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Abstract 
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Over the last few years several new data models together with their languages have been developed to meet 
the increasing reqmrements of engineering or office applications A major characteristic of these data models 
is their ability to process and manage complex objects which the relational model does not provide adequate 
support for. Whereas the problem of query translation for relational languages has provoked broad research 
activities during the last fifteen years, the analogous problem of translating non-procedural queries on 
complex objects into lower level programs for efficient execution has received only little attention. 
This paper tries to reveal the new aspects of query translation and execution on complex objects as compared 
to similar activities when processing fiat relations. For this purpose, we investigate the essential concepts 
necessary to perform compdation, optimization, and execution of queries on complex objects 

Keywords. Query processing; complex objects, query opUmizatlon, data model 

1. Introduction 

Recently, the development of a new generation of database systems capable of supporting 
non-standard application areas such as engineering applications for CAD/CAM and VLSI or 
knowledge-based applications has emerged as an important direction of database systems 
research. These advanced applications differ from conventional (business) applications in a 
number of important aspects including data modeling and processing, concurrency control 
and recovery mechanisms, as well as access methods and storage structures. Most of the 
design and implementation approaches [5, 6, 8, 25, 26, 28, 36, 41] refer to some kind of 
object-orientation and extensibility. In these cases, the overall uniting characteristic is 
adequate support for complex objects. This is accomplished in different ways starting from 
only a few selected extensions of the relational model and leading up to the integration and 
superl~osition of hierarchical structures on relations. Apparently, the provision of 
• genuine and symmetric support for network structures (sharing of sub-objects in contrast to 

hierarchical structures, which are just special cases thereof), or even recursive structures, 
• support for dynamic object definition in combination with 
• powerful, yet efficient manipulation facilities 
has drawn much less attraction, although it is urgently needed in many application areas for 
refined and accurate modeling as well as efficient processing of their objects (cf. for example 
[3] " . . .  support for molecular objects should be an integral part of future D B M S s . . . " ,  
where 'molecular' objects were classified according to their structure, leading to disjoint/ 
non-disjoint and recursive/non-recursive complex objects). Especially for the support of such 
a complex-object (molecule) notion, we have designed the molecule-atom data model (MAD 
model) [30] and accomplished its prototype implementation PRIMA [17]. 
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Whilst the current research interests tend to cover efficient and extenslble processing as 
well as optimizatton of logical database languages and recursive queries, there is only minor 
research activity m the area of processing queries on complex objects. Thus, it is the scope of 
this paper to introduce some relevant concepts for such processing and to exemplify them by 
means of MAD queries in the PRIMA system We want to identify problems arising from 
the facility to dynamically define complex object structures at query time, with respect to 
query optimization and query execution. The data model, used in this paper to show some 
intrinsic issues of complex object processing, could be classified as an extension to the 
non-first-normal-form models and other models (e.g. [27]) as well as to the relational model, 
which are all limited, at most, to hierarchical and statically defined complex objects. For 
reasons of convenience, the MAD model will be developed starting from the ideas of the 
relational model. This will provide a smooth and easy to understand introduction to the data 
model for the reader 

The prime focus of the paper is a comprehensive discussion of new aspects of query 
processing when complex as opposed to flat objects (relations) have to be dealt with. For this 
purpose, the MAD model and its implementation PRIMA are used as a reference example 
to identify theoretical as well as practical problems. Section 2 introduces the environment of 
our discussion, including system architecture and data model. In section 3, we present the 
three phases of query processing in our model, namely compilation, optimization, and 
execution as well as the novel issues related to complex object processing. In particular, 
major optimization challenges are shown. Section 4 presents some conclusions 

2. A model for query processing 

For our purposes, it is sufficient to refer to an abstract view of database processing in an 
analogous way to [10]. Most set-oriented database systems can be described by two major 
components: the logical database processor and the physical database processor. For exam- 
ple, in System R [2] the logical database processor is called the 'Relational Data System' and 
the physical database processor the 'Relational Storage System'. The logical database 
processor translates the user queries into an internal representation called query evaluation 
plan (QEP), which is further optimized to guarantee efficient evaluation. At execution time, 
the physical database processor evaluates the previously generated QEP against the database 
in order to compute the requested result. 

This quite abstract model of database processing will be taken as a basis for illustrating 
query processing for complex objects, as applied by the PRIMA system. This prototype 
database system reflects a multilayered architecture with well-defined internal interfaces as a 
prerequisite for modularity, data independence, and extensibility in the various layers. For 
our purpose, it is sufficient to identify only the two layers shown in Fig. i. The external 
interface of PRIMA allows for handling of molecules and is defined by the MAD model. 
With regard to the PRIMA architecture it is a straightforward process to identify the two 
components performing logical and physical database processing: the PRIMA data system 

MAD interface I Iogmal database 
(molecule-set oriented) data system processor 

i 
atom-onented interlace phys=cal database 

access system processor 

Fig. 1 
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corresponds to the logical database processor and the PRIMA access system coincides with 
the (top-most layer of the) physical database processor. It is the task of the data system to 
perform the complex mapping of the molecule-set oriented external interface onto the 
atom-oriented interface of the underlying access system. 

In the following, we will characterize the data system introducing its upper and lower 
interfaces. Based on these descriptions, it is quite easy to explain and to illustrate the main 
concepts underlying the complex object processing in PRIMA. 

2.1. The molecule-atom data model 

The upper data-system interface coincides with the external interface of the PRIMA 
system and is established by the MAD model with its molecule query language MQL. MQL 
is embedded in a host programming language and can be directly used in an application 
programming environment; interactive operation is also supported. Both interfaces are 
equally powerful and are described in more detail in [15]. Here, we present an overview of 
the MAD capabilities for complex object management that is valid for both interface types. 

2.1.1. From the relational model to the MAD model 
In the following, we presume that the reader is familiar with the relational model and its 

well-known concepts, e.g. tuples, relations, database and database schema, primary key, 
foreign key, etc. To reach the level of the MAD model, we have to slightly modify our view 
of the relational model in the following way: 
• Relations are named atom types and tuples are now termed atoms. In addition, atoms may 

have richer internal structures than tuples, e.g. multivalued attributes. 
• All relevant relationships between entity types, i.e. the foreign-key/primary-key con- 

nections between atom types, are explicitly specified in the schema and represented in the 
database. 

