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Abstract 
Complex applications, such as design appl_ications, 

multi-media applications, and even advanced buszness ap
plications can benefit significantly from a database lan
guage that supports composite (or complex) objects.f!~ual
ly such data is inter-related wi!h the dat~ used_ by tradztw'!al 
applications, such as accountmg, ordenng, bzll ofmaterzal, 
and repair and maintenance tracking. Consistency of such 
data is of utmost importance in applications such as those 
of aerospace. Hence, shar~ng of_the data ~m~ng tr~d~lional 
applications and composae object applzcatLOns zs zmpor
tant. 

Our approach, called SQL Extended Normal Form 
(short SQL/XNF or XNF) enhances relational technology 
by a Composite Object facility, which comprises not only 
extraction of composite objects from existing databases, but 
also efficient navigation and manipulation facilities provid
ed by an appropriate application programming interfa~e. 

The language itself allows sharing of the database 
among normal form SQL applications and composite object 
applications. It provides proper subsetting of the database 
and subsequent structuring exploiting subobject sharing 
and recursion, all based on its powerful composite object 
constructor concept, which is closed under the language op
erations. XNF is integrated into the relational framework, 
thus benefiting from the available technology, e:g. relatfo
nal engine, query optimization. Currently, a maJor pomon 
of SQL!XNF is operational in Starburst extensible database 
system at IBM Almaden Research Center. 

1. Motivation and Introduction 
Existing "second generation" data base systems are fo

cussed on business applications (e.g. booking, storekeeping, 
cost accounting, project management and decision support). 
It is widely agreed now that second generation DBMSs are 
inadequate for a broader class of applications that deal with 
composite objec~ (s~ct~ed data), as opposed t~ flat rel~
tions. Such apphcauons mclude office automauon, medi
cine, computer aided software engineering (C_AS~). artifi
cial intelligence (AI), hypertext, and geographical mforma
tion systems and computer aided design (CAD). 

Many of these applications extensively navigate through 
the data. Some applications, such as CAD, process the data 
by complex and time consuming algorithms, and demand 
very high performance. For this, the data needs to be repre
sented by data structures which ~an. be a~ccss~ very f~st. 
Caching of data close to the apphcauons 1s parucularly Im-
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portant when applications/tools. run on autonomous. w~rk
stations, with remote access to mtegrated data repositones. 
For example, design applications deal with large af!lount of 
data, which is mostly organized using such !llodeling con
cepts as version, alternative, and co~figurauon. Those ap
plications often work on a well-specified set of data, called 
working set, s~h as a particul~ version of a documen_t or 
a wing of an arrcraft for a particular model and vers10n. 
Such data is typically an aggregation of a set of othe~ docu
ments/designs with specified versions. Usu~ly wor~mg sets 
are extracted from the database and loaded mto mam mem
ory close to the applications for high performa~ce. After an 
application completes its work on the wo~k_ing. set, the 
DBMS propagates back the changes to the ongmatmg data
bases. Working sets are typically much smaller than the 
whole database. For example, in design applications, the 
sizes of the databases are in the gigabytes to terabytes range, 
whereas working sets are typically. in the range of 1 ~o 100 
megabytes. Thus, loading a workmg set translates mto a 
data extraction where on average one tuple out of 10000 to 
100000 is selected. This again calls for set-oriented query 
facilities for efficient data extraction, requiring powerful 
optimization, and high performance execution. !fie ~oncept 
of views is extensively used in DBMSs, allo~mg_ different 
applications to view the data differently. Apphcauons deal
ing with composite objects require this concept to be ex
tended to allow the formation of different views over the 
same data. Further,these views must be updatable. 

We propose an extension of SQL, called SQL Exten~ed 
Normal Form (or XNF) to satisfy the needs of the applica
tions discussed above. XNF is based on the concept of Com
posite Objects (<;0) as a coll~tion of tabl~s and rela~on
ships· COs prov1de an abstractiOn mechamsm that umfies 
both the structural view as well as the tabular view of the 
data. We fully support this extension in the implementation, 
including query optimization and execution, and concurren
cy control and recovery. 

With this approach the users benefit from the power of 
relational DBMSs to handle the tabular data, and benefit 
from the XNF extensions as well. Customers would also 
like to migrate their existing applications to exploit CO fea
tures. This calls for an integrated DB, which handles both 
the tabular as well as the CO data. Further, the commercial 
RDBMSs like IBM DB2 [IBM88] and Tandem Non-Stop 
SQL [BP88] have many industrial-strength features, that 
have taken years to build, and are vital to the users. These 
relate to the robustness of the systems, failure tolerance, 
high performance for SQL accesses and utilities, tools for 
monitoring performance, application development tools, 
good integration with the operati~g systems' features!~ _va
riety of storage management opuons, bul_k Ilq capab1ht1es, 
exploitation of multiprocessors and, poss1bly, mtra-transac
tion parallelism, different degrees of isolation (repeatable 
read, cursor stability etc.), query optimization, etc. It would 



be prudent to reuse these features and employ them as a 
foundation for extensions. · 

The remainder of the paper is organized as follows. The 
concept of composite objects is outlined and motivated in 
chapter 2. Chapter 3 discusses the major XNF query facili
ties to manipulate COs and to establish the mapping from 
relations to COs. Chapter 4 explains the implementation of 
XNF in Starburst DBMS and it shows that these extensions 
can be accommodated inexpensively and in such a way that 
the performance of important classes of data base applica
tions can be considerably improved. Chapter 5 discusses re
lated work, and the final chapter gives some conclusions 
and an outlook on future work. 

2. Composite Object Abstraction in XNF 
In XNF a Composite Object is defined as a collection of 

named component tables and relationships defined between 
these tables. We use the notion of Composite Object (CO) 
in order to emphasize that a CO is composed of multiple in
terrelated components. XNF' s notion of CO is based on the 
view paradigm defining CO views (also called object 
views or structured views) composed from an underlying re
lational database. This means that the component tables and 
the relationships that are part of a CO definition have to be 
constructed from the tuples stored in a relational database. 
Based on the terminlogy of [LW90]. the COs have to be 
instantiated from relations by evaluating XNF view 
queries. Hence different tools and applications may ask for 
different (not necessarily disjoint) COs over the same com
mon database. This level of CO views achieves what we 
will call CO abstraction and the gap between relational 
data and CO abstraction is bridged by XNF's mapping facil
ities to be introduced here and in the next chapter. 

