
Visualization Challenges in
Distributed Heterogeneous
Computing Environments

Alexandros Panagiotidis

Dissertation

Visualization Challenges in Distributed
Heterogeneous Computing Environments

Von der Fakultät Informatik, Elektrotechnik und
Informationstechnik der Universität Stuttgart

zur Erlangung der Würde eines
Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigte Abhandlung

Vorgelegt von

Alexandros Panagiotidis

aus Stuttgart

Hauptberichter: Prof. Dr. Thomas Ertl
Mitberichter: Prof. Dr. Dominik Göddeke

Tag der mündlichen Prüfung: 07.12.2015

Visualisierungsinstitut
der Universität Stuttgart

2015

Acknowledgements
This dissertation was a wild ride from start to end and many people have
supported me during this chaotic time in one way or another. In the following I
want to express my gratitude towards these people in the hope that I did not
forget anyone.

First and foremost, I am extremely thankful to Thomas Ertl who made this work
possible with funding and by supporting me in word and deed. His influence
on me can be best described by Lao Tzu: “A leader is best when people barely
know he exists, when his work is done, his aim fulfilled, they will say: we did
it ourselves.” I believe if it were not for him, I would have never finished. I also
want to thank Dominik Göddeke, who agreed to review this dissertation and
still examined me at my defense after reading it.

My doctoral journey started with Steffen Koch and Harald Bosch who advised
me during my diploma thesis. They inspired me to pursue a doctoral degree,
co-authored my first paper, and shared their expertise with me.

I was fortunate enough to share my first office at VIS with Martin Falk. He
jump-started my research on programming modern graphics processing units,
had good ideas all the time, and created this LATEX thesis template. Daniel
Kauker later joined us and moved to VISUS with me. We worked together
closely during the MCSimVis project and on several papers. Even though these
were challenging times, we both made it, not only due to mutual support.

I am indebted to my co-authors for working with me and enabling me to
present my research on many wonderful conferences. My research at VISUS
definitely benefited from these bright and patient colleagues: Steffen Frey, Filip
Sadlo, Michael Krone, Guido Reina, Michael Burch, and Daniel Weiskopf. I
will always remember how we discussed about these crazy ideas that turned
into great papers. All of you have given me invaluable advice and helped me
immensely in understanding my research better.

Many people lend me their ears and listened to my (quite long-winded) rants,
had some good advice, or helped me in some way: Marco Ament, Sven
Bachthaler, Fabian Beck, Oliver Fernandes, Lena Gieseke, Sebastian Grottel,
Julian Heinrich, Stefan Heßel, Sebastian Koch, Anette Müller, Thomas Müller,
Michael Raschke, Katrin Scharnowski, Enrico Taras, Markus Üffinger, Alexander
Wender, and Michael Wörner. I also had the opportunity to mentor HiWis and
advise students, which always was a mutual learning experience, both technical
and personal. My funding was provided by the Federal Ministry of Education
and Research of Germany (BMBF) and Deutsche Forschungsgemeinschaft.

iii

iv Acknowledgements

Besides working and teaching with the awesome bunch at VIS and VISUS, I
also enjoyed hanging out with them at other occasions. Thanks to the Mensa
Boykott I enjoyed some tasty food, which then also sparked my interest in
baking. The Demo Gang made the public relation work more enjoyable and feel
less like work. My C++ sparring partner Christoph Müller regularly amazed
me with his knowledge and skill and how much can be done in a single day.
Marcel Hlawatsch, Grzegorz Karch, and Hansjörg Schmauder are formidable
pool opponents and good friends that I relied on, especially during the last
months of my dissertation up to my defense. I hope we can keep up the
random evenings with pool, board games, Whiskey tastings, and other fun
activities.

Last, but definitely not least, I want to express my deepest gratitude to my family
for always supporting me and giving me strength, hope, and perspective.

Alexandros Panagiotidis

Contents

Abstract ix

German Abstract — Zusammenfassung xi

1 Introduction 1
1.1 Motivation and Research Questions 4
1.2 Contribution and Outline . 5

2 Fundamentals 9
2.1 Visualization . 9
2.2 Heterogeneous Systems . 16
2.3 VVand—The VISUS Powerwall and Cluster 21
2.4 Box Plots . 22

I Abstraction 25

3 An Abstraction Layer for Heterogeneous Environments 29
3.1 Concepts and Architecture . 30
3.2 Evaluation . 35
3.3 Discussion . 44
3.4 Summary . 47

4 Generic Compositing with Per-Pixel Linked Lists 49
4.1 Per-Pixel Linked Lists . 50
4.2 Evaluation . 57
4.3 Discussion . 64
4.4 Summary . 65

II Resilience 67

5 Resilience in Distributed Visualization 71
5.1 Fault Tolerance in High Performance Computing 72
5.2 Strategies for Fault-Tolerant Distributed Visualization 74
5.3 Discussion . 80
5.4 Summary . 87

v

Contents

III Exploratory Analysis 89

6 Local Graph Exploration 93
6.1 Exploration of Bundled Edges 95
6.2 Linked Metric Views . 107
6.3 Discussion . 114
6.4 Summary . 117

7 Tuning Parallel Volume Visualization 119
7.1 Performance Visualization . 120
7.2 Volume Ray Casting . 120
7.3 Metric Collection and Presentation 121
7.4 Evaluation . 123
7.5 Discussion . 127
7.6 Summary . 130

IV Conclusion 131

8 Visualization Challenges in Distributed
Heterogeneous Computing Environments 133
8.1 Research Question 1 . 134
8.2 Research Question 2 . 135
8.3 Research Question 3 . 136
8.4 Open Challenges . 137
8.5 Summary . 139

Appendices

A System Specifications 141
A.1 enka . 141
A.2 VVand Display Node . 141
A.3 VVand Cluster Node . 141

B DIANA 143
B.1 Build Information . 143
B.2 Usage Example . 143
B.3 Overhead: Memory Operations & Kernel Execution 144
B.4 diana.commands.blas.Dgemm 148

Bibliography 151

vi

List of Abbreviations

Acronyms

API application programming interface
ASIC application-specific integrated circuit
CPU central processing unit
CUDA Compute Unified Device Architecture, developed by NVIDIA
DGEMM double precision general matrix multiplication
DMP distributed memory processing
FPGA field-programmable gate array
FTLE finite-time Lyapunov exponent
GPGPU general purpose computing on graphics processing units
GPU graphics processing unit
HPC high performance computing
LCS Lagrangian coherent structure
MPI message-passing interface, a standardized, portable application

programming interface for distributed computing
MSSIM multiscale structural similarity
NUMA non-uniform memory access
OpenCL Open Computing Language, a standard for heterogeneous

computing of diverse processing units
OpenGL Open Graphics Library, a specification for cross-language,

cross-platform graphics programming
OpenMP Open Multi-Processing, an application programming interface

for high-level parallelism in C, C++, and Fortran
PB Protocol Buffers, a platform-neutral framework for serializing

structured data, developed by Google
PDB Protein Data Bank
PPLL per-pixel linked list
PU processing unit
RPC remote procedure call
SIMD single instruction, multiple data
TDP thermal design power, maximum amount of heat that a cooling

system is required to dissipate

Units
FLOP/s floating point operations per second
FPS frames per second

vii

Abstract

Large-scale computing environments are important for many aspects of modern
life. They drive scientific research in biology and physics, facilitate industrial
rapid prototyping, and provide information relevant to everyday life such as
weather forecasts. Their computational power grows steadily to provide faster
response times and to satisfy the demand for higher complexity in simulation
models as well as more details and higher resolutions in visualizations.

For some years now, the prevailing trend for these large systems is the utilization
of additional processors, like graphics processing units. These heterogeneous
systems, that employ more than one kind of processor, are becoming increas-
ingly widespread since they provide many benefits, like higher performance or
increased energy efficiency. At the same time, they are more challenging and
complex to use because the various processing units differ in their architecture
and programming model. This heterogeneity is often addressed by abstraction
but existing approaches often entail restrictions or are not universally applicable.
As these systems also grow in size and complexity, they become more prone to
errors and failures. Therefore, developers and users become more interested
in resilience besides traditional aspects, like performance and usability. While
fault tolerance is well researched in general, it is mostly dismissed in distributed
visualization or not adapted to its special requirements. Finally, analysis and
tuning of these systems and their software is required to assess their status
and to improve their performance. The available tools and methods to capture
and evaluate the necessary information are often isolated from the context or
not designed for interactive use cases. These problems are amplified in hetero-
geneous computing environments, since more data is available and required
for the analysis. Additionally, real-time feedback is required in distributed
visualization to correlate user interactions to performance characteristics and to
decide on the validity and correctness of the data and its visualization.

This thesis presents contributions to all of these aspects. Two approaches to
abstraction are explored for general purpose computing on graphics processing
units and visualization in heterogeneous computing environments. The first
approach hides details of different processing units and allows using them in a
unified manner. The second approach employs per-pixel linked lists as a generic
framework for compositing and simplifying order-independent transparency
for distributed visualization. Traditional methods for fault tolerance in high
performance computing systems are discussed in the context of distributed
visualization. On this basis, strategies for fault-tolerant distributed visualization
are derived and organized in a taxonomy. Example implementations of these

ix

Abstract

strategies, their trade-offs, and resulting implications are discussed. For analysis,
local graph exploration and tuning of volume visualization are evaluated.
Challenges in dense graphs like visual clutter, ambiguity, and inclusion of
additional attributes are tackled in node-link diagrams using a lens metaphor
as well as supplementary views. An exploratory approach for performance
analysis and tuning of parallel volume visualization on a large, high-resolution
display is evaluated.

This thesis takes a broader look at the issues of distributed visualization on large
displays and heterogeneous computing environments for the first time. While
the presented approaches all solve individual challenges and are successfully
employed in this context, their joint utility form a solid basis for future research
in this young field. In its entirety, this thesis presents building blocks for robust
distributed visualization on current and future heterogeneous visualization
environments.

x

German Abstract
—Zusammenfassung—

Große Rechenumgebungen sind für viele Aspekte des modernen Lebens wichtig.
Sie treiben wissenschaftliche Forschung in Biologie und Physik, ermöglichen
die rasche Entwicklung von Prototypen in der Industrie und stellen wichtige
Informationen für das tägliche Leben, beispielsweise Wettervorhersagen, bereit.
Ihre Rechenleistung steigt stetig, um Resultate schneller zu berechnen und dem
Wunsch nach komplexeren Simulationsmodellen sowie höheren Auflösungen
in der Visualisierung nachzukommen.

Seit einigen Jahren ist die Nutzung von zusätzlichen Prozessoren, z.B. Grafik-
prozessoren, der vorherrschende Trend für diese Systeme. Diese heterogenen
Systeme, welche mehr als eine Art von Prozessor verwenden, finden zuneh-
mend mehr Verbreitung, da sie viele Vorzüge, wie höhere Leistung oder erhöhte
Energieeffizienz, bieten. Gleichzeitig sind diese jedoch aufwendiger und kom-
plexer in der Nutzung, da die verschiedenen Prozessoren sich in Architektur
und Programmiermodel unterscheiden. Diese Heterogenität wird oft durch
Abstraktion angegangen, aber bisherige Ansätze sind häufig nicht universal
anwendbar oder bringen Einschränkungen mit sich. Diese Systeme werden
zusätzlich anfälliger für Fehler und Ausfälle, da ihre Größe und Komplexität
zunimmt. Entwickler sind daher neben traditionellen Aspekten, wie Leistung
und Bedienbarkeit, zunehmend an Widerstandfähigkeit gegenüber Fehlern und
Ausfällen interessiert. Obwohl Fehlertoleranz im Allgemeinen gut untersucht
ist, wird diese in der verteilten Visualisierung oft ignoriert oder nicht auf die
speziellen Umstände dieses Feldes angepasst. Analyse und Optimierung dieser
Systeme und ihrer Software ist notwendig, um deren Zustand einzuschätzen
und ihre Leistung zu verbessern. Die verfügbaren Werkzeuge und Methoden,
um die erforderlichen Informationen zu sammeln und auszuwerten, sind oft
vom Kontext entkoppelt oder nicht für interaktive Szenarien ausgelegt. Diese
Probleme sind in heterogenen Rechenumgebungen verstärkt, da dort mehr
Daten für die Analyse verfügbar und notwendig sind. Für verteilte Visualisie-
rung ist zusätzlich Rückmeldung in Echtzeit notwendig, um Interaktionen der
Benutzer mit Leistungscharakteristika zu korrelieren und um die Gültigkeit
und Korrektheit der Daten und ihrer Visualisierung zu entscheiden.

Diese Dissertation präsentiert Beiträge für all diese Aspekte. Zunächst werden
zwei Ansätze zur Abstraktion im Kontext von generischen Berechnungen auf
Grafikprozessoren und Visualisierung in heterogenen Umgebungen untersucht.
Der erste Ansatz verbirgt Details verschiedener Prozessoren und ermöglicht

xi

German Abstract — Zusammenfassung

deren Nutzung über einheitliche Schnittstellen. Der zweite Ansatz verwen-
det pro-Pixel verkettete Listen (per-pixel linked lists) zur Kombination von
Pixelfarben und zur Vereinfachung von ordnungsunabhängiger Transparenz in
verteilter Visualisierung. Übliche Fehlertoleranz-Methoden im Hochleistungs-
rechnen werden im Kontext der verteilten Visualisierung diskutiert. Auf dieser
Grundlage werden Strategien für fehlertolerante verteilte Visualisierung abge-
leitet und in einer Taxonomie organisiert. Beispielhafte Umsetzungen dieser
Strategien, ihre Kompromisse und Zugeständnisse, und die daraus resultieren-
den Implikationen werden diskutiert. Zur Analyse werden lokale Exploration
von Graphen und die Optimierung von Volumenvisualisierung untersucht.
Herausforderungen in dichten Graphen wie visuelle Überladung, Ambiguität
und Einbindung zusätzlicher Attribute werden in Knoten-Kanten Diagrammen
mit einer Linsenmetapher sowie ergänzenden Ansichten der Daten angegan-
gen. Ein explorativer Ansatz zur Leistungsanalyse und Optimierung paralleler
Volumenvisualisierung auf einer großen, hochaufgelösten Anzeige wird unter-
sucht.

Diese Dissertation betrachtet zum ersten Mal Fragen der verteilten Visuali-
sierung auf großen Anzeigen und heterogenen Rechenumgebungen in einem
größeren Kontext. Während jeder vorgestellte Ansatz individuelle Herausforde-
rungen löst und erfolgreich in diesem Zusammenhang eingesetzt wurde, bilden
alle gemeinsam eine solide Basis für künftige Forschung in diesem jungen Feld.
In ihrer Gesamtheit präsentiert diese Dissertation Bausteine für robuste verteilte
Visualisierung auf aktuellen und künftigen heterogenen Visualisierungsumge-
bungen.

xii

C
h

a
p

t
e

r

1
Introduction

The TOP500 [Strohmaier, 2006] is a listing of the 500 fastest supercomputers
with statistics and information about high performance computing (HPC) systems.
It evolved in roughly 30 years from a simple system count to a detailed ranking
of system components, manufacturers, and their performance which is updated
twice a year in June and November. Besides the theoretical peak performance,
the listings include results of the LINPACK [Dongarra et al., 2003] benchmark
as a practical measure of the system performance. Even though the TOP500 is
a comprehensive listing, it is not a complete one; some systems are not listed
even though they could reach a high ranking, for example Blue Water [Bode
et al., 2013].

In the last 9 years (see Table 1.2), the TOP500 experienced an intriguing develop-
ment. In November 2006, Tsubame increased its theoretical peak performance by
over 60 % by employing accelerator cards, being the first system in the TOP500
to do so. The ClearSpeed X620, a general-purpose coprocessor, featured 1 GB
of ECC memory and was capable of 40 GFLOP/s. Two years later in 2008,
Roadrunner topped the ranking with IBM’s PowerXCell 8i, a variant of IBM’s
Cell broadband engine. In the same year, Tsubame was extended with NVIDIA
GT 200 graphics processing units (GPUs), almost doubling its peak performance.
In November 2009, Tianhe-1 entered the ranking in 5th place with ATI GPUs.
From then on, the use of coprocessors increased and they were employed in
many more systems. The first NVIDIA Tesla C2050 GPUs were employed in
June 2010 in Nebuale and Mole-8.5. Tianhe-1A followed and replaced its ATI

2 Chapter 1 • Introduction

Date Rank System Accelerator TFLOP/s kW

2006/11 9 TSUBAME ClearSpeed CSX620 82.1 n/a
2008/06 1 Roadrunner PowerXCell 8i 1375.8 2345
2008/11 30 TSUBAME adds NVIDIA GT 200 161.8 n/a
2009/11 5 Tianhe-1 ATI Radeon HD 4870 1206.2 n/a
2010/06 2 Nebulae NVIDIA C2050 2984.3 2580

19 Mole-8.5 NVIDIA C2050 1138.4 n/a
2010/11 1 Tianhe-1A NVIDIA C2050 4701.0 4040

4 TSUBAME 2.0 NVIDIA M2050, S1070 2287.6 1398
22 LOEWE-CSC AMD Radeon HD 5800 469.7 n/a

2012/06 150 Discovery Intel MIC 181.0 101
2012/11 1 Titan NVIDIA K20 27,112.5 8209

7 Stampede Intel Xeon Phi 3959.0 n/a
53 Discover Intel Xeon Phi 5110P 628.8 216
58 Endeavor Intel Xeon Phi 502.1 300
59 MVS-10P Intel Xeon Phi 523.8 223

2013/06 1 Tianhe-2 Intel Xeon Phi 31S1P 54,902.4 17,808
2014/11 369 Suiren PEZY-SC 373.0 n/a
2015/06 160 Shoubu PEZY-SC 843.0 n/a

366 Suiren PEZY-SC 373.0 55
392 Suiren Blue PEZY-SC 384.8 n/a

Table 1.2 — Notable entries in the TOP500 that employed PUs with their theo-
retical peak performance and energy consumption.

GPUs in November, while Tsubame-2.0 entered in 4th place with a combination of
NVIDIA M2050 and S1070 GPUs. Tsubame-1 and the CSX620 left the ranking in
June 2012 while the first system using Intel’s Many Integrated Core architecture
(nowadays known as Xeon Phi) entered the rankings. More systems followed
that year using various PUs from Intel, NVIDIA, and AMD. The Suiren pro-
moted this development again in November 2014, entering in 369th place by
employing yet another PU, the PEZY-SC.

As of June 2015 [TOP500 Supercomputer Sites, 2015], 90 systems (18 %) use
accelerators, 52 of which are NVIDIA GPUs and 35 variants of Intel’s Xeon Phi.
In the same month, Intel acquired Altera, a manufacturer of field-programmable
gate arrays (FPGAs) and application-specific integrated circuits (ASICs). A month
later, in July, DARPA announced their investment in Rex Computing’s Neo
architecture, a chip with dramatically improved performance-to-energy ratios
[Nicole Hemsoth, 2015]. Finally, there are further PUs like Adapteva’s Epiphany
or Kalray’s MPPA that are not in wide use yet but become increasingly inter-
esting due to their power efficiency, one of the major challenges on the road to
exascale [Moreland, 2012].

3

While PUs were established in HPC, the number of cores increased steadily. In
2006, BlueGene/L held the 1st place with 131,072 cores, while Tianhe-2, currently
1st, employs a total of 3,120,000 cores. A major challenge in systems of these
dimensions are failures of hardware and software. In particular, Schroeder
and Gibson [2007] argue that the mean time between failures decreases with
increasing system size and the failure rates will grow dramatically in the future.
Cappello [2009] even states that “there is a strong risk that parallel applications
using all CPUs will not progress any more in parallel computers”. He argues
that the mean time to interrupt might fall as low as to one hour while the
prevalent recovery approach, checkpoint-restart methods, requires the same or
more time. This is a threat to large-scale systems and applications, as they
might never yield a useful result in the worst case.

Such large systems become increasingly complex, both w.r.t. hardware and
software. Understanding and optimizing either is an elaborate task. While
there are many profound options for both monitoring and analysis (e.g., Munin,
Nagios, Vampir), they stem from times in which systems were considerably
smaller. As such, they might scale w.r.t. the data they need to process, but
fail to address the human, for example by providing responsive interfaces. In
addition, their analysis is often decoupled, i.e., infrastructure and applications
are analyzed separately, requiring manual steps to correlate them.

Interlude: Graphics APIs

Before computer graphics was supported with hardware acceleration, applica-
tions employed software rendering, used VESA BIOS extensions, and accessed
the video memory directly. Nowadays, computer graphics relies on GPUs,
streaming processors that are designed for data-parallel operations and the
single instruction, multiple data (SIMD) paradigm, i.e., related graphical primitives
are processed in bulk and in parallel. Programming them requires special appli-
cation programming interfaces (APIs) to set up the data streams, transfer constant
and dynamic data to the GPU programs, and initiate the data processing by the
rendering pipeline.

SGI was leading the efforts for hardware-supported graphics with the Iris GL
API in the early 1990s due to its immediate mode rendering which simplified
programming [Wikipedia, 2015d]. As more 3D graphics hardware vendors
entered the market, SGI tried to strengthen their position by turning their
API into an open standard — the Open Graphics Library (OpenGL). In 1992, the
OpenGL Architecture Review Board was created to lead and maintain the OpenGL
specification and the first version of OpenGL was released. While OpenGL slowly
developed, Microsoft created a competing API — Direct3D, part of DirectX —
and released it in 1995. Over time, both DirectX and OpenGL evolved into large

4 Chapter 1 • Introduction

and complex APIs that provide access to a wide range of GPUs with different
capabilities. In particular, the complexity of the implementations (i.e., the driver)
became so troublesome, that NVIDIA began investigating how to approach
zero driver overhead [Everitt et al., 2014]. Shortly before that, AMD announced
Mantle, a low-level graphics API to alleviate bottlenecks by transferring complex
tasks (e.g., validation, synchronization) from the driver to the application and
by allowing greater control over the GPU. Both Mantle and NVIDIA’s initiative
prompted action by the Khronos Group (which maintains OpenGL since 2006) to
announce their plans for a next-generation graphics API in 2014. The Khronos
Group revealed this new API at SIGGRAPH 2014 under the name Vulkan, but did
not present any specific information at that time. In March 2015, it was revealed
that the foundation of Vulkan was Mantle [Andersson et al., 2015], only one
day after AMD announced its end [Koduri, 2015]. During all of this, Microsoft
worked on DirectX 12 with the same goals: reduced overhead, fine-grained
control, and scaling across central processing unit (CPU) threads. While the merits
of these new APIs have been unclear for some time, Imagination Technologies
just recently presented a demo at SIGGRAPH 2015 with very promising results
[Smith, 2015].

1.1 Motivation and Research Questions

The paradigm shift in HPC towards general purpose computing on graphics process-
ing units (GPGPU) and heterogeneous systems in general happened in less than
10 years. During that period, many architectures and APIs emerged and evolved
but some have also vanished. Great resources and efforts have been and are
continually invested into using PUs and maximizing their performance and
efficiency. However, what will happen when the next paradigm shift occurs?
Will developers have to refactor their simulation codes and post-processing
tools again? How can developers even determine whether a new technology
is worthwhile? What if it changes rapidly during initial revisions or requires
big changes to applications, potentially dismissing many months and years of
development effort? While waiting until it stabilized and prevailed is feasible,
this relinquishes any lead to competitors. These inherent risks and trade-offs of
emerging technologies can have many consequences in science and industry,
even more so when no universal solution is foreseeable [Moreland, 2012].

All of these problems and questions apply to distributed visualization but with
additional challenges. For one, visualization is most useful when interactive
which requires fast techniques but also steering by humans. Resolving failures
in these systems has different semantics than in non-interactive systems. For
example, it might even be favorable to interact with partial or even erroneous

1.2 • Contribution and Outline 5

results (which are traditionally discarded) in order to interpret or validate
data sources like simulations. Analysis of large data sets often results in large
images for unbiased and clear views on the visual mappings. This necessitates
large displays — combinations of multiple monitors and projectors — even
with increasing resolutions on commodity monitors. These aspects add several
dimensions of complexity due to technical aspects and the ‘human in the
loop’.

This thesis discusses the aforementioned challenges in the context of distributed
visualization in heterogeneous environments, in particular:

1. Which approaches can visualization systems employ to support eval-
uating and switching between programming models and visualization
techniques?

2. How must resilience in visualization systems improve to support chal-
lenges of large displays and increasing system sizes?

3. How can systems for interactive visualization on large displays be ana-
lyzed and optimized?

1.2 Contribution and Outline

The major findings and contributions of this thesis comprise methods and
approaches to simplify and generalize development of visualization systems
for large displays and heterogeneous environments. Novel approaches and
techniques are presented which employ, combine, and extend existing concepts
and paradigms in new ways. Challenges of interactive visualization on large
displays in combination with a heterogeneous computing environment — be-
yond mapping and rendering techniques — are discussed and investigated for
the first time.

This thesis consists of four main parts. Part I promotes abstraction as an impor-
tant concept for distributed visualization and development in heterogeneous
environments. Part II presents methods for fault tolerance in the context of
distributed visualization. Part III advances analysis in cluttered visualizations as
well as tuning of interactive visualizations on high-resolution displays. Part IV
concludes this thesis with answers to the research questions of Section 1.1 and
an outlook for future work.

6 Chapter 1 • Introduction

This work is based on several publications and close work with many colleagues
during several projects in the last six years:

A. Panagiotidis, H. Bosch, S. Koch, and T. Ertl. EdgeAnalyzer: Exploratory
Analysis through Advanced Edge Interaction. In 44th Hawaii International
Conference on System Sciences, pages 1–10. IEEE Computer Society, 2011a.

A. Panagiotidis, D. Kauker, S. Frey, and T. Ertl. DIANA: A Device Ab-
straction Framework for Parallel Computations. In P. Iványi and B. H. V.
Topping, editors, Proceedings of the Second International Conference on Parallel,
Distributed, Grid and Cloud Computing for Engineering. Civil-Comp Press,
2011b, paper 20.

A. Panagiotidis, D. Kauker, F. Sadlo, and T. Ertl. Distributed Computation
and Large-Scale Visualization in Heterogeneous Compute Environments.
In 11th International Symposium on Parallel and Distributed Computing, pages
87–94, 2012.

D. Kauker, M. Krone, A. Panagiotidis, G. Reina, and T. Ertl. Rendering
Molecular Surfaces using Order-Independent Transparency. In Eurographics
Symposium on Parallel Graphics and Visualization, pages 33–40. The Eurograph-
ics Association, 2013b.

D. Kauker, M. Krone, A. Panagiotidis, G. Reina, and T. Ertl. Evaluation of
per-pixel linked lists for distributed rendering and comparative analysis.
Computing and Visualization in Science, 15(3):111–121, 2013a.

A. Panagiotidis, G. Reina, and T. Ertl. Strategies for Fault-Tolerant Dis-
tributed Visualization. In 2014 IEEE Pacific Visualization Symposium, pages
286–290, 2014b.

A. Panagiotidis, M. Burch, O. Deussen, D. Weiskopf, and T. Ertl. Graph
Exploration by Multiple Linked Metric Views. In Proceedings of the 18th
International Conference on Information Visualisation (IV), pages 19–26. IEEE,
2014a.

A. Panagiotidis, S. Frey, and T. Ertl. Exploratory Performance Analysis
and Tuning of Parallel Interactive Volume Visualization on Large Displays.
In Eurographics Conference on Visualization - Short Papers, pages 13–17. The
Eurographics Association, 2015a.

I have also worked on partial link drawings to further reduce visual clutter
in node-link diagrams [Burch et al., 2014] and on consistently accelerating
computation of node-link diagram layouts and their visualization on modern
GPUs employing features such as tessellation and compute shaders [Panagiotidis
et al., 2015b].

1.2 • Contribution and Outline 7

The following describes the structure of this thesis, summarizes novel contribu-
tions, and delineates them in joint research.

Chapter 2 introduces the foundations and terminology for both visualization
and heterogeneous systems. This chapter also introduces the target platform for
the concepts in this thesis — the VVand— the VISUS visualization cluster and
powerwall. It is based on parts of all of my aforementioned publications.

Chapter 3 presents DIANA, an abstraction layer for PUs, their memory, and
operations [Panagiotidis et al., 2011b]. DIANA was developed together with
Daniel Kauker during the MCSimVis project as middleware to access GPUs in an
industrial FEM simulation in a portable and extendable manner. I developed
the basic concepts — lookup and access of PUs through a database and unified
invocation of all PUs operations —, integration of CUDA and OpenCL, and most
of the plugins to provide functionality like linear algebra or compression, while
Daniel worked on the application integration and remote invocation. Together
we created a distributed flow visualization [Panagiotidis et al., 2012] that utilized
DIANA. After MCSimVis finished, I redesigned and reimplemented DIANA to
include lessons learned during the project and to incorporate new concepts,
such as using Protocol Buffers (PBs) as an abstraction for commands. This thesis
refers to this new version of DIANA as paradigm for developing for current and
future computing environments and presents new and improved results.

Chapter 4 introduces per-pixel linked lists (PPLLs) and their implementation
on modern GPUs. Daniel Kauker and I worked on this technique during the
MCSimVis project for order-independent transparency and distributed render-
ing. I worked on optimizations and different memory layouts for this technique,
while Daniel further refined and extended it for distributed rendering and
comparative analysis [Kauker et al., 2013a] and rendering of semi-transparent
molecular surfaces [Kauker et al., 2013b], ultimately extending it to per-voxel
linked lists and further rendering techniques [Kauker, 2015]. This thesis presents
the basic technique as method for generic compositing on the VVand, which was
implemented independently by myself.

Chapter 5 presents extensions to an existing taxonomy of fault tolerance
methods in HPC for distributed visualization [Panagiotidis et al., 2014b]. The
traditional approaches of this taxonomy are explained and their application to
visualization in general and distributed visualization on large, high-resolution
displays in particular, is discussed. Based on this, new methods and strategies
are proposed to increase resilience of such visualization systems and appli-
cations. This work was created during the FeToL project based on guidance
and discussion with Guido Reina. This thesis goes beyond the publication and
discusses example implementations of the proposed strategies.

8 Chapter 1 • Introduction

Chapter 6 presents two approaches to local exploration of dense and cluttered
graphs. EdgeAnalyzer (see Section 6.1) utilizes a lens metaphor for exploration
of node-link diagrams with bundled edges. It is based on an idea of Steffen
Koch [Koch et al., 2009] and Harald Bosch which I investigated in my diploma
thesis [Panagiotidis, 2009]. My addition of multiple, hierarchical lenses and
further improvements were later published [Panagiotidis et al., 2011a] and are
discussed in this thesis. Graph Metric Views (see Section 6.2) show additional
information besides a node-link diagram in the form of histograms. Michael
Burch suggested this idea to me, which I then implemented and evaluated until
it was refined enough for publication [Panagiotidis et al., 2014a].

Chapter 7 presents an approach to exploratory performance analysis and
tuning of an interactive volume visualization. I got the idea for this work during
the FeToL project when I wondered how to debug and analyze visualization
systems on the VVand. After FeToL finished, I integrated my GPU-accelerated
parallel coordinates plot into Steffen Frey’s volume renderer. Steffen provided
metrics from the ray casting kernel, while I collected metrics from NVAPI
(NVIDIA’s management API) and added metric gathering and aggregation.
Together we created the case studies and published the results [Panagiotidis
et al., 2015a].

Chapter 8 discusses the joint utility of the presented techniques and how they
answer the research questions (see Section 1.1). An outlook to open challenges
and future work concludes this thesis.

C
h

a
p

t
e

r

2
Fundamentals

This chapter introduces the foundations of this thesis. Section 2.1 describes
basics of visualization, rendering on graphics processing units (GPUs), distributed
visualization, and large displays. Section 2.2 defines heterogeneous systems, pro-
cessing units (PUs), general purpose computing on graphics processing units (GPGPU),
and offloading. Section 2.3 presents the VISUS powerwall and cluster. Sec-
tion 2.4 briefly describes box plots, which are used several times in this thesis
to present results.

2.1 Visualization
Haber and McNabb [1990] define visualization as “a series of transformations
that convert raw simulation data into a displayable image”. This definition
alludes to the notion that gaining insight from data requires images and human
perception due to the (increasing) size and complexity of data sets. It is a data-
centric and inter-disciplinary science comprised of technical and psychological
aspects.

2.1.1 The Visualization Pipeline

While Haber and McNabb [1990] explicitly stated simulations in their definition,
it was since extended to account for the multitude and diversity of today’s
data sources. This process of turning data into images has been coined as
visualization pipeline (see Figure 2.1), for example as described by Weiskopf
[2007].

10 Chapter 2 • Fundamentals

Data Sources &
Acquisition

Visualization
Pipeline

Simulations, Sensors, Databases

raw data

visualization
data

renderable
representation

displayable
images

In
te

ra
ct

io
n

C
o

m
p

u
ta

ti
o

na
l S

te
er

in
g

Filtering

Mapping

Rendering

Interpretation

Figure 2.1 —
The visualization
pipeline is a pro-
cess to transform
data from various
sources into im-
ages for analysis
and interpretation
by humans.

The input to the visualization pipeline is raw data which is acquired from sources
like numerical simulations, sensor measurements, and databases. This data
is then transformed during filtering into visualization data by operations like
resampling, smoothing, denoising, segmentation, classification, and selection.
Mapping then creates a renderable representation consisting of graphical primi-
tives with attributes like geometry, color, opacity, and surface texture. Finally,
rendering creates displayable images used for analysis by humans.

It is often unclear what the important and relevant aspects and parts of data sets
are and as such visualization has to be an interactive process. Consequently, all
stages of the visualization pipeline are subject to many parameters, for example
selecting which parts of the data to show or modifying how it is shown. Typical
actions include panning, zooming, and picking/selecting in the visualization
itself to explore the data set.

Visualization is mostly used in post-processing for analysis of data that is stored
persistently after it was collected or generated, i.e., the data acquisition is de-
coupled from the visualization. In contrast, computational steering [Mulder et al.,
1999] denotes the tight coupling of visualization with data generation. Param-
eters from both visualization and simulation can be modified interactively to
incorporate insights gained from the visualization in the data generation.

