diversity when the clus-

ters are fixed. For this purpose, we analyse different user selection methods. These methods

can be differentiated with respect to the complexity and the level of feedback information

required at the BS for the evaluation of selection criteria.

3.10.1 System Assumptions and Problem Formulation

Let us consider the same system as given in section 3.2 with I BSs divided into Nc clusters

each comprising of K = 3 BSs each equipped with M = 2 antennas and serving UEs with

ri = 1 data stream which are equipped with N = 2 antennas. We extend our assumption

towards the number of active users present in the coverage area of each BS. Let Nu be the

number of active users to be served by each BS (Nu > 1). Given these system dimensions,

the number of users that a BS can serve on a single time-frequency resource is constrained by

the condition in (3.3). It means that each BS can serve one UE out of Nu for the transmission

on one resource element.

In the following we define the following sets containing the indices of the users:

• Ut: all active UEs in the system with |Ut|= INu

• St: all selected UEs in the system for one transmission, St ⊆ Ut with |St|= I

• Uc: all active UEs in a cluster, Uc ⊂ Ut with |Uc|= KNu

• Sc: all selected UEs in a cluster for one transmission, Sc ⊆ Uc, Sc ⊂ St with |Sc|= K
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• U: all active UEs to be served by a BS, U ⊂ Uc ⊂ Ut with |U|= Nu

• S: index of the UE selected by a BS for one transmission, with |S|= 1 and such that

S ⊆ U, S ⊂ Sc ⊂ St

As our objective is to maximize the system spectral efficiency, we optimise the system

sum rate for the optimal selection of users for each transmission. The optimisation problem

can be written as follows:

St = arg max
St⊆Ut,|St|=I

Rsystem

St = arg max
i∈St,St⊆Ut,|St|=I

I∑
i=1

Ri

St = arg max
i∈St,St⊆Ut,|St|=I

I∑
i=1

log2(1 + SINRi) (3.32)

The expression of SINRi in (3.29) expalins that the optimization in (3.32) firstly requires

the full cooperation in the system which is difficult to realize practically. Therefore, in the

following we provide reduced complexity suboptimal solutions that can be used to improve

the system performance.

3.10.2 User Selection Algorithms

We divide our user selection methods in two different categories. The first category is based

on the selection within the cluster. We assume that the Central Unit (CU) or the master BS

has information of all users in the cluster and it performs the user selection. Here we further

differentiate between exhaustive and greedy selection within the cluster. The second category

assumes that each BS selects the user for transmission and informs the CU for the design of

precoding. These methods simply differ on the basis of the trade off between the performance

(spectral efficiency and user fairness) and the overhead (computational complexity, amount

of required information and delay). At first we consider our first strategy where the selection

is being done by the CU and all the active UEs in the cluster provide the required information

to CU through their serving BSs.

Exhaustive Selection In the Cluster (CL-ER)

We simplify the problem in (3.32) by considering the maximization of rate in the cluster

only. We consider the user selection in lth cluster, the optimisation problem is reduced to
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the following form,

Sc = arg max
i∈Sc,Sc⊆Uc,|Sc|=K

K∑
i=1

R̂i

Sc = arg max
i∈Sc,Sc⊆Uc,|Sc|=K

K∑
i=1

log2(1 + ŜINRi) (3.33)

where, R̂i and ŜINRi respectively represent the rate and SINR estimated by the CU before

the transmission for the UE i ∈ Sc to be served by the BS i in lth cluster. The expression

for the post receiver estimated ŜINRi is written as:

ŜINRi =
|ĜH

i HiiFi|2∑
∀j∈Πl,j 6=i

|ĜH
i HijFj |2+Ω2

i + ||ĜH
i ||2η2

(3.34)

The matrices (Fi,Fj) ∈ Cri×M are the precoding matrices that can be computed in the

cluster for the considered combination as in section 3.4. The matrix Ĝi ∈ CN×ri is the

receive matrix estimated by the CU for the ith UE. We will discuss about Ĝi later in this

section but first let us consider the term Ω2
i in equation (3.34). This term represents our

approximation for the OCI. In principle, estimation of this term for the current transmission

is a coupled problem as the clusters are uncoordinated and it depends upon the users selected

in the other clusters. Therefore, we use this quantity under the following possible assumption

which is easily realizable in practice.

• Average Out-of-Cluster Interference : The average signal power received by UE i

from any arbitrary interfering BSs depends upon the long term losses which are mainly

distance dependent path-loss, antenna gains, penetration losses and shadow fading. For

a UE moving with a slow speed, this power varies over a longer period of time. Hence,

whatever is the set of selected UEs in the out-of-cluster BSs in the current transmission

time, in average this power would remain the same if the UE is moving with a slow

speed. Let γim denotes the average received interference power by the ith UE from the

mth BS, the total average OCI received by the ith UE is represented by Γi and is given

by:

Γi =
∑
∀m 6∈Πl

γim
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The residual OCI after the receiver processing is given by:

Ω2
i = ||ĜH

i ||2Γi (3.35)

Now we consider the estimation of Ĝi at the CU. We assume on the basis of the

standardized systems like LTE, that a BS is aware of the receiver algorithm used by its

served UEs. In practice, this assumption is realized by defining UE-categories as given

in [59]. In fact a UE with multiple antennas falls in a category which can be further

classified by the receiver algorithms. In previous section we have already evaluated the

performance of IA based precoding with different receiver algorithms. For the purpose

of user selection, we consider only the receiver algorithm based on SINR maximization

and compute the expression for receive vector Ĝi as follows:

Ĝ
H
i =

((
Ri(INCI) + 0.5ΓiIN + η2IN

)−1
HiiFi

)H
(3.36)

Remarks about the Computational Complexity and Amount of Feedback : In the above para-

graphs we have presented the user selection method that optimizes the system performance.

However, it comes with some cost. Each active UE in the system has to send the required CSI

to the CU. Moreover, for the estimation of rate, each has to send an extra OCI information.

The CU has to perform an exhaustive search over all possible combinations in the cluster.

For this purpose, at first the CU has to calculate the receive vectors and then the rates for

all the UEs with respect to all possible combinations in the cluster. With Nu number of

active UEs per BS, there will be (Nu)K number of possible combinations. If Nu >> K the

exhaustive search would become prohibitive.

Greedy Selection In the Cluster

In the sequel we provide a solution to simplify the complexity problem. We propose a

greedy approach based on [16, 60] to reduce the size of the search space. The main idea is to

select the first UE in the cluster through a different metric. Then further UEs are selected to

maximize the expected sum rate as in equation (3.33). With the greedy approach, the total

number of combinations is reduced to (Nu)(K−1) In the following, we present three possible

criteria for the selection of the first UE.

• Round Robin Selection (GR-RR) The first user is selected simply by round robin

approach. We refer this method as Greedy Round Robin (GR-RR). This method is

very simple and it would provide high fairness but we expect a decrease in spectral

efficiency.
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• Proportional Fair Selection (GR-PF) In order to improve both fairness and spec-

tral efficiency, we select the first user with proportional fair metric. We refer this

method as Greedy Proportional Fair (GR-PF). The details of the metric will be given

in the following.

• Maximum Channel Norm based Selection (GR-CN) This method simply takes

the user with highest instantaneous channel gain in the cluster. We refer this method

as Greedy Maximum Channel Norm (GR-CN).

Cell based Selection

Now we consider our second selection strategy in which each BS selects its own users

(please note that in this document, the terms BS, sector and cell are equivalent). For this

purpose, we simply process the selection metric in each BS over the set U. This for sure

reduces the computational complexity as well as the amount of information sharing in the

system. As there will be no combinatorial problem to deal with, so a simple sorting process

over U with respect to the selection metric in each BS will be enough. The following metrics

are considered.

• Cell based Round Robin Selection (BS-RR) The users are selected simply by

the round robin approach applied by each cell. We denote this method by (BS-RR).

Only the selected users send the required information in the feedback to each serving

BS. With respect to the complexity and feedback overhead, this is the simplest user

selection method. It provides high fairness but no gains in spectral efficiency from

selection diversity. This method serves as one of our baseline method.

• Cell based Proportional Fair Selection (BS-PF) In this method all the users in a

BS (sector or cell) send the channel information to the serving BS and the BS computes

the proportional fair metric. We denote this method as (BS-PF). The user with the

highest metric is selected as through sorting process. The selection can be written as,

S = arg max
i∈S,S⊂U,|S|=1

αi (3.37)

where, αi represents the proportional fairness weight of the ith UE among the set U

and is given as:

αi =
R
′
i

1 +Ri(avg)(t)
(3.38)
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Where, R
′
i represents the possible rate of UE i in current transmission. The R

′
i is

estimated only from the channel information without considering any precoding and

receiver algorithms as R
′
i = log2(1 + ν̃i), where, ν̃i is given as follows:

ν̃i =
||HH

ii Hii||2∑
∀j∈Πl,j 6=i

||HH
ijHij ||2+

∑
∀m6∈Πl

||HH
imHim||2

(3.39)

The Ri(avg)(t) is the mean rate of UE i until the current transmission time t. The unit

summation in the denominator helps to schedule the UEs with R
′
i when Ri(avg)(t) is

zero. The same metric is used for the selection of first UE in GR-PF.

• Cell based Maximum Channel Norm Selection (BS-CN) This method simply

takes the user with highest instantaneous serving channel gain in the cell. We denote

this method as (BS-CN).

S = arg max
i∈S,S⊂U,|S|=1

||HH
ii Hii||2 (3.40)

This is highly unfair but we expect it to provide better spectral efficiency. The same

metric is used for the selection of first UE in GR-CN.

3.10.3 Performance Analysis

Here we demonstrate the performance of the user selection algorithms presented in previous

subsection with the help of system simulations. We have simulated the same system as

described in subsection 3.8.1 with ideal channel assumptions and only with MMSE-I receiver.

As earlier, we consider two types of static clustering which is intra-site cluster and inter-site

cluster. There are 7 sites in the simulation area each with three cells. We distribute Nu users

uniformly over the coverage area of each BS. Full buffer traffic is modelled which means there

is always data available at the BS for each active UE. In each transmission, at first the user

selection is performed and then the precoding is designed for the selected set of users.

Figure 3.8(a) and figure 3.8(b) show the mean cell rate performance with all the user

selection methods respectively for intra-site and inter-site clusters. Notice that there is a

great improvement in the performance with user selection in both clustering approaches.

The best spectral efficiency is achieved by CL-ER method. The performance with GR-CN

is very close to the CL-ER which means with a little compromise in the performance we can

reduce the complexity and overhead. The percentage gains with user selection methods are
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(a) Mean cell rate intra-site cluster (b) Mean cell rate inter-site cluster

(c) CDF of mean UE rate intra-site cluster, 8 UEs (d) CDF of mean UE rate inter-site cluster, 8 UEs

Figure 3.8: Performance of IA with different user selection methods

higher in intra-site clustering than inter-site clustering. Because of the hexagonal arrangement

and sectorized antennas, intra-site clustering benefits most from IA based precoding. With

uniform distribution of users, a sector of the same site is mostly the strongest interferer and

this helps to align and suppress the interference in intra-site clustering.

Now let us focus on figure 3.8(a). The performance of BS-CN is almost overlapping

the GR-PF and BS-CN outperforms the GR-RR. It implies that if we target the system

spectral efficiency, then BS-CN can provide very high performance with negligible overhead.

However, BS-CN neglects the user fairness. The complexity of GR-PF is higher than BS-

CN and GR-RR and the performance gain is marginal. Hence for intra-site clustering, we

recommend to use GR-RR which provides better user fairness with marginal compromise on

system performance as well as it provides lower computational complexity. The BS-PF and

BS-RR do not provide very high system rate but we expect to get higher user fairness with
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these methods.

If we focus on figure 3.8(b), the behaviour of PF based methods are different than in figure

3.8(a). The GR-PF is close to GR-CN and BS-PF is very close to BS-CN. This behaviour

could be understood with the influence of clustering approach on equation (3.38). In the

light of these results, we state that with inter-site clustering, GR-PF and BS-PF provide

considerable system performance with acceptable user fairness maintaining lower complexity.

Now we analyse the mean UE rates with all the selection methods to have a view on the

user fairness. Figure 3.8(c) and figure 3.8(d) show the initial part of the CDF of mean UE

rates (8 active UEs per cell) with all the user selection methods respectively for intra-site

and inter-site clusters. We observe similar trend for all the selection methods in both figures.

The drop duration for these results is 1 sec which means the results compare the fairness

over 1 sec. The best fairness is achieved with BS-RR and the worst is with BS-CN. Here we

can see that GR-RR provides higher fairness than BS-CN. The GR-PF and BS-PF provide

almost similar fairness. The CL-ER has higher fairness than GR-CN.

The overall results show that we have a very high gain in spectral efficiency with user

selection diversity. If we compromise on the spectral efficiency we can also provide user

fairness. If we compare BS-CN and GR-CN for 20 active UEs, we get approximately 12-16

% gains in spectral efficiency and higher fairness with GR-CN based user selection. If higher

fairness is required with a little compromise on system performance then GR-RR can be used

in intra-site clustering whereas GR-PF can be used in inter-site clustering. Note that this

user selection will help further improving the performance of IA in situations where IA is

suitable. We suggest a future study to compare IA with the state of the art precoding with

user selection methods.

3.11 Conclusion

In the first part of the study we have assessed the performance of IA based precoding in

clustered cellular network by comparing it with state of the art transmit precoding schemes

and with different receivers. We have carried out this assessment with both ideal and im-

perfect CSI at the transmitter. The results have shown that the application of IA is very

limited with respect to the practical scenarios. In the second part we have exploited the user

selection diversity to improve the performance of IA in cellular systems. The GR-PF based
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user selection algorithm is suitable with respect to a good trade-off between system spectral

efficiency and user fairness.
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Chapter 4

Un-Coordinated Multi-User

Inter-Cell Interference Alignment

In this chapter we propose a new transmit precoding scheme which exploits the concept of

interference alignment in a cellular system which is affected by the intra cell (multi user) and

inter cell interference. We show analytically that our scheme is close to optimal under certain

conditions. Then we consider an un-coordinated large cellular system and show heuristically

that our scheme outperforms other state of the art schemes. Further in the chapter, we

exploit the multi user diversity and propose heuristic user selection methods for multi user

multi cell MIMO systems.

4.1 Introduction

We consider the downlink of cellular system where each cell serves multiple users on the

same channel use. A channel over which multiple antenna transmitter is serving many single

or multiple antenna users is referred as MIMO-broadcast channel in the literature. It is

well known that the Dirty Paper Coding (DPC) is the optimal scheme for MIMO-broadcast

channel. However, it is not practical to realize DPC for real systems. The work in [16]

presented that zero-forcing beamforming (ZFBF) [15] is closed to optimum and can also be

used practically to mitigate the multi user interference (MUI) when the UEs are equipped

with single antenna. However, the zero-forcing solution is still constrained by the single

antenna UEs. The contributions in [39, 61] overcame this problem by introducing effective

zero-forcing. Another issue with zero-forcing based precoding is that it does not take desired

49



4. UN-COORDINATED MULTI-USER INTER-CELL INTERFERENCE
ALIGNMENT

signal optimization into account, therefore, it is optimum only in high SNR regime. The

optimization method proposed in [17] solved both the problems of multiple antenna UEs and

signal maximization. A balance objective function is used to design the transmit precoding.

It maximizes the ratio between the signal towards the desired UE to the leakage interference

towards the victim UEs. However, all these contributions consider the multi user system

(broadcast channel) with only the single cell which is suffered by only the MUI and the

Gaussian noise.

In a cellular system, we not only deal with the MUI (intra cell interference) but also with

the inter-cell interference (ICI). Some recent research contributions deal the two dimensions

of interference with the help of medium access solutions but our focus is based on the design

of a transceiver scheme. We consider multiple antenna receivers, so the signal space at the

receiving antennas can be divided into two subspaces containing desired signal and interfer-

ence (MUI and ICI). Motivated by this fact, we apply the concept of IA with the intention

to align ICI with MUI so that they are confined in the same subspace.

One of the earliest contributions dealing with MUI and as well as ICI on the basis of

alignment is presented in [62]. The work in [62] proposes MUI and ICI alignment on a two-

dimensional fixed plane. Extra signalling between the BS and the UEs is used to find that

plane. This approach requires a predetermined precoder that is used by the cells involved

in transmission. The UEs measure these precoded channels and find a receive processing

vector in the null space of the precoded channel from interfering cells. The product of this

receive vector with the precoded channel of the serving cell is termed as effective channel and

it is fed back by the UE to the serving cell. Using these effective channels the serving cell

designs the zero-forcing precoding to mitigate the MUI. We would like to mention here some

points about the scheme in [62]. From our understanding it is two sided zero-forcing with

the help of extra signalling. The ICI is zero-forced by the receiver and intra cell interference

is zero-forced by the precoder. Moreover, this approach requires K + 1 signalling dimensions

to transmit K independent streams. For example, to serve K = 2 independent streams to 2

users, it requires K+1 = 3 dimensions which implies 3 antennas on either transmit or receive

side.

The contribution in [63] came up with a similar idea like [62]. In fact the authors in

[63] have stated that their work is similar to [62] except that they avoid extra signaling (for

effective channels) by using a pre-determined reference vector for the alignment. Moreover,

their work is limited only to a two-cell scenario.
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Unlike [62] and [63], our idea is to use partial and outdated ICI for alignment. Our

inspiration is based on the work presented in [64] and on the characteristics of the interference

in the cellular system. With the help of simulations, we show that under some conditions,

the interference subspaces at the receiver in two consecutive transmissions are very close to

each other. Hence the ICI from the previous transmission is still useful and can be used

to design the transmit precoding for the current transmission. We design the precoding

such that the ICI subspace from the last transmission is aligned at the intended receiver

with the MUI subspace of the current transmission. In contrast to [62] and [63] we require

neither extra signalling for a fixed plane nor a predetermined reference vector. In addition

to that we decouple the problem of ICI by using the outdated information. It also helps us

to avoid iterative method. As the number of interfering cells is higher than the available

antennas at the receiver, this implies that the number of interfering terms are higher than

the available dimensions to deal with. Therefore, we take only the dominant ICI subspace

to align with MUI subspace. Due to the usage of partial and outdated ICI information, our

scheme is suboptimal and it cannot achieve the maximum degrees of freedom. However, with

a good receiver design it suppresses a major portion of ICI and MUI which helps our scheme

to outperform the baseline transmission schemes. Moreover, it is valid for any number of

interfering cells in a cellular network.

