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Abstract

This is a report on the results of a competition which was
initiated on the occasion of the 6th GI-conference on Theoretical
Computer Science, which took place at the University of

Dortmund from January 5th to 7th, 1983, It was asked for the
best solution of the 5-state Busy-Beaver-Game.

At first we make some historical remarks, introduce the
formalism, and list some results. Then the two best solutions
are described. Next we make some remarks on thé& behaviour

of good beavers and on the strange behaviour of some Turing
machines. Zoological names were given to the latter machines.
The amusing results are written down in the last chapter.

In the appendix you can 'find a lot of examples.
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1. Some Historical Remarks

In 1936 Turing introduced Turing machines for the first time

as a formulation of a concept of algorithm [1]. A more precise
definition was developped by Kleene in 1952 [2]. 10 years later
Rado restricted Turing machines to machines with only two
different tape symbols, namly b ("blank") and | ("bar"), which
have to move their read-write-head in each step during the
computation [(3,4]. Main topics of these investigations are the
function S(n) and £(n). S(n) is defined to be the maximum number
steps, which can be done by such a Turing machine with n states
which starts its computation with the empty tape and stops after
a finite number of steps. I(n) is defined to be the maximum number
of bars, which can be produced by such an n-state Turing machine,
which starts its computation with the empty tape and stops after

a finite number of steps. Obviously, S(n) and I(n) are not recursive.

Rado formulated the problem of computing I as a game, which is
called the Busy-Beaver-Game. For a given n one has to construct
a Turing machine with n states and the two tape symbols b and |.
The winner is the lucky person, whose machine stops, if the
computations is started with the empty tape and whose machine
produced more bars than the other ones. The Busy-Beaver-Game

can truly be renamed the "Busy Beaver Disease" for it has some
properties of an infection. Once infected the healing is very
difficult and takes an enormous amount of time (especially
CPU-time of a computer; see also chapter 3 and 4 of this report).
Some cases are even told to be chronic. Nevertheless, the
Busy-Beaver-Game stimulated results in theory of computation,
and in spite of the fact that £ is not computable, uncounted
computer scientists and amateurs tried to find the values of ¢
for small n. Their experience gives us a strong hint to the
enormous speed, with which the complexity of combinatorial

problems increases.
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For n=1 or n=2 the solution of the Busy-Beaver-Game is trivial.
The first successful computation of £(3) was done by Lin in
1963 [5]. By some equivalence relations Lin was able to reduce
the number of machines to be checked from 16,777,216 to 82,944.
Then he checked all these 82,944 machines by a computer. In
82,904 cases the program was able to decide whether the
machine stopped or not. The remaining 40 machines had to be
checked. by had. So, Lin proved I(3)=6.

3 r s' w m
1 B 2 l R
1 | 3 | L
2 b 3 | R
2 | 1 | S
3 b 1 | L
3 | 2 b L

Fig.1: A 3-state TM, which stops after 11 steps
and produces 6 bars, if the computation is star-
ted with the empty tape. The initial state is 1.

10 years later, Weimann et al. gave some better equivalence
relations and better computer programs to solve I (4) [6]. If
one would apply the method of Lin, 100,663,296 machines must
be tested. 15,000 would be left to be checked by hand. Weimann
reduced the number of machines from 25,600,000,000 to
1,198,690. 396 are to be checked by harnd. Weimann discovered
two machines producing 13 bars:



s 5 s' w m s P s' w m
1 b 2 | R 1 2 | R
1 | 3 B R 1 i 2 | L
2 b 1 | L 2 b . L
2 | 1 | R 2 | 3 B L
3 o) 1 | S 3 b T 1 S
3 I 4 | R 3 | 4 | L
4 b ES | L 4 b 4 | R
4 | 2 b L 4 | 1 B R
}
(a) (b)

Fig. 2: Two 4-state TM, which stop after 96 respectivly 107
steps and produce 13 bars, if the computation is startet
in state 1 with the empty tape.

In fact, these two solutions are very similar. The only difference
is the initial state. If one choosés 2 as initial state of machine
(a) respectibly (b), the machine will behave like the other one.

In 1973 Weimann gave an example of a S5-state TM, which produces
40 bars [7]. This result improved the best known lower bound
for £(5) more than two times.

On the occasion of the 6th GI-conference on Theoretical Computer
Science [9], which took place at the University of Dortmund from
January 5th to 7th 1983, a competition was initiated for the

best solution of the S5-state Busy-Beaver-Game for three reasons:

- to stimulate further investigations of the problem

- to obtain better examples for tk complexity of the
problems involved

- or simply to encourage the desire to play.
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In this report we summarize the results of the competion. After
this short survey we give a short introduction to the formalism

and list some results.

In chapter 3, Mr. Schult, the winner of the competition, describes
how he attacked the problem.

Chapter 4 is the report of the runner-up Mr. Ludewig.

Chapter 5 contains some remarks on the behaviour of good beavers.
This chapter is alsc due to Mr. Ludewig.

During chasing the busy beaver Mr. Ludewig discovered some Turing
machines with strange behaviour. According to .that Mr. Ludewig
gave zoological names to them. This amusing results are written
down in chapter 6.

Finally, we give some examples and statistics in the appendix.

I have to thank all the busy hunters, who spent a lot of time in

the competition and made it such successfiul. Furthermore, I have to
thank Mrs. U. Minning for the excellent typing of the seript.

And last, not least, I should mention, that without help of

Prof. Dr. V. Claus it would have been impossible to carry out

the competition.
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2. A Short Introduction to the Formalism

Turing machines are well-known to be 5-tupels (X, S, &, b, so)
with:

(i) X is an alphabet, which contains the so-called "blank
symbol" b.
(ii) S is a finite set of states, which contains the so-called

initial state sg,.

(1ii) 6:SxX+S x X x {R,gL, S} is the transition function.
(s,x) > (s',y,jL¢) means, that, if the machines is
S

in state s and its read-write-head . reads an x on the tape,
the state is changed to s', x is repleced by y, and the
read-write-head is moved either to the right (R), or to

the left (L), or the computation stops (S).

Busy-Beaver-Turing-machines are a 'special kind of Turing-machines.
A n-Busy-Beaver-Turing-machine (abbreviation: n-BBT) is a Turing
machine with ¥ = {56, t}, s = (1,2,...,n}, s, = 1, and the
computation stops after a finite number of steps, if the machine
has as input the empty tape, i.e. all squares of the tape contain
the blank symbol. | is called "bar symbol". Now, we can define

following functions:

£(n) = maximum number of bars, which can be produced by an n-BBT,
which starts with the empty tape.

S(n) = maximum number of steps, which can be done by an n-BBT,
which starts with the empty tape.

In the literature, I is often called "Rado's I - function". The
Busy-Beaver-problem consists of computing I(n) for given n.