In visualization, the raw input data is often referred to as object space or physical
space, as it describes the objects or physical extents of the data. The visualization
pipeline transforms data from the object space into the image space or screen
space. This denotes the resulting images (or parts thereof) that are shown on
displays.

2.1 • Visualization 11

Textures, Buffers, Vertex Data

Vertex Data

Fragment Data

GPU Memory

Programmable
Shaders

Figure 2.2 — Simplified OpenGL rendering pipeline.

2.1.2 The Rendering Pipeline

An essential part of visualization is rendering, i.e., the generation of images
from graphical primitives like triangle meshes. The rendering pipeline (see
Figure 2.2) describes this process of projecting a 3D scene onto a 2D image.
An optimized implementation of the pipeline for GPUs is provided by OpenGL
[Sellers et al., 2013], described in the following. The OpenGL pipeline was only
configurable to some extent until programmable shaders were introduced in
2004 with OpenGL 2.0. DirectX 8.0 defined programmable shader stages already
in 2000 and GPUs supported them since NVIDIA’s NV20 architecture, first
implemented in their GeForce 3, in 2001. Nowadays almost all parts1 are fully
programmable due to the unified shader model.

The elements of a 3D scene are composed of primitives such as points, lines, or
triangles. Vertices with attributes (e.g., colors, normals, texture coordinates, etc.)
and their connectivity define these primitives. The vertex data is transferred
to the GPU along with textures — buffers that can be accessed with spatial
coordinates in 1D, 2D, and 3D. The texture units in modern GPUs further allow
for hardware-accelerated interpolation between texels and voxels (for 1D/2D
and 3D textures, respectively). The host initiates the rendering with a draw call
which triggers the processing of the scene by the pipeline.

Vertices are processed independently without any connectivity information
in the vertex shader. There, they are transformed from their local coordinate
system (the object space) into world space using affine transformations (e.g., the
model and view transformation) and homogeneous coordinates. The attributes
of the vertices can also be modified and passed to subsequent stages. The
output of the vertex shader can be optionally passed to the tesselation shaders,

1Rasterization is the most prominent part of the rendering pipeline that is not yet programmable
or even accessible via public APIs.

12 Chapter 2 • Fundamentals

to subdivide existing geometry, and the geometry shader, to create, modify,
or discard geometry. At this point, perspective projection transforms the
vertices into clip space, mapping them into the unit cube [−1, 1]3. The parts
of the geometry outside of the cube are clipped while the remaining parts
are transformed into normalized device coordinates by perspective division.
Rasterization breaks the remaining parts of each primitive into discrete elements
— fragments — and interpolates vertex attributes and depth w.r.t. the fragment
position. The viewport transformation maps each fragments’ position into
window coordinates. Then, each fragment is passed to the fragment shader
which can perform final calculations like sampling textures, per-pixel lighting,
or discarding individual fragments based on their depth or opacity. Fragment
shaders can write multiple outputs and are not limited to writing only color
or depth. Fragments that pass the fragment shader are subject to several final
tests such as pixel ownership, scissor, stencil, or depth test. Typically, z-buffering
is used, i.e., the depth test discards fragments whose depth is greater than
the one already in the framebuffer. Finally, blending combines the color of the
fragment with the value stored in the framebuffer at the fragment position. If
it is disabled, the previous value is overwritten; otherwise, a configurable pre-
defined blending equation is employed. For this, the over-operator [Porter and
Duff, 1984] is commonly used for alpha blending of semi-transparent objects 1
and 2 front-to-back:

Cout = α1C1 + α2C2(1− α1)

αout = α1 + α2(1− α1)

or back-to-front:

Cout = α1C1 + (1− α1)C2

where Ci and αi denote the color and the opacity, respectively. The over-
operator is not commutative, i.e., the order matters in which the fragments are
blended.

2.1.3 Distributed Visualization

Section 2.1.1 and 2.1.2 described visualization as an abstract process which
can be implemented on specialized hardware, respectively. If not specified, it
is assumed that one process on a single node is used, with all relevant data
available locally and images shown on its attached displays. On the one hand,
this allows for simplifications, such as synchronization only across threads (if
any), low latency, or exclusive use of resources. On the other hand, there are
many restrictions with regard to frame rates, data sizes, and display resolutions.

2.1 • Visualization 13

Compute
nodes

Mapping
nodes

Display
nodes

Projectors
Monitors

Abstraction
to Primitives

Meshes
Volumes
nD-Fields

Images

Users
Render
nodes

Interaction

60 Hz

Figure 2.3 — Conceptual flow of data in distributed simulation and visualiza-
tion. The size of the arrows correspond to the amount of data that is passed,
while the number of arrows indicates the frequency of the transfer. The actual
data sizes for the left of the render nodes depend on simulation parameters and
those to the right depend on the resolution of the viewport.

These are inherent because there are limits to how much data a single node
can store, how many FLOP/s are possible, how many displays (each with finite
resolution) can be attached, etc. Even though advances in technology relax these
limitations, they need to be overcome fundamentally for further scalability and
resilience. Consequently, the visualization pipeline needs to be distributed to
multiple processes, nodes, and displays.

Distributed visualization is a large and complex field, so only a brief introduc-
tion to the terms and concepts can be given here; Bartz and Silva [2001], Meligy
[2008], and Bethel et al. [2012] provide thorough overviews and discuss the field
in greater detail.

Figure 2.3 shows the generic flow of data between the different types of nodes
for distributed visualization. Compute nodes provide data by various means, for
example calculated by simulations or loaded from persistent storage. Generally,
these nodes are considered black boxes for the purpose of visualization, since
their operation and details should be independent from the analysis of the
data they produce. For computational steering, the visualization may pass
parameters to the compute nodes, but is not further concerned with their
internals. The raw data is filtered and then passed to mapping nodes which
create the graphical primitives, for example triangle meshes or volumes. Render
nodes create images which are composited by display nodes and shown on their
attached output devices, for example projectors or monitors. Interaction with
the system is possible through dedicated head nodes, tracking, or gestures.

Partitioning

For distributed visualization, the object space and the image space can be
partitioned for rendering by multiple processes and nodes. Molnar et al. [1994]
discuss this as sorting problem and define three classes:

14 Chapter 2 • Fundamentals

Sort-first (send-data) is used to distribute parts of the object space for visual-
ization algorithms, i.e., each node or process handles a part of the physical
domain. This scales well with data or model size but might require
communication between nodes to exchange boundary information. Com-
positing becomes also more complex since many nodes might contribute
to a pixel in the final image.

Sort-middle (send-geometry) processes the input data and distributes the
transformed graphical primitives for rasterization to the respective nodes.
It is not well supported in the current architecture of GPUs since vertex
processing and rasterization is tightly coupled and reading back data from
a GPU is usually avoided whenever possible for performance reasons.

Sort-last (send-images) is used to partition the image space into so-called tiles.
Different nodes then process each tile and send the results to display
nodes. While this scales well with image resolution, it requires that each
node has access to all data and is thus only reasonable for small data sizes.

The partitioning is often dictated by the data source, for example when simu-
lations already decompose their physical domain to different nodes, i.e., the
data is already partitioned in object space. In these cases it is still possible to
partition the image space, i.e., let multiple render nodes create parts of the
projected image of that object space.

Compositing

Section 2.1.2 briefly mentioned blending, the combination of a fragments’ color
with the one already stored in the framebuffer. For distributed visualization,
this operation is more challenging because multiple nodes might contribute
to the final color of a pixel. In a completely opaque scene, depth compositing is
sufficient, i.e., only the closest fragment is used. It is not feasible to composite a
correct image this way with semi-transparent objects in the scene. Maule et al.
[2011] discuss this as a sorting problem:

Geometry-sorting methods sort whole objects (i.e., parts of a scene) or primi-
tives w.r.t. their depth before rendering. This is the standard approach
for rendering semi-transparent objects and is often realized using the
Painter’s algorithm [Foley et al., 1990] but provides incorrect results with
interpenetrating geometry.

Fragment-sorting collects all fragments of the scene and sorts them by depth
before blending. These methods store the order of fragments either
explicitly in buffers or implicitly in depth layers.

2.1 • Visualization 15

Hybrid-sorting approaches combine geometry-sorting with fragment-sorting.
They sort the geometry approximately and correct the fragment order
during rendering or employ occlusion queries to obtain a correct back-to-
front ordering.

Depth-sorting-independent methods ignore depth and blend fragments in
incoming order (i.e., unsorted). They are based on weighted averages
and sums and are not suitable for fragments with distinct colors and
transparencies.

Probabilistic techniques employ screen-door transparency [Mulder et al., 1998]
by using stochastic and probability to determine the fragment visibility.
Consequently, they introduce noise, which can be attenuated through the
number of samples.

Maule et al. [2011] conclude that A-buffer [Carpenter, 1984] and linked-list
[Yang et al., 2010] approaches are the fastest methods for rendering with correct
handling of transparency but have high memory requirements because they
store all fragments.

2.1.4 Large Displays

Visualizing large data sets often results in large images which exceed the
resolution of traditional monitors. Even with the advent of 4K monitors, the
same reasoning as for distributed visualization (see Section 2.1.3) applies,
namely that scaling beyond technical limitations requires distribution. In
this context, this means to show the image on a bigger physical space, i.e., on
multiple monitors or projectors.

Large displays range from megapixels to gigapixels [Papadopoulos et al., 2015].
They consist of multiple monitors or projectors [Ni et al., 2006] that show parts
of the full image which can be computed on the attached display nodes or by
utilizing a render cluster (see Figure 2.3).

Common issues of large displays include color calibration and frame synchro-
nization. For monitor arrays, the bezels are problematic as they disrupt both
perception and interaction. To prevent hard edges, projector arrays often em-
ploy blending areas which require geometric calibration as well as intensity
correction in these areas.

16 Chapter 2 • Fundamentals

2.1.5 Frameworks

There are several frameworks for distributed visualization. WireGL [Humphreys
et al., 2001] implements a sort-first rendering pipeline by streaming OpenGL com-
mands to multiple ‘pipeservers’ that render parts of the geometry. Chromium
[Humphreys et al., 2002] extends that approach by transforming the applica-
tion programming interface (API) stream in other ways and thus enables sort-last
rendering. Equalizer [Eilemann et al., 2009] provides an API for scalable par-
allel rendering. ParaView [Ahrens et al., 2005] is a full-fledged application to
configure the visualization pipeline during run time, distribute it to multiple
nodes, and execute it in parallel, which utilizes IceT [Moreland et al., 2011], a
“high-performance sort-last parallel rendering library”.

MegaMol [Grottel et al., 2015] is a framework for rapid prototyping of visu-
alization applications that supports sort-last rendering and large displays. It
was initially designed for the visualization of large number of molecules in
the context of the SFB 7162. MegaMol is a modular approach to realize the
visualization pipeline by combining several modules that load, filter, map, and
render data sets. It is used several times as display front-end for the approaches
in this thesis.

2.2 Heterogeneous Systems

Heterogeneous systems use more than one kind of PU, “allowing each to
perform the tasks to which it is best suited” [Shan, 2006]. This is not a new
trend, as coprocessors have been used in computing for some time, for example
floating point units, AGEIA’s PhysX cards, or GPUs.

In general, hardware vendors supply their own, distinct APIs that are required
to utilize their PUs. Even though there are standardized interfaces for some PUs,
there are also vendor- and hardware-specific features that can only be accessed
using the vendor API. This is complex and time-consuming for a variety of
reasons, like detecting available hardware, differing data structures and calling
conventions, incompatibilities between hardware, and different toolchains. On
the one hand, even when developers choose to specialize their applications by
supporting only one API, they face problems like differing hardware capabilities
(e.g., double precision support) and evolving APIs. On the other hand, it is
sensible to support different APIs and PUs, because of changes in hardware, for
example better performance, higher energy efficiency, or lower costs. Finally,
software that is already in long-term production is not easily adapted to new

2Sonderforschungsbereich 716 — "Dynamic simulation of systems with large particle numbers",
see http://www.sfb716.uni-stuttgart.de/.

2.2 • Heterogeneous Systems 17

hardware and the new programming models. Production code needs to be
changed to use new APIs, computations need to be adapted for the specific
architectures, interfaces are needed that support these additional code paths,
and everything needs to be re-tested. The following is a brief introduction to
this field; a general overview and survey about heterogeneous computing is
provided by Brodtkorb et al. [2010].

2.2.1 Processing Units

While there are many different PUs, central processing units (CPUs) and GPUs are
the most relevant since their combined use offers high flexibility and efficiency.
CPUs have multiple cores (in the order of dozens), several layers of big caches,
good branch prediction, and direct access to the main memory (up to hundreds
of GB). GPUs have many cores (in the order of several thousands) arranged
in blocks of multiprocessors and separate memory (up to 32 GB), and smaller
caches than CPUs. They operate using the single instruction, multiple data (SIMD)
paradigm and in lock-step, i.e., the multiprocessors execute the same instruc-
tions on different data. Even with consumer-grade hardware it is possible to
achieve non-negligible speedups. Nowadays, Intel and AMD integrate GPUs
with their CPUs, while NVIDIA offers the Tegra, a system-on-a-chip solution
that combines their GPUs with an ARM CPU.

Intel worked for some time on a many core architecture named Larrabee which
was eventually canceled and lead to the development of the Xeon Phi, now used
in some supercomputers (see Chapter 1). In recent years, field-programmable
gate arrays (FPGAs) gained some popularity in the high performance computing
(HPC) field as they can offer better energy efficiency for some computations
and because they become easier to program, for example using OpenCL on
Adapteva’s Parallella boards. Another interesting trend is the use of application-
specific integrated circuits (ASICs) for very specific computations, for example
computation of hashes for Bitcoin mining, where they outperform GPUs by
several orders of magnitude (see Bitcoin Wiki [2015a] and Bitcoin Wiki [2015b]).
As discussed in Chapter 1, new PUs are already in use or in development, for
example the PEZY-SC or the Rex Neo.

2.2.2 Parallelization and Communication

Using multiple PUs requires some form of concurrency so the host, that is
coordinating them, is not blocked and might even be used for computations
itself. Traditionally, parallel programming employs threads, for example using
POSIX, the Windows API, or OpenMP [Chapman et al., 2007]. This leads to some
performance gains on individual nodes since modern CPUs feature multiple

18 Chapter 2 • Fundamentals

cores that can execute several threads in parallel. Parallelization beyond node
boundaries requires some sort of communication between nodes, for example
using the message-passing interface (MPI) or sockets.

Non-trivial data structures cannot be transferred directly between processes, for
example due to pointers or byte order. Furthermore, the semantics of raw data
may not be clear and changes in the data order might lead to incompatibilities.
These issues are overcome with serialization [Wikipedia, 2015e], which converts
data structures into byte streams by means of deep copies (i.e., following point-
ers) and encoding. The receiver of the data can then reverse the serialization,
i.e., deserialize the byte stream into corresponding data structures.

Since serialization and communication are both necessary for distributed memory
processing (DMP), there are many approaches that incorporate both, for example
remote procedure calls (RPC) [Birrell and Nelson, 1984]. RPC enables clients to
execute methods in different address spaces without explicit knowledge of
the details. Method calls and their data are automatically serialized (also
called marshalling in this context) and then transferred to a peer node which
deserializes (unmarshalling) the information and executes the method. Upon
completion, the results are transferred back to the caller, for whom all of this
happened transparently.

2.2.3 Protocol Buffers

Serialization frameworks often require code annotations to encode data struc-
tures and their members properly which increases the development effort,
especially for programming languages without reflection capabilities (e.g., C++).
The information about the serialization format also has to be duplicated in all
applications that will receive the serialized data, for example when applications
written in different programming languages interact with each other. This
can lead to errors when one side of the data transfer changes the format, for
example by adding new items or changing data types.

Google Protocol Buffers (PBs)3 is a framework to address these problems. It is
a “language- and platform-neutral mechanism for serializing structured data”
that offers several advantages: (a) a well-defined description for extensible data
structures, (b) an efficient binary serialization format, (c) message passing as
inherent paradigm, and (d) introspection and reflection. Data structures are
defined as messages in a domain-specific language which is compiled into host
code for a programming language (see Appendix B.4 for an example). Google’s
official compiler protoc creates C++, Java, and Python code, but there are many

3https://developers.google.com/protocol-buffers/

2.2 • Heterogeneous Systems 19

third party compilers for various languages like C#, Lua, or JavaScript. Each
compiler creates serialization code that follows the specification of Google’s
binary format for PBs. Developers can instantiate these messages, fill them with
data (see Appendix B.2), and serialize and deserialize them. For C++, protoc also
creates code to introspect and reflect messages for dynamic traversal and access
of their members during run time. As such, PBs are a powerful tool to define
data structures which can be exchanged between any process through the PB
binary format.

2.2.4 General Purpose Computing on GPUs

The following is a short introduction, history, and overview of general purpose
computing on graphics processing units (GPGPU), i.e., using GPUs for arbitrary
computations. Further details and in-depth overviews of GPGPU and the pro-
gramming of GPUs are discussed by Mark J. Harris [2003], Owens et al. [2008],
Blythe [2008], Göddeke [2010], and Brodtkorb et al. [2013].

GPUs were always used as coprocessors for computer graphics, traditionally a
compute-intensive field that greatly benefits from parallelization. They were
already used for non-graphical computations (e.g., planing of robot move-
ment [Lengyel et al., 1990]) even before they became programmable through
shaders, which required creative use of the configurable rendering pipeline (e.g.,
blending operations, stencil and accumulation buffers). As shaders became
available, general computations could be performed on GPUs by rendering
geometry (e.g., a quad) with the same extents as the computation domain and
exploiting the fragment shader for the parallel processing of each element.
At that time, only textures and the framebuffer could be used for input and
output.

As GPGPU became more popular, vendors invested in this paradigm and pro-
vided APIs to access their hardware directly without graphics APIs. CTM
(close-to-metal) [Peercy et al., 2006] was a very low-level API to program ATI
GPUs. After AMD acquired ATI, CTM evolved into the Stream SDK until they
finally switched to OpenCL in 2011. Meanwhile, NVIDIA developed the Compute
Unified Device Architecture (CUDA) which was heavily marketed and rapidly
adopted in both research and industry. Consequently, even though CUDA is
only available for NVIDIA GPUs, it gained a wide reach and is used in many
systems.

CUDA and OpenCL work in the same way, i.e., they expose methods for explicit
memory management of various buffer types and a convenient way to start
computations. Both APIs realize the SIMD paradigm using kernels that are defined
in CUDA C or OpenCL C which are subsets of C and C++. For each element in the

20 Chapter 2 • Fundamentals

compute domain, a kernel is run in a separate thread on the PU, similar to how
a fragment shader is run for each generated fragment during rasterization (see
Section 2.1.2). The compute domain is defined as 3D grid which can be further
refined, i.e., each grid cell consists of 3D thread blocks. Groups of these threads
are executed in unspecified order on available multiprocessors of the PU.

CUDA and OpenCL are designed to work on a wide range of PUs. Naturally, these
differ in their capabilities as technology advances, for example early GPUs did
not support double precision computations and only few concurrent threads
(i.e., small compute grids). This diversity across PUs complicates their use since
application developers need to consider these restrictions, at least by checking
for them and supplying proper error messages. Otherwise, an application may
behave in erratic ways, which was especially true in earlier versions of the APIs
when their error messages were misleading4. In general, their portability only
applies to basic use, i.e., they are not performance portable across comparable
architectures even within the same API.

2.2.5 Offloading
Programming different PUs is elaborate: computations have to be formulated ac-
cordingly (e.g., as shaders or kernels) which might necessitate special toolchains
(e.g., ‘nvcc’ for CUDA), data has to be transferred from the host, and computa-
tions have to be invoked. The application also needs to coordinate the host with
the PU, for example with barriers in order to further process results from that
PU on other PUs. Over time, this process became easier and many tools and
frameworks emerged to help with this.

Similar to OpenMP, there are some approaches to access PUs through compiler
directives (e.g., OpenACC, AMP++) by injecting necessary API calls and gener-
ating kernel code at compile-time. There are also many high-level frameworks
(e.g., GPULib [Messmer et al., 2008], CuPP [Breitbart, 2009]) that provide con-
venient access or simplified memory management [Sundaram et al., 2009].
Furthermore, there are many works that specialize on certain domains (e.g.,
FEM [Göddeke et al., 2005], sorting [Satish et al., 2009], linear algebra [Dongarra
et al., 2014]). Frameworks like GPU++ [Jansen, 2007] and HONEI [van Dyk
et al., 2009] are more on a middle ground, as they allow for convenient use of
PUs as well as low-level access. For distributed computations there are several
frameworks that either relay calls (e.g., Duato et al. [2010], Barak et al. [2010],
Grasso et al. [2013]) or distribute tasks to remote nodes automatically (e.g.,
Strengert et al. [2008], Müller et al. [2009], Frey and Ertl [2010], Kofler et al.
[2013]).

4Early versions of CUDA were notorious for declaring most errors as ‘unspecified launch error’.

2.3 • VVand—The VISUS Powerwall and Cluster 21

Figure 2.4 — The powerwall of the VVand consists of two groups with
five 4K projectors each, forming a display with an effective resolution of
10,800× 4096 pixels on a 6 m× 2.2 m glass wall.

2.3 VVand—The VISUS Powerwall and Cluster

Most of the following approaches presented in this thesis are designed for and
implemented on the VVand, the VISUS powerwall and cluster [Müller et al.,
2013]. It is a two-tier system specifically designed for interactive, large-scale
visualization.

Powerwall

The display of the VVand is a rear projection system consisting of 10 JVC 4K
LCoS projectors with a resolution of 4096× 2400 pixels each, organized in two
groups of five projectors (see Figure 2.4). Each group fills the 6 m× 2.2 m
physical display space of a glass wall entirely and together they are used for
stereoscopic visualization, i.e., each group displays the images for one eye.

The projectors are arranged vertically with a 300 pixel wide blending area for
smooth transitions and to counter hard lines between them. This setup yields
an effective resolution of 10,800× 4096 pixels (≈44 megapixel per eye) with
a pixel size of 0.56 mm. Each projector is attached to one display node (see
Appendix A.2 for their specifications).

Compute and Graphics Cluster

Small data sets and simple scenes can be rendered directly on the display nodes.
For bigger and more complex data sets, a GPU cluster of 64 nodes is available
(see Appendix A.3 for their specifications).

22 Chapter 2 • Fundamentals

lower
quartile

(Q1)

median
(Q2)mean

Q1 - 1.5 x IQR

outliers outliers

low
values

high
values

upper
quartile

(Q3)

IQR = Q3 - Q1 Q3 + 1.5 x IQR

Figure 2.5 — A box plot is a compact representation of various statistical values
of groups of data.

Network Interconnect

All nodes are connected via Ethernet and InfiniBand. The Gigabit Ethernet
network (1 Gbit/s) is used for administrative tasks and computations with low
bandwidth requirements. The InfiniBand network has 4X double data rate
(16 Gbit/s) with full bisectional bandwidth, i.e., the full bandwidth is available
for communication between any two nodes.

2.4 Box Plots

Box plots [Tukey, 1977] are a compact visualization for the distribution of
groups of data points and “one of the most frequently used statistical graphics”
[Wickham and Stryjewski, 2012]. They are used in this thesis to show and
compare the distribution of a series of values. The visual elements of the
box plot (see Figure 2.5) correspond to statistical values of a data set and its
quartiles5:

The box shows the first (lower) and third (upper) quartile at the bottom and
top, respectively. The first quartile (Q1) splits the data into the lower 25 %
and upper 75 %, while the third quartile (Q3) splits it into the lower 75 %
and upper 25 %.

The median splits the data set in half, thus also called the second quartile (Q2).

Whiskers show the values of the data that are within 1.5× IQR.

5A quartile divides a data set into four equal groups, each containing 25 % of the data.

2.4 • Box Plots 23

Outliers are below and above the whiskers. They are considered anomalies in
the data set and shown as individual points so that their distribution and
quantity can be estimated.

The interquartile range, IQR, is a measure for the dispersion of the values. The
mean of the data set — in this thesis its arithmetic average — is not a robust
measure, i.e., it is affected by outliers, and might not actually occur in the data
set.

24

Part I

Abstraction

25

Figure I — Distributed finite-time Lyapunov exponent visualization of a time-
dependent buoyant flow on the VVand (see Section 3.2.3).

Abstraction is an important aspect of many areas of life, like art, mathematics,
or linguistics, but even more so in computer science. The visualization pipeline
presented in Section 2.1.1 itself is an abstract process of transforming data into
an image for interpretation by humans. While the use graphics processing units
(GPUs) is almost mandatory for interactive visualization, it is not so clear which
application programming interface (API) to use, even more so with the advent of
new APIs like DirectX 12 or Vulkan (see Chapter 1). Furthermore, distributed
rendering was always elaborate but is even more complex with semi-transparent
objects. As such, utilizing large-scale, heterogeneous visualization systems like
the VVand has high requirements in addition to development of appropriate
rendering techniques.

The following chapters discuss abstraction methods to address both challenges.
Chapter 3 introduces DIANA, an abstraction layer for unified access to different
processing units (PUs), and discusses its utility as well as overhead in comparison
to the supported APIs. Chapter 4 discusses per-pixel linked lists (PPLLs) as
abstraction for simplified compositing in the context of distributed rendering of
semi-transparent scenes.

C
h

a
p

t
e

r

3
An Abstraction Layer for

Heterogeneous Environments

Programming graphics processing units (GPUs) is different than central processing
units (CPUs) in several ways (see Section 2.2.4). For one, they have discrete
memory (with some exceptions like AMD’s APUs), i.e., data needs to be
transferred from main memory before it can be read or modified on the GPU.
They are also designed for computer graphics tasks with different memory
access patterns, for example when using texture filtering. In contrast, CPUs
can access memory randomly with a smaller performance penalty than GPUs.
GPU cores are combined in multiprocessors that operate in lock-step making
branching costly. Even though challenging, GPUs and other processing units (PUs)
are increasingly used, since they have proven to speed-up many computations
by several orders of magnitude.

This chapter presents DIANA, the distributed memory processing in a node abstraction
layer. It provides unified access to PUs and is designed to facilitate seamless
switching between and simultaneous use of different PUs. This chapter is
partially based on previous publications [Panagiotidis et al., 2011b, 2012].

30 Chapter 3 • An Abstraction Layer for Heterogeneous Environments

3.1 Concepts and Architecture

Existing libraries and frameworks simplify programming of PUs by focusing on
ease of use or on specific use cases (see Section 2.2.5). In order to use them, they
need to be embedded into applications at compile-time and their specific data
structures have to be used. This makes switching between different frameworks
and PUs challenging, if not impossible, for example due to the required time-
and effort-overhead. Techniques like encapsulation and dependency injection
remedy this to some extent but introduce additional overhead both during
development and run time.

Ideally, switching between PUs, frameworks, or even different variants of an
operation should be possible without rebuilding or changing an application.
Applications should not be developed with a certain framework or application
programming interface (API) in mind but instead, developers should focus on
the data and the operations they wish to execute. Furthermore, using local or
remote PUs should be seamless because the non-uniform memory access (NUMA)
paradigm is similar to distributed memory processing (DMP), i.e., data needs to
be transferred to a PU’s memory where it is read and modified. DIANA is an
approach to address these and the following challenges:

1. Provide unified access to current and future PUs and their APIs as well as
frameworks and libraries.

2. Hide specific details, boilerplate code, and quirks from higher-level code.

3. Switch seamlessly between different PUs and operation implementations
during run time with minimal source modification.

4. Provide this functionality across languages and platforms.

The main purpose of DIANA is to allow for rapid evaluation of new technologies,
algorithms, and methods in heterogeneous, diverse, and evolving environments
without code refactoring or even recompilation. It is a small C++ library utilizing
several C++11 features (e.g., lambdas, std::function) which focuses on a semantic
level where abstract interfaces define a contract for operations which are fulfilled
by multiple implementations.

Since DIANA was initially published [Panagiotidis et al., 2011b], it has been
extended and refined, most notably: devices and commands are now identi-
fied as unique unsigned integers, command interfaces are now realized using
Protocol Buffers (PBs) (see Section 2.2.3), and all command implementations are

3.1 • Concepts and Architecture 31

message Put {
optional uint64 target = 1 [default = 0, (diana_id) = BUFFER, (diana_access) = WRITE];
optional uint64 size = 2 [default = 0];
optional bytes source = 3 [default = "", (diana_access) = READ];
};

Interface

Application C++ Java, Python Lua, JavaScript, C#, ...

Hardware CPU, GPU, FPGA, ...

Agent

Command
Plugins

C++, CUDA, OpenCL, clAmdBlas, CUBLAS, MPI, ...

diana::invokeDIANA Database

unserialize

protoc 3rd-party compiler

directly

binary wire format

Figure 3.1 — Architecture of DIANA. Protocol Buffers (PBs) are used to define
interfaces to operations on processing units (PUs). These are compiled into
host code that can be used to pass data either directly or via serialization to
diana::invoke. There, the corresponding command is called which in turn calls
APIs or low-level PU code. Agents can act as a bridge that mediates between
DIANA and external parts (gray elements).

called via diana::invoke. The following describes the principal concepts that still
apply as well as the changes, and presents new results based on the most recent
version.

Figure 3.1 shows the architecture and main concepts of DIANA. Applications
access PUs through commands and their interfaces. These commands are
executed through diana::invoke, which in turn calls functions that were associated
with the interface. The specific function to call can be queried from the internal
database using SQL. Any functionality is isolated in plug-ins which are loaded
dynamically during run time and then register operations to interfaces.

32 Chapter 3 • An Abstraction Layer for Heterogeneous Environments

3.1.1 Data Types, Identifiers, and the Database

There are three object types in DIANA: devices, buffers, and commands. Each
instance of such an object is represented by an identifier unique to that type.
These opaque handles are mapped internally to API-specific data types and
structures (see Table 3.1).

Devices and commands are registered in an SQLite database along with meta
data. For example, device plugins store the available memory or their compute
capability (e.g., double precision support, number of cores, clock frequency)
so applications can query for devices with a specific amount of memory or
minimum performance. Command implementations provide hints about their
details, for example the library used. The queried identifiers are then supplied
when invoking commands to find the associated function pointer and then
passed to that particular function. Buffers are specified as parameters to com-
mands, which resolve them to PU-specific pointers or data structures and pass
them to kernels or library calls.

Arbitrary additional information can be stored in the database, for example log
messages and exceptions for post-mortem inspection without interfering with
an application’s output. DIANA records each command invocation along with
the device and command as well as the execution duration on the host and the
device. Additionally, commands can insert similar profiling information (e.g.,
the duration of a specific API call) for fine-grained tracing.

Mapping database entries to C++ objects

The database is used primarily as flexible and convenient search mechanism.
When an application queries for a device or command, the corresponding ID
needs to be mapped to a C++ object or an API handle. These mappings are
created and removed by plugins (see Section 3.1.4) when they are loaded and
unloaded, respectively. For both devices and commands, an entry is created
in the database first to obtain the ID which is then used as key in a hash map.
Each device plugin manages its own hash map internally and provides methods
to resolve an ID to API-specific handles (see Table 3.1). There is one global hash
map for commands in DIANA to resolve command IDs to function pointers of
command implementations. It is not exposed; instead, command IDs are passed
to diana::invoke which looks up the implementation and calls it. The command
ID is also passed to the command implementation to allow for multiple code
paths in one function.

3.1 • Concepts and Architecture 33

CPU CUDA OpenCL

diana::DeviceID — int/cudaSetDevice cl_command_queue
diana::BufferID void* void* cl_mem/cl::Buffer

device.Alloc std::malloc cudaMalloc cl::Buffer()
device.Free std::free cudaFree ~cl::Buffer()
device.Put std::memcpy cudaMemcpy clEnqueueWriteBuffer
device.Get std::memcpy cudaMemcpy clEnqueueReadBuffer

Table 3.1 — DIANA hides native pointers and memory operations behind unique
identifiers and commands. Commands can ensure type-safety and perform
boundary checking before passing the native handles to the respective API.

3.1.2 Commands

The basic unit of functionality in DIANA is the Command, which consists of
two parts: an interface and implementations. The command interface contains
the necessary data for an operation, similar to a function signature, while the
implementation realizes the actual operation, for example calls to a library or PU
API. Each command interface is a PB message which is compiled into C++ using
protoc for DIANA itself. Applications, even developed in other languages than
C++, can use any PB compiler to create the corresponding host code, as long as
the same binary representation is written during serialization (see Figure 3.1).
For computations, PBs are instantiated, filled with the relevant data, and then
passed to the command implementation through diana::invoke.

Command implementations are functions with four parameters: a device ID, a
command ID, an instance of a PB, and a callback that is run after the command
is finished. These implementations resolve identifiers to data structures and
pointers, may perform plausibility and constraint checks on parameters, and
then pass those to the actual kernels and library calls.

diana::invoke

Commands can only be executed through diana::invoke. There, the function
pointers are looked up, a unique command status ID for this execution is gener-
ated, and the starting time of this execution is recorded in the database. The
command status ID can be used to refer to a specific computation, for example to
query its duration.

By convention, users of DIANA should assume that the actual command imple-
mentation is asynchronous, i.e., the computation may not have completed or
even started after diana::invoke returned. Commands signal their completion by
calling diana::commandFinished when the corresponding API signaled that the PU

34 Chapter 3 • An Abstraction Layer for Heterogeneous Environments

finished the execution (see Figure 3.2). In diana::commandFinished, DIANA stores
the tracing information in the database and calls a per-invocation user-supplied
callback to allow applications to react, for example to start data transfers or
new computations. This mechanism is also used to realize barriers by waiting
until a flag has been set in the callback.

3.1.3 Devices and Memory

DIANA supports various PUs by encapsulating low-level methods for memory
management and kernel execution. These devices are exposed to applications as
a unique identifier which is internally resolved to specific handles for the re-
spective PU API. Table 3.1 shows the mapping of the respective DIANA identifiers
to PU-specific data structures.

