
SQL/XNF -Processing Composite Obj~cts as A~stracti~_ns over Relational Data
B. Mitschang*, H. Pirahesh, P. Pistor**, B. Lmdsay, N. Sudkamp**

IBM Almaden Research Center
San Jose, CA 95120, USA

e-mail: {pirahesh, bruce }@almaden.ibm.com

Abstract
Complex applications, such as design appl_ications,

multi-media applications, and even advanced buszness ap
plications can benefit significantly from a database lan
guage that supports composite (or complex) objects.f!~ual
ly such data is inter-related wi!h the dat~ used_ by tradztw'!al
applications, such as accountmg, ordenng, bzll ofmaterzal,
and repair and maintenance tracking. Consistency of such
data is of utmost importance in applications such as those
of aerospace. Hence, shar~ng of_the data ~m~ng tr~d~lional
applications and composae object applzcatLOns zs zmpor
tant.

Our approach, called SQL Extended Normal Form
(short SQL/XNF or XNF) enhances relational technology
by a Composite Object facility, which comprises not only
extraction of composite objects from existing databases, but
also efficient navigation and manipulation facilities provid
ed by an appropriate application programming interfa~e.

The language itself allows sharing of the database
among normal form SQL applications and composite object
applications. It provides proper subsetting of the database
and subsequent structuring exploiting subobject sharing
and recursion, all based on its powerful composite object
constructor concept, which is closed under the language op
erations. XNF is integrated into the relational framework,
thus benefiting from the available technology, e:g. relatfo
nal engine, query optimization. Currently, a maJor pomon
of SQL!XNF is operational in Starburst extensible database
system at IBM Almaden Research Center.

1. Motivation and Introduction
Existing "second generation" data base systems are fo

cussed on business applications (e.g. booking, storekeeping,
cost accounting, project management and decision support).
It is widely agreed now that second generation DBMSs are
inadequate for a broader class of applications that deal with
composite objec~ (s~ct~ed data), as opposed t~ flat rel~
tions. Such apphcauons mclude office automauon, medi
cine, computer aided software engineering (C_AS~). artifi
cial intelligence (AI), hypertext, and geographical mforma
tion systems and computer aided design (CAD).

Many of these applications extensively navigate through
the data. Some applications, such as CAD, process the data
by complex and time consuming algorithms, and demand
very high performance. For this, the data needs to be repre
sented by data structures which ~an. be a~ccss~ very f~st.
Caching of data close to the apphcauons 1s parucularly Im-

*University of Kaiserslautern, Dept. of Computer Science,
6750 Kaiserslautern, Federal Republic of Germany,
a-mail: mitsch@informatik.uni-kl.de

•• IBM Heidelberg Scientific Canter, 6900 Heidelberg,
Federal Republic of Germany,
e-mail: {pistor, suedkamp} @dhdibm 1.bitnet

1063-6382/93$03.00 © 1993 IEEE
272

portant when applications/tools. run on autonomous. w~rk
stations, with remote access to mtegrated data repositones.
For example, design applications deal with large af!lount of
data, which is mostly organized using such !llodeling con
cepts as version, alternative, and co~figurauon. Those ap
plications often work on a well-specified set of data, called
working set, s~h as a particul~ version of a documen_t or
a wing of an arrcraft for a particular model and vers10n.
Such data is typically an aggregation of a set of othe~ docu
ments/designs with specified versions. Usu~ly wor~mg sets
are extracted from the database and loaded mto mam mem
ory close to the applications for high performa~ce. After an
application completes its work on the wo~k_ing. set, the
DBMS propagates back the changes to the ongmatmg data
bases. Working sets are typically much smaller than the
whole database. For example, in design applications, the
sizes of the databases are in the gigabytes to terabytes range,
whereas working sets are typically. in the range of 1 ~o 100
megabytes. Thus, loading a workmg set translates mto a
data extraction where on average one tuple out of 10000 to
100000 is selected. This again calls for set-oriented query
facilities for efficient data extraction, requiring powerful
optimization, and high performance execution. !fie ~oncept
of views is extensively used in DBMSs, allo~mg_ different
applications to view the data differently. Apphcauons deal
ing with composite objects require this concept to be ex
tended to allow the formation of different views over the
same data. Further,these views must be updatable.

We propose an extension of SQL, called SQL Exten~ed
Normal Form (or XNF) to satisfy the needs of the applica
tions discussed above. XNF is based on the concept of Com
posite Objects (<;0) as a coll~tion of tabl~s and rela~on
ships· COs prov1de an abstractiOn mechamsm that umfies
both the structural view as well as the tabular view of the
data. We fully support this extension in the implementation,
including query optimization and execution, and concurren
cy control and recovery.

With this approach the users benefit from the power of
relational DBMSs to handle the tabular data, and benefit
from the XNF extensions as well. Customers would also
like to migrate their existing applications to exploit CO fea
tures. This calls for an integrated DB, which handles both
the tabular as well as the CO data. Further, the commercial
RDBMSs like IBM DB2 [IBM88] and Tandem Non-Stop
SQL [BP88] have many industrial-strength features, that
have taken years to build, and are vital to the users. These
relate to the robustness of the systems, failure tolerance,
high performance for SQL accesses and utilities, tools for
monitoring performance, application development tools,
good integration with the operati~g systems' features!~ _va
riety of storage management opuons, bul_k Ilq capab1ht1es,
exploitation of multiprocessors and, poss1bly, mtra-transac
tion parallelism, different degrees of isolation (repeatable
read, cursor stability etc.), query optimization, etc. It would

be prudent to reuse these features and employ them as a
foundation for extensions. ·

The remainder of the paper is organized as follows. The
concept of composite objects is outlined and motivated in
chapter 2. Chapter 3 discusses the major XNF query facili
ties to manipulate COs and to establish the mapping from
relations to COs. Chapter 4 explains the implementation of
XNF in Starburst DBMS and it shows that these extensions
can be accommodated inexpensively and in such a way that
the performance of important classes of data base applica
tions can be considerably improved. Chapter 5 discusses re
lated work, and the final chapter gives some conclusions
and an outlook on future work.

2. Composite Object Abstraction in XNF
In XNF a Composite Object is defined as a collection of

named component tables and relationships defined between
these tables. We use the notion of Composite Object (CO)
in order to emphasize that a CO is composed of multiple in
terrelated components. XNF' s notion of CO is based on the
view paradigm defining CO views (also called object
views or structured views) composed from an underlying re
lational database. This means that the component tables and
the relationships that are part of a CO definition have to be
constructed from the tuples stored in a relational database.
Based on the terminlogy of [LW90]. the COs have to be
instantiated from relations by evaluating XNF view
queries. Hence different tools and applications may ask for
different (not necessarily disjoint) COs over the same com
mon database. This level of CO views achieves what we
will call CO abstraction and the gap between relational
data and CO abstraction is bridged by XNF's mapping facil
ities to be introduced here and in the next chapter.