• These relationships, simply called link types, are represented in a direct and symmetrical 
way. Thus, the database schema consists of undirected networks of atom types. 

• Atoms may be connected to one another by links according to the link types specified in 
the database schema. Hence, a database can be seen as an undirected network of atoms. 

Thus, the MAD model uses atoms as a kind of basic elements to represent real world 
entities. Similar to a tuple, an atom consists of attributes of various data types, is uniquely 
identifiable, and belongs to its corresponding atom type. The attributes' data type can be 
chosen from a richer selection than in conventional data models. Here, the type concept has 
been extended by RECORD, ARRAY, and the repeating-group types SET and LIST to 
yield a powerful structuring capability at the attribute level. For the realization of links 
between atoms, we have introduced two special types. The IDENTIFIER type serves as a 
surrogate, which allows for atom identification. Based on this type, it is easy to define the 
REFERENCE type providing a list of identifier values belonging to atoms of exactly one 
atom type. 

A link type (e.g. between atom types A and B) is represented by a pair of REFERENCE 
attributes, one in each atom type involved (e.g. attribute b of A and a of B in Fig. 2). As 
syntactical sugar, we denote this link type A-B,  if there is only one link type between atom 
types A and B. A REFERENCE attribute cannot exist on its own, but always has a 
corresponding 'counter' REFERENCE attribute. A link between two atoms (e.g. between 
atoms al and bl of Fig. 2) is represented by according values of the REFERENCE attributes 
forming the link type (in Fig. 2, the value of attribute b of al contains the value bl,  and the 
value of attribute a of bl contains al). Obviously, all kinds of relationships (1:1, l :n,  n:m) 
can be directly mapped by this concept. This direct representation and the consideration of 
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Schema definition statements 
CREATE ATOMTYPE A CREATE ATOM_TYPE B 

(ID IDENTIFIER, (ID IDENTIFIER, 
attl INTEGER, attl INTEGER, 
b REFERENCE TO (B a) (2,*)), a REFERENCE TO (A b) (1 ,*), 

c REFERENCE TO (C b) (0,*)), 
CREATE ATOM_TYPE C 

(ID IDENTIFIER, 
attl INTEGER, 
b REFERENCE TO (B c) (1,5)), 

resulting 
database schema sample databasa (atom network) 

(atom type network) 

B 
F~g 2 

bidirectional links establish the basis of the model's flexibility. Moreover, atom-type crossing 
operations along these links are more efficient than joins in the relational model due to direct 
(n:m)-relationship representation and system-controlled surrogates. In Fig. 2, three atom 
type definitions are shown (for atom types A, B, and C, respectively). The cardinality of the 
REFERENCE attributes is restricted by a minimum and a maximum number of identifiers 
per attribute value. For example, each A atom has to have at least 2 references to B atoms 
(there is no upper limit), whereas each C atom must have at most 5 references to B atoms, 
and at least 1. The two link types correspond to n:m relationships. The resulting atom type 
network is depicted in Fig. 2. Furthermore, a sample database corresponding to this schema 
is shown. 

Based on the atom networks, the model's complex objects (molecules) are dynamically 
definable as higher level objects which are viewed as structured sets of interconnected and 
possibly heterogeneous atoms. Their structure is described by a directed connected sub-graph 
of the database schema, whose nodes are the atom types involved (e.g. A, B, and C in Fig. 
3) and whose edges are the link types to be used (A-B and B -C  in Fig. 3). This graph must 
have one designated node (the root) from which all other nodes can be reached. The 
corresponding atom type is called root atom type. The structure graph is allowed to be cyclic 
only in case of recursive molecules (e.g. bill-of-material). For each molecule structure, there 
exists a corresponding molecule set, which groups all molecules showing the specified 
structure. At least from the conceptual point of view, the dynamic derivation of the 
molecules proceeds in a straight-forward way using the molecule structure as a kind of 

molecule structure 

B bl b2 b3 

C cl c2 c3 cA 

corresponding molecule set 

a2 a3 a4 

c4 c5 P " ~ c4 c5 c2 c3 c4 

Fig 3 
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template, which is laid over the atoms networks. Thus, for each atom of the root atom type 
one molecule is derived following all links determined by the link types of the molecule 
structure until the leaves are reached (in Fig. 3, the molecule construction starts from atom 
type A, then following link type A - B  and B-C.  For example, starting with atom al,  the 
atoms bl ,  b2, and b3 will be added to the molecule. In the next step, cl,  c3, c2, and c4 will 
also be included into the molecule). This process is termed ttierarchical join [32]. The 
molecule structure together with its derived molecule set are denoted molecule type. The 
basic means used to tailor a molecule type appropriately are the well-known selection and 
projection operations. They are applicable to each molecule type. 

The flexibility of the MAD model stems from the fact that the same database (i.e. atom 
networks) can be used to derive totally different molecule types, just by specifying different 
molecule structures. Figure 4 shows a bunch of molecule structures that are valid for the 
same database consisting of the atom types A, B, C, and D as well as the link types in 
between. The reason that this works well, lies in the direct and bidirectional link concept 
allowing for a symmetrical use of the database. 

2.1.2 Query and manipulation facilities in MQL 
The operational power of the MAD model is founded on its adequate means for molecule 

processing provided by MQL. Similar to SQL [46], MQL is subdivided into three parts 
reflecting data definition (DDL), load definition (LDL), and data manipulation (DML). 
Here, we focus on the latter, that is, on query (i.e. retrieval) and manipulation (i.e. 
insertion, deletion, and modification) capabilities. 

Analogously to SQL, there are three basic language constructs: 
• The FROM clause specifies the molecule type to be worked with. 
• The WHERE clause allows for the restriction of the corresponding molecule set. 
• The projection clause (i.e. the SELECT clause in the case of retrieval statements) defines 

the set of the molecule's atoms to be retrieved and is responsible for proper molecule 
projection. 