The following two properties of I can be easily shown:

1. £: N + N is not recursive.
2. For each recursive function f: N 4+ N there is an n, ¢ N such

that for all n > ng f(n) < Z(n) holds
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Up to now, the following results are known [7,8]:

n £(n) S (n)
1 1 1
2 4 6
3 6 21
4 13 107
5 240 2992
6 240
7 222.961
8 23 » (7,3%%-1)/2

Fig. 3

It seems to be very difficult, to solve the Busy-Beaver-Problem
for n larger than 4, because of the enormous number of different
Turing-machines with n states and the alphabet. {B,|} (see the
following table):

n number of possible Turing machines

64

20,736

16,777,216

25,600,000 ;000
63,403,380,965,376
232,218,265,089,212,416

(= T L e P S

Fig. 4

During the competition 133 Turing machines were sent to Dortmund.
It took more than 4,000 CPU-seconds on a SIEMENS 7.748-computer
to simulate them and to verify the results. Out of all the
machines submitted by each participant we selected the best

and obtained the following list of winners.
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place name bars steps
10 Bruno Weimann (1973) 40 556
8 Gert Lormes & M. Bohlen 47 653
8 Jirgen Christoffel & Co. 47 653
7 Hans Zschintsch 68 3,737
6 Fritz Brinkmeier 71 3,902
5 Wolfgang Hatzel 87 3,190
4 Dietmar Hehmann 163 14,975
3 Kl. Muuss & H. S6nnichsen 168 21,294
2 Jochen Ludewig 240 41,360
1 Uwe Schult 501 134,467
Fig. S

3. Chasing the Busy-Beaver, Part I

3.1 General Attack

A basic method is the enumeration of all Turing programs.

Given five states (s) and two symbos (x), the Turing program has

10 entries. Each entry may hold five different next states (s'),
two different symbols (y) to write, and three different head-
moving instructions (m), namely L, R, S given 30 possible entries.
If m = S, the next state s' is not of interest, so I moved 'S’
symbol into the set of states and ignored the head movement

when s' = S. Taken that into account, there are 24 possible entries.
in each of the 10 places of the Turxing program, given 2410 =
63,403,380,965,376 different Turing programs.
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s r s' w m
1 b 2 I

1 ] ? ¥ 2
2 b ? ? ?
2 | 7 ? ?
3 o) ? ? ?
3 | ? ? ?
4 b ? ? ?
4 | ? ? ?
5 b ? ? ?
5 | ? ? ?

Fig. 6

Each TM must be started in state 1, and after reaching the 'stop
state' the tape can be evaluated. If the TM does not stop, that
has to be proved, i.e. with repeated execution interrupts and
configuration analysis.

3.2 Making the Problem Smaller

Because solving the problem by examining all combinations with
pencil and paper is illusive, I used a computer. Even with
computer speed, the analysis of never-stopping TM's was too
gomplicated, so for the sake of less runtime and easier pro-
gramming, never-stopping TM's were neither analyzed nor proved,
and the following decisions were made:

a) the tape is of fixed, finite size; if during the execution one
of its borders is reached, it is assumed that the TM will ex-
pand infinitely in this direction,and so the TM is considered
never-stopping.

b) the number of execution steps (until reaching the 'stop state')
is limited. If a TM reaches this limit, it is assumed that the
T™ will run forever (even without needing infinite tape), and
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so the TM is considered never-stopping. The computer runtime
for simulating the TM's execution is proportional to the
number of execution steps. When reaching the critical runtime
limit('time-out'), the TM's execution is aborted.

c) the remaining Turing machines stop within the limits and are
counted under various aspects. This situation is called ‘'Halt'.

In the following, the cause of ending the exec. :ion of a TM is
a criterion to divide the TM's into these groups: End-of-~tape,
Time-out and Halt.

Processing all the 63.4 trillion TM's is too big a task when you
have only about eight months of time; many reducticns on the number
of significant TM's are needed. When enumerating all TM's, sometimes
not all 10 Turing program places need be filled, because they are
never used during the TM's execution. My way of enumeration pro-
duces Turing programs with just the minimum number of Turing program
places filled with some Eixéd entries; the others remain undefined.
Obviously this avoidance of multiple processing similar TM's

means a significant reduction of the number of TM's to be pro-
cessed, perhaps a three orders of magnitude saving.

The top place (s=1, x=B) can be constantly set to '2 | R' for the
following reasons: This place is the first to be executed. If a

b were written onto the tape, the execution could as well begin
with s=s' (the next state to be executed) instead of s=1, because
the tape remains empty, only the head moves. There are two special
cases: if s'=1, the TM will never stop; if m=S, the TM stops
immediately. Starting the execution is s' instead of s is equal

to exchanging the s and s' Turing program places, so 'B' need

not be written in the top place. At least, s'=2 is the only useful
choiice for s', because s'=1 builds a TM that never stops, and s'=3,
4,5 may be transformed to the s'=2-case by exchange of Turing
program places,
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3.3 The Main Algorithm

The computer proceeds as follows:

1) The TM execution starts; the remaining nine places are not

yet fixed.

2) If the execution reaches a fixed place; that will be executed
properly.

3) If the execution reaches a non-Fixed place, then all possible
entries are made successively; for each the processing will
continue recursiverly with step 2). Afterwards the place is
made non-fixed again, and the execution situation is changed
back to how it was at the previous situation 3). If there
is no such situation, all TM combinations are processed and
the algorithm ends.

4) If End-of-tape, Time-out, or Halt occured, the counters will
be incremented appropriately and the execution situation is
changed back to how it was at the previus situation 3).

Many processed TM's will reach End-of-tape, Time-out, or Halt with
less than ten places fixed. In the tables presenting the results
this will be a criterion for dividing all TM's into several groups.

All relevant TM's will be processed. There are further optimization:
The tenth place to be fixed shall - according to the problem =
always write a '|' symbol, and stop (m=S). Therefore always

'1 | S' will be used. To avoid place exchange symmetries, the

"all possible entries" from algorithm step 3) is restricted to

"all possible entries, where s' designates a state for which
already one or two places are fixed, or - if existant - the least
state for which no places are fixed".
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3.4 Turing Machine Hardware

All programming was done ona personal computer (Apple II, 6502
microprocessor at 1 MHz, 47 K Bytes RAM), extended with a 8609
microprocessor board(running at the same speed) for programming
convenience; the program, written in 6809 machine language, was
about 700 Byte long. Comparisons with some bigger computers
(PDP10, VAX 11) exhibited a runtime saving of less than 60% (on
the VAX11), so I programmed the 6809 microprocessor. When calcula-
tions indicated that the program would run at least 20 months,

I started building a Turing machine in hardware. Shown in appendix
C and D, the Turing machine model is easy recognized in some TTL
chips. With only 17 common available integrated circuits, a
Turing program execution machine was build on a board that plugged
into the personal computer.

After transferring a Turing program into the TURING PROGRAM STORAGE
and starting the execution (under computer control), the extra
hardware executes the program with about 4,500,000 steps per second
(instead of 15,000 when using the microprocessor). The TM Control-
Register provides information on whether the machine runs, or

has stopped because of End-of-tape or Halt or Place-not-fixed.

In the latter case, the information also contains the number of the
place which had no fixed entry. During the hardware TM execution,
the computer waits until the Time-out limit is reached. TM's that
stopped were analyzed by the software on how many bars are written
in how many steps; essentially this means a TM re-execution in
software.