Schema Level Instance Level

d1 d3 d2

11~ 11\
e1 e2 X p1 p2 e4 eS e6

'"--r--' I \/l(/
s1 ~ s3 · s4 sS

Figure 1: Sample Composite Object 'Company Organi
zational Unit'. Left Side: Schema graph for the
CO 'Company Organizational Unit'. Right
Side: Instance level showing component tuples
linked via connections

As an introductory example Fig.lshows a sample CO
taken from a simplified application scenario. For our pur
pose a simple business application is sufficient to express
the basic concepts of our CO model; it will become obvious
how these concepts carry over to non-traditional application
areas. The sample company database contains the depart
ment (DEPT), employee (EMP), project (PROJ), and skill
(SKILLS) tables. The CO depicted in Fig. I gives for each
department the associated employees (via the relationship
EMPLOYMEN1), the projects it owns (via the relationship
OWNERSHIP), and finally the skills that either one of its
employees possesses (via the relationship EMPPROPER-

273

TY) or one of its projects needs (via the relationship PRO
JPROPERTY). The left side of Fig.l shows the schema in
formation ass~iated with this eo. The right side of this fig
ure shows the tuple instances (dl, d2, ... , el, e2, ...)and the
connection instances (drawn as straight lines) relating their
partner tuples. This CO represents what we might call the
'company organizational unit' that might constitute the
working set for a particular business application.

For a CO to be well-formed, we require that the tables as
sociated by a CO's component relationship must all be com
ponent tables of that very CO. This constraint carries over
from relationships to their connection instances and from ta
bles to their tuple instances: If one of the tuples is excluded
from a composite object, the connections it is involved in
have to be excluded, too.

XNF relationships are directed from a distinguished part
ner table ("parent" of that relationship) to the other partner
tables ("child'' tables). For example, the relationship EM
PLOYMENT connects the partner table DEPT as a parent
table to the child table EMP. In a general setting we allow
for n-ary relationships, i.e. relationships that relate more
than two partner tables. Since properties of binary relation
ships carry over to n-ary relationships, we will stay with bi
nary ones for the scope of this paper. XNF relationships
may be cyclic (e.g. "manages" relationship, with partner ta
ble EMP both as parent (in the "manager" role) and as child
(in the "reports-to" role)). A component table of a CO is
called root table if it has no incoming relationships, i.e. this
table is not a child table of any relationship. In Fig.l DEPT
is the root table. At the instance level (right part of Fig.l)
connections are represented by simple lines rather than ar
rows in order to indicate that relationships may be traversed
in either direction independently of the relationship's direc
tion as indicated in the schema part on the left side ofFig.l.

Direction in relationships is relevant only for determin
ing the instance level of a CO which is defined by the reach
avzlity concept. Consider two tuples .. a" and "b" of a com
posite object. "b" is said to be reachable from "a" if there
exists a sequence of connections which, when traversed in
parent to child direction, gets one from "a" to "b". The no
tion of reachability specifies the permissible instances of a
CO: Any tuple of a CO must either be part of a root table, or
it must be reachable from some tuple in a root table. This so
called reachability constraint restricts the components of a
CO to only reachable ones, thus defining a quite natural no
tion of 'importance or relevance' of a component w.r.t. its
CO. Referring to Fig. I we can see that the tuples e3 and s2
do not fulfil the reachability constraint because they are not
reachable through a tuple from a root table. Hence those tu
pies do not participate in that CO. On the other side, depart·
ment d3, being a tuple from a root table, is reachable by def
inition, thus belonging to that CO. As we will see, the reach
ability concept will also simplify the specification of restric
tions in composite object definitions (see section 3.1).

Relationships will provide a number of generic services,
like:
• Testing whether some tuples are related via a specific re

lationship;
• Denoting the tuples which are related to a given tuple or

set of tuples (traversal and 'path expressions' in section
3.5; recall that traversal can be done in the direction of
parent to child and vice versa);

Tables and relationships form \he nodes and edges of a
directed graph (left part of Fig.l) . Based on this schema

graph we define the notions of recursive COs, schema shar
mg, and instance sharing as follows:
• A CO is called recursive, if its schema graph contains

cycles. Otherwise it is called non-recursive.
• A CO exhibits schema sharing, if at least one node has

two incoming edges. For example the schema graph de
picted in Fig.1 shows the schema-shared node SKILLS.

• Schema sharing is usually accompanied by instance
sharing. For example in Fig.1 skill s3 is shared by em
ployees e2 and e4 as well as by projects pl and p2. Note
however that schema sharing is not a prerequisite for in
stance sharing: a single relationship, e.g. EMPPROPER
TY, might be sufficient as shown in Fig.1. again. by skill
s3. which is shared between employee e2 and e4.

These structural concepts of sharing and recursion nicely
match the four types of composing "molecular objects"
based on two independent attributes [BB84]: disjoint (no
sharing) and non-disjoint; recursive and non-recursive.
Note that relationships are important in traversal and query
ing of COs (see Chapter 3), and in representation of data for
efficient application access.

So far, we haven't made any assumptions on how we
construct the COs from a relational database. Clearly, our
notion of CO should be, as much as possible, independent
of the conceivable representations of COs in the underlying
database. For example, Fig.2 shows two different database

d1 d3
I

d2 I

!! X!!\
Partial Schema for Company database CDB1:

DEPT (dno, ... ,budget, dmgrno)
EMP (eno, ... , salary, edno, epno)

Partial Schema for Company database CDB2:
DEPT (...)
EMP(...)
DEPTEMP (dedno, deeno, ...)

Figure 2: Two Different Representations for the , .
Company Database (only partially shown)

representations for the information of relationship EM
PLOYMENT that associates the departments to their em
ployees (and vice versa). In company database COB 1 an im
plicit representation has been chosen (which is the usual
representation for l:n. i.e. functional associations) for that
end, whereas in company database CDB2 a particular table
(that, for example, might hold some attributes describing
that association) has been used in order to reach at an explic
it representation for the EMPLOYMENT relationship.
However, independent from these two different representa
tions, we want to see the two partner tables DEPT and EMP
associated by the relationship EMPLOYMENT as is shown
in the upper part of Fig.2 (this is a partial view of the CO de
picted in Fig.1). In order to derive that infonnation, we h,ave
to apply different queries depending on the particular repre
sentation. e.g. the relationship EMPLOYMENT might be

1. From now on nodes and edges are used as synonyms for
component tables and relationships, respectively.

274

derived in database COB 1 by joining the tables DEPT and
EMP. whereas in CDB2 the particular table DEPTEMP
might be sufficient for that end. This derivation is similar to
the classical view concept specifying the schema of the tar
get table and how that table is populated. With views, only
the derivation needs to take into account the underlying rep
resentation of the source data, whereas the result table ab
stracts from the underlying database. In a similar way, XNF
provides view facilities to derive the components of a CO
populated by its connection instances and tuple instances. In
the next chapter we elaborate on XNF's language approach
for derivation and querying of COs.

3. The XNF Language
Since COs consist of tables and relationships, a CO con

structor will be made up of table constructors and relation
ship constructors. SQL already provides a variety of facili
ties for constructing the component tables (e.g. table deriva
tion using the SELECT .. FROM .. WHERE construct); there
fore the only missing facility is a relationship constructor.
Relationships will be specified using predicates, identifying
tuples which are associated; if needed, relationships may
have attributes to further characterize the connections be
tween tuples. For now suppose that we are working with the
company database COB 1 partly shown in Fig.2.

3.1 Introductory Query Example
An example of XNF's CO constructor is as follows:
OUT OF

Xdept AS (SELECT • FROM DEPT WHERE loc='NY'),
Xemp AS (SELECT • FROM EMP),
Xproj AS (SELECT • FROM PROJ),
employment AS (RELATE Xdept, Xemp

WHERE Xdept.dno=Xemp.edno),
ownership AS (RELATE Xdept, Xproj

WHERE Xdept.dno =Xproj.pdno)
TAKE •

Starting from tables DEPT, EMP, and PROJ, this exam
ple constructs a CO with nodes Xdept, Xemp, and Xproj,
and relationships employment and ownership. The query
expression populates Xdept from DEPT. Similarly Xemp
and Xproj are populated from tables EMP and PROJ, re
spectively. Unlike Xdept, tuples of Xemp and Xproj reuse
the EMP and PROJ tables unchanged. The following short
notation can be used for this purpose: Xemp AS EMP.