Compared to SQL, these constructs exhibit extended semantics and syntax according to the 
more complex objects which have to be dealt with. They form the basis of all DML- 
statements offered. The result of each query is also a molecule type. Thus, it can be shown 
[31] that the closure of the MAD model under its molecule operations is guaranteed. This is 
a very important fact, which allows for the nesting of molecule queries; each molecule-type 
specification (e.g. A-B-C in Fig. 5) can be replaced by a molecule query (cf. Example 2). 

In the following, we wish to illustrate the descriptive and operational power of the 
MQL-DML in more detail, thereby refining the basic clauses, which are depicted in Fig. 5 
and introduced above. The FROM clause of each given DML-statement determines the 
molecule structure to be operated upon. 

There are two generic kinds of molecule structure (cf. Fig. 4): 
• The molecule structure of network-like molecule types (cf. Fig. 4(a)) resembles a meshed 

graph. In this case, there may be component types with more than one link type. In 
graphic terms, this fact is expressed by nodes with more than one incoming e d g e -  of 
course, a hierarchical graph is just a special case thereof. All molecules of the correspond- 
ing molecule set have to obey the associated network semantics: During molecule 
construction only those atoms are selected as part of that molecule for which there is a link 
from already selected atoms for all incoming edges. Thus, it is guaranteed that all 
constructed molecules are built up from a set of atoms that are interconnected according 
to the specified molecule structure (cf. Fig. 4). Since it is possible to define molecules 
having non-disjoint atoms sets, which exhibit a general graph structure, the model allows 
for the sharing of sub-objects between molecules in a natural way. 
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a) network-hke molecule types 

molecule structures 

, / \  T 
D 

A-(B, C)-D A-(B, C) B-A 

b) recurswe molecule type 

molecule 
type 

A-B-C RECURSIVE C-A 

corresponding molecules 

,/1½ 
bl b2,k~ / 1  

dl 

/ %  /\ 
bl cl c2 al a3 

a2 

b3 b4 
although no C atoms are 
present m this molecule, 
~t belongs to the molecule 

type A-(& C) 

al 
/ \  

- , o  

cl c2 c3 
• j, 

2\ T 
b3 b 4  b5 level 1 

c4 c5c6 c7 CO 

a4 a5 a6 
: level 2 

F~g 4 

• Recursive molecule types (cf. Fig. 4(b)) use a network-like component molecule type 
combined with a recursion-defining link type expressed in a special RECURSIVE clause 
(e.g. C - A  in Fig. 4(b)). The resulting molecule structure is the recursively continued 
molecule structure of its component molecule type. The derivation of the corresponding 
recursive molecules has to be performed step by step in an iterative manner, going from 
one level (i.e. component molecule) to the next subordinate level using the recursion- 
defining references (cf. Fig. 4(b)). Here, the transitive closure has to be computed, which 
could be additionally cut off by an optional restriction clause (UNTIL clause). A more 
detailed description of the recursion facilities of the MAD model can be found in [39]. By 
means of recursive molecule types, we are able to construct molecules exhibiting a 
dynamic number of nesting levels which contributes a major enhancement compared to 
the static number of nestings found in non-first-normal-form tuples. Thus, the MAD 
model is capable of handling recursive molecule types which are defined as true data 
model objects in contrast to a number of other data models, e.g. [1,27, 42]. 
Although molecule types are generally defined as part of a query, it is possible to predefine 

frequently used molecule types and to assign a name to them. This is similar to a view 
definition in the relation model. 

The optional WHERE clause restricts the molecule set (determined by the molecule type 
of the FROM clause) to those molecules satisfying the given qualification condition. Since 
molecules normally comprise of an interconnected heterogeneous set of atoms, it is 
necessary to extend the qualification facilities of the language. Thus, it should be possible to 
query the molecule structure yielding quantified qualification terms. Hence, testing for the 
existence (EXISTS-quantifier) of atoms of a given component type or using the FOR_ALL- 
quantifier as an alternative quantification construct is allowed. There are also the specialized 
quantifiers EXISTS_AT_LEASTn, EXISTS_A T_MOSTn, and EXISTS_EXACTL Yn. 
The standard presetting used in MOL is the existential quantifier, so that the use of 
quantifiers is optional. The query of Fig. 5 depicts an explicitly quantified qualification 
condition. 
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samp/e query that reads as follows 
- retrieve those molecules that are constructible using 

A, B, and C atoms and the corresponding hnks, and 
which further satisfy the qualification B attl>5 for 
at least one B atom (molecule denvation and restriction), and 

- show (or project) its A atoms and all B atoms, and 
only those C atoms that fulfill the qualification 
C attl>A attl(qualifled projection) 

SELECT A, B, (SELECT C 
FROM RESULT 
WHERE C attl > A.att l) 

FROM A-B-C 
WHERE EXISTS B. (B.attl > 5), 

(" quahhed prolectlon *) 

(* molecule-type definition *) 
(* molecule-set restriction *) 

molecule structure 

A 

B 

C 

result molecule set 

al a3 a2 

. ,4"-, .  t '-,. 
bl b2 b3 b2 b3 b4 b5 

cl c3 c4 c3 c5 

Please note the different chddren sets of b2 m the first and 
the second molecule which are the result of the qualified prolectlon 

Fig 5. 

The well-known projection expressed by simply listing the components (atom types with 
their attribute types) to be retrieved is also valid in MQL. To retrieve the whole result set in 
an unchanged state the keyword ALL may be used. The complementary ALL_BUT 
construct allows to list components that are not to be retrieved. Furthermore, for more 
selective specification of the resulting molecules, MQL introduces the so-called qualified 
projection (complementary to the above mentioned unqualified projection). Qualified projec- 
tion is expressed as a ' SELECT. . .FROM. . .WHERE'  expression within the projection 
clause. This nesting allows for a supplementary projection of the components of the result-set 
molecules by evaluating the qualification condition of the WHERE clause within the qualified 
projection. The scope of this qualification comprises the whole molecule; therefore, we use 
the presetting RESULT for the corresponding FROM clause. Referring to our Fig. 5, only 
those C atoms are finally retrieved, which satisfy the qualification term stated. Exploiting 
these two projection capabilities, we are able to retrieve only those components (sub- 
molecules) of the result-set molecules we are interested in. Hence, the projection clause 
determines the final structure of all molecules in the result set. In the case of retrieval, the 
SELECT clause may be extended by an order specification. Furthermore, aggregation 
functions like SUM and AVG can be applied. 