Buffers

Buffers are created by calling diana::createBuffer with the desired size in bytes.
This only creates a unique identifier while the actual memory allocation on
a PU has to be done explicitly by calling the corresponding command (e.g.,
device.Alloc). There, the buffer ID is mapped to a native handle (see Table 3.1).
While buffers only have a single ID, they can be allocated on multiple devices
concurrently, each with distinct native handles. Buffer IDs are resolved to
native data types by commands using a PU-specific mapping. There are also
convenience methods to perform range and boundary checks on buffers to
detect buffer under- and overflows.

Buffers are deliberately immutable to prevent repurposing, i.e., they cannot be
resized once they are created. In other words, DIANA tries to enforce that a
buffer ID always represents only one semantic object.

Remote Invocation

Since an operation is encapsulated by a command, it is trivial to relay it to
a remote peer (see Figure 3.2). First, a server (i.e., the peer that will execute
the actual command) announces its local devices and commands to clients,
for example during initialization of the remote plugin. Then, each client
registers a meta-command (the client stub) locally for each remote command.
Consequently, when the application queries for a command, remote commands
will also be returned as if they were local.

The client stub serializes the PB into the built-in wire format and sends it to the
corresponding server along with the device ID and command ID. On receiving
such a message, the server will deserialize the PB, query for the requested

3.2 • Evaluation 35

completed
Commanddiana::invokeApplication

PB

diana::commandFinishedUser Callback

Client Stub Server Stub

diana::invoke

serialize(deviceID,commandID,PB)
unserialize & look up

diana::commandFinishedStub Callback

PB
Client / Application

API

diana Server / Hardware

Figure 3.2 — For local computations (continuous lines), applications (red) pass a
PB to diana::invoke which calls the corresponding command to execute some API
calls. Remote invocations (dashed lines) are possible by routing the serialized
information from the client (yellow) to a server (blue) which then looks up and
executes the requested command.

device ID and command ID, and execute the command locally. The callback on
the server then signals the completion to the client, which in turn calls the
user-supplied callback locally.

3.1.4 Plugins

DIANA itself only consists of the basic functionality surrounding the database
and diana::invoke. Commands, and thus operations on PUs, are encapsulated in
plugins that are loaded dynamically during run time. Conceptually, each plugin
should be responsible for a specific piece of functionality. For example, the
default device plugins contain only the API- or PU-specific initialization and the
respective low-level memory access (see Table 3.1). Through this plugin system,
applications using DIANA only need the interface (i.e., the PB specification
to create the corresponding host code) to execute an operation. The actual
implementation is loaded during run time and, as described in Section 3.1.1,
mapped to the interface, enabling switching between implementations without
changing other parts of an application.

3.2 Evaluation

While DIANA provides several advantages, it also introduces some overhead
both during development and during run time. The following discusses why
DIANA should be used, how big the overhead is, and what it is composed of. In
addition, an application using DIANA is discussed in the context of distributed
flow visualization on the VVand.

36 Chapter 3 • An Abstraction Layer for Heterogeneous Environments

3.2.1 Matrix-Matrix Multiplication

The double precision general matrix multiplication (DGEMM) is an important op-
eration used in many domains and applications such as phylogenetics, fluid
dynamics, computer vision, and finite-element modelling. It is also often used
as benchmark for PUs as well as APIs due to its mix of memory transfers and
computations, for example by LINPACK. Consequently, there are many im-
plementations and variants available (Netlib’s CBLAS, Intel’s MKL, AMD’s
ACML and clAmdBlas, MAGMA, and ViennaCL to name a few) and thus it
might be desirable to switch between these variants in order to provide multiple
choices to users (e.g., the best implementation for their use case or environ-
ment), allow for verification of results, and to support new PUs and improved
implementations.

Most DGEMM implementations use Netlib’s definition in BLAS [Blackford et al.,
2002] but differ in several details. Some have specific types for the data,
others can restrict the computation to a subwindow of the matrices, and some
expect their parameters in a different order. As such, multiple variants of
this operation cannot be supported with a simple search-and-replace approach
or even encapsulation of the function because the data structures need to be
used throughout an application. Memory transfers also need to be considered
for variants that are executed on a PU. The interface for DGEMM in DIANA
(see Listing B.2) also follows BLAS but models the window parameters as
PB extensions (Lines 31 to 39 in Listing B.2) because not all variants support
them.

Figure 3.3 shows the behavior of several DGEMM implementations on different
GPUs for increasing sizes of square matrices. This figure is not intended as an
extensive analysis of the implementations or GPUs, but to illustrate why DIANA
should be used.

The first observation to notice is that some of these variants are suboptimal,
as they do not reach the theoretical or expected performance of the GPUs and
only few reach it for some matrix sizes. To determine this, one would either
need to use a benchmark for each variant or to adapt existing benchmarks each
time a new variant emerges. Only one benchmark is necessary using DIANA by
encapsulating variants in plugins and swapping them in and out without any
other major changes.

Another observation is that both variants on the AMD HD 5870 outperform
all CUDA variants. This is noteworthy because it was released in September
2009 [Wikipedia, 2015a], while all tested NVIDIA GPUs were released at least

3.2 • Evaluation 37

Figure 3.3 — Comparison of various implementations of the double precision
general matrix multiplication on different GPUs.

six months later [Wikipedia, 2015b]. Compared to NVIDIA’s GTX 480 and
GTX 680, it was cheaper at release date and has a lower thermal design power
(TDP), i.e., it consumes less energy and emits less heat. Considering this, using
the AMD HD 5870 could result in a real competitive advantage, especially in
an industrial context. However, at that time, OpenCL was just released and
many developers already invested into NVIDIA and CUDA since there were
only few other options (see Section 2.2.4). Now that OpenCL is available for
some years and many libraries are available, it would make sense to switch
between CUDA and OpenCL, to reach more users and gain access to the specific
benefits (e.g., earlier release, less power consumption). This is time-consuming
for applications that use CUDA directly or rely on CUDA-specific features but
easily possible using DIANA and the plugin system.

38 Chapter 3 • An Abstraction Layer for Heterogeneous Environments

3.2.2 Quantifying Overhead

Like every form of abstraction and indirection, DIANA also imposes a penalty
during run time, since all calls have to be routed through diana::invoke and
several entities are looked up from hash maps. The following test is performed
to analyze this overhead: allocate memory on a PU, transfer data from the
host, modify it on the PU, transfer it back to the host, and release the mem-
ory. These are the essential operations that applications have to use for any
meaningful computation. The computation for this test, sscal, scales a large
vector (25,000,000 single precision floating point numbers, 100 MB), though
the operation itself and its duration is irrelevant for this test. Each individual
operation is blocking, i.e., the test is waiting until the operation was finished
on the PU using a barrier. The initialization and shutdown of the tested API
(i.e., CUDA, OpenCL, DIANA) is not measured since they are executed once at
the beginning and ending of an application, respectively, and are thus not
critical to the run time. The test is repeated 10,000 times on the system enka (see
Appendix A.1).

This test is heavily skewed against DIANA, which performs additional operations
to increase safety, portability, and traceability. For one, the tested commands
check for buffer overflows, i.e., they check whether the used buffers are large
enough for the requested operations. Furthermore, when necessary, the memory
transfer operations will allocate or resize buffers, again to prevent reading or
writing out of bounds. During the execution, the start and end time points of
subtasks are recorded in the database as well as the execution duration on the
PU as reported by the API. Finally, since every operation in DIANA should be
assumed asynchronous, completion is signaled using a callback. In contrast,
for testing the other APIs, only the necessary, minimal calls are performed with
the synchronization primitives of that API to ensure an operation has finished.
No boundary checks are performed, no additional memory is allocated (i.e., all
required memory is allocated once by the application), no callbacks are called,
and no trace information or PU duration is neither queried nor recorded.

Figure 3.4 shows the distribution of the run times as box plots (see Section 2.4)
for all tested operations from the applications’ point of view, i.e., what users
of the corresponding API would perceive as the time until an operation has
finished and its results are available. As can be seen, the times for calling CUDA
or OpenCL directly do not fluctuate much, i.e., they are very similar over all runs.
For DIANA, the results fluctuate heavily and are at least 2− 3 times higher than
the native API.

In general, the overhead can be attributed to the way DIANA operates internally,
i.e., various look-ups, database queries, range checking of buffers, and strict
error checking of API calls. Furthermore, completion of API calls are reported

3.2 • Evaluation 39

Figure 3.4 — Box plots (see Section 2.4) of the run times for PU memory
operations and, as example, for scaling a large vector (sscal).

by the driver from their own threads, which induces some latency (e.g., due
to context switching of threads). In particular, both CUDA and OpenCL support
callbacks after certain events (e.g., kernel completion) but there are several
restrictions for these callbacks, for example calling any API methods is prohib-
ited, and the callback should not block or consume too much time. To escape
these restrictions, the call to diana::commandFinished is queued into DIANA’s own
thread pool when the driver calls the completion callback, further increasing
the latency.

Figure 3.5 depicts the various subtasks for copying data from host to the GPU
(see Appendix B.3 for all other operations). The two top bars show the durations
when calling OpenCL directly and via DIANA, while the three bottom bars show
a break-down of this operation as recorded by DIANA in the database. The exact
start and end time on the PU is unclear, since only the duration is reported and
thus the bar is centered w.r.t. the API call. The red bars depict the delay until a
subtask was started and how much time passed until the caller finished (i.e.,
the latency and the overhead).

40 Chapter 3 • An Abstraction Layer for Heterogeneous Environments

Figure 3.5 — Worst case for the memory transfer from host to GPU in OpenCL
directly and via DIANA (top two bars). The bottom three bars depict the subtasks
within DIANA for this command.

As can be seen, the actual OpenCL calls are similar when called directly or
by DIANA (29.14 ms vs. 26.22 ms, 1st and 4th bar). Before the command is
called, 29.86 ms are spent on copying the input data into the PB and inserting
the trace information in the database (red bar at the beginning of device.Put).
Then 42.65 ms are spent to verify buffer ranges, resolve the device ID to the
clCommandQueue and the buffer ID to the cl::Buffer instance (red bar at the
beginning of enqueueWriteBuffer). Then enqueueWriteBuffer is called and the
command queue flushed, in the same way as when calling OpenCL directly.
Finally, it takes another 219 ms until the driver notifies DIANA, which updates
the tracing information with the completion time, thus ending the device.Put
command. At that time point, the barrier at the call site is signaled and the test
resumes with the next iteration.

Most of the overhead can be accounted to lookups and tracing of commands and
buffers. Figure 3.6 shows the results for the same benchmark when the tracing
is disabled, i.e., no entries are created in the database for: creation, modification,
and destruction of buffers; beginning and completion of commands; duration
of API calls on the host and PU. Overall, there are less fluctuations and outliers
and the range of values is smaller. The means and averages decreased by up
to 40 ms. Memory allocation, kernel execution, and memory deallocation in
DIANA is now close or equal to their direct counterparts. The memory transfers
are still slower due to copying the data into the PB and allocating memory in
the command.

In conclusion, the gap between direct API calls and their equivalent in DIANA can
be closed at the cost of losing tracing information. This is similar to compiling
applications with debug information and assertions during development and
removing that for release. The overhead for memory transfers remains for
further investigation, since the actual API call and the duration on the GPU
already matches the direct calls.

3.2 • Evaluation 41

Figure 3.6 — Box plots of the run times for PU memory operations and sscal
without buffer and command tracing in DIANA.

3.2.3 Distributed Finite-Time Lyapunov Exponent Visualization

Flow visualization is used to show direction and movement over time in vector
fields and is applied in many fields such as fluid dynamics. While the local
behavior of the vector field is often of interest, its global behavior, i.e., its
topology, also provides valuable insight.

The finite-time Lyapunov exponent (FTLE) can be used to separate vector fields into
regions of different behavior, i.e., as measure of divergence of two infinitesimal
close particles over time. It is determined as the spectral norm of the right
Cauchy-Green deformation tensor to obtain the biggest gradient of the flow
map for each point in the computation domain. In 2D, a particle is traced
for each pixel of the resulting image for a certain advection time and its final
position is stored in a flow map. The particle trajectories can be integrated
forward and backward to find repelling and attracting ridges, respectively. This
computation is expensive even for small data sets because the advection time
needs to be long enough, so that the ridges are long and sharp enough to allow
extraction of Lagrangian coherent structures (LCS) [Haller, 2001] which actually

42 Chapter 3 • An Abstraction Layer for Heterogeneous Environments

Figure 3.7 — FTLE visualization of a
time-dependent buoyant flow with
an obstacle. The forward and back-
ward FTLE values are normalized
and mapped to red and green, re-
spectively, to show repelling and at-
tracting LCS.

separate areas of the flow field. With longer advection time, a higher resolution
is necessary to avoid aliasing and overdraw of the ridges. In certain cases,
it is even necessary to create images with higher resolution than the display
and then use supersampling [Üffinger et al., 2012]. As the particle tracing for
each pixel can be performed independently, the computation domain can be
partitioned among multiple nodes and GPUs and processed in parallel.

Both the flow map and FTLE computation are implemented as DIANA command
in CUDA for parallelization on node level. These commands support tiled
rendering, i.e., each can operate on a part of the final image. This allows for
distribution of the computation to different nodes. The flow map is computed
with a one-pixel wide ghost cell boundary so that the FTLE can be determined
without communication while the FTLE itself is only written for the requested
part of the image. The distributed visualization of the FTLE is realized using
MegaMol (see Section 2.1.5) on five display nodes of the VVand and multiple
render nodes running a specialized agent that uses DIANA without tracing of
commands and buffers (see Section 3.2.2). Each time a frame is requested, the
global parameters are broadcasted to the render nodes which compute the flow
map and the FTLE. The render nodes manage memory themselves and stream
the necessary time steps of the data set for the requested advection time to
the GPU before computing both the forward and backward FTLE. The resulting
FTLE fields are then sent to all display nodes over InfiniBand using MPI, so
interactions in image space like panning and zooming can be achieved without
recalculation.

3.2 • Evaluation 43

Figure 3.8 — Average run times for distributed FTLE visualization. Note that
the frame request duration on the display nodes includes the time to receive
the buffers and upload them as textures while the render nodes calculate and
send the FTLE fields sequentially. The speedup (above the bars) is determined
w.r.t. the previous lower GPU count.

Figure 3.7 shows the FTLE visualization of one time step of a time-dependent
buoyant flow with an obstacle simulated in a grid of 101×101 cells [Sadlo
et al., 2012]. Figure I (see Page 27) shows a detail view of the same data set
on the VVand. The forward and backward FTLE values are normalized and
mapped to red and green, respectively, in both figures. Figure 3.8 shows the
scalability behavior and relative speedup of this system w.r.t. the number of
render nodes and GPUs, averaged over 100 subsequent time steps. The full
image (4096 × 4096 pixels) is partitioned among all available GPUs of the render
nodes, i.e., each of the n GPUs is rendering a partial image with a resolution of
4096×(4096/n) pixels.

The display nodes are idling most of the time until they start receiving a total
of 128 MB for the FTLE buffers (the corresponding meta data is less than 100 B
per partial image). This system behaves as expected when scaling from two to

44 Chapter 3 • An Abstraction Layer for Heterogeneous Environments

16 GPUs, i.e., doubling the number of GPUs roughly halves the frame request
duration with a speedup between 1.75 and 1.89. The render times are also very
close for the forward and backward advection.

The speedup decreases with more GPUs. First, the computation duration is no
longer halved when doubling the number of GPUs. This overhead of roughly
30 ms to 40 ms can be accounted to the overhead of starting and tracking the
CUDA kernels. Second, even though the total amount of data is the same, more
buffers are now transferred, and the send duration increases. This is accounted
for in the send time of the render nodes, because they have to wait until the
data is buffered by MPI on the display nodes. The actual receiving is then just a
memory copy from MPI into an application buffer and thus not changing much
w.r.t. the number of GPUs.

In conclusion, this system scales well until 64 GPUs when the FTLE can be
visualized in ≈1.19 seconds per frame or ≈0.84 FPS. Adding more GPUs is
only of marginal benefit and even counterproductive, for example when going
from 96 to 108 GPUs there is no overall speedup and the communication is
slower.

Since this system uses DIANA, it can be easily extended to nodes outside of the
cluster and to architectures not supporting CUDA, for example by employing
OpenCL [Panagiotidis et al., 2012]. This can be useful during development,
when the target system might not be available (e.g., due to maintenance or
other scheduled jobs) or to maximize utilization of all available resources (e.g.,
workstations that are idle during the night). In this case, it would be necessary
to adapt the scheduling (i.e., the sizes of the partial images) to balance the
overall load, since these nodes might have different compute capabilities.

3.3 Discussion

DIANA was initially designed as abstraction layer for various PUs with a strong
focus on portability and ease of use while maintaining as much performance
as possible and supporting the analysis of applications. Concepts like opaque
identifiers, the use of PBs for interfaces, and the database as storage backend
help but also introduce some disadvantages.

3.3.1 Portability and Usability

For current PUs, DIANA succeeded in facilitating the seamless switch between
different PUs and multiple command implementations. With advances in
technology, it is possible that future hardware requires yet another paradigm

3.3 • Discussion 45

shift, similar to the one that happened with general purpose computing on graphics
processing units (GPGPU) (see Chapter 1). In that case, it needs to be reevaluated
whether that paradigm can be supported with DIANA.

Exposing the high degree of parallelism of various PUs in DIANA requires
assuming that all command invocations are asynchronous. Notification of
command completion is thus signaled using a callback. This event-driven
model is a controversial way of handling concurrency and may lead to ‘callback
hell’, the parallel programming counterpart of spaghetti code (e.g., due to
misuse of the goto-statement). The tracing of buffers and commands in DIANA
aims to help with this but its overhead is not negligible (see Section 3.2.2).

Even though DIANA simplifies many aspects when using PUs, it may be cumber-
some to use DIANA itself. To call any PU operation, developers need to query
for a device ID and command ID, and the data needs to be inserted into the
corresponding PB. This is contrary to the traditional programming model where
methods are called directly by name and the compiler or linker looks up the
code or symbols, respectively, and parameters are given directly. Since buffers
are opaque IDs, pointer arithmetic is not possible and thus important techniques
for high performance computing (HPC) like windowing are not usable directly in
DIANA but, for example, via PB extensions (see Section 3.2.1 and Appendix B.4).
Even if it would be supported in some way, all operations on all PUs would need
to implement it, which is not possible, for example with cl_mem in OpenCL.

The use of PBs as inherent way of passing data from an application to a PU
facilitates their cross-platform and language-agnostic use. Any client can call
any DIANA command by creating the binary format of a serialized PB and submit
that to diana::invoke, for example using an agent that receives the binary PB
through a socket, a file, or standard input. This is amplified by the availability
of many PB implementations and compilers for various languages. As such,
DIANA presents a very high degree of abstraction where callers do not know
any details of an operation but the interface.

3.3.2 Querying for Devices and Commands

The mapping between IDs and API-specific entities is transparent to users.
Selecting specific devices or even commands is thus only possible using meta
information. Attributes like names and memory sizes are a good starting point
for devices, but it is difficult to do the same for commands.

The DGEMM commands (see Section 3.2.1) supply a ‘variant’ field in the database.
However, users need to be aware that such a field exists and even then it is
unclear how to utilize it correctly. Using a fixed name during compilation would
be counter-intuitive to the notion of not changing the source for switching or

46 Chapter 3 • An Abstraction Layer for Heterogeneous Environments

adding variants. Leaving this configurable during run time (e.g., as parameter
in the applications’ configuration) adds to the overall complexity but is the most
effective way for now.

3.3.3 Database

Using a database as storage backend is challenging. On the one hand, the
overhead is non-negligible for short operations (see Section 3.2.2) and data
access requires an SQL query and traversing the results. On the other hand,
there are no data races in the database due to transactions, the data is well-
defined through schemas and constraints, and information can be retrieved
very flexibly through SQL. Currently SQLite is embedded into DIANA1, i.e.,
no additional services are necessary and there are many tools to inspect and
manipulate the resulting files. The latency issues need to be investigated further
and offloading all database accesses to a dedicated thread might improve this
by not blocking the calling thread.

The benchmarks discussed in Section 3.2 allow for an interesting application.
With the current command and buffer tracing, only the start and end times
as well as the device durations are recorded. An extended tracing could also
store the parameters of executed commands in the database, for example matrix
sizes, which device and command variant was used, FTLE advection time, image
sizes, etc. Storing this on a long-term basis can then be used to determine
which device and command variant should be used for a given problem or
to approximate the duration of a command before executing it. Additionally
storing the result could even enable a form of memoization [Wikipedia, 2015c], a
programming technique that caches results and skips recomputation of already
known results. In that case, the actual command execution could be skipped by
diana::invoke and the cached result returned instantly instead.

3.3.4 Protocol Buffers

Using PBs provides some advantages like a standard format to define interfaces
and a well-defined binary representation (see Section 2.2.3). At the same
time, they introduce some non-negligible overhead which could be reduced by
improving their interface and internals but would require patching them which
might conflict with Google’s development plan.

Using PBs efficiently requires some planning throughout an application. In par-
ticular, memory re-/allocations need to be minimized, otherwise the overhead
is too big w.r.t. the transfer operations (see Section 3.2.2). Furthermore, since

1SQLite As An Application File Format: https://www.sqlite.org/appfileformat.html.

3.4 • Summary 47

buffers are realized as std::string in the C++ interface (when using Google’s protoc
compiler), their direct use requires casting to other types (e.g., float, double, int)
for efficient use.

3.3.5 Availability of Commands

DIANA only provides the basic infrastructure for registering, querying, and
invoking commands. The actual interfaces and their implementations are
created manually as needed, which limits the a priori applicability of DIANA.
Integrating larger APIs such as CUBLAS in advance is laborious but can be
automated using special parsers and generators, though edge cases can arise
that require manual adjustments.

Interfaces and implementations are added to DIANA mostly on demand of
individual users. As such, these interfaces often reflect what those users or their
implementations require. Adding further implementations reveal conflicts (e.g.,
float vs. double, dimensionality) or additional requirements (e.g., offsets and
windows for buffers) that might not be realizable in all implementations. Even
then, all other implementations might have to be updated when modifying the
interface. Consequently, having a large library of different implementations is
not only an asset but can also be a huge burden w.r.t. maintenance.

3.4 Summary

This chapter presented DIANA, a generic abstraction layer for accessing local
and remote processing units. Interfaces of computations are defined as Protocol
Buffers which are passed to user-provided implementations of the actual opera-
tion. While DIANA provides many benefits such as portability and traceability,
the introduced overhead can be non-negligible but could be reduced by further
engineering effort. Its major feature, the seamless switching between processing
units and operation implementations, was discussed at the example of the
dense matrix-matrix multiplication. Besides general-purpose computations,
DIANA was successfully employed for large-scale distributed visualization of
the finite-time Lyapunov exponent.

C
h

a
p

t
e

r

4
Generic Compositing with

Per-Pixel Linked Lists

The object space is often already partitioned in distributed simulations and
preferably visualized on the node that also generated and stored the partial
results. Generating an image in this case is challenging when semi-transparent
objects are involved, as the whole scene needs to be depth-ordered for correct
blending. Typical approaches like depth compositing (i.e., only using the
nearest fragment for every pixel) or depth peeling are not feasible in this case
due to their complexity or inaccuracy. As such, other methods are required for
semi-transparent objects that involve either explicit sorting or approximations
(see Section 2.1.3). Furthermore, for distributed rendering and large displays,
it is important to provide accessible means for compositing the final image.
Visualization methods can then be developed and deployed without worrying
about how the final image is combined.

This chapter introduces the concept of per-pixel linked lists (PPLLs) as an ab-
straction for exchanging fragment data in these and further use cases and
discusses merits and challenges of this technique. It is partially based on
previous publications [Kauker et al., 2013a,b].

The protein data sets used in this chapter have been obtained from the Protein
Data Bank (PDB) [Berman et al., 2000]. The triangle meshes of their structure
and their surface have been generated with VMD [Humphrey et al., 1996] and
QuickSurf [Krone et al., 2012], respectively.

50 Chapter 4 • Generic Compositing with Per-Pixel Linked Lists

4.1 Per-Pixel Linked Lists

Rasterizing scenes with semi-transparent objects is challenging and many works
emerged that tackle this problem [Maule et al., 2011]. The classical approach,
the painters algorithm [Foley et al., 1990], renders opaque objects first and
then blends the depth-sorted semi-transparent objects with regard to the depth
buffer. Depth Peeling [Everitt, 2001] is a method to render objects in multiple
passes. In each pass, only those fragments are accepted that are in front of the
nearest fragment but behind the fragment of the last pass. As a result, each
pass peels one depth layer of the rendered objects and all depth layers can be
blended correctly afterwards. This approach implicitly stores the ordering of
the fragments for each pixel and not their explicit depth. Depth peeling has
been optimized in many ways, for example by capturing multiple fragments
per render pass [Bavoil and Myers, 2008; Liu et al., 2009], resolving z-fighting of
fragments [Vasilakis and Fudos, 2011], or constraining the memory usage [Bavoil
and Enderton, 2011]. The A-buffer [Carpenter, 1984] is a generic concept which
stores fragments and their attributes for deferred blending. It is based on
linked lists to store all fragments, which could not be implemented efficiently
on graphics processing units (GPUs) before DirectX 11 or OpenGL 4.3. The R-
buffer [Wittenbrink, 2001] was proposed as hardware implementation of a
pointerless A-buffer but is not suitable for real-time graphics due to fragments
being stored on disk and composited in a post-processing step. The stencil-
routed k-buffer [Bavoil et al., 2007] introduced a generalization of the Z-buffer
where up to k fragments can be stored for each pixel.

These previous works are well suited for local rendering but are not feasible
for distributed rendering. Variants of depth peeling produce increasingly
sparse partial images and additionally require the corresponding depth buffers,
resulting in high amounts of data to transfer. Furthermore, sorting the depth
layers from multiple nodes is complex since all layers need to be considered for
correct blending, which might not be possible due to memory constraints. While
A-buffer variants are space-efficient, they suffer from artifacts and might not
capture all fragments due to constant memory, resulting in imprecise images.
On modern GPUs this can be alleviated through PPLLs, first implemented by
Yang et al. [2010], which are effectively only limited by available memory.
Different types of memory layouts for PPLLs were evaluated by Knowles et al.
[2012].

4.1 • Per-Pixel Linked Lists 51

Figure 4.1 — PPLLs im-
plemented as structure
of arrays, i.e., each
attribute is stored in
its own buffer and ad-
dressed using the same
index. 0.0,0.5,0.5,1.0

0.0,0.0,1.0,0.5

LinkEntry

15

7

0
width

(x,y)he
ig
ht

Depth

0.3

1.0

0.7

Color

0.3,0.0,0.0,1.0

4.1.1 Data Structures and Operations

The primary goal of PPLLs is to provide unbounded storage for attributes for
each pixel of the final image. The essential data structures (see Figure 4.1) to
accomplish this are the entry addresses of each pixels’ linked list, the links, and
one or more attribute buffers.

The attribute buffers store information about the elements that are required in
later stages of the rendering. Depth and color are required for blending, but
additional per-fragment data is possible, for example the material, normal, etc.
The attributes are stored in linear buffers that are addressed using contiguous
indices. A counter stores the index of the last inserted attribute. The list entry
buffer is a 2D buffer that is addressed with pixel coordinates. Each entry
contains the end of the linked list for a given pixel. The link buffer contains
the index of the previous element of the linked list. This data structure allows
for all typical operations on a single linked list, for example insertion and
traversal.

Initialization

Before collecting the attributes, the entry buffer and the counter need to be reset.
The entry buffer is set to 0 for all pixels and the counter is reset to 1. All other
PPLL buffers do not need to be cleared, as long as they are accessed with an
index that is smaller than counter − 1.

Appending

Appending to a pixels’ list (see Figure 4.2) is achieved by increasing the attribute
counter to reserve an entry in the attribute buffers. The counters’ previous
value is then used as index for the attribute buffers. To establish the link, the
old entry for this pixel is stored in the link buffer and the new index in the
entry buffer, respectively.

On concurrent architectures, this requires two atomic operations to prevent data
races (see Algorithm 4.1). First, the counter increment needs to be atomic so
no other thread reserves the same space in the buffers. Second, updating the

52 Chapter 4 • Generic Compositing with Per-Pixel Linked Lists

index ← AtomicIncrement(Counter)
Link[index]← AtomicExchange(Entry[x][y], index)
Depth[index]← depth
Color[index]← color
Algorithm 4.1 — Appending to a PPLL. The atomic operations read the old
value at the memory location and store the new value atomically before
returning the old value.

15Link

Depth

7

1.0

15
Entry

20
Counter

7

1.0

20
Entry

21
Counter

append

0.3

Figure 4.2 — Ap-
pending an element
to a PPLL.

entry requires an atomic exchange so no other thread stores its new link after
the entry address has been read.

Traversal

A linked list can be traversed by starting from the index in the entry buffer and
following the links until it contains 0, as outlined in Algorithm 4.2. All pixels’
linked list can be traversed in parallel without any data races as the linked lists
for any two different pixels do not access the same memory locations.

index ← Entry[x][y]
length← 0
while index > 0 do

depth← Depth[index]
color ← Color[index]
// process attributes in some way
length← length + 1
index ← Link[index]

end
// length now contains the number of items in this linked list

Algorithm 4.2 — Traversal of a PPLL.

Merging

Handling multiple PPLLs is easier when they are all combined into one. This
also simplifies various operations (e.g., blending, compacting) which require a
total order over all fragments of one pixel. Two lists can be merged by traversing
one and appending to the other (see Algorithm 4.3). This can be repeated until
all lists have been merged.

4.1 • Per-Pixel Linked Lists 53

index ← EntrySource[x][y]
while index > 0 do

// append to other list, see Algorithm 4.1
append(x, y, DepthSource [index], ColorSource [index])
index ← LinkSource[index]

end
Algorithm 4.3 — Merging of the PPLL Source into another one.

displayable
images

Mapping Rendering Interpretation

renderable
representation

initialize

fragments

samples

gather merge

rasterization

ray casting
append composite

Figure 4.3 — The rendering stage of the visualization pipeline (Figure 2.1) when
using PPLLs. The red parts are executed for each object to collect the fragments
and samples (see Algorithm 4.1). For distributed rendering (dotted arrows),
the display nodes need to gather the PPLL buffers from each render node and
merge (see Algorithm 4.3) them into one. The final image is created by sorting
the PPLLs and blending them for each pixel in parallel.

4.1.2 Implementation Overview

PPLLs can be used with any visualization technique that ultimately produces
fragments or samples for each pixel, for example any method that employs
rasterization or ray casting. During rendering, instead of blending directly, the
attributes of the fragment or sample are appended into the linked list for the
corresponding pixel (see Figure 4.3). Afterwards, the linked list for each pixel is
sorted and can then be blended correctly. Collecting the fragments’ attributes
during rendering can be optimized in several ways and is possible in a single
render pass [Yang et al., 2010; Knowles et al., 2012; Kauker et al., 2013a].

Integrating PPLLs into existing rendering techniques is straightforward. When
rendering with fragment shaders, the outputs are stored in the PPLLs — as
outlined in Algorithm 4.1 — instead of the usual outputs (see Listing 4.1). The
same applies to kernels or compute shaders that would write per-fragment
or per-sample attributes into buffers. In OpenGL, a framebuffer object without
attachments can be used in conjunction with PPLL to prevent writing to the
default framebuffer.

54 Chapter 4 • Generic Compositing with Per-Pixel Linked Lists

(a) Mevalonate kinase (PDB ID: 1VIS),
113,416 triangles, 3.41 ms,

7,905,877 fragments, 106.48 MB.

(b) C-60 Buckminsterfullerene,
32× 32× 32 voxel, 115.21 ms,

33,174,043 samples, 395.65 MB.

Figure 4.4 — (a) Order-independent rendering of meshes of the inner crystal
structure of the mevalonate kinase (visualized as ribbons) and its Gaussian surface.
(b) Volume visualization of the bucky ball (C-60 Buckminsterfullerene). Both
Figures were rendered in a resolution of 2048× 2048 pixels on the system enka
(see Appendix A.1) using PPLLs.

Listing 4.1 — Appending fragment depth and color in an OpenGL fragment
shader instead of writing it to the shaders’ outputs.

1 //gl_FragColor = c o l o r ;
2 //gl_FragDepth = depth ;
3 ppll_append (gl_FragCoord . xy , depth , color) ;

As mentioned in Algorithm 4.1, appending to the PPLL buffers requires atomic
operations to prevent undefined behavior and data races on concurrent archi-
tectures. In other words, direct modification of an entries’ value is not trivial
because multiple threads could write to the same offset of multiple buffers.
Writing (instead of appending) to the PPLL buffers with defined behavior is only
possible with mutexes, which are not properly supported in OpenGL, CUDA, or
OpenCL, i.e., they need to be emulated with atomic operations.

Order-Independent Transparency

One of the uses for PPLLs is to collect all fragments of a scene containing semi-
transparent objects for correct blending without the need to sort the geometry
beforehand. This is achieved by rendering the scene normally without a depth

4.1 • Per-Pixel Linked Lists 55

Figure 4.5 — Detail view of a chaperonin (PDB ID: 1AON) on the VVand rendered
with PPLLs on 10 render nodes.

test and appending all emitted fragments in linked lists. The final image is
composited by sorting the linked lists for each pixel (in parallel) and to blend
the sorted fragments (e.g., back-to-front) with the desired blending equation. A
typical use case for this method is the combination of different visualization
techniques and materials (i.e., colors, opacity, textures). Figure 4.4a shows
the mevalonate kinase [Badger et al., 2005] (PDB ID: 1VIS) rendered using this
method.

Volume Ray Casting

This approach also works for techniques based on ray marching by appending
samples to PPLLs instead of processing them immediately (see Figure 4.4b).
Depending on the use case, the samples’ values can be stored instead of their
color and the color mapping is done during blending. This allows for changing
the transfer function often or rapidly, as the (comparatively more expensive) ray
marching does not have to be repeated and the new transfer function is visible
immediately.