In contrast to SQL's query constructor, the CO construc
tor does not perform any concatenation and cartesian prod
uct of the participating components. The schema graph for
this query is similar to the one shown in Fig.2.

The relationships employment and ownership are de
fined by the RELATE clause. This clause firstly gives the
parent table and then the child table. and the WHERE clause
takes the predicate that specifies the criteria for relating two
partner tuples via a connection instance. Note that due to
reachability no tuple from EMP (PROJ) is to be included
into Xemp (Xproj) which cannot be reached from a New
York department via the 'employment' ('ownership') rela
tionship (reachability constraint). XNF's CO constructor
provides further facilities, as will be shown in the subse
quent sections.

3.2 Composite Object Views
Similar to SQL, an XNF query definition can be bound

to a view name: ·

CREATE VIEW ALL-DEPS AS
OUT OF Xdept AS DEPT. Xemp AS EMP, Xproj AS PROJ,

employment AS (RELATE Xdept, Xemp
WHERE Xdept.dno = Xemp.edno),

ownership AS (RELATE Xdept, Xproj
WHERE Xdept.dno = Xproj.pdno)

TAKE •

Like tabular views of SQL, XNF views are important for
data abstraction (see Chapter 2). Once defined, the user
need not care about the way a composite object is ultimately
assembled from tables of a relational database.

One important capability of the view concept that is only
implicitly mentioned above is to build views over views,
thus reaching at layered levels of abstraction. For example,
we can define the view ALL-DEPS-ORG based on the view
ALL-DEPS defined above (see Fig. 3 shaded part):

CREATE VIEW ALL-DEPS-ORG AS
OUT OF ALL-DEPS,

membership AS (RELATE Xproj, Xemp

TAKE •

WITH ATTRIBUTES ep.percentage
USING EMPPROJ ep
WHERE Xproj.pno = ep.eppno AND

Xemp.eno = ep.epeno)

This view definition takes all the components of the ref
erenced view ALL-DEPS and extends them by an additional
relationship 'membership' defined between the parent table
Xproj and the child table Xemp. Both partner tables of that
relationship are component tables of the XNF view ALL
DEPS. Different from the previous examples, this relation
ship has an attribute defined in the WITH ATTRIBUTES
clause. The information from which the relationship has to
be derived is given by the partner tables and by an additional
table, the base table EMPPROJ, specified in the USING
clause. Therefore, the relationship constructor relates all
three tables in order to derive and construct the relationship
component In this example the relationship attribute is sim
ply taken from the base table EMPPROJ, although it is pos
sible to define an attribute using any (column) expression.
Once defined, however, this relationship can be used in the
same way as the other ones, without any knowledge of how
it is actually constructed. Due to the newly added relation
ship in the schema graph, also new tuples and connections
might show up at the instance level. For example in Fig.3
employees e3 and e4 are now considered, because they be
come reachable via the newly added relationship 'member
ship'.

So far, we have seen how views can be assembled from
simple tables or other XNF views. In addition. we need fa
cilities for removing unwanted parts from existing views.
The following sections show how the query facilities can be
extended for this purpose.

275

3.3 Node and Edge Restriction, Structural Projec
tion

Clearly, SQL extensions for CO support also require fa
cilities for querying COs. In the XNF approach, the CO con
structor itself is used for that end, since it already provides
the appropriate selection facilities. In essence, we follow the
same idea as SQL, where the SELECT .. FROM .. WHERE
construct is used in queries as well as in view constructors.
For example, assume that we want the ALL-DEPS, but only
those employees making less than 2K. This is achieved by

OUT OF ALL-DEPS
WHERE Xemp e SUCH THAT e.sal < '2K'
TAKE •

As already done in the previous two view definitions, the
OUT OF clause is not used here to assemble the pieces from
scratch; instead it refers directly to a predefined view. Like
the view ALL-DEPS, this query deals with the nodes Xdept,
Xemp, and Xproj, and the edges 'employment' and 'owner
ship'. Different from ALL-DEPS it will not contain an
Xemp tuple, where the salary is 2K or more (node restric
tion), and no corresponding 'employment' connection ei
ther.

If we want to restrict the employees of the ALL-DEPS
view to those who make less than 1 percent of their depart
ment's budget, we can best do this by imposing a restriction
on the 'employment' relationship (edge restnction):

OUT OF ALL-DEPS
WHERE employment (d, e)

SUCH THAT e.sal < d.budget'100
TAKE •

Here (d, e) denotes a connection instance of 'employ
ment' symbolized by a pair of associated Xdept and Xemp
tuples. This link item is to be discarded from ALL-DEPS, if
the corresponding Xemp and Xdept tuples do not meet the
specified predicate. Due to reachability, the Xemp tuple it
self is also discarded (but not the corresponding Xdept tu
pie).

In addition to specific tuples or connections, complete
edges and nodes might be removed, too, by projection capa
bilities. If we are not interested in the Xproj node, the previ
ous query is modified as follows:

OUT OF ALL-DEPS
WHERE employment (d, e) SUCH THAT e.sal < '2K'
TAKE Xdept(•), Xemp(•). employment

Since the Xproj node is gone, the 'ownership' relation
ship is discarded implicitly due to the well-formedness of
COs.
3.4 Recursive Composite Objects

Let's take the view ALL-DEPS-ORG and extend it by an
additional relationship 'projmanagement' that relates em
ployees to the projects they manage (see Fig. 4):

CREATE VIEW EXT-ALL-DEPS-ORG AS
OUT OF ALL-DEPS-ORG.

projmanagement AS (RELA TEXemp, Xproj
WHERE Xemp.eno = Xproj.pmgrno)

TAKE •

Here, the relationships 'membership' and 'projmanage
ment' define a cycle on the schema graph. Thus EXT-ALL
DEPS-ORG is a structurally recursive CO. The instance
level shows the tuples and connections. Connections of type
'projmanagement' are drawn as dotted lines. For example

Figure 4: Recursive Composite Object

we can see that employee e'l manages the projects p'l and
p3, and employee e3 works on project p2 and manages at the
same time project p4, on which employee e4 (who also par
ticipates in project p2) works as well.

Reachability is instrumental in querying this type of CO.
For instance, we can easily restrict EXT-ALL-DEPS-ORG
to projects, which report - either directly or indirectly - to
employees of New York departments. In order to do this, we
employ a qualification criterion onto the Xdcpt table as well
as a projection that excludes the 'ownership' relationship:

OUT OF EXT-ALL-DEPS-ORG
WHERE XdeptSUCH THAT loc = 'NY'
TAKE Xdept(•), employment, Xemp(·).

projmanagement, membership(•), Xproj(*)

(IOC= 'NY')
Xdept ,AV (l' ~

e2~•:: p2
········ ... '

e3 p3

/ ""···· ... : e4 ••···· p4

Figure 5: Restriction on Recursive CO

The result of this query applied to the XNF view EXT
ALL-DEPS-ORG shown in Fig.4 is visualized in Fig.5. Due -
to reachability, the result contains all employees of New
York departments (eland e2), all projects managed by these
eml?loyees (p2 and p3), the employees working on these
proJects (e3 and e4), and so on. Project pl is not in the result
since it is not reachable anymore. '

3.5 Path Expressions
A path expressi?n is a .con.venient way of addressing

parts of a CO node m a navigatiOnal style. They exploit the
CO structure defined by the component tables and the rela
tionships. Path expressions come in different forms. E.g., if
d denotes a specific department in EXT-ALL-DEPS-ORG,
then

d->employment->Xemp->projmanagement->Xproj

or the syntactically reduced path expression
d->employment->projmanagement

denote the set of all projects which are managed by employ
ees employed by department d. We can specify predicates in
path expressions, e.g.

d->employment->(Xemp e WHERE e.sal < 2K)->
projmanagement->Xproj

276

denotes the projects whose managers make less than 2K and
are emploY.ed by department d. This example shows a so
called qualified path expression.