2.1.3. Comparison to other models 
After having sketched the MAD model and its language MQL, it is worthwhile to draw a 

comparison to other models and their languages. A rough but expressive comparison can be 
done just by looking at the different complex object concepts supported: It is obvious that 
the MAD model with its support for network structures comprises all models that are based 
on fiat or only hierarchically structured objects. Thus, the relational model, the extended 
relational model [27], and even the non-first-normal-form models [1, 25, 42] are just special 
cases thereof. A more detailed comparison is possible using the models' formalizations: 
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comparing the molecule algebra [31] defined for the MAD model with the NF 2 relational 
algebra [42] or other NF 2 approaches [35, 4, 38] leads to the same conclusions. 

Furthermore, the MAD model is able to deal with recurs~ve complex objects as data 
model objects showing a dynamic number of levels in the object's structure [39]. This gives 
the MAD model more flexibility compared to the above mentioned models that only support 
a fixed nesting structure and are not able to represent the result structure of recursive queries 
within real data model objects. Meanwhile, there are attempts to enhance these models to 
include a recursion facility [23, 4]. 

Another major issue of the MAD model is its provision for dynamic oblect definition. 
That is, the molecule types to work with are defined in the query language and are not 
statically fixed m the database schema as it is the case in most NF 2 approaches. For th~s 
reason, the MAD model offers a great flexibility in complex object definition and manage- 
ment (e.g. all molecule types sketched in Fig. 4 might have been defined over the same 
database). 

Obviously, every attempt to compare the model's query languages is strongly influenced 
by their underlying complex-object concepts. MQL is an SQL-iike language offering 
set-orientation and expressiveness with respect to dynamic object definition, powerful 
molecule restriction, and an extended projection facility. Thus, the most important concepts 
expressible in SQL-like languages [27, 25] for other data models (offering less complex 
object concepts) are also expressible in MQL. 

A language approach along the lines of MQL has been described m [41]. There, the 
language CERMoQL offers a set-oriented, declarative access to the database objects defined 
by an extended Entity-Relationship data model [10]. Support for structured (including 
recursion) and versloned objects is given. 

Considering object-oriented data models [8, 28], we firstly have to notice that they are 
mostly characterized by their facilities comprising modeling and managing of meshed and 
sometimes even recursive structures, which are frequently viewed from different points, 
depending on the current processing state. The link concept and the concept of dynamic 
molecules combined with the expressiveness of MQL seem approximately equal to these 
characteristics defining object orientation. In contrast to these models, MAD does not 
support behavioral object orientation. The early available object-oriented database models 
[7] show (compared to e.g. relational models) some deficiencies in their query capabilities, 
i.e. set-orientation was mostly out of their scope. The database was queried in a navigational 
manner along the references defined between the database objects (e.g. path expressions in 
OPAL [33]). By now a lot of research focuses on full-fledged query languages for object- 
oriented database models [22, 44]. Seen from a more general point of view the upcoming 
object-oriented query languages exploit facilities to query along predefined relationships (in 
[6] called functional join) as well as to use traditional value-based relational join capabilities. 
The functional join facility resembles the molecule building concept of MAD, and the 
general/relational join capability is also available in MAD/MQL.  Therefore, there seems to 
be on one hand a considerable overlap of language concepts between MAD/ MQL  and 
object-oriented query languages that lead on the other hand to similar processing concepts. 
This argumentation done for MAD/MQL,  as a representative of a complex object data 
model, seems to carry over to other complex-object data models [6, 45]. Of course, more 
detailed work needs to be done on the finer-grained similarities and differences between 
both camps. 

After having described the MAD model, which forms the upper interface of the data 
system (Fig. 1 ), we now introduce the interface of the access system, which provides atoms 
as the basic building blocks for molecules. 
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2.2. The access system interface 

The access system offers an atom-oriented interface which allows for navigational retrieval 
and modification of atoms. To satisfy the retrieval requirements of the data system, it 
supports direct access to single atoms as well as atom by atom access to homogeneous and 
heterogeneous atom sets. 

Manipulation and direct access operations refer to atoms identified by their logical 
address. The logical address (or surrogate) is used to implement the IDENTIFIER attributes 
as well as the REFERENCE attributes. 

Scans are a concept to control a dynamically defined set of atoms, to hold a current 
position in such a set, and to successively deliver single atoms or only selected attributes 
thereof for further processing. The result set of the scan can be restricted by a simple search 
argument (or some additional start/stop conditions in the case of access paths) solvable on 
each atom. Some scan operations depend on the existence of a certain storage structure, 
which is generated by corresponding LDL-statements. The PRIMA access system supports 
the following scan operations at its interface: 
• the atom-type scan based on a general basic storage structure, 
• different access path based scans (e.g. a scan based on B-trees) 
• scans guaranteeing a certain sort order, which may either be materialized or dynamically 

derived. 
• the atom-cluster scan which operates on clusters of heterogeneous atoms. 
Whereas the first three scan types support 'horizontal' access to a homogeneous atom set 
belonging to one atom type, the last one allows for the 'vertical' access to a heterogeneous 
atom set across several atom types. The concept of atom clusters [43] has been introduced to 
speed up construction of frequently used molecule types. All atoms of the corresponding 
molecules are stored in physical contiguity, i.e. the molecules are pre-derived and material- 
ized in this storage structure. 

3. Concepts of MQL processing 

In the following, we concentrate on concepts for efficiently mapping the molecule-set 
oriented MAD/MQL interface onto the atom-oriented access system interface. This task is 
accomplished by the PRIMA data system. 