For this rendering technique many more entries are created compared to ras-
terization, since the sampling distance along a ray has to be small enough to
reconstruct the signal of the volume accurately. As such, it is feasible to com-
bine multiple samples into one PPLL entry, instead of storing them all explicitly.
Depending on the volume and the transfer function, this might introduce a
noticeable error. Ideally, the number of samples that are combined into one
PPLL entry should be a parameter that users can change interactively.

56 Chapter 4 • Generic Compositing with Per-Pixel Linked Lists

(a) Variant 1 (b) Variant 2 (c) Variant 3 (d) Comparison View

Figure 4.6 — Different variants of a lipase (PDB ID: 2VEO) rendered individually
(a)–(c) and merged (d) for comparison of the variants.

Distributed Rendering

PPLLs allow for an oblivious approach to distributed visualization where cre-
ating, merging, compositing, and showing the PPLLs can be done be different
processes. In particular, no details of any of those stages are relevant to the
others as only PPLLs are passed and processed. The fragments are rendered
normally into PPLLs on the render nodes and then collected by each display
node which merges the incoming PPLLs into one and composites that. The
chaperonin (PDB ID: 1AON) in Figure 4.5 has been rendered using this approach
on 10 render nodes and 5 display nodes.

This process can be optimized when render nodes determine the front-most
opaque fragments first with z-buffering. These fragments are then sent to dis-
play nodes, which can show them as a preview. Meanwhile, each render node
collects the semi-transparent fragments in a PPLL, discarding those that are be-
hind the opaque fragments. When this is finished, the PPLL is sent to the display
nodes, which only need to merge those that are in front of the nearest opaque
fragment of all render nodes. This merging can be organized hierarchically to
further reduce the transferred buffers and processing times.

Comparative Analysis

Protein data sets from the PDB can contain multiple variants, for example due
to different conformations or simulated boundary conditions. Figure 4.6 shows
this for a lipase (PDB ID: 2VEO). While the different variants can be examined
separately (see Figures 4.6a to 4.6c), it might be difficult to discern the shared
surface or differences. Using PPLLs they can be merged into a single view (see
Figure 4.6d) for comparison of their variants. For this technique, a fragments’
normal is required in addition to its depth and color.

4.2 • Evaluation 57

The variants are individually rendered with semi-transparency into PPLLs; this
step is parallelizable, for example by rendering each variant on a dedicated
node. When merging the PPLLs into one, the variant ID (e.g., a unique integer
for each variant) is also stored for each fragment in an additional attribute
buffer. During compositing, the fragments are sorted per-pixel and the depths
and normals of subsequent fragments are compared. If they are similar w.r.t. a
threshold, they are shared by the corresponding variants. For each fragment
that is shared among some variants, only one fragment is blended with a color
different from the variants. All other fragments are blended normally, i.e.,
according to the stored color of the variant.

This approach shows common parts of the variants together with their differ-
ences. Additionally, their separate presentation can be shown by considering
only the corresponding fragments. This also allows for partial combination of
the variants.

To reduce visual clutter, the shared fragments can be blended opaquely, while
the individual fragments can remain semi-transparent. Furthermore, since the
rendering of the variants might not align perfectly, a search in the image-space
neighborhood can improve the detection of shared fragments. This search
is limited to the front-most fragment in the neighborhood because searching
multiple lists is time-consuming and the shared fragments are opaque.

4.2 Evaluation

PPLLs lend themselves to local rendering (see Figure 4.7) but are especially
useful for distributed visualization as they allow for correct compositing of
semi-transparent objects without sorting. Yet, their applicability for large
displays is questionable due to their high memory requirements even for simple
scenes (see Figure 4.4a). The following analyzes distributed mesh rendering
with PPLLs to determine whether they are suitable for visualization on a large
display like the VVand.

This analysis is realized using a generic PPLL render module in MegaMol (see
Section 2.1.5). Frames are requested by broadcasting the view matrix and the
image resolution to all render nodes, which run a dedicated agent that rasterizes
parts of the mesh and returns the fragments as PPLL structure (see Section 4.1.1),
i.e., counter, entry, links, depths, and colors. All processes communicate via
InfiniBand using MPI. The render nodes broadcast their PPLL buffers to all
display nodes, so image space interaction like zooming and panning is possible
without requesting a new frame, similarly to the finite-time Lyapunov exponent
(FTLE) visualization in Section 3.2.3.

58 Chapter 4 • Generic Compositing with Per-Pixel Linked Lists

Figure 4.7 — Front view
of a chaperonin (PDB ID:
1AON). The 2,631,800 trian-
gles of its structure and
surface were rendered in
13.01 ms in an image reso-
lution of 2048× 2048 pixels
on the system enka (see
Appendix A.1) and re-
sulted in 17,205,397 frag-
ments (212.90 MB).

The triangle mesh of a chaperonin (PDB ID: 1AON, 2,631,800 triangles) is used
for the measurements. It is rendered on 10 render nodes into PPLLs, i.e., each
render node processes 10 % of the mesh, with a constant alpha of 0.3. A full
view of the protein (see Figure 4.7) is rotated around the y-axis by one degree
each frame for 360 frames, i.e., until it was completely rotated once. This test
is repeated for the image resolutions 512× 512, 1024× 1024, 2048× 2048, and
4096× 4096 pixels. The only optimization in this setup is the quantization of
the color from four float channels into one unsigned integer, i.e., each float color
channel is transformed from [0.0, 1.0] to [0, 255] and stored in the bytes of the
integer using packUnorm4x8 in the shader.

For the data collection, the mesh is automatically rotated and the frame re-
quested. Then the 10 render nodes (see Appendix A.3) process their parts
of the mesh and send the resulting PPLLs buffers to each display node (see
Appendix A.2). The display nodes greedily poll for the results (i.e., similar
to a spinlock) and copy incoming data to the GPU. The first received PPLLs
of a frame are copied directly into the primary local PPLL buffer that is used
for compositing. All subsequent PPLLs are copied into a second local PPLL
buffer and then merged with the primary. This is repeated sequentially until all
render nodes responded. The primary PPLL buffer is then composited into a
framebuffer object with the requested image resolution, which is then rendered
as quad on the VVand.

4.2 • Evaluation 59

(a) Average durations for rendering the mesh on the render nodes.

(b) Average durations to copy the PPLL from the GPU to the CPU.

Figure 4.8 — Box plots (see Section 2.4) of the average durations for (a) render-
ing the chaperonin (PDB ID: 1AON) and (b) transferring the PPLLs to the CPU.

Figure 4.8a shows the durations for rendering the mesh averaged over all render
nodes and frames. The render times do not sway much or at all. While the
time does not even double when increasing the resolution from 512 × 512 to
1024 × 1024 pixels, it almost quadruples for 1024 × 1024 to 2048 × 2048 pixels,
and roughly triples for 2048 × 2048 to 4096 × 4096 pixels. Most of the duration
for the lower resolutions is comprised of the overhead to set up the draw call
and initiate it, thus they behave so differently. The duration to transfer the
PPLLs from the GPU to the CPU does not sway or change much (see Figure 4.8b)
due to the bandwidth of the GPUs.

60 Chapter 4 • Generic Compositing with Per-Pixel Linked Lists

(a) Average number of fragments received on the display nodes.

(b) Average megabytes received on the display nodes.

Figure 4.9 — Box plots of the average number of fragments that were received
(a) and the corresponding amount of data that was transferred (b) on the display
nodes, respectively.

The number of fragments behaves as expected (see Figure 4.9a), i.e., it
roughly quadruples when the resolution is doubled in both dimensions. Conse-
quently, the amount of data that the display nodes receive (see Figure 4.9b)
changes in the same way. The box plots indicate little swaying of the number of
fragments (and the data size) during the rotation of the mesh (see Figure 4.9a),
which matches the behavior of the transfer times on the render nodes (see
Figure 4.8b).

4.2 • Evaluation 61

(a) Average sending durations on the render nodes.

(b) Average receiving durations on the display nodes.

Figure 4.10 — Box plots of the average durations for (a) sending the PPLLs from
the render nodes and (b) receiving them on the display nodes.

Figure 4.10 shows the average transfer times from the render nodes (see Fig-
ure 4.10a) and to the display nodes (see Figure 4.10b), respectively. Note that
this uses the same communication pattern as the FTLE visualization in Sec-
tion 3.2.3, i.e., every render node sends its data to all display nodes and waits
until they received it. Both sending and receiving become slower with increas-
ing resolution. This could be due to the internals of MPI, i.e., more small data
can be buffered until the application retrieves it. As such, each display node
buffers fewer incoming requests with bigger PPLL buffers from the render nodes,
resulting in increasingly longer receiving times.

62 Chapter 4 • Generic Compositing with Per-Pixel Linked Lists

(a) Average merging durations on the display nodes.

(b) Average compositing durations on the display nodes.

Figure 4.11 — Box plots of the average durations for (a) merging the received
PPLLs and (b) compositing them into the final image on the display nodes. Note
that the first received PPLLs are not merged but instead directly copied, as there
are no entries to merge with.

Figure 4.11b shows the average durations for transferring and merging
the incoming PPLL buffers with the local one on the display node. While the
merge duration grows with increasing resolution, the merge rate is roughly
constant throughout the results at ≈4000 fragments per ms.

4.2 • Evaluation 63

(a) Average total durations on the render nodes.

(b) Average total durations on the display nodes.

Figure 4.12 — Box plots of the average total durations for one frame request on
the (a) render nodes and (b) display nodes. Their sum is the total duration until
a frame is completely rendered and transferred and can be shown to users.

Overall, the system behaves consistent with few outliers and minor swaying.
While rendering and compositing of the PPLLs is fast (see Figures 4.8a and 4.11b),
the transfer from the GPUs of the render nodes over the network to the display
nodes and merging them there is noticeably slow (see Figures 4.8b, 4.10a, 4.10b
and 4.11a) due to the data sizes and the communication pattern. On the one
hand, this naïve and straightforward implementation of the PPLLs in a dis-

64 Chapter 4 • Generic Compositing with Per-Pixel Linked Lists

tributed visualization system achieves interactive frame rates only for an image
resolution of 512× 512 and 1024× 1024 pixels (out of the tested resolutions).
On the other hand, there is much room for improvement, for example using
compression or better communication patterns. A major improvement could
also be achieved by sending the PPLLs selectively to the corresponding display
nodes, instead of scattering them to all.

4.3 Discussion

While PPLLs provide many advantages, they also introduce some challenges.
The following discusses important aspects particularly in the context of dis-
tributed rendering.

4.3.1 Memory Requirements

The normal approach to PPLLs is to store all fragments in the attribute buffers.
This is a causality dilemma, since it is a priori unknown how many fragments
a scene contains but memory has to be allocated before rendering so they can
be stored. Naïve implementations bulk allocate memory for a fixed number of
fragments and discard the ones that would overflow. A better approach would
be to render the scene in a first pass, counting the fragments (without actually
storing them), and use that counter as upper limit for the memory allocation.
An even more sophisticated approach would be to count the fragments for
each pixel separately and to apply a prefix sum to these counts. This not only
determines the total number of fragments but can also be used to partition
the attribute buffers, so that no linked list is necessary. Instead, the fragments
can be stored contiguously for each pixel, resulting in per-pixel arrays. While
several advantages emerge with both of these approaches, they require at least
one additional render pass and potentially more computations (e.g., for the
prefix sum).

Yang et al. [2010] proposed rendering into PPLLs in two passes. The first pass
renders only the opaque parts into a framebuffer with normal depth testing.
The second pass renders only the semi-transparent parts into PPLLs without
depth testing. In that pass, only those fragments are stored that are in front of
the (front-most) opaque fragment. This reduces the number of stored fragments
to a minimum since non-visible fragments are discarded. This optimization is
not feasible for techniques that require all fragments, for example constructive
solid geometry or depth-of-field [Kauker et al., 2013b].

Even though PPLLs are designed to store all fragments, implementations can
limit the number of fragments per pixel, similar to the k-buffer [Bavoil et al.,

4.4 • Summary 65

2007]. Another approach would be to merge fragments when they are close.
This works when no other fragment is emitted between them but leads to
errors otherwise, since blending is not commutative. In addition, this might
only be reasonable for depth and color (e.g., by averaging and blending the
values) but might not be possible with other attributes like textures or object
identifiers.

4.3.2 Size Reduction

PPLLs can be used for lossless distributed visualization with correct blending
(see Section 4.1.2). Even though they are a sparse representation of the data,
they have considerable memory requirements (see Section 4.3.1). While lossless
compression can help in these cases, it is only practical if the data is compressed
so much, that transfers and subsequent decompression are noticeably shorter.
This is an issue in environments like the VVand due to the high bandwidth of
the network when using InfiniBand.

4.3.3 Sorting

The PPLLs have to be sorted for correct blending both for local as well as
distributed rendering. A straightforward implementation would sort and blend
the fragments for one pixel in a single pass in a local array. On GPUs, this array
is stored in the shared memory of the multiprocessor. Consequently, the size of
the array influences the number of threads for each multiprocessor and in turn
the frame rate. This is the fastest approach for small arrays, i.e., scenes with
low depth complexity. For bigger scenes, it might be more reasonable to sort
these globally in a separate pass, especially if they are then shown for multiple
frames.

4.4 Summary

This chapter presented an A-buffer implementation for modern GPUs using
per-pixel linked lists, offering a convenient approach to order-independent
transparency for local and distributed rendering but they have high memory
requirements. Large resolutions of the presented test case such as 2048× 2048
and 4096× 4096 pixels were rendered successfully by the evaluated, straight-
forward implementation on the VVand but interactive frame rates were achieved
only by the lower tested resolutions. While this implementation already offers
all the necessary functionality for advanced distributed rendering, there is a lot
of room for improvement requiring additional engineering effort.

66

Part II

Resilience

67

Figure II — Distributed visualization of iso-surfaces of a turbulent flow. The
image is incomplete due to a crashed process and it is unclear whether the hole
on the right is due to the data set or a failure.

With the introduction of the Computer Failure Data Repository, Schroeder and
Gibson [2007] argue that fault tolerance is one of the hardest problems of high
performance computing (HPC) and that supercomputers depend on reliability and
availability. As the mean time between failures decreases with growing system
sizes [Schroeder and Gibson, 2006; Xue et al., 2007] and failures also occur
on small scale [Haque and Pande, 2010], algorithms as well as systems need
to be improved not only with respect to scalability and maintainability, but
increasingly for resilience.

Chapter 5 discusses fault tolerance in the context of distributed visualization.
Existing methods and their applicability as well as additional strategies are
discussed. Their implications and trade-offs are illustrated with several exam-
ples.

C
h

a
p

t
e

r

5
Resilience inDistributedVisualization

Fault tolerance is well researched in general and many effective methods have
been produced. Yet, applying traditional approaches to distributed visualiza-
tion is antithetical. They require to restart an application or to block until a
failure is resolved, in both cases disrupting application responsiveness and
thus user experience. Furthermore, erroneous or missing data is often fatal
for visualizations, resulting in program cancellation rather than incomplete or
partial images, which are important to validate simulation parameters.

This chapter introduces and discusses existing fault tolerance concepts for high
performance computing (HPC). A taxonomy of these methods is then extended
with visualization-specific methods that are necessary for distributed visual-
ization. This chapter is partially based on a previous publication [Panagiotidis
et al., 2014b].

72 Chapter 5 • Resilience in Distributed Visualization

5.1 Fault Tolerance in High Performance Computing

In large-scale distributed systems, faults can occur at multiple locations and
because of different causes, requiring multitudes of recovery methods. Physi-
cal faults of hardware or infrastructure often require technicians, leaving the
affected parts of a computing environment unusable until they are repaired or
replaced. Furthermore, these faults cannot be influenced because they happen
unexpectedly due to frailty, wear and tear, or external effects (e.g., power outage,
natural disasters). Interconnection problems are difficult to pinpoint since high
latency, high load, or packet loss might be attributed to actual faults (defects
in routers or cables), unusual events (e.g., fault recovery), or even shared use.
Memory corruption can happen for both volatile and persistent storage. Gen-
eral software errors like crashes might be recoverable through various means,
but often systems are so complex and tightly coupled that they crash without
an opportunity for detection or recovery, for example when using fault-prone
communication patterns. Software can also enter unusable or non-responsive
states due to untested special cases or side effects, concurrency issues (e.g., race
conditions, deadlocks), or degradation [Zhao et al., 2010].

Cappello [2009] provides a thorough overview of challenges and techniques
for fault tolerance introducing three classes. Failure Avoidance methods try to
predict and prevent errors based on analysis of log data and by migrating
processes before they fail. Failure Effects Avoidance is a passive way of continuing
the execution of an application during failures through resource replication,
algorithm-based fault tolerance, and naturally fault-tolerant algorithms. Failure
Effects Repair is the active mending of faults by re-executing the affected parts
based on checkpoints (rollback-recovery) or by continuing execution because
applications will recover later (forward recovery).

5.1.1 A Taxonomy of Fault Tolerance Methods

Egwutuoha et al. [2013] reviewed approaches for fault tolerance in high per-
formance systems and classified them into a taxonomy with five categories:
migration, redundancy, failure masking, failure semantics, and recovery meth-
ods. These categories are summarized in the following.

Migration methods prevent failures by moving processes or virtual machines
away from nodes that are likely to fail. These preventive actions are based
on heuristics derived from RAS log files (reliability, availability, serviceability)
and are thus prone to false-positives and false-negatives, which may affect the
system performance more than necessary. According to Cappello [2009], RAS
logs need to be standardized so analysis tools can be developed easier and
analysis techniques for these logs need to be improved.

5.1 • Fault Tolerance in High Performance Computing 73

Redundancy schemes use additional resources in a system to prevent failures.
In case of hardware redundancy, additional physical components (nodes, cables)
are employed and take over when failures occur. For software redundancy,
multiple processes operate on the same task or computation. While hardware
redundancy aims at keeping a system available, software redundancy can
also be employed for verification. By computing a result in multiple ways —
i.e., different processors, methods, or implementations — one can eliminate
failing components or deviating results. In both cases, the necessary data needs
to be replicated or be available otherwise during faults, for example through
(fault-tolerant) centralized storage. Furthermore, when multiple data sources or
results are available, a quorum or voting process is required to determine which
data set to propagate or use in later steps.

Failure masking is a concept to maximize system availability by hiding failures
in the system from observers, like clients of an application programming interface
(API) or users of a distributed application. Masking methods use groups of
redundant workers (i.e., processes or nodes) which appear as single entity to
observers. In a flat group, masking is achieved through voting on computational
results from each individual component, removing failing or unresponsive ones.
Contrary, hierarchical groups are coordinated by one component that decides
which worker replaces the failed one. Consequently, that coordinator is a single
point of failure. While flat groups do not have a single point of failure, they
introduce some overhead and latency due to the voting process.

Failure semantics describe how developers anticipate errors or failures, so
that the system’s behavior and output is defined for these predetermined cases.
Crash failure semantics refer to a systems’ inability to cope with failures, so correct
operation is only ensured beforehand. Omission failure semantics denote that
some messages are lost and delayed or corrupted with negligible probability.
Performance failure semantics is a weaker form of omission failure semantics,
where a system stays operational while messages are lost or delayed, and to a
lesser extent corrupted. Even though some of these semantics can be achieved
through defensive techniques, not all possible failures can be predicted and
thus handled.

Recovery methods are the most investigated approach for fault-tolerance [Cap-
pello, 2009] in HPC. Forward recovery relies on specifically designed algorithms
that eventually recover from errors over time, putting emphasis on high avail-
ability of a system instead of immediate recovery. Typical methods for forward
recovery include Hamming codes and erasure codes. Rollback-recovery methods
are used to enable restarting a system from a previous coherent state and to
resume operations from that state. To that end, checkpoint and restart protocols
are widely used. Checkpoints — snapshots of the systems’ state at a given time

74 Chapter 5 • Resilience in Distributed Visualization

— are stored persistently in periodic intervals or on demand. The amount of data
ranges from minimal information used to derive other data to whole copies of
a process’ memory, opened file handles, and active network connections.

5.2 Strategies for Fault-Tolerant Distributed
Visualization

While existing fault tolerance methods (see Section 5.1) aim to increase the long-
term resilience of distributed computations, major concerns for visualization
also comprise latency and interactivity. In other words, fault tolerance for
visualization is already relevant for comparatively small data sizes and time
scales. Furthermore, input data for the visualization is already either stored
persistently or processed redundantly (assuming fault-tolerant simulation or
storage). Consequently, fault tolerance in visualization is required for temporary
failures so users can interact while recovery is in progress or to inspect partial
data due to storage or computation failures in order to validate the data or the
simulation parameters at least.

There are some approaches to fault tolerance in visualization applications. CU-
MULVS [Papadopoulos et al., 1998] — a middleware for viewable and steerable
fields in large-scale distributed simulations — employs user-directed check-
pointing of data specified by the application developers. A checkpoint daemon
retrieves the most current coherent snapshot of the application state, and han-
dles migration, resource management, and restarting of parallel applications
after a failure. Samanta et al. [2001] replicate primitives of 3D geometry in an
off-line pre-processing step to k nodes in a cluster of n nodes with k � n to
visualize large scenes in parallel. Gao et al. [2008] partition and distribute data
redundantly with a master process scheduling visualization tasks into queues.
Errors and timeouts are handled through requeueing with lower quality or
resolution, while a checking task detects faulty nodes and excludes them if
their results differ from the majority. This task is run at the beginning of a
visualization session and randomly during its run time.

These approaches only apply well-known techniques (see Section 5.1) to specific
visualization systems or problems but do not address the special environment
and requirements of distributed visualization on large displays (see Figure II).
In case of a temporary failure, the visualization pipeline is potentially stalled
because nodes to the left of the fault in Figure 2.3 wait for acknowledgment
of transfers while the nodes to the right do not receive any new data. This is
particularly troublesome for display nodes, as usually a synchronized swap to a
new frame is performed only when every display node signals that it received

5.2 • Strategies for Fault-Tolerant Distributed Visualization 75

Redundancy

TotalRedundancy

Fault-Tolerant Visualization

Primitives

Migration Recovery

Hardware
Software

Semantics FailureCMasking

Process
VM

Hierarchical
Flat

Failure Forward
Rollback

Arbitrary
Omission

Performance
Crash

Buffering
Approximation

Report

Uncertainty

Figure 5.1 — A taxonomy for fault-tolerant visualization based on an existing
taxonomy for fault tolerance in HPC [Egwutuoha et al., 2013] (dotted paths).
Bold parts are strategies to improve resilience of distributed visualizations
where established methods are unfeasible or impractical.

all necessary data. Yet, as long as render and display nodes are available, users
should be able to interact with the newest data available to the render nodes in
any way that does not perform steering, i.e., interactions that do not require or
induce a data update.

Display nodes and their output devices cannot be made redundant easily since
they are arranged in a certain topology, and physical placement as well as
replacement are subject to many limitations. For one, restarting crashed display
nodes disrupts the user experience and potentially blocks the synchronized
frame swap. While migrating the processes from the crashed display node to
spare nodes is possible, it is complicated by the fact that those spare nodes
would need to be connected to similar output devices which is partially pos-
sible using KVM switches. Though multiple projectors for the same physical
projection area as well as logical visualization domain can be used, they are
substantially more expensive than spare nodes, need to be calibrated, cannot be
run in parallel all the time, and have a noticeable delay from powering on until
operating normally. Ultimately, defect monitors of an array cannot be redundant
but need to be replaced due to the arrangement of the monitors.

The following strategies complement the taxonomy of Egwutuoha et al. [2013] to
address the aforementioned challenges (see Figure 5.1). They include methods
to visualize data with different temporal context as well as spatial gaps while
also indicating these irregularities in the visual representation that is shown
to users. A fault-tolerant distributed visualization should stay available and
usable as long as possible even in the case of failures and during recovery of any
part of the system. Therefore, total failure masking was introduced to emphasize
the differences between interactive and non-interactive systems. Then, failure
semantics were expanded and refined to account for user interaction during

76 Chapter 5 • Resilience in Distributed Visualization

failures, missing data, and uncertainty due to fault tolerance methods. Finally,
primitives redundancy was introduced as this intermediate data only occurs
in visualization and requires multiple stages of redundancy in a distributed
visualization.

5.2.1 Total Failure Masking

Fault tolerance methods strive to reduce the impact of failures for the system
and users. For visualization on distributed displays, it is desirable that users
ultimately do not notice that the system is recovering from a failure. Essentially,
users should be able to use the system partially while it is recovering due to
other mechanisms (e.g., checkpoint-restart).

Total failure masking is distinct from other masking types because it necessitates
cooperation of different approaches on all parts of a visualization system. For
one, all communication must be non-blocking or time out for unresponsive
nodes. Nodes expecting data need to handle this as well, for example by
utilizing older data. For some visualization methods, it might be possible to
approximate missing parts from the neighborhood of erroneous regions, if it
is available during a failure. Note that when employing previously cached
results, approximations, or reconstructions to mend faults in a visualization,
both the temporal discrepancies in the data and the speculative nature need to
be presented and clarified to users (see Section 5.2.2).

5.2.2 Failure and Redundancy Semantics

According to Egwutuoha et al. [2013], “failure semantics refers to the different
ways that a system designer anticipates the system can fail, along with failure
handling strategies for each failure mode”. Their definition only mentions
failures, but for visualization — as post-processing and analysis of data —
system failures as well as uncertainty during the visualization process needs to
be expected. While employing fault tolerance methods in simulations allows for
detection of problems and recovery, incomplete data (e.g., from crashes, before
recovery) might still be meaningful for users, for example to verify simulation
parameters or as partial result until the system recovers fully. As such, it is
necessary that visualization methods and systems can deal with gaps in data,
either through uncertainty semantics or through approximation, and go beyond
crash semantics. Visualization systems should be responsive regardless of fault,
at least presenting the last coherent images. Finally, the system state needs to
be available for users to understand why a (distributed) visualization exhibits
different behavior, for example during recovery.

5.2 • Strategies for Fault-Tolerant Distributed Visualization 77

Buffering semantics is the simplest form of dealing with faults in a distributed
visualization. By using or emitting the latest results that are available, users
can still interact with the data. This can be applied partially to the object or
image space, for example meshes, volumes, or images. Additional metaphors
are then necessary so users can understand that data from different times is
mixed to provide a complete model or image, for example for partial validation
or prevention of crashes. In this context it is important to track the age of
data and images (e.g., in number of frames or time steps since the failure
occurred) as indicator for validity and temporal coherence of the image that
users interpret.

Approximation semantics are required to obtain a complete image when
data is missing or outdated. In these cases, visualization methods need to
approximate the necessary data from previous or neighboring data. Possible
methods range from interpolation over image-space techniques like image
inpainting [Bertalmio et al., 2000] or image editing [Pérez et al., 2003], to
diffusion [Orzan et al., 2008], and mesh editing [Yu et al., 2004]. Users need
to be made aware that the presented image is only partially correct and that
some parts were approximated, so these parts need to be distinguishable or
highlighted.

If the data is still available but the exact visualization is too time-consuming
(e.g., with hard time constraints), it is also possible to adapt the visualization
parameters for a less speculative approximation. As an example, using less
integration steps or less accurate integration schemes may produce acceptable
results within a given time. Rendering coarser meshes or in lower resolutions
also decreases rendering time and can be post-processed with hardware accel-
eration on modern graphics processing units (GPUs), for example using texture
filtering or tessellation shaders.

Uncertainty semantics are important in combination with redundancy and
approximations. For redundancy methods, a quorum normally decides which
result should be used. For visualization, it is sensible to pass on all of these
results and show the diversity of the data, so users become aware of it and
judge it accordingly. Therefore, all results and their deviation should be incor-
porated in a visualization. This is not an easy task, since visualization systems
already struggle for perceptive channels to present data and adding uncertainty
as another dimension intensifies this problem. Uncertainty visualization — a
young research field with many open questions and challenges — deals with
this specific issue of visually presenting deviations, inaccuracies, and errors
[Johnson and Sanderson, 2003; Brodlie et al., 2012; Potter et al., 2012]. Promis-
ing approaches include displacement glyphs, geometry changes, bump maps,
lighting attributes, and fuzzy surfaces.

78 Chapter 5 • Resilience in Distributed Visualization

Reporting semantics require information about the visualization application
and its infrastructure. For the application, most of the information regarding
fault tolerance — which nodes are failing, how are results masked, which
recovery or approximation measures are currently in place — is already available
but not exposed in a meaningful way. Approaches to include such information
in user interfaces is often simplified through some form of progress bar without
further detail. Information about the infrastructure (e.g., utilization of processing
units (PUs) or the network) is often already available by means of traditional
system monitoring (e.g., Nagios, Munin) but scattered in various places and
disconnected from the visualization system. However, exactly this information
is relevant for users operating large displays to judge whether a system is
behaving normally, failing, or in the process of recovering. On this basis, users
can decide how to interpret the current visualization — i.e., which parts are
accurate or trustworthy — or whether a computation run experiences so many
failures that it is either too inaccurate or too slow to be pursued further.

5.2.3 Redundancy

Typical interaction with a visualization includes rotating, zooming, panning,
picking, etc. These interactions can be applied solely on the render nodes with
the visualization primitives that were derived during mapping (see Section 2.1.1
and 2.1.3). To account for faults of the render nodes, the primitives need to be
replicated to multiple render nodes.

Primitives redundancy is challenging and expensive but necessary for contin-
ued interaction with existing data. It requires redundancy on multiple stages
of the distributed visualization. Compute nodes have to scatter their output
data (i.e., input for the visualization) to multiple mapping nodes every time
they produce new data (e.g., every time step of a simulation). The visualization
primitives then need to be scattered to multiple render nodes. In doing so,
requests for new frames (e.g., due to changed viewpoints) can be fulfilled by
render nodes even during faults of compute and mapping nodes. Furthermore,
since the input data is already replicated on multiple mapping nodes, the map-
ping itself can be modified during faults of compute nodes. This allows users
to change the visualization method (e.g., from iso-surfaces to direct volume
ray casting) while compute nodes recover from faults or work on the next time
step.

Similar to software redundancy, placing visualization primitives on multiple
render nodes enables verification of the correctness of the resulting image, for
example through a quorum. This requires all render nodes to participate in
each frame request and minimizes latency in the event of an error, since a

5.2 • Strategies for Fault-Tolerant Distributed Visualization 79

replica of the image was already rendered. While this approach is optimal
with regard to fault tolerance, it might not be feasible, for example when not
enough resources are available for the desired frame rate. Therefore, a trade-off
between performance and latency is necessary to allow for redundancy as well
as interactivity and responsiveness.

Selective partial rendering is a strategy similar to hierarchical failure masking.
Each set of visualization primitives is authoritative on a render node — which
always renders these first and completely — and to multiple auxiliary nodes
due to primitives redundancy. The auxiliary nodes only render redundant
visualization primitives after they have rendered their authoritative ones. The
auxiliary parts can also be rendered with reduced quality or only partially
(e.g., compacting meshes, skipping triangles). Consequently, a complete image
without overhead is available when no failure arises, given all primitives are
authoritative on one render node.

Primitives redundancy compensates failures in object space through replica-
tion of the mapping output. For image-space partitioning, a similar type of
redundancy is needed to guarantee a complete image every frame. Generally,
visualization methods favor large coherent regions due to better saturation
of PUs (e.g., less kernel launches) and interconnects (e.g., larger and fewer
transfers) as well as spatial coherence in the data (e.g., gradients, cache locality).
Thus, failures during rendering result in large fault regions in the final image.
Depending on the actual size of these regions, it might be impossible to see
high frequencies or global structures and tendencies. Furthermore, it may be
time-consuming or difficult to approximate or reconstruct the fault region due
to its size.

Mosaic rendering is a strategy for resilient image-space partitioning where
each render node processes the same amount of pixels distributed over multiple,
disconnected regions. Even though this requires more scattering of data, more
and smaller buffers (affecting throughput), and more kernel launches per
PU, it has some interesting properties. Since there are more tiles now, their
redundancy can be controlled more fine-grained. Although there are more
fault regions when a render node fails, each fault region is smaller, so high
frequencies are less likely to be completely missing, thus allowing for perception
of global structures. In the extreme case — fault regions the size of few pixels —
faults might even result in visual noise, which can be mended through simple
interpolation. For bigger fault regions, reconstruction and approximation is
much more feasible now, for example through image inpainting [Bertalmio
et al., 2000] or image editing [Pérez et al., 2003].

80 Chapter 5 • Resilience in Distributed Visualization

5.3 Discussion
Section 5.2 presented fault tolerance strategies at a high level and introduced
some specific approaches. The following discusses example implementations
in the context of a distributed visualization system on a large display (e.g., the
VVand) which employs none of those strategies; as such, the following is neither
a comprehensive nor an exhaustive description of how the strategies have to be
realized. At some point during the run time of the system a fault occurs, i.e.,
parts of the current frame cannot be rendered, because either data is missing or
the corresponding mapping node has crashed. The affected frame then needs
to be salvaged and the system needs to adapt so that subsequent frames can
be rendered successfully. Throughout all the time, the system status needs to
be exposed, so users are aware that a failure happened and what parts of the
system it affected.

The following scenarios are only feasible if the system survives the fault, i.e., it
does not crash, stays responsive, does not wait indefinitely, and so on. In other
words, total failure masking is a strict requirement. Furthermore, primitives
redundancy can be achieved by scattering visualization primitives to multiple
render nodes and is thus not discussed in detail.

5.3.1 Salvation and Recovery
To complete the current frame there are three options: (a) ignore the error, i.e.,
show the frame without the missing parts; (b) try to complete the frame, i.e.,
recover the missing parts; or (c) employ semantic strategies. Recovering missing
parts is only possible when the relevant data is available on other nodes, for ex-
ample due to redundancy schemes. It also increases the completion time for the
frame and might delay subsequent frames (Section 5.3.6 discusses options to ad-
dress this). If this is not possible or feasible, it might be beneficial to provide an
approximation based on previous frames or neighboring regions in the current
(incomplete) frame. This is discussed in Section 5.3.3 and Section 5.3.4.