Generally, the performance of alignment based transmission schemes is highly dependent

upon the receiver design. Likewise our scheme also requires a good estimation of the interfer-

ence by the receiver. Improvements in receiver design with the help of interference estimation

and cancellation are already an ongoing research topic. The 3GPP has already open a sep-

arate study item for Network Assisted Interference Cancellation for LTE [65]. Therefore,

initially we assume that the receiver can perfectly estimate the interference covariance for

MUI and ICI. Additionally, we release the tight requirement on the receiver by proposing a

modified precoding scheme. This modified approach aligns only the strongest cell interference

to the MUI. In this case, the receiver needs to perfectly estimate the covariance of only the

strongest interfering cell/cells which is realizable even in current networks. The results show

that our approach still provides considerable gains over the other schemes.

Another important aspect of our approach is that it requires only the local information

i.e. no inter-cell coordination is required. Each user sends the required information only to its

serving cell which is very attractive when we consider the latency requirements on backhaul.

Due to this, we believe that our contribution gives an efficient and simple transmission scheme
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and a useful insight on the applicability and feasibility of IA based MU-precoding in real-world

cellular networks. At first we have assumed perfect channel estimation without feedback delay

(except for the outdated ICI) and without feedback error for the performance evaluations.

Later in the next chapter we will further investigate the performance with all these practical

issues.

We distribute our contribution in this chapter in three stages. We start with the expla-

nation of basic idea with the help of a system which is affected by MUI and ICI. Initially

we assume a Rayleigh Fading channel in a perfectly uncorrelated environment. Later for the

proof of concept, we use system level simulations with multiple cells and multiple active UEs

in the system and validate our results by using spatial channel model (SCM). The SCM is

more close to realistic scenarios as it considers the probabilities of LOS and NLOS and other

important parameters. We also investigate the impact of different receiver algorithms on the

performance of our scheme. We extend our work and show the increase in the performance

of proposed transmission scheme by exploiting multi user selection diversity. As most of the

user selection methods until now are valid for single antenna UEs and optimal for ZFBF,

therefore, we propose new methods for user selection with multiple antenna users. More-

over, we show the impact of selection method on the performance of closed loop transmission

schemes.

4.2 Basic Idea

Let us focus on a coverage area in a cellular network where two multiple antenna UEs a

and b each with N receive antennas are served by a multiple antenna transmitter with M

transmit antennas on the same OFDM resource as shown in figure 4.1. Assume that the

transmitter uses the precoding vectors pa ∈ CM×1 and pb ∈ CM×1 to transmit independent

scalar complex symbols sa and sb towards UE a and UE b respectively. Let ya ∈ CN×1 and

yb ∈ CN×1 be the signals received by UE a and b respectively. With narrowband OFDM

assumption, the expressions for the received signals in discrete time representation can be

written as,

ya = Hapasa + Hapbsb +
√
λaqa + na (4.1)

yb = Hbpbsb + Hbpasa +
√
λbqb + nb (4.2)

where, Ha ∈ CN×M and Hb ∈ CN×M are the MIMO channel matrices of UE a and b

respectively to their serving transmitter with all the complex coefficients are independent
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and drawn from a random Gaussian distribution with CN(0, 1). The vectors, qa ∈ CN×1 and

qb ∈ CN×1 represent the directions of major ICI components received by the UE a and the UE

b respectively due to the transmission in the strongest interfering cell, λa and λb represent the

average ICI power in the directions of qa and qb respectively such that (||qa||= 1, ||qb||= 1).

We assume that the accumulated interference power due to the weak interfering cells in the

network is adding up to the noise floor therefore it is treated as noise. The vectors, na ∈ CN×1

and nb ∈ CN×1 are the Gaussian noise vectors with CN(0, η2) respectively for UE a and b.

We assume that the average ICI power remains the same over time but the direction of

major ICI component is changing slowly in time. This assumption is valid when the users

in the system are experiencing slow time variant channels and the users are scheduled over

multiple subframes. Based on the assumption, the directions of major components of ICI can

be modelled by using the first order autoregressive process model from [66]:

qa(t) = cosφaqa(t− 1) + sinφaqa⊥(t− 1) (4.3)

qb(t) = cosφbqb(t− 1) + sinφbqb⊥(t− 1) (4.4)

Where, t represents the discrete time index, φa is the Hermitian Angle [67] between qa(t)

and qa(t−1), similarly, φb is between qb(t) and qb(t−1). The angles φa and φb are uniformly

distributed between [0, φmax] where, φmax ≤ π/2, qa⊥(t− 1) ∈ CN×1 and qb⊥(t− 1) ∈ CN×1

are the vectors orthogonal to qa(t− 1) and qb(t− 1) respectively.

The second part in equations (4.1) and (4.2) represents the MUI and the third part

represents the ICI experienced by the UEs. We assume that the UEs a and b are capable of

perfectly estimating the ICI. We also assume that each UE provides a perfect feedback over

the channel and interference information to the serving transmitter in time t. Our idea is to

design the precoding at the transmitter such that the MUI subspace and the ICI subspace

at the desired UE is aligned. With the help of proper receiver design, the UE can cancel the

aligned interference. However, the ICI information for current transmission is not available

before the transmission. Therefore, the transmitter designs the precoding such that at each

UE, the current MUI in time t is aligned with ICI subspace of previous transmission (t− 1).

Following our idea, the alignment conditions for UE a and UE b can be written as:

span(Ha(t)pb(t)) = span(qa(t− 1)) (4.5)

span(Hb(t)pa(t)) = span(qb(t− 1)) (4.6)
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From the conditions in equations (4.5) and (4.6) we can write the precoding vectors as follows:

pa(t) = H−1
b (t)qb(t− 1) (4.7)

pb(t) = H−1
a (t)qa(t− 1) (4.8)

Remark on the feasibility: As the coefficients of channel matrices are independent so

the channels are of full rank and therefore with M = N the inverse exist with probability

one. However, in case of N > M , pseudo-inverse of the channel matrix will be required.

Hence the application is feasible when inverse exists therefore it is limited to the scenarios

with N ≥M .

Figure 4.1: MU-MIMO where each UE is experiencing strong ICI

In order to meet the transmit power constraint, we further normalize the precoding vectors

as follows,

pa(t) =
1

γa
H−1
b (t)qb(t− 1)

pb(t) =
1

γb
H−1
a (t)qa(t− 1)

where, γa = ||H−1
b (t)qb(t − 1)|| and γb = ||H−1

a (t)qa(t − 1)||. Let us consider the signal

received by UE a in time t. Substituting the above precoding vectors in equation (4.1), we

get the following form:

ya(t) =
1

γa
Ha(t)(H

−1
b (t)qb(t− 1))sa +

1

γb
Ha(t)(H

−1
a (t)qa(t− 1))sb +

√
λaqa(t) + na(t)

ya(t) =
1

γa
(Ha(t)H

−1
b (t))qb(t− 1)sa +

1

γb
(I)qa(t− 1)sb +

√
λaqa(t) + na(t) (4.9)
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Assume that the direction of major interference is unchanged in two consecutive transmis-

sions. It implies that:

qa(t) = qa(t− 1)

qb(t) = qb(t− 1)

With this assumption, we can drop the time index in equation (4.9) and re-write it for time

t as follows:

ya =
1

γa
(HaH

−1
b )qbsa +

1

γb
qasb +

√
λaqa + na (4.10)

From equation (4.10) we already see that MUI subspace is aligned with ICI subspace and

we only need one dimension to deal with the interference subspace. In order to suppress

the aligned interference, the received signal by UE a can be projected to the subspace corre-

sponding to the minimum ICI experienced by UE a. The vector orthogonal to qa represents

this subspace and we denote it by qa⊥ . The signal after receive processing can be written as,

qHa⊥ya =
1

γa
qHa⊥(HaH

−1
b )qbsa +

1

γb
qHa⊥qasb +

√
λaq

H
a⊥

qa + qHa⊥na (4.11)

y
′
a = qHa⊥ya =

1

γa
qHa⊥(HaH

−1
b )qbsa + qHa⊥na (4.12)

where, y
′
a is the signal received by the UE a after the receive processing. The equation (4.12)

shows that the received signal by UE a is free from interference. Similar expression can be

derived for the signal received by UE b. We assume that the serving cell is transmitting with

unit power to both UEs, with E[||na||2] = η2 the signal to noise ratio can be written as:

SINRa =
|(1/γa)qHa⊥(HaH

−1
b )qb|2

||qHa⊥ ||2η2
(4.13)

As ||qHa⊥ ||
2= 1, so the noise variance is unchanged even after the receive processing and the

SINR expression in equation (4.13) can be written as follows:

SINRa =
(1/γ2

a)|qHa⊥(HaH
−1
b )qb|2

η2
(4.14)

Proof: |qHa⊥(HaH
−1
b )qb|2> 0

The condition for numerator |qHa⊥(HaH
−1
b )qb|2> 0 in equation (4.14) holds good with

probability one. The proof is trivial. The only possibility when |qHa⊥(HaH
−1
b )qb|2= 0 is when
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(HaH
−1
b ) = I and qHa⊥qb = 0. This implies that Ha = Hb and qa = qb. This condition is

possible when the antennas of UE a and UE b are perfectly overlapping which means we have

only one UE in the system.

The expression of SINR in equation (4.14) is based on the assumption that the direction

of ICI is time-invariant. In practice, it is not the case and even in slow time variant channels,

the direction of interference differs in consecutive transmissions. We re-write the equation

(4.11) with time index as follows:

(4.15)

qHa⊥(t)ya(t)︸ ︷︷ ︸
=y′a(t)

=
1

γa
qHa⊥(t)Ha(t)H

−1
b (t)qb(t− 1)sa +

1

γb
qHa⊥(t)qa(t− 1)sb

+
√
λaq

H
a⊥

(t)qa(t) + qHa⊥(t)na(t)

(4.16)
y
′
a(t) =

1

γa
qHa⊥(t)Ha(t)H

−1
b (t)qb(t− 1)sa +

1

γb
qHa⊥(t)qa(t− 1)sb + qHa⊥(t)na(t)

Equation (4.16) implies that we get rid of ICI but there is still residual MUI in the

desired signal space given by second term in (4.16). For this case, we obtain the following

from equation (4.16):

SINRa(t) =
(1/γ2

a)|qHa⊥(t)Ha(t)H
−1
b (t)qb(t− 1)|2

(1/γ2
b )|qHa⊥(t)qa(t− 1)|2+η2

(4.17)

The absolute value of the product |qHa⊥(t)qa(t − 1)| in equation (4.17) basically represents

the Hermitian Angle (0 ≤ φ′a ≤ π/2) between qa⊥(t) and qa(t− 1) and is given by:

cosφ
′
a =

qHa⊥(t)qa(t− 1)

||qHa⊥(t)|| ||qa(t− 1)||
= |qHa⊥(t)qa(t− 1)| (4.18)

Since (0 ≤ φa ≤ π/2) is the Hermitian Angle between qa(t) and qa(t − 1) and qa⊥(t) is

orthogonal to qa(t) we obtain the following:

|qHa⊥(t)qa(t− 1)|= cosφ
′
a = cos(π/2− φa) = sin(φa) (4.19)

From equation (4.19) we get φ
′
a = (π/2− φa) and equation (4.17) can be written as:

SINRa(t) =
(1/γ2

a)|qHa⊥(t)Ha(t)H
−1
b (t)qb(t− 1)|2

(1/γ2
b )sin2(φa) + η2

(4.20)
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From equation (4.3) with φa = π/2, qa(t) = qHa⊥(t− 1), we have the highest residual MUI in

desired signal space and the expression for SINR is given as:

SINRa(t)|φa=π/2=
(1/γ2

a)|qHa⊥(t)Ha(t)H
−1
b (t)qb(t− 1)|2

(1/γ2
b ) + η2

(4.21)

On the other hand, from equation (4.3) with φa = 0, qa(t) = qa(t− 1), the residual MUI in

desired signal space is zero and the expression for SINR is already given by equation (4.14).

In the following we analyse the impact of alignment loss on the performance of our proposed

precoding technique with the help of numerical simulations. We also consider the impact of

interference power which is treated as noise power.

4.2.1 Numerical Results

We consider the system as shown in figure 4.1 for the simulation of 5000 channel realizations

with Rayleigh fading. In order to align the interference subspaces, the ICI should have a

strong dominant direction. We refer to this characteristic of ICI as spatial colouredness with

respect to the white noise. If the UE will experience ICI equally from all the directions

isotropically like white noise, then the alignment gains will be minimal. In a real system, the

ICI power from direct neighbouring cells is stronger (dominant) and the individual power from

other interfering cells is weaker. However, the accumulated power of the weak cells has an

effect of increasing the noise floor in the system. We define a parameter called as Interference

to Noise Ratio (INR) to control the impact of ICI. Higher values of INR represent strongly

directed ICI and an ICI-limited system. Lower values of INR represent a noise limited system.

In a real system, the condition number of ICI covariance matrix gives the indication about

the colourdness of ICI.

As we have observed from equation (4.20) that the post receiver SINR for UE a depends

upon φa i.e. the direction of arrival of major component of ICI in two consecutive trans-

missions. The same observation holds for UE b. Therefore, we control φa and φb for the

simulation of our considered system. We model φa and φb as uniformly distributed random

variables in the interval [0, φmax]. For each simulation run we fix the value of φmax as given

input parameter and for each channel realization within a simulation we take a value for each

φa and φb uniformly between 0 and φmax. Figure 4.2 presents the performance of our pro-

posed alignment based precoding scheme using equations (4.8) and (4.9). We call our scheme

as Multi User Inter Cell Interference Alignment (MUICIA). Additionally, we compare the
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Figure 4.2: Performance comparison of MUICIA with OPT and MIN over φmax, SINR=10dB

and INR=20dB

performance of MUICIA with two other schemes (represented as OPT and MIN in figure 4.2)

which can be seen as an upper bound and a lower bound for the considered system. The OPT

is a hypothetical scheme which transmits equal power to both the UEs in their eigenmodes

and the receiver perfectly nullifies both MUI and ICI. The MIN also transmits the power

in the eigenmodes but the receiver does not treat the interference, it simply uses the MRC

combiner.

Figure 4.2 shows the performance of these schemes for the range of φmax which is varying

from 0 to 90 degrees. We compute mean cell rate with the help of SINR to Shannon Rate

mapping. When φmax = 0, our scheme is close to OPT meaning that MUICIA is able to

cancel most of the ICI and MUI. With the increase in φmax the performance of MUICIA

drops drastically because the alignment of MUI and ICI is not perfect and there remains

residual MUI in the desired signal space. However, even with very high values of φmax the

performance is noticeably above MIN.

Figure 4.3 presents the performance over the range of input SINR for different values of

φmax. For lower values of φmax, the performance increases with the increase in SINR due to

the improvement in average received signal energy. However, higher values of φmax show a

very low increase of performance with SINR. It is because the misalignment loss due to the

increase in φmax is dominant.

Now we consider, another important aspect which is the colouredness of ICI. Figure 4.4

shows the numerical performance results over the variation of INR from 0 to 30 dB, for SINR
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= 10 dB and for different values of φmax. Note that for any value of φmax, the performance

depends upon how coloured is the ICI. It increases with the increase in INR. Higher values

of INR help to align the ICI and as well as suppress the ICI at the receiver. Higher values of

φmax represent the misalignment and MUI leakage in the desired signal space which causes

the loss in the performance. However, still there is a noticeable increase in performance with

the increase in INR at higher values of φmax. These results show that even if the ICI is

outdated, it is still useful to align the MUI with the ICI and deal with both interferences in

a multi user cellular system.

Figure 4.3: Performance of MUICIA over SINR for different φmax, INR=20dB

Figure 4.4: Performance of MUICIA over INR for different φmax, SINR=10dB
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4.3 Multi Cell Multi User MIMO System Model

After the description of our basic idea with the help of a simple system model, now we consider

a MIMO-OFDM based cellular system which consists of I BSs (with M transmit antennas )

where ith BS schedules a set of users Si (each with N receive antennas) simultaneously on the

same resource. Let B be the set which contains the indices of the BSs such that |B|= I. At

first, with the help of simulations, we investigate our assumption made in section 4.2 about

the ICI. For this purpose, we consider the mth UE served by the ith BS. We consider a typical

dense urban scenario where the users are moving with low speed and experiencing slow time

varying channels. We assume block fading channel in time and frequency (with temporal

correlation) and use spatial channel model [34] to generate the channel realizations for the

MIMO system simulations. The total ICI impinging on the receive antennas of mth UE for

an OFDM resource block, can be represented by the ICI covariance matrix QICI
m ∈ CN×Nand

is given as follows:

QICI
m = E[fmfHm] (4.22)

where, fm ∈ CN×1 represents the ICI received by UE m and is given by:

fm =
I∑

j 6=i,j=1

∑
∀h,h∈Sj

Hmjphjshj (4.23)

Where, Hmj ∈ CN×M represents the channel matrix between the mth UE and the jth

interfering BS, Sj is the set of users scheduled by the jth BS, phj ∈ CM×1 is the precoding

vector (in this case, phj is based on[68]) used by the jth BS for the UE h. The interfering

symbols to UE m which are transmitted by the jth BS for the UE h are represented by

shj . The symbol sequences transmitted from each BS are independent and uncorrelated with

average allocated power of E[shjs
∗
hj ] = E[|shj |2] = Phj . Please note that here we intend to

focus only on the ICI experienced by the mth UE, a full system description with desired

signal and MUI is given in equation (4.26). With equation (4.23) and the assumption that

Hmjphj is known at the receiver, we can write the ICI covariance matrix QICI
m and simplify

it as follows:

QICI
m =

I∑
j 6=i,j=1

∑
∀h,h∈Sj

E[(Hmjphjshj)(Hmjphjshj)
H ]
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=
I∑

j 6=i,j=1

∑
∀h,h∈Sj

(Hmjphj)E[shjs
∗
hj ](Hmjphj)

H

QICI
m =

I∑
j 6=i,j=1

∑
∀h,h∈Sj

Phj(Hmjphj)(Hmjphj)
H (4.24)

The matrix given by equation (4.24) is a positive definite Hermitian matrix whose eigen-

vectors represent the direction of arrival of average interference towards the UE and the

corresponding eigenvalues represent the amount of average power in these directions. The

eigenvector corresponding to the maximum eigenvalue represents the direction of arrival of

maximum amount of interference towards the UE. Let qm(t) ∈ CN×1 and qm(t− 1) ∈ CN×1

represent the eigenvectors of ICI for the current transmission (t) and previous transmission

(t− 1) respectively. The Hermitian Angle between these eigenvectors can be represented by

(0 ≤ φm ≤ π/2) and is given by [67].