Schema Level Instance Level 

d1 d3 d2 

11~ 11\ 
e1 e2 X p1 p2 e4 eS e6 

'"--r--' I \/l(/ 
s1 ~ s3 · s4 sS 

Figure 1: Sample Composite Object 'Company Organi
zational Unit'. Left Side: Schema graph for the 
CO 'Company Organizational Unit'. Right 
Side: Instance level showing component tuples 
linked via connections 

As an introductory example Fig.lshows a sample CO 
taken from a simplified application scenario. For our pur
pose a simple business application is sufficient to express 
the basic concepts of our CO model; it will become obvious 
how these concepts carry over to non-traditional application 
areas. The sample company database contains the depart
ment (DEPT), employee (EMP), project (PROJ), and skill 
(SKILLS) tables. The CO depicted in Fig. I gives for each 
department the associated employees (via the relationship 
EMPLOYMEN1), the projects it owns (via the relationship 
OWNERSHIP), and finally the skills that either one of its 
employees possesses (via the relationship EMPPROPER-
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TY) or one of its projects needs (via the relationship PRO
JPROPERTY). The left side of Fig.l shows the schema in
formation ass~iated with this eo. The right side of this fig
ure shows the tuple instances (dl, d2, ... , el, e2, ... )and the 
connection instances (drawn as straight lines) relating their 
partner tuples. This CO represents what we might call the 
'company organizational unit' that might constitute the 
working set for a particular business application. 

For a CO to be well-formed, we require that the tables as
sociated by a CO's component relationship must all be com
ponent tables of that very CO. This constraint carries over 
from relationships to their connection instances and from ta
bles to their tuple instances: If one of the tuples is excluded 
from a composite object, the connections it is involved in 
have to be excluded, too. 

XNF relationships are directed from a distinguished part
ner table ("parent" of that relationship) to the other partner 
tables ("child'' tables). For example, the relationship EM
PLOYMENT connects the partner table DEPT as a parent 
table to the child table EMP. In a general setting we allow 
for n-ary relationships, i.e. relationships that relate more 
than two partner tables. Since properties of binary relation
ships carry over to n-ary relationships, we will stay with bi
nary ones for the scope of this paper. XNF relationships 
may be cyclic (e.g. "manages" relationship, with partner ta
ble EMP both as parent (in the "manager" role) and as child 
(in the "reports-to" role)). A component table of a CO is 
called root table if it has no incoming relationships, i.e. this 
table is not a child table of any relationship. In Fig.l DEPT 
is the root table. At the instance level (right part of Fig.l) 
connections are represented by simple lines rather than ar
rows in order to indicate that relationships may be traversed 
in either direction independently of the relationship's direc
tion as indicated in the schema part on the left side ofFig.l. 

Direction in relationships is relevant only for determin
ing the instance level of a CO which is defined by the reach
avzlity concept. Consider two tuples .. a" and "b" of a com
posite object. "b" is said to be reachable from "a" if there 
exists a sequence of connections which, when traversed in 
parent to child direction, gets one from "a" to "b". The no
tion of reachability specifies the permissible instances of a 
CO: Any tuple of a CO must either be part of a root table, or 
it must be reachable from some tuple in a root table. This so
called reachability constraint restricts the components of a 
CO to only reachable ones, thus defining a quite natural no
tion of 'importance or relevance' of a component w.r.t. its 
CO. Referring to Fig. I we can see that the tuples e3 and s2 
do not fulfil the reachability constraint because they are not 
reachable through a tuple from a root table. Hence those tu
pies do not participate in that CO. On the other side, depart· 
ment d3, being a tuple from a root table, is reachable by def
inition, thus belonging to that CO. As we will see, the reach
ability concept will also simplify the specification of restric
tions in composite object definitions (see section 3.1). 

Relationships will provide a number of generic services, 
like: 
• Testing whether some tuples are related via a specific re

lationship; 
• Denoting the tuples which are related to a given tuple or 

set of tuples (traversal and 'path expressions' in section 
3.5; recall that traversal can be done in the direction of 
parent to child and vice versa); 

Tables and relationships form \he nodes and edges of a 
directed graph (left part of Fig.l) . Based on this schema 



graph we define the notions of recursive COs, schema shar
mg, and instance sharing as follows: 
• A CO is called recursive, if its schema graph contains 

cycles. Otherwise it is called non-recursive. 
• A CO exhibits schema sharing, if at least one node has 

two incoming edges. For example the schema graph de
picted in Fig.1 shows the schema-shared node SKILLS. 

• Schema sharing is usually accompanied by instance 
sharing. For example in Fig.1 skill s3 is shared by em
ployees e2 and e4 as well as by projects pl and p2. Note 
however that schema sharing is not a prerequisite for in
stance sharing: a single relationship, e.g. EMPPROPER
TY, might be sufficient as shown in Fig.1. again. by skill 
s3. which is shared between employee e2 and e4. 

These structural concepts of sharing and recursion nicely 
match the four types of composing "molecular objects" 
based on two independent attributes [BB84]: disjoint (no 
sharing) and non-disjoint; recursive and non-recursive. 
Note that relationships are important in traversal and query
ing of COs (see Chapter 3), and in representation of data for 
efficient application access. 

So far, we haven't made any assumptions on how we 
construct the COs from a relational database. Clearly, our 
notion of CO should be, as much as possible, independent 
of the conceivable representations of COs in the underlying 
database. For example, Fig.2 shows two different database 

d1 d3 
I 

d2 I 

!! X!!\ 
Partial Schema for Company database CDB1: 

DEPT (dno, ... ,budget, dmgrno) 
EMP (eno, ... , salary, edno, epno) 

Partial Schema for Company database CDB2: 
DEPT ( ... ) 
EMP( ... ) 
DEPTEMP (dedno, deeno, ... ) 

Figure 2: Two Different Representations for the , . 
Company Database (only partially shown) 

representations for the information of relationship EM
PLOYMENT that associates the departments to their em
ployees (and vice versa). In company database COB 1 an im
plicit representation has been chosen (which is the usual 
representation for l:n. i.e. functional associations) for that 
end, whereas in company database CDB2 a particular table 
(that, for example, might hold some attributes describing 
that association) has been used in order to reach at an explic
it representation for the EMPLOYMENT relationship. 
However, independent from these two different representa
tions, we want to see the two partner tables DEPT and EMP 
associated by the relationship EMPLOYMENT as is shown 
in the upper part of Fig.2 (this is a partial view of the CO de
picted in Fig.1). In order to derive that infonnation, we h,ave 
to apply different queries depending on the particular repre
sentation. e.g. the relationship EMPLOYMENT might be 

1. From now on nodes and edges are used as synonyms for 
component tables and relationships, respectively. 
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derived in database COB 1 by joining the tables DEPT and 
EMP. whereas in CDB2 the particular table DEPTEMP 
might be sufficient for that end. This derivation is similar to 
the classical view concept specifying the schema of the tar
get table and how that table is populated. With views, only 
the derivation needs to take into account the underlying rep
resentation of the source data, whereas the result table ab
stracts from the underlying database. In a similar way, XNF 
provides view facilities to derive the components of a CO 
populated by its connection instances and tuple instances. In 
the next chapter we elaborate on XNF's language approach 
for derivation and querying of COs. 