For subsequent frames, the system needs to decide whether it continues with
the strategy for the current frame (i.e., ignore, complete, provide semantics) or if
it is possible to achieve a better state. If the data is available redundantly (i.e., on
nodes that are still available), then a redistribution of the visualization tasks or
a repartitioning of the object or image space can alleviate this fault. This might
lead to a degradation of performance, since some nodes are now processing
more or additional data, but might be ultimately better than recovering missing
parts during rendering (i.e., via salvation of faulty frames). In cases where this
is not possible, for example because the data is unavailable or a repartitioning is
not possible, the user needs to be informed to take further action like restarting
the system.

5.3 • Discussion 81

5.3.2 Reporting Semantics

Users need an indicator to judge whether a system is operating faultless or
even operational or responsive at all. Traditional approaches for this include
spinners and progress bars but these are impractical in setups like the VVand.
While a progress bar might indicate that the system is still working, it does not
convey what is currently being processed or whether faults occurred and how
big their impact might be. Though this could be shown on demand as textual
information, there would be a lot of overdraw for all the necessary information
even on the VVand. Furthermore, a visual element that sticks out (e.g., a bright
red circle) will attract more attention than an error message that has to be
read.

Figure 5.2 — A progress
glyph to show the state of
a distributed visualization
system in a compact way.
The QR code contains addi-
tional information while the
arcs represent parts of the
object or image space that
are processed distributedly.

Figure 5.2 shows a glyph that contains all relevant data for distributed visual-
izations. The basic concept here is to encode the status visually for every part of
the system (e.g., using colored arcs). In addition, a QR code provides a textual
description or a hyperlink to a monitoring website with additional information.
This glyph can either be shown at a fixed location in image space (e.g., at the
lower border of the display) or in object space at the actual place where the data
would be shown (e.g., on the front face of the bounding box). Information can
be encoded both with color as well as size, i.e., the arc size could represent the
data or image size.

To provide such information to users it has to be polled from corresponding APIs.
Though there are tools to retrieve the relevant information, they are usually
not integrated into applications. Furthermore, application-specific metrics can
provide useful information but have to be actively calculated (e.g., number of
casted rays in volume ray casting). Chapter 7 discusses these issues in more
detail for the example of parallel volume rendering.

82 Chapter 5 • Resilience in Distributed Visualization

5.3.3 Buffering Semantics

Developers of a distributed visualization system should anticipate that parts
of the image might be missing due to failures. A naïve strategy is to cache
received images (e.g., up to a threshold to not run out of memory) and provide
missing parts from that cache. For situations with frame coherency (i.e., only
few changes between subsequent frames), this can yield acceptable results but
only to a certain degree.

Caching allows to replay previous frames but cannot provide different views of
the data; for that, the render nodes would have to create new images. This issue
can be alleviated with specialized image formats such as Layered Depth Images
[Shade et al., 1998] or Volumetric Depth Images [Frey et al., 2013]. These allow
for interaction with the images without the need to render the visualization
primitives again. This is also possible when using per-pixel linked lists (PPLLs)
(see Chapter 4), since they can be transformed to Volumetric Depth Images.

Techniques that retain multiple fragments or samples per pixel solve several
problems but have several disadvantages. For one, keeping more information
results in higher memory usage which cannot be easily alleviated even with
compression and especially in high-bandwidth networks (see Section 4.3.1).
Using them is also more complex than straightforward rendering both w.r.t. the
necessary code as well as the additionally required data structures.

5.3.4 Approximation Semantics

An approximate reconstruction of the missing parts of an image can help to
perceive global trends and structures at least. This is especially helpful when
those parts cannot be calculated exactly (e.g., data unavailable) or timely (e.g.,
hard time constraints, exact calculation too time-consuming).

Figure 5.3 shows a finite-time Lyapunov exponent (FTLE) visualization (see Sec-
tion 3.2.3) where some parts became unavailable due to failures. Image-space
techniques like Poisson Image Editing [Pérez et al., 2003] can reconstruct these
regions to some extent (see Figure 5.3c). Note that in this case the ridge in the
upper left was reconstructed incorrectly; in particular, the reconstruction even
depicts a very different behavior than actually prevalent in vector field. This
technique might be improved by including previous frames for the reconstruc-
tion and not only the border.

5.3 • Discussion 83

(a) Fault-free. (b) Parts missing. (c) Reconstruction.

Figure 5.3 — Failures during a flow visualization (a) result in missing parts
of the final image (b). Such areas can be reconstructed with image-space
techniques like Poisson Image Editing (c). The results can vary from a good
approximation of the actual behavior in the vector field (middle region) to
completely wrong (upper left, ridge should be continuous).

When the data is still available, but the exact calculation is too time-consuming
(e.g., FTLE with long advection times or high image resolutions), it might be
feasible to use the vector field as guidance for approximation schemes. In the
case of FTLE, one could also calculate the missing parts in lower resolution or
with shorter advection time as an approximation or employ a faster technique,
for example line integral convolution.

5.3.5 Uncertainty Semantics

When mixing different frames (e.g., as salvation strategy to provide a complete
image) or employing any kind of approximation strategy, it is important to
inform users that the image parts result from different temporal contexts.
Such techniques are actively researched (e.g., Johnson and Sanderson [2003]
or Brodlie et al. [2012]) and domain dependent, but there are some obvious
options that can be used in all cases, like blurring, desaturating, or fading out
the affected parts (see Figure 5.4). Osorio and Brodlie [2009] discuss these and
other techniques in greater detail in the context of flow visualization. These
effects can utilize the age of the corresponding fault to increase the effect over
time, since approximations gradually worsen and might become increasingly
meaningless to users.

84 Chapter 5 • Resilience in Distributed Visualization

(a) Blurring. (b) Desaturation.

Figure 5.4 — Fault regions that were filled with parts from previous frames or
approximations need to be distinguishable from the correct parts. This can be
accomplished by (a) blurring or (b) desaturating those regions.

Uncertainty semantics can also be applied in non-failure cases of a distributed
visualization when redundancy is employed, for example by using different
hardware, APIs, or methods. In this case, all results could be shown, for example
using comparative rendering techniques (see Section 4.1.2). One could also
define an error metric (e.g., color difference, PSNR, multiscale structural similarity
(MSSIM) [Wang et al., 2003]) and provide this either visually in the image (e.g.,
mapped to color) or in status indicators like the glyph in Section 5.3.2. Employ-
ing uncertainty visualization is challenging and one needs to be careful not to
imply features that are not in the data through the modified visualization.

5.3.6 Selective Partial Rendering

Redundancy is one of the major concepts of fault tolerance. In the context
of distributed visualization where data for a given object or image space is
available to multiple render nodes, it needs to be decided which of those nodes
should process the data and at which time point. Always rendering all of the
available data increases the response time needlessly (especially when no failure
occurs). Explicitly requesting for a faulty part also increases the response time
in the event of a failure, but could ensure an otherwise optimal system.

5.3 • Discussion 85

Authoritative and auxiliary nodes are one way of deciding when to render what.
As described in Section 5.2.3, the authoritative node is responsible for providing
the highest quality of the partial image. Assuming a balanced system, all
those nodes should finish roughly at the same time. After a short delay and
if not canceled by the display nodes, the auxiliary nodes start rendering their
redundant data at lower qualities or resolutions. As a result, the image will be
completed with minimal delay, albeit with lower quality or upsampled in faulty
areas.

Reversing this strategy is also possible, i.e., rendering the auxiliary parts first
and the authoritative ones afterwards. Since the auxiliary parts should be
rendered with settings that allow for a considerably faster rendering time, a
preview of the complete image will be available quickly. The low quality parts
of functional areas are then substituted with their high quality counterparts,
leaving faulty regions as they were. The auxiliary nodes then decide on a new
authoritative node. As with the other variant, the high quality rendering could
be skipped, allowing users to ‘fast-forward’ through the data using the preview
images.

On the one hand, rendering high quality parts first takes longer until images are
provided to users and results in high latency when coping with faults. On the
other hand, rendering low quality parts first might mislead users, for example
when looking for certain patterns which do not emerge in low resolutions
(e.g., fine Lagrangian coherent structures (LCS) [Haller, 2001] in FTLE). Switching
automatically between both variants might be a feasible approach, for example
by incorporating RAS logs or real-time monitoring information.

5.3.7 Mosaic Rendering

The object and image space is partitioned to speed-up the processing of large
data sets. Through redundancy in the partitioning, faults can be handled with-
out affecting the user experience. Mosaic rendering is a strategy for redundant
image-space partitioning with the goal to increase the effectiveness of other
fault tolerance methods.

The size of the partition parts is often chosen to increase spatial coherency
during rendering and to decrease the overhead of kernel and shader launches
as well as context switches. Consequently, failures then result in large fault
regions, as shown in Figure 5.5a. Reconstructing these perfectly with redundant
data almost doubles the render time, since a similar amount of time that was just
completed in parallel for the non-faulty regions has to be expended again.

86 Chapter 5 • Resilience in Distributed Visualization

(a) (b) (c)

Figure 5.5 — Distributed visualization favors large, coherent, and continuous
regions, resulting in corresponding fault regions which cannot be reconstructed
well. Mosaic Rendering is a strategy that distributes the same number of total
pixels into smaller regions. Depending on their distribution, it can be ensured
that neighboring borders are available (b) for an upper bound of failing nodes.
With shrinking size of the mosaic tiles, the faults can be perceived as noise (c)
and could even be approximated by interpolation.

Even with selective partial rendering (see Section 5.3.6), only the delay can be
reduced until the recovery begins. Furthermore, such large fault regions can be
difficult if not impossible to approximate or might lead to imperfect or even
wrong results (see Figure 5.3c).

The impact of failures can be reduced by using smaller, non-neighboring parts
during the partitioning. For one, global structures and trends might still be
perceivable without any fault tolerance method (see Figure 5.5b). With shrinking
partition sizes, faults might be perceived as noise (see Figure 5.5c) and filled by
interpolation between the neighbors.

For approximation, it is favorable to ensure that all neighbors of a fault region
are still available for faults of up to k nodes. This can be modeled as a coloring
problem by constructing a graph of the partitioning where vertices denote the
parts of the partition and direct neighbors in the partition are connected with
edges in the graph. The chromatic number χ of that graph is then the number
of nodes to store data redundantly.

While mosaic rendering can improve approximations of faulty regions, it can
result in non-negligible overhead during rendering due to the discontinuity of
the regions processed by a render node: more buffers are required (resulting
in more data transfers and meta data), more draw calls and kernels need to be
submitted, there is less spatial coherence during rendering, and caching might
be less effective.

5.4 • Summary 87

5.4 Summary

This chapter discussed the applicability of fault tolerance methods for dis-
tributed visualization environments like the VVand and the resulting necessity
for additional strategies that are specific to this context. Several new strategies
were introduced, integrated into an existing taxonomy, and illustrated with
several examples to discuss their implications and trade-offs.

88

Part III

Exploratory Analysis

89

Figure III — Real-time analysis and tuning of parallel, interactive volume
visualization on the VVand.

Interactive visualization systems are complex since they consist of many sub-
components that load and filter raw data, derive visual primitives, create 2D
images, and respond to user interactions. These tasks become even more com-
plex for visualization on large, high-resolution displays (see Section 2.3), which
involve multiple nodes that need to cooperate (see Section 2.1.3) to create a
coherent view on the data. Building and understanding these visualization
systems is challenging, because typical approaches to monitoring and analysis
are targeted at infrastructure (e.g., networks, applications) or non-interactive
use cases. Previous analysis approaches also lack the context, i.e., the images
and interactions, which are crucial to understand the behavior of the hardware
and the algorithms. The applications themselves often also do not provide
means for analyzing or tuning them. Finally, this is a meta-problem: large
and complex raw data is visualized for a better understanding of it, which
yields multi-dimensional and time-varying data from the visualization applica-
tion, which in turn has to be visualized to analyze the application itself. This
performance data of visualization systems is not necessarily flat but may be
comprised of relations and complex interaction between its entities. Such dense
network data is difficult to analyze due to cluttered visualizations or insufficient
interaction techniques.

The following two chapters discuss approaches to address these challenges.
Chapter 6 presents two methods for local graph exploration of dense and
cluttered graphs. Chapter 7 presents an exploratory approach for analysis and
tuning of volume visualization on the VVand.

C
h

a
p

t
e

r

6
Local Graph Exploration

The relations between data elements are an important aspect of information
spaces. Such relations are often modeled as graphs where nodes represent data
elements and edges indicate given relations between these elements. Formally, a
graph is defined as a tuple G = (V, E) consisting of n vertices V = {v1, . . . , vn}.
The set of edges E ⊆ V ×V denotes the relations between vertices, while their
weight w : E −→ R describes an attribute of the relations.

Graphs are often visualized to provide a better understanding of the relations
between vertices. Graph drawing is a well-established field, with many ways to
visualize relational data and networks directly [Battista et al., 1998; Kaufmann
and Wagner, 2001] or derived from multivariate, temporal data [Archambault
et al., 2014]. A common visualization of graphs is the node-link diagram,
where nodes and links represent the vertices and edges of the graph, respec-
tively. Methods for node-link diagrams often employ a force-directed approach
[Fruchterman and Reingold, 1991] or stress majorization [Gansner et al., 2005],
often motivated by cognitive and aesthetic reasons [Purchase et al., 1996; Ware
et al., 2002], to lay out the nodes. Despite sophisticated algorithms and opti-
mizations, these layouts still result in local and global hairball-like structures
for complex and large data. This visual clutter is undesirable because it leads to
degradation of performance at some exploration and analysis tasks [Rosenholtz
et al., 2005], for example due to many link crossings.

94 Chapter 6 • Local Graph Exploration

Improving graph layouts can ease problems like overdraw of the background,
occluded nodes and edges, and visual clutter (see Ellis and Dix [2007] for a
comprehensive listing of techniques to reduce such clutter). Confluent drawing
[Dickerson et al., 2004] merges edges in order to draw non-planar graphs in
a planar way. Holten [2006] suggested bending (non-hierarchical) adjacency
edges into splines that are routed to the least common ancestor of the connected
nodes according to the hierarchy for generating edge bundles or employing a
force-directed approach [Holten and van Wijk, 2009]. NodeTrix [Henry et al.,
2007] groups nodes to matrices, thereby combining their edges. Geometry-based
edge clustering, as introduced by Cui et al. [2008], combines edges by routing
them through common control points to increase comprehensibility. All of these
methods try to show global connectivity trends, at the same time making it more
difficult or even impossible to determine which nodes are actually connected,
because multiple edges are drawn on top of each other. Several splatting
approaches deviate from the typical link drawing and instead use densities to
depict the relations in the data [van Liere and de Leeuw, 2003; Burch et al., 2011;
Hurter et al., 2012]. Level-of-detail approaches combine link accumulation with
density-based node aggregation [Zinsmaier et al., 2012]. Besides the discussion
and analysis in the respective publications, there are many evaluations on the
topic of modifying links for graph visualization [Holten and Wijk, 2009; Burch
et al., 2012].

Most of these approaches aim at revealing the background, thereby making
labels and other information readable, or target at modifying link clusters or
their representation, respectively. As a side effect, they introduce ambiguities
when links are drawn on top of each other, making them indistinguishable.
Links also become harder to follow when routed through common points or
the nodes they connect cannot be discerned. In many cases, edges themselves
represent and contain important information which is now no longer visible or
easily accessible.

This chapter presents two approaches to address these challenges. EdgeAnalyzer
employs a lens metaphor for exploration of edges by grouping links inside the
lens and visualizing those groups independently from the node-link diagram.
Graph Metric Views combine histograms of various metrics of a data set with
a node-link diagram of relations of the same data set — similar to marginal
histograms aligned with 2D scatter plots — to show additional information that
cannot be integrated into the node-link diagram easily. This chapter is partially
based on previous publications [Panagiotidis et al., 2011a, 2014a].

6.1 • Exploration of Bundled Edges 95

6.1 Exploration of Bundled Edges

Edge bundling techniques reduce clutter, show global trends, and unveil fea-
tures in the connectivity of graphs. At the same time, it becomes tedious and
challenging to follow distinct links, find the nodes they are connecting, or
extract information they contain. Using certain interaction techniques allows to
retain the advantages of edge bundling as well as exploring the now ambiguous,
overlapping links.

Holten [2006] proposed to select links by intersecting them with a drawn line.
Thereby, all non-crossing links are removed from the view and the bundling
effect can be disabled to see direct connectivity without clutter and bundling
ambiguity. This approach is rather intuitive, but meaningful interaction with
edges requires previous bundling. The selection is only based on the geometric
property of links and therefore does not facilitate selection of multiple links
according to aspects besides hierarchy or geometry.

FromDaDy [Hurter et al., 2009] is a tool for analyzing aircraft trajectories. While
trajectories are not links, interacting with them is quite similar. Here, a circular
brush with adjustable size is used to select or de-select trajectories. Multiple
brushing operations are supported before the analyst can move all selected
trajectories to a new view to reduce clutter. To select elements by non-spatial
meta data the layout of the trajectories can also be changed to altitude, time, or
speed. However, to select all trajectories with a certain altitude, a layer across
the whole screen has to be brushed. Furthermore, extracted trajectories are
spatially separated from their context.

EdgeLens [Wong et al., 2003] and EdgePlucking [Wong and Carpendale, 2007] are
two approaches to explore regions containing ambiguities due to link congestion.
Both approaches rely on bending links ‘out of the way’ to reveal underlying
nodes and make links distinguishable. EdgeLens is a force-based technique
where multiple small lenses repel links and reduce the opacity of nearby links.
With EdgePlucking analysts bend links like guitar strings. All links along a
brushing operation follow the movement of the mouse cursor. Both techniques
are well suited for examining local connectivity that is hidden under larger
or longer links, however, they do not allow selection of links and subsequent
interaction with them.

Tominski et al. [2006] present lenses that modify the visualization and the
layout of a node-link diagram locally. The local edge lens hides links that are
not connected to nodes outside of the lens. The (generalized) bring neighbor lens
attracts neighbors of nodes inside of the lens. The composite lens combines these
effects, as their user study found that it is beneficial. These lenses allow for
local exploration of dense regions in hierarchies and graph visualization but

96 Chapter 6 • Local Graph Exploration

only work on the visual level. Further grouping of the edges according to
other criteria and different visualization of the links in the focus region is not
considered.

The use of lens metaphors has been applied to a variety of application domains.
Furnas [1986] illustrates the importance of nearby context and uses the analogy
to optical ‘fisheye’ lenses. Magic Lenses [Bier et al., 1993] are additional see-
through interfaces between the application and the cursor providing contextual
interaction options to modify data and the appearance of focused objects.
Phelps and Wilensky [2001] developed a system similar to Magic Lenses but
put a stronger focus on the separation of functionality and a modularized
architecture. Semantic Lenses [Rotard et al., 2007] are a focus+context technique
that use a lens metaphor to show additional semantic information about focused
parts of a document.

Some shortcomings of the mentioned works are addressed in EdgeAnalyzer
[Panagiotidis et al., 2011a], a focus+context interaction paradigm for direct
interaction with links in densely connected graphs. A lens metaphor is used to
let analysts inspect single or multiple links by focusing on them. These focused
links can be grouped according to different meta data aspects or geometric
criteria during interaction. The grouping mechanisms allow for arranging edges
according to an exchangeable similarity measure. This reduces the number of
interaction elements and steps by operating on sets of edges that are determined
independently of the graph layout or edge bundling. Since regions of a view
that are investigated with the lens can be ambiguous or cluttered, alternative
visual representations for edge groups are provided.

6.1.1 Advanced Edge Interaction

EdgeAnalyzer is designed to enable interaction with large numbers of crossing
links in dense graphs as well as with indistinguishable (overlapping) links
in bundled graphs. A lens metaphor is employed since directly selecting
individual links with a pointing device is challenging and error-prone in such
graphs. Using EdgeAnalyzer is a multi-stage process that follows the visual
analytics mantra stated by Keim et al. [2006]: analyze first; show the important;
zoom, filter and analyze further; details on demand.

The basis of the interaction is a node-link diagram, showing the important
data of a previously executed analysis step. To analyze the data within the
underlying visualization further, analysts drag a lens (see Figure 6.1) over it,
marking all links that intersect the lens as focused. The global context, here the
node-link diagram, stays visible for navigation and interpretation, as motivated
by Furnas [1986]. The size of the lens can be changed to adjust the area of
focus according to the analysts’ needs. Then analysts can sort and filter focused

6.1 • Exploration of Bundled Edges 97

Figure 6.1 — The
edge lens and the
arc wheel with
tooltips that list the
edge grouping hi-
erarchy and details
about the edges and
groups inside the
lens.

links by arranging them in groups according to selectable and interchangeable
criteria. These grouping criteria can incorporate any data available, such as
geometric properties (e.g., angles, lengths, intersections) or meta data (e.g.,
names, dates). A visual representation for each edge group is drawn within the
focus region.

Analysts can interact with fewer elements — instead of all edges within the focus
region at once — by combining edge grouping and visual representations for
edge groups. Afterwards, they can iteratively inspect edge groups and regroup
edges of interest, effectively drilling down on the edges hierarchically. Finally,
the analyst selects edges from edge groups for additional application-dependent
actions, for example showing detail views or updating other visualizations.
During this interaction, additional information can be shown in a tooltip near
the lens, such as the number of focused edges and the sizes of edge groups.
At any time, the interaction methods of EdgeAnalyzer and the underlying
visualization can be disabled to resolve conflicts (e.g., same hotkeys) and all
lenses can be hidden.

A modular approach is followed throughout EdgeAnalyzer: (a) the lens metaphor
to select multiple links in a focus region without losing the global context,
(b) grouping methods that arrange focused edges into sets of similar edges
according to given grouping criteria, thereby filtering irrelevant edges, and
(c) visual representations for edge groups, providing also an alternative view
of the edges within the focus region. In terms of implementation, each part is
treated as a black box, i.e., defined by interfaces and exchanging only minimal
intermediate data. This way, additional lens shapes, grouping methods, and
visual representations can be introduced easily to support different problem
domains and data sets. Analysts can choose from available implementations of
these parts during run time independently from each other, enabling them to
use the most suitable analysis tools.

98 Chapter 6 • Local Graph Exploration

(a) Two top-level lenses (Boolean OR). (b) Child and parent lens (Boolean AND).

Figure 6.2 — Multiple lenses in a parallel coordinates plot. Focused poly-lines
are depicted in yellow. The right lens focuses the same poly-lines in both figures.
(a) Top-level lenses are independent of each other. (b) The child lens (left) only
affects those poly-lines that cross its parent lens (right). This allows for Boolean
operations on the poly-lines, i.e., top-level lenses realize an OR and child lenses
an AND, respectively.

6.1.2 Focusing Edges Using a Lens Metaphor

Analysts move a lens (see Figure 6.1) that is drawn semi-transparently on
top of an existing node-link diagram. While moving or resizing the lens, all
intersecting or completely enclosed links are focused. This intersection test
is generic by approximating the shape of the links with straight multiple line
segments. As such, only these line segments need to be intersected with the
shape of the lens. This approach allows any shape for the lens and links. A
circular shape is the default because it resembles lenses known from everyday
life and as such might be familiar to users. Intersection points with the outline
of the lens are stored per line segment and can be used to group edges and to
create visual representations of edge groups.

Lenses can be moved independently of each other. Top-level lenses consider
all links for the intersection test and are colored differently. Child lenses only
consider focused edges of their direct parent and use the same color. Figure 6.2
shows an example: the right lens (pale red) focuses the same edges in both
views and the left lens is the active one. In Figure 6.2a, the left lens is a child of
the right lens, therefore only those edges are focused that cross both lenses. In
Figure 6.2b, all edges are focused that cross the left lens, because it is a top-level
lens and independent of the right lens.

6.1 • Exploration of Bundled Edges 99

6.1.3 Grouping Edges

Interacting with edges becomes challenging when analysts are confronted with
many edges while inspecting focus regions. In order to reduce the number
of interaction elements, focused edges are grouped into sets according to a
similarity measure which may use any information in the underlying data
model. Since non-geometric properties (e.g., names, dates) of the focused
edges can be used, this also helps to indicate aspects of the data that were
not visible in the node-link diagram. As a side effect, this makes grouping
methods dependent on the problem domain, used data set, and geometry of
the node-link diagram.

If analysts move the lens quickly, they are probably navigating and not inspect-
ing details [Gutwin, 2002]. Therefore, the grouping effect of the lens can be
delayed by a configurable amount of time (normally in the order of milliseconds)
after the lens stands still. Once edges have been grouped, analysts can inspect
each edge group one after another. At the same time, various information about
the generated groups and the contained edges is provided. Edges within a
group can be regrouped using different criteria or they can be selected and
exported for further analysis in an external tool. This iterative regrouping
establishes a hierarchy, allowing analysts to drill down on edges in order to
sort and to inspect them according to different aspects of the data.

Unconditional Grouping

A simple grouping method is to unconditionally build one group containing all
edges or a group for each edge. This allows analysts to distinguish edges in
the focus region and the connecting parts of the node-link diagram. Further
interaction on all focused edges, like highlighting in other views, is easily
possible with this kind of grouping.

Clustering

Edge groups can be derived using a distance function and a clustering algorithm.
Depending on the distance function, this approach groups edges according to
a variety of attributes. For example, grouping edges according to their origin
could be accomplished using the Euclidean distance between the starting points
of two edges. The angles between an edge and the lens can be compared to
group edges with similar directions within the focus region. K-means clustering
[MacQueen, 1967] then assigns the edges into groups. Finding a good value for
k could be accomplished by iteratively increasing k until the sum of the clusters’
variances does not change significantly.

100 Chapter 6 • Local Graph Exploration

Geometric Grouping

This grouping method sorts edges into the same group, if a common geometric
property is below a pre-defined threshold. For example, if the intersection points
of two edges are close enough or the angles between their intersecting line
segments are small enough, then those two edges are grouped together.

Hierarchical Grouping

In hierarchical data sets that additionally contain non-hierarchical edges, it can
be observed that edges connecting nodes of one sub-hierarchy with nodes of
another sub-hierarchy have a common path, for example due to edge bundling.
If such a common path of two edges exceeds a configurable length, then those
two edges can be considered similar and are grouped together. Separation
of flows between different subtrees is an example usage for this grouping
method.

Grouping based on Meta Data

Edges can be grouped according to comparable information, if the nodes or
edges in the node-link diagram contain such information. For example, if every
edge contains a label, it is possible to put all edges with the same label in the
same group. This can be used on any kind of information, as long as equality
between two such items can be determined.

6.1.4 Hierarchical Edge Groups

Analysts may group edges subsequently, allowing a drill down on the edges,
and creating a hierarchy of edge groups. New hierarchy levels can be created
using the selected edge group, and going back to the previous hierarchy levels
disposes subsidiary levels. Only edge groups of the most recent hierarchy level
can be inspected. When creating a new hierarchy, the edges inside the currently
selected edge group become the new set of focused edges. This allows the
recursive application of grouping and visual representation methods. Moving
the lens disposes its complete hierarchy, since subsequent grouping in one
region might not be meaningful in another region. Information about the edge
group hierarchy is shown in a tooltip above the lens and in the surrounding arc
wheel (see Figure 6.1). The tooltip lists from bottom to top the most recently
used grouping and information about the currently selected edge group.

6.1.5 Visual Representation of Edge Groups

Single links and their characteristics are poorly visible to analysts if there is
much overlapping or crossing of links in the focused region. Furthermore, ana-
lysts need a visual clue of edge groups as interaction element. Therefore, visual

6.1 • Exploration of Bundled Edges 101

Figure 6.3 — Similar to rows in tables, each dashed horizontal line represents
one edge group. Selecting an edge group highlights the corresponding links in
the node-link diagram, their representation inside the lens (here: the dashed
lines), and the corresponding segment of the arc wheel.

representations of edge groups are drawn on top of the lens without changing
the global layout. Analysts can switch between a set of implemented visual
representations during run time independently from the grouping mechanism
actually used. Selecting an edge group highlights all edges in that group and
its corresponding visual representation (see Figure 6.3).

Tabular / Rows

Each edge group is shown as a dashed horizontal line inside the lens (see
Figure 6.3), similar to how data elements are arranged in tables. This is useful
to find areas with few or many edge groups quickly. As a downside, these lines
can clutter up the lens, ultimately overdrawing the node-link diagram in the
focus region completely.

Local Rebundling

Links that are drawn on top of each other, for example due to edge bundling, are
difficult to discern. In this case, the links can be locally re-bundled by routing
edges of the same edge group through a common point (see Figure 6.4 left, all
links belong to one group) and repelling distinct edge groups from each other
(see Figure 6.4 right, multiple edge groups) at the same time. This is achieved by
distributing the common points for edge groups on a line perpendicular to the
principal direction of all focused edges. A spline is drawn for every link from
the first intersection point (1) through the common point of its group (2) to the

102 Chapter 6 • Local Graph Exploration

(a) Same edge group. (b) Different edge groups.

Figure 6.4 — Local re-bundling of edges that are drawn on top of each other. A
spline is drawn for every edge from the first intersection point (1) through the
common point of its group (2) to the last intersection point (3). Edges of the
(a) same edge group pass through a common point while (b) edges of different
groups repel each other (i.e., each edge group has its own common point).

last intersection point (3). Provided that a meaningful principle direction can
be derived, this approach fans out the edge groups evenly and helps analysts to
better match links to their groups.

Arc Wheel

To avoid additional overdraw in the center of the focus region, each grouping
hierarchy level can be drawn as rings that grow away from the lens, similar to
the approach presented by Stasko and Zhang [2000]. Every ring is split into as
many arcs as there are edge groups (see Figure 6.1). The size of an arc depends
on the number of edges within its group relative to the total number of focused
edges. The arc of the currently selected group is situated on the top of the
circle. The segments are colored according to an interpolated palette that fades
from the edge group color to a medium gray, making it easier to differentiate
between the first and last group. By stacking multiple arc wheels, this method
is also capable of visualizing edge group hierarchies.

6.1 • Exploration of Bundled Edges 103

Figure 6.5 — The International Patent Classification (IPC)1 visualized as tree
map. Bundled edges drawn on top depict patents that are co-classified in the
two IPC classes that the spline connects.

6.1.6 Evaluation

EdgeAnalyzer has been evaluated in the intellectual property domain, where
finding as much prior art as possible is an important task. This need for
completeness results in a highly iterative process between analyzing patent
documents in a result set and adjusting search queries accordingly. PatViz [Koch
et al., 2009] is a framework to support this iterative patent search. Analysts de-
fine search queries and inspect the results in multiple coordinated views. These
show visualizations of various patent properties, like the geographic location of
the issuer on a worldmap or their membership w.r.t. the International Patent
Classification (IPC)1 as a tree-map. On top of this tree-map, bundled edges be-
tween nodes can be drawn for patents that are classified in multiple IPC classes
(green splines in Figure 6.5). In this context, EdgeAnalyzer has been integrated
to explore edge bundles and the corresponding patent documents.

Informal User Study

An informal think aloud user study was conducted to evaluate the concepts of
EdgeAnalyzer. Due to the large number of possible combinations of parameters
and methods, only a single movable and resizable lens was available and the
arc wheel was disabled.

1http://www.wipo.int/classifications/ipc/en/

104 Chapter 6 • Local Graph Exploration

Figure 6.6 — Participants of the user study could switch between these edge
groups.

Eleven participants, with no previous knowledge about EdgeAnalyzer, were
asked to perform two tasks in a patent co-classification analysis. The data set at
hand consisted of 1000 patents and 169 co-classification relations. Participants
were given a very brief introduction to the PatViz system and the IPC schema.
Then they were given a few minutes to use the lens and ask basic questions
regarding its usage until they felt confident enough to start. None of the
participants took more than two minutes for this free training phase.

The first task was to explore a dense and bundled edge cluster that was partially
collapsed to a single line, a common situation in dense node-link diagrams with
bundled edges. During this task, edge groups were always depicted using the
local re-bundling method. Participants could switch between these grouping
mechanisms (see Figure 6.6): grouping by common points of intersecting line
segments, grouping by angle between intersecting line segments, and uncon-
ditional grouping. Three participants found that unconditional grouping is
superior in this particular task, possibly because the large number of focused
edges was instantly visible since for every edge group (in this case equivalent
to an edge) a spline was drawn. Participants commented that the geometric
grouping methods seemed to yield unreliable and incomprehensible results.
Nevertheless, two participants preferred them as they produced fewer interac-
tion elements. The participants also mentioned that multiple lenses could have
been useful for this task.

The second task required participants to find the tree-map node with the most
connections using the row representation of edge groups (see Figure 6.3). All
participants found the right answer and when asked about their approach, eight
participants answered that they first used the opacity of edges as a starting
point and then used the lens for further inspection. Two were surprised how
deceptive the opacity of the edge bundles was, since no visual difference could
be perceived when the amount of edges exceeded a certain number.

6.1 • Exploration of Bundled Edges 105

Figure 6.7 — Multiple EdgeAnalyzer lenses in the migration graph with un-
bundled links.

After completing the two tasks, the participants were asked to state their
opinion. All participants appreciated EdgeAnalyzer as interaction technique for
edge bundles. Five participants could also imagine to select edges by stretching
some shape over the edges instead of moving a fixed shape (similar to selection
in Holten [2006]). The option to change the size of the lens was used frequently.
Seven participants appreciated that the lens stays visible after a focus region
has been selected. Two other participants disliked the overdraw of the focus
region by the lens and the visual representation of edge groups. The tooltip
was highly valued by all participants. Three participants wanted to move the
tooltip. Seven participants stated that this interaction technique was confusing
at first and took some time to get used to.

As consequences from this study, more meta data based grouping mechanisms
were implemented, since users expect a comprehensible, predictable, and re-
peatable outcome when grouping edges. By default, the arc wheel is now
enabled and unconditional grouping and local re-bundling is used. Further-
more, focused edges are always highlighted entirely (and not only inside the
lens), all non-focused edges can be hidden to further reduce clutter, and edge
grouping is not delayed since participants mentioned they would have preferred
instantaneous feedback.