φm = arccos

(∣∣∣∣ (qm(t))H(qm(t− 1))

‖(qm(t))H‖‖(qm(t− 1))‖

∣∣∣∣) (4.25)

This angle represents the change in the major component of ICI. Using the spatial channel

model, we draw following observations from simple simulations for the statistics of φm. This

gives us an insight about the dependency of φm in a realistic network scenario.

• Time Variance: Figure 4.5 shows the trace of the hermitian angle φm given in (4.25)

over 1000 channel uses of a UE in a network of 21 BSs. We can see that the variance

of φm over time is below 5 degree.

• Impact of Speed: Figures 4.6 and 4.7 show the cumulative density function and

mean value of φm drawn from a simulation with 21 BSs setup for different UE speeds.

It clearly shows that with the increase in UE speed, the variance of φm increases which

implies the loss in alignment gains.

Remarks: Following these results, we infer that although the interference coming from

each BS is a stochastic process but the difference in direction of arrival of major com-

ponent of interference at the UE has very low variance if the UEs in the system are

experiencing slow time variant channels and the BSs perform channel dependent user

scheduling and precoding.
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Figure 4.5: Trace of φm for UE speed = 3km/h and 1000 channel use

Figure 4.6: CDF of φm for different UE speeds

Figure 4.7: Mean φm value over the variation of UE speed
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After explaining the characteristics of ICI in slow time variant environment, now we

focus on the requirements of spatial dimensions for transmitter and receiver related to our

approach. In near future we expect to have at least N = 2 receive antennas at the UEs. This

is also specified by 3GPP for LTE-Advanced future releases (please see [29] and references

therein). Therefore, from now on, we consider UEs with N = 2 receive antennas which gives

us 2 spatial dimensions at the receiver to deal with the signal and interference. Only one

dimension is available to deal with the interference. Therefore, we assume that K = 2 UEs

are scheduled simultaneously on each resource so that we have one full component of MUI

which is aligned with partial and outdated component of ICI. In case of K > 2, we can select

the major MUI interferer and aligned this interferer to the ICI.

Assume that each BS is serving L active users. Let Si = {m,n} be the set which contains

the indices of the users selected by the ith BS for rank one transmission on one OFDM

resource block. In LTE based OFDM system in 10 MHz we have 50 physical resource blocks

(PRBs). Hence in one transmission time interval (TTI), each BS has the opportunity to serve

50 different pairs of users. We assume block fading channel over one resource block. For

the sake of simplicity, using the OFDM narrow band assumption, we focus our mathematical

analysis on a single channel use, whereas simulation results will be given for a wideband

OFDM system. Let ym ∈ CN×1 be the signal received by the mth UE served by the ith BS

and it is given by,

ym = Hmipmismi + Hmipnisni +
I∑

j 6=i,j=1

∑
∀h,h∈Sj

Hmjphjshj + nm (4.26)

where, Hmi ∈ CN×M is the channel matrix between the ith BS and the corresponding mth

UE, smi and sni are the transmitted signals by ith BS, pmi ∈ CM×1 and pni ∈ CM×1 are the

precoding vectors used by ith BS for the transmission towards UE m and UE n respectively,

(
I∑

j=1,j 6=i

∑
∀h,h∈Sj

Hmjphjshj) ∈ CN×1 is the interfering term due to the transmission of the other

(I − 1) BSs to their corresponding UEs and nm, CN(0, η2) is the complex additive Gaussian

noise. Except otherwise mentioned, we assume a power constraint at each BS, uniform power

over all transmit antennas and that the precoding matrices are unitary with unit norm. The

signal after receive combining can be represented as y
′
m and is given by,

y
′
m = gHmym (4.27)
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where, gm ∈ CN×1 is the receiver-weights vector which is also unit norm. In the following

we describe how do we compute {pmi and pni} by aligning MUI and ICI. Moreover, we also

discuss different receiver capabilities and receive combining strategies.

4.4 Transmit Precoding using Multi User Inter Cell Interfer-

ence Alignment

In this section, we design the transmit precoding based on our approach. At first we assume

that the receiver is able to estimate complete ICI perfectly. Then we proceed with the

assumption that the receiver is able to perfectly estimate only the strongest cell interference.

4.4.1 Based on Multiuser Inter Cell IA (MUICIA)

We assumed that each BS is serving K = 2 UEs with single stream in one channel use.

With I BSs, each UE experiences ‘(I − 1)K’ ICI streams. We have (N − 1) dimensions at

the UE to confine all the interfering streams. However, for N = 2 and I ≥ N we have

(N − 1) ≤ (I − 1)K which is an under-determined system. Therefore, we find a solution by

taking the direction defining the major ICI component. Instead of dealing with individual

ICI streams, we consider the eigenvector corresponding to the highest eigenvalue of total ICI

covariance matrix QICI
m . This implies that we use Partial ICI information for the design of

precoding. We use the word Partial in the sense that it is only an eigenvector corresponding

to the highest eigenvalue of ICI covariance matrix. Even to make this partial ICI available at

the BS is a problem as it is coupled with the design of precoding vectors in each BS. Hence

in time t the current ICI cannot be made available at the BS (with non-iterative methods).

Therefore, to decouple the problem, we propose a suboptimal solution inspired by [64] and

based on the ICI characteristics presented in section 4.3. We use the Outdated ICI measured

by the UE in time (t − 1). Hence we try to align the Current MUI with the Partial and

Outdated ICI. The alignment condition at the mth UE served by ith BS can be written as:

at UE m: span(Hmi(t)pni(t)) = span(qm(t− 1)) (4.28)

Note that we have used the time index in the above condition to express the difference between

the information used to design the precoding vectors with respect to the transmission time

intervals (TTIs). However, later in this section and in the following document we will drop

the time indices for simplicity. The symbol pni ∈ CM×1 is the precoding vector used by ith
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BS for nth UE, qm ∈ CN×1 is the eigenvector corresponding to the maximum eigenvalue of

QICI
m (the total inter-cell interference covariance matrix received by mth UE in TTI (t− 1)).

From the condition in equation (4.28) for mth UE we can derive the precoding vector for nth

UE.

pni = H−1
miqm (4.29)

Please note that the conditions for the existence of inverse of the channel matrix shall be

satisfied. A remark on the feasibility is given previously in section (4.2). Similarly, the

following alignment condition can be written for the nth UE and the precoding vector can

be found for the mth UE.

at UE n: span(H
(t)
ni p

(t)
mi) = span(q(t−1)

n ) (4.30)

pmi = H−1
ni qn (4.31)

The precoding vectors in equations (4.29) and (4.31) are further normalized (such that:

(||pm||= 1, ||pn||= 1)) to ensure the total power constraint at the BS.

For the computation of receive vector let us focus on UE m. Let ψm be the post receiver

leakage interference power in the desired signal space at UE m and it can be written as:

ψm = Pni||gHmHmipni||2+
I∑

j=1,j 6=i

∑
∀h,h∈Sj

Phj ||gHmHmjphj ||2 (4.32)

Figure 4.8: Signal vector space at the receiver with 2 Rx Antennas

For the complete suppression of interference power at UE m we need a receive vector

gHm ∈ C1×N such that ψm = 0. However, this condition (ψm = 0) is difficult to fulfil in our
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case because we have aligned the MUI only with the partial ICI. Moreover, the direction of

arrival of interference in the current TTI differs from the direction of aligned interference by

an angle φm given by equation (4.25). Figure 4.8 shows the vector representation of alignment

situation at the mth UE in ideal and practical case for current transmission. Due to this

imperfect alignment, the receiver cannot nullify the interference completely and as a result

ψm 6= 0. However, if φm is very small as shown in section 4.3, this leakage interference will

be negligible. Hence we can relax the condition over ψm and we can find the receiver matrix

such that:

gm = arg min
gm:gm∈CN×1,||gm||=1

ψm (4.33)

In order to minimize ψm, the received signal is projected in the direction of arrival of min-

imum interference. This direction is defined by the eigenvector corresponding to the lowest

eigenvalue of the total interference (MUI and ICI) covariance matrix at UE m which is given

by Qm and can be written as,

Qm = Pni(Hmipni)(Hmipni)
H + QICI

m (4.34)

The receive vector can be found as the eigenvector corresponding to the minimum eigenvalue

of Qm. We call this receiver type as Interference Minimization (IM) and the expression can

be written as follows:

gm = arcξ(Qm) (4.35)

The function arcξ provides the eigenvector corresponding to the lowest eigenvalues of Qm.

The objective function in equation (4.33) does not consider the improvements in desired

signal energy. Therefore, we set our objective function to find the receive vector such that

the signal to noise and interference ratio after receive processing is optimized. The solution to

this optimization is already well known as MMSE based receiver (also known as Interference

Rejection and Combining (IRC) receiver). In the previous chapter we named it as MMSE-I

receiver. To keep the consistency with our publications that are referred in this chapter for

detailed results, we call it as IRC receiver, the expression for IRC receiver is given as follows:

gm = (Qm + η2IN )−1(Hmipmi) (4.36)
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4.4.2 Based on Multiuser Strongest Cell IA (MUSCIA)

Current receiver algorithms can estimate the total average interference covariance with the

help of received signal and desired signal covariance. The receiver that applies the receive

vector given by equation (4.35) or (4.36) requires a perfect interference estimation algorithm.

As mentioned earlier, there is an ongoing research in this direction [65] which enables the

receiver to perfectly estimate the ICI and MUI. Here we can also realize the perfect estima-

tion of interference with the help of orthogonal pilots in the system. However, we have to

assume that the receiver is able to estimate all the strong and the weak interfering channels.

Theoretically, it is possible. However, it is a complex task for the current practical receivers

and it puts high requirements on the estimator. Therefore, we have considered two slightly

modified receiver algorithms that are based on the assumption of perfectly estimating only the

strongest cell interference covariance. Let j be the strongest interfering cell for the mth UE,

the interference covariance of the strongest interfering cell is represented by QSICI
m ∈ CN×N

and is given as:

QSICI
m =

∑
j∈B,j 6=i,∀h,h∈Sj

Phj(Hmjphj)(Hmjphj)
H (4.37)

The receiver can only estimate accurately the interference from the strongest interferer and

feed this back to the BS. Therefore, the BS aligns the MUI with the strongest cell interference.

Similar to equations (4.29) and (4.31), the new precoding vectors for each UE can be written

as,

pmi = H−1
miq̃m (4.38)

pni = H−1
ni q̃n (4.39)

where, q̃m ∈ CN×1 and q̃n ∈ CN×1are the eigenvectors of corresponding to the maximum

eigenvalue of matrices QSICI
m and QSICI

n respectively. Neglecting the interference from the

weak interfering cells, the total interference covariance matrix at UE m can be represented

by Q̃m ∈ CN×N and written as,

Q̃m = Pni(Hmipni)(Hmipni)
H + QSICI

m (4.40)

The receive vector can be found by solving the optimization problem of maximizing the ratio

of signal to noise plus strongest cell interference. We can express the solution as in equation
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(4.41) and name it as Strongest Interference Rejection and Combining (SIRC).

gm = (Q̃m + η2IN )−1(Hmipmi) (4.41)

To estimate perfectly all the channels is a complex task however, an average of interfering

channels can be estimated with somewhat lower effort. Let Γm represents the average inter-

ference power of all other cells except the strongest cell which can be perfectly estimated.

The total interference covariance can be written as,

Q̂m = Pni(Hmipni)(Hmipni)
H + QSICI

m + ΓmIN (4.42)

The receiver that uses Q̂m ∈ CN×N in optimization can be named as Strongest and Average

Interference Rejection and Combining (SAIRC).

gm = (Q̂m + η2IN )−1(Hmipmi) (4.43)

4.5 Baseline Transmit Precoding Schemes

As a survey, we consider three baseline transmit precoding schemes which deal with MUI

based on different optimisation functions. We do not compare with the schemes that deal

with ICI as they require coordination between the cells and we have considered a system

without any coordination. These baselines are non-alignment based state of the art transmit

precodings for Multi User MIMO Systems (MU-MIMO).

4.5.1 Egoism: Maximum Ratio Transmission (MRT)

The precoding vector for each selected UE is designed to optimise the power towards the

desired UE. Therefore, we call it an egoistic design as it does not consider the multi user

interference caused to the other co-scheduled UE. The optimisation for the mth UE served

by the ith BS can be written as:

pmi = arg max
pmi:||pmi||2=1

||Hmipmi||2 (4.44)

The solution to (4.44) can be found by taking the SVD of Hmi and use the dominant right

singular vector as pmi for the corresponding UE. We consider total BS power constraint to

normalize the precoder. In the following we refer this scheme as (MRT).
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4.5.2 Altruism: Effective Zero forcing (EFZF)

This scheme is based on zero-forcing the effective MUI and is proposed in [39, 61]. The

per-receive-antenna zero-forcing constraint is overcome by using the equivalent combined

channel. Each UE decomposes the serving channel with SVD and uses the dominant left-

singular vector as receive combiner. This combined channel (i.e. receive vector multiplied

with channel matrix) is fed back by the UE to the BS. The combined channel of the mth UE

can be represented by vmi ∈ CN×1 and is given by,

vmi = (uHmiHmi)
H (4.45)

where, umi ∈ CN×1 is the dominant vector from the left-singular vectors obtained from SVD

of Hmi. Similarly, the combined channel can be obtained by the nth UE and the complete

combined channel matrix over the selected set Si can be written as,

H̃i = [vmi vni] (4.46)

The pseudo-inverse of the combined channel matrix is given as follows:

H̃
†
i = H̃

H
i (H̃iH̃

H
i )−1

[pmi pni] = H̃
†
i (4.47)

The columns of the matrix H̃
†
i are used as the precoding vectors for each UE. With the power

constraint at BS we further normalized the precoding vectors.

4.5.3 Balance: Signal to Leakage and Noise Ratio (SLNR)

This scheme is based on maximising the Ratio of desired Signal to Leakage and Noise (SLNR).

It is first proposed in [17]. The precoding is designed in such a way that the transmitted

signal power towards the intended UE is maximized whereas the interference plus noise effect

at unintended co-scheduled UEs which are served simultaneously on the same resources by

the BS is minimized. The optimization function for precoding of the mth UE co-scheduled

with the nth UE can be written as:

pmi = arg max
pmi:||pmi||2=1

||Hmipmi||2Pmi
||Hnipmi||2Pmi +Mη2

(4.48)
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It is shown in [69] and references therein that the optimization in (4.48) is a generalized

eigenvalue problem for which the solution is given as:

pmi = ξ
((

HH
niHni +Mη2IN

)−1
HH
miHmi

)
(4.49)

Where, the function, ’ξ’ gives the dominant eigenvector, Hni ∈ CN×M is the channel between

the ith BS and nth UE. The total power constraint at the BS is maintained through the

normalization of the precoding matrix.

4.6 Rate Computation

The post receiver SINR for the mth UE for one channel use is given by,

SINRm =
|gHmHmipmi|2Pmi

|gHmHmipni|2Pni +
I∑

j=1,j 6=i

∑
∀h,h∈Sj

|gHmHmjphj |2Phj + ||gHi ||2η2

(4.50)

This SINR can be used to find the mth UE rate by Shannon SINR-Rate mapping. The ith

BS rate Ri is the sum of the rates of UE m and UE n. The mean cell rate Ravg (cell spectral

efficiency) for one channel use can be written as follows:

Ravg =
1

I

I∑
∀i,i=1

Ri (4.51)

4.7 Performance Analysis of IA based Precoding Schemes

In this section, we demonstrate the performance of IA based precoding schemes (MUICIA,

MUSCIA) and do a comparative analysis by performing a comparison with other baseline

precoding schemes using the system simulations. At first we assume perfect receiver and

analyse the impact of ICI. Later we discuss the impact of receiver capabilities.

4.7.1 Simulation Assumptions and Parameters

The performance evaluation is based on 3GPP based system level simulator. For the con-

sidered scenario we have used a site with co-located 3-sectorized antennas where each sector

corresponds to a BS. The salient simulation parameters are depicted in Table 1. During a
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Parameters Values

Transmission Mode Multi-user MIMO

Transmission Bandwidth 10 MHz

Physical Resource Blocks (PRB) 50

Subframe Duration 1 ms

Sub carrier Spacing 15 kHz

TX x RX Antennas 2 × 2

Scheduling Random

Scheduled UEs per PRB 2

Scheduling Interval 1 ms

Channel Estimation Perfect

UE Feed back Instantaneous and Error Free

Link adaptation Post Receiver Shannon Mapping

Re-Transmissions No

Channel Model Spatial Channel Model, Urban Micro

Transmission Layers 1 per UE

Speed 3 km/h

Traffic Full Buffer

Table 4.1: Salient simulation parameters for the performance evaluation
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(a) MUICIA with IRC receiver (b) MUSCIA with SIRC and SAIRC

Figure 4.9: Performance comparison of IA based precodings with base line precoding schemes

illustrating the impact of ICI and the impact of different receiver realizations on the performance

simulation run several Monte Carlo drops of UEs are performed. At the start of a drop, the

UEs are positioned in each cell according to the given input average SINR of the UE. The

average SINR of the UE defines the position of the UE in the cell. The average SINR is given

in dB, this is commonly known as User Geometry. This SINR does not depend upon the

MUI. It depends upon the average received power from each BS in the system and thermal

noise. The average receive power is inversely proportional to the distance dependent path

loss, shadowing and other large scale parameters. These parameters are modelled as speci-

fied in [29]. Furthermore, the realization of all time and frequency selective spatial channels

between the BSs and the UEs is done according to the spatial channel model given in [34].

4.7.2 Impact of Inter Cell Interference

Figure 4.9(a) presents the mean cell rates calculated in bits/s/Hz for different precoding

schemes with perfect IRC based receiver realized by equation (4.36). It can be clearly seen

that if the receiver can successfully suppress the interference directions then alignment with

partial and outdated information still helps and our proposed scheme MUICIA provides

almost 30% gains in lower and middle SINR regions over the best baseline which is SLNR.