DML-statements are expected to be used more than once, since they are normally 
embedded in application programs which are executed quite frequently. This means that the 
overhead for repeated executions should be minimized. A first way in which to do so is to 
separate compilation from execution and to store the compilation result within a so-called 
access module. Thus, repeated execution does not require repeated compilation. Second, 
query optimization is mandatory to make execution more efficient. This leads to three phases 
of DML processing: 
1. Compilation of the DML-statement generates an executable, but not necessarily optimal 

query evaluation plan (QEP) and stores it within an access module. 
2. Optimization transforms the QEP and replaces the generated access module. This 

includes rearrangements within the QEP, strategy choices, and selection of access paths. 
3. Execution of the access module requests atoms retrieved by the access system and 

combines them in order to build up the result set. Execution can be repeated in- 
dependently of phase 1 or 2. 

Although these three processing phases are common to other well-known query processing 
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approaches, we have to consider several novel aspects due to the mherent properties of 
molecule processmg (i.e. dynamics in molecule defininon, atom heterogeneity m molecule 
building). These features will be highlighted in the subsequent sections. 

3.1. The compilation phase 

The compilation phase accepts only correct MQL-statements and generates a semantically 
equivalent QEP. For this purpose, the query is checked to see whether it fulfills all 
constraints imposed by the MAD model and the database schema, e.g. whether all names are 
defined, whether the result is described by a coherent graph, and so on. Furthermore, the 
compilation phase performs a first step towards query optimization as introduced by [20], i.e. 
'standardization' (which means to change the query to a standardized form). 

3.1.1 Standardization 
To achieve this standardization, we have to look through all clauses of an MQL statement: 

• Projection clause: Since MQL allows for the use of A L L  and A L L _ B U T  in S E L E C T  
clauses m the place of an exhaustive attribute enumeration, these keywords have to be 
replaced by their actual meaning, i.e. by a set of attribute names. 

• FROM clause: Predefined molecule names may be used in the FROM clause to specify the 
scope of the query. In this case, the underlying molecule definitions have to be substituted. 
This process has to be repeated recursively, because molecule definitions can be based on 
other molecule definitions. 

• W H E R E  clause: Besides the well-known standardizations of boolean expressions (cf. 
there is an MQL-specific one: MQL allows for incompletely quantified expressions in 
W H E R E  clauses (with each non-quantified expression E containing attribute 'att' of atom 
type AT having the semantic 'EXISTS'  a E AT:E'). To standardize the representation, 
expresston completion forms the existential closure [29]. 
After the compilation phase is finished, a correct QEP has been generated and stored 

within an access module, which already may be executed by the query execution compo- 
nents. We have designed QEPs in such a way that they do not need to undergo any 
optimization in order to be executable, although optimization is strongly recommended for 
complex retrieval statements. As a consequence, associated with each operator in a QEP, 
there is a standard execution technique to be applied (e.g. nested loop strategy for two-way 
join), which may be changed by the optimization phase; access paths are not considered 
within the compilation phase and the building of the initial QEP. In the following, we show 
the structure of a QEP for retrieval statements. 

3.1.2 Representation of  QEPs for retrieval statements 
Retrieval QEPs consist of an operator graph (cf. Fig. 6)  describing the execution plan. 

Evaluation of a node operates on its children's results. The left child's result may be 
computed immediately, whereas those of the others are prepared either concurrently or 
later, depending on the node's type and the evaluation strategy applied. 

Generally, it is possible to divide all nodes of an operator graph into classes (cf. Fig. 6). 
The leaf nodes are used to construct the molecules, whereas the inner nodes (projection, 
recursion, aggregation, etc.) operate on the derived molecules (typically in main memory). 
All leaves are of type CSM ('construction of simple molecules'). This operator type 
represents the class of syntactically and semantically correct queries of the following form: 
S E L E C T  (unqualified projections) 
FROM (one non-recursive, hierarchical molecule type) 
W H E R E  (molecule qualification Q) 
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As already mentioned, the inner nodes are operators that act on the molecules delivered by 
their children (leaf to root evaluation). Some examples o£ these operators are: 
• Aggregation of selected values (provided by the only child) by a function like SUM, 

COUNT, AVG. In Fig. 6 an aggregation is used to compute one set of identifiers from a 
set of molecules. 

• Qualified projection of sub-molecules (right child) by conditions referring to the molecules 
delivered by CSM (left child). The results of qualified projection are always passed on to 
aggregation in order to compute the new reference list to each atom of the root atom type 
defined by the qualified projection (where qualified projection may have cut off some 
sub-molecules). 

• Construction of recursive molecules using non-recursive component molecules. Each 
recursion level is constructed separately (using CSM). The component molecules of the 
next recursion level are determined by the recursion-defining reference attributes, together 
with the termination condition (UNTIL clause) and the general recursion termination rule 
for processing the transitive closure (fixed point semantics [29] w.r.t, the set of non- 
recursive component molecules). This level by level evaluation is shown in Fig. 4b for a 
simple recursive molecule. 

Figure 6 combines several operators to create an operator grap]i.-First of all, the left-most 
operator (construction of simple molecules) has to be evaluated, delivering molecules of the 
hierarchical molecule type A - B - C  which satisfy the qualification criteria given. Based on this 
result, the qualified projection of the sub-molecules has to be performed. For this purpose, 
further operators are required: The (right) 'construction of simple molecules' selects from the 
result set of the first (left) CSM operator all sub-molecules to be projected and the 
aggregation operator computes the valid reference list to structurally reflect the proper 
qualified projection. In our example the qualification of the sub-molecules has to be 
supplemented by a parameter value (value 1) derived from the 'surrounding' molecule (cf. 
operator 'qualified projection' in Fig. 6. From the operator graph, an access module is 
generated which employs standard access methods. Hence, for very simple statements (e.g. 
insertion of single atoms based on constant values) the optimization phase may be omitted. 

Like the MQL-statements for manipulation and retrieval, manipulation and retrieval 
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QEPs resemble each other. Since more complex language constructs are applicable for 
retrieval statements, QEPs for retrieval (SELECT statements or sub-queries) are more 
complex than those for mampulation statements, and therefore are more likely to be far 
from the optimal QEP. For these reasons, we discuss optimization only for SELECT 
statements in the following. Nevertheless, the optimization phase can also be applied to 
manipulation statements using similar techniques. 