3. The XNF Language 
Since COs consist of tables and relationships, a CO con

structor will be made up of table constructors and relation
ship constructors. SQL already provides a variety of facili
ties for constructing the component tables (e.g. table deriva
tion using the SELECT .. FROM .. WHERE construct); there
fore the only missing facility is a relationship constructor. 
Relationships will be specified using predicates, identifying 
tuples which are associated; if needed, relationships may 
have attributes to further characterize the connections be
tween tuples. For now suppose that we are working with the 
company database COB 1 partly shown in Fig.2. 

3.1 Introductory Query Example 
An example of XNF's CO constructor is as follows: 
OUT OF 

Xdept AS (SELECT • FROM DEPT WHERE loc='NY'), 
Xemp AS (SELECT • FROM EMP), 
Xproj AS (SELECT • FROM PROJ), 
employment AS (RELATE Xdept, Xemp 

WHERE Xdept.dno=Xemp.edno), 
ownership AS (RELATE Xdept, Xproj 

WHERE Xdept.dno =Xproj.pdno) 
TAKE • 

Starting from tables DEPT, EMP, and PROJ, this exam
ple constructs a CO with nodes Xdept, Xemp, and Xproj, 
and relationships employment and ownership. The query 
expression populates Xdept from DEPT. Similarly Xemp 
and Xproj are populated from tables EMP and PROJ, re
spectively. Unlike Xdept, tuples of Xemp and Xproj reuse 
the EMP and PROJ tables unchanged. The following short 
notation can be used for this purpose: Xemp AS EMP. 

In contrast to SQL's query constructor, the CO construc
tor does not perform any concatenation and cartesian prod
uct of the participating components. The schema graph for 
this query is similar to the one shown in Fig.2. 

The relationships employment and ownership are de
fined by the RELATE clause. This clause firstly gives the 
parent table and then the child table. and the WHERE clause 
takes the predicate that specifies the criteria for relating two 
partner tuples via a connection instance. Note that due to 
reachability no tuple from EMP (PROJ) is to be included 
into Xemp (Xproj) which cannot be reached from a New 
York department via the 'employment' ('ownership') rela
tionship (reachability constraint). XNF's CO constructor 
provides further facilities, as will be shown in the subse
quent sections. 

3.2 Composite Object Views 
Similar to SQL, an XNF query definition can be bound 

to a view name: · 



CREATE VIEW ALL-DEPS AS 
OUT OF Xdept AS DEPT. Xemp AS EMP, Xproj AS PROJ, 

employment AS (RELATE Xdept, Xemp 
WHERE Xdept.dno = Xemp.edno), 

ownership AS (RELATE Xdept, Xproj 
WHERE Xdept.dno = Xproj.pdno) 

TAKE • 

Like tabular views of SQL, XNF views are important for 
data abstraction (see Chapter 2). Once defined, the user 
need not care about the way a composite object is ultimately 
assembled from tables of a relational database. 

One important capability of the view concept that is only 
implicitly mentioned above is to build views over views, 
thus reaching at layered levels of abstraction. For example, 
we can define the view ALL-DEPS-ORG based on the view 
ALL-DEPS defined above (see Fig. 3 shaded part): 

CREATE VIEW ALL-DEPS-ORG AS 
OUT OF ALL-DEPS, 

membership AS (RELATE Xproj, Xemp 

TAKE • 

WITH ATTRIBUTES ep.percentage 
USING EMPPROJ ep 
WHERE Xproj.pno = ep.eppno AND 

Xemp.eno = ep.epeno) 

This view definition takes all the components of the ref
erenced view ALL-DEPS and extends them by an additional 
relationship 'membership' defined between the parent table 
Xproj and the child table Xemp. Both partner tables of that 
relationship are component tables of the XNF view ALL
DEPS. Different from the previous examples, this relation
ship has an attribute defined in the WITH ATTRIBUTES 
clause. The information from which the relationship has to 
be derived is given by the partner tables and by an additional 
table, the base table EMPPROJ, specified in the USING 
clause. Therefore, the relationship constructor relates all 
three tables in order to derive and construct the relationship 
component In this example the relationship attribute is sim
ply taken from the base table EMPPROJ, although it is pos
sible to define an attribute using any (column) expression. 
Once defined, however, this relationship can be used in the 
same way as the other ones, without any knowledge of how 
it is actually constructed. Due to the newly added relation
ship in the schema graph, also new tuples and connections 
might show up at the instance level. For example in Fig.3 
employees e3 and e4 are now considered, because they be
come reachable via the newly added relationship 'member
ship'. 

So far, we have seen how views can be assembled from 
simple tables or other XNF views. In addition. we need fa
cilities for removing unwanted parts from existing views. 
The following sections show how the query facilities can be 
extended for this purpose. 

275 

3.3 Node and Edge Restriction, Structural Projec
tion 

Clearly, SQL extensions for CO support also require fa
cilities for querying COs. In the XNF approach, the CO con
structor itself is used for that end, since it already provides 
the appropriate selection facilities. In essence, we follow the 
same idea as SQL, where the SELECT .. FROM .. WHERE 
construct is used in queries as well as in view constructors. 
For example, assume that we want the ALL-DEPS, but only 
those employees making less than 2K. This is achieved by 

OUT OF ALL-DEPS 
WHERE Xemp e SUCH THAT e.sal < '2K' 
TAKE • 

As already done in the previous two view definitions, the 
OUT OF clause is not used here to assemble the pieces from 
scratch; instead it refers directly to a predefined view. Like 
the view ALL-DEPS, this query deals with the nodes Xdept, 
Xemp, and Xproj, and the edges 'employment' and 'owner
ship'. Different from ALL-DEPS it will not contain an 
Xemp tuple, where the salary is 2K or more (node restric
tion), and no corresponding 'employment' connection ei
ther. 