Smaller values of average SINR represent high ICI which means that the multiuser-system is

limited by the ICI. In this situation, our proposed scheme aligns the ICI subspace with MUI

and suppresses it with the help of IRC receiver.
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4.7.3 Impact of Receiver Realization

As the IRC receiver is an ideal solution, we now consider more practical receivers. Figure

4.9(b) presents the performance comparison of MUSCIA with other baseline precodings using

SIRC and SAIRC receivers. It can be seen that MUSCIA with SAIRC looses the performance

as compared to SIRC. This is because the additional average interference perturbs the sup-

pression direction where most of the interference is aligned. We see a very high loss in higher

SINR regions because the influence of the strongest ICI is minimized in this region. Higher

values of SINR represent a lower ICI which means that the system is now limited by the

MUI. The SLNR based precoding with SAIRC performs very well in this situation as it finds

the best compromise between the desired signal and the interference to the other UE. How-

ever it is still outperformed by MUSCIA with SIRC receiver. It shows that our approach is

applicable even with practical considerations and provides considerable gains over the other

baseline precoding schemes in high ICI scenarios. For further results on the performance of

MUICIA with receiver algorithms we refer to our publication [21].

4.8 Multi User Selection

It is well known that the user selection diversity provides considerable gains in spectral

efficiency of a MU-MIMO system. However, the dimension of selection diversity has not been

explored for alignment based precoding in the previous sections of this chapter. Motivated

by this fact, we extend our work by exploiting this dimension. At first, we employ a standard

multi user selection algorithm [70] to select the users for transmission. The increase in the

performance by the transmit precoding schemes can be noticed, however, the gains with

the standard algorithm are marginal. Therefore, we propose three new algorithms for user

selection in a MU-MIMO system. The details of the algorithms will be given in the subsection

4.8.1. If the instantaneous rate of each user can be perfectly estimated, the optimum subset

of users (to maximize the system transmission rate) can be found by an exhaustive search

over all the combinations. However, in a cellular system, measuring the instantaneous rates

of each combination of users in a cell is a coupled problem.

Many low complexity sub optimal user selection algorithms have been presented in litera-

ture. The concept of semi orthogonal user selection (SUS) is presented in [16] for zero-forcing

beamforming (ZF). It is designed to avoid the MUI by selecting the nearly orthogonal users

(with high channel quality) with the help of a greedy search. The ZF-SUS asymptotically
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achieves the performance of the optimum-DPC [16]. A variety of work has been presented

in literature for the improvement and simplification of ZF-SUS. However, the practical prob-

lem with SUS is that it relies on the choice of an input correlation parameter to limit the

searching space. The optimization of this parameter is cumbersome in a running system.

Therefore, to avoid this problem, we consider the method in [70] as a standard method. The

standard method is based on the concept of Spatial Separability inspired to find the spatially

orthogonal users through an exhaustive search.

Most of the related work in literature on user selection like in above mentioned references

has been done either for MISO multi user single cell systems with ZF or with the modelling

of ICI as noise. We have considered MU-MIMO cellular system, which not only suffers from

MUI but also from the ICI. Moreover, we do not restrict ourselves with ZF based precoding.

At first, we show that in a MU-MIMO cellular system, the choice of user selection method

does not depend only upon the feedback and computational complexity but it also depends

upon the type of precoding scheme adopted by the transmitter. Hence this contribution

serves two goals. The first is the proposal of new selection algorithms for MU-MIMO cellular

system. The second is to analyse the impact of user selection methods on alignment based

and non-alignment based transmit precoding schemes.

4.8.1 Pair Selection Algorithms

We consider a downlink OFDM based Multi user Multi Cell MIMO system similar to the one

given in section 4.3. Let Ui represents the set containing the indices of (L ≥M) active users

in ith BS (please note again that the terms BS, sector and cell are equivalent here) such

that |Ui|= L. Each BS performs the user selection before transmission. The set Si contains

the indices of the selected users by the ith BS. Unlike previous chapter, we do not have any

coordination between the BSs, it implies that the selection has to be made individually by

each BS. This selection is not globally optimal, as the optimal selection would be based upon

the system wide optimization of the objective function. However, in a cellular system it is

highly complex and a coupled problem. Therefore, we rely on heuristic suboptimal solutions.

Spatially Orthogonal Users: (Standard)

As described earlier that in a MU-MIMO transmission, to minimize the MUI, we need to

select the users which are facing spatially orthogonal channels. Therefore, at first we consider

the method from [70] which works on the basis of spatial separability of the users. In case of

MISO systems where we have vector channels, the spatial separability can be defined with
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the help of Hermitian angle between the serving channel vectors of the users. In our case

(multiple antenna UEs), with MIMO channel matrices, we define spatial separability by using

the correlation between the channel matrices of the pair of users. Let Πmn represents the

correlation between the channels of UE m and UE n. The maximally separable users will

have minimal correlation between their channels. We define the following objective function

which finds the users with minimum Πmn.

Si = arg min
{m,n}∈Si,Si⊂Ui,|Si|=K

Πmn (4.52)

The solution to the objective function in (4.52) can be found by defining the Πmn as follows

[70]:

Πmn = ||HmiH
H
ni||F (4.53)

In the following, we propose three new user selection methods. The first method is an

improvement of the proposal in [70]. It is based on serving channel matrices to find the

orthogonal users. The second is based on the maximization of alignment gain by using

the strongest ICI, it selects the users by simple sorting process. The third is based on the

maximization of post receiver SINR estimated by the BS with the help of serving channel and

ICI information. This method is computationally more complex than the other two methods

as it requires more feedback information and an exhaustive search. We proceed further by

providing the details of each method.

1)- Minimum Transmit Side Colinearity: (Min-TxCol)

This algorithm is a slight modification to the standard algorithm. Similar to [70], our

objective is to find a spatially separable pair using the information of serving channel matrices.

However, instead of finding the total correlation between the channels of the users, we define

a metric based on the estimation of transmit-side spatial structure of the MIMO Channel.

As the spatial structure of MIMO channel can be tracked by the transmit-side correlation

[71]. This metric is known as Colinearity. The measure of colinearity can be defined as

the similarity between the subspaces spanned by the columns of the two matrices with same

dimension [72]. Hence, two matrices which exhibit nearly spatial orthogonal structure should

have minimum colinearity. Let Υmn represent the colinearity between the UEs m and n

served by BS i, then we can write the objective function as follows:

Si = arg min
{m,n}∈Si,Si⊂Ui,|Si|=K

Υmn (4.54)
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For the impact of transmit side correlation, we define Rm = HH
miHmi be the matrix depending

upon the channel between UE m and BS i. Similarly, Rn = HH
niHni be the matrix for UE

n. The colinearity between these matrices can be written as [73]:

Υmn =
|Tr(RmRH

n )|
||Rm||F ||Rn||F

Like the standard method, the BS has to perform exhaustive search over all the combinations

of the active users. Only the channel information from each user is required for the selection.

2)- Maximum ICI Condition Number: (Max-ICICond)

In case of MUICIA precoding, the cell aligns the MUI subspace to the ICI subspace. The

degree of alignment will be higher for the UEs which will experience non-isotropic (coloured)

ICI. Typically in a cellular system, the ICI is coloured when the UE experiences strong

interference from one or two interfering cells. The presence of strong interferers can be

detected with the help of the ratio of maximium to minimum eigenvalue of the ICI covariance

matrix [74]. The Condition Number of the covariance matrix represents this ratio. For this

purpose, we consider the condition number of the ICI covariance matrix. For mth UE it is

given by,

Ψm =

√
λmaxm

λminm

where, λmaxm and λminm are maximum and minimum eigenvalues (with λminm > 0) of the ICI

covariance matrix from previous transmission QICI
m ∈ CN×N . The cell sorts the UEs with

respect to their condition numbers and finds the pair by using the following objective function:

Si = arg max
{m,n}∈Si,Si⊂Ui,|Si|=K

(Ψm + Ψn) (4.55)

Where, Ψn represents the condition number for the nth UE. Only the condition number of

the ICI covariance from the previous transmission is required as feedback. In contrast to the

other methods, only simple sorting is required to find out the best pair.

3)- Expected Rate Maximisation (Max-ERate)

For this method, we write the following optimization function for the selection of the users

in ith BS.

Si = arg max
Si={m,n},Si⊂Ui,|Si|=K

(R̂mi + R̂ni) (4.56)
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where, R̂mi and R̂ni represent the rates estimated by the ith BS for the pair of mth and nth

UE. Let us focus on the mth UE served by the ith BS. The rate R̂mi of the mth UE depends

upon the post receiver ŜINRmi estimated by the BS. For this purpose, the BS calculates

precoding vectors for all combinations LCK=2 based on the information fed back by the UEs.

The expression for ŜINRmi is given by,

ŜINRmi =
|ĝHmHmip̂mi|2Pmi

|ĝHmHmip̂ni|2Pni + Ω2
m + ||ĝHm||2η2

(4.57)

where, ĝm ∈ CN×1 represents the receiver-weights vector estimated by the BS for UE m when

paired with UE n, Ω2
m represents the residual ICI. We will discuss about ĝm and Ω2

m later in

this section. The symbol p̂mi ∈ CM×1 represents the precoding vector for UE m when it is

paired with UE n. Similarly, p̂ni ∈ CM×1is the precoding vector for UE n. The MUI faced

by UE m when paired with UE n can be represented by Ẑm(n) and written as:

Ẑm(n) = Pni(Hmip̂ni)(Hmip̂ni)
H (4.58)

We assume that the BS is aware of the receiver algorithm used by the UEs. In practice,

this assumption can be realized by defining UE categories as given in [59]. The ICI from the

previous TTI is known to the BS. With the help of estimated MUI from equation (4.58) and

ICI from previous transmission (QICI
m ), the BS estimates the receive vectors. The receive

vector for UE m when paired with UE n is represented by ĝm and is given in equation (4.59).

ĝm = (Ẑm(n) + QICI
m + η2Im)−1(Hmip̂mi) (4.59)

The post receiver desired signal part received by UE m using the receiver vector from equation

(4.59) has mean power:

|ĝHmHmip̂mi|2 = (ĝHmHmip̂mi)(ĝ
H
mHmip̂mi)

H

= ĝHm(Hmip̂mi)(Hmip̂mi)
H ĝm (4.60)

Similar to equation (4.60), mean power of residual MUI part after receiver processing can be

calculated as:

|ĝHmHmip̂ni|2 = ĝHm(Hmip̂ni)(Hmip̂ni)
H ĝm

= ĝHmẐm(n)ĝm (4.61)
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Similar to equation (4.61), we can write for the residual ICI as follows:

|Ωm|2= ĝHm(QICI
m )ĝm (4.62)

The BS maps the estimated ŜINRmi using the Shannon rate as:

R̂mi = log2(1 + ŜINRmi) (4.63)

Similarly, R̂ni can be computed and the objective function in equation (4.56) can be evaluated.

As compared to the the other two methods, the required feedback information as well as the

computational complexity is much higher in this method.

Remarks: Note that our primary objective is to find out how much capacity can be

achieved with the help of additional user selection diversity in a MU-MIMO cellular system

with multiple antenna UEs. Therefore, in all the above user selection methods our target is

to maximize the system spectral efficiency. We expect that in a given 10MHz bandwidth,

most of the users will be selected in a nominal fairness time due to the frequency diversity.

However, with these methods, total fairness can not be guaranteed. In practice, user fairness

is also an important metric and therefore the scheduler has to trade off between system

spectral efficiency and user fairness. We leave the joint optimization of spectral efficiency

and fairness with MUICIA based precoding for future research.

4.8.2 Performance of MUICIA with User Selection

In this section, we present the simulation results of the pair selection algorithms described

in subsection 4.8.1. The same simulation methodology has been used as in subsection 4.7.1.

Perfect channel estimation and instantaneous error-free feedback of CSI is assumed.

One complete simulation cycle consists of several Monte Carlo drops. Each drop consists

of certain number of transmission time intervals (TTI). Full buffer traffic and a user speed

of 3 km/h is simulated. The total frequency bandwidth is divided into J physical resource

blocks (PRB) [29]. Each PRB contains W consecutive subcarriers with a frequency spacing

of 15kHz (here in 10MHz including band gap: 576 subcarriers, J = 50,W = 12). With the

user speed of 3 km/h, we have slow time variant and nearly frequency flat channels within

a single PRB. However, we have frequency diversity due to high number of PRBs with in

a TTI. We have the possibility of J different pair selections within a TTI if the number of

active users is very high.
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The UEs are dropped in the coverage area according to the given downlink wide band

average SINR (represented here by σ in dB). This input SINR depends upon the average

receive signal level from the serving cell, upon the average receive signal from all other cells

and upon the thermal noise. As described in subsection 4.7.1, this parameter controls the

position of the UEs in a cell coverage area. Typical values of σ lie between −5 to 17 dB for

a frequency reuse-1 cellular system as in figure 3.1. Lower values of σ indicate that the UEs

are close to the cell border and facing a high inter cell interference, representing ICI-limited

region. Although MUI exists in the region but just to emphasize the strong influence of ICI at

cell border we explicitly term the region as ICI-limited. Similarly, higher values of σ represent

MUI-limited region i.e. the UEs are very close to the cell center. Middle order values of σ

represent a region where both ICI and MUI have significant influence on the performance of

the system.

In the following, we consider two cellular scenarios in order to analyse the impact of ICI on

the performance of MUICIA. The first scenario is a system which consist of 3 cells. In such a

system the users experience strongly directed (spatially coloured) ICI. The second scenario is a

system with 21 cells. The users experience coloured ICI from the direct neighbouring cells but

the interference from other cells change the characteristics of ICI. Hence it is interesting for us

to investigate both scenarios as they impact the performance of alignment based transmission

schemes. For further details on the performance comparison of MUICIA and user selection

methods with other non-alignment based precodings we refer to our publications [22, 23] and

the master thesis report [75].

3-Cells Scenario:

The 3-cells scenario is modelled by a site with co-located 3-sectorized antennas where each

sector corresponds to a BS with unique cell ID. This is one of the baseline scenarios given in

[29]. Figure 4.10(a) presents the performance improvements in cell spectral efficiency using

MUICIA transmit precoding with different selection algorithms over the increasing number

of active users in ICI-limited (σ = 0dB) and MUI-limited (σ = 14dB) regions. Notice that

our proposed algorithms provide considerable gains in the performance as compared to the

standard selection algorithm. In ICI-limited region, with 20 active UEs in the cell, we get

almost 9% gains with Min-TxCol, user selection with Max-ICICond provides almost 30%

gains and 70% gains are achieved with Max-ERate. In MUI-limited region, these gains are

12% with Min-TxCol, 20% gains are with Max-ICICond and 50% gains are with Max-ERate.
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(a) 3-Cells scenario (b) 21-Cells scenario

Figure 4.10: MUICIA precoding with pair selection algorithms in ICI limited (σ = 0dB;

Smoothed lines) and MUI limited (σ = 14dB; Dashed lines) regions

The gains of Min-TxCol are increased in MUI-limited region whereas the gains of Max-

ICICond are decreased in MUI-limited region. This is because in MUI-limited region, min-

imizing the MUI helps the transmission scheme. In both regions of operations, the Max-

ICICond outperforms Min-TxCol which is based on classical orthogonality based selection.

This is because Max-ICICond increases the alignment gain for MUICIA and suppression

gain at the receiver by selecting active UEs experiencing strong ICI. Moreover, the gains of

Max-ICICond are higher in ICI-limited region due to the strongly directed ICI. This is an

important and interesting aspect which states that the selection of spatially separable users is

not the best (in terms of spectral efficiency) for transmission in a MU-MIMO cellular system

while using MUICIA. The selection with Max-ERate outperforms all other algorithms and it

provides relatively better performance in MUI-limited region. It shows that with UE-category

information and with slow time variant channels, transmission rate estimation can be done

with high accuracy at the serving cell. This estimation helps to select users contributing to

high spectral efficiency.

21-Cells Scenario:

The 21-cells scenario is modelled with the help of hexagonal grid of 7 sites each with co-

located 3-sectorized antennas which corresponds to a large cellular network. Figure 4.10(b)

presents the performance of MUICIA with all user selection algorithms in an ICI-limited and
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MUI-limited region, in a 21-cell scenario. At σ = 0 dB, the user selection algorithm curves

show the similar trends as of in 3-cell scenario in figure 4.10(a). The user selection with Max-

ICICond outperforms the Min-TxCol. However, the performance gap between them has been

decreased in 21-cell case. The situation of the performance comparison of Max-ICICond and

Min-TxCol at σ = 14 dB in figure 4.10(b) is different than figure 4.10(a). We can see that in

MUI-limited region, Min-TxCol outperforms Max-ICICond until 20UEs. This is because of

the change in ICI characteristics due to the higher number of interfering cells in the system.

The gains of MUICIA with Max-ICICond are considerably reduced due to the lack of aligned

interference in the system.

4.9 Conclusion

In this chapter at first we have given a detailed account on the statistical characteristics of

the interference seen by a user in a MIMO-cellular system. We have shown with the help

of simulation results that interference characteristics are highly dependent upon the spatial

structure of the environment, mobility of users and scheduling in the network. We have

proposed a new transmit precoding scheme for MU-MIMO systems based on the interference

alignment using the partial and outdated information about ICI. The results have shown that

even with outdated alignment, our proposed scheme provides gains in higher ICI regions. We

have also considered some practical limitations of the receivers and presented a modified

scheme.

We have also proposed three user selection methods for MU-MIMO cellular system. With

the help of extensive simulations we have shown that our proposed selection algorithms bring

considerable gains to the performance of MUICIA as well as other baseline precodings. For

a high number of active users, the Max-ERate based user selection method is computation-

ally complex but it provides enormous gains in system performance. We have assessed the

performance of MUICIA in a smaller and a larger cellular system scenario. In larger scenario

we expect loss of interference alignment. The results have shown that MUICIA outperforms

SLNR also in larger system for high and average ICI regions with Max-ERate method.
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Chapter 5

Un-Coordinated Interference

Alignment with Practical

Constraints

In this chapter we consider the important issues related to the interference and channel state

information at the receiver and the transmitter. At first we consider the estimation at the

receiver and then we proceed by considering the imperfect information at the transmitter

due to the non-ideal feedback. At the end we proceed towards real world channels. As a

proof of concept and a step towards reality, we evaluate the performance of our scheme using

measured channels in a lab trial test-bed.