The following path expression defined for the XNF view
EXT-ALL-DEPS-ORG is different from the first one:

Xdept ->employment->Xemp->projmanagement -> Xproj

It denotes all the projects in that view that are related via
the relationships 'employment' and 'ownership' to any de
partment of that view. Clearly, this set is a subset of the set
of tu pies in the component table Xproj.

In general, a path expression denotes a subset of the set
of tuplcs of its target table. All these tuples are reachable
from some root tuples through the path defined and in the
case of qualified path expressions, the given predicates must
be satisfied by the tuples on the path that leads to the leaf tu
pie~. Hence, we view a path expression to be a table, to
"Yhtch we can ~pply any table operation, for example restric
uons or countmg as shown below. The direction in which a
relationship has to be traversed is usually inferable from the
sequence in which the connected nodes are specified. In
specific cases (e.g. cyclic relationships mentioned in chap
ter 2) role names have to be used to avoid ambiguities.

The following query shows the usage of path expressions
for querying XNF views. It uses the path expression defined
above in order to address all the projects that are managed
by the employees employed by a given department d:

OUT OFEXT-ALL-DEPS-ORG
WHERE Xdept d SUCH THAT

COUNT(d->employment->projmanagement) > 2
AND d.budget > '1000K'

TAKE •

This .q.uery restricts the departments (and implicitly via
rcachab1hty also the employees and projects) of the XNF
view EXT-ALL-DEPS-ORG to only those departments
where in addition to the budget criterion there must be at
least 2 projects related via the relationships 'employment'
and 'ownership'. If we ask in another query for the depart
ments that manage through some of its staff employees at
least one project, whose budget is greater than the depart
~ents budget, then it is easier to use qualified path expres
Sions:

OUT OFEXT-ALL-DEPS-ORG
WHERE Xdept d SUCH THAT

TAKE*

(EXISTS d->employment->
(Xemp e WHERE e.descr='staff')->
projmanagement->
(Xproj p WHERE p.budget >d. budget))

3.6 Closure Property
Closure property gives the advantage of using the same

query language on base data as well as on derived data or
query results. As depicted in Fig.6 the closure property
holds for XNF w.r.t. XNF operations and Normal Form
(NF) SQL operations.

The following classification scheme for XNF queries is
~ased on the closu:e property of XNF and on its compatibil
Ity to NF SQL. F1g.6 shows the four types of conceivable
XNF queries.

The XNF approach covers the whole spectrum, from
SQL's !-table-result queries (so-called NF queries that in
corporate regular tables and produce a single regular result
table) to XNF's multi-table-structured result queries. Due to
space limitations, we have concentrated on type (1) and (2)

• .
•

(1)

(3)

~ ~ ...
SOL ; XNF extensions

, to SOL

(1) NF to XNF queries
(2) XNF to XNF queries

(3) XNF to NF queries
(4) NF to NF queries

Figure 6: Classification Scheme for XNF Queries
queries (Fig.6) that emphasize on XNF's CO constructor.
Type (1) queries define COs through a query that takes n in
put tables and produces m output tables and, optionally,
some relationships that constitute the resulting CO. Type (2)
queries build upon XNF views taking their result CO as in
put and producing another CO as output.
3.7 API Considerations and Manipulation Opera

tions
For further processing, the CO denoted by an XNF query

is optionally transferred into a high performance application
program cache. While being represented (see section 4.2) by
pointer structures, the cache is not exposed to the user at that
Implementation level. Instead the nodes of a cached CO
may be accessed through cursors only. XNF provides two
kinds of cursors. If an zndependent cursor is opened on a
node, it allows one to browse through all its tuples. Depen
dent cursors are bound to other cursors through a path ex
pression. E.g., if there is an open cursor aDept on the node
Xdept (see Fig.3), a cursor anEmpOfDept may be opened
on Xemp which depends on aDept through the relationship
'employment'. Different from an independent cursor, open
ning of this cursor gives only access to those employee tu
pies which are reachable from the department the cursor
aDept currently points to. As we have seen so far, relation
ships are very useful: firstly, they are required for the spec
ification of path expressions that are then used for cursor
definition, and secondly,they are used for building efficient
in-memory data structures (see section 4.2) that directly
support navigation via cursor operations.

XNF provides operations for changing the cache con
tents through update, delete, and insert operations on tuples
(called udi-operations) as well as connect and disconnect
operations on relationships. All udi-operations on XNF
component tuples as well as connect and disconnect on re
lationships are propagated to the corresponding base tuples.
The cache is maintained in such a way that cache changes
can be propagated in an efficient fashion[KDG87).

In addition to cursor manipulation, XNF supports modi
fication operations. Update, delete, and insert are available
at the CO level. For example, a CO deletion statement spec
ifies the removal of all tuples and connections of that target
CO. This removal of CO components maps down to remov
als of the base tuples from which the CO components are
derived. For the following CO deletion statement all the de
partment, project, and employee tuples that map to compo
nent tuples and relationships of the target CO have to be re
moved from their base tables.

OUT OF ALL-DEPS
WHERE Xemp e SUCH THAT e.sal < '2K'
DELETE •

In all cases, the CO to be manipulated must be updatable.

277

Since XNF relies on views, we first review the view updat
ability in relational databases, then we discuss updating of
XNF views.

In the relational systems, base tables are updatable. A
view over a base table which hides some columns of a base
table is equally updatable. We can restrict the tuples of the
view by specifying a predicate referring to the columns of
the table the view is defined on. This view is also updatable.
Hence, use of views does not compromise updability of the
database. Such updatable views are commonly used in prac
tice, particularly for authorization. The relational model al
lows users to specify even more powerful views, hence not
restricting the view specification to udpatable views only.
For example, views may contain aggregation, joins, etc. In
general, such views are read only since an update of a tuple
of the view cannot be (reverse) mapped unambiguously to
an update of the base data. Updatability of views is extended
in systems such as Starburst [HCL90). We directly benefit
from such extensions.

We follow the same design philosophy in specification
of XNF views. We need to address update of the relation
ships in addition to update of the nodes in XNF. In Fig.4, the
'employment' relationship connects Xdept tuples and
Xemp tuples. We want to disconnect some relationship in
stances and connect new ones. Disconnecting an 'employ
ment' relationship instance results in setting the dno of the
tuple of Xemp associated with this relationship to the null
value. Basically, if a relationship is defined by a foreign
key disconnect results in nullifying the foreign key. Con
necting an Xemp tuple to an Xdept tuple results in setting
the foreign key of the Xemp tuple. Consider the 'member
ship relationship', which is M:N. Each relationship instan~e
is built from a tuple in the EMPPROJ base table. The dts
connect operation results in deleting the corresponding tu
pie in the EMPPROJ table and the operation connect. results
in inserting a tuple in the EMPPROJ table. Followmg our
view update philosophy, we do not restrict the definition of
relationships to only the ones that are updatable. For exam
ple, users can define a relationship between average level of
productivity and years of experience, but cannot update it.