3.5 Performance

The tape size was 4096 cells, with the head on start position 2048.
Time-out was raised after about 500,000 execution steps. These

two limits are very high (a safety-factor of > 4), but the correct
value of the Busy-Beaver-Function for n=5 may require even higher
limits to be found. Nevertheless, the chances that the actual
found TM is the solution is quite good (and the championship date



-] B

allowed no further extended computations). The TM execution with
the hardware took 64% of the total 803 hours runtime. Increased
speed could only have been achieved with special, expensive

electronic parts.

3.6 Results

This is the best TM (in the sense of the problem):

s r s' Vi m 501 bars in 134,467 steps
1 b 2 | R found on 23.August 1982
1 I 3 b L

2 b 3 I R

2 I 4 | R

3 b 1 | L

3 | 2 b R

4 bo! 5 B R

£ | 1 | S

5 b 3 | L

5 I 1 | R

Fig. 7

Using the hardware for investigating the Busy-Beaver-Function
for six states, I found this TM:

s r s' W m 2075 bars in 4,208,824 steps
1 b 2 I R found on 23.December 1982
1 | 1 I S

2 o) 3 I R

2 I 3 | R

3 o) 4 | R

3 I 3 I L

4 b 5 I R

4 I 1 I R

5 B 6 I R

5 I 4 B R

6 B 2 I L

6 I 3 b L Fig. 8
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If the 5-state TM from above is combined with a 7-state 'power
stage', this Turing machine results:

S r s' W m This TM produces extremely many bars:
1 b 2 I R 4

1 | 3 5 L (4096 )

2 b 3 | R i

2 | 4 I R T2 i

3 b 1 | L ATl 5

3 I 5 5 R (4096 )

4 5 5 B R (4096 )
4 I 6 I L 6x (4096 ),
5 5 ] I L where 4096 appears alltogether 166
5 I 1 | R times in the formula!

6 B 7 | L

6 | 6 I R found on 29.November 1982

7 b 8 | L

7 | 9 B R

8 b 1 | S

8 | 6 I R

9 b 10 | L

9 [ 9 | R

10 b 7 | L

10 | 11 b R

11 b 12 [ L

11 I 11 | R

12 b 10 I L

12 | " [ L
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3.7 Statistics

TM's processed total: 126,891,605

Tape size: 4096 Cells, Time-out - abort after about 500000 steps.

Cause of end of TM execution

fixed | EndOfTape Time-out Halt Total  Percentage Runtime
10 68661869 13864419 28013532 110539820 87.11 % 802h55min
9 74640022 1504027 5524991 14473040 11.56 % 107h2&min
8 464301 124427 733452 1522580 1.20 Z 11h20min
7 55822 10365 76129 142314 0.11 % {h0Smin
$ 4489 751 7324 12544 0.01 % &min
S 407 70 483 1140 0.00 % Imin
4 34 S 721 112 0.00 % -
3 4 0 8 12 0.00 % =

2 0 0 1 { 0.00 % -

Total 77024950 15506264 34358391 124891405

Percent. é0.70 % 12.22 % 27.08 %

Fig. 10
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4. Chasing the Busy Beaver, Part II

4.1 Terminology and Abbreviations

Cells which have been inspected by the TM are called used. Only

a finite range of the tape can be used within a finite number of
steps. This range is called the covered taped. A TM under test

is called a candidate; if it does not stop, it is called a runner,
if it does, the number of bars produced is called its output.

If its output is not better than the output of other TM's tested
before, it is called a looser; otherwise, it becomes the champion.

The Busy Beaver may be identical to the ultimate champion. At least,
the champion'’s output is a lower bound for the Busy Beaver's output.

Two TM's are equivalent iff (if and only if) their tables can be
transformed into each other by consistent renumbering of the
states (and reordering of the lines). State 1, the starting state,
must not be renumbered., This definition differs from that used

by Wankmiiller (look at Fig. 2), because he also considers those
TM's to be equivalent which differ only in the starting state.

4.2 The Basic Algorithm, and the Need for Limits

There are 10 lines in the machine table of our candidates. For
each line, there are

- S different states to follow,

- 2 different characters to be written, and

- 3 different moves,

making altogether 5 by 2 by 3 = 30 alternatives. Hence, there are
30 power 10 different tables.

While the general busy %eaver function n=f(s), where s is the
number of states and n the number of bars which a machine of s
states can possibly produce and still stop, is noncomputable,
for any particular s, the value might be found and proven to be
correct. In practice, that was done for s up to 4. It is hard
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to believe that the same kind of prove will ever be given for any
s larger than 4. Thus, all attempts to find the 5-state Busy-
Beaver must in some way test a large number of TM's.

Most of the candidates will not stop, so at some point in the
computation a decision must be taken to regard a TM as a runner,
which can be discarded. Obviously, this decision cannot be "clean",
because the halting problem is not decidable. However, there is

no other way to cope with the runners.

In practice, there are two values that can be used as simple
criteria: the number of steps of the computation, and the range
of the tape which was actually used in the computation.

In the approach described below, a step limit SL and a tape limit
TL have béen used. Any TM which did not stop within its first SL
steps, cor left the range of TL characters to the left or to the
right of its starting position, was considered a runner. SL and
TL are not necessarily fixed, but may depend on properties of

the TM under test. A more sophisticated criterion is described in
chapter 4.5.

Setting the limits is a most difficult task. On one hand, they
determine the average execution time t (see chapter 4.6), on the
other hand they must be wide enough to encompass the computation
of the (unknown) Busy Beaver. Since this computation is presumably
cne of the very longest, nobody can ever be sure that they really
do. To illustrate this difficulty, consider: The author's champion
seemed to be safely within the limits (see figure 11), whilst

the computation of the winner's champion exceeded both our SL

and TL.
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output of best TM's
: 501

: 240 (2 TM's)

: 216, 208

: 208

: 168 (2 TM's)

: 165

: 163 (3 T™'s)

: 161 (7 ™'s)

: 161 (2 TM's)

number of steps

-+ —— ——

200,000

100,000

----------

o e e o e e
e 0N T W

50,000

o
n
=

e e

25,000 .limits used by the author
h e .(SL = 100,000, TL = 600)
i igf

12,500 +t======- tomm——— tommm——— Fomm——— > covered tape

50 100 200 400 800

Fig. 11: Number of steps and covered tape for the 21 best TM's

4.3 Getting Rid of Redundant Beavers

The number 30 power 10 is very large: If every TM could be checked
in 1 ms, the total check would last about 19,000 years. But the
figures can be greatly reduced, because similar TM's form large
equivalence classes. Therefore, the most important point is to
find a complete, but non-redundand set of TM's. Some trivial
statements form the basis for defining this set.

(a) Computations of equivalent TM's are identical except for the
state-numbers. In particular, the number of steps, the
covered tape, and the output are the same for equivalent TM's



(b)

(e)

(d)

(e)

(£)

(g)

=D s

For every TM, there is onother (the symmetric TM) with the
same, but mirrored computation. The only exception is the
trivial case when the first step is a stop. Since there are
very simple n-state TM's which can produce n bars, the trivial
case may be excluded.