5.1 Performance with Imperfect Information

In this section, we investigate the effects of channel and interference estimation errors at UE

side. We consider the system as given in section 4.2 of the previous chapter and represented by

the figure 4.1. We consider that the transmit and receive antennas are equal M = N = 2 and

experiencing Rayleigh fading channels. The matrices, Ha ∈ C2×2 and Hb ∈ C2×2 represent

these channels respectively for UE a and b. The coefficients of channel matrices are complex,

uncorrelated and independent, they are drawn from a random Gaussian distribution with

CN(0, 1). The vectors, qa ∈ C2×1 and qb ∈ C2×1 represent the directions of major ICI

components received by the UE a and the UE b respectively due to the transmission in the

strongest interfering cell, λa and λb represent the average ICI power in the directions of qa and
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qb such that these are unit norm vectors (||qa||= 1, ||qb||= 1). We assume that interference

power due to the other cells in the network is treated as noise. The vectors, na ∈ CN×1 and

nb ∈ CN×1 are the Gaussian noise vectors with CN(0, η2) respectively for UE a and b.

5.1.1 Channel Estimation Errors at the Receiver

To simplify the analysis, at first we assume that both the UEs a and b are able to estimate

the directions of ICI ( i.e. qa and qb ) perfectly. Later we will consider also the impact of

ICI estimation errors. We assume a perfect feedback. We model the estimation error of the

desired channel at the receiver as the error of an LMMSE based biased estimator. The details

of this estimation error model are given in [19]. Using this error model for our considered

system from section 4.2, we can write the estimated channels for UE a and b as follows:

H̃a =
√
β(Ha + Ea) (5.1)

H̃b =
√
β(Hb + Eb) (5.2)

Where, H̃a ∈ C2×2 and H̃b ∈ C2×2 are the estimated channel matrices, Ha and Hb are

the true serving channel matrices, Ea ∈ C2×2 and Eb ∈ C2×2 are the error matrices which

are independent of Ha and Hb with all the complex coefficients are independent and drawn

from a random Gaussian distribution with zero mean and variance σ2
E respectively for UE a

and UE b, β is the scaling factor of biased estimator that is used to control the reliability of

the estimation. The error variance is given by [19]:

σ2
E =

σ2
S

Tµ
(5.3)

Where, σ2
S is the average received signal power by the UEs, µ is the average input SINR

and T represents the number of effective pilots that can be considered for a reliable channel

estimation. Please note that we have used the same error variance and the same scaling

factor for both UE a and UE b. This is because we assume that both the UEs have same

input average SINR µ. The expression for scaling factor is given by:√
β =

µT

1 + µT
(5.4)

Let us write the signal ya(t) ∈ C2×1 received by UE a in time t,

ya(t) = Ha(t)pa(t)sa + Ha(t)pb(t)sb +
√
λaqa(t) + na(t) (5.5)
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where, pa ∈ C2×1 and pb ∈ C2×1 represent the precoding vectors for UE a and b. With

the erroneous Channel State Information (CSI) due to the estimation error, the precoding

vectors can be written as,

pa(t) =
1

γa
H̃
−1

b (t)qb(t− 1)

pb(t) =
1

γb
H̃
−1

a (t)qa(t− 1)

where, γa = ||H̃
−1

b (t)qb(t−1)|| and γb = ||H̃
−1

a (t)qa(t−1)||. Substituting the above precoding

vectors in equation (5.5), we get the following form:

(5.6)
ya(t) =

1

γa
Ha(t){H̃

−1

b (t)qb(t− 1)}sa +

1

γb
Ha(t){H̃

−1

a (t)qa(t− 1)}sb +
√
λaqa(t) + na(t)

Substituting equations (5.1) and (5.2) with time index in equation (5.6) we get:

(5.7)

ya(t) =
1√
βγa

Ha(t){Hb(t) + Eb(t)}−1qb(t− 1)sa +

1√
βγb

Ha(t){Ha(t) + Ea(t)}−1qa(t− 1)sb +
√
λaqa(t) + na(t)

=
1√
βγa

Ha(t)H
−1
b (t){I + Eb(t)H

−1
b (t)}−1qb(t− 1)sa +

1√
βγb

Ha(t)H
−1
a (t){I + Ea(t)H

−1
a (t)}−1qa(t− 1)sb +

√
λaqa(t) + na(t)

(5.8)
ya(t) =

1√
βγa

Ha(t)H
−1
b (t){I + Eb(t)H

−1
b (t)}−1qb(t− 1)sa

+
1√
βγb
{I + Ea(t)H

−1
a (t)}−1qa(t− 1)sb +

√
λaqa(t) + na(t)

For the sake of clarity, we denote IN = I and we drop the time index and substitute

qa(t− 1) = q
′
a and qb(t− 1) = q

′
b in equation (5.8) as:

(5.9)ya =
1√
βγa

HaH
−1
b {I + EbH

−1
b }
−1q

′
bsa +

1√
βγb
{I + EaH

−1
a }−1q

′
asb +

√
λaqa + na

By assumption, the channels are of full rank and their coefficients are fully independent,

channel inverse exist with probability one. The error matrices are also full rank so the

products EaH
−1
a and EbH

−1
b are also full rank and non-singular. Moreover, the summations
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{I + EaH
−1
a }−1 and {I + EbH

−1
b }
−1 are also non-singular. The conditions for Taylor series

expansion state that if A be a matrix such that An → 0 when n→∞ then:

(I + A)−1 = I−A + A2 −A3 + ...

For µ ≥ 0 and T > 1, σ2
E < 1, we can have the following conditions:

(EaH
−1
a )n → 0;n→∞

(EbH
−1
b )n → 0;n→∞

Now we can apply the Taylor expansion and approximation (EaH
−1
a )x ≈ 0 and (EbH

−1
b )x ≈ 0,

∀x > 1 on the inverse of the sum of matrices in equation (5.9) and re-write it as follows:

(5.10)ya '
1√
βγa

HaH
−1
b {I−EbH

−1
b }q

′
bsa +

1√
βγb
{I−EaH

−1
a }q

′
asb +

√
λaqa + na

Now we project the signal to the subspace where UE a is facing the minimum ICI. The

vector qa⊥(t) which is orthogonal to qa(t) represents this subspace.

(5.11)

qHa⊥ya︸ ︷︷ ︸
y′a

' 1√
βγa
{qHa⊥HaH

−1
b q

′
b − qHa⊥HaH

−1
b EbH

−1
b q

′
b}sa

+
1√
βγb
{qHa⊥q

′
a − qHa⊥EaH

−1
a q

′
a}sb +

√
λaq

H
a⊥

qa + qHa⊥na

(5.12)
y
′
a '

1√
βγa
{qHa⊥HaH

−1
b q

′
b − qHa⊥HaH

−1
b EbH

−1
b q

′
b}sa

+
1√
βγb
{qHa⊥q

′
a − qHa⊥EaH

−1
a q

′
a}sb + qHa⊥na

We assume that the serving cell allocates unit power to the UEs, the SINR for UE a can

be written as:

SINRa '
| 1√

βγa
{qHa⊥HaH

−1
b q

′
b − qHa⊥HaH

−1
b EbH

−1
b q

′
b}|2

| 1√
βγb
{qHa⊥q′a − qHa⊥EaH

−1
a q′a}|2+||qHa⊥ ||2η2

SINRa '
| 1√

βγa
{qHa⊥HaH

−1
b q

′
b − qHa⊥HaH

−1
b EbH

−1
b q

′
b}|2

( 1√
βγb

)2|qHa⊥q′a + (−1)qHa⊥EaH
−1
a q′a|2+η2

(5.13)
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where, (qHa⊥q
′
a) ∈ C1×1 and (−qa⊥EaH

−1
a q

′
a) ∈ C1×1 are the complex numbers, we can apply

the triangle inequality |x + y|≤ |x|+|y| on equation (5.13) to numerically approximate the

SINR:

SINRa ≈
| 1√

βγa
{qHa⊥HaH

−1
b q

′
b − qHa⊥HaH

−1
b EbH

−1
b q

′
b}|2

( 1√
βγb

)2{|qHa⊥q′a|+|qHa⊥EaH
−1
a q′a|}2 + η2

(5.14)SINRa ≈
| 1√

βγa
{qHa⊥HaH

−1
b q

′
b − qHa⊥HaH

−1
b EbH

−1
b q

′
b}|2

( 1√
βγb

)2{|qHa⊥q′a|2 + |qHa⊥EaH
−1
a q′a|2 + 2|qHa⊥q′a||qHa⊥EaH

−1
a q′a|}+ η2

The product |qHa⊥q′a| in equation (5.14) is the Hermitian angle between qa⊥ and q′a. It

is related with φa ∈ [0, π/2] (i.e. Hermitian angle between qa and q′a) such that |qHa⊥q′a|=
cos(π/2− φa) = sin(φa).

(5.15)SINRa ≈
| 1√

βγa
{qHa⊥HaH

−1
b q

′
b − qHa⊥HaH

−1
b EbH

−1
b q

′
b}|2

( 1√
βγb

)2{sin2(φa) + |qHa⊥EaH
−1
a q′a|2 + 2 sin(φa)|qHa⊥EaH

−1
a q′a|}+ η2

When φa = 0, (sinφa = 0) which means qa and q
′
a are co-linear, however, there will still

be some residual MUI power in desired signal space due to the channel estimation error and

the expression for SINR is given by:

(5.16)SINR(φa=0)
a ≈

| 1√
βγa
{qHa⊥HaH

−1
b q

′
b − qHa⊥HaH

−1
b EbH

−1
b q

′
b}|2

( 1√
βγb

)2|qHa⊥EaH
−1
a q′a|2 + η2

Comparing equation (5.16) with the expression of SINR with ideal CSI in equation (4.14)

in section 4.2 we can see that there is an additional MUI term due to the channel estimation

errors. When φa = π/2, (sinφa = 1) which means qa and q′a are orthogonal, the SINR

expression can be simplified as:

(5.17)SINR
(φa=π

2
)

a ≈
| 1√

βγa
{qHa⊥HaH

−1
b q

′
b − qHa⊥HaH

−1
b EbH

−1
b q

′
b}|2

( 1√
βγb

)2{1 + |qHa⊥EaH
−1
a q′a|2 + 2|qHa⊥EaH

−1
a q′a|}+ η2

Now writing back the equation (5.15) with the time index:

SINRa(t) ≈
(
| 1√
βγa
{qHa⊥(t)Ha(t)H

−1
b (t)qb(t− 1)−

qHa⊥(t)Ha(t)H
−1
b (t)Eb(t)H

−1
b (t)qb(t− 1)}|2

)
/(

(
1√
βγb

)2{sin2(φa) + |qHa⊥(t)Ea(t)H
−1
a (t)qa(t− 1)|2 +

2 sin(φa)|qHa⊥(t)Ea(t)H
−1
a (t)qa(t− 1)|}+ η2

)
(5.18)
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Notice that, when there are no estimation erros,
√
β = 1 and Ea = Eb = O ∈ C2×2, the

SINR in equation (5.18) will be equal to the ideal SINR in equation (4.20).

5.1.2 Interference Estimation Errors at the Receiver

Now we consider that in addition to the channel estimation error, the receiver has also an

error in the estimation of ICI. We assume that the channel estimation errors and ICI errors

are independent and uncorrelated. Therefore, in the previous section we modelled the channel

estimation errors. Here we explain how we model the error in ICI estimation. We assume that

the error lies only in the estimation of the direction of ICI whereas the average ICI power

is perfectly estimated at the receiver. Let ea(t) ∈ C2×1 and eb(t) ∈ C2×1 be the random

Gaussian error vectors with variance σe which affect the estimation of ICI in UE a and b

respectively. The estimated ICI vectors for UE a and b are given as,

q̃a(t) = qa(t) + ea(t) (5.19)

q̃b(t) = qb(t) + eb(t) (5.20)

where, q̃a(t) ∈ C2×1 and q̃b(t) ∈ C2×1 are the estimated ICI vectors. We normalize the vectors

such that ||q̃a(t)||= ||q̃b(t)||= 1. We assume that the error in channel estimation and ICI

estimation are independent. Intuitively, the variance of error for ICI estimation, σe, is directly

related to average SINR (µ) because higher SINR implies weaker interference which implies

an increase in ICI estimation error. On the other hand, intuitively, σe is inversely proportional

to the Interference to Noise Ratio (INR), ζ, because higher INR implies stronger interference

which implies a decrease in estimation error. An increase in the number of effective pilots T

also decreases the estimation error. With these intuitions, the error variance of ICI estimation

can be written as:

σe =
µ

Tζ
(5.21)

Now we can re-write the equation (5.6) with channel and interference estimation errors as

follows:

(5.22)
ya(t) =

1

γa
Ha(t){H̃

−1

b (t)q̃b(t− 1)}sa +

1

γb
Ha(t){H̃

−1

a (t)q̃a(t− 1)}sb +
√
λaqa(t) + na(t)

Where, γa = ||H̃
−1

b (t)q̃b(t − 1)|| and γb = ||H̃
−1

a (t)q̃a(t − 1)||. Now we can project the

receive vector on to q̃a⊥(t) and perform the similar approximation for the inverses as in the
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previous section. In the following we remove the time index and represent the (t−1) quantities

with a prime. The received signal after the receive processing analogous to equation (5.11)

can be written as follows:

(5.23)
y
′
a =

1√
βγa
{q̃Ha⊥HaH

−1
b q̃

′

b − q̃Ha⊥HaH
−1
b EbH

−1
b q̃

′

b}sa

+
1√
βγb
{q̃Ha⊥ q̃

′

a − q̃Ha⊥EaH
−1
a q̃

′

a}sb +
√
λaq̃

H
a⊥

qa + q̃Ha⊥na

Note that as oppose to equation (5.12), we see a residual ICI term
√
λaq̃

H
a⊥

qa in equation

(5.23) due to the estimation error in ICI. Assuming unit power transmission, the signal to

interference and noise ratio can be written as:

SINRa =
| 1√

βγa
{q̃Ha⊥HaH

−1
b q̃

′

b − q̃Ha⊥HaH
−1
b EbH

−1
b q̃

′

b}|2

| 1√
βγb
{q̃Ha⊥ q̃

′
a − q̃Ha⊥EaH

−1
a q̃

′
a}|2+λa|q̃Ha⊥qa|2+η2

(5.24)

Notice that, when there are no estimation erros,
√
β = 1, Ea = Eb = O ∈ C2×2, ea = eb =

o ∈ C2×1 and |q̃Ha⊥qa|= 0, the SINR in equation (5.24) will be equal to the ideal SINR in

equation (4.20).

5.1.3 Imperfect Information at the Transmitter

Now we consider the case when the CSI at the transmitter is uncertain due to the problems

related to the feedback. For this purpose, we model the channel information as follows:

Ĥa =
1√

1− %2
H̃a +

%√
1− %2

Ẽa (5.25)

Ĥb =
1√

1− %2
H̃b +

%√
1− %2

Ẽb (5.26)

Where, Ĥa ∈ C2×2 and Ĥb ∈ C2×2 represent the uncertain channel information at the

transmitter, H̃a ∈ C2×2 and H̃b ∈ C2×2 are the estimated channels by the receivers, Ẽa ∈
C2×2 and Ẽb ∈ C2×2, CN(0, 1) are the error matrices with all independent complex coefficients

drawn from a random Gaussian distribution with zero mean and unit variance, they are

independent of Ha and Hb respectively for UE a and UE b, % represents the uncertainty

factor which lies between 0 ≤ % < 1. When % = 0, the transmitter has the same channel

knowledge as the receiver. In a real network % can account for the errors due to the limited

feedback as well as the feedback delays. We assume that with the ICI information fed back
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by the UE is also perturbed with the same uncertainty factor. With this assumption, we can

write the imperfect ICI information at the transmitter as follows:

q̂a =
1√

1− %2
q̃a +

%√
1− %2

ẽa (5.27)

q̂b =
1√

1− %2
q̃b +

%√
1− %2

ẽb (5.28)

Where, q̂a ∈ C2×1 and q̂b ∈ C2×1, represent the uncertain ICI information at the transmitter

such that ||q̂a||= ||q̂b||= 1, q̃a ∈ C2×1 and q̃b ∈ C2×1 are the estimated ICI vectors by the

receivers, ẽa ∈ C2×1 and ẽb ∈ C2×1, CN(0, 1) are the error vectors with all independent

complex coefficients drawn from a random Gaussian distribution with zero mean and unit

variance, they are independent of qa and qb respectively for UE a and UE b. The precoding

vectors for UEs a and b designed by the transmitter in time t can be written as:

pa(t) =
1

γ̂a
Ĥ
−1

b (t)q̂b(t− 1)

pb(t) =
1

γ̂b
Ĥ
−1

a (t)q̂a(t− 1)

where, γ̂a = ||Ĥ
−1

b (t)q̂b(t − 1)||2 and γ̂b = ||Ĥ
−1

a (t)q̂a(t − 1)||2. With the help of above

precoding vectors we can re-write the signal ya(t) ∈ C2×1 received by UE a in time t similar

to equation (5.22) as:

(5.29)
ya(t) =

1

γ̂a
Ha(t){Ĥ

−1

b (t)q̂b(t− 1)}sa +

1

γ̂b
Ha(t){Ĥ

−1

a (t)q̂a(t− 1)}sb +
√
λaqa(t) + na

For simplification we drop the time index in the following and let κ = 1√
1−%2

and ω =
%√

1−%2
. Substituting (5.25) and (5.26) in (5.29) we get:

(5.30)

ya =
1

γ̂a
Ha{κH̃b + ωẼb}−1q̂

′

bsa +
1

γ̂b
Ha{κH̃a + ωẼa}−1q̂

′

asb +
√
λaqa + na

=
1

κγ̂a
Ha{H̃b +

ω

κ
Ẽb}−1q̂

′

bsa +
1

κγ̂b
Ha{H̃a +

ω

κ
Ẽa}−1q̂

′

asb +
√
λaqa + na

=
1

κγ̂a
Ha{H̃b + Êb}−1q̂

′

bsa +
1

κγ̂b
Ha{H̃a + Êa}−1q̂

′

asb +
√
λaqa + na

(5.31)ya =
1

κγ̂a
HaH̃

−1

b {I+ ÊbH̃
−1

b }−1q̂
′

bsa+
1

κγ̂b
HaH̃

−1

a {I+ ÊaH̃
−1

a }−1q̂
′

asb+
√
λaqa+na
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Where, Êa(t) = ω
κ Ẽa(t) and Êb(t) = ω

κ Ẽb(t). At the receiver, we can project the receive

vector on to q̃a⊥(t) and perform the similar approximation for the inverses as in the previous

section. The received signal after the receive processing analogous to equation (5.23) can be

written as follows:

(5.32)
y
′
a =

1

κγ̂a
{q̃Ha⊥HaH̃

−1

b q̂
′

b − q̃Ha⊥HaH̃
−1

b ÊbH̃
−1

b q̂
′

b}sa

+
1

κγ̂b
{q̃Ha⊥HaH̃

−1

a q̂
′

a − q̃Ha⊥HaH̃
−1

a ÊaH̃
−1

a q̂
′

a}sb +
√
λaq̃

H
a⊥

qa + q̃Ha⊥na

With unit power transmission, we can write the SINR as in equation (5.24):

SINRa =
| 1
κγ̂a
{q̃Ha⊥HaH̃

−1

b q̂
′

b − q̃Ha⊥HaH̃
−1

b ÊbH̃
−1

b q̂
′

b}|2

1
κγ̂b
{q̃Ha⊥HaH̃

−1

a q̂
′
a − q̃Ha⊥HaH̃

−1

a ÊaH̃
−1

a q̂
′
a|2}+ λa|q̃Ha⊥qa|2+η2

(5.33)

Comparing equation (5.33)) with equation (5.24)), we can see that even after the uncertainty

of information at the transmitter, the residual ICI remains the same at the receiver. Moreover,

notice that when the transmitter has perfect information and the receiver can have perfect

estimates of channel and ICI information, the SINR in equation (5.33) will be equal to the

ideal SINR in equation (4.20).