Arbitrary Graphs

The major concept of EdgeAnalyzer is the selection of multiple entities in visu-
alizations, grouping them to (non-visual) criteria, and subsequent interaction
with the resulting groups. While it was originally designed to allow for interac-
tion on edge bundles, EdgeAnalyzer also allows for sophisticated exploration of
node-link diagrams with straight links and other line-based visualizations.

106 Chapter 6 • Local Graph Exploration

Figure 6.8 — Using multiple lenses to select different correlations in a parallel
coordinates diagram.

Figure 6.7 depicts the population movement between states as a graph, derived
from the US Census 2000 migration data set2. Analysts can quickly find
interesting data by using geometric edge properties, for example the magnitude
of migrations in a certain direction. For example, grouping edges based on the
number of intersections with the lens separates crossing edges from edges that
start or end in the focus area. As a result, edges not inside the lens are filtered
out and analysts can easily interact only with those that start inside the lens,
in this case inspecting migrations from and to ‘Utah’. Subsequently, migration
edges to the eastern region can easily be select and accumulated by using a
child lens that operates only on the focused edges of the parent lens.

Parallel Coordinates

Similar to the work of Guo et al. [2010], EdgeAnalyzer can also be applied to a
parallel coordinates plot [Inselberg and Dimsdale, 1990]. Figure 6.8 shows the
cars data set in a parallel coordinates view where multiple lenses are used to
highlight and explore parts of the data. While this is not actually a node-link
diagram, the grouping mechanisms of EdgeAnalyzer can be applied to the line
strips and individual lines of the parallel coordinates plot. The left lens focuses
data items with few cylinders and a negative slope to the displacement value
using an intersection angle grouping mechanism. Its child lens on the right
further reduces the set of focused edges to cars originating from Europe.

2http://www.census.gov/population/www/cen2000/migration/

6.2 • Linked Metric Views 107

6.2 Linked Metric Views

Node-link diagrams often depict the relationships of larger and richer data sets,
i.e., only a subset of the data is used as the vertices, edges, and weights of a
graph. In some use cases, the data that is left out is important to explore the data
set as a whole and to find insights that cannot be found through the node-link
diagram alone. Some approaches embed that information in the foreground or
background of the node-link diagram, for example PatViz [Koch et al., 2009] in
its tree-map view (see Section 6.1.6). Depending on the degree of clutter of the
node-link diagram, interaction is required to see the data, for example using a
lens metaphor to distort links in the region of the lens (e.g., [Wong et al., 2003])
or provide supplementary visual elements (see Section 6.1).

NetLens [Kang et al., 2006], a tool for visual query refinement, allows users to
explore relational data by showing different metrics as bar charts. Through
selection and filtering, it is possible to drill down into many aspects of a data set.
Though designed for networks and relational data, NetLens does not actually
show these connections. In MoireGraphs [Jankun-Kelly and Ma, 2003], nodes
are arranged in a radial layout and a focus+context metaphor is employed to
show interesting nodes enlarged with their neighborhood. Similarly, VINCENT
[Kerren et al., 2012] employs a radial layout for network data with attached
bar charts of network centralities. These centralities are node metrics based on
graph-theoretic properties of a graph, like the degree or closeness. Histograms
of these centralities are shown in separate views, detached from the graph
visualization.

Coordinated views [Roberts, 2007] are often used when one visualization is not
sufficient for all available data. For graphs, frameworks like Cytoscape [Shannon
et al., 2003] or Gephi [Bastian et al., 2009] provide these additional perspectives
on the data set. However, these are disconnected from the layout of the graph,
i.e., they cannot be easily correlated to the nodes and links.

Graph Metric Views [Panagiotidis et al., 2014a] is an approach based on coor-
dinated views to tackle these challenges. Additional metrics of a data set is
shown side-by-side with the relational structure as node-link diagram. The
metric views are stackable and can be used in combination with any node-link
diagram layout. Besides data-inherent information, the metrics can also be
layout-related or graph-theoretic. These metrics can be linked to the node-link
diagram through aggregation, selection, and filtering in the metric views.

108 Chapter 6 • Local Graph Exploration

Figure 6.9 — The node-link diagram shows a relation within the data set while
coordinated views attached to the sides show (aggregated) metrics of other
aspects in the data as histogram-like charts.

6.2.1 Graph Metric Views

Figure 6.9 depicts an overview of Graph Metric Views. The graph view shows
the node-link diagram which is used by users to navigate the graph and find
interesting regions, i.e., the users’ focus region. During the exploration, the
focus region is highlighted in the minimap, which always shows the full node-
link diagram, i.e., the context. The metric views at the sides of the graph view
show aggregated metrics of additional data that cannot be integrated into
the node-link diagram easily. These metric views depict a one-dimensional
projection of the display space of the node-link diagram to one of its axes. They
can be arranged and combined in arbitrary order (see Figure 6.10) to allow for
easier comparison of the metrics.

6.2 • Linked Metric Views 109

Graph Metric Views are designed around the Visual Information Seeking Mantra
[Shneiderman, 1996]: overview first, zoom and filter, then details-on-demand.
On the one hand, users can explore the node-link diagram in search for inter-
esting regions and then attach metric views for filtering the graph based on
patterns that emerge in the histograms. On the other hand, users can also use
the metric views to spot outliers and interesting regions in the data and then
link those regions to the graph for further investigation.

Metrics are accumulated into bins with regard to the display space of a graph
layout, similar to histograms. For this accumulation, nodes and links are
projected onto a one-dimensional axis, i.e., metric views to the left and right
relate to the ordinate of the node-link diagram and the views at the top and
bottom relate to the abscissa, respectively.

The computation of smooth histograms is a classical problem of statistical graph-
ics. Typically, kernel density estimation techniques are employed [Silverman,
1986]. For histograms of node characteristics, there is the traditional problem
of building histograms from point samples. For edge-oriented metrics, the
histograms are built for intervals that correspond to the projection of the edge
to the histogram axis. In either case, a box-filter kernel and pixel-sized bins are
used for the representation of histograms. The width of the box filter can be
chosen by the user; the default value is given by the width of the node’s visual
shape in image space.

6.2.2 Metric Types

While some metrics can be determined separately from the graph structure,
others are only meaningful with regard to nodes (e.g., vertex degree) or links
(e.g., length, edge weight), respectively. Regardless of the metric itself, they can
be accumulated and aggregated, for example using only minimum, maximum,
or average values instead of the sum, where applicable. For example, the
minimum and maximum length of links can be used as an indicator for the
aesthetics of layout methods (e.g., lengths should be uniform [Bennett et al.,
2007]).

Layout-Related Metrics

Metrics that are based on the visual representation of a graph, i.e., the rendering
of the nodes and links as graphical shapes, provide straightforward information,
like the number of nodes and links or the sum of the edge weights along the
abscissa or ordinate. They can give insight into dense or cluttered regions where
distinct nodes cannot be perceived due to overdraw or the number of links
cannot be estimated due to edge bundling or because the resolution of the graph

110 Chapter 6 • Local Graph Exploration

Figure 6.10 — Multiple graph metric views can be used in arbitrary order.

view is not high enough. These metrics can be further refined, for example
considering only incoming or outgoing links per node, link intersections, or
angles between links.

Graph-Theoretic Metrics

The connectivity of a graph is often the central aspect of interest in network
analysis. Derived metrics, like community structures or centralities, are also
important. In some use cases, existence of paths and their lengths need to be
examined.

Data-Inherent Metrics

Arbitrary values in the data set from which the graph is derived, i.e., those
that are neither layout-related nor graph-theoretic, should also be correlated
to the layout. For example, call graphs used in software engineering contain
many attributes of interest besides the has-called relation: file sizes, lines of code,
hierarchy levels, various types of complexity, etc. The development and test
environment is also a source of valuable information (e.g., profiling counters,
code coverage), as well as the version control system (e.g., number of revisions,
committer history).

6.2 • Linked Metric Views 111

6.2.3 Interaction

The different views (see Figure 6.9) are linked with each other through brushing
and linking. The graph can be navigated in the graph view by means of scrolling,
zooming, picking, and filtering. These interactions automatically update all
metric views so that they always correspond to the visible area of the graph. To
preserve the users’ mental map, the minimap always shows the whole graph
(see bottom left of Figure 6.9) and allows for quicker navigation of the node-
link diagram by the same means as the graph view. Additional information,
like node labels or edge weights, are available during all interactions through
overlays and tooltips.

Filtering in the metric view enables investigation of interesting regions of the
graph that are occluded in the node-link diagram. Multiple regions of the
histograms can be marked in each metric view separately. Marking regions in
the metric views also highlights the corresponding parts in the graph view so
that users can see which parts of the graph contribute to the metric value. This
is important to link the elements of the node-link diagram mentally to peaks or
other visual features in the metric views. These highlighted areas can then be
used to filter the node-link diagram, so only those regions remain visible that
are currently investigated. From there, additional elements of the node-link
diagram, like the hidden neighborhood of the visible nodes, can be gradually
unhidden. The current state of all views (i.e., their arrangement, employed
metrics, filter settings, etc.) and the graph (i.e., which parts are hidden, selected,
etc.) can be stored persistently and shared for collaboration or to continue an
analysis at a later point in time.

6.2.4 Evaluation

Important metrics for software systems are properties like coupling and de-
pendencies, which are useful indicators for judging the maintainability of the
software. These metrics can be modeled as directed call graphs: vertices repre-
sent full-qualified method names, while edges represent the has-called relation.
Specifically, an edge ei,j : vi → vj indicates that the method vi called the method
vj and its weight w(ei,j) corresponds to the frequency of the calls.

Figure 6.11 shows such a call graph of Cobertura3, a code coverage tool for
Java. This call graph contains 5000 vertices and 11,319 edges. Laying this
graph out according to an energy-based model (e.g., Fruchterman-Reingold
[Fruchterman and Reingold, 1991]) results in a cluttered view. Those cluttered
and dense areas indicate high coupling (since many methods call each other),

3http://cobertura.github.io/cobertura/

112 Chapter 6 • Local Graph Exploration

Figure 6.11 — A software call graph depicting the frequency of method calls.
The edge weight was mapped to a topological color table, thus red links indicate
the most frequent calls. The metric views show (from outermost to innermost
metric) the average and maximum package distance, as well as the number
of edges. Through selection in the metric views, the interesting region in the
node-link diagram is visually linked to the software metrics.

which is unfavorable for designing software systems. From this initial layout
it is unclear where these belong to, i.e., to the software itself (i.e., Cobertura)
or its dependencies (i.e., the Java SDK or third party libraries). Though this
information is important, it is challenging to embed this into the node-link
diagram, due to the prevailing overdraw and clutter.

The edge weights are mapped using a topographic color coding, i.e., low edge
weights are shown in blue, medium weights in green, and high weights in red.
This reveals the calls with the highest frequencies which should be investigated
first (see Figure 6.11). To estimate the degree of coupling of these calls, a
data-specific metric is attached that shows the distance in the package hierarchy
between two nodes as property of the links. Both the average and maximum
package distance is used to reveal outliers that might be concealed in the average
(see the outer metrics in Figure 6.11). An additional metric view of the number
of links is used to determine whether the clearly visible peaks in the metric
views stem from the high density of links in that regions. Highlighting those
regions allows to verify that these peaks correspond to areas with few links and

6.2 • Linked Metric Views 113

(a) (b)

(c) (d)

Figure 6.12 — Exploration of the region with the most frequent method calls. (a)
The visible part of the node-link diagram mostly contains calls with the highest
package distance. (b) Filtering on the metric views allows us to find the regions
in the node-link diagram that contain the highest average package distances.
Parts of the node-link diagram that were not selected have been hidden. (c) A
metric has been attached to show the package depth of the methods. (d) The
data set has been reduced to few methods which can be investigated manually
and looked up in the source code.

thus few method calls. At this point the hypothesis is formed, that these are
very specific methods that are used from many places (due to the high package
distance) and called frequently.

To further investigate this, it is necessary to navigate the node-link diagram so
that only those parts of the graph are inside the graph view that are responsible
for the peaks in the metric views. In doing so, new peaks are revealed since
irrelevant parts are now longer shown in the metric views. Repeating this
process eventually yields a view of the graph where the second metric, the
maximum package distance, is constant for the visible part of the node-link
diagram (see Figure 6.12a). Accordingly, this metric view can be removed,
leaving more space to the other views. The remaining metric values are very

114 Chapter 6 • Local Graph Exploration

similar in this region and as such hard to distinguish. This can be improved by
filtering on the metric views to only show regions where the average package
distance is above a threshold and by hiding nodes and links that are not
highlighted (see Figure 6.12b).

The graph view now shows a region with high average package distance
and few links with respect to the rest of the node-link diagram. Replacing
the link count metric with a node metric that represents the maximum hier-
archy level of methods (see Figure 6.12c) reveals an outlier, i.e., a singular
method with the highest hierarchy level in this part of the node-link dia-
gram. The method can be quickly identified as CopyFiles.copy in the package
net.sourceforge.cobertura.reporting.html.files. New peaks can be found by gradually
increasing the thresholds on the metric views. Highlighting these peaks and
subsequent filtering leaves only few methods which can be inspected manually
through their tooltips (see Figure 6.12d). At this point the source code can be
consulted to understand these methods and why they are highly coupled.

6.3 Discussion

The approaches presented in this chapter address challenges when dealing with
large amounts of relational data. While they alleviate several issues in this
context, they also introduce new ones.

6.3.1 Flexibility and Performance

EdgeAnalyzer can be used in conjunction with various lens shapes and visu-
alizations using line-based information encoding, such as common node-link
diagram types or parallel coordinate plots. New shapes, grouping methods,
and visual representations for edge groups can be added independently from
each other due to its modular approach. The generic approach to identifying
edges through intersection of line segments with the lens performs well enough
for the tested data sets (e.g., 8000 edges), but bigger data sets might lead to a
less fluid user experience. This can be alleviated using many strategies: special-
ized intersection tests for the specific lens and edge shape, optimization data
structures (e.g., quad-trees), and parallelization.

Graph Metric Views can be used with any graph layout and for all types of metrics
that can be accumulated meaningfully. Such new metrics can be integrated
without changes to other parts. igraph [Csárdi and Nepusz, 2006] is currently
used for all graph-theoretic operations and to compute the layout. A dedicated
thread is used to improve the responsiveness during long running tasks (e.g.,
finding cliques, computing a new layout). In the meantime, users can continue

6.3 • Discussion 115

to explore the graph or interact with the metric views while the status of tasks is
indicated by a progress bar. The computation of some metrics is expensive, for
example calculating link intersections (quadratic complexity) or finding shortest
paths for each node. Offloading these to a thread is inappropriate since the
corresponding metric view would be empty or showing outdated information
in the meanwhile. While users could disable the responsible metrics until they
want to explore them, it is not obvious beforehand which to disable, because it
might depend on the graph, the data set, the metric itself, and the total number
of active metrics. A reasonable approach could be to monitor the run time
for each metric calculation and disable those above a threshold when many
updates or interactions are queued, similar to the delayed edge grouping of
EdgeAnalyzer.

6.3.2 Visual Scalability

Visual representations of edge groups in EdgeAnalyzer provide an interaction
element as well as an alternative view on cluttered regions. However, the edge
grouping in EdgeAnalyzer might create so many groups that interaction with
them is unfeasible or they clutter the focus region even more.

Reducing the number of edge groups could be accomplished with a k-bin meta
grouping: edges are sorted w.r.t. their total order and then n/k edges are put in
k bins. This can be combined with other grouping methods and would always
create k bins, as long as a total order is defined for the grouping criterion.
Alternatively, grouping methods could create hierarchies instead of flat edge
groups. For example, if users want to group by time, then it would be reasonable
to automatically group according to years first and then months.

Cluttering of the focus region is an inherent problem of having to deal with too
many edges or edge groups in general. The arc wheel (see Section 6.1.5) is a
first take on this problem, showing edge groups and the grouping hierarchy
together (see Figure 6.1). Though the focus region is left unmodified, too
many edge groups lead to small and thus indistinguishable arcs. Reducing the
number of edge groups is one approach for this problem, but more sophisticated
techniques like hyperbolic scaling need to be considered for this problem.

Conceptually, an unlimited number of Graph Metric Views can be shown at the
sides of the graph. On the one hand, all metric views on a given side become
harder to read when adding further metrics without changing the overall size
for metric views on that side. On the other hand, resizing those metric views to
improve the readability reduces the available screen space for the graph. This is
a fundamental trade-off between available screen space and the information to
show and needs to be investigated in user studies for different scenarios.

116 Chapter 6 • Local Graph Exploration

The projection of attributes of a data set onto one dimension of the node-link
diagram in Graph Metric Views introduces ambiguities. For example, two distinct
regions in the same vertical area cannot be effectively discerned in a vertical
metric view. This could be alleviated by inspecting their contribution to the
metric separately, for example by moving one region out of the graph view,
but for that the graph has to be moved and horizontal metrics will change.
Alternatively, the same metric could be added horizontally, but this fails if other
nodes or links are inside the horizontal area of the ambiguous vertical regions.
This situation can thus only be resolved by exploring the regions locally within
the node-link diagram, for example using EdgeAnalyzer.

6.3.3 Supporting Exploratory Analysis

Using multiple child lenses of EdgeAnalyzer facilitates hierarchical filtering and
grouping of links. Furthermore, combination of top and child lenses enables
operating on links in a Boolean-manner, where top lenses can be thought of
as ‘OR’ while child lenses are similar to ‘AND’. This drill-down into data sets
can often be accomplished through other means, for example by filtering and
selecting in tables, or by picking nodes and links directly. Nevertheless, for
dense views or large amounts of data, these become impractical and direct
manipulation and interactive exploration is the only feasible approach.

While many metrics are generic and can be used for many data sets, the
most interesting aspects are the data-specific ones. As such, exploring multi-
dimensional data sets using Graph Metric Views requires addition of metrics
specific to these data sets. A drill-down is then accomplished by attaching
metrics and looking for visual signatures and prevalent structures in the metric
views (e.g., outliers or intervals with high values). Through selection and
filtering only relevant elements of the graph remain. This top-down interaction
to match structures of the node-link diagram to the metric views as well as vice
versa can be repeated iteratively.

Both EdgeAnalyzer and Graph Metric Views are enhancements to existing link-
based visualizations and provide means to explore interesting areas iteratively.
For both approaches, it is a priori unclear which grouping method or metrics to
use. Knowledge of the data and the domain is therefore required. Provenance
methods can support understanding how certain information has been found
and how to reproduce the necessary steps.

6.4 • Summary 117

6.4 Summary

This chapter discussed iterative methods for local graph exploration in node-
link diagrams. EdgeAnalyzer employs a lens metaphor to select multiple edges
and group them locally to provide alternative views on dense regions. Graph
Metric Views show various metrics related to the network data that cannot be
integrated into the node-link diagram due to visual clutter and exhaustion of
visual channels. Both of these methods aim to help analysts of network data
to drill-down into the data sets iteratively and to link insights from and to
the relations in the corresponding graphs. They complement existing graph
drawing techniques to reveal patterns that would otherwise be hidden due to
overdraw and clutter or are not visible at all. In addition to the relationships in
the data, they derive additional information based on the geometry, meta data,
layout, or graph-theoretic properties.

C
h

a
p

t
e

r

7
Tuning Parallel Volume Visualization

Volume visualization systems are often highly customizable by means of nu-
merous parameters, like transfer functions and sampling rates. Choosing the
right parameters for an aesthetic and correct image while maintaining a fluid
user experience contrasts with growing system sizes and increasing complexity
of hardware, software, and data, as well as the demand for higher image reso-
lutions. Previous works in the field of performance analysis and visualization
establish methods and frameworks but often concentrate on non-interactive
applications (e.g., simulations) or infrastructure (e.g., networks) and focus on
the collection and analysis of the performance data itself [Isaacs et al., 2014].
The context, i.e., the physical domain of simulations or the visualization, is
either unavailable, static, or pre-recorded. As such, it is challenging to judge
how user interaction and the combination of parameters affect the resulting
image and user experience.

This chapter presents an approach to analyze and tune a parallel, interactive
volume visualization on the VVand. By showing generic and specific metrics
together in real-time with the volume during normal usage and interaction,
users can mentally link the perceived and measured performance to their
interactions to understand the behavior of the system as well as the application.
This chapter is partially based on a previous publication [Panagiotidis et al.,
2015a].

120 Chapter 7 • Tuning Parallel Volume Visualization

7.1 Performance Visualization

Analyzing and tuning distributed, interactive visualization systems is chal-
lenging since existing approaches to performance visualization and analysis
often lack the application context [Isaacs et al., 2014]. Specialized methods and
tools are only available as separate applications that focus on presenting and
working with performance metrics. Furthermore, they focus on non-interactive
use cases, like simulations or infrastructure, in order to detect bottlenecks or
anomalies. They collect low-level hardware counters during run time that are
analyzed in a post-processing step after the application that should be analyzed
has terminated. These approaches are impractical for interactive, distributed
visualization systems, where users need to know the context, i.e., the images
and the corresponding interactions, to understand the system behavior.

In their performance visualization survey, Isaacs et al. [2014] conclude that
there is an increasing need for highly scalable visualizations and improved
integration of multiple views of performance data. Heath and Etheridge [1991]
employ user-defined annotations in the performance data to correlate it to
application code. Wylie and Geimer [2011] show traced performance metrics in
the simulation domain separately from the visualization of the simulation data.
Schulz et al. [2011] project performance metrics of a hydrodynamics code onto
the respective visualization. These approaches require either manual annotation,
are not integrated well into the visualization, or reduce the information channels
by changing the visualization to show performance metrics.

7.2 Volume Ray Casting

Volume visualization is a technique to project a 3D scalar data space onto a
2D view plane. It is a well-studied problem with a rich body of methods and
nowadays well supported on graphics processing units (GPUs) [Hadwiger et al.,
2006; Beyer et al., 2014]. A prominent method is ray casting, in which the
volume is sampled along rays that cover the view plane. This can be efficiently
implemented on GPUs since rays can be integrated independently and are
coherent, i.e., neighboring rays operate on neighboring data. Furthermore, the
volume can be represented as 3D texture that can be sampled efficiently with
trilinear interpolation by modern GPUs.

Ray casting can be a time consuming process for large data sets and image
resolutions. Several optimizations exist to improve the performance and quality.
Early ray termination stops the integration for a ray when the accumulated
opacity exceeds a certain threshold [Levoy, 1990]. Empty space skipping uses

7.3 • Metric Collection and Presentation 121

larger sampling distances along rays if only fully transparent regions are tra-
versed [Cohen and Sheffer, 1994; Klein et al., 2005]. The render time can also
be controlled explicitly while balancing spatial and temporal errors [Frey et al.,
2014].

7.3 Metric Collection and Presentation

The exploratory approach of this chapter presents relevant metrics to users
together with the visualization. To that end, the metrics need to be queried
and visualized in addition to the volume rendering. When interacting with
the volume, users can directly see the quantified impact of their actions on
the performance. Through interaction with the metrics, users can explore and
find suitable parameter settings to optimize the performance of the volume
rendering. This feedback loop is a quicker way to understand the behavior
of the system and the volume visualization than traditional post-mortem ap-
proaches.

7.3.1 Relevant Metrics

Generic metrics provide information and hints about the hardware. These
include utilizations of processing units (PUs) and their memory, transfer rates
of the network, or frames per second. Some of these can be polled directly
from application programming interfaces (APIs) such as NVIDIA’s management
library (NVML) or NVAPI, or from the operating system, for example through
the Windows Management Instrumentation (WMI). Others need to be derived
from transferred data or rendered frames during a measured interval.

To gain a deeper understanding, application-specific metrics are necessary. For
direct volume visualization, the number of samples or casted rays as well as
the percentage of rays affected by early ray termination are interesting. The
effect of thread divergence for GPU implementations of the ray casting can
be consulted to better understand the impact of acceleration techniques (see
Section 7.2).

During exploration and interaction, users change the parameters of the vi-
sualization. Showing these along with the metrics allows linking them to
performance phenomena.

122 Chapter 7 • Tuning Parallel Volume Visualization

Figure 7.1 — The metrics can be shown as parallel coordinates plot on each
display node individually and together on one node.

To quantify the trade-off between correctness and performance, a quality as-
sessment is necessary. For this, users need to specify a ground truth. Then,
every frame, the image resulting from parameter changes is compared to that
reference. While metrics like multiscale structural similarity (MSSIM) [Wang et al.,
2003] and PSNR offer a good indication about differences of images, they can
only serve as hint, as they were not created for scientific or non-photo realistic
visualization scenarios.

7.3.2 Metrics Visualization

The relevant metrics (see Section 7.3.1) are collected every frame on each node
that participates in the volume visualization, i.e., the display nodes of the VVand.
Presenting them is challenging due to the amount of information and because
it is unclear beforehand what phenomena and correlations are interesting.
Additionally, a compact visual representation is desirable to minimize occlusion
of the volume. Techniques like scatter plots, bar charts, or line charts are thus
unfavorable.

The collected metrics for each frame and node can be interpreted as a multi-
dimensional data point. Therefore, parallel coordinates are a suitable tool,
since they can present many dimensions simultaneously. The distinct patterns
between dimension axes also help to identify the relations between metrics and
to spot outliers.

After the rendering of each frame of the volume has finished, a parallel coordi-
nates plot is drawn on top of it. There, each poly-line represents a set of metrics,
colored according to the originating display node (see Figure 7.1). This enables
a quick comparison of the metrics between the nodes.

7.4 • Evaluation 123

7.3.3 Gathering and Aggregation
The metrics can be shown on each display node individually or together on one
node (see Figures III and 7.1). The number of poly-lines per node can be freely
chosen by users, but a lower number (e.g., in the range of 20 to 30) helps to
reduce visual clutter while showing recent information. In any case, collected
metrics could be stored persistently for offline analysis.

Depending on the goal of the analysis, the individual metrics are less interesting
as averages or global minima or maxima. In this case, it is helpful to gather
the metrics on one node and aggregate them per dimension. For example,
when using a frame lock on large displays (like the VVand), the slowest node
determines the overall frame rate.

7.3.4 Interaction
To support real-time analysis, interaction with the parallel coordinates is as
important as interaction with the volume. Typical actions include rearranging
and scaling the axes and brushing the poly-lines for selection. The parallel
coordinates plot can also be moved, resized, or completely hidden for a better
view of the volume. The collected metrics can also be cleared, for example
before starting an analysis series.

7.4 Evaluation
This approach of overlaid metrics for real-time analysis is evaluated in the con-
text of a parallel volume visualization of the Jet data set (720× 320× 320 voxels)
that shows the pressure output from a simulation. The volume is shown on five
display nodes of the VVand where a sort-first approach is a natural fit, i.e., the
display nodes have access to the whole data set and each display node renders
only its part of the whole viewport (see Figure 7.2). For a coherent view, a frame
lock is used, i.e., the display nodes synchronize after each frame of the volume
rendering. At this point, all relevant metrics have been collected and can then
be shown locally or gathered on one display node. Collecting the metrics and
rendering the parallel coordinates plot on one node is in the order of 10 ms in
this setup.

Rays are sampled using a simple form of empty space skipping, i.e., a multiple
of the normal step size (here n = 6 times) is used, if the last sample was fully
transparent. For adaptive sampling, when a non-empty sample is obtained
along a ray, the traversal goes back n− 1 steps and the segment is sampled
again with the normal step size. Early ray termination aborts further traversal of
a ray, when its accumulated opacity reached a configurable saturation threshold.
Blinn-Phong shading with central differences for gradient estimation [Hadwiger
et al., 2009] is used for illumination.

124 Chapter 7 • Tuning Parallel Volume Visualization

Figure 7.2 — Each of the five display nodes the VVand covers a certain physical
area that overlaps with its neighbors for smooth blending between projectors.

7.4.1 Impact of Adaptive Sampling

The metrics can be used to investigate the effectiveness of adaptive sam-
pling. For that, a side view is chosen that shows the whole volume (see
Figure 7.2).

Without adaptive sampling, the metrics are similar for all render nodes (see
Figure 7.3a). In particular, the GPU utilization is high on display nodes that only
show little of the volume (i.e., the two left-most display nodes). This is due to
the high number of samples taken, even though most of the space is empty
for those nodes. Enabling adaptive sampling results in a more non-uniform
metric distribution (see Figure 7.3b). Each node is sampling less, as the empty
space is skipped, and consequently, the GPU utilization now better matches
the expectation from the resulting partial images on the display nodes. This
comparison is not an in-depth analysis of the system, but serves more as a
verification that the implementation behaves as expected and as quantifiable
approach to understand the extent of the induced performance imbalance.

On a global level, even though the overall render time decreases, some display
nodes are now idler than before. This is due to them finishing the ray traversal
faster and then waiting for the slowest node to release the frame lock. On a
local level, the thread divergence increases because threads with terminated
rays idle while others in that warp still trace rays. Consequently, the attainable
speedup for this optimization technique is limited (see Novák et al. [2010] and
Frey et al. [2012] for discussions of and approaches to this issue).

7.4 • Evaluation 125

(a) Adaptive sampling disabled. (b) Adaptive sampling enabled.

Figure 7.3 — Metrics for each display node for the view in Figure 7.2 when
(a) adaptive sampling is disabled and (b) enabled. The poly-lines are colored
according to the color overlays in Figure 7.2.

7.4.2 Tuning for Interactivity

For a fluid user experience, the volume visualization needs to maintain a certain
frame rate, while at the same time the resulting image quality should be as high
as possible. Achieving this is challenging, since it depends on the parameters
of the ray caster as well as the view. Furthermore, an optimal parameter setting
cannot be determined automatically, since the available quality metrics quantify
whether images are closer to a ground truth, but might not be suitable for the
VVand or scientific volume visualization [de Freitas Zampolo and Seara, 2005].
As such, suitable parameters need to be sought using an exploratory approach.
First, a view of the volume is chosen and a reference image is recorded with the
highest possible quality settings. Then, users explore the range of parameter
settings and assess the quality visually as well as metric-based in comparison
to the reference image. Finally, a set of acceptable parameters is selected by
analyzing the parallel coordinates plot of the metrics.

Only two parameters are considered for this analysis: the sampling distance in
object and image space. Their impact on the speedup is largely independent,
so the combined speedup can be assumed to be roughly multiplicative. While
other parameters can be investigated, it may not be sensible. For example,
lighting is necessary not only for an increased quality but also to improve
perception of depth and structures and thus is always enabled.

126 Chapter 7 • Tuning Parallel Volume Visualization

(a) Side view of the volume.

(b) 10 voxels,
1 ray per pixel.

(c) 0.5 voxels,
1 ray per pixel (reference).

(d) 0.5 voxels,
1 ray per 10 × 10 pixels.

Figure 7.4 — The reference image (a) is used to compute the quality metrics
for each parameter set. Even though the values are comparatively close for
the tested ranges (see Figure 7.5), the differences are noticeable (compare the
reference (c) with the maximum tested sampling distance in object space (b)
and in image space (d), respectively).

In the following, the reference image was created using one ray per pixel with
a step size of 0.5 voxels along a ray (see Figure 7.4); this took ≈2.82 s. All
subsequent frames will be compared to this ground truth using the image
metrics MSSIM ∈ [0, 1] and PSNR ∈ [0, ∞), where low values indicate high
deviation from the reference. For this use case, the quality metrics are computed
for the whole image, while the other metrics are aggregated over all display
nodes (e.g., only the highest render time is shown).

The goal for this analysis is to render the volume at 20 FPS, i.e., the slowest
node may take 50 ms to render. Therefore, each of the two sampling distance
parameters is tested individually with the other being fixed, starting from
their highest quality setting (0.5 and 1.0, respectively) until the deviation to

7.5 • Discussion 127

Figure 7.5 — Metrics
for different values of
the sampling distance
in object and image
space (see Figure 7.4).

the reference image is too high. The corresponding parallel coordinates plot
(see Figure 7.5) clearly shows the trade-off between render time and quality.
Next, the quality metric axes in this plot are scanned from top to bottom (high
to low quality) in order to find values of the sampling distances that yield
similar image quality and a combined speedup that is high enough, i.e., their
approximate product (see Relative Performance in Figure 7.5) needs to be at
least ≈56. Suitable values for the sampling distances in this case are 1.6 voxels
and 1 ray per 4.75× 4.75 pixels, resulting in MSSIM=0.9653 and PSNR=42.4 and
a frame rate of 20 FPS. Note that the image factor can be chosen comparably
large as the resolution of the powerwall significantly exceeds the (projected)
resolution of this volume data set.

In the view of Figure 7.6, the frame rate drops significantly to ≈12.5 FPS
(≈80 ms). Using the same approach as for the previous view yields a sampling
distance of 2 voxels in object space and one ray per 5.5× 5.5 pixels in image
space for a render time of 50 ms. The image quality decreases only slightly
from MSSIM=0.9739 and PSNR=41.5 (using the optimized values for Figure 7.4)
to MSSIM=0.9697 and PSNR=38.9. Since the parameters have changed, it is
necessary to re-evaluate the previous view; in this case, it is rendered faster
with only minor decreases in quality with respect to the previous parameter
settings (30 ms, MSSIM=0.9625, PSNR=41.3).

7.5 Discussion

Showing the metrics during regular usage with the volume visualization pro-
vides some benefits, such as immediate feedback on the state of the system.
However, this approach also suffers from some drawbacks w.r.t. scalability and
applicability.

128 Chapter 7 • Tuning Parallel Volume Visualization

Figure 7.6 — The optimized parameters for Figure 7.4a yield a render time of
≈80 ms or 12.5 FPS for this view. Consequently, the sampling distances need to
be optimized for this view using the same procedure (see Section 7.4.2).