In the first step of the computation, the state must be
changed. Otherwise the TM will never stop.

For every TM which performs n steps (n > O) before writing

a bar for the first time, there is another TM with the very
same computation, except that the first n steps are missing.
(This TM can be constructed from the first one by renaming

its states so that the state in which the first bar is written
becomes state "1").

Let us call a line of a TM-table used iff it has been applied
once or more during the computation. Then we can say that the
content of unused lines is irrelevant.

At most one line containing a stop ("stcp-line") can be used.
Thus, all other stop-lines are irrelevant.

For every TM, which stops, but writes a blank in its last
step, there exists a better one which differs only in that it
writes a bar when it stops. The final state is irrelevant.

Statements a through h can be combined to form less trivial rules:

(u)

(v)

(w)

The first line may be chosen to ke 1 B: 2 | R. According to
a, b, ¢ and d, this covers all relevant cases.

If a TM M1 is classified as a runner or a looser, then all
other TM's which differ from M1 only in their unused lines
are runners or loosers as well (see e).

There is only one stop~line whose right hand side is 1 | S
(see £, g).

From rules u through w, the algorithm for generating the non-

redundant set of TM's can be easily deduced:
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(1) Create a Turing table, of which all lines but the first one

are empty.
s r s! W m
1 b 2 | R
1 [
2 b
2 I
3 b
3 I
4 b
4 I
5 b
5 |
Fig. 12

(2) Start the computation in state 1 on the empty tape.

(3) Continue the computation as long as only defined lines of the
table are used. If you run into a line whose right hand side
is not yet defined, proceed as follows:

(3.1) If this is the last empty line, complete it as a stop
line, and determine the number of bars on the tape.
If the number is higher than the current champion, the
new TM replaces the champion.

(3.2) If the actual line is not the last line, generate also
the complete, but non-redundant set of right hand sides
for the actual line, and continue the computation with
each of them separately. The set contains all combinations
of characters to be written(b or.|), moves (L or R),
and distinguished states.

States which are unused (i.e. states of which both lines are unused)
cannot be distinguished from each other, that means it is irrelevant
which of them is chosen, because consistent renaming would permute
them. Notice that the state for which the new line is generated

is never unused.
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Thus, the principle of generating the right hand sides becomes
very simple: If the states n through 5 are unused, when a new
right hand side is generated, the choice of states is 1 through
n; if all states are used, all states have to be tried.

As an example, consider the first few steps of the algorithm:

After execution of line 1 B, which is 1 b: 2 | R, line 2 b is to be
used. Since it was not used before, its right hand side is unde~-
fined. There are 13 alternative solutions:

(0) 2 B: 1| 8§
(1} 2 B2 1T 1 E (2) 2 B: 1 | B (3) 2 B: 11 . ¢4) 2 B 1 B R
(8) 2 Bz 2 1 L 162 B: 2 IR (72) 2 B 2| L. (8) 2 B: 25 R
(9) 2 Bz 3 | L (10) 2 B: 3 | R (11) 2 PH: 3 | L (12) 2 B2 3B R

Branch (O) produces 2 bars and becomes the current champion. When
(2) is tried, the next line to be executed is again 1 B, then 2 b,
ans sc on, until step limit SL or tape limit TL is violated, and
this case is discarded. Similar, (4), (6), and (8) will never reach
any other unused line.

When (1) is tried, line 1 | is required, which is undefined. For
that lire, the same choice as above for 2 b is checked (states 3,

4 and S5 are still unused), and again many of the alternatives

fail immediately.

The algorithm given above can be understood as a searching
meachnism in a tree structure. Wherever an unused line is met,
the subtree is investigated, either until.the TM stops, or until
the subtree is descarded, because either of the limits SL and TL
is violated. Discarding subtrees is really the big fish, because
it means that less than. 1% of all Turing tables which are neither
equivalent nor symmetric, are actually tested.

The same basic algorithm as described above was applied by Uwe
Schult, the winner of the Busy Beaver Competition.
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By common sense rather than by any proof, we decided to insert

a stop lire only when all other lines are already used, because
every line contributes to the complexity of the TM, and the Busy
Beaver has to be a very clever TM. Therefore, in the example given
above, case (0) was not checked.

The total effect of all teh improvements achieved by the generation
algorithm was that only about 118 million TM's had to be checked.
Compared with the figure 30**10, this means an improvement by a
factor of ca. 4,600,000, which may be split into the effect of

rule u (30), v (about 1800), and w (84). The effect of v can

be further broken down into suppression of equivalent TM's (6)

and dynamic generation of the Tuming table (ca. 300).

Another mechanism , though correct in principle, did not really
contribute very much, because its effect was achieved by the
dynamic geration anyway. In our algorithm, e.g., there was a test
for certain cycles. If such a cycle occurs, the TM is a runner.
See the following example:

Imagine that line 3 | is already defined, while line 3 b is to be
generated. Let the former be 3 (: 3 cl ml with arbitrary values
for cl. and ml. Then, we must not generate 3 H: 3 c2 m2, because
the TM could never leave state 3. Our algorithm identified such
(and more complex) runners without actually continuing the
computation.

Similarly, an attempt was made to improve the efficiency by

making SL depend on the number of unused lines. E.g., when only
two lines are used, it is certainly not necessary to perform
100,000 steps before the TM is classified as a runner. Therefore,
a list was used which provided different values for SL for every
level of recursion. These values grow (approximately exponentially)
with the number of used lines. Again, this measure did not con-
tribute much because most of the time was spent in the very

lowest level anyway.
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4.4 Improving the Efficiency

Most programs follow the 80/20-rule ("20% of the code do 80%

of the work"). In this case, the relation was rather 95 to 5, be-
cause performing the computations was by far the biggest task. This
means that all the generation, checking etc. does not really matter.
One step of the computation would cost us approximatelv 40 micro-
seconds, which, after we had increased our limits SL and TL a couple
of times, was too slow. Therefore, a fast, efficient computation
algorithm (or the use of special hardware, as in Uwe Schult's
solution) had to be developed. This was achieved by implementing

the kernel in VAX-assembler, which reduced the execution time

by a factor of 4 (see chapter 4.7).

One idea which was checked for its effect, but was not really
introduced intc our program, was to map every candidate onto an
equivalent TM with a larger alphabet. By grouping, say, four cells
into one "macro-cell", we havd a TM with 16 characters. Since

there are still five states, the macro table contains 5 16 lines:’
In fact, twice as many are required, because we have to distinguish
if the macro-cell is entered from the left or from the right.
Though working on the largér alphabet is alphabet is slower than
just on | and B, this effect is far cutweighted by the fact that
all the sequences of steps within one macro-cell become one
"macro-step"”. Obviously, this approach does not pay if the macro-
Turing-table is initialized in advance for every candidate, because
many machines will stop, or fail, after a few steps anyway. But

it is possible to build up the macro table "on the fly": Whenever
the macro-TM enters a new cell, its content is checked. If it is
not vet defined, the computation is performed as a sequence of
normal steps, until the machine stops, or the cell is left. In

the latter case, the result of the computation is loaded into

the macro-table. For any particular candidate, only a couple

of the 160 lines (for groups of four) are ever required.