5.1.4 Results with Imperfect Information

We consider the system as shown in figure 4.1 for numerical simulations of 5000 channel

realizations with Rayleigh fading. The direction of arrival of major component of ICI in two

consecutive transmissions is uniformly distributed in the interval [0, φmax]. As described in

the previous chapter, we control the colourdness of ICI with the help of INR (ζ). Both the

UEs have a given input average SINR (µ) and an average INR (ζ). We divide our performance

analysis in two steps. In the first step we consider only the channel estimation errors at the

receiver and analyse the performance of MUICIA with the approximated SINR from equation

(5.18) and with simulations. For step one, we consider the interference minimization (IM)

receiver qHa⊥ . In the second step, with the help of uncertainty model, we consider estimation

errors at the receiver (both channel and ICI estimation) and the design of precoding vectors

with the imperfect information at the transmitter. In this study we also compare the perfor-

mance of MUICIA precoding with SLNR precoding. For the fair comparison of precodings,

we use IRC algorithm at the receivers as it is optimum for the baseline precoding.
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Analysis with Channel Estimation Errros at the Receiver

Figure (5.1) presents the performance of MUICIA for the range of φmax which is varying

from 0 to 90 degrees. Additionally, we compare the performance with two other schemes

which can be seen as an upper bound (OPTIMAL) and a lower bound (LB-Perfect) for the

considered system. The OPTIMAL is a hypothetical optimum scheme which transmits equal

power to both the UEs in their eigenmodes and perfectly nullify both MUI and ICI. The

LB-Perfect also transmits the power in the eiqenmodes but it does not treat the interference

power at the receiver rather it simply uses the MRC combiner.

Figure 5.1: Mean cell rate performance over φmax for SINR=10 dB, INR=20 dB and T=16

In figure 5.1, when φmax = 0, we observe higher loss in the performance due to channel

estimation errors at the receiver. With the increase in φmax, the loss due to misalignment

is dominant. The performance with numerical approximation is also close to the simulation

performance. Figure 5.2(a) shows the performance comparison over SINR. Note that in a real

system, the typical SINR values are below 20 dB, we have simulated this range only to find

the required SINR which can achieve ideal performance. We can see that the performance

increases with the increase in SINR. However, the increase in performance is saturated at

very high SINRs even for the perfect system. This is because for a given INR, an increase

in SINR causes the decrease in interference which reduces the alignment gains. Notice that

the impaired channel performance approaches the perfect performance as the error variance

decreases with the increase in SINR. At low SINRs, our approximation is weak therefore the

numerical error performance is higher than the simulation results. However, at high SINRs,
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(a) Performance over SINR, INR=20 dB (b) Performance over INR, SINR=10 dB

Figure 5.2: Mean cell rate performance, φmax=5 Degrees and T=16

the numerical performance is below the simulation performance.

Figure 5.2(b) shows the performance comparison over INR. Again note that in a real

system, the typical INR values are below 30 dB, we have simulated this range only to find

the required INR which can achieve ideal performance. The increase in INR increases the

performance due to the increase in the alignment gain. However, the increase in performance

is saturated at very high INRs even for the perfect system. As the increase in INR does not

decreases the error variance, therefore the impaired channel performance only asymptotically

approaches the ideal performance. The numerical approximation overlaps the simulation

performance at INR values below 20 dB. However, a little gap is maintained over high INRs.

Figure 5.3 shows the performance comparison over the effective number of pilots that can

be used for the estimation of one channel coefficient. Please note that the performance of

MUICIA and lower bound with perfect estimation is independent of the number of pilots.

In an LTE based 2-by-2 MIMO system, upto 16 pilot symbols (CSRS) are inserted within a

PRB for channel estimation as shown in section 2.2. The minimum transmission bandwidth

in LTE is 1.25 MHz which contains 6 PRBs (48 pilot symbols per antenna). For slow time

variant and less frequency selective channels, channel estimation algorithms can use multiple

PRBs in one transmission time. From figure 5.3 we see that the increase in the number of

effective pilots increases the performance. This is because the error variance is decreased with

the increase in T. The performance with channel estimation error asymptotically approaches
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Figure 5.3: Mean cell rate performance over the available pilots for SINR=10 dB, INR=20 dB

and φmax=5 Degrees

the ideal performance.

Analysis with Imperfect Information at the Transmitter

With the help of simulations, now we consider the estimation errors (both channel and

ICI estimation errors) at the receiver as well as the impaired information at the transmitter.

At first, we compare the performance of MUICIA with a hypothetical upper bound (OPTI-

MAL) and a lower bound (LB-Perfect). For this purpose, we use IM receiver. The legend

RxErr represents the channel and ICI estimation errors only at the receiver. The imperfect

information at the transmitter due to the estimation errors and feedback errors is represented

by RxTxErr.

Figure 5.4 presents the performance of MUICIA for the range of φmax. For the case of

RxTxErr, the uncertainty factor % = 0.1. We can see an additional loss of performance with

impaired information at the transmitter. We observe that for higher values of φmax the loss

due to the misalignment is dominant and the impaired performance approaches the ideal

lower bound performance.

Now for the other system parameters, we compare the performance of MUICIA with the

performance of SLNR. For onward comparisons, we use the IRC receiver for all the precdoing

schemes(as IRC is a better receiver for the baselines precoding SLNR, so it is fair to use

IRC for all the precoding schemes). Figure 5.5(a) presents the performance comparison over

the uncertainty factor %. For lower values of %, the impaired MUICIA performance is even
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Figure 5.4: Performance of MUICIA, SINR=10 dB, INR=20 dB, % = 0.1 and T=16

(a) Performance over uncertainty %, T=16 dB (b) Performance over T, %=0.1 dB

Figure 5.5: Performance comparison of all precodings with IRC receiver, SINR=10 dB, INR=20

dB and φmax=5 Degrees
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(a) Performance over SINR, INR=20 dB (b) Performance over INR, SINR=10 dB

Figure 5.6: Performance comparison of all precodings with IRC receiver, φmax=5 Degrees,

T=16 and %=0.1

better than the ideal SLNR performance. However, if the uncertainty is very high, the SLNR

outperforms MUICIA.

Figure 5.5(b) presents the performance comparison over the number of available pilots.

Notice that there is almost no gap in the performance of SLNR with and without impaired

information at the transmitter. For less than four pilots, SLNR outperforms the MUICIA. It

shows that SLNR is robust to estimation errors as compared to MUICIA. However, for more

than eight pilots, MUICIA is over SLNR. It implies that, slow moving UEs can use higher

number of pilots for estimation and thus MUICIA is a better choice in this case.

Figure 5.6(a) presents the performance comparison over SINR. Notice that MUICIA suf-

fers a huge loss in the performance due to the impairments over the whole range of SINR.

The percentage loss in the performance of MUICIA is higher than SLNR. Both schemes

asymptotically approach the ideal performance. With T = 16 (two consecutive PRBs can be

used for estimation), even with impaired information, MUICIA outperforms SLNR.

Figure 5.6(b) presents the performance comparison over INR. For INR below 10 dB,

SLNR outperforms even the ideal MUICIA. However, for higher INR values, MUICIA out-

performs the SLNR. It is clear because the alignment gains are higher when the interference

is dominant. In a co-channel heterogeneous scenario, where the users of low power pico cells

are facing strong macro interference, we expect higher values of INR.
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An overall observation about the performance with impaired information is that MUICIA

has a very high percentage loss in the performance as compared to the SLNR. The simulation

results show that the SLNR based precoding is very robust with respect to the practical

constraints. However, for some conditions, for example with slow time and frequency variant

channels, MUICIA with practical constraints is even better than ideal SLNR performance.

5.2 Performance with Limited Feedback

In closed loop systems, the term Limited Feedback is used to express the constraint that only

a limited system resources can be used to provide the feedback information. In FDD based

downlink transmission, very limited uplink resources are available to provide the feedback.

Using the limited resources, perfect information cannot be fed back to the transmitter. Due to

this reason, all the closed loop schemes suffer loss in the performance if the feedback is limited.

In the previous section we have already performed initial analysis using the uncertainty based

feedback imperfection model. Here we extend the analysis where we consider the practical

system with practical feedback methods.

In general, the feedback information required for the closed loop transmission consists

of complex coefficients. Vector quantization is one of the method which is used to quantize

this information. The UE quantizes the feedback information with respect to the vector

codebooks which are known to both the UE and the serving cell. The UE sends only the

index of the quantized vector. The performance of the transmission mainly depends upon the

size of the codebook (number of bits), number of coefficients, average SINR of UE, feedback

rate and the sensitivity of the precoding to quantization errors. The design of the codebooks

also impacts the performance. A detailed explanation of the terms and methods over limited

feedback and different types of feedback information is given in [76].

We consider two types of feedback frameworks. One is based on Random Vector Quan-

tization (RVQ) [77] where the codebooks are generated randomly for each link. The other

framework exploits the channel properties to design the codebooks. It is known as Hierar-

chical Codebook Design. Many studies have shown that for slow time variant channels the

hierarchical codebook framework is more effective in terms of reducing the feedback load

computational complexity. We consider the hierarchical design proposed in [78] for our anal-

ysis.
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The major goal of our contribution is to evaluate the feasibility of MUICIA in limited

feedback systems. We accomplish this goal by the evaluation of the performance of MUICIA

and also by the comparison of this performance with a state of the art transmit precoding.

This precoding is based on effective zero-forcing [61] as described in the previous chapter.

With the help of system simulations, at first we use the RVQ and evaluate the performance

for the number of bits available for feedback and for the given input average SINR of the

UEs. We further apply the hierarchical codebook design and show the enhancements in the

performance over RVQ. Moreover, we also analyse the effects of parameters specific to the

hierarchical codebook design and provide a proposal for the choice of these parameters. Our

results indicate that with a reasonable feedback load, better performance can be achieved

with MUICIA in practical systems. Here we report only the selective results. For the detailed

assessment of performance we refer to our publication [24] and the master thesis report [79].

Figure 5.7: Performance comparison of MUICIA and EFZF with limited feedback based on

RVQ (4 bits) and Hierarchical codebook design. For hierarchical codebook, Refresh Time = 5ms,

B1=4 bits and B2=3 bits

In figure 5.7 we consider an area covered with three cells arranged in a tri-sector manner

where the UEs are dropped according to the given user geometry (input average SINR repre-

sented by σ) which is plotted on the x-axis. Figure 5.7 presents performance comparison of

MUICIA with EFZF. In ideal case, MUICIA completely outperforms EFZF. With hierarchi-

cal codebooks, MUICIA outperforms EFZF until σ = 10dB. In this case, the performance of
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MUICIA with limited feedback is even better than the ideal performance of EFZF. However,

with RVQ, EFZF mostly outperforms MUICIA. However, MUICIA s still better than EFZF

in ICI-limited region. This is because of the loss in alignment gains due to the imperfect

feedback. This indicates that with limited feedback, MUICIA can be used for the UEs which

are facing strong ICI. We also observe that the hierarchical codebook design is beneficial for

both transmit precoding schemes, in particular for MUICIA. Moreover, MUICIA provides

sustainable gains as compared to EFZF if high and moderate amount of feedback resources

is available. However, if the feedback resources are sparse, then EFZF outperforms MUICIA.

This implies that in urban and dense urban scenarios where the users have low mobility

profile and higher downlink data demand we can use MUICIA.

5.3 Performance with Measured Channels

Until now we have evaluated the performance of systems analytically or with simulations. In

this section, we use the measured channels for the evaluation of multi user multi cell system.

For this purpose, we use our proprietary software-defined wireless measurement test-bed. The

measurement test-bed utilizes OFDM based radio air-interface. Following are the objectives

that we target in this section.

• Proof of concept for MUICIA.

• Assessment of MUICIA with suitable training overhead.

• Impact of reduced training overhead on the performance.

5.3.1 Technical Description for the Measurement Platform

Our measurement test-bed consists of a combination of hardware and software modules. A

transmission site is constructed with the help of three transmit antenna arrays as shown in

figure 5.8. Each array consists of two antenna elements which are horizontally polarized. The

antenna hardware is fed with the help of a Remote Radio Head (RRH) which is connected

with a proprietary eNB emulator. Each cell is serving two multiple antenna UEs. Each UE

has a cross polarized patch antenna array. The performance results are evaluated only for

cell b (marked as grey in figure 5.8) therefore, we focus on the UEs served by cell b and refer

to them as test-UEs. The antennas of test-UEs are receiving signals from their serving cell

which is cell b and also the signals from the interfering cells which are cell a and cell c. The
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impact of transmit precoding and interference from the interfering cells is considered with

the help of the software platform.

Figure 5.8: A site with three co-located sectorized antennas, cell b is serving cell whereas cell

a and c are interferers

Figure 5.9 shows the complete measurement platform. The measurement platform is op-

erated with the help of a control computer which hosts the software defined wireless platform.

It is used to take parameter settings as input and to display performance graphs as output.

In each working cycle (iteration/transmission), training pilots are encapsulated in a downlink

transmission frame of 10ms duration. The frame is configured by the transmit processing

module in the software which is shown as a sub-block in figure 5.9. The configured frame

is OFDM-modulated and transmitted in the air with the help of an eNB emulator and the

RRH. The hardware of UEs receive the frame and forward it to the software for further receive

processing as shown in figure 5.9. The transmit processing block and the receive processing

block are further described in the following subsections.

5.3.2 Precoding in Interfering Cells

The interfering cells are also transmitting the training symbols which are used by the test-

UEs to estimate the interfering channels. In practice, the ICI experienced by a UE varies due

to a number of factors. In order to clearly understand the impact of precoding in interfering

cells on the temporal variations in ICI and on the alignment for a given frequency sub carrier,

we model the precoding vectors in interfering cells as follows:

pmh(t) = cosφ(t)pmh(t− 1) + sinφ(t)pmh⊥(t− 1) (5.34)
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Figure 5.9: Block diagram for the measurement test-bed
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Where, m represents the UE index and h = {a, c} represents the cell index, t represents

the time index for the transmission frame, φ(t) is the random phase distributed uniformly

between [0, φmax], pmh(t) ∈ CM×1 is the precoding vector in time t, pmh⊥(t− 1) ∈ CM×1 is

the vector orthogonal to pmh(t− 1). Different levels of ICI variations can be model with the

help of φmax. In the following, we provide details over the variation levels for ICI.

Time In-Variant(TIV) ICI: This is the case where random precoding vectors are

generated for each interfering UE and the same vectors are used for all the transmission

frames at a given measurement position. We consider this case for the purpose of best

performance comparison only.

Low Time Variant ICI (LTV): In this case, the precoding vectors are updated in

every transmission with the help of equation (5.34). For slow temporal variations, we select

the value of φmax=5◦. It implies that the random precoding vectors are varying between 0

to 5◦ in each consecutive transmission at a given measurement position.

Medium Time Variant ICI (MTV): For medium temporal variations in ICI, φmax=15◦.

High Time Variant ICI (HTV): For high variations in ICI, φmax=30◦.

Random ICI (RAND): In this case, the precoding vectors for each interfering UE are

selected in each transmission from a uniform random distribution (i.e. pmh(t) and pmh(t−1)

are totally independent). It represents the worst case precoding.

5.3.3 Transmit Processing

As shown in figure 5.9, the transmit processing block mainly generates the transmission

frame that is to be transmitted in the air. Each cell transmits the training symbols which

are embedded in a TDD based transmission frame. The length of the frame is similar to the

LTE frame which is 10 ms. The TDD structure of the frame is also similar to one of the

LTE-TDD frame type. Please refer to configuration 1 in the uplink-downlink configuration

Table 4.2-2 in [38]. The symbol structure within the frame is proprietary. One frame consists

of synchronisation symbols, training symbols and data symbols. As we do not use data for

evaluation so the data symbols are empty. The TDD frame is divided into two downlink and

two uplink periods. We have used only one downlink period for the transmission. There is

no transmission in the uplink period. The frame structure is shown in figure 5.10.

The synchronization symbols and the training symbols (pilots) are based on Constant

Amplitude Zero Auto-Correlation Waveforms (CAZAC) sequences. Each transmit antenna

sends the pilots in a given symbol time. To differentiate the transmit antennas, different
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Figure 5.10: Frame Structure
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Figure 5.11: Pilot Arrangements

symbols are used for each antenna. Figure 5.10 shows the pilot placement in the transmission

frame. The transmission bandwidth which is 20 MHz is divided into equally spaced sub

carriers. For the purpose of analysis, two sets of symbols in the same downlink period are

used for the transmission of pilots. Both sets are shown in the frame structure figure 5.10

for a single subcarrier. The first set has a basic pilot spacing where pilots are transmitted

on every sub carrier. We assume that the channels estimated from this set are almost ideal.