If we want to restrict the employees of the ALL-DEPS 
view to those who make less than 1 percent of their depart
ment's budget, we can best do this by imposing a restriction 
on the 'employment' relationship (edge restnction): 

OUT OF ALL-DEPS 
WHERE employment (d, e) 

SUCH THAT e.sal < d.budget'100 
TAKE • 

Here (d, e) denotes a connection instance of 'employ
ment' symbolized by a pair of associated Xdept and Xemp 
tuples. This link item is to be discarded from ALL-DEPS, if 
the corresponding Xemp and Xdept tuples do not meet the 
specified predicate. Due to reachability, the Xemp tuple it
self is also discarded (but not the corresponding Xdept tu
pie). 

In addition to specific tuples or connections, complete 
edges and nodes might be removed, too, by projection capa
bilities. If we are not interested in the Xproj node, the previ
ous query is modified as follows: 

OUT OF ALL-DEPS 
WHERE employment (d, e) SUCH THAT e.sal < '2K' 
TAKE Xdept(•), Xemp(•). employment 

Since the Xproj node is gone, the 'ownership' relation
ship is discarded implicitly due to the well-formedness of 
COs. 
3.4 Recursive Composite Objects 

Let's take the view ALL-DEPS-ORG and extend it by an 
additional relationship 'projmanagement' that relates em
ployees to the projects they manage (see Fig. 4): 

CREATE VIEW EXT-ALL-DEPS-ORG AS 
OUT OF ALL-DEPS-ORG. 

projmanagement AS (RELA TEXemp, Xproj 
WHERE Xemp.eno = Xproj.pmgrno) 

TAKE • 

Here, the relationships 'membership' and 'projmanage
ment' define a cycle on the schema graph. Thus EXT-ALL
DEPS-ORG is a structurally recursive CO. The instance 
level shows the tuples and connections. Connections of type 
'projmanagement' are drawn as dotted lines. For example 



Figure 4: Recursive Composite Object 

we can see that employee e'l manages the projects p'l and 
p3, and employee e3 works on project p2 and manages at the 
same time project p4, on which employee e4 (who also par
ticipates in project p2) works as well. 

Reachability is instrumental in querying this type of CO. 
For instance, we can easily restrict EXT-ALL-DEPS-ORG 
to projects, which report - either directly or indirectly - to 
employees of New York departments. In order to do this, we 
employ a qualification criterion onto the Xdcpt table as well 
as a projection that excludes the 'ownership' relationship: 

OUT OF EXT-ALL-DEPS-ORG 
WHERE XdeptSUCH THAT loc = 'NY' 
TAKE Xdept(•), employment, Xemp(·). 

projmanagement, membership(•), Xproj(*) 

(IOC= 'NY') 
Xdept ,AV (l' ~ 

e2~•:: ....................... p2 
········ ... ' 

e3 ... . ........ p3 

/ ""···· ... : e4 ••···· p4 

Figure 5: Restriction on Recursive CO 

The result of this query applied to the XNF view EXT
ALL-DEPS-ORG shown in Fig.4 is visualized in Fig.5. Due -
to reachability, the result contains all employees of New 
York departments (eland e2), all projects managed by these 
eml?loyees (p2 and p3), the employees working on these 
proJects (e3 and e4), and so on. Project pl is not in the result 
since it is not reachable anymore. ' 

3.5 Path Expressions 
A path expressi?n is a .con.venient way of addressing 

parts of a CO node m a navigatiOnal style. They exploit the 
CO structure defined by the component tables and the rela
tionships. Path expressions come in different forms. E.g., if 
d denotes a specific department in EXT-ALL-DEPS-ORG, 
then 

d->employment->Xemp->projmanagement->Xproj 

or the syntactically reduced path expression 
d->employment->projmanagement 

denote the set of all projects which are managed by employ
ees employed by department d. We can specify predicates in 
path expressions, e.g. 

d->employment->(Xemp e WHERE e.sal < 2K)-> 
projmanagement->Xproj 
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denotes the projects whose managers make less than 2K and 
are emploY.ed by department d. This example shows a so
called qualified path expression. 

The following path expression defined for the XNF view 
EXT-ALL-DEPS-ORG is different from the first one: 

Xdept ->employment->Xemp->projmanagement -> Xproj 

It denotes all the projects in that view that are related via 
the relationships 'employment' and 'ownership' to any de
partment of that view. Clearly, this set is a subset of the set 
of tu pies in the component table Xproj. 

In general, a path expression denotes a subset of the set 
of tuplcs of its target table. All these tuples are reachable 
from some root tuples through the path defined and in the 
case of qualified path expressions, the given predicates must 
be satisfied by the tuples on the path that leads to the leaf tu
pie~. Hence, we view a path expression to be a table, to 
"Yhtch we can ~pply any table operation, for example restric
uons or countmg as shown below. The direction in which a 
relationship has to be traversed is usually inferable from the 
sequence in which the connected nodes are specified. In 
specific cases (e.g. cyclic relationships mentioned in chap
ter 2) role names have to be used to avoid ambiguities. 

The following query shows the usage of path expressions 
for querying XNF views. It uses the path expression defined 
above in order to address all the projects that are managed 
by the employees employed by a given department d: 

OUT OFEXT-ALL-DEPS-ORG 
WHERE Xdept d SUCH THAT 

COUNT(d->employment->projmanagement) > 2 
AND d.budget > '1000K' 

TAKE • 

This .q.uery restricts the departments (and implicitly via 
rcachab1hty also the employees and projects) of the XNF 
view EXT-ALL-DEPS-ORG to only those departments 
where in addition to the budget criterion there must be at 
least 2 projects related via the relationships 'employment' 
and 'ownership'. If we ask in another query for the depart
ments that manage through some of its staff employees at 
least one project, whose budget is greater than the depart
~ents budget, then it is easier to use qualified path expres
Sions: 

OUT OFEXT-ALL-DEPS-ORG 
WHERE Xdept d SUCH THAT 

TAKE* 

(EXISTS d->employment-> 
(Xemp e WHERE e.descr='staff')-> 
projmanagement-> 
(Xproj p WHERE p.budget >d. budget)) 

3.6 Closure Property 
Closure property gives the advantage of using the same 

query language on base data as well as on derived data or 
query results. As depicted in Fig.6 the closure property 
holds for XNF w.r.t. XNF operations and Normal Form 
(NF) SQL operations. 

The following classification scheme for XNF queries is 
~ased on the closu:e property of XNF and on its compatibil
Ity to NF SQL. F1g.6 shows the four types of conceivable 
XNF queries. 