3.2. The optimizatton phase 

According to [20], the next steps of query optimization are simplification and amehoration 
(corresponding to what [11] calls query modification). Finally, query refinement (called 
'query optimization' by Freytag [11]) generates a set of access plans, the cheapest of which is 
chosen to be executed (or in our case to be stored in an access module). 

3.2.1 Simplificatton and amelioration 
We first describe the simplifying transformations which are typical for the MAD model. 

The various simplification techniques developed for the relational model are usually also 
applicable for MQL queries. 
• Molecule structure definitions may contain components that are neither projected nor used 

for qualification. This case will occur quite often when predefined molecule types are used. 
If those components are leaves of a molecule graph, they can be cut off recursively without 
influencing the result (Example 1). 

SELECT A(att l) ,  B(att2) SELECT A(attl),  B(att2) 
FI~OM A - B - C - D - E '  FROM A - B - C - D  
W H E R E  EXISTS D:(D.att3 -- 7); - W H E R E  EXISTS D:(D.att3 = 7); 

C and E are components that are neither projected nor used for qualification. E 
can be cut off, since ttts a leaf o f  the molecule graph. C must not be removed, 
because it ts needed to access the D atoms needed for qualification. 

Example 1: Molecule structure simplification by cutting off unused compo- 
nents. 

• As each MQL query delivers a set of molecules, MQL consequently allows for the use of a 
query at any place where a molecule type definition is allowed, thus leading to query 
nesting in SELECT,  FROM (cf. Example 2), and WHERE clauses. Some nested MAD 
queries can be transformed into equivalent MAD statements with a lower degree of 
nesting (statement simplification, Example 2) based on well-known strategies, as described 
in [21, 13]. 

SELECT A(attl ,  att2) SELECT A(attl ,  att2) 
FROM ( S E L E C T  A(attl ,  att2, att3 ) - -FROM A - B  

FROM A - B  WHERE (B.att2 = 7) 
AND (A.att3 -- 9); 

WHERE B.att2 = 7) 
WHERE A.att3 = 9; 

Example 2: Statement simplification by sub-query elimination. 
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• Qualified projection is supplied to select components by their values rather than by their 
types. Qualifications on whole molecules are normally expressed using the WHERE 
clause. Thus, qualified projection concerning the root atom type can be equivalently 
transformed into a qualification attached to the WHERE clause. 

SELECT ( SELECT A(attl ,  att3 ),B(attl ) =- SELECT A(attl ,  att3), B(attl) 
FROM R E S U L T  FROM A - B  
WHERE A.att2 = 7) WHERE (A.att2 = 7) AND (A.att3 =9) ;  

FROM A - B  
W H E R E  A.att3 = 9; 

Example 3. Elimination of qualified projection on the root atom type. 

• Predicates hidden implicitly in the FROM clause are made explicit (restriction enhance- 
ment). The query shown in Example 4 does not contain an explicit restriction on atoms of 
type A. However, there is a restriction on atoms of type B, which only can be fulfilled, if 
there are any B atoms, i.e. if the REFERENCE attribute b OF A (pointing to B atoms) is 
not empty. Hence, the restriction A . b ( )  E M P T Y  is implicitly hidden in the query, and is 
made explicit as shown in the right part of Example 4. 

SELECT A(att l) ,  B(att2) SELECT A(attl) ,  B(att2) 
F R O M  A - B  FROM A - B  
W H E R E  EXISTS B:(B.att3 = 7); -= WHERE EXISTS B: (B.att3 = 7) 

AND (A.b( )EMPTY);  
Example 4. Restriction enhancement 

3.2.2 Query refinement 
Finally, alternative strategies for the execution of the operators in the QEP have to be 

considered in order to find the cheapest execution plan. In the following, we argue why we 
concentrate on only one operator (CSM) in the subsequent discussion. Of course, our 
optimizer has to cope with all types of operators. Some of them may be handled very similar 
to relational operators. For example, selection and (unqualified) projection do not pose 
many new problems. Therefore, we concentrate on join and related problems. 

For example, besides the hierarchical join used in the molecule structure definition, MAD 
allows for a traditional value-based relational join. Because of the similarities, optimization 
techniques for this operator can be derived from those developed for the relational join. 
Nevertheless, this kind of join is not a typical operation on molecules. In most cases, those 
atom types which are expected to be used together in one query will be connected by link 
types and hence do require the hierarchical join as mentioned before. 

3.2.3 CSM optimization 
Besides this observation, we focus our discussion on the CSM operator for the following 

reasons: 
• Since each leaf of a QEP must be of type CSM, this operator appears in every QEP. Thus, 

its optimization improves the performance of all queries. 
• CSM is the only operator which (using the access system) directly reads atoms from the 

database. Therefore, the problem of access path selection appears only here. 
• Many operators just work on the result of CSM (typically in main memory) without 
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performing very complex computations. Therefore,  their optimization is not a primary 
ISSUe. 

• Construction of recurslve molecules (CRM) also is a critical operator.  Basically, it consists 
of a combination of non-recurswe molecules, constructed by CSM. Thus, it also takes 
advantages from CSM optimization. To discuss the applicability of more enhanced 
optimization techniques developed for recursive queries to CRM goes beyond the scope of 
this paper. 

3.2 4 Spectfic opttmization problems o f  CSM 
Although CSM performs a specialized join operation ( 'hierarchical join' [32]) and 

evaluates conditions on the result, its optimization differs from optimization in the relational 
model in various aspects: 

While the selection of join orders and join methods is a main task in the relational model 
[34], these problems partially disappear for CSM, because the molecule structure defined in 
the F R OM clause strongly reduces the number  of meaningful orders for the refinement. The 
basic operat ion which is used to build up molecules is a join operation ('hierarchical loin ') 
with specific properties: 
• Only atom types which are connected by a link may be combined by a hierarchical join. 