7.5.1 Real-Time vs. Post-Mortem Analysis

Collecting and visualizing the metrics in real-time might affect the application
too much. In contrast, post-mortem analysis approaches can offload their
metrics without interfering with the application, for example using dedicated
threads or external monitoring. Since the data is then stored persistently,
it can be analyzed using different tools and methods. Therefore, real-time
and post-mortem analysis should be employed complementary to increase the
understanding of the system. For the use cases presented here (see Section 7.4),
gathering the metrics and rendering them as parallel coordinates was in the
order of 10 ms.

7.5.2 Accountability of Metrics

Some of the metrics are difficult to interpret, since they are not a straight-
forward measure of a specific part of the system, but depend on many factors.
Consequently, multiple metrics are required to fully understand a single one.
For example, a high GPU utilization does not necessarily mean that the GPU is
used to full capacity. For one, the driver or the hardware could have reduced the
clock frequency to stay within specified thermal design power (TDP) specifications
to prevent overheating and thus damage to the device. Another source of
throttling is energy consumption, which could be deliberately bounded (e.g., to
not exceed a certain limit) or due to automatic energy management.

7.5 • Discussion 129

7.5.3 Scalability

While this approach works well for sort-first volume visualization, there are
several challenges when using a sort-last approach. In this case, the volume is
partitioned in object space and often a much larger number of nodes is used. On
the one hand, the collection and gathering of the metrics would not be impacted
much, as their data size is rather small (4 B for each metric per frame and node)
compared to the image data that needs to be gathered on the display nodes.
On the other hand, the resulting parallel coordinates plot would be unreadable
due to the increased number of nodes providing metrics. Advanced techniques
are then required to improve the readability of the plot, such as density-based
approaches, clustering, or bundling, as well as sophisticated interaction, for
example using fisheye lenses. Nonetheless, this approach would be helpful for
such larger and more complex setups, but requires further effort for the metric
visualization.

7.5.4 Applicability

The goal of this approach was to explore how different parameters influence
the visualization in order to tune them for specific goals like interactive frame
rates. Furthermore, it aims to increase the understanding of the performance
characteristics of the volume visualization and the hardware, so users can
predict the impact of certain parameter changes better. This use case would be
ideal for an automatic parameter optimization, but this is challenging since the
quality metrics are not optimal and thus necessitates a human ‘in-the-loop’ to
account for the context (i.e., volume visualization, the VVand).

The collected metrics provide technical information (e.g., GPU utilization) as
possible reasons for the user-perceived experience (e.g., image quality, frames
per second), so users can link both of these to parameter settings. This enables
a quick analysis of a situation and tuning of the parameters for it, but cannot
replace an in-depth analysis with profilers and other specialized tools. In partic-
ular, a more sophisticated performance analysis (e.g., finding and eliminating
bottlenecks) would require the consideration of even more metrics, such as
network or disc utilization.

Supporting more metrics is possible by adding them as further dimensions in
the parallel coordinates, but querying more metrics might stall the whole system
to the point that it becomes unusable. Additionally, more metrics increase the
clutter in the parallel coordinates plot in the same way as increasing the number
of nodes.

130 Chapter 7 • Tuning Parallel Volume Visualization

The same optimization techniques could then be used (see Section 7.5.3) but
the visualization of the metrics might then require more space on the display
to be readable. As a result, more of the volume would be occluded, and even
though this is only a minor drawback on displays like the VVand, it limits the
applicability of this approach on other display setups.

7.6 Summary

This chapter discussed an exploratory approach to real-time analysis and tuning
of a parallel, interactive volume visualization on the VVand. Metrics are collected
from the hardware as well as the software (i.e., the GPU and the ray casting ker-
nel) and are visualized as parallel coordinates plot in real-time. This facilitates
the joint exploration of the data set as well as the impact of different user-chosen
parameter settings on the performance and the image quality compared to a
high-quality reference image. This approach was used to fine-tune a volume
visualization on the VVand to achieve interactive frame rates while retaining
high quality.

Part IV

Conclusion

131

C
h

a
p

t
e

r

8
Visualization Challenges in
Distributed Heterogeneous
Computing Environments

The shift to the general purpose computing on graphics processing units (GPGPU)
paradigm and the adoption of processing units (PUs) has influenced science and
industry. Even people at home employ heterogeneous computing unknowingly
(e.g., in hardware-accelerated video encoding/decoding or rendering of web
sites) or explicitly (e.g., mining bitcoins with graphics processing units (GPUs)).
Such paradigm shifts can occur quickly and have to be expected in the coming
years, since vendors currently experiment with new technologies (e.g., stacked
DRAM, reduced cache sizes) which might also require rethinking how to
develop high performance computing (HPC) and traditional applications. In a
shorter period, the computer graphics and visualization community will have to
deal with the increased complexity to program GPUs with DirectX 12 and Vulkan
in order to fully utilize the fine-grained access to their graphics capabilities,
similar to how CUDA and OpenCL enabled the same for their compute capabilities.
The physical size and the image resolution of displays are also becoming
larger in the same way that storage and compute power grow. Consequently,
visualization applications have to be increasingly designed and planned for
distributed environments, as these large displays become more widespread.
This should not be seen as a burden on the community but as chance since it
enables possibilities for visualization techniques that were previously unfeasible.

134 Chapter 8 • Visualization Challenges in Distributed
Heterogeneous Computing Environments

As such, traditional aspects like usability and performance become more of a
basic prerequisite while other aspects become equally or more important in the
future.

This thesis investigated three aspects that are so far only hardly considered
in distributed visualization on large displays: abstraction, resilience, and ex-
ploratory analysis. While previous works on these aspects examine them in
isolation, their combination becomes increasingly important as systems and
data sets grow inevitably in size and complexity. The approaches presented in
this thesis fit naturally into the context of heterogeneous systems and visual-
ization on large displays and simplify many details of this field. DIANA (see
Chapter 3) simplifies GPGPU, distributed memory processing (DMP), and distributed
visualization. Per-pixel linked lists (PPLLs) (see Chapter 4) simplify composit-
ing and combination of visualization techniques. Strategies for fault-tolerant
distributed visualization (see Chapter 5) increase the resilience but also the
user experience of distributed visualization systems. For analysis of dense
graph data sets, EdgeAnalyzer (see Section 6.1) provides an interaction metaphor
while Graph Metric Views (see Section 6.2) provide additional data. Presentation
of system and application metrics in real-time (see Chapter 7) allows for a
better understanding and enables tuning of visualization applications on these
systems.

8.1 Research Question 1
Which approaches can visualization systems employ to support evaluating
and switching between programming models and visualization techniques?

This is an intriguing question, as the visualization pipeline (see Section 2.1.1)
defines modular stages and frameworks like ParaView or MegaMol already
allow for a reconfigurable visualization of data sets. Nevertheless, these and
similar approaches operate on such a high level that changing the underlying
application programming interface (API) is not trivial. For example, VTK [Schroeder
et al., 2006], the framework employed in ParaView, abandoned the deprecated
configurable OpenGL pipeline only in 20141, 10 years after the programmable
pipeline was introduced. This is a real problem, as Vulkan is already on
the horizon and promises non-negligible speedups (see Chapter 1). As such,
intermediary concepts are needed to accelerate the adoption of new techniques
and paradigms in existing and future scientific and industrial applications.

1http://www.kitware.com/source/home/post/144

8.2 • Research Question 2 135

This thesis proposes several answers to the question and presents methods to
tackle its underlying challenges. First, switching between APIs and PUs is seam-
lessly possible with DIANA which even incorporates transparent DMP. Second,
changing between visualization methods at the mapping and rendering stage
can be supported by using per-pixel linked lists (PPLLs) for order-independent
transparency and distributed rendering. Third, visualization applications and
techniques can be evaluated in real-time with the exploratory approach pre-
sented in Chapter 7. Fourth, communication and data flow between the involved
processes and nodes can be analyzed using local graph exploration as described
in Chapter 6. These graph analysis approaches can also be used for the traces
of commands and buffers from DIANA. Even though the traces of individual
application runs can be manageable and clear, the analysis of multiple traces
from runs on different PUs and with different command variants can become
cluttered and confusing.

8.2 Research Question 2
How must resilience in visualization systems improve to support challenges
of large displays and increasing system sizes?

Visualization on large displays is essentially a specific application of distributed
systems. As such, traditional approaches to fault tolerance apply in this context
but are antithetical as explained in Chapter 5. The other approaches in this
thesis allow to go beyond the presented strategies and their example implemen-
tations.

Using PPLLs for distributed visualization simplifies compositing, but also allows
for interaction with the images to some extent without repeated rendering,
for example by converting them to Volumetric Depth Images [Frey et al., 2013].
The approach in Chapter 7 can be used to extract profiles for performance
characteristics of the system. Users could define thresholds for various metrics
and label these accordingly, for example frame or transfer rates for fault-free
cases. This can be shown in the metric presentation itself as backdrop, so
users can see whether the system behaves normally. If it does not, the current
situation can be labeled accordingly. Repeating this labeling could ultimately
empower the system to automatically detect and classify its state.

In his seminal article, Gray [1986] analyzes a fault-tolerant system and concludes
that the concepts of fault-tolerant hardware need to be applied to software to
raise the mean time between failures of systems by several orders of magnitude.
According to Gray, the key to a fault-tolerant system is a hierarchical decompo-
sition into modules, where failures in each module do not propagate into other

136 Chapter 8 • Visualization Challenges in Distributed
Heterogeneous Computing Environments

modules, both for hardware and software. Besides tolerating hardware and
software faults, this includes software modularity (i.e., processes and messages)
as well as process-pairs combined with transaction mechanisms for data and
message integrity.

DIANA addresses all of these points. For one, it strongly enforces modularization
via plugins and opaque data types. Furthermore, the use of Protocol Buffers
(PBs) follows the message-passing paradigm closely and provides data and
message integrity. In addition, the command invocation in DIANA can be used
to increase the resilience of an application. As mentioned in Section 3.3.3,
memoization can be employed to return cached results, even when no PUs
or peers are available to process the computation, resulting in an effective,
portable, and transparent implementation of checkpoint-restart. While this
requires a lot of storage, it could be limited to the last few application runs
or a cache pruning strategy could employed (e.g., least-recently-used). When
using the remote invocation in DIANA, failing or unresponsive peers could be
handled automatically. Finally, using multiple implementations of a command
automatically allows for software redundancy, i.e., an operation can be executed
easily in different variants, the results compared, and the differences visualized
(e.g., using the comparative analysis approach from Section 4.1.2).

8.3 Research Question 3

How can systems for interactive visualization on large displays be analyzed
and optimized?

Visualization is used for analysis of applications and data, so the answer to this
question should naturally be: “with visualization”. Applications that run on
systems like the VVand are inherently distributed but approaches to analyze
such systems do not cope well with interactivity. The exploratory approach of
Chapter 7 is specifically designed with this question in mind. It can be extended
to incorporate data from PPLLs as well as DIANA (e.g., example number of
fragments, execution durations) for a more complete view on the system.

The data flow in distributed systems can be modeled as dynamic graph. In the
context of distributed visualization on the VVand, additional information, such
as the metrics from Chapter 7 or tracing information from DIANA, is available.
In addition, the user interaction itself is a valuable piece of information that
needs to be correlated to the behavior of the system. Both EdgeAnalyzer and
Graph Metric Views are appropriate methods to investigate these dynamic, mul-
tidimensional data sets. Similarly to the parallel coordinates plot in Chapter 7,

8.4 • Open Challenges 137

they can be embedded into the visualization application so that users receive
instant feedback and can drill-down into the performance data.

The progress glyph Section 5.3.2 is both an indicator for the current state of the
system and a high-level depiction of its topology. Embedding such information
allows for a better and timelier understanding of the system state since the
information does not need to be manually gathered from various places, for
example monitoring services or dedicated profiling tools.

8.4 Open Challenges

Chapters 3 to 7 discussed limitations and some open challenges of the individual
approaches. In the context of the research questions and the answers provided
by this thesis, the following additional areas could be improved and investigated
further.

DIANA provides an interesting take on GPGPU and DMP. Its entry barriers
need to be lowered by simplifying the integration and usage of commands.
Regarding the overhead of PBs (see Section 3.3.4), it would be worthwhile to
experiment with the newly introduced arena allocation, PB 3 (the successor to
the version used in DIANA), or Cap’n Proto2. The overhead for the tracing has
to be lowered in order to efficiently support developers in creating complex
and large systems that will be deployed on huge heterogeneous systems. The
command memoization (see Section 3.3.3) has the potential to be valuable not
only for scheduling and resilience but also for reproducibility and verification
of individual computations and whole simulations, prediction of future system
behavior, and as a foundation for quantifiable computing. Ultimately, mem-
oization could be used to modify partial results in long-running applications
through replay and just-in-time replacement of commands. Finally, more PUs
should be integrated, like Intel’s Xeon Phi, field-programmable gate arrays (FPGAs),
or the upcoming Neo architecture3.

Per-pixel linked lists are an interesting data structure with many applications
in visualization. Even though they have been mentioned already over 30 years
ago [Carpenter, 1984] and have been implemented on GPUs five years ago
[Yang et al., 2010], there are still many issues to be resolved. Their biggest
drawback — high memory requirements — needs to be addressed efficiently
without compromising the correctness for compositing. At that point PPLLs will
become more useful and widespread and might even replace the prevailing
z-buffering approach in rendering. Until then they need to be compacted or

2An alternative for Protocol Buffers from their original author, see https://capnproto.org/.
3http://rexcomputing.com/

138 Chapter 8 • Visualization Challenges in Distributed
Heterogeneous Computing Environments

reduced in size, for example with general compression methods. A specialized
compression scheme could also be a worthwhile investigation, for example
similar to the approach of O’Neil and Burtscher [2011] to compress floating
point numbers.

Resilience in distributed visualization will become more important if not
critical on the road to exascale and uncertainty visualization might become an
integral part of many visualization systems [Moreland, 2012]. Choosing the
right trade-offs in this ‘tug of war’ will be difficult and will require thorough
discussion, since nobody wants to sacrifice performance and instead maximize
the utilization of every resource. The presented strategies in Chapter 5 are only
a starting point and it may become necessary to look into implementations for
each of them. The image-space recovery methods discussed in Section 5.3.4
are promising and specialized techniques could yield results that are more
satisfying. The progress glyph (see Section 5.3.2) is also an interesting addition
to a visualization that promotes integration of otherwise independent systems,
such as infrastructure monitoring and application metrics.

Local graph exploration is a useful approach to gain insight in dense rela-
tional and connected data. The approaches in this thesis (see Chapter 6) can be
employed to various domains but need to be evaluated in the respective applica-
tions with experts. As with all techniques that need to scale, graph visualization
will profit from higher display resolutions and distributed visualization. For
that, optimized techniques that utilize GPUs more extensively [Panagiotidis
et al., 2015b] are required in addition to novel visual metaphors.

Exploratory analysis and tuning is useful for interactive visualization systems,
as developers can iterate faster in contrast to post-mortem analysis. The appli-
cability of the presented approach to other domains besides volume rendering
as well as further metrics should be evaluated. The metrics presentation also
requires further work, as it surely becomes too cluttered when used for bigger
systems.

8.5 • Summary 139

8.5 Summary

This thesis presented and discussed approaches of abstraction, resilience, and
exploratory analysis for distributed visualization systems in heterogeneous
computing environments. These aspects became increasingly important in the
last decade due to the rise of GPGPU and evolving programming paradigms.
Some of the presented approaches seem counterproductive at first — querying
for operations on PUs via SQL; using excessive amounts of memory to collect all
fragments of a distributed scene; partitioning into smaller and non-neighboring
tiles; increasing rendering overhead; rendering low quality images first — but
they all offer benefits that can outweigh their disadvantages. With additional
engineering effort, they can be improved to the point where they form a robust
and stable foundation for future research and application in the advent of
emerging technology.

A
p

p
e

n
d

ixA
System Specifications

A.1 enka
Operating System Windows 8.1 Enterprise, 64-bit
CPU Intel i7-3820 (3.6 GHz), 4 cores, 8 threads
Main Memory 32 GB
GPU NVIDIA GeForce GTX 770, 4.0 GB VRAM
GPU Driver ForceWare 350.12, CUDA 6.5

A.2 VVand Display Node

Operating System Windows HPC Server 2008 R2, Service Pack 1, 64-bit
CPU 2× Intel Xeon X5650 (2.66 GHz), 6 cores, 12 threads
Main Memory 24 GB
GPU 2× NVIDIA Quadro 6000, 6.0 GB VRAM
GPU Driver ForceWare 340.52, CUDA 6.5

A.3 VVand Cluster Node
Operating System Windows HPC Server 2008 R2, Service Pack 1, 64-bit
CPU 2× Intel Xeon E5620 (2.4 GHz), 4 cores, 8 threads
Main Memory 24 GB
GPU 2× NVIDIA GeForce GTX 480, 1.5 GB VRAM
GPU Driver 344.48, CUDA 6.5

A
p

p
e

n
d

ixB
DIANA

B.1 Build Information
DIANA was built using Microsoft Visual Studio 2013 (12.0.31101.00 Update 4),
Google Protocol Buffers 2.5.0, NVIDIA CUDA 6.5, and Intel Thread Building
Blocks 4.2.

B.2 Usage Example
Listing B.1 shows a typical example (without error checking for brevity) for
creating a buffer, querying for devices, and invoking a memory transfer in
DIANA.

Listing B.1 — DIANA usage example (C++ 11).
1 std : : vector< f l o a t > inputData ;
2 // f i l l inputData , f o r example by reading from a f i l e
3
4 // Create a buffer , l a r g e enough to hold a l l bytes of inputData
5 auto bufferSize = inputData . size () * s i z e o f (inputData . front ()) ;
6 auto buffer = diana : : createBuffer (bufferSize) ;
7
8 // Query the f i r s t device
9 diana : : DeviceID deviceID { 0 } ;

10 {
11 auto query = ←↩

std : : unique_ptr<diana : : DatabaseQuery >(diana : : query ("SELECT * FROM ←↩
devices ORDER BY OID ASC LIMIT 1 ")) ;

12 query−>exec () ;
13 deviceID = query−>asUInteger ("OID") ;
14 }

144 Appendix B • DIANA

15
16 // Blocking host−to−device t r a n s f e r
17 {
18 auto data = diana : : makeProto<diana : : commands : : device : : Put >(buffer , ←↩

bufferSize) ;
19 // Copy data to Protoco l Buf fer
20 data−>set_source (inputData . data () , bufferSize) ;
21
22 auto query = ←↩

std : : unique_ptr<diana : : DatabaseQuery >(diana : : query ("SELECT * FROM ←↩
commands c WHERE c . deviceID =: deviceID AND c . name=:name")) ;

23 query−>bind (" : name" , data−>GetTypeName ()) ;
24 query−>bind (" : deviceID " , deviceID) ;
25 query−>exec () ;
26
27 auto commandID = query−>asUInteger ("OID") ;
28 auto barrier = diana : : createBarrier () ;
29
30 auto commandStatusID = diana : : invoke (deviceID , commandID , data , ←↩

diana : : barrierNotify (barrier)) ;
31
32 diana : : wait (barrier) ;
33 }

B.3 Overhead: Memory Operations & Kernel Execution

a — device.Alloc (CUDA)

b — device.Put (CUDA)

B.3 • Overhead: Memory Operations & Kernel Execution 145

c — blas.Sscal (CUDA)

d — device.Get (CUDA)

e — device.Free (CUDA)

Figure B.1 — Worst case run times for the overhead benchmark (see Sec-
tion 3.2.2) when calling CUDA via DIANA with command and buffer tracing
enabled.

146 Appendix B • DIANA

a — device.Alloc (OpenCL)

b — device.Put (OpenCL)

c — blas.Sscal (OpenCL)

B.3 • Overhead: Memory Operations & Kernel Execution 147

d — device.Get (OpenCL)

e — device.Free (OpenCL)

Figure B.2 — Worst case run times for the overhead benchmark (see Sec-
tion 3.2.2) when calling OpenCL via DIANA with command and buffer tracing
enabled.

148 Appendix B • DIANA

B.4 diana.commands.blas.Dgemm

The DGEMM interface is modeled after Netlib’s reference implementation in
BLAS1. Subwindows of the matrices are defined as extension (Lines 31 to 39 in
Listing B.2) because they are not supported by all implementations and since
buffers are not pointers in DIANA, i.e., the pointer arithmetic is performed in
the command before calling a kernel or by the called library.

Listing B.2 — Protocol Buffer definition of DGEMM in DIANA.
1 package diana . commands . blas ;
2 import " diana/diana . proto " ;
3 option optimize_for = SPEED ;
4
5 enum Trans
6 {
7 N = 0 ;
8 T = 1 ;
9 C = 2 ;

10 }
11
12 message Dgemm
13 {
14 opt iona l Trans transa = 1 [d e f a u l t = N] ;
15 opt iona l Trans transb = 2 [d e f a u l t = N] ;
16 opt iona l uint64 m = 3 [d e f a u l t = 0] ;
17 opt iona l uint64 n = 4 [d e f a u l t = 0] ;
18 opt iona l uint64 k = 5 [d e f a u l t = 0] ;
19 opt iona l double alpha = 6 [d e f a u l t = 1 . 0] ;
20 opt iona l double beta = 7 [d e f a u l t = 0 . 0] ;
21 opt iona l uint64 A = 8
22 [d e f a u l t = 0 , (diana_id) = BUFFER , (diana_access) = READ] ;
23 opt iona l uint64 B = 9
24 [d e f a u l t = 0 , (diana_id) = BUFFER , (diana_access) = READ] ;
25 opt iona l uint64 C = 10
26 [d e f a u l t = 0 , (diana_id) = BUFFER , (diana_access) = READ_WRITE] ;
27
28 extens ions 100 to 9 9 9 ;
29 }
30
31 extend Dgemm
32 {
33 opt iona l uint64 offsetA = 100 [d e f a u l t = 0] ;
34 opt iona l uint64 lda = 101 [d e f a u l t = 0] ;
35 opt iona l uint64 offsetB = 102 [d e f a u l t = 0] ;
36 opt iona l uint64 ldb = 103 [d e f a u l t = 0] ;
37 opt iona l uint64 offsetC = 104 [d e f a u l t = 0] ;
38 opt iona l uint64 ldc = 105 [d e f a u l t = 0] ;
39 }

1http://www.netlib.org/lapack/explore-html/d7/d2b/dgemm_8f.html

Bibliography
J. Ahrens, B. Geveci, and C. Law. ParaView: An End-User Tool for Large-

Data Visualization. In Visualization Handbook, pages 717–731. Butterworth-
Heinemann, 2005. 16, 134

J. Andersson, D. Baker, P.-L. Griffais, J. McDonald, T. Olson, A. Pranckevicius,
and N. Smedberg. glNext: The Future of High Performance Graphics, 2015.
[Online]. Available: http://www.gdcvault.com/play/1022018/. 4

D. Archambault, J. Abello, J. Kennedy, S. Kobourov, K.-L. Ma, S. Miksch,
C. Muelder, and A. C. Telea. Temporal Multivariate Networks. In A. Kerren,
H. C. Purchase, and M. O. Ward, editors, Multivariate Network Visualization,
number 8380 in Lecture Notes in Computer Science, pages 151–174. Springer
International Publishing, 2014. 93

J. Badger, J. Sauder, J. Adams, S. Antonysamy, K. Bain, M. Bergseid, S. Buchanan,
M. Buchanan, Y. Batiyenko, J. Christopher, S. Emtage, A. Eroshkina, I. Feil,
E. Furlong, K. Gajiwala, X. Gao, D. He, J. Hendle, A. Huber, K. Hoda,
P. Kearins, C. Kissinger, B. Laubert, H. Lewis, J. Lin, K. Loomis, D. Lorimer,
G. Louie, M. Maletic, C. Marsh, I. Miller, J. Molinari, H. Muller-Dieckmann,
J. Newman, B. Noland, B. Pagarigan, F. Park, T. Peat, K. Post, S. Radojicic,
A. Ramos, R. Romero, M. Rutter, W. Sanderson, K. Schwinn, J. Tresser,
J. Winhoven, T. Wright, L. Wu, J. Xu, and T. Harris. Structural analysis of a
set of proteins resulting from a bacterial genomics project. Proteins: Structure,
Function, and Bioinformatics, 60(4):787–796, 2005. 55

A. Barak, T. Ben-Nun, E. Levy, and A. Shiloh. A package for OpenCL based
heterogeneous computing on clusters with many GPU devices. In IEEE
International Conference on Cluster Computing Workshops and Posters, pages 1–7,
2010. 20

D. Bartz and C. Silva. Rendering and Visualization in Parallel Environments.
2001. [Online]. Available: http://www.gris.uni-tuebingen.de/people/staff/bartz/

tutorials/eg2001tutorial/. 13

M. Bastian, S. Heymann, and M. Jacomy. Gephi: An open source software for
exploring and manipulating networks. In Proceedings of the Third International
AAAI Conference on Weblogs and Social Media, pages 361–362, 2009. 107

G. D. Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice Hall, 1998. 93

http://www.gdcvault.com/play/1022018/
http://www.gris.uni-tuebingen.de/people/staff/bartz/tutorials/eg2001tutorial/
http://www.gris.uni-tuebingen.de/people/staff/bartz/tutorials/eg2001tutorial/

152 Bibliography

L. Bavoil and E. Enderton. Constant-Memory Order-Independent Transparency
Techniques, 2011. [Online]. Available: https://developer.nvidia.com/sites/

default/files/akamai/gamedev/files/sdk/11/ConstantMemoryOIT.pdf. 50

L. Bavoil and K. Myers. Order Independent Transparency with Dual Depth
Peeling, 2008. [Online]. Available: http://developer.download.nvidia.com/SDK/

10/opengl/src/dual_depth_peeling/doc/DualDepthPeeling.pdf. 50

L. Bavoil, S. P. Callahan, A. Lefohn, J. L. D. Comba, and C. T. Silva. Multi-
fragment effects on the GPU using the k-buffer. In Proceedings of the 2007
Symposium on Interactive 3D Graphics and Games, pages 97–104. ACM, 2007. 50,
64

C. Bennett, J. Ryall, L. Spalteholz, and A. Gooch. The Aesthetics of Graph
Visualization. In D. W. Cunningham, G. Meyer, and L. Neumann, editors,
Proceedings of the Third Workshop on Computational Aesthetics, pages 57–64. The
Eurographics Association, 2007. 109

H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N.
Shindyalov, and P. E. Bourne. The Protein Data Bank. Nucleic Acids Research,
28(1):235–242, 2000. 49

M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester. Image inpainting. In
Proceedings of the 27th Annual Conference on Computer Graphics and Interactive
Techniques, pages 417–424. ACM, 2000. 77, 79

E. W. Bethel, H. Childs, and C. Hansen, editors. High Performance Visualiza-
tion—Enabling Extreme-Scale Scientific Insight. Chapman & Hall, CRC Compu-
tational Science. CRC Press/Francis–Taylor Group, 2012. 13

J. Beyer, M. Hadwiger, and H. Pfister. A Survey of GPU-Based Large-Scale
Volume Visualization. In R. Borgo, R. Maciejewski, and I. Viola, editors,
Eurographics/IEEE Conference on Visualization - State of the Art Reports. The
Eurographics Association, 2014. 120

E. A. Bier, M. C. Stone, K. Pier, W. Buxton, and T. D. DeRose. Toolglass and
magic lenses: the see-through interface. In Proceedings of the 20th Annual
Conference on Computer Graphics and Interactive Techniques, pages 73–80. ACM,
1993. 96

A. D. Birrell and B. J. Nelson. Implementing Remote Procedure Calls. ACM
Transactions on Computer Systems, 2(1):39–59, 1984. 18

Bitcoin Wiki. Mining hardware comparison, 2015a. [Online]. Available: https:

//en.bitcoin.it/w/index.php?title=Mining_hardware_comparison&oldid=56965. 17

https://developer.nvidia.com/sites/default/files/akamai/gamedev/files/sdk/11/ConstantMemoryOIT.pdf
https://developer.nvidia.com/sites/default/files/akamai/gamedev/files/sdk/11/ConstantMemoryOIT.pdf
http://developer.download.nvidia.com/SDK/10/opengl/src/dual_depth_peeling/doc/DualDepthPeeling.pdf
http://developer.download.nvidia.com/SDK/10/opengl/src/dual_depth_peeling/doc/DualDepthPeeling.pdf
https://en.bitcoin.it/w/index.php?title=Mining_hardware_comparison&oldid=56965
https://en.bitcoin.it/w/index.php?title=Mining_hardware_comparison&oldid=56965

Bibliography 153

Bitcoin Wiki. Non-specialized hardware comparison, 2015b. [Online].
Available: https://en.bitcoin.it/w/index.php?title=Non-specialized_hardware_

comparison&oldid=56942. 17

L. S. Blackford, J. Demmel, J. Dongarra, I. Duff, S. Hammarling, G. Henry,
M. Heroux, L. Kaufman, A. Lumsdaine, A. Petitet, R. Pozo, K. Remington,
and R. C. Whaley. An Updated Set of Basic Linear Algebra Subprograms
(BLAS). ACM Transactions on Mathematical Software, 28(2):135–151, 2002. 36,
148

D. Blythe. Rise of the Graphics Processor. Proceedings of the IEEE, 96(5):761–778,
2008. 19

B. Bode, M. Butler, T. Dunning, T. Hoefler, W. Kramer, W. Gropp, and W.-m.
Hwu. The Blue Water Super-System for Super-Science. In Contemporary High
Performance Computing, pages 339–366. Chapman and Hall/CRC, 2013. 1

J. Breitbart. CuPP - A framework for easy CUDA integration. In IEEE In-
ternational Symposium on Parallel & Distributed Processing, pages 1–8, 2009.
20

K. Brodlie, R. Allendes Osorio, and A. Lopes. A Review of Uncertainty in Data
Visualization. In J. Dill, R. Earnshaw, D. Kasik, J. Vince, and P. C. Wong,
editors, Expanding the Frontiers of Visual Analytics and Visualization, pages
81–109. Springer London, 2012. 77, 83

A. R. Brodtkorb, C. Dyken, T. R. Hagen, J. M. Hjelmervik, and O. O. Storaasli.
State-of-the-art in Heterogeneous Computing. Scientific Programming, 18(1):
1–33, 2010. 17

A. R. Brodtkorb, T. R. Hagen, and M. L. Sætra. Graphics processing unit (GPU)
programming strategies and trends in GPU computing. Journal of Parallel and
Distributed Computing, 73(1):4–13, 2013. 19

M. Burch, C. Vehlow, F. Beck, S. Diehl, and D. Weiskopf. Parallel Edge Splatting
for Scalable Dynamic Graph Visualization. IEEE Transactions on Visualization
and Computer Graphics, 17(12):2344–2353, 2011. 94

M. Burch, C. Vehlow, N. Konevtsova, and D. Weiskopf. Evaluating Partially
Drawn Links for Directed Graph Edges. In M. v. Kreveld and B. Speckmann,
editors, Graph Drawing, number 7034 in Lecture Notes in Computer Science,
pages 226–237. Springer Berlin Heidelberg, 2012. 94

https://en.bitcoin.it/w/index.php?title=Non-specialized_hardware_comparison&oldid=56942
https://en.bitcoin.it/w/index.php?title=Non-specialized_hardware_comparison&oldid=56942

154 Bibliography

M. Burch, H. Schmauder, A. Panagiotidis, and D. Weiskopf. Partial Link
Drawings for Nodes, Links, and Regions of Interest. In Proceedings of the 18th
International Conference on Information Visualisation (IV), pages 53–58. IEEE,
2014. 6

F. Cappello. Fault Tolerance in Petascale/ Exascale Systems: Current Knowl-
edge, Challenges and Research Opportunities. International Journal of High
Performance Computing Applications, 23(3):212–226, 2009. 3, 72, 73

L. Carpenter. The A-buffer, an Antialiased Hidden Surface Method. In Pro-
ceedings of the 11th Annual Conference on Computer Graphics and Interactive
Techniques, pages 103–108. ACM, 1984. 15, 50, 137

B. Chapman, G. Jost, and R. v. d. Pas. Using OpenMP: Portable Shared Memory
Parallel Programming (Scientific and Engineering Computation). The MIT Press,
2007. 17

D. Cohen and Z. Sheffer. Proximity clouds — an acceleration technique for 3d
grid traversal. The Visual Computer, 11(1):27–38, 1994. 121

G. Csárdi and T. Nepusz. The igraph software package for complex network
research. InterJournal Complex Systems, 1695, 2006. 114

W. Cui, H. Zhou, H. Qu, P. C. Wong, and X. Li. Geometry-Based Edge Clustering
for Graph Visualization. IEEE Transactions on Visualization and Computer
Graphics, 14(6):1277–1284, 2008. 94

R. de Freitas Zampolo and R. Seara. A comparison of image quality metric
performances under practical conditions. In IEEE International Conference on
Image Processing, volume 3, pages III–1192–5, 2005. 125

M. Dickerson, D. Eppstein, M. T. Goodrich, and J. Y. Meng. Confluent Drawings:
Visualizing Non-planar Diagrams in a Planar Way. In G. Liotta, editor, Graph
Drawing, number 2912 in Lecture Notes in Computer Science, pages 1–12.
Springer Berlin Heidelberg, 2004. 94

J. Dongarra, M. Gates, A. Haidar, J. Kurzak, P. Luszczek, S. Tomov, and I. Ya-
mazaki. Accelerating Numerical Dense Linear Algebra Calculations with
GPUs. In V. Kindratenko, editor, Numerical Computations with GPUs, pages
3–28. Springer International Publishing, 2014. 20

J. J. Dongarra, P. Luszczek, and A. Petitet. The LINPACK Benchmark: past,
present and future. Concurrency and Computation: Practice and Experience, 15
(9):803–820, 2003. 1, 36

Bibliography 155

J. Duato, A. J. Peña, F. Silla, R. Mayo, and E. S. Quintana-Orti. rCUDA: Reducing
the number of GPU-based accelerators in high performance clusters. In
International Conference on High Performance Computing and Simulation, pages
224–231. IEEE, 2010. 20