The XNF approach covers the whole spectrum, from 
SQL's !-table-result queries (so-called NF queries that in
corporate regular tables and produce a single regular result 
table) to XNF's multi-table-structured result queries. Due to 
space limitations, we have concentrated on type (1) and (2) 



• . 
• . . . . . 

(1) 

(3) 

~ .... ~ ... 
SOL ; XNF extensions 

, to SOL 

(1) NF to XNF queries 
(2) XNF to XNF queries 

(3) XNF to NF queries 
(4) NF to NF queries 

Figure 6: Classification Scheme for XNF Queries 
queries (Fig.6) that emphasize on XNF's CO constructor. 
Type (1) queries define COs through a query that takes n in
put tables and produces m output tables and, optionally, 
some relationships that constitute the resulting CO. Type (2) 
queries build upon XNF views taking their result CO as in
put and producing another CO as output. 
3.7 API Considerations and Manipulation Opera

tions 
For further processing, the CO denoted by an XNF query 

is optionally transferred into a high performance application 
program cache. While being represented (see section 4.2) by 
pointer structures, the cache is not exposed to the user at that 
Implementation level. Instead the nodes of a cached CO 
may be accessed through cursors only. XNF provides two 
kinds of cursors. If an zndependent cursor is opened on a 
node, it allows one to browse through all its tuples. Depen
dent cursors are bound to other cursors through a path ex
pression. E.g., if there is an open cursor aDept on the node 
Xdept (see Fig.3), a cursor anEmpOfDept may be opened 
on Xemp which depends on aDept through the relationship 
'employment'. Different from an independent cursor, open
ning of this cursor gives only access to those employee tu
pies which are reachable from the department the cursor 
aDept currently points to. As we have seen so far, relation
ships are very useful: firstly, they are required for the spec
ification of path expressions that are then used for cursor 
definition, and secondly,they are used for building efficient 
in-memory data structures (see section 4.2) that directly 
support navigation via cursor operations. 

XNF provides operations for changing the cache con
tents through update, delete, and insert operations on tuples 
(called udi-operations) as well as connect and disconnect 
operations on relationships. All udi-operations on XNF 
component tuples as well as connect and disconnect on re
lationships are propagated to the corresponding base tuples. 
The cache is maintained in such a way that cache changes 
can be propagated in an efficient fashion[KDG87). 

In addition to cursor manipulation, XNF supports modi
fication operations. Update, delete, and insert are available 
at the CO level. For example, a CO deletion statement spec
ifies the removal of all tuples and connections of that target 
CO. This removal of CO components maps down to remov
als of the base tuples from which the CO components are 
derived. For the following CO deletion statement all the de
partment, project, and employee tuples that map to compo
nent tuples and relationships of the target CO have to be re
moved from their base tables. 

OUT OF ALL-DEPS 
WHERE Xemp e SUCH THAT e.sal < '2K' 
DELETE • 

In all cases, the CO to be manipulated must be updatable. 
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Since XNF relies on views, we first review the view updat
ability in relational databases, then we discuss updating of 
XNF views. 

In the relational systems, base tables are updatable. A 
view over a base table which hides some columns of a base 
table is equally updatable. We can restrict the tuples of the 
view by specifying a predicate referring to the columns of 
the table the view is defined on. This view is also updatable. 
Hence, use of views does not compromise updability of the 
database. Such updatable views are commonly used in prac
tice, particularly for authorization. The relational model al
lows users to specify even more powerful views, hence not 
restricting the view specification to udpatable views only. 
For example, views may contain aggregation, joins, etc. In 
general, such views are read only since an update of a tuple 
of the view cannot be (reverse) mapped unambiguously to 
an update of the base data. Updatability of views is extended 
in systems such as Starburst [HCL90). We directly benefit 
from such extensions. 

We follow the same design philosophy in specification 
of XNF views. We need to address update of the relation
ships in addition to update of the nodes in XNF. In Fig.4, the 
'employment' relationship connects Xdept tuples and 
Xemp tuples. We want to disconnect some relationship in
stances and connect new ones. Disconnecting an 'employ
ment' relationship instance results in setting the dno of the 
tuple of Xemp associated with this relationship to the null 
value. Basically, if a relationship is defined by a foreign 
key disconnect results in nullifying the foreign key. Con
necting an Xemp tuple to an Xdept tuple results in setting 
the foreign key of the Xemp tuple. Consider the 'member
ship relationship', which is M:N. Each relationship instan~e 
is built from a tuple in the EMPPROJ base table. The dts
connect operation results in deleting the corresponding tu
pie in the EMPPROJ table and the operation connect. results 
in inserting a tuple in the EMPPROJ table. Followmg our 
view update philosophy, we do not restrict the definition of 
relationships to only the ones that are updatable. For exam
ple, users can define a relationship between average level of 
productivity and years of experience, but cannot update it. 

The nodes of XNF are regular views, and as such, updat
ability rules of views apply to them. For instance, in Fig.4, 
one can update the salary of employees or the budget of de
partments. However, update of the dno column of Xemp is 
done only through the relationship connect/disconnect, as 
explained above. In general, columns that are used to define 
relationships are updated by relationship manipulation as 
explained above. Delete of an Xemp tuple results in discon
necting the associated employment relationship. This is to 
prevent any dangling relationships. Likewise, delete of an 
Xdept tuple results in disconnection of all the employment 
and ownership relationships instances attached to it. In gen
eral delete of a tuple can only result in delete of the tuple it
self and all the relationships instances directly attached to it 

4. Design And Implementation 
We considered two approaches to build this system: (I) 

build a new DBMS suitable for XNF, (2) adapt an existing 
DBMS. In either approach, the new system will need com
posite object data clustering for I/0 reduction, fast extrac
tion of data, and composite object query optimization. 

Regarding clustering, relational DBMSs typically allow 
clustering of data along tables, which is inappropriate for 
composite objects, where we need clustering of component 



tuples belonging to different tables. However, existing 
RDBMSs apply already clustering techniques beyond naive 
table clustering. For example, DB2 [IBM88] clusters tuples 
of catalog data in the form of composite object clusters to 
minimize 1/0 overhead for catalog access. Starburst allows 
clustering of the parent and children of a relationship 
([LLPS91], IMS attachment) to reduce 1/0 overhead of 
joins. We concluded that we can benefit considerably from 
the existing clustering technology in relational DBMSs. So 
far, this argues in favor of approach 2. 