These estimates are used as reference for the performance evaluation. The second set can

be used for any other spacing of pilots. We have assess the performance with three different

pilot spacings. For cell b these pilot spacings are shown in figure 5.11.

Pilot Every 4th Sub Carrier (PS04): The first arrangement can be seen in figure

5.11(a), here we have pilots on every 4th sub carrier.

Pilot Every 12th Sub Carrier (PS12): The second arrangement has pilots every

12th sub carrier as shown in figure 5.11(b). One PRB in LTE contains 12 sub carriers. This

arrangement represents one pilot over the total sub carriers in a PRB.

Pilot Every 21st Sub Carrier (PS21): A complete PRB contains 12 x 14 OFDM re-

source elements and for 2-Tx antennas there are 8 pilots per antenna per PRB. It implies that
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we have one pilot per antenna over 21 resource elements in a PRB. The third arrangement

in figure 5.11(c) represents this case where we have a pilot every 21st sub carrier.

The sub carrier spacing and the OFDM symbol generation follows the LTE specifications

[38]. Salient OFDM related parameters are given in the table 5.1.

System Parameters Values

Carrier Frequency 2.6 GHz

Transmission Bandwidth 20 MHz

Subcarrier Spacing 15 kHz

Useful Symbol Duration ∼ 66.67 µ s

FFT size 2048

Sampling Frequency 30.72 MHz

Long Cyclic Prefix 160 samples

Short Cyclic Prefix 144 samples

Table 5.1: OFDM system parameters.

5.3.4 Receive Processing

The signals received by the test-UE hardware are supplied to the receive processing module

shown in figure 5.9. The receiver processing is done in two stages. The first stage estimates

the channel and the second stage uses the estimated channels to compute further information

for performance evaluation. The channel estimation stage is done in three steps which are

explained below in this section.

Synchronization: In practice, synchronization symbols are used for frame synchroniza-

tion. We have not used the frame synchronization symbols and rather used the common

clock generator for the transmitter and receiver equipment which is affordable in an indoor

measurement test-bed. However, we have used synchronization symbols for downlink period

synchronization with in the frame.

Frequency Offset Corrections: After the timing synchronization, synchronization of

the carrier frequency is required to avoid any inter carrier interference. With the help of

cyclic prefix, we estimate the frequency offset and perform correction as given in [80].

Channel Estimation: The channels are estimated with the help of pilot symbols. The

receiver is already aware of the training sequences. As the pilots are orthogonal in time, we

estimate the channel coefficients separately for each TX-RX link. Let h(u,v)i be the channel
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coefficient between the uth antenna element of test-UE i and the vth antenna element of cell

i. Let x(v)i be the transmitted training symbol and y(u)i be the received signal which is given

by:

y(u)i = h(u,v)ix(v)i + n(u)i (5.35)

Where, n(u)i is the noise at the uth receive antenna element. As x(v)i is known to the receiver,

we can write the estimated channel coefficient h̃(u,v)i in the following form:

h̃(u,v)i = h(u,v)i +
n(u)i

x(v)i
(5.36)

The estimated coefficients are used for further processing as explained in the next section.

Performance Evaluation: The precoding vectors and the receiver vectors are computed

for each OFDM time-frequency resource element using the estimated channels for a given pilot

arrangement in the second set of training symbols as shown in figure 5.11. With the help of

the perfect channels estimated from the first set of pilots, we compute the output SINR for

each resource element using equation (4.50). Please note that the performance is evaluated

only for cell b which is using MUICIA (or baseline precodings) as transmit precoding. This

SINR is used to compute the capacity with the help of SINR to Shannon rate mapping.

5.3.5 Measurement Scenarios

Here we consider two scenarios with a 3-Cell arrangement. Figure 5.12(a) shows the layout

of the cells on the measurement grid. We refer to our publication [25] and the master thesis

project [81] for further measurement results with limited feedback, user mobility and different

cellular arrangements.

Measurement Scenario 1: In this scenario, channel measurements are taken with one

UE fixed at one position of the grid, while the measurements for the other UE are taken at

each given position of the grid (1000 iterations of measurement per position).

Measurement Scenario 2: In this scenario, measurements are taken on certain posi-

tions on the gird. The positions are selected such that both the UEs have same average SINR

for one set of measurements (1000 iterations of measurements with both UEs at two different

particular positions corresponding to same average SINR values).
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(a) Placement of BSs on measurement grid, arrows represent the bore-

sight directions of transmit arrays

(b) Real world picture of

the transmitters and the

grid

Figure 5.12: Schematic and real view of the measurement grid

5.3.6 Measurement Results and Anaylsis

The assessments of the results is performed with three objectives. The first objective is the

proof of concept for MUICIA and to show that partial and outdated ICI is still useful. The

second is to compare the performance of MUICIA with other non-alignment based baseline

precodings. The third objective is to assess the performance with reduced training overhead.

Proof of Concept: At first we evaluate the impact of variation in ICI on the statis-

tical characteristics of the Hermitian Angle between the eigenvectors corresponding to the

maximum eigenvalue of ICI covariance matrix in two consecutive transmissions. We have

discussed these characteristics in section 4.3. Figure 5.13(a) presents the CDF curves of the

angle based on 5000 measurement samples for a resource element allocated to a UE placed on

a random position in the measurement grid. Different graphs in the figure represent different

levels of variations of ICI which are modelled with the help of precoding vectors as explained

in the subsection 5.3.2. We can see that for randomly selected precoding vectors in each

transmission (RAND), the variation in ICI is very high and the span of angle is very large.

The case of HTV is very close to RAND. These results are in line with the simulation results

presented in section 4.3.
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(a) The CDF of Hermitian Angle (4.25) for a re-

source element at some measurement position on

the grid.

(b) Performance with cell spectral efficiency. RA

represents alignment with any random vector.

Figure 5.13: Proof of concept for the use of partial and outdated ICI. Note that the markers

are used only to differentiate the curves. They do not represent the measurement samples.

Further to the proof of concept, now we evaluate the impact of different levels of ICI vari-

ations on the performance of MUICIA precoding which aligns partial and outdated ICI with

MUI. For comparison, we have also considered a scheme which aligns the MUI with any ran-

domly generated vector (totally uncorrelated with ICI). We call it Random Alignment (RA).

Figure 5.13(b) shows the CDF of cell spectral efficiency for the positions of the UEs on the

measurement grid corresponding to average SINR of 1 dB and 5 dB respectively for the two

UEs. At first notice that, performance with RAND (highly time variant ICI) is still better

than RA throughout the CDF. This proves that alignment with the partial and outdated ICI

vector is better even when ICI is highly time variant. From left to right in the figure perfor-

mance increases when the variation in ICI decreases. Highly varying ICI causes the losses due

to misalignment. If we compare the worst (RA) and the best (TIV) case then a performance

gain on different percentile of CDF is {(%percentile,%gain), (10, 80), (50, 26), (90, 16)}.
Performance Comparison: In order to justify the alignment and use of partial and

outdated ICI, we compare the performance of MUICIA with other non-alignment based multi-

user transmit precodings which only deal with the MUI. Figure 5.14 presents the performance

comparison of MUICIA in two scenarios with the pilot spacing of 4 sub carriers. As given in

measurement scenario 1, one of the UEs is fixed at a grid position corresponding to an average

SINR of 7 dB, while the other UE is placed at all the positions of measurement grid (in an
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(a) Performance comparison in scenario 1. (b) Performance comparison in scenario 2.

Figure 5.14: Performance comparison of MUICIA with other baselines, φmax = 5. Note that

the markers are used only to differentiate the curves. They do not represent the measurement

samples.

average SINR range of [0,13] dB). The CDF in figure 5.14(a) is composed of the cell spectral

efficiency samples of all the frequency sub carriers for all the iterations of measurements for

all the positions in the grid. The results show that until 10th percentile of the CDF, the

performance of all the schemes is almost overlapping. However, above the 10th percentile,

MUICIA outperforms all the other precoding schemes.

Now we consider the measurement scenario 2 where both UEs are placed in the grid

such that they have the same average SINR. Figure 5.14(b) presents the mean cell spectral

efficiency over the average SINR of the UEs. Notice that these results are clearly in-line

with the simulation results shown in figure 4.9(a) in subsection 4.7.2. The impact of ICI

reduces with the increase in average SINR and therefore, performance of SLNR approaches

to MUICIA.

Impact of Training Overhead: Previous results have shown that SLNR is the best

baseline, therefore for better display of the graphs, in this performance analysis we compare

MUICIA only with SLNR. The measurements with different training overheads (different

number of total pilots per symbol) are performed for different positions of the two UEs. One

UE is positioned in the grid such that the range of SINR is [1.6,6] dB and the other UE is

placed such that the range is [-2,6] dB. Both the UEs are static for one set of measurement

at their respective positions in the grid. Each CDF graph in figure 5.15 is composed of
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Figure 5.15: Performance comparison with different pilot spacings. Note that the markers are

used only to differentiate the curves. They do not represent the measurement samples. φmax = 5

the cell spectral efficiency samples of all the frequency sub carriers for all the iterations of

measurements for all the selected positions in the grid. The decrease in training overhead

Pilot Spacing 4th SC 12th SC 21st SC

Mean Cell Rate[b/s/Hz]
MUICIA 5.68 2.28 1.76

SLNR 3.24 1.82 1.52

Table 5.2: Impact of reduced training overhead on overall mean cell rate.

(increase in pilot spacing) increases the error in channel estimation. Therefore, we can see

that the performance of both the schemes decreases with the reduction in the pilots. However,

we see that the percentage loss in the performance of MUICIA is higher than the SLNR. This

is because MUICIA is dependent upon the estimated channels from not just the serving cell

(as is the case with SLNR) but also on the channels from the interfering cells.

Now we focus on the comparison of the two schemes with the same pilot spacing. In figure

5.15 with PS04, there is a performance overlap till 10th percentile and after that MUICIA

outperforms SLNR. This overlap region extends till 70th percentile with PS12 and after that

MUICIA is better than SLNR. With PS21, the two schemes overlap till 80th percentile and

then MUICIA delivers better results. The table 5.2 lists the overall mean cell performance

of both MUICIA and SLNR with different training overheads. Although the percentage gain

of MUICIA falls with increase in pilot spacing, it still shows a relatively higher mean cell

performance than SLNR.
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5.4 Conclusion

In this chapter, we have considered the practical system constraints in three different ways. In

the first step, we have evaluated the impact of estimation errors at the receiver and the impact

of the imperfect information at the transmitter on the performance of MUICIA and other

baselines. The results show that MUICIA is sensitive to the imperfect information. However,

even with practical constraints MUICIA outperforms other baselines with proper selection

of parameters. In the second step, we have considered the limited feedback model with two

different codebook designs (RVQ and hierarchical). The results show that hierarchical design

is better for both the transmit precoding schemes. Moreover, in high ICI regions, MUICIA

outperforms the baseline even with only 4 bits feedback. The third step is based on the

measurements where we evaluate the performance with real measured channels. At first we

prove that the partial and outdated ICI is still useful for precoding design. Then we show

that even with reduced training overhead, MUICIA outperforms the baselines.
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Chapter 6

Performance of Un-Coordinated

Alignment in Heterogeneous

Networks

In this chapter, we consider the application of the multi user inter cell interference alignment

scheme in a Heterogeneous Network (HetNet). We consider 3GPP based HetNet architecture

and show the potential gains of interference alignment over other precoding schemes. The

state of the art interference management techniques in HetNet are based on interference

coordination between the cells, in time or frequency domain. We compare the performance

of interference alignment with interference coordination and show that sustainable gains can

be achieved with alignment.

6.1 Introduction

The exponential growth in the demand of wireless capacity urges the network operators to

deploy additional access nodes. The decrease in cell size and increase in cell density enhances

the capacity. Therefore, for the purpose of capacity, the new nodes are deployed to cover

small but dense traffic areas. They operate with a range of transmit power which is very

low as compared to the macro cells macros. Hence, these low power nodes are known as

small cells or pico cells picos. The pico cells are overlaid on the well planned Homogeneous

Macro Network (HomoNet). This new blend of already existing coverage infrastructure and

the additional pico cells governs the name of Heterogeneous Network (HetNet). One example
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deployment is shown in figure 6.1.

The overall situation in a co-channel HetNet deployment scenario is that on one hand, we

insert resources (bandwidth and equipment) by deploying additional pico cells and expect to

get manifold gains in the network capacity. On the other hand, additional picos also bring

extra inter cell interference (ICI) in the network which may limit the achievable expected

performance. Moreover, the users served by the low-power pico cells also experience ICI by

high-power macros. Especially, the cell-edge users of pico suffer very high ICI due to macro

transmissions.

Figure 6.1: Deployment of co-channel pico cells in a macro coverage area

Enhanced interference coordination (eICIC) mechanisms in time and frequency domains

have been proposed to overcome the problem of ICI [82]. One example is time domain

interference coordination which is also known as Almost Blank Subframe (ABS). The main

advantage of eICIC mechanisms is that they provide a solution to the ICI problem. However,

the disadvantage is that they restrict the resource utilization in the network and require

coordination between the cells through backhaul.

Interference Alignment (IA) as proposed in [5] is one of the techniques to deal with ICI

in HomoNets. There are other studies in literature that have extended the idea of IA to

HetNets. However, the solutions proposed by these studies also require coordination between

the cells for the channel information exchange and the design of transmit precoding matrices.

Unlike these contributions on interference alignment, in chapter 4, we have proposed an

uncoordinated transmit precoding scheme based on interference alignment which manages
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both the Multi User Interference (MUI) and the ICI in a HomoNet. We referred to it as

Multi User Inter Cell Interference Alignment (MUICIA) in the previous chapters.

In this chapter, we extend our work by the application of MUICIA in HetNet with mani-

fold objectives . We put up the following open questions as a formulation of our objectives.

1. What is the impact of transmit power heterogeneity on the performance of MUICIA?

2. What are the comparative performance gains of different user selection methods with

MUICIA when we deploy additional picos?

3. How does uncoordinated MUICIA behave in comparison with non-alignment based

transmission in the presence of co-channel deployed HetNets?

4. Is MUICIA able to provide low complexity, fair resource utilization and higher efficiency

solution for interference management in HetNet?

We use simulation based analysis to answer the above questions.

6.2 System Model and Performance Metric

Let I be the total number of cells covering a given service area where each cell is using

multiple antennas for the spatial multiplexing of users (MU-MIMO) in OFDM based downlink

transmissions. Let J be the set containing the indices of macro cells whereas R be the set

that contains the indices of pico cells such that (|J|+|R|= I). Let PMacro be the maximum

power available in macro cell for an OFDM sample transmission whereas the respective

power in pico is PPico such that (PMacro > PPico). Let each cell is equipped with M transmit

antennas whereas the UEs in the service area are equipped with N receive antennas. Let

there be L active UEs (L ≥M) in the coverage of each cell. Only K(≤M) UEs are selected

simultaneously on the same resource for transmission by each cell. Let Si represent the

set which contains the indices of users selected for transmission by the ith cell such that

(|Si|= K). Each cell transmits single stream towards each selected UE. The signal received

by the mth UE (m ∈ Si) on one OFDM resource sample when co-scheduled with other (K−1)

UEs is denoted by ym ∈ CN×1 and is given by:

ym = Hmipmismi +

K∑
n∈Si,n6=m,n=1

Hmipnisni +

I∑
j 6=i,j=1

K∑
h∈Sj ,h=1

Hmjphjshj + nm (6.1)
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Where, Hmi ∈ CN×M is the MIMO channel matrix between the ith cell and the cor-

responding mth UE, smi is the transmit symbol, pmi ∈ CM×1 is the precoding vector,

(
∑K

n∈Si,n6=m,n=1 Hmipnisni) ∈ CN×1 is the MUI term due to the transmission to other UEs

in Si, (
∑I

j 6=i,j=1

∑K
h∈Sj ,h=1 Hmjphjshj) ∈ CN×1 is the total ICI term due to the transmission

of the other (I− 1) cells to their corresponding UEs, Sj is the set of users selected by the cell

j such that |Sj |= K and nm ∈ CN×1 is the Gaussian noise term with zero mean and variance

η2.

For the comparison of MUICIA with state of the art, we consider two different non-

alignment based transmit precodings which deal with MUI, namely Signal to Leakage and

Noise Ratio (SLNR)[17] and Effective Zero Forcing (EFZF)[61]. We also consider Singular

Value Decomposition (SVD) based precoding where the precoding vectors are simply the

right singular vectors of the channel matrix. For all kind of precoding designs we assume

equal power allocation, the precoding vector for the mth UE can be written as:

pmi =
√

(PT /K)p̂mi

Where, p̂mi ∈ CM×1 is the precoding vector with unit norm, (PT /K) is the power allocated

to each UE in Si, the transmit power constraint for ith cell can be written as,

PT =

{
PMacro if i ∈ J

PPico if i ∈ R

The signal after receive-processing can be written as,

y
′
m = gHmym

where, gm ∈ CN×1 is the receive vector which is based on the maximization of post receiver

signal to interference and noise ratio (SINR) and is given by,

gm = (Qm + η2IN )−1Hmipmi

where, Qm ∈ CN×N represents the total interference covariance arriving at the mth UE. The

post receiver SINR can be written as:

SINRmi =
(PT /K)|gHmHmip̂mi|2

(PT /K)
∑K

n∈Si,n 6=m,n=1|gHmHmip̂ni|2+ZICI + ||gHm||2η2

The symbol ZICI is the ICI after receive processing:

ZICI =
I∑

j 6=i,j=1

K∑
h∈Sj ,h=1

(PT /K)|gHmHmjp̂hj |2 (6.2)
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6.3 Important Aspects of Heterogeneous Networks

The co-channel HetNet is emerging as a promising solution to provide both coverage and

capacity. The macro layer is usually deployed with proper network planning which allows

further optimization and interference control in the network. However, the deployment of

picos appears to be more random [83] as they are deployed in response to the traffic demand

in macro coverage area. Hence the ICI in the network grows uncontrolled. In the following

subsections, we explain the ICI related problems in co-channel HetNets and the techniques

available at hand to solve them.