Hence,  the number  of possible join sequences decreases compared to the relational join. 
• Our hierarchical join is an n:m join, i.e. each fftom a of type A within a molecule may 

have several descendants d, of type D (besides the descendants of other types) which may 
be shared with other  atoms of type A. The join condition is 'ID of d, is contained in a.rd' ,  
where rd is a R E F E R E N C E  attribute of A pointing to atoms of type D. Thus, a 
sort-merge strategy cannot be applied. Instead, we use a nested loop algorithm of the 
following form: 

Foreach atom a o f  type A 
Foreach entry e m a. rd 

Call all atoms d o f  type D f rom the access system via condition d . ID  = e 
Note that 'Find d with d . ID = e' ~s a very efficient operation, by far faster than any 
value-based restriction on atoms, because the access system is optimized for an identifier- 
based access. This is the reason why we do not use the semantically equivalent form: 

Foreach atom a o f  type A 
Call all atoms d o f  Type D f rom the access system vta conditton a. ID I N  d. ra, 

where ra is the R E F E R E N C E  attribute pointing from D atoms to A atoms. 
• In contrast to the relational join, the result of a hierarchical join does not consist of a set 

of tuples, but of a set of molecules, i.e. a set of structured sets of atoms. Hence,  we have 
to consider the case, where an atom is shared among several molecules of a result set or is 
descendent  of more than one atom within a molecule. In either of these cases, it will not 
be redundantly contained in the data output (cf. Fig. 4) .  As a consequence,  the algorithm 
for the hierarchical join has to be refined as follows: 

Foreach atom a o f  type A 
Foreach entry e in a.rd 

I f  atom d wtth d . ID  = e is not yet contamed in the result' s atom set 
call d f rom the access system via condition d . ID  = e 

Note that the result's atom set may contain atoms of different atom types. 
• The asymmetry of the hierarchical join should be stressed. If building a molecule of type 

A-D, each A atom will be included in a molecule, even if it has no D descendants. On the 
other  hand, a D atom which does not have an A ancestor will not belong to any molecule 
of the type A - D .  A relational join would exclude both the A and the D atom. This is a 
reason, why the reduction of the size of intermediate results is not a primary optimization 
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objective for CSM. There are no tuples which fall aside because they do not fulfil the join 
condition when building a molecule top-down. This is independent of the order in which 
atoms are joined to the molecule, as long as it is compatible with the semi-order imposed 
by the direction of links m the molecule. Some optimization algorithms for CSM therefore 
resemble to those developed for the network model [9]. 

3.2.5 Restriction evaluation 
CSM does not only perform the hierarchical join, but also evaluates restricting conditions 

on the resulting molecules. Hence, we may have a certain amount of atoms which were 
fetched from the access system, but do not belong to any molecule of the result set, because 
the corresponding molecule did not qualify with respect to the restricting condition. The 
minimization of this amount obviously is one goal of CSM optimization. We call this goal: 
'Dectect molecule disqualification as early as possible', i.e. with as few access system calls as 
possible. In order to accomplish early disqualification, we must investigate the restriction 
clause Q. It may contain several expressions which can be evaluated of different atoms, and 
are combined by AND or OR. Obviously, in order to detect disqualification, one should 
examine the strongest condition first, i.e., the condition, which is most likely to be not 
fulfilled. The hierarchical structure of a molecule, however, complicates this problem. One 
has to decide for a starting point within the molecule structure, and then the choices where to 
continue are limited. Thus, the choice of a starting point also influences the time when 
molecule disqualification can be detected. It seems to be a good heuristic to start with an 
atom type scan, which is restricted by a condition. For such scans, access paths (e.g. indices) 
may be used. We investigate the effects of this heuristic for several shapes of Q in the 
following. Assume, Q is in conjunctive form, i.e. consists only of quantified terms t, 
connected by 'AND'. We denote q(A, B, C) if an expression q can be evaluated regarding 
only occurrences of atom types A, B, C. 
• If there is a term t, = q(R), where R is the root atom type of the molecule, only molecules 

starting with atoms fulfilling t, can be members of the result set. In this case, we can scan R 
restricted by t, using the access system and then build up molecules top-down. The order of 
the top-down construction must be directed by the rest of the restriction clause. Those 
atoms, which have the highest probability to lead to molecule disqualification are fetched 
first. However, none of the terms still to be evaluated can be passed on to the access 
system because of our molecule semantics. 

• If there is a term t, of the form EXISTS q(A), where A is not the root atom type of the 
molecule, each molecule of the result set has to contain at least one A atom fulfilling t,. In 
this case, we can start by an access system scan on A restricted by t,, then retrieving the 
molecule's root atom by following the type graph bottom up. Then, we have to build the 
molecule top down, knowing that it fulfils t,. Note that the existence of a root molecule is 
not guaranteed. The restriction on A can be enhanced by the condition that the 
REFERENCE attribute pointing to the parent must not be empty, to guarantee the 
existence of a parent at least. 

• Terms with the quantifiers EXIST AT LEAST(n) q(A) n ~ 1, EXIST_AT_MOST (n) 
q(A), EXIST_EXACTLY (n) q(A), and FOR_ALL q(A) are more difficult to handle. 
Here, one can use identifier manipulation algorithms working on the reference attributes 
pointing to the ancestors of those A atoms which fulfil t,. For example, an identifier 
manipulation algorithm for the query 

SELECT ALL 
FROM A-B 
WHERE FOR ALL B:q(B); 
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could work as follows: Fetch all B atoms which fulfil q(B) using an access system scan. 
Compute  B* as the union of the identifier values of these atoms. For each A atom which is 
referenced by at least one of the B atoms, check whether A.b  is a subset of B*. Only in 
this case, the corresponding molecule qualifies. 

• Terms depending on more than one atom type cannot be delegated to the operations of 
the access system. 

The top-down molecule construction builds up one molecule after the other. Thus, a 
pipelined processing of a CSM's result ~s easy to achieve. This is not true for the bottom up 
approach,  where large sets of molecules are identified at a time. 

If several of the choices are selectable, one has to find the most promising one. This 
decision is often driven by the existence of appropriate access paths. The problems of 
selectivity and access path selection are well known from relational query optimization [20]. 
In the case of quantified terms, the cardinality of the reference attributes also has to be taken 
into account. Here ,  a flavor of semantic query optimization appears, because the cardinality 
restrictions imposed in the schema declaration can be used in this context. For example, the 
existence of a root atom can be guaranteed,  if the lower bound of all ancestor reference 
attributes in the corresponding path is greater than zero (cf. Fig. 2). 