Another feature we need is fast extraction of data. This is 
particularly so in large engineering and design databases, 
e.g. in aerospace and automotive industry, where the size of 
the database could be in terabyte range (as discussed in the 
introduction). We concluded that XNF must be able to us~ 
the technology developed in the relational DBMSs to han
dle large amount of data and complex query processing. For 
instance, parallelism can reduce execution of XNF queries 
by orders of magnitude. Set oriented specification of com
posite objects in XNF particularly lends itself to exploita
tion of parallelism technology [DG90, Gr90, LD89, 
PMC90]. 

Specification of XNF views mostly reuses the relational 
query language (SQL in our case). Almost all of the optimi
zation techniques developed in the context of relational 
DBMSs are applicable for COs as well. We discuss this in 
more detail shortly. 

Operational relational DBMSs are very expensive to 
build. It quickly became apparent to us that both from tech
nical and economic viewpoints, approach 1, building a new 
system, did not make sense. Rather, by adapting an existing 
DBMS, we could build a much more powerful system in a 
much shorter time. We chose Starburst DBMS [HCL90] as 
the starting point. Starburst was particularly attractive due 
to its extensibility features. 

SQL 
interface 
(SQL-API) 

SOL DBMS (relational engine) 

Figure 7: General Architecture of the SQL/XNF 
Language Processor and Application 

In retrospect, our intuition/initial study proved correct. 
Our XNF extensions to Starburst cost much less than the 
whole system. We conjecture that this percentage is much 
lower if we extend a commercial DBMS, capable of han
dling large databases, such as IBM DB2 [IBM88], Tandem 
Non-Stop SQL [BP88], or Teradata [Ne86]. 
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4.1 System Architecture 
As shown in Fig. 7, SQL/XNF composes a composite 

object from the relational database. The data is shared be
tween traditional SQL applications and XNF applications. 
Note that no change is required in the traditional applica
tions to access this shared database. The XNF applications 
use the (fast) XNF Application Language Interface (API) to 
access the data. SQL/XNF language processor translates the 
XNF queries to a form very close to the standard SQL, al
lowing reuse of the DBMS with little change. This transla
tion is performed at compile time, and is optimized, elimi
nating any runtime overhead. We should emphasize that 

. XNF is integrated into the RDBMS (not an on-top solution), 
and extensively reuses the query processing components of 
RDBMS as explained below. 
4.2 XNF Cache and API 

Browsing through the XNF structured data is very simi
lar to that of 00 languages [BTA90], which is based on col
lection enumerators and path expressions. An application 
opens a cursor on a node of an XNF structure, and enumer
ates the tuples of that node. The application can cross a re
lationship from one node to another node given a cursor on 
the first node by opening a dependent cursor specified by a 
path expression that connects the two nodes. XNF cursors 
over the cache are very fast. We have made an effort to cut 
down on the pathlength of cursor operations. Particularly, 
unlike regular SQL, the access to the cache does not require 
any inter-process communication. The XNF cache uses vir
tual memory pointers to link the tuples of an XNF structure. 
As a result, the browsine; is very fast. The structure of the 
XNF cache and the algonthms used for loading and navigat
ing the cache are not discussed further due to space limita
tion. 

In addition to the cursor interface, language compilers 
(such as those for object-oriented languages) can interface 
with XNF cache internally to store and browse through the 
data, and provide a language specific interface to the appli
cations. For this scenario it is quite obvious that object-ori
ented programming environments (e.g. C++) are very useful 
in order to achieve a proper adaptation to the applications' 
needs. For instance, browsing can be efficiently accom
plished by pointer dereferencing through XNF cache and 
flexible manipulation support is due to the concepts of 
methods, encapsulation as well as inheritance and overrid
ing. 
4.3 Compilation and Execution of XNF Queries 

First we give a brief overview of the Starburst internal 
components. Then we explain the new components and the 
changes we made to these components to support XNF. 

Fig. 8 shows phases of query compilation (see [HCL90] 
for more detail). Such structuring of phases of query compi
lation can also be found in other DBMSs, such as [CM88]. 
During parsing and semantic checking, a Starburst SQL 
statement is translated to an internal representation, called 
Query Graph Model (QGM). The query rewrite phase trans
forms the QGM representation of queries to equivalent ones 
for better performance. Examples of such transformations 
are merging of views with queries, predicate pushdown, and 

. magic sets [MFPR90]. The plan optimizer examines alter
native plans, such as use of indices and various join meth
ods, for a query represented in QGM and chooses one with 
a lower cost. Query refinement follows the plan generated 
by the plan optimizer and produces an executable plan 



which is run by the query evaluator at runtime. 
In Fig. 8, XNF extensions are represented as shaded ar

eas. First we needed to modify the grammar to understand 
XNF language constructs, and added the appropriate se
mantic checking routines. XNF queries are mostly com
posed of existing SQL language constructs. This lends itself 
to significant reuse of the semantic routines of the existing 
SQL constructs, avoiding expensive duplication of the code . . 
This considerably simplifies our implementation of the se
mantic checking. Queries are represented in the QGM inter
nally. Thus, we needed to enhance QGM representation to 
handle XNF queries. QGM is based on the notion of table 
abstraction. Queries are represented as a series of high level 
operators (e.g. SELECT, GROUP BY, UNION, and IN
TERSECTION) on either base tables or derived tables. An 
operator consists of a head and a body: the head describes 
the output table and the body shows how this table is de
rived from other tables the body refers to (e.g. performing 
projection on the join result of the input tables according to 
a given predicate). We added an XNF operator to QGM to 
capture the semantics of the XNF CO constructor in the lan
guage. This XNF operator is able to produce m>= 1 output 
tables, each of them representing either a node or an edge. 
The model allows arbitrary nesting and mixing of XNF con
structors and SQL constructors, maintaining the closure 
property. 

We introduced a new step, XNF semantic rewrite, which 
translates XNF operators in QGM to regular SQL operators 
(Fig. 8). The significance of this is that it enables us to reuse 
the expensive optimization and evaluation machinery of the 
relational DBMS. We give just a summary of this transla
tion due to space limitation. Basically, we formulate one 
query for each node or relationship output of an XNF query, 
observing XNF semantics such as reachability. These que
ries typically use common subqueries to avoid unnecessary 
redundant computations. For instance, when we generate 
the tuples of a parent node, we output them, and also use 
them again to find the tuples of the associated children. Reg
ular output processing of SQL is modified to allow genera
tion of a heterogeneous set of tuples in the answer set (gen
eration of tuples belonging to different nodes and relation
ships). Due to the power of Lhe S tarburst query rewrite com
ponent, we were able to go for straightforward transforma
tions from XNF to SQL QGM operators. Any optimization 
of the resulting QGM can be deferred to the query rewrite 
step, which takes care of merging query blocks or other sim
plifications and clean-up operations. 