In the PASCAL-implementation, working on groups of four cells
resulted in an improvement by a factor of ca. 2.5. But this was
with fairly low limits (SL = 50,000). Transferring this idea to
our assembler program would have resulted in a considerable
improvment.
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4.5 Disqualifiing Lazy Beavers

When SL is large (say 50,000 or more), most of the machine time
was wasted for those runners which do all the SL steps (i.e. which
do not violate the tape limit before). By visual inspection of
some of the computations by means of a program which displays the
central part of the tape step by step on the terminal, it was
found that many of these unproductive TM's exhibit a typical be-
haviour: The covered tape remains very narrow even after thousand
of steps, because the TM loops within a couple of cells. In contrast,
champions would grow in a christmas tree manner, i.e. they extend
the covered tape alternating on both sides, usually on one side
much faster than on the other.

To get rid of these "lazy beavers", an additional check was in-
troduced: After a certain number of steps CL, the covered tape is
computed, and the TM is classified as a runner, if the result

is less than a lower bound LB. CL was ,chosen so that most of the
loosers and those runners violating TL would fail without reaching
this check. For TL = 600, this happens usually within thousand
steps, which leeds to CL = 1C00. The LB was set to 20, and since we
did not feel quite sure about this empirical simplification, all
the TM's just above LB (below 30) which still stop were stored

and checked for ‘their output. Their number turned ocut to be very
small (about 70), and 81 was by far the best output in this group.

4.6 Influence of the Limits

If either SL or TL is small compared to the other, the smaller
determines the average computation time t for cone TM. A fairly
good balance seems to be achieved if SL is of the same order as
the square of TL, because of the Christmas tree structure of the
computation described above. By eliminating the lazy beavers,

the cost of SL was significantly reduced, so that TL was critical.
Our final values (at the lowest level, see 3) were SL = 100,000
and TL = 600. With regard to Schult's results, both are just
slightly too low, 150,000 and 700 would have done nicely, but

not within the deadline of the competition.
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Fig. 13: Top of a (presumably) infinite Christmas tree

74

154
177
338
576
704
1438
1821
2900
5526
5852
11718
16701
23496
47036
50238
94140
150831
188352
376762
452622

The influence of SL on t is linear for small TL, while the in-
fluence of TL is quadratic for large SL. For very large SL, the
influence of TL becomes rather exponential, because a few very
exotic TM's exhibit a very slow growth of the covered tape:

If n cells are covered after s steps, n + 1 cells will be covered

after 2n steps. Due to a bug in our program, such a pathologic

TM once seemed to paralyse our algorithm. Its table is:



S 73 s' W m
1 b 2 I R
1 I 1 b L
2 b 3 | L
2 I 4 [ R
3 b 1 [ S
3 I 4 l L
4 b 1 | L
4 | 4 b R
5 b 1 l S
5 | 1 l S
Fig. 14

Figure 13 shows the steps at which the covered tape has been
extended. Instead of | and B, the symbols "+" and "." are used.
"X" indicates the position 'of the head, when it just writes a
bar. At the left, the state is given, at the right the step-
number.

4.7 Implementation

All the ideas described above were implemented in PASCAL on VAX/VMS.
There is a procedure which performs the computation until an unused
line is found. Then, the (local) generation prodedure is called.
From there, the first procedure is called recursively. The use

of recursive procedures makes it very easy to return to the root

of the subtree when a branch is completed, because the whole

status (including the tape) is passed to the next level as a

value parameter.

In the assembler-version, the computation was actually started

from the first step at each level, because that was altogether
easier. Most of the time is spent in the lowest level anyway, where
all but one of the lines of the Turing table have been generated.
(ca, 97%).
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At certain intervals (every 20,000 TM's, which means ca. every

1000 s), the program dumps status information in one of two files,
in turn. When the program has to be restarted, it can automatically
access those files.

Since the lines of the Turing table are not filled sequentially
from top to bottom, it is fifficult to say whether or not a

certain TM has already been checked, or in which order two TM's
were found. For such purposes, a coding of the Turing table was
defined, so that the code is steadily growing in lexical order
while the tree is searched. Auxiliary programs allow the code to be
translated into a normal table, and vice versa. See the appendix
for examples.

The program would run at lowest priority on two VAX 11/780's,
searching different parts of the tree. Thus, it just replaced
the null-process for a couple of months.

4.8 Some Statistics

The complete tree of TM's has been searched several times, before
the final limits were chosen. The last search took 1647 h (or

68,5 days) of CPU-time. According to our algorithm, four cases were
distinguished:

(a) machines which stop,

(b) machines which violate the tape limit TL,
(c) lazy beavers (see chapter 4.5),

(d) machines which violate the step limit SL.

See Figure 15 below for some statistics.



_30—

case Number relative average relative
Number CPU~time/TM CPU-time
(a) 28,013,513 23,7% 1.3 ms 0,6%
(b) 64,732,056 54,8% 34 ms 36,7%
(c) 22,334,845 18,9% 12,8 ms 4,8%
(d) 3,13C,334 2,6% 1111 ms 57,5%
All -118,210,766 100,0% 50 ms 100,0%

Fig. 15: Statistics of a complete search

Of those TM's in group (a), about a third output just three or four
bars. Above that, the number of TM's seems to decrease fairly
steadily, but there are two significant maximums, one at ca.

65 bars, another one at ca. 161 bars. Uwe Schult, who did the same
search but which much larger SL and TL, did not find any TM whose
output lies between 501 bars (presumably the Busy Beaver) and

240 bars (our two champions).
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5. Behaviour of Good Beavers

What is the temptation of the Busy Beaver Problem? The mathematicians
have taugﬁt us that the general Busy Beaver function is non
computable. Different from simple mathematical truths, this result
pleases our brain, but not our heart (at least not mine). And

though we know we cannot win the war against the mathematical

law, we would like to win a battle, i.e. to find at least one
particular Busy Beaver.

Therefore, we (just as the person who invented the name Busy
Beaver) fail to look at the problem in a purely formal way. We
try to apply feelings and experiences, because we want to under-
stand the problem both in our brain an in our heart (which is,
alas, not possible).

As part of this obstinate endeavour, I tried to learn how good
Beavers work. I could not helieve that such a simple system of
ten lines in a Turing table can be applied in a way that one

of the lines is only used after many thousand of steps. I tried
to find a simple mechanism behind this fact.

Let us look at an example: Our champion (called TM-240) has this
takle:

S b S W m
1 o) 2 I R
1 | 1 | R
2 B 3 I L
2 | 4 b R
3 b 1 I £
3 I X | L
4 b 1 | S
4 | 5 | R
5 b 1 b R
5 | 2 | R

Fig. 16
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The start of its computation is shown in fig. 17. We can recognize
the very regular behaviour. This pattern is emphasized in fig. 18,
where only the lines are shown at which the covered tape has been

extended.
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Fig. 17: First 200 (of 40,806)steps of TM-240.
("." is a blank, “+" is a bar. "¥" and "O" indicate the head

of the TM; "X" means a bar is being written, "0" means the T™M
is writing a blank. The state before execution of the step

is given at the left.)
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In fig. 18, we can easily see the structure of the computation:
Groups of two bars, surrounding one blank ("+.+"), are replaced
from right to left by a solid line of bars. For each group that is
replaced, two more bars are written at the right end of the covered
tape. When all the groups are consumed, the solid line is split
again into groups of three cells, and the process starts again.

There is cnly one situation when the computation may stop: When
the line is split into groups, the end may be reached in three
different states. Only two of these states permit the machine to

continue, the third leads to the stop.
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PR IR o R s o R o R o e P S o T R o n ksl g s o i o o o GRS e . 612

S S = T T = T o e e e R R B n 0. ST . 658
I i e o o o B R e i 2. ST i 714
I S = o S I B B e o o e o o o o o o . (U — 780

S=2 4.4+, 44+t b L R R b L L L L . 856
I R T o T I i o o e o o 0. (R * V%4

S=2 .+.++.++ .+, e e L L L L . 1038

S=2 .+, 4+, ++. HH R R R L L L L 1144
=2 .f.++.++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++x... 1260
I o i e T e S o o e S ) QR G 11 <)

Fig. 18: Compressed computation of TM-24C.



3l

The computation can be simulated by the following algorithm:
Let M be a number, T a pair of two numbers g and n, and L, R, and
B three functions, which are defined as follows:

B(T) = (2 » g) + 2 if n = 0, undefined otherwise
L(T) = (5xg) + (3*n) + 1 if n <> O, undefined otherwise
R(M) = R(L(M DIV 3,2)) if M MOD 3 =0

R(M) = R(L(M DIV 3,1)) if M MOD 3 =

R(M) = R (M DIV 3,0) if M MOD 3 = 2

The computation is defined by B(R(1)). It is shown in Figure 139.

M L MOD 3 R.qg R.n L B
1 0 1 4
4 1 1 1 9
9 0 3 2 22
22 1 7 1 39
39 0 13 2 72
72 0 24 2 127
127 1 42 1 214
214 1 71 1 359
359 2 119 0 240

Fig. 19: Simulation of TM which outputs 240 bars.

Up to this point, the chapter seems to provide number-mystics
rather than any logical argument. But the functions defined above
have a very simple perspicuity: Let us concentrate on two special
situtations, when either the covered tape contains nothing but
bars (state 1), or when this solid line has been split up into
groups, and the head of the TM has just reached the first blank
at the right. Fig. 20 a shows the first of these lines.

For the lines marked by S=1, L gives the number of bars; for the
other lines, g is the number of groups ("+.+"), while n indicates
the situation at the end: n=1 means that the first blank is reached
in state 2, when the second character of the group is to be written.
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Correspondingly, n=2 means state 5 and no character in this group

so far;

n=0 means state 4 and two characters written.

The latter

case is the very end of the computation (see fig. 20b)

L R.g¢ R.n

S2% v ssmmins O e e Iy SO S U i S 1 H 1
4y S B e S e SR A AT P 8 (6 e (R e e e 2 H 0 1
2] i s T T GO S eSSy s |} 4

-1 e AN o et e SR A i e o S N ot R a7 STANE 9 H 1 3
S P ¢ = = o o = o R D R R 27 | 9

SES wawivie .4t . H0. i vacosossccssesssssssancanns 36 | 3 2
=1 ... XL L e 145 H 22

S= T T S = U S . R 167 : 7 1
S=1 .X++++ttitttdd bttt bttt 485 | 39

S=5 4.4+ . b EE b HE R AR 400 524 H 13 2
Fig. 20 a: More compressed computation of TM-240.

Bul cmetrb b b A A A A XA v e 40800

§=5 —==tt.tr b b b A L R L 40801

A AT h e I 2 U0 o o e I oL 40802

A T P o U U O e e 20 ¢ 40803

SE5 mmebitb bbb bR i B b e R s e 40804

822 =emib b FE HE P A L D s aaee 40805

S=4 mmmdt b HE AR LR EEL XL L 40806 | 119 0
Fig. 20 b: The last steps of TM-240 (only part of the covered tape

is shown)



-36—

The inner loops of the computation, which are suppressed by the
algorithm given above, can be described in a very similar way. In
fact, the algorithm was found using a bottom up technique, i.e.
by starting from short cycles, and proceeding to more complex

structures.

Other TM's can be described in a similar way. The TM which outputs
168 bars, e.g., is described by B(3) = 168:

B(M) = B(5 » (M DIV 3)) if M MOD 3 = O
B(M) = (2 = (M DIV 3) if M MOD 3 = 1
B(M) = B(5 ~ (M DIV 3) + 9) if M MOD 3 = 2

Schult's Busy Beaver was not thoroughly analysed. May be it is
signigicant that its computation uses (different from all other
good TM's, as far as they were analysed) MOD 4 rather than MOD 3.

With z(M) = 3 » (M DIV 2), 'the output can be computed in eleven
steps, starting from B(O):

B(M) = B(Z(M) + 6) if M MOD 4 = O
B(M) = (2(M) +6)/2 if M MOD 4 = 1
B(M) = B(Z2(M) + 2) if M MOD 4 = 2
B(M) = B(Z(M) + 13) if M MOD 4 = 3

With these results, we can return to the question asked in the
beginning of this chapter: The "trick" of good TM's is to build

up complex computational steps from simpler ones. To me, it is
much easier to believe that the complex algorithm can perform
eleven steps before M MOD 4 happens to be 1 than that the

original machine can do 134,467 steps before a certain line out of
ten lines in its table happens to be applied.
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6. A Beaver Typology

During our investigation, we found a couple of strange TM's. A

few of

them are shown below. According to their behaviour, we gave

zoological names to them.

In the first group, there are various forms cf diligent beavers.

Beside the well known Busy Beaver,

there is the careerist, who

takes every effort to move forward as far as poosible. A third

species is the beaver who works longer than any other Beaver (and

still stops).

In practice,

S—state TM.

all three seem to be identical in the case of the

In the second family are the non-productive beavers. Three species

can be

distinguished:

- The Civil Servant Beaver who cares most for his progress, but

does

not produce anything;

- the Scientific Beaver who does ncot produce anything either, but

with more effort, and less effect on his position,

- and finally the Beaver Freak, who tries to survive as long as

possible without producing anything, moving ‘on the tape, and

changing his state.

More formally, the definitions are as follow:

B : Number of bars output by the beaver

S : Number of steps until stop

CASTOR
CASTOR
CASTOR

CASTOR
CASTOR
CASTOR

DILIGENTISSIMUS (vulgo
PRIMUS (vulgo
PERPETUUS (vulgo

MINISTERIALIS (vulgo
SCILENTIFICUS (vulgo
EXFLIPPUS (vulgo

Busy Beaver)
Place-~-hunter Beaver)
Swakian Beaver)

Civil Servant Beaver)
Scientfic Beaver)
Beaver-Freak)

Distance of the cell where the beaver stops from the start

highest B
highest D
highest S

B=0 AND highest D
B=0 AND highest S
B=0 AND D=0

AND initial

state = final
state

AND highest S
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And here are the various champions; the first one is, of course,
Uwe Schult's result.

Species: CASTOR ET DILIGENTISSIMUS ET PRIMUS ET PERPETUUS
(alias CASTOR SCHULTIS)

Stops in step 134467 at position 656 with 501 bars between
-10 and 656

s r s' w m
1 B 2 | R
1 | 3 o) L
2 B 3 | R
2 | 4 | R
3 b 1 | L
3 | 2 B R
4 B 5 B R
4 | 1 | S
5 B 3 | L
5 | 1 [ R
Fig. 21a

Species: CASTOR MINISTERIALIS

Both TM's stop in step 52 at position 11, no bars on the tape.

s X S W m s 4 S w_m
1 5 2 | R 1 B 2 $ R
1 [ 1 p R 1 ; 1 % L
2 B 3 1 R 2 5 3 5 R
2 | 5 B R 2 I 4 B R
3 B 4 | L 3 B 1 | L
3 | 1 5 R 3 I 5 | R
4 5 2 ; L 4 5 3 | R
4 | 4 | L 4 | 1 B S
5 5 1 b S 5 B 4 i R
9 | 2 B R 5 | 3 , R

Fig. 21b
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Species: CASTOR SCIENTIFICUS

Stops in step 187 at position 8, no bars on the tape.

S r s' W m
1 b 2 b R
1 | 1 b L
2 b 3 b R
2 | 1 b S
3 b 4 | R
3 [ 5 | L
4 b 1 | L
4 | “ b L
5 B 3 | R
5 | 5 | R
Fig. 21¢

The Computation of CASTOR SCIENTIFICUS is shown in fig. 22

Species: CASTOR EXFLIPPUS

Stops in step 67 at position O, no bars on the tape.

0]
H
tn

— ot
ot — — ot — ot — O o =
g N NS~ B - < Y s TN/ T« I e O« O §—

16 ) TR ¥ » TR -SSR - SO Y R VY I S I o
— X — ot — Ot — o
Ul = U b b W= W= N

Fig. 21d
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155
156
157
158
159
160
161
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176
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180
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Appendix A: Examples of TMs, which produce many bars

zr |wmz’ zr jwmz’ % zr Jwmz’
10 |1R2 10 |1RS ¥ 10|1R3
e L g .
oliLt
21 |IR3 21 |[1L2 e e 21 |1L2
30 |0RA 30|1CH 30102
i 30 [0kt et
| =] LH
a1 |1R1 41 [1RS @Y a1 |1 e
g? Lt s0/1L2 50 [oR1
501 in 134447 : 240 in 40804 LR 240 in 41340 shjeLs
zr Jumz’ Zr jwaz?
(1) 10|1R2 () 101
10 |1R2
o g M e[ e Wi
21 |1LH ) 20083
AT sl (i
30 |1L5 20 [oLS
F—AY 41 |ORI LY 41 |1LH
i {1
216 in 40899 ¥ 208 in 39734 208 in 49249
zr jwmz’ zr Jumz’ (—~ zr |wmz’
% 10]1R2 > 1011R3 W 10]1r2
- 11(1L1
(( 20|13 )) 20| 1LH 20 | 1R4
o © 21 102 © ) 21 |oL3 & © 21 [1L3
30 |0R4 30(1L4 \ / 30 |1LH
DV I i i
a0 |1RS
5 41 |1RS © ?} 41 |1R4 © O 41 |1R3
S i ok
168 in 21286 148 in 21294 ke 145 in 15589 S111R4
zr Jwmz’ zr Jumz’ vz’
10]1R2 (1) 10|1R2 1R2
i1|1R4 i1|1RS .
20(103 G 5 20003 164
21 [1R1 21 |1R1 1R1
30 | 1R1 / 30 |1L4 0R2
s it
L3
41 {0LS @ O 41 1L5 L5
50| 1Rt 50| LK 1LH
163 in 14965 163 in 14975 e oLs
) zr |wmz’ zr jwmz’ wmz’
il sl
L2
20 [1R3 20 | 1LH
(@ OV ITE Ay 2 i
] 2l 21
; {R2
40 |‘LH 30 |1L5
Ay 41 |0RS 41 |1R3 iR
it 1
162 in 41710 - 161 in 14371 A3 141 in 14389 s

*Remark: Chcosing state 2,3,4,5 as initial state, this machine
produces 208,208,208,216 bars, respectivly



161 in 22335

157 in 19145

LW [ Ly

g2

91

\
QWG

141 in 20711

157 in 19443

vz’
1R2
oLS
1LS
oL3
1LH
oL4
OR!
1L4
| R4
1L2

{157 in 33174

1 {OR1



'

zr |wmz? 0 zr jwmz’
10|1RS 10 | 1R2
11 JoL1 Z28\ S
21 [1L1 ) O, 21 |1R3
30 |1LH 30 |0R4
0|1k 36 [OR:
41 [1R3 © Qa 41 |1R4
50 {0R2 50 |1L1
51 |{R4 5t]1C4

154 in 20739 ' 125 in 23838
Zr |wmz’ zr jumz?
S A O 10]1R2
20 [1R3 20102
o ) 21 |oR1 (© ) 21 |0R3
30|1L4 / 30 [0R2
i i
40 |oLs
© ?) a1{1La © ?) 41|1La
i 2l

112 in 6147 106 in 5012
zr |wmz’ zr jwmnz’/
(1) 10 |1R2 10 |1R2
‘ i1 |1LH i1|oL5
((2} '5)  20|0R3 20 |0L3
21 |0R2 21 |oR2
30 [0R4 30 |1R1
i 33
@ g 41 |1L5 41 {1LH
50 {oL1 50 {oC4
% i L] 51 [0R2 5111LCt
zr jwmz’ zp |wmz’
(1) 10 [1R2 10 |1RS
/‘ i1]1RS i1|1R4
(2) (5)) 20[1L3 20 [ LR}
1 [0R] 21103
\ 30 [1R2 30 |oL4
Al e
© 4 a1 [1LH 41 (1L
3133 21 |ok3

97 in 14095 97 in 14095
zr Jumz’
(1) 10|1R3
& o HL
Il i

21 {0L2
30 |1R2
i
© Qo 41 [1RS
S0 {0R1
S1 5111L4 S1|1LH

?1 in 8245 89 in 5685 88 in 7706



81

in 7482

iR4

81

il e

in 9845

ORS

1L4

81 in 3323

81 in 14370




78 in 9238 -

=
(1)
7
@) 5))
O—&

78 in 11440

wmz’
iR2
1L2
iLt
OR3
oLs
iR4
iLH
oLS
OR1

I1L3

Ll = o =

F -3
[=]

(4,18, F-Y wgh)t\)"""'lhl
[ = T e )