Thmgs become even more complicated through the existence of atom clusters [43]. Atoms 
of various types are clustered accordmg to a molecule type definition. The costs of an access 
to such an atom cluster ~s much less than the sum of the single-atom accesses. In the context 
of CSM, atom clusters can be used to construct whole (or parts of) molecules. This, 
however,  may conflict with the goal of early disqualification. If the atom cluster type is not a 
sub-graph of the molecule type, but overlaps only partially, one has to contrast the benefits 
of using the atom cluster access to the cost of useless atom accesses. Some hints to the use of 
atom clusters are given in [43]. 

3.2.6 Cost esttmattons 
The costs of a QEP  are estimated in a similar way to the optimizer of System R [40], 

where a weighted sum of I / O  costs and CPU utilization is computed. Nevertheless, things 
are little bit more comphcated due to some properties of complex object processing, and in 
our  case, due to properties of PRIMA and MAD: 
• The number  of atoms accessed in order  to retrieve a set of molecules depends on how 

many atoms have to be fetched to state molecule disqualification. 
• Selectivity estimations are done in analogy to [40]. Nevertheless, we have to take into 

account the fact the some attributes are multi-valued, and that operations like 'value IN 
attribute value' have to be considered, e.g. for R E F E R E N C E  attributes. 

• In order  to estimate the number  of atoms of a specific type which are involved in a query, 
we have to estimate the fan-out of all levels of atom types leading to this type (and have to 
consider the redundancy due to shared atoms therein). 

• Due to the data types supported by the MAD model,  which include variable length and 
repeating group attribute types (e.g. the R E F E R E N C E  type), atoms of the same type may 
strongly vary in size. Hence,  in order  to estimate the number  of pages needed to retrieve a 
specific set of atoms, one has to know the average size of atoms of this type and the 
corresponding variance. 

• Page sizes in PRIMA may vary between 0.5 and 8 kilobytes [17], but are fixed within one 
atom type. Fur thermore ,  the notion of 'page sequences'  is supported to physically cluster a 
set of pages, for which I / O  is more efficient than it would be for single pages. Thus, the 
knowledge of the number  of bytes to be read is not sufficient to estimate I / O  costs. Of 
course, basic statistic data to be held are number  of pages per atom type and clustering 
factor. Additionally, number  and average size of page sequences are to be known. 
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data tables 

Fig. 7 
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• Atom clusters are handled in a different way: here we consider the atom cluster as a whole 
when computing the I /O costs. 

3.2. 7 Optimizer architecture 
To guarantee extensibility with respect to new optimization techniques as well as to new 

operators, optimization of QEPs will be performed by a rule-driven optimizer, similar to 
those proposed by [10, 37, 12], or better [24] which is superior with respect to evaluation 
simplicity. While it has been shown that such an optimizer can be generated from a given set 
of rules [12], the complexity of our rules is the main problem. Even in the relational case, 
very complex rule structures are reported [18]. The structures which have to be taken into 
account in our model are much more complex than those in the relational case. Hence, the 
language for rules used to deal with these structures also becomes more complex [14]. 

3.3. The execution o f  statements 

The QEP of a query is an operator graph that describes an evaluation sequence at quite an 
abstract level. During the execution phase, the operator graph is interpreted node by node. 
Together with the data of the specific database it is used to compute the query's result. 
Obviously, there are several ways to employ concurrent computation in this process: There 
can be pipelining of results between parent nodes and child nodes in the operator graph 
(data driven execution) as well as concurrent execution of nodes in the same level of the 
graph. Furthermore, even concurrent computation within one operator is possible. These 
issues are discussed in [19]. 

The aspect of sharing within a result set has already been mentioned: There may be 
several references pointing to the same atom within a set of molecules or even within one 
molecule. Hence, we had to develop a representation of the resulting molecule set which 
does not contain multiple copies of the same data, but nevertheless allows for a separate 
handling of each molecule. For this purpose, we separated the representation of a molecule's 
structure from the representation of its data (cf. Fig. 7). Thus, the data of an atom is not 
redundantly included in the result. 

4. Concluding remarks 

The management of complex objects occurring in advanced applications is an important 
new direction in current database research. Especially, efficient processing of queries on 
complex objects seems to be a 'hot' topic. 

In this paper we addressed the problem of how to process complex-object queries. That is, 
basic concepts concerning query compilation, optimization and execution were investigated. 
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A data system that transforms queries on sets of complex objects (molecules) into lower level 
programs for efficient execution has been introduced. Due to the dynamic derivation of 
complex objects from structured and heterogeneous sets of tuples, a couple of important 
aspects was identified concerning efficient processing: 
• Our operator graph consists of nodes incorporating powerful functions; it serves as a 

flexible intermediate data structure that supplies optional optimization and subsequent 
execution. 

• The efficient implementation of the hierarchical join ~s very important. 
• The number of atom accesses, and hence the overall performance, strongly depends on a 

careful determination of the sequence of restriction evaluations (leading to d~squahfication 
of a molecule as early as possible). 

• Depending on the restricting conditions, bottom-up or top-down construction of complex 
objects may be superior. In the case of bottom-up processing, a final top-down traversal 
may be necessary in order to complete the molecule. The choice of a strategy also 
influences the applicability of p~peline processing. 

• Non-redundant complex-object representation requires the separation of structure from 
data due to the property of overlapping sub-components. 

• Our concepts of enriched operator graph supports relevant extensibility measures concern- 
ing language enhancements, optimization issues, evaluation strategies, and exploitation of 
new access-path types (cf. [16]). 

Currently, we are addressing query processing ~ssues using our prototype system PRIMA as 
a test-bed for refined evaluation of these ideas and for gaming more practical experience 
concerning performance aspects. 

In the future, special emphasis has to be placed on optimization objectives. This is of 
eminent ~mportance because of the complexity of dynamic derivation and the heterogeneity 
of complex objects as well as the symmetric link concept and the different evaluation 
strategies applicable. A specml aspect of optimization is the use of the parallelism inherent in 
complex object processing. For example, various ways of interpreting the operator graph 
show a different impact on the parallelism in query evaluation. 
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