
Extending the Relational Algebra

to Capture Complex Objects

Bernhard Mitschang
University of Kaiserslautern, 6750 Kaiserslautern, FRG

Abstract
An important direction in database research for non-stan
dard applications (e.g. engineering or design applications)
deals with adequate support for complex objects. Without
doubt, the provision of network structures and shared
subobjects as well as support for dynamic object definition
and appropriate manipulation facilities is urgently needed
for natural and accurate modeling as well as for efficient
processing of the applications' objects. These concepts
are the major concern of the molecule-atom data model
(MAD model) and its molecule algebra which is introduced
in this paper. They make the model stand out compared to
the relational model and even to models limited to hierarchi
cal and statically defined complex objects. By means of the
molecule algebra a precise and complete specification of
one conceivable kind of complex object processing and its
inherent semantics is provided. Furthermore, this algebra
is used as a sound basis to express the semantics of the
high level query language MOL (molecule query language)
that is able to deal with complex objects in a descriptive
manner.

Keywords:
complex objects, structural object orientation, relational
algebra extensions, formal specification

1. Motivation

Over the last few years the development of a new genera
tion of database systems capable of supporting non-stan
dard application areas such as engineering applications
for CAD/CAM and VLSI design, knowledge-based sys
tems, and office applications has emerged as an important
direction in database system research.
One uniting characteristic over all these advanced appli
cations is adequate support for complex objects, which is
quite different to conventional data processing in busi
ness applications. Thus, most current research topics
refer to some kind of object-orientation and extensibility
reflected in the data model and in its implementation. There
are different approaches which are distinguishable start
ing from only a few selected extensions of the relational

Permission to copy without fee a.// or pa.rt of this material is
granted provided tha.t the copie$ a.re not ma.de or distributed for
direct commercia./ a.dva.nta.ge, the VLDB copyright notice a.nd
the title of the publica.tion a.nd its da.te a.ppea.r, a.nd notice is
given that copying is by permission of the Very La.rge Data. Base
Endowment. To copy otherwise, or to republish, requires a. fee
a.nd/or special permission from the Endowment.

Proceedings of the Fifteenth International
Conference on Ve ry Large Data Bases

model [RS87,LK84) and leading up to the integration and
superposition of structures on relations [Da86, PSS
WD87,CDV88).
Though many of these proposals are interesting, they are
mostly limited to hierarchical complex objects, which are in
addition in most cases statically defined (i.e. fixed in the
database schema). As stated in [8884) *), the
• provision of shared subobjects, and
• support for dynamic object definition (of course in com-

bination with powerful manipulation facilities)
is urgently needed for natural and accurate modeling and
efficient processing of the applications' objects.
In this paper we attack the above mentioned problems by
means of the molecule-atom data model (MAD model
[Mi88b]), which is an advancement to the relational model
and is based on a generalized notion of complex objects.
These objects are called molecules and are dynamically
constructed from atoms, which are used as basic building
blocks. Since molecules can overlap having non-disjoint
atom sets, the model allows in a natural way for the sharing
of subobjects. With the relational model in mind, chapter
two offers an easy to understand introduction to the rele
vant concepts underlying the MAD model. When dealing
with these network-like structures it is necessary to rely
on a sound and precise definition of the model's data
structures and its operations. Since a formal specification
of the data model seems to be indispensable, we introduce
in chapter three the so-called molecule algebra capable
of handling complex objects exhibiting network structures
and shared subobjects. With that, a formal description of
complex object processing (here, simply called molecule
processing) and its inherent semantics is provided. Thus,
the molecule algebra appears to be an extension to the
relational algebra [UISO) and also to the non-first-normal
form algebra [SS86) that supports only hierarchical com
plex objects without shared subobjects. In the fourth chap
ter, we show how such a formal specification (here, it is
the molecule algebra) is .used as a sound basis to define
the semantics of a higher level query and manipulation lan
guage (here, it is the molecule query language MOL).
Finally, we conclude with a short comparison to other mod
els and an outlook to upcoming future research topics. As
far as is known to the author, no satisfying complex-object
algebra (capable of handling network and recursive struc
tures as well as dynamic object definition) has been pro
posed until now.

*) [8884] '... support for molecular objects should be an inte
gral part of future D8MSs .. .', where 'molecular' objects are
classified according to their structure, leading to disjoint/non
disjoint and recursive/non-recursive complex objects.

Amsterdam, 1989

- 297-

2. An Informal Introduction to the MAD Model

Throughout the paper we use a simple example from a geo
graphic application area for further explanatory purpos
es. As shown in the upper part of fig.1, we concentrate on
a cartographic view to our universe of discourse (here,
BrasH, its states, cities, rivers etc.), which is also modeled
by means of the well-known ER model. The corresponding
ER diagram depicts a geographical model as part of the
schema that is used to share all geographic structures
(i.e. points to build up edges, which are in turn used to con
struct areas and nets) among all application objects (e.g.
cities, states, rivers etc.) thereby avoiding any data
redundancies: point-like objects (e.g. city), network-like
objects (e.g. river, street, flight), and area-like objects
(e.g. state) are modeled by means of this common geo
graphical model. Thus, difft>rent complex objects are con
tained in one schema sharing common subobjects. For
example, the river Parana shares with the states Minas
Gerais, Sac Paulo, and Parana some edge and point tuples

-<>- relationship type
C=:l entity type

representing in one case the course of the river and in
another case the border of the states. This sharing of
components is expressed by the n:m relationship types. lt
is easy to imagine that a transformation to the relational
model becomes quite cumbersome, since all n:m relation
ship types have to be modeled by some auxiliary relations.
With this, the queries and their processing obviously
become more complicated and perhaps less efficient. To
overcome these problems and to provide an effective
complex object concept, we have developed the MAD
model as an extension of the relational model.
In the MAD model atoms are used as a kind of basic ele
ment to represent the real world entities. They play a simi
lar role to tuples in the relational model. Each atom con
sists of attributes of various data types, is uniquely identi
fiable, and belongs to its corresponding atom type.
Contrary to