Processing of XNF does not require any change to query 
rewrite and no significant change is required in the plan op
timization. In the plan optimizer handling of joins is heavily 
used since parent child relationships are computed by joins. 
The plan optimizer should take into account any parent/ 
child links present in the database ([LLPS91], IMS attach
ment), and clustering of data on disk for 1/0 and path length 
reduction in optimization of joins. 

The query refinement is modified to deliver heteroge
neous sets of tuples to the cache manager efficiently. When 
a parent tuple is accessed, it is sent directly to the output, 
and it is used to compute the children. The answer tuples are 
sent out to the cache manager once they are computed, 
avoiding further buffering since the cache manager buffers 
them anyway. 

Again, note that we only needed to make comparatively 
small extensions to the RDBMS compiler. All the other 
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Figure 8: Stages of XNF Query Processing 

components, notably the query evaluation system, transac
tion, recovery and storage management, are completely 
shared between XNF and regular DBMS users. Yet the re
sult is a much more powerful query capability, combined 
with high performance, satisfying the needs of the demand
ing applications, e.g., in design and engineering areas. 

Loading of the cache benefits from the power of XNF 
queries. The scope of query optimization encompasses all 
the queries that define the nodes and relationships of an 
XNF structure. The optimizer is able to take advantage of 
common subexpression across these queries. Further, the 
answer to all these queries are combined. This allows the 
DBMS to more efficiently block the heterogeneous answer 
tuples for sending between the DBMS and application pro
cesses (which may reside in different processors across a 
network). 

The browsing .of the data in the cache using cursors is 
very fast due to main memory pointers between tuples in the 
cache. The performance improvement over regular SQL 
DBMS interface is in orders of magnitude, and is compara
ble to the performance improvement of OODBMS over re
lational DBMSs reported in Cattell's benchmark [Gr91]. 
However, XNF provides this high performance while pre
serving the ability to share data with other relational appli-



cations. Currently, we are in the process of completing per
formance measurements of XNF. These results will be re
ported in a separate publication. However, early results 
show that SQL/XNF meets the performance requirements 
of such applications as CAD/CAM where the performance 
of regular SQL has been shown to be inadequate [Gr91], 
whilst OODBMSs are considered to be more suitable. 

5. Related Work 
We focus on the main aspects of XNF: the power of the 

relationships, CO abstraction, and overall architecture and 
system design. 

The relationship concept is particularly emphasized in 
the literature [AG091, ASL89, ZM90] and in practice 
[RB91], and is heavily supported in practical 00 systems 
(e.g., [So92, De91, LLOW91, On91, Ve91, Ob90]). In these 
systems, relationships are typically implemented with 
pointer sets ~n each side of the ~elationship, ea~h se~ point
ing to the obJects on the other stde of the relauonshtp. The 
system keeps these pointer sets consistent. Typically, rela
tionships are defined as part of the base objects on each side 
of the relationships. In contrast, XNF allows definition of 
viewed relationships, and incremental addition of relation
ships 1• Further, X~F allows the viewed !el~tio.nships to .b.e 
defined as part of 1ts DML. Powerful opttmtzatton capabth
ties of the DBMS equally apply to queries involving rela
tionships. In addition, relationships in XNF can have at
tributes. For instance, in Fig.3, the membership relationship 
may have an attribute on percentage of the time an employ
ee works on the associated project. 

Let's go through some examples to illustrate these 
points. Using the structure of Fig.3, we want to define de
partments and employees, and an ' involve' relati?nship, 
which gives the employees who work at least half time on 
projects of a department, and 'employment' relationship 
which gives the employees employed by a department. This 
structure provides an abstract view of ALL_DEPS-ORG 
structure of Fig.3, hiding the Xproj component. Here, the 
'involve' relationship is a concatenation of the 'ownership' 
and 'membership' relationships with a restriction on at
tribute percentage. Such a view can be defined declaratively 
in XNF. In contrast, in the 00 systems cited above, one 
must write accessor functions (say in C++) to implement the 
'involve' relationship. Often, this is not an acceptable solu
tion, particularly for the end users that want to create such 
views on an existing operational system, where reprogram
ming the system is not an option. Declarative specification 
of the relationships in XNF also allows reuse of SQL opti
mizers. Such optimization is essential since it may lead to 
orders of magnitude improvement in performance, particu
lary in handling of path expressions [PHH92]. Further, it is 
not clear how the project information becomes hidden in the 
view since there is no construct equivalent to XNF's com
ponent/relationship projection. Both Xdept and Xemp have 
fields that refer to Xproj, and such fields must become hid
den. 

Further on, a view concept plays a key role in schema 
evolution. Suppose there is an application that works with 
the schema of Fig.3. Now a new application is installed that 
shares the same database but needs a slightly different view 
being a new relationship between Xemp and his/her medical 
records. 00 systems usually require modifying Xemp to 

1. Base (materialized) relationships are part of XNF but not re
ported here due to space limitation. 

add this new relationship, and recompiling the applications 
that refer to Xemp (since the data structure of Xemp has 
changed!). Further, in some systems, the data in the data
base may have to be changed to add new pointer sets for the 
new relationship. But in most cases this is not practical. Par
ticularly, a casual end user may create and use this relation
ship for a short period of time. This must not eau~ thou
sands of existing programs that are concurrently usmg the 
database to be recompiled! Often users have read only ac
cess to the data. Hence, data in the database cannot be up
dated to add pointer sets for the new relationship. 

There are several efforts to extend the relational data 
model with a type system [ANS91, LLPS91]. Further, han
dling of typed views in the context of 00 languages has 
been addressed in [HZ90,SLT91, SS91]. The results are 
analogous to traditional database views, except that the ob
ject views hide or expose methods as well as data. Careful 
use of the query language is the key to define upda~ble 
views. XNF is integrated with [LLPS91], which provtdes 
support for types and handling of (dependent) cursors. Since 
XNF uses queries as its constructors, extensions to the data 
modeVquery languages for handling of types are directly ap
plicable to XNF. For example, nodes of XNF can have 
types: depttype, emptype, etc. Essentially, queries may ~ave 
object generating semantics [SS91]. Therefore, tuples m an 
XNF result become typed objects. Further effort is under
way in extension of the relational model to define types as
sociated with relationships (references) [ANS91, LLPS9, 
ADL91]. The notion of path expressions has also been intro
duced in [BTA90, LLOW91, On91, Ve91, KKS92]. One 
major difference is that XNF path expressions are very close 
to SQL subqueries, and preserve semantics of SQL, includ
ing null values and duplicates. As discussed before, XNF 
path expressions return tables, and can be used in place of 
any table reference in queries. As a result, richness of XNF 
path expressions is achieved with little additional constructs 
and semantics. 