6.3.1 Cell Association and Range Expansion

Typically both the macro and pico layers use the same amount of bandwidth in a co-channel

deployment scenario. It yields an unfair distribution of network resources, due to the small

coverage area of low-power pico cells. Hence, it is important to offload macro traffic to

pico cells, so that the additional resources introduced in the system can be well exploited.

Typically the cell association is done on the basis of Reference Signal Received Power (RSRP)

from each cell [82]. Due to very low power of picos, only the UEs very near to the pico BS

are associated with it and therefore pico coverage is very small. To overcome this problem,

a concept of range expansion for pico cells is introduced to achieve load balancing between

the two cellular layers. The range expansion is achieved through cell-biasing [82]. With the

help of an additional offset value (referred as Cell Bias), an early handover is triggered

from macro to pico. This Bias (in dB) artificially makes pico cell more attractive than macro

for user association. A positive bias value extends the pico coverage and offloads the macro

traffic. However, applying bias value results in low SINR for pico cell-edge UEs, because of

obvious high ICI from high power macros. This gives rise to the requirements of interference

management in HetNets.

6.3.2 Enhanced Inter Cell Interference Coordination (eICIC)

Enhanced Inter Cell Interference Coordination (eICIC) mechanisms have been proposed in

[82] and [84]. These methods control power allocation, scheduling, beamforming etc. but we

categorized them broadly in frequency domain and time domain methods. In the following,

we briefly explain the time domain interference coordination.

117



6. PERFORMANCE OF UN-COORDINATED ALIGNMENT IN
HETEROGENEOUS NETWORKS

The basic idea behind time domain interference coordination is that the macro cell peri-

odically stops the data transmission in certain transmission time intervals (TTIs) also called

Subframes. The pico utilizes these subframes to schedule those UEs which are most affected

by macro interference. As some of the control information e.g. pilots are still transmitted

by the macro in the coordinated subframes, therefore these subframes are referred as Almost

Blank Subframes (ABS). A real time coordination is done via backhaul (e.g. X2 interface in

LTE [82]) between macro and pico to set the percentage of ABS frames and also the patterns

or periods. The cells maintain adaptive interference coordination depending upon the traffic

load. Each macro mainly coordinates with the picos which are overlaid in its coverage area.

6.3.3 User Scheduling during ABS

In order to take benefits of ABS and deal with ICI, picos may adopt user scheduling schemes

which utilizes ABS. In [85] an scheduling technique has been presented for pico cells. We

have used this scheme in our evaluations as it supports eICIC. In the following we provide

the details of comparative systems (eICIC and IA) with respect to the user scheduling and

coordination requirements.

Figure 6.2: Effect of range expansion on cell association of the users to pico cells

For Interference Coordination via eICIC:

The purpose of ABS is to help the pico users affected by the interference from macro.

Therefore, pico classifies its users as cell− inner and cell− border. The cell-border users are
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Figure 6.3: Strict scheduling representation in pico for ABS (left) and IA (right)

the main victims of macro transmissions. This is done with the help of an offset known as

Cell Border Window (CBW) [82, 85]. Figure 6.2 illustrates the impact of Bias and CBW.

The pico schedules the cell-border UEs during ABS and this scheduling method is referred

as Strict-Scheduling in [85]. For our comparative study of IA and eICIC, we employ strict

scheduling in pico cells. The coordination between pico and macro is required to exchange

information like load, ABS length, ABS frame position and ABS pattern. We have evaluated

eICIC for a fixed ABS pattern in all the macros. We have used SLNR and EFZF as non

alignment based transmit precoding schemes in both macro and pico. These schemes do

not require any inter cell coordination, the coordination is required only for eICIC. We also

evaluate the performance with different Bias and CBW values to analyse the impact of these

offsets.

For Interference Alignment via MUICIA:

To establish a fair comparison between eICIC and IA based techniques, we adopt strict

scheduling in picos during the ABS frame times also with IA based precoding technique

(MUICIA). However, note that in case of IA based precoding, macro cells are still serving

their users with full power. The ABS time in picos with MUICIA is used just to ensure

the scheduling of the same users. There is no coordination between the cells required for
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the design of MUICIA. Figure 6.3 schematically represents the strict scheduling method for

both non-alignment based and alignment based system. We emphasize that although strict

scheduling is not required for IA based transmissions, but for the sake of comparison and the

selection of same users we also use the strict scheduling for MUICIA. In fact this is the worst

case for the MUICIA as the leverage of selecting any users in pico will also provide additional

diversity gains to MUICIA.

6.4 Performance Results and Analysis

The performance results in this section would help us to answer the questions that we have

formulated in section 6.1. We merge the third question with the first question by performing

joint analysis of the impact of heterogeneous transmit power on alignment based and non-

alignment based transmit precoding schemes in HetNets. We proceed further by analysing

the percentage gains of IA in macro coverage area. A performance comparison of IA based

interference management with enhanced interference coordination is presented at the end.

Before presenting the simulation results for analysis, at first we describe the HetNet simulation

scenario and our system assumptions.

Figure 6.4: HetNet with one pico per macro coverage area. Gray areas represent the pico

coverage. Dotted lines represent the cell range expansion of pico cells with the help of a bias

value
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6.4.1 Simulation Assumptions

Parameter
Values

Macro cell Pico cell

Cellular Layout Hexagonal grid

Frequency Reuse factor One

Inter-site distance (ISD) 500 m not defined

Pico nodes per macro cell N/A one per macro cell

Pico placement N/A 0.3 lSD (from macro BS)

UE speed 3 km/h

Antenna pattern 3D omni directional

Channel Model 3GPP Spatial Channel Model (SCM)

Channel Scenario Urban Macro Urban Micro

Carrier Frequency 2.0 GHz

Bandwidth (PT ) 10 MHz 10 MHz

Total BS TX power (PT ) 46dBm 30dBm

Antenna Configuration 2 tx, 2 rx antenna ports

User scheduling per PRB K = 2,macro UEs K = 2, pico UEs

Table 6.1: Salient simulation parameters for the performance evaluation

The system model as described in section 6.2 is a MIMO based closed loop multi user

downlink cellular system. We use a drop based event driven system level simulation method-

ology based on 3GPP in [29] for HetNets. We consider the scenario with 7 sites arranged in a

hexagonal grid with wraparound. Each site consists of 3-sectorized antennas such that each

sector corresponds to a macro cell with unique cell ID. This gives us the usual homogeneous

macro cellular layer. For the modelling of HetNets, one low-power pico cell is placed under

the coverage of each high-power macro. The pico cell is positioned at a distance of 0.3 ISD

(150 m) and along the bore-sight direction of the antenna array of the macro which depicts

a scenario where ICI management is highly required. Figure 6.4 represents the simulated

network model. Users are randomly dropped over the simulation area with the help of a

uniform distribution. However, the UE positioning is managed such that the number of UEs

associated to pico cells are according to the defined hotspot probability which is (1:2) for

(macr:pico) [29]. We assume that each transmitter is equipped with M=2 transmit antennas

and each UE is equipped with N=2 receive antennas. Each cell selects a pair of UEs (K = 2)
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out of the set of active UEs for multi user transmission simultaneously on a time-frequency

OFDM resource element. The OFDM resource structure is the same as in the previous chap-

ters. We consider full buffer traffic and an ideal channel estimation and feedback by the UEs

to their serving cells. Important simulation parameters are mentioned in table 6.1. Further

propagation and antenna related parameters can be referred from [29].

6.4.2 Impact of Heterogeneity

Our primary step is to analyse the impact of ICI caused by the macro at the pico users for

different multi user transmit precoding schemes. Therefore, cell range expansion has not been

considered for this study i.e. bias = 0 dB. However, a hotspot probability of 1:2 is assumed

to justify the need of a pico cell as specified by 3GPP. The comparative analysis done in this

section is based on two different performance metrics namely the ‘Cell Edge Throughput’

[Mbit/s] and ‘Mean Cell Rate’ [bit/s/Hz] of the system.

Figure 6.5: Comparison of MUICIA with other Precodings in Homo and HetNets

Figure 6.5 presents the performance of MUICIA in comparison with other precodings in

two scenarios; only macro-layer (HomoNet) and HetNet. As per the expectations, HetNet

achieves enhanced cell-edge user throughput for all transmit precoding schemes. If we focus

on the performance comparison of MUICIA with SLNR then we see that in HomoNet there

is almost no performance gap. However, in HetNets, MUICIA outperforms SLNR and other

baselines in terms of mean cell rates. This is due to the extra alignment gain achieved by the

UEs associated to pico cells. The ICI experienced by the pico UEs is strong and dominant

from the macro transmissions. Therefore, it facilitates alignment and suppression at the

receiver. Consequently in HetNet, MUICIA has a sustainable performance lead from SLNR
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(a) Only Macro Cells (b) Only Pico Cells

Figure 6.6: Individual performance of only macro layer and only pico layer in HetNets

and EFZF as compared to HomoNet. This effect can be seen clearly in figure 6.6(b) which

presents mean cell rate of only pico cells in HetNet. We can see that MUICIA outperforms

SLNR by approximately 15% and EFZF by approximately 25%. This lead of MUICIA in pico

translates the performance gap in the overall HetNet. In figure 6.6(a), for all precodings, the

mean cell rate of macro cells in HetNet suggests no particular gain as compared to HomoNet.

This is because even in the presence of pico cells, the interference from high-power macros is

dominant. However, we see an increase in cell edge throughput in HetNet which is because

of the decrease in number of active UEs per cell. Moreover, we see that the performance of

MUICIA is almost similar to SLNR. For further results related to the impact of heterogeneity

on the performance MUICIA and other precodings we refer to our publications [26] and the

master thesis project [75].

6.4.3 Spectral Efficiency Gains in Macro Coverage Area

Figure 6.7 shows the gains in spectral efficiency per macro area using MUICIA with different

user selection methods in HetNet. As we have one pico per macro, we expect that we achieve

100% or higher gains in the performance per macro coverage area. However, due to the

additional ICI, we do not reach this point. There are two main effects here, a) the influence

of macro ICI over pico, b) as we are using MUICIA also in macro cells, so there is a loss

in alignment gains for macro UEs because of the increase in interference floor due to the

pico cells. Hence we see that with MaxICICondNum based user selection the loss in macro

mean cell rate due to the additional pico interference is compensated by the gain in the pico

123



6. PERFORMANCE OF UN-COORDINATED ALIGNMENT IN
HETEROGENEOUS NETWORKS

cells. Therefore for higher number of active users, we approach 100% gains. We see that the

highest % increase in the performance of MaxICICondNum algorithm and the lowest in the

MaxERate algorithm. As MaxERate is already close to optimal, it has less comparative

gains with additional picos.

Figure 6.7: Percentage performance gains in macro coverage area with MUICIA precoding and

different user selection methods

6.4.4 Interference Alignment vs Interference Coordination

In this section, we compare the interference management in HetNets through eICIC and IA.

We take the same placement strategy for pico cells as in subsection 6.4.2 but here we use

cell range expansion and a CBW for pico cells. In a real network scenario having eICIC,

a particular ABS pattern at the macro is adopted through real time coordination with its

overlaid pico. The percentage of ABS and the ABS pattern depends on pico bias offset and

load distribution in the network. However, here we consider a fixed pattern and variable

percentage of ABS, which varies from 0% to 100%. We select this range for ABS in order to

find out the minima and maxima of the system performance.

As SLNR and EFZF are the state of the art transmit precodings, so we take them as

non-alignment based multi user transmit precoding schemes and manage the ICI with eICIC

based management. The MUICIA is taken as IA based transmit precoding scheme which

also performs as ICI management technique. We emphasize that the strict scheduling is not
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6.4 Performance Results and Analysis

required for IA based transmission. But, for the sake of fair comparison we also apply the

strict scheduling for MUICIA as explained in subsection 6.3.3.

Figure 6.8: Overall Performance Comparison of MUICIA with ABS based eICIC in HetNet

Figure 6.8 presents the performance comparison of eICIC with MUICIA in terms of mean

cell rate of overall HetNet with bias = 5dB and CBW = 3dB. The two extreme points on the

X-axis represent two different user selection scenarios in pico cells. The minimum abscissa,

0 % ABS means pico selects only cell-inner UEs. The maximum abscissa, 100 % ABS means

pico selects only cell-border UEs. Please note that, in case of MUICIA, the percentage of

ABS in figure 6.8 represents only the effect of strict scheduling in pico cells. Whereas, in case

of SLNR and EFZF, in addition to strict scheduling in pico, 0 % ABS refers to FULL macro

transmission and 100 % ABS refers to NO macro transmission. Positive rising slopes of SLNR

and EFZF in figure 6.8, illustrate the gains coming from pico due to the increasing percentage

of ABS. However, this enhancement comes at the cost of three other system metrics which

are the decrease in spectral efficiency of macro, decrease in network resource utilization and

the decrease in the fairness of cell-inner UEs of pico cells. Hence, eICIC is a trade-off between

the increase in HetNet mean cell rate with the decrease in other system utilities. In figure

6.8, we can see that MUICIA outperforms SLNR until approximately 20 % ABS and EFZF

until approximately 35 % ABS. This means MUICIA has an upper hand over eICIC until the

cross over points without compromising macro spectral efficiency. For further results related

to the impact of CBW and bias we refer to our publication [27] and the master thesis project

[75].
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6. PERFORMANCE OF UN-COORDINATED ALIGNMENT IN
HETEROGENEOUS NETWORKS

6.4.5 Conclusion

We have assessed the performance of IA based transmit precoding in a closed loop MU-

MIMO downlink cellular HetNet. For this purpose, we have selected MUICIA which is an

uncoordinated IA based transmit precoding scheme. The simulative analysis suggests that

the interference alignment based transmission schemes (e.g. MUICIA) yield higher gains in

the power mismatch scenario of HetNet as compared to the homogeneous scenarios. The

alignment based user selection method, MaxICICondNum, enhances the performance of

low-power pico cells by selecting users experiencing strong and aligned ICI from high power

macro cells.

With the help of system simulations, we have not only evaluated the individual perfor-

mance of MUICIA but also compared it with state of the art MU-MIMO precodings (SLNR,

EFZF and SVD). Our results indicate that with respect to the overall system performance,

MUICIA provides higher gains in HetNets due to the specific ICI characteristics of HetNet.

It simply implies that in case of strong interference scenarios as in HetNets, alignment based

transmission schemes are better than the non-alignment based schemes. Moreover, it serves

two purposes at a time. First, as a transmit precoding scheme and secondly as an interference

management scheme without any additional effort or requirements. In particular, comparison

with eICIC shows that MUICIA outperforms the eICIC technique with a sustainable gain

upto 20% ABS values.

With these results, we infer that interference alignment can also be considered as a can-

didate for interference management technique in parallel with enhanced interference coordi-

nation schemes introduced by 3GPP for co-channel HetNet scenarios. The uncoordinated

interference management approach through interference alignment has a prime advantage

over coordinated approaches.
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Chapter 7

Conclusion

In this work we have focused on the performance assessment and improvement of OFDM

based closed loop downlink transmission in a multi user multi antenna cellular network. The

technical contribution starts from Chapter 3 where we have assess the performance of Coor-

dinated IA based transmit precoding scheme. The results have shown that IA outperforms

the baseline schemes only in a single site scenario. However, the baseline schemes are outper-

forming IA under the assumption of a larger (more realistic) number of sites and BSs. These

results draw important conclusions about the application of Coordinated IA to mitigate ICI

in practical systems. It implies that IA can only be applied in very limited practical scenarios

with very low or almost zero mobility. These results lead to a reconsideration of the benefits

of Coordinated IA in real-world systems. After the assessment of IA, we have also proposed

heuristic user selection methods which improve the performance of IA by using the diversity

in the system.

In Chapter 4 we have focused on a cellular system where each cell is performing multi

user MIMO transmissions. In this scenario, we have proposed a new Uncoordinated IA

based transmit precoding scheme that aligns the multi user interference with partial and

outdated inter cell interference. The results have shown that even with outdated alignment,

our proposed scheme outperforms the baselines and provides substantial gains in spectral

efficiency specially in higher ICI regions. We have also considered some practical limitations

of the receivers and presented a modified scheme. Even after the limitations our scheme

provides considerable gains over the other baselines.

In addition to the proposal of an Uncoordinated alignment based transmit precoding

scheme, we have also proposed three user selection methods for MU-MIMO cellular system.
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7. CONCLUSION

Using the user selection methods, we have assessed the performance of our scheme in a smaller

and a larger cellular system scenario. In larger scenario we expect the loss of interference

alignment due to the whiteness of interference space. However, the results have shown that

unlike the Coordinated IA in Chapter 3 our proposal outperforms the baseline also in large

cellular system for high and average ICI regions. These results provide a strong statement for

further research to transform the gains of interference alignment in a larger cellular scenario.

In Chapter 4, we proved analytically and with the help of system simulations that our

alignment based proposal provides gains over the non-alignment based schemes. In Chapter

5, we continue this line of action by providing the proof of concept for our proposal with

the help of measured channels. We evaluate and assess our scheme using a software defined

indoor measurement lab trial test-bed. The results from measurements show that our scheme

outperform baselines even with a training overhead similar to the current LTE system.

In the last technical chapter that is Chapter 6, we have assessed the application of MUICIA

in a co-channel heterogeneous cellular network as an interference management scheme. The

first observation of the results show that alignment based precoding provide higher gains

in heterogeneous networks due to the special interference characteristics. Additionally, we

have compared the performance of MUICIA as an interference alignment based solution with

Time-Domain eICIC which is an interference coordination based solution. The results show

considerable gains with MUICIA over eICIC. This study helps us to consider future solutions

which can combine both techniques in order to further optimize the future systems.

In a nutshell, we can state that the outcome of this work provides an essential under-

standing on the application of interference alignment based solutions in cellular networks.

Moreover, we have provided an interference alignment based transmit precoding design with

user selection algorithms that enhances the system performance as compared to the state of

the art solutions. However, we still foresee many directions that can be followed for future

research in this area. With respect to the Coordinated IA, further gains can be explored

with dynamic clustering and user selection algorithms. The Uncoordinated IA that we have

proposed is limited to schedule two users simultaneously on a single radio resource. Further

research is required to pull up these limits. In this study, we have focused mainly on linear

solutions mainly due to delay, feedback overhead and computational complexity constraints.

However, we envision that future technologies will relax these barriers and iterative solutions

for these problems may further optimize the system performance.
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