80 in 14370

Zr Wz

NNIT
20
‘a; G) 21
30
31
OO
30

792 in 4948
C zr |
& 19
20
(2) (5) 2
30
40
—DH ¥
30

78 in 7044
20|
o 10
((2) 5)) 20
30
I 1
G %
30

78 in 9255

Q=09

76 in 4172

80 in 21040

© )

—(4)

78 in 4471

6‘9

(3))

(©)

78 in 9108

(2

o

3)

©

78 in 9238

: A‘i

76 in 4359

wmz’
1R2
L1
IL3
0R3
{LH
OR4
iL4
LS
IRl
oLt




wmz’ zr jwmz’ zr Jwmz’

iR2 10{IR3 10 |1IR2

iILS 11 [1RI1 11|0L4

OR3 20 [OR1 20 [OR3

1LH 21 |1LH 21 [1LH
0 {1R4 30 {OR4 30 |1LS

oL3 31 |IR2 31 |OR4

1L 401(1L4 40 |1LS

ORS 41 IRS 41 |ORS

2this 215

L3 1oL

73 in 51647 72 in 7383

winz’ wmz’

IR2 1R2

1R1 IR1

1LS ILS

1L2 1L2

{LH oL2

{LS 1L4

1L1 ILH

IL3 ILS

{R1 IR]

oL4 oL3

71 in 3671

zr |wmz’

10 |1RS

11 [1LH

20 |IR3

21 |OR!

30 |1LS

31(iL4

40 {0LS

41 |OR4

50 |{R2

S1/0L3

r 4 zr |umz’ zr |wmz’
(RS 10]1R2 (1) 10 [1RS
1R2 11|IRS ' 11 |1R4
iCs S - 21 oLz
OR4 30 |1LH 2O @ 30 |ILS
i i 205
oLS 41 |1R4 (3] 41 |OR3
e 2ok 36

69 in 4956

wmz” 2r |wmz! 20 [wmz’
1R2 10 |1R2 O, 10 [1RS
353 s i 301
20 {OL

1LH 21 |1LH —— 21 |{LH
1L 30 |1L4 @) © 0) 30 {0LS
1R2 31 |1R2 31]1L3
o7 e 5 R
1L4 S0 |1R3 - SO {1L1
OLS Si|oLy 51 {0R4

48 in 3430 é8 in 3430 48 in 3737



=l ]=

Gl zr fwmz’ (~3 zr jumz’
N e " % X
F—0 2l o o BE G \W®
30 {0L2 B 6 O) 30|0L4
Al i
@ O 41 [1LH 3) 41 |1L4 © O
e le
é8 in 3737 Shis 48 in 3737 : é7 in 3858
zr juwmz’ zr jumz’

) 10 |1IR2

(1)
o = I

" (1
i1|oL4
20{1L3
21 |0R2 '6 21 |1R5 0’ $
30 |oL4 30 [oLa
31 |1R2 \ 31 [oL3
& oG

40 |1L5 40 [1RS

© (4 a1 [1LH O 41 |1R2 =)
it A

&7 in 4128 &7 in 4598 &7 in 4682

— e b b e
rCaarr-a
T HWUNONN

(e‘%‘!j

47 in 4848 87 in 6742 46 in 33355

w

o
C—00
roor
L=

) }'?_ 1R2

20 [0R3

(@) &) 21 |0R2
\ 30 |1L4

() 40 |OL 1

46 in 3457
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Appendix B: Examples of TMs, which make a large number of steps

zr |wmz’ zr jwmz’ zr jumz?
i 0 iEfa W i
11|oLs
20 |1R5 20(1L3 Yy 20 |1R3
21 [1R3 9‘ ©, 21 |0R4 © 3) 21 [1L2
30 [0R4 ' 30 (oL4 30|1L5
it (N B 3o
a1 [1R1 \9 &) 41 oLl S—A) a1 |0RS
e i i
110 1]1L _ 3
S01 in 134447 208 in 49249 142 in 41710
(—3 zr fwmz’ Zr jwmz’ iwmz’
) 10 |1R3 (1) 10 [1R2 1RS
G 510 ) 20 |oRs il
© &) 21 |12 @) 21 [1LH 102
30 (102 ‘ 30 | 1R4 1LH
2 o0 TN B i
oliL
O 41 [1RS 3 O a1 [oR1 {R5
S i L
240 in 41340 7 216 in 40899
zr |wmnz’ wmz’

(D 10 [1R2
11]0L3
(e“e 20 |0R3

NLEDWWRI P == N
OO~ Qw0 |7
c:\.
r~
[4)]

21 |or2
' 30 (1L4 1L1
201003 iRg
{4 a1 |1LH L2
i i
208 in 39734
zr |wmz’ ze fumz’
10 [1R2 10 [1R2
11|0LS 1110L5
20 |1L5 20 |1L1
21 |1R3 21|iR3
30 [0R4 30 {0R4
31 |1LH 31 {1LH
a0 |0R1 40 :0R1
a1 |1R4 a1 | 1R4
e 3% lich
125 in 24778 125 in 23838
zr lwmz’ wmz’ zr Jvmz’
O 10|1R2 IR2 () 10[1R3
11{1L5 iL5 11]1L2
- 2 1S g Q[ B 2l
(B G—D~ Z|i2 ILS 30|1L4
L/ g i 1
(3) 41 |0Rt OR{ © ?) 41 |1R4
50 | 1R4 1 R4 50 |0L1
51]1L3 511113 51 1115

161 in 22335 141 in 22059 168 in 21294



) zr

10

‘, 11
(2) O
30

4

@ O 41

2

148 in 21284

141 in 20711

161 in 20398

e = L = Lol ol - T
ACAr-DCAODO
Nob—oXTwnuin

157 in 19443

159 in 20744
zr juwmz’
N i
(2} 5)  20|iL1
21 {0R3
30 | 1R2
e
QS O a1 {0L3
s0|tL1
, 51 loL4

161 in 20711

umz’
1FS
CR4
0liPS
1L1
1L2
1L3
1LH
L3
1L3
IRl

w2’

{R2
L4
D|LIRS
ORZ
1LH
iIR2
iLS
oLt
1L1
oL3

35 in 19283



83 in 14351

L

O

145 in 15589

1461 in 14371

iLS
iL2

O0R4

umz’

IR2
1L1
I1R4
iL3
1LH
oL2
iRS
1IR3
oL1

iR4

iL4

81

in 14370

e i e e () CD b s ) e
Ar-rrrraox000
=X == 0UIN

oL4
1L2

ILH

0L4

43 in 15889

QQG

163 in 14975

141 in 14389

80 in 14370

iL3

wmz’

IR2
1RS
oL3
iR1
1L4
1L3
iR1
1LS

oL4

OO -0

s DOWRN =~ N
e~ Ll =] )

ORI



83 in 14248
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(1)
tgﬂiil'..ts‘
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97 in 14095

/,'5'
e.e\
>

78 in 11440

81 in 9845

0
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Appendix C: Architecture of the Turing Machine Hardware
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Appendix D: The Eectio
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Appendix E: Output of the Busy-Beaver (Except)
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