I. P. Egwutuoha, D. Levy, B. Selic, and S. Chen. A survey of fault tolerance
mechanisms and checkpoint/restart implementations for high performance
computing systems. The Journal of Supercomputing, 65(3):1302–1326, 2013. 72,
75, 76

S. Eilemann, M. Makhinya, and R. Pajarola. Equalizer: A Scalable Parallel Ren-
dering Framework. IEEE Transactions on Visualization and Computer Graphics,
15(3):436–452, 2009. 16

G. Ellis and A. Dix. A Taxonomy of Clutter Reduction for Information Visualisa-
tion. IEEE Transactions on Visualization and Computer Graphics, 13(6):1216–1223,
2007. 94

C. Everitt. Interactive Order-Independent Transparency, 2001. [On-
line]. Available: https://developer.nvidia.com/system/files/akamai/gamedev/

docs/order_independent_transparency.pdf. 50

C. Everitt, G. Sellers, J. McDonald, and T. Foley. Approaching Zero Driver
Overhead in OpenGL, 2014. [Online]. Available: http://www.slideshare.net/

CassEveritt/approaching-zero-driver-overhead. 4

J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes. Computer Graphics:
Principles and Practice. Addison-Wesley Longman Publishing Co., Inc., 2
edition, 1990. 14, 50

S. Frey and T. Ertl. PaTraCo: A Framework Enabling the Transparent and
Efficient Programming of Heterogeneous Compute Networks. In Eurographics
Symposium on Parallel Graphics and Visualization, pages 131–140, 2010. 20

S. Frey, G. Reina, and T. Ertl. SIMT Microscheduling: Reducing Thread Stalling
in Divergent Iterative Algorithms. In Proceedings of the 20th Euromicro Inter-
national Conference on Parallel, Distributed and Network-Based Processing, pages
399–406, 2012. 124

S. Frey, F. Sadlo, and T. Ertl. Explorable Volumetric Depth Images from Raycast-
ing. In Conference on Graphics, Patterns and Images, pages 123–130, 2013. 82,
135

https://developer.nvidia.com/system/files/akamai/gamedev/docs/order_independent_transparency.pdf
https://developer.nvidia.com/system/files/akamai/gamedev/docs/order_independent_transparency.pdf
http://www.slideshare.net/CassEveritt/approaching-zero-driver-overhead
http://www.slideshare.net/CassEveritt/approaching-zero-driver-overhead

156 Bibliography

S. Frey, F. Sadlo, K.-L. Ma, and T. Ertl. Interactive Progressive Visualization with
Space-Time Error Control. IEEE Transactions on Visualization and Computer
Graphics, 20(12):2397–2406, 2014. 121

T. M. J. Fruchterman and E. M. Reingold. Graph drawing by force-directed
placement. Software: Practice and Experience, 21(11):1129–1164, 1991. 93, 111

G. W. Furnas. Generalized fisheye views. In Proceedings of the SIGCHI conference
on Human factors in computing systems, pages 16–23. ACM, 1986. 96

E. R. Gansner, Y. Koren, and S. North. Graph Drawing by Stress Majorization.
In J. Pach, editor, Graph Drawing, number 3383 in Lecture Notes in Computer
Science, pages 239–250. Springer Berlin Heidelberg, 2005. 93

J. Gao, H. Liu, J. Huang, M. Beck, Q. Wu, T. Moore, and J. A. Kohl. Time-Critical
Distributed Visualization with Fault Tolerance. In K.-L. Ma and J. M. Favre,
editors, Proceedings of the 8th Eurographics Symposium on Parallel Graphics and
Visualization, pages 65–72. The Eurographics Association, 2008. 74

D. Göddeke. Fast and Accurate Finite-Element Multigrid Solvers for PDE Simulations
on GPU Clusters. PhD thesis, Technische Universität Dortmund, Fakultät für
Mathematik, 2010. 19

D. Göddeke, R. Strzodka, and S. Turek. Accelerating Double Precision FEM
Simulations with GPUs. In F. Hülsemann, M. Kowarschik, and U. Rüde,
editors, 18th Symposium Simulationstechnique, Frontiers in Simulation, pages
139–144, 2005. 20

I. Grasso, S. Pellegrini, B. Cosenza, and T. Fahringer. LibWater: Heterogeneous
Distributed Computing Made Easy. In Proceedings of the 27th International
ACM Conference on International Conference on Supercomputing, pages 161–172.
ACM, 2013. 20

J. Gray. Why Do Computers Stop and What Can Be Done About It? In Fifth
Symposium on Reliability in Distributed Software and Database Systems, pages
3–12. IEEE Computer Society, 1986. 135

S. Grottel, M. Krone, C. Müller, G. Reina, and T. Ertl. MegaMol - A Prototyping
Framework for Particle-Based Visualization. IEEE Transactions on Visualization
and Computer Graphics, 21(2):201–214, 2015. 16, 42, 57, 134

P. Guo, H. Xiao, Z. Wang, and X. Yuan. Interactive local clustering operations
for high dimensional data in parallel coordinates. In IEEE Pacific Visualization
Symposium, pages 97–104, 2010. 106

Bibliography 157

C. Gutwin. Improving focus targeting in interactive fisheye views. In Proceedings
of the SIGCHI conference on Human factors in computing systems: Changing our
world, changing ourselves, pages 267–274. ACM, 2002. 99

R. B. Haber and D. A. McNabb. Visualization idioms: A conceptual model for
scientific visualization systems. In Visualization in Scientific Computing, pages
74–93. IEEE Computer Society Press, 1990. 9

M. Hadwiger, J. M. Kniss, C. Rezk-Salama, D. Weiskopf, and K. Engel. Real-time
Volume Graphics. A. K. Peters, Ltd., 2006. 120

M. Hadwiger, P. Ljung, C. R. Salama, and T. Ropinski. Advanced Illumination
Techniques for GPU-based Volume Raycasting. In ACM SIGGRAPH 2009
Courses, pages 2:1–2:166. ACM, 2009. 123

G. Haller. Distinguished material surfaces and coherent structures in three-
dimensional fluid flows. Physica D: Nonlinear Phenomena, 149(4):248–277, 2001.
41, 85

I. Haque and V. Pande. Hard Data on Soft Errors: A Large-Scale Assessment of
Real-World Error Rates in GPGPU. In 10th IEEE/ACM International Conference
on Cluster, Cloud and Grid Computing, pages 691–696, 2010. 69

M. Heath and J. Etheridge. Visualizing the performance of parallel programs.
IEEE Software, 8(5):29–39, 1991. 120

N. Henry, J.-D. Fekete, and M. J. McGuffin. NodeTrix: a Hybrid Visualization
of Social Networks. IEEE Transactions on Visualization and Computer Graphics,
13(6):1302 –1309, 2007. 94

D. Holten. Hierarchical Edge Bundles: Visualization of Adjacency Relations in
Hierarchical Data. IEEE Transactions on Visualization and Computer Graphics, 12
(5):741–748, 2006. 94, 95, 105

D. Holten and J. J. van Wijk. Force-Directed Edge Bundling for Graph Visual-
ization. Computer Graphics Forum, 28(3):983–990, 2009. 94

D. Holten and J. J. v. Wijk. A user study on visualizing directed edges in graphs.
In Proceedings of the 27th International Conference on Human Factors in Computing
Systems, pages 2299–2308. ACM, 2009. 94

W. Humphrey, A. Dalke, and K. Schulten. VMD – Visual Molecular Dynamics.
Journal of Molecular Graphics, 14:33–38, 1996. 49

158 Bibliography

G. Humphreys, M. Eldridge, I. Buck, G. Stoll, M. Everett, and P. Hanrahan.
WireGL: a scalable graphics system for clusters. In Proceedings of the 28th
Annual Conference on Computer Graphics and Interactive Techniques, pages 129–
140. ACM, 2001. 16

G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ahern, P. D. Kirchner, and
J. T. Klosowski. Chromium: a stream-processing framework for interactive
rendering on clusters. ACM Transactions on Graphics, 21(3):693–702, 2002. 16

C. Hurter, B. Tissoires, and S. Conversy. FromDaDy: Spreading Aircraft Tra-
jectories Across Views to Support Iterative Queries. IEEE Transactions on
Visualization and Computer Graphics, 15(6):1017–1024, 2009. 95

C. Hurter, O. Ersoy, and A. Telea. Graph Bundling by Kernel Density Estimation.
Computer Graphics Forum, 31:865–874, 2012. 94

A. Inselberg and B. Dimsdale. Parallel coordinates: a tool for visualizing multi-
dimensional geometry. In Proceedings of the 1st conference on Visualization ’90,
pages 361–378. IEEE Computer Society Press, 1990. 106

K. E. Isaacs, A. Giménez, I. Jusufi, T. Gamblin, A. Bhatele, M. Schulz, B. Hamann,
and P.-T. Bremer. State of the Art of Performance Visualization. In R. Borgo,
R. Maciejewski, and I. Viola, editors, Eurographics Conference on Visualization -
State of the Art Reports. The Eurographics Association, 2014. 119, 120

T. J. Jankun-Kelly and K.-L. Ma. MoireGraphs: radial focus+context visualiza-
tion and interaction for graphs with visual nodes. In Proceedings of the IEEE
Symposium on Information Visualization, pages 59–66, 2003. 107

T. Jansen. GPU++ - An Embedded GPU Development System for General-Purpose
Computations. PhD thesis, Universitätsbibliothek der TU München, 2007. 20

C. Johnson and A. Sanderson. A Next Step: Visualizing Errors and Uncertainty.
IEEE Computer Graphics and Applications, 23(5):6–10, 2003. 77, 83

H. Kang, C. Plaisant, B. Lee, and B. Bederson. NetLens: Iterative Exploration of
Content-Actor Network Data. In Proceedings of the IEEE Symposium on Visual
Analytics Science And Technology, pages 91–98, 2006. 107

M. Kaufmann and D. Wagner, editors. Drawing Graphs–Methods and Models,
volume 2025 of Lecture Notes in Computer Science. Springer, 2001. 93

D. Kauker, M. Krone, A. Panagiotidis, G. Reina, and T. Ertl. Evaluation of
per-pixel linked lists for distributed rendering and comparative analysis.
Computing and Visualization in Science, 15(3):111–121, 2013a. 7, 49, 53

Bibliography 159

D. Kauker, M. Krone, A. Panagiotidis, G. Reina, and T. Ertl. Rendering Molec-
ular Surfaces using Order-Independent Transparency. In Eurographics Sym-
posium on Parallel Graphics and Visualization, pages 33–40. The Eurographics
Association, 2013b. 7, 49, 64

D. M. Kauker. Distributed Computing and Transparency Rendering for Large Displays.
PhD thesis, University of Stuttgart, 2015. 7

D. A. Keim, F. Mansmann, J. Schneidewind, and H. Ziegler. Challenges in
Visual Data Analysis. In Proceedings of the 10th International Conference on
Information Visualization (IV), pages 9 –16, 2006. 96

A. Kerren, H. Köstinger, and B. Zimmer. VINCENT–Visualization of Net-
work Centralities. In Proceedings of the International Conference on Information
Visualization Theory and Applications, pages 703–712, 2012. 107

T. Klein, M. Strengert, S. Stegmaier, and T. Ertl. Exploiting frame-to-frame coher-
ence for accelerating high-quality volume raycasting on graphics hardware.
In IEEE Visualization, pages 223–230, 2005. 121

P. Knowles, G. Leach, and F. Zambetta. Efficient Layered Fragment Buffer
Techniques. In P. Cozzi and C. Riccio, editors, OpenGL Insights, pages 279–292.
CRC Press, 2012. 50, 53

S. Koch, H. Bosch, M. Giereth, and T. Ertl. Iterative integration of visual insights
during patent search and analysis. In IEEE Symposium on Visual Analytics
Science and Technology, pages 203–210, 2009. 8, 103, 104, 107

R. Koduri. On APIs and the future of Mantle, 2015. [On-
line]. Available: https://community.amd.com/community/gaming/blog/2015/05/12/

on-apis-and-the-future-of-mantle. 4

K. Kofler, I. Grasso, B. Cosenza, and T. Fahringer. An Automatic Input-sensitive
Approach for Heterogeneous Task Partitioning. In Proceedings of the 27th
International ACM Conference on International Conference on Supercomputing,
pages 149–160. ACM, 2013. 20

M. Krone, J. E. Stone, T. Ertl, and K. Schulten. Fast Visualization of Gaussian
Density Surfaces for Molecular Dynamics and Particle System Trajectories. In
Eurographics Conference on Visualization - Short Papers, volume 1, pages 67–71.
The Eurographics Association, 2012. 49

J. Lengyel, M. Reichert, B. R. Donald, and D. P. Greenberg. Real-time Robot Mo-
tion Planning Using Rasterizing Computer Graphics Hardware. In Proceedings

https://community.amd.com/community/gaming/blog/2015/05/12/on-apis-and-the-future-of-mantle
https://community.amd.com/community/gaming/blog/2015/05/12/on-apis-and-the-future-of-mantle

160 Bibliography

of the 17th Annual Conference on Computer Graphics and Interactive Techniques,
pages 327–335. ACM, 1990. 19

M. Levoy. Efficient Ray Tracing of Volume Data. ACM Transactions on Graphics,
9(3):245–261, 1990. 120

F. Liu, M.-C. Huang, X.-H. Liu, and E.-H. Wu. Efficient depth peeling via bucket
sort. In Proceedings of the Conference on High Performance Graphics 2009, pages
51–57. ACM, 2009. 50

J. MacQueen. Some methods for classification and analysis of multivariate
observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, volume 1, pages 281–297. Oakland, CA, USA., 1967.
99

Mark J. Harris. Real-Time Cloud Simulation and Rendering. PhD thesis, University
of North Carolina, 2003. 19

M. Maule, J. L. D. Comba, R. P. Torchelsen, and R. Bastos. A survey of raster-
based transparency techniques. Computers & Graphics, 35(6):1023–1034, 2011.
14, 15, 50

A. Meligy. Parallel and Distributed Visualization: The State of the Art. In Fifth
International Conference on Computer Graphics, Imaging and Visualisation, pages
329–336, 2008. 13

P. Messmer, P. Mullowney, and B. Granger. GPULib: GPU Computing in
High-Level Languages. Computing in Science & Engineering, 10(5):70–73, 2008.
20

S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs. A sorting classification of
parallel rendering. IEEE Computer Graphics and Applications, 14(4):23–32, 1994.
13

K. Moreland. Oh, $#*@! Exascale! The Effect of Emerging Architectures on
Scientific Discovery. In 2012 SC Companion: High Performance Computing,
Networking, Storage and Analysis, pages 224–231, 2012. 2, 4, 138

K. Moreland, W. Kendall, T. Peterka, and J. Huang. An Image Compositing
Solution at Scale. In Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis, pages 25:1–25:10.
ACM, 2011. 16

J. Mulder, F. Groen, and J. van Wijk. Pixel masks for screen-door transparency.
In Visualization ’98. Proceedings, pages 351–358, 1998. 15

Bibliography 161

J. D. Mulder, J. J. van Wijk, and R. van Liere. A survey of computational steering
environments. Future Generation Computer Systems, 15(1):119–129, 1999. 10

C. Müller, S. Frey, M. Strengert, C. Dachsbacher, and T. Ertl. A Compute Unified
System Architecture for Graphics Clusters Incorporating Data Locality. IEEE
Transactions on Visualization and Computer Graphics, 15(4):605–617, 2009. 20

C. Müller, G. Reina, and T. Ertl. The VVand: A Two-Tier System Design for
High-Resolution Stereo Rendering. In Extended Abstracts on Human Factors in
Computing Systems. ACM, 2013. 21

T. Ni, G. Schmidt, O. Staadt, M. Livingston, R. Ball, and R. May. A Survey of
Large High-Resolution Display Technologies, Techniques, and Applications.
In Virtual Reality Conference, 2006, pages 223–236, 2006. 15

Nicole Hemsoth. The Tiny Chip That Could Disrupt Exascale Com-
puting, 2015. [Online]. Available: http://www.theplatform.net/2015/03/12/

the-little-chip-that-could-disrupt-exascale-computing/. 2

J. Novák, V. Havran, and C. Dachsbacher. Path Regeneration for Interactive
Path Tracing. In Eurographics Conference on Visualization - Short Papers, pages
61–64. The Eurographics Association, 2010. 124

M. A. O’Neil and M. Burtscher. Floating-point data compression at 75 Gb/s on
a GPU. In Proceedings of the Fourth Workshop on General Purpose Processing on
Graphics Processing Units, pages 7:1–7:7. ACM, 2011. 138

A. Orzan, A. Bousseau, H. Winnemöller, P. Barla, J. Thollot, and D. Salesin.
Diffusion curves: a vector representation for smooth-shaded images. ACM
Transactions on Graphics, 27(3):92:1–92:8, 2008. 77

R. S. A. Osorio and K. W. Brodlie. Uncertain Flow Visualization using LIC. In
W. Tang and J. Collomosse, editors, Theory and Practice of Computer Graphics,
pages 215–222. The Eurographics Association, 2009. 83

J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, and J. Phillips. GPU
Computing. Proceedings of the IEEE, 96(5):879–899, 2008. 19

A. Panagiotidis. Entwicklung einer Interaktionsmetapher für die Exploration und
Manipulation von gebündelten Kanten. Diploma Thesis, University of Stuttgart,
Faculty of Computer Science, Electrical Engineering, and Information Tech-
nology, 2009, Published: Diploma Thesis: University of Stuttgart, Institute of
Visualisation and Interactive Systems, Visualisation and Interactive Systems.
8

http://www.theplatform.net/2015/03/12/the-little-chip-that-could-disrupt-exascale-computing/
http://www.theplatform.net/2015/03/12/the-little-chip-that-could-disrupt-exascale-computing/

162 Bibliography

A. Panagiotidis, H. Bosch, S. Koch, and T. Ertl. EdgeAnalyzer: Exploratory
Analysis through Advanced Edge Interaction. In 44th Hawaii International
Conference on System Sciences, pages 1–10. IEEE Computer Society, 2011a. 8,
94, 96

A. Panagiotidis, D. Kauker, S. Frey, and T. Ertl. DIANA: A Device Abstraction
Framework for Parallel Computations. In P. Iványi and B. H. V. Topping,
editors, Proceedings of the Second International Conference on Parallel, Distributed,
Grid and Cloud Computing for Engineering. Civil-Comp Press, 2011b, paper 20.
7, 29, 30

A. Panagiotidis, D. Kauker, F. Sadlo, and T. Ertl. Distributed Computation and
Large-Scale Visualization in Heterogeneous Compute Environments. In 11th
International Symposium on Parallel and Distributed Computing, pages 87–94,
2012. 7, 29, 44

A. Panagiotidis, M. Burch, O. Deussen, D. Weiskopf, and T. Ertl. Graph
Exploration by Multiple Linked Metric Views. In Proceedings of the 18th
International Conference on Information Visualisation (IV), pages 19–26. IEEE,
2014a. 8, 94, 107

A. Panagiotidis, G. Reina, and T. Ertl. Strategies for Fault-Tolerant Distributed
Visualization. In 2014 IEEE Pacific Visualization Symposium, pages 286–290,
2014b. 7, 71

A. Panagiotidis, S. Frey, and T. Ertl. Exploratory Performance Analysis and
Tuning of Parallel Interactive Volume Visualization on Large Displays. In
Eurographics Conference on Visualization - Short Papers, pages 13–17. The Euro-
graphics Association, 2015a. 8, 119

A. Panagiotidis, G. Reina, M. Burch, T. Pfannkuch, and T. Ertl. Consistently
GPU-Accelerated Graph Visualization. In International Symposium on Visual
Information Communication and Interaction. ACM, 2015b. 6, 138

C. Papadopoulos, K. Petkov, A. Kaufman, and K. Mueller. The Reality Deck–an
Immersive Gigapixel Display. IEEE Computer Graphics and Applications, 35(1):
33–45, 2015. 15

P. Papadopoulos, J. Kohl, and B. Semeraro. CUMULVS: extending a generic
steering and visualization middleware for application fault-tolerance. In
Proceedings of the Thirty-First Hawaii International Conference on System Sciences,
pages 127–136. IEEE, 1998. 74

M. Peercy, M. Segal, and D. Gerstmann. A Performance-oriented Data Parallel
Virtual Machine for GPUs. In ACM SIGGRAPH 2006 Sketches. ACM, 2006. 19

Bibliography 163

P. Pérez, M. Gangnet, and A. Blake. Poisson image editing. In ACM Transactions
on Graphics, pages 313–318. ACM, 2003. 77, 79, 82

T. A. Phelps and R. Wilensky. The Multivalent Browser: A Platform for New
Ideas. In Proceedings of the 2001 ACM Symposium on Document Engineering,
pages 58–67. ACM, 2001. 96

T. Porter and T. Duff. Compositing digital images. In Proceedings of the 11th
annual conference on Computer Graphics and Interactive Techniques, pages 253–259.
ACM, 1984. 12

K. Potter, P. Rosen, and C. R. Johnson. From Quantification to Visualization:
A Taxonomy of Uncertainty Visualization Approaches. In A. M. Dienstfrey
and R. F. Boisvert, editors, Uncertainty Quantification in Scientific Computing,
number 377 in IFIP Advances in Information and Communication Technology,
pages 226–249. Springer Berlin Heidelberg, 2012. 77

H. C. Purchase, R. F. Cohen, and M. James. Validating Graph Drawing Aesthet-
ics. In Proceedings of the Symposium on Graph Drawing, pages 435–446. Springer,
1996. 93

J. Roberts. State of the Art: Coordinated Multiple Views in Exploratory Visual-
ization. In Proceedings of the Fifth International Conference on Coordinated and
Multiple Views in Exploratory Visualization, pages 61–71, 2007. 107

R. Rosenholtz, Y. Li, J. Mansfield, and Z. Jin. Feature congestion: a measure of
display clutter. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pages 761–770. ACM, 2005. 93

M. Rotard, M. Giereth, and T. Ertl. Semantic Lenses: Seamless Augmentation of
Web Pages with Context Information from Implicit Queries. Computers and
Graphics, 31(3):361–369, 2007. 96

F. Sadlo, M. Üffinger, T. Ertl, and D. Weiskopf. On the Finite-Time Scope
for Computing Lagrangian Coherent Structures from Lyapunov Exponents.
In Topological Methods in Data Analysis and Visualization II, Mathematics and
Visualization, pages 269–281. Springer Berlin Heidelberg, 2012. 43

R. Samanta, T. Funkhouser, and K. Li. Parallel rendering with K-way replication.
In Proceedings of the IEEE Symposium on Parallel and Large-Data Visualization
and Graphics, pages 75–53. IEEE, 2001. 74

N. Satish, M. Harris, and M. Garland. Designing efficient sorting algorithms
for manycore GPUs. In IEEE International Symposium on Parallel & Distributed
Processing, pages 1–10. IEEE, 2009. 20

164 Bibliography

B. Schroeder and G. Gibson. A large-scale study of failures in high-performance
computing systems. In International Conference on Dependable Systems and
Networks, pages 249–258, 2006. 69

B. Schroeder and G. A. Gibson. Understanding failures in petascale computers.
Journal of Physics: Conference Series, 78(1):012022, 2007. 3, 69

W. Schroeder, K. Martin, and B. Lorensen. Visualization Toolkit: An Object-
Oriented Approach To 3D Graphics. Kitware, Inc., 4 edition, 2006. 134

M. Schulz, J. Levine, P.-T. Bremer, T. Gamblin, and V. Pascucci. Interpreting
Performance Data across Intuitive Domains. In 2011 International Conference
on Parallel Processing, pages 206–215, 2011. 120

G. Sellers, R. S. Wright, and N. Haemel. OpenGL SuperBible: Comprehensive
Tutorial and Reference. Addison-Wesley Professional, 6 edition, 2013. 11

J. Shade, S. Gortler, L.-W. He, and R. Szeliski. Layered Depth Images. In
Proceedings of the 25th Annual Conference on Computer Graphics and Interactive
Techniques, pages 231–242. ACM, 1998. 82

A. Shan. Heterogeneous Processing: a Strategy for Augmenting Moore’s Law.
Linux Journal, (142), 2006. 16

P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage, N. Amin,
B. Schwikowski, and T. Ideker. Cytoscape: A Software Environment for
Integrated Models of Biomolecular Interaction Networks. Genome Research, 13
(11):2498–2504, 2003. 107

B. Shneiderman. The eyes have it: a task by data type taxonomy for information
visualizations. In Proceedings of the IEEE Symposium on Visual Languages, pages
336–343, 1996. 109

B. Silverman. Density Estimation for Statistics and Data Analysis, volume 26 of
Monographs on Statistics & Applied Probability. Chapman and Hall, 1986. 109

A. Smith. Gnomes per second in Vulkan and OpenGL ES,
2015. [Online]. Available: http://blog.imgtec.com/powervr/

gnomes-per-second-in-vulkan-and-opengl-es. 4

J. Stasko and E. Zhang. Focus+context display and navigation techniques for
enhancing radial, space-filling hierarchy visualizations. In IEEE Symposium
on Information Visualization, pages 57–65, 2000. 102

http://blog.imgtec.com/powervr/gnomes-per-second-in-vulkan-and-opengl-es
http://blog.imgtec.com/powervr/gnomes-per-second-in-vulkan-and-opengl-es

Bibliography 165

M. Strengert, C. Müller, C. Dachsbacher, and T. Ertl. CUDASA: Compute
Unified Device and Systems Architecture. In Eurographics Symposium on
Parallel Graphics and Visualization, pages 49–56, 2008. 20

E. Strohmaier. TOP500 Supercomputer. In Proceedings of the 2006 ACM/IEEE
Conference on Supercomputing. ACM, 2006. 1, 2

N. Sundaram, A. Raghunathan, and S. Chakradhar. A framework for efficient
and scalable execution of domain-specific templates on GPUs. In IEEE
International Symposium on Parallel & Distributed Processing, pages 1–12. IEEE,
2009. 20

C. Tominski, J. Abello, F. van Ham, and H. Schumann. Fisheye Tree Views
and Lenses for Graph Visualization. In Proceedings of the 10th International
Conference on Information Visualization (IV), pages 17–24. IEEE, 2006. 95

TOP500 Supercomputer Sites. June 2015 List, 2015. [Online]. Available: http:

//top500.org/lists/2015/06/. 2

J. W. Tukey. Exploratory Data Analysis. Addison-Wesley, 1977. 22

M. Üffinger, F. Sadlo, M. Kirby, C. Hansen, and T. Ertl. FTLE Computation
Beyond First-Order Approximation. In Eurographics 2012 - Short Papers, pages
61–64. The Eurographics Association, 2012. 42

D. van Dyk, M. Geveler, S. Mallach, D. Ribbrock, D. Göddeke, and C. Gutwenger.
HONEI: A collection of libraries for numerical computations targeting multi-
ple processor architectures. Computer Physics Communications, 180(12):2534–
2543, 2009. 20

R. van Liere and W. de Leeuw. GraphSplatting: Visualizing Graphs As Con-
tinuous Fields. IEEE Transactions on Visualization and Computer Graphics, 9(2):
206–212, 2003. 94

A. A. Vasilakis and I. Fudos. Z-fighting aware depth peeling. In ACM SIG-
GRAPH 2011 Posters, pages 77:1–77:1. ACM, 2011. 50

Z. Wang, E. Simoncelli, and A. Bovik. Multiscale structural similarity for
image quality assessment. In Conference Record of the Thirty-Seventh Asilomar
Conference on Signals, Systems and Computers, volume 2, pages 1398–1402 Vol.2,
2003. 84, 122

C. Ware, H. Purchase, L. Colpoys, and M. McGill. Cognitive Measurements of
Graph Aesthetics. Information Visualization, 1(2):103–110, 2002. 93

http://top500.org/lists/2015/06/
http://top500.org/lists/2015/06/

166 Bibliography

D. Weiskopf. GPU-Based Interactive Visualization Techniques. Springer Berlin
Heidelberg, 2007. 9

H. Wickham and L. Stryjewski. 40 Years of Boxplots, 2012. [Online]. Available:
http://vita.had.co.nz/papers/boxplots.html. 22

Wikipedia. List of AMD graphics processing units, 2015a. [Online].
Available: https://en.wikipedia.org/w/index.php?title=List_of_AMD_graphics_

processing_units&oldid=672834010. 36

Wikipedia. List of Nvidia graphics processing units, 2015b. [Online].
Available: https://en.wikipedia.org/w/index.php?title=List_of_Nvidia_graphics_

processing_units&oldid=672620028. 37

Wikipedia. Memoization, 2015c. [Online]. Available: https://en.wikipedia.org/

w/index.php?title=Memoization&oldid=673479170. 46

Wikipedia. OpenGL, 2015d. [Online]. Available: https://en.wikipedia.org/w/

index.php?title=OpenGL&oldid=675625638. 3

Wikipedia. Serialization, 2015e. [Online]. Available: https://en.wikipedia.org/w/

index.php?title=Serialization&oldid=675153441. 18

C. M. Wittenbrink. R-buffer: A Pointerless A-buffer Hardware Architecture. In
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Workshop on Graphics
Hardware, pages 73–80. ACM, 2001. 50

N. Wong and S. Carpendale. Supporting Interactive Graph Exploration Using
Edge Plucking. In Proceedings of IS&T/SPIE 19th Annual Symposium on Elec-
tronic Imaging: Visualization and Data Analysis, volume 6495, pages 08–12. SPIE
and IS&T, 2007. 95

N. Wong, S. Carpendale, and S. Greenberg. EdgeLens: an interactive method
for managing edge congestion in graphs. In Proceedings of the IEEE Symposium
on Information Visualization, pages 51–58. IEEE, 2003. 95, 107

B. J. N. Wylie and M. Geimer. Large-scale performance analysis of PFLOTRAN
with Scalasca. In Proceedings of the 53rd Cray User Group meeting. Cray User
Group Inc., 2011. 120

Z. Xue, X. Dong, S. Ma, and W. Dong. A Survey on Failure Prediction of
Large-Scale Server Clusters. In Eighth ACIS International Conference on Software
Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Comput-
ing, pages 733–738. IEEE, 2007. 69

http://vita.had.co.nz/papers/boxplots.html
https://en.wikipedia.org/w/index.php?title=List_of_AMD_graphics_processing_units&oldid=672834010
https://en.wikipedia.org/w/index.php?title=List_of_AMD_graphics_processing_units&oldid=672834010
https://en.wikipedia.org/w/index.php?title=List_of_Nvidia_graphics_processing_units&oldid=672620028
https://en.wikipedia.org/w/index.php?title=List_of_Nvidia_graphics_processing_units&oldid=672620028
https://en.wikipedia.org/w/index.php?title=Memoization&oldid=673479170
https://en.wikipedia.org/w/index.php?title=Memoization&oldid=673479170
https://en.wikipedia.org/w/index.php?title=OpenGL&oldid=675625638
https://en.wikipedia.org/w/index.php?title=OpenGL&oldid=675625638
https://en.wikipedia.org/w/index.php?title=Serialization&oldid=675153441
https://en.wikipedia.org/w/index.php?title=Serialization&oldid=675153441

Bibliography 167

J. C. Yang, J. Hensley, H. Grün, and N. Thibieroz. Real-Time Concurrent Linked
List Construction on the GPU. Computer Graphics Forum, 29(4):1297–1304,
2010. 15, 50, 53, 64, 137

Y. Yu, K. Zhou, D. Xu, X. Shi, H. Bao, B. Guo, and H.-Y. Shum. Mesh editing
with poisson-based gradient field manipulation. ACM Transactions on Graphics,
23(3):644–651, 2004. 77

J. Zhao, K. Trivedi, Y. Wang, and X. Chen. Evaluation of software performance
affected by aging. In 2010 IEEE Second International Workshop on Software Aging
and Rejuvenation, pages 1–6. IEEE, 2010. 72

M. Zinsmaier, U. Brandes, O. Deussen, and H. Strobelt. Interactive Level-of-
Detail Rendering of Large Graphs. IEEE Transactions on Visualization and
Computer Graphics, 18(12):2486–2495, 2012. 94

Visualization Challenges in
Distributed Heterogeneous
Computing Environments

Alexandros Panagiotidis

Dissertation

	Title Page
	Acknowledgements
	Contents
	List of Abbreviations
	Abstract
	German Abstract — Zusammenfassung
	1 Introduction
	1.1 Motivation and Research Questions
	1.2 Contribution and Outline

	2 Fundamentals
	2.1 Visualization
	2.2 Heterogeneous Systems
	2.3 VVand—The VISUS Powerwall and Cluster
	2.4 Box Plots

	I Abstraction
	3 An Abstraction Layer for Heterogeneous Environments
	3.1 Concepts and Architecture
	3.2 Evaluation
	3.3 Discussion
	3.4 Summary

	4 Generic Compositing with Per-Pixel Linked Lists
	4.1 Per-Pixel Linked Lists
	4.2 Evaluation
	4.3 Discussion
	4.4 Summary

	II Resilience
	5 Resilience in Distributed Visualization
	5.1 Fault Tolerance in High Performance Computing
	5.2 Strategies for Fault-Tolerant Distributed Visualization
	5.3 Discussion
	5.4 Summary

	III Exploratory Analysis
	6 Local Graph Exploration
	6.1 Exploration of Bundled Edges
	6.2 Linked Metric Views
	6.3 Discussion
	6.4 Summary

	7 Tuning Parallel Volume Visualization
	7.1 Performance Visualization
	7.2 Volume Ray Casting
	7.3 Metric Collection and Presentation
	7.4 Evaluation
	7.5 Discussion
	7.6 Summary

	IV Conclusion
	8 Visualization Challenges in Distributed Heterogeneous Computing Environments
	8.1 Research Question 1
	8.2 Research Question 2
	8.3 Research Question 3
	8.4 Open Challenges
	8.5 Summary

	Appendix
	A System Specifications
	A.1 enka
	A.2 VVand Display Node
	A.3 VVand Cluster Node

	B DIANA
	B.1 Build Information
	B.2 Usage Example
	B.3 Overhead: Memory Operations & Kernel Execution
	B.4 diana.commands.blas.Dgemm

	Bibliography