In contrast to our integrated approach, [BW89, L W90] 
suggest an on-top approach. This approach integrates an ob
ject-oriented program with databases through instantiation 
of objects from relational databases by evaluation of view 
queries. The system model applied has three elements: the 

- object type model that defines the structure of the objects, 
the relational data model for storage of base data, and the 
view model that contains the relational query and that de
fines a mapping between objects and relations. That view 
model is restricted to only acyclic select-project-join que
ries. Basically this approach is comparable to XNF but ma
jor differences are obvious. Firstly, XNF realizes with its 
CO constructor a more powerful view concept (multi-table 
views), which, secondly, provides an abstraction level that 
considerably reduces the final mapping (if needed at all) to 
the application's favorable data structure. Thirdly, viewed 

. from the other side, we can use XNF as another kind of view 
model within the system model of [L W90]. Hence, XNF 
can profit from the framework defined (i.e., the object type 
model and the corresponding compiler). With this, the ap
proach of [L W90] gets extended due to an enhanced view 
model, and the implementation gets simplified due to 
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· XNF's integration of CO processing into relational DBMSs. 
There are various other approaches to modelling and 

management of COs as extensions to the relational model. 
In [LK84] COs are defined by special columns (assigning 
an identifier to a tuple, containing the parent identifier, and 



referencing another tuple). Joins among parents and chil
dren are supported by system-maintained access paths 
(called maps) on a per-CO basis. Although this approach in
tegrates eo processing into the relational framework, its us
ages are limited because of the restrictions of the data model 
to essentially hierarchical COs that are statically defined in 
the database schema. On the other hand, the Molecule Atom 
Data (MAD) model [Mi89] supports network-like as well as 
recursive COs. MAD specifies its COs (called molecules) 
on a reference basis in the CO/molecule query and not in the 
schema. With this, more flexibility is achieved, because 
COs are now similar to views defined over the underlying 
database by means of a CO query. Compared to the XNF ap
proach, the MAD approach is less flexible, because the mol
ecule building references must exist in the database, and 
therefore also in the schema; remember that the relation
ships in XNF can be defined on an ad-hoc basis through a 
predicate in the query. Query processing in MAD [HMS92] 
is also based on a set of operators that is different to the 
known relational operators due to the molecule semantics 
applied. For that reason, the MAD implementation does not 
fit smoothly into the relational query processing framework 
(see [HMS92]), thus restricting sharing of relational tech
nology (and system code). 

The nested relation approach [SS86], often referred to as 
NF2, provides more flexibility compared to Lorie's ap
proach[LK84}. NF2 is implemented in several prototypes 
and extended in several ways [DK86, LK88, PA86, 
SPSW90, CD88]. NF2 is targeted towards hierarchical COs 
by generally placing child components with the parent com
ponent In general, access to sub-components goes through 
the parent Sharing of components between parents is done 
by listing of foreign keys (or logical references), which im
plies that access is done on a join basis as in relational sys
tems. Flexibility is achieved through specific operations 
that can flatten out or restructure the nesting given in the da
tabase schema. Because of these model specific operations, 
the implementation reflects an extended relational engine. 

6. Conclusions and Outlook 
In this paper we have introduced the XNF approach that 

supports processing of Composite Objects as ahstractions 
over relational data, thereby bridging the gap between rela
tional stores and the (structured) data view of advanced ap
plications. The XNF approach comprises the following ma
jor concepts: 
• a data model that unifies CO and relational concepts, 
• a common query language for handling both CO and 

simple relational data, 
an implementation approach that guarantees efficient 
data extraction, and 

• an API with facilities for efficient navigation and manip-
ulation. · 
XNF's Composite Objects are heterogeneous sets of in

terrelated objects. Since COs can be specified as views over 
XNF databases as well as traditional relational databases, 
data from a variety of sources can be presented to the appli
cations at an appropriate abstraction level and in a format 
than can be processed with high performance. However, the 
language itself keeps the benefits ofrelational languages, 
i.e. declarative queries, set-orientation, powerful selection 
capabilities, and closure w.r.t. its operations. 

Rather than implementing a new DBMS from scratch, an 
evolutionary approach was chosen, where we decided to 
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base the implementation on existing relational technology 
and to integrate CO processing into the relational frame
work. XNF queries are translated to relational queries, opti
mized, and then executed by a relational engine. Our major 
goals were support for CO data clustering, fast data extrac
tion, and CO query optimization. For that end, we needed 
only comparatively small changes to the RDBMS compiler; 
all the other components (query evaluation system, transac
tion, recovery, and storage management, among others) are 
kept unchanged. 

The API marks an important contribution to efficiency. 
It supports generic cursors with facilities to cross a relation
ship from one component to another. The implementation of 
cursor operations has been tuned for fast cursor access and 
efficient browsing capabilities. Language compilers (e.g., 
from object-oriented programming environments, like C++) 
can easily interface with the XNF API in order to achieve a 
final adaptation to the applications' needs. 

Currently, a major portion of SQL/XNF is operational in 
Starburst extensible database system at IBM Almaden Re
search Center. First measurements have shown a perfor
mance improvement in orders of magnitude over regular 
SQL DBMS that compares to the performance improve
ment of OODBMSs over relational DBMSs as reported in 
the Cattell Benchmark. 

Further, XNF does not bind itself to only one kind of ap
plication language, rather it is open to different application 
environments. This is important since, in general, applica
tions written in different languages share the data in the da
tabase. Further, we can view XNF as a high performance ap
proach that provides a path for incorporating relational data 
into any CO application. For example we can use an XNF 
DBMS (i.e., an extended RDBMS) to provide server servic
es to an 00 programming system running on the application 
site (eventually in the application's address space on a ded
icated workstation). 

In the near future, we will collect more comprehensive 
performance data as the bases for analyzing and further en
hancing performance. In addition, we're working on further 
improving API capabilities to ease working with COs. Fi
nally, we will continue to improve XNF query processing 
exploiting CO cluster facilities, common subexpressions as 
well as concepts for parallel query processing. 
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