The nodes of XNF are regular views, and as such, updat
ability rules of views apply to them. For instance, in Fig.4,
one can update the salary of employees or the budget of de
partments. However, update of the dno column of Xemp is
done only through the relationship connect/disconnect, as
explained above. In general, columns that are used to define
relationships are updated by relationship manipulation as
explained above. Delete of an Xemp tuple results in discon
necting the associated employment relationship. This is to
prevent any dangling relationships. Likewise, delete of an
Xdept tuple results in disconnection of all the employment
and ownership relationships instances attached to it. In gen
eral delete of a tuple can only result in delete of the tuple it
self and all the relationships instances directly attached to it

4. Design And Implementation
We considered two approaches to build this system: (I)

build a new DBMS suitable for XNF, (2) adapt an existing
DBMS. In either approach, the new system will need com
posite object data clustering for I/0 reduction, fast extrac
tion of data, and composite object query optimization.

Regarding clustering, relational DBMSs typically allow
clustering of data along tables, which is inappropriate for
composite objects, where we need clustering of component

tuples belonging to different tables. However, existing
RDBMSs apply already clustering techniques beyond naive
table clustering. For example, DB2 [IBM88] clusters tuples
of catalog data in the form of composite object clusters to
minimize 1/0 overhead for catalog access. Starburst allows
clustering of the parent and children of a relationship
([LLPS91], IMS attachment) to reduce 1/0 overhead of
joins. We concluded that we can benefit considerably from
the existing clustering technology in relational DBMSs. So
far, this argues in favor of approach 2.

Another feature we need is fast extraction of data. This is
particularly so in large engineering and design databases,
e.g. in aerospace and automotive industry, where the size of
the database could be in terabyte range (as discussed in the
introduction). We concluded that XNF must be able to us~
the technology developed in the relational DBMSs to han
dle large amount of data and complex query processing. For
instance, parallelism can reduce execution of XNF queries
by orders of magnitude. Set oriented specification of com
posite objects in XNF particularly lends itself to exploita
tion of parallelism technology [DG90, Gr90, LD89,
PMC90].

Specification of XNF views mostly reuses the relational
query language (SQL in our case). Almost all of the optimi
zation techniques developed in the context of relational
DBMSs are applicable for COs as well. We discuss this in
more detail shortly.

Operational relational DBMSs are very expensive to
build. It quickly became apparent to us that both from tech
nical and economic viewpoints, approach 1, building a new
system, did not make sense. Rather, by adapting an existing
DBMS, we could build a much more powerful system in a
much shorter time. We chose Starburst DBMS [HCL90] as
the starting point. Starburst was particularly attractive due
to its extensibility features.

SQL
interface
(SQL-API)

SOL DBMS (relational engine)

Figure 7: General Architecture of the SQL/XNF
Language Processor and Application

In retrospect, our intuition/initial study proved correct.
Our XNF extensions to Starburst cost much less than the
whole system. We conjecture that this percentage is much
lower if we extend a commercial DBMS, capable of han
dling large databases, such as IBM DB2 [IBM88], Tandem
Non-Stop SQL [BP88], or Teradata [Ne86].

278

4.1 System Architecture
As shown in Fig. 7, SQL/XNF composes a composite

object from the relational database. The data is shared be
tween traditional SQL applications and XNF applications.
Note that no change is required in the traditional applica
tions to access this shared database. The XNF applications
use the (fast) XNF Application Language Interface (API) to
access the data. SQL/XNF language processor translates the
XNF queries to a form very close to the standard SQL, al
lowing reuse of the DBMS with little change. This transla
tion is performed at compile time, and is optimized, elimi
nating any runtime overhead. We should emphasize that

. XNF is integrated into the RDBMS (not an on-top solution),
and extensively reuses the query processing components of
RDBMS as explained below.
4.2 XNF Cache and API

Browsing through the XNF structured data is very simi
lar to that of 00 languages [BTA90], which is based on col
lection enumerators and path expressions. An application
opens a cursor on a node of an XNF structure, and enumer
ates the tuples of that node. The application can cross a re
lationship from one node to another node given a cursor on
the first node by opening a dependent cursor specified by a
path expression that connects the two nodes. XNF cursors
over the cache are very fast. We have made an effort to cut
down on the pathlength of cursor operations. Particularly,
unlike regular SQL, the access to the cache does not require
any inter-process communication. The XNF cache uses vir
tual memory pointers to link the tuples of an XNF structure.
As a result, the browsine; is very fast. The structure of the
XNF cache and the algonthms used for loading and navigat
ing the cache are not discussed further due to space limita
tion.

In addition to the cursor interface, language compilers
(such as those for object-oriented languages) can interface
with XNF cache internally to store and browse through the
data, and provide a language specific interface to the appli
cations. For this scenario it is quite obvious that object-ori
ented programming environments (e.g. C++) are very useful
in order to achieve a proper adaptation to the applications'
needs. For instance, browsing can be efficiently accom
plished by pointer dereferencing through XNF cache and
flexible manipulation support is due to the concepts of
methods, encapsulation as well as inheritance and overrid
ing.
4.3 Compilation and Execution of XNF Queries

First we give a brief overview of the Starburst internal
components. Then we explain the new components and the
changes we made to these components to support XNF.

Fig. 8 shows phases of query compilation (see [HCL90]
for more detail). Such structuring of phases of query compi
lation can also be found in other DBMSs, such as [CM88].
During parsing and semantic checking, a Starburst SQL
statement is translated to an internal representation, called
Query Graph Model (QGM). The query rewrite phase trans
forms the QGM representation of queries to equivalent ones
for better performance. Examples of such transformations
are merging of views with queries, predicate pushdown, and

. magic sets [MFPR90]. The plan optimizer examines alter
native plans, such as use of indices and various join meth
ods, for a query represented in QGM and chooses one with
a lower cost. Query refinement follows the plan generated
by the plan optimizer and produces an executable plan

which is run by the query evaluator at runtime.
In Fig. 8, XNF extensions are represented as shaded ar

eas. First we needed to modify the grammar to understand
XNF language constructs, and added the appropriate se
mantic checking routines. XNF queries are mostly com
posed of existing SQL language constructs. This lends itself
to significant reuse of the semantic routines of the existing
SQL constructs, avoiding expensive duplication of the code . .
This considerably simplifies our implementation of the se
mantic checking. Queries are represented in the QGM inter
nally. Thus, we needed to enhance QGM representation to
handle XNF queries. QGM is based on the notion of table
abstraction. Queries are represented as a series of high level
operators (e.g. SELECT, GROUP BY, UNION, and IN
TERSECTION) on either base tables or derived tables. An
operator consists of a head and a body: the head describes
the output table and the body shows how this table is de
rived from other tables the body refers to (e.g. performing
projection on the join result of the input tables according to
a given predicate). We added an XNF operator to QGM to
capture the semantics of the XNF CO constructor in the lan
guage. This XNF operator is able to produce m>= 1 output
tables, each of them representing either a node or an edge.
The model allows arbitrary nesting and mixing of XNF con
structors and SQL constructors, maintaining the closure
property.

We introduced a new step, XNF semantic rewrite, which
translates XNF operators in QGM to regular SQL operators
(Fig. 8). The significance of this is that it enables us to reuse
the expensive optimization and evaluation machinery of the
relational DBMS. We give just a summary of this transla
tion due to space limitation. Basically, we formulate one
query for each node or relationship output of an XNF query,
observing XNF semantics such as reachability. These que
ries typically use common subqueries to avoid unnecessary
redundant computations. For instance, when we generate
the tuples of a parent node, we output them, and also use
them again to find the tuples of the associated children. Reg
ular output processing of SQL is modified to allow genera
tion of a heterogeneous set of tuples in the answer set (gen
eration of tuples belonging to different nodes and relation
ships). Due to the power of Lhe S tarburst query rewrite com
ponent, we were able to go for straightforward transforma
tions from XNF to SQL QGM operators. Any optimization
of the resulting QGM can be deferred to the query rewrite
step, which takes care of merging query blocks or other sim
plifications and clean-up operations.

Processing of XNF does not require any change to query
rewrite and no significant change is required in the plan op
timization. In the plan optimizer handling of joins is heavily
used since parent child relationships are computed by joins.
The plan optimizer should take into account any parent/
child links present in the database ([LLPS91], IMS attach
ment), and clustering of data on disk for 1/0 and path length
reduction in optimization of joins.

The query refinement is modified to deliver heteroge
neous sets of tuples to the cache manager efficiently. When
a parent tuple is accessed, it is sent directly to the output,
and it is used to compute the children. The answer tuples are
sent out to the cache manager once they are computed,
avoiding further buffering since the cache manager buffers
them anyway.

Again, note that we only needed to make comparatively
small extensions to the RDBMS compiler. All the other

279

Q)

E
i=
~
·a
E
0
(J

Q)

E

SQUXNF query

Plan Optimization
and

Query Refinement

i= ~--------~------~ I

c:
~ ~-----r~~~~~~

Storage,

Transaction, Recovery XNF Extensions

f.E][]
Data Flow __,.
~/Flow

Figure 8: Stages of XNF Query Processing

components, notably the query evaluation system, transac
tion, recovery and storage management, are completely
shared between XNF and regular DBMS users. Yet the re
sult is a much more powerful query capability, combined
with high performance, satisfying the needs of the demand
ing applications, e.g., in design and engineering areas.

Loading of the cache benefits from the power of XNF
queries. The scope of query optimization encompasses all
the queries that define the nodes and relationships of an
XNF structure. The optimizer is able to take advantage of
common subexpression across these queries. Further, the
answer to all these queries are combined. This allows the
DBMS to more efficiently block the heterogeneous answer
tuples for sending between the DBMS and application pro
cesses (which may reside in different processors across a
network).

The browsing .of the data in the cache using cursors is
very fast due to main memory pointers between tuples in the
cache. The performance improvement over regular SQL
DBMS interface is in orders of magnitude, and is compara
ble to the performance improvement of OODBMS over re
lational DBMSs reported in Cattell's benchmark [Gr91].
However, XNF provides this high performance while pre
serving the ability to share data with other relational appli-

cations. Currently, we are in the process of completing per
formance measurements of XNF. These results will be re
ported in a separate publication. However, early results
show that SQL/XNF meets the performance requirements
of such applications as CAD/CAM where the performance
of regular SQL has been shown to be inadequate [Gr91],
whilst OODBMSs are considered to be more suitable.

5. Related Work
We focus on the main aspects of XNF: the power of the

relationships, CO abstraction, and overall architecture and
system design.

The relationship concept is particularly emphasized in
the literature [AG091, ASL89, ZM90] and in practice
[RB91], and is heavily supported in practical 00 systems
(e.g., [So92, De91, LLOW91, On91, Ve91, Ob90]). In these
systems, relationships are typically implemented with
pointer sets ~n each side of the ~elationship, ea~h se~ point
ing to the obJects on the other stde of the relauonshtp. The
system keeps these pointer sets consistent. Typically, rela
tionships are defined as part of the base objects on each side
of the relationships. In contrast, XNF allows definition of
viewed relationships, and incremental addition of relation
ships 1• Further, X~F allows the viewed !el~tio.nships to .b.e
defined as part of 1ts DML. Powerful opttmtzatton capabth
ties of the DBMS equally apply to queries involving rela
tionships. In addition, relationships in XNF can have at
tributes. For instance, in Fig.3, the membership relationship
may have an attribute on percentage of the time an employ
ee works on the associated project.

Let's go through some examples to illustrate these
points. Using the structure of Fig.3, we want to define de
partments and employees, and an ' involve' relati?nship,
which gives the employees who work at least half time on
projects of a department, and 'employment' relationship
which gives the employees employed by a department. This
structure provides an abstract view of ALL_DEPS-ORG
structure of Fig.3, hiding the Xproj component. Here, the
'involve' relationship is a concatenation of the 'ownership'
and 'membership' relationships with a restriction on at
tribute percentage. Such a view can be defined declaratively
in XNF. In contrast, in the 00 systems cited above, one
must write accessor functions (say in C++) to implement the
'involve' relationship. Often, this is not an acceptable solu
tion, particularly for the end users that want to create such
views on an existing operational system, where reprogram
ming the system is not an option. Declarative specification
of the relationships in XNF also allows reuse of SQL opti
mizers. Such optimization is essential since it may lead to
orders of magnitude improvement in performance, particu
lary in handling of path expressions [PHH92]. Further, it is
not clear how the project information becomes hidden in the
view since there is no construct equivalent to XNF's com
ponent/relationship projection. Both Xdept and Xemp have
fields that refer to Xproj, and such fields must become hid
den.

Further on, a view concept plays a key role in schema
evolution. Suppose there is an application that works with
the schema of Fig.3. Now a new application is installed that
shares the same database but needs a slightly different view
being a new relationship between Xemp and his/her medical
records. 00 systems usually require modifying Xemp to

1. Base (materialized) relationships are part of XNF but not re
ported here due to space limitation.

add this new relationship, and recompiling the applications
that refer to Xemp (since the data structure of Xemp has
changed!). Further, in some systems, the data in the data
base may have to be changed to add new pointer sets for the
new relationship. But in most cases this is not practical. Par
ticularly, a casual end user may create and use this relation
ship for a short period of time. This must not eau~ thou
sands of existing programs that are concurrently usmg the
database to be recompiled! Often users have read only ac
cess to the data. Hence, data in the database cannot be up
dated to add pointer sets for the new relationship.

There are several efforts to extend the relational data
model with a type system [ANS91, LLPS91]. Further, han
dling of typed views in the context of 00 languages has
been addressed in [HZ90,SLT91, SS91]. The results are
analogous to traditional database views, except that the ob
ject views hide or expose methods as well as data. Careful
use of the query language is the key to define upda~ble
views. XNF is integrated with [LLPS91], which provtdes
support for types and handling of (dependent) cursors. Since
XNF uses queries as its constructors, extensions to the data
modeVquery languages for handling of types are directly ap
plicable to XNF. For example, nodes of XNF can have
types: depttype, emptype, etc. Essentially, queries may ~ave
object generating semantics [SS91]. Therefore, tuples m an
XNF result become typed objects. Further effort is under
way in extension of the relational model to define types as
sociated with relationships (references) [ANS91, LLPS9,
ADL91]. The notion of path expressions has also been intro
duced in [BTA90, LLOW91, On91, Ve91, KKS92]. One
major difference is that XNF path expressions are very close
to SQL subqueries, and preserve semantics of SQL, includ
ing null values and duplicates. As discussed before, XNF
path expressions return tables, and can be used in place of
any table reference in queries. As a result, richness of XNF
path expressions is achieved with little additional constructs
and semantics.

In contrast to our integrated approach, [BW89, L W90]
suggest an on-top approach. This approach integrates an ob
ject-oriented program with databases through instantiation
of objects from relational databases by evaluation of view
queries. The system model applied has three elements: the

- object type model that defines the structure of the objects,
the relational data model for storage of base data, and the
view model that contains the relational query and that de
fines a mapping between objects and relations. That view
model is restricted to only acyclic select-project-join que
ries. Basically this approach is comparable to XNF but ma
jor differences are obvious. Firstly, XNF realizes with its
CO constructor a more powerful view concept (multi-table
views), which, secondly, provides an abstraction level that
considerably reduces the final mapping (if needed at all) to
the application's favorable data structure. Thirdly, viewed

. from the other side, we can use XNF as another kind of view
model within the system model of [L W90]. Hence, XNF
can profit from the framework defined (i.e., the object type
model and the corresponding compiler). With this, the ap
proach of [L W90] gets extended due to an enhanced view
model, and the implementation gets simplified due to

280

· XNF's integration of CO processing into relational DBMSs.
There are various other approaches to modelling and

management of COs as extensions to the relational model.
In [LK84] COs are defined by special columns (assigning
an identifier to a tuple, containing the parent identifier, and

referencing another tuple). Joins among parents and chil
dren are supported by system-maintained access paths
(called maps) on a per-CO basis. Although this approach in
tegrates eo processing into the relational framework, its us
ages are limited because of the restrictions of the data model
to essentially hierarchical COs that are statically defined in
the database schema. On the other hand, the Molecule Atom
Data (MAD) model [Mi89] supports network-like as well as
recursive COs. MAD specifies its COs (called molecules)
on a reference basis in the CO/molecule query and not in the
schema. With this, more flexibility is achieved, because
COs are now similar to views defined over the underlying
database by means of a CO query. Compared to the XNF ap
proach, the MAD approach is less flexible, because the mol
ecule building references must exist in the database, and
therefore also in the schema; remember that the relation
ships in XNF can be defined on an ad-hoc basis through a
predicate in the query. Query processing in MAD [HMS92]
is also based on a set of operators that is different to the
known relational operators due to the molecule semantics
applied. For that reason, the MAD implementation does not
fit smoothly into the relational query processing framework
(see [HMS92]), thus restricting sharing of relational tech
nology (and system code).

The nested relation approach [SS86], often referred to as
NF2, provides more flexibility compared to Lorie's ap
proach[LK84}. NF2 is implemented in several prototypes
and extended in several ways [DK86, LK88, PA86,
SPSW90, CD88]. NF2 is targeted towards hierarchical COs
by generally placing child components with the parent com
ponent In general, access to sub-components goes through
the parent Sharing of components between parents is done
by listing of foreign keys (or logical references), which im
plies that access is done on a join basis as in relational sys
tems. Flexibility is achieved through specific operations
that can flatten out or restructure the nesting given in the da
tabase schema. Because of these model specific operations,
the implementation reflects an extended relational engine.

6. Conclusions and Outlook
In this paper we have introduced the XNF approach that

supports processing of Composite Objects as ahstractions
over relational data, thereby bridging the gap between rela
tional stores and the (structured) data view of advanced ap
plications. The XNF approach comprises the following ma
jor concepts:
• a data model that unifies CO and relational concepts,
• a common query language for handling both CO and

simple relational data,
an implementation approach that guarantees efficient
data extraction, and

• an API with facilities for efficient navigation and manip-
ulation. ·
XNF's Composite Objects are heterogeneous sets of in

terrelated objects. Since COs can be specified as views over
XNF databases as well as traditional relational databases,
data from a variety of sources can be presented to the appli
cations at an appropriate abstraction level and in a format
than can be processed with high performance. However, the
language itself keeps the benefits ofrelational languages,
i.e. declarative queries, set-orientation, powerful selection
capabilities, and closure w.r.t. its operations.

Rather than implementing a new DBMS from scratch, an
evolutionary approach was chosen, where we decided to

281

base the implementation on existing relational technology
and to integrate CO processing into the relational frame
work. XNF queries are translated to relational queries, opti
mized, and then executed by a relational engine. Our major
goals were support for CO data clustering, fast data extrac
tion, and CO query optimization. For that end, we needed
only comparatively small changes to the RDBMS compiler;
all the other components (query evaluation system, transac
tion, recovery, and storage management, among others) are
kept unchanged.

The API marks an important contribution to efficiency.
It supports generic cursors with facilities to cross a relation
ship from one component to another. The implementation of
cursor operations has been tuned for fast cursor access and
efficient browsing capabilities. Language compilers (e.g.,
from object-oriented programming environments, like C++)
can easily interface with the XNF API in order to achieve a
final adaptation to the applications' needs.

Currently, a major portion of SQL/XNF is operational in
Starburst extensible database system at IBM Almaden Re
search Center. First measurements have shown a perfor
mance improvement in orders of magnitude over regular
SQL DBMS that compares to the performance improve
ment of OODBMSs over relational DBMSs as reported in
the Cattell Benchmark.

Further, XNF does not bind itself to only one kind of ap
plication language, rather it is open to different application
environments. This is important since, in general, applica
tions written in different languages share the data in the da
tabase. Further, we can view XNF as a high performance ap
proach that provides a path for incorporating relational data
into any CO application. For example we can use an XNF
DBMS (i.e., an extended RDBMS) to provide server servic
es to an 00 programming system running on the application
site (eventually in the application's address space on a ded
icated workstation).

In the near future, we will collect more comprehensive
performance data as the bases for analyzing and further en
hancing performance. In addition, we're working on further
improving API capabilities to ease working with COs. Fi
nally, we will continue to improve XNF query processing
exploiting CO cluster facilities, common subexpressions as
well as concepts for parallel query processing.

Acknowledgments
We wish to thank our colleagues of the Starburst project

providing the Starburst implementation environment Fur
ther we would like to thank L. Haas, P. Selinger, S.
Del31och, R. Erbe, and K. Kiispert for reading an earlier
draft. R. Lorie contributed many comments and criticism
that lead to a much improved language, G. Lohman im
proved the optimizer to handle our complex queries, and G.
Wilson provided valuable implementation experiences on
his work on an earlier prototype. Discussions with J. Ullman
and I. Mumick lead to better understanding of semantics of
XNF.

Bibliography
AB91 Abiteboul, S., Bormer, A.: Objects and Views, in: Proc.

of the ACM SI GM OD Conf., Denver, 1991, pp. 238-247.
ADL91 Agrawal, R., DcMichiel, L., Lindsay, B.: Static Type

Checking and Run-Lime Dispatch of Multi-Methods, in: Re-·
search Report, IDM Almadcn Research Cemer, 1991.

AG091 Albano, A., Ghelli, G., Orsini, R.: A Relationship
Mechanism for a Strongly Typed Object-Oriented Database

Programming Language, in: Proc. 17th VLDB Conf., Barcelo
na, 1991, pp. 565-575.

ANS91 Melton, J. (ed.): Data Base Language SQL3, ISO/ANSI
working draft, X3-92-001 DBL-KAW003b, Dec. 1991.

ASL89 Alashqur, A.M., Su, S.Y.W., Lam, H.: OQL: A Query
Language for Manipulating Object-oriented Databases, in:
Proc. 5th lnt. Conf. on VLDB, Amsterdam, 1989, pp. 433-442.

BB84 Batory, D.S., Buchmarm, A.P.: Molecular Objects, Ab-
stract Data Types, and Data Models, in: Proc. lOth VLDB
Conf., Singapore, 1984, pp. 172-184.

BP88 Borr, A., Putzolu F.: High Performance SQL Through
Low-Level System Integration, in: Proc. of the ACM SIGMOD
Conf., Chicago, 1988, pp. 342-349.

BTA90 Blakeley, J., Thompson C., Alashqur, A.: Strawman
Reference Model for Object Query Language, in: Proc. of First
OODB Standardization Workshop, X3/SPARC/DBSSG/
OODBTG, 1990.

BW89 Barsalou, T., Wiederhold, G.: Knowledge-Based Map-
ping of Relations into Objects, in: Computer Aided Design,
1989.

CD88 Carey, M., DeWitt, D., Vandenberg, S.: A Data Model
and Query Language for Exodus, in: Proc. of the ACM SIG
MOD Conf., Chicago, 1988, pp. 413-423.

CM88 Chang, P. Myre, W.: OS(2 EE Database Manager over-
view and technical highlights, in: ffiM Systems Journal, Vol.
27, No. 2, 1988, pp.105-118.

De91 Deux, 0. et al: The 02 System, in: Communications of
the ACM, Vol. 34, No. 10, 1991, pp. 35-48.

DK86 Dadam, P., Klispert, K., et al. : A DBMS Prototype to
Support Extended NF2 Relations: An Integrated View on Flat
Tables and Hierarchies, in: Proc. of the ACM SIGMOD Conf.,
Washington D.C., 1986, pp. 356-367.

DG90 DeWitt. D.J., Ghandeharizadeh, S., Schneider, D.A.,
Bricker, A., Hsiao, H.-I., Rasmussen, R.: The Gamma Data
base Machine Project, in: Knowledge and Data Engineering,
Vol. 2, No. 1, March 1990.

Gr90 Graefe, G.: Volcano, an Extensible and Parallel Query
Evaluation System, Research Report, University of Colorado
at Boulder, CU -CS-481-90, 1990. i

Gr91 Gray, J. (ed.): The Benclunark Handbook for Databhse
and Transaction Processing Systems, Morgan Kaufman Publ.
Inc. 1991.

HCL90 Haas, L., Chang, W., Lolunan, G., et al.: Starburst Mid
Flight: As the Dust Clears, in: Special Issue on Database Pro
totype Systems, IEEE Transactions on Knowledge and Data
Engineering, Vol.2, No.1, 1990, pp. 143-160.

HMS92 Harder, T., Mitschang, B., SchOning, H.: Query Pro
cessing for Complex Objects, in: Data and Knowledge Engi
neering 7, 1992, pp. 181-200.

HZ90 Heiler, S., Zdonik, S.: Object Views: Extending the Vi-
sion, in: 61h Int. Conf. on Data Engineering, Los Angeles,
1990, pp.86-93.

IDM88 IDM Database 2 System and Database Administration
Guide, IDM Publication Document No. SC26-4374, Dec.
1988.

KDG87 Kiispert, K., Dadam, P., Gtinauer, J.: Cooperative Ob
ject Buffer Management in the Advanced Information Man
agement Prototype, in: Proc. 13th VLDB Conf., Brighton,
1987, pp. 483-492.

KKS92 Kifer, M., Kim, W., Sagiv, Y.: Querying Object-Orient
ed Databases, in: Proc. of the ACM SIGMOD Conf., San Di
ego, 1992,pp.393-402.

LD89 Lorie, R., Daudenarde, J., Hallmark, G., Stamos, J.
Young, H.: Adding Intra-Transaction Parallelism to an Exist
ing DBMS: Early Experience, Data Engineering. Vol. 12, No.
1, March 1989.

LK84 Lorie, R., Kim, W., et al. :Supporting Complex Objects
in a Relational System for Engineering Databases, ffiM Re
search Report, San Jose, CA, 1984.

LK88 Linnemann, V., Kiispert, K.: Design and Implementa-
tion of an Extensible Database Management System Support-

282

ing User Defined Data Types and Functions, in: Proc. of the
14th VLDB Conference, Los Angeles, California 1988.

LLOW91 Lamb, C., Landis, G., Orenstein, J., Weinreb, D.: The
Objectstore Database System, in: Communications of the
ACM, Vol. 34, No. 10, 1991, pp. 50-63.

LLPS91 Lolunan, G., Lindsay, B., Pirahesh, H., Schiefer, B.: Ex
tensions to Starburst: Objects, Types, Functions, and Rules, in:
Communications of the ACM, Vol. 34, No. 10, 1991, pp. 78-
94.

LW90 Lee, B.S., Wiederhold, G.: Outer Joins and Filters for
Instantiating Objects from Relational Databases through
Views, CIFE Technical Report, Stanford University, May
1990.

MFPR90 Mumick, I., Finkelstein, S., Pirahesh, H., Ramakrish
nan, R.: Magic is Relevant, in: Proc. of the ACM SIGMOD
Conf., Atlantic City, 1990, pp. 247-258.

Mi89 Mitschang, B.: Extending the Relational Algebra to
Capture Complex Objects, in: Proc. 15th lnt. VLDB Conf.,
Amsterdam, 1989, pp. 297-308.

Nc86 Neches, P.: The Anatomy of a Data Base Computer -
Revisited, in: Proc. of COMPCON Conf., 1986.

Ob90 Objectivity, Inc.: Objectivity Database System Over-
view, MenJo Park, CA, 1990.

On91 Ontologic Inc: ONTOS Reference Manual, Burling-
ton, Mass 1991.

PA86 Pistor, P .• Andersen, F.: Designing a Generalized NF2

Data Model with an SQL-type Language Interface, in: Proc.
12th Int. Conf on VLDB, 1986.

PHH92 Pirahesh, H., Hellerstein, J., Hasan, W.: Extensible/Rule
Based Query Rewrite Optimization in Starburst, in: Proc. of
the ACM SIGMOD Conf., San Diego., 1992, pp. 39-48.

PMC90 Pirahesh, H., Mohan, C., Cheng, J., Liu, T., Selinger, P.:
Parallelism in Relational Data Base Systems: Architectural Is
sues and Design Approaches, in: Proc. of the Int. Symposium
on Databases in Parallel and Distributed Systems, Dublin,
1990.

RB91 Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lo-
rensen, W.: Object-Oriented Modeling and Design, Prentice
Hall, Englewood Cliffs, New Jersey, 1991.

So92 Soloviev, V.: An Overview of Three Commercial Ob-
ject-Oriented Database Management Systems: ONTOS, Ob
jectStore, and 02, in: ACM SIGMOD Record, Vol. 21, No. 1,
1992, pp. 93-104.

SL T91 Scholl, M., Laasch, C., Tresch, M.: Updatable Views in
Object-Oriented Data bases, in: DOOD 2nd Int. Conf., Springer
Ver!ag, LNCS No. 566, 1991, pp.189-207.

SPSW90 Schek, H.-J., Paul, H.-B., Scholl, M.H., Weikum, G.:
The DASDBS Project: Objectives, Experiences, and Future
Prospects, in: IEEE Transactions on Knowledge and Data En
gineering, Vol. 2, No. 1, 1990, pp. 25-43.

SS86 Schek, H.J., Scholl, M.H.: The Relational Model with
Relation-Valued Attributes, in: Information Systems, Vol. 2,
No. 2, 1986, pp. 137-147.

SS91 Scholl, M., Schek, H.: Supporting Views in Object-Ori-
ented Databases, in: IEEE Database Engineering Quarterly
Bulletin, June 1991.

Ve91 Versant Object Techn. Inc.: VERSANT Technical
Overview, MenJo Park, CA, 1991.

ZM90 Zdonik, S., Maier, D.: Readings in Object-Oriented Da-
tabase Systems, Morgan Kaufman Pub!., 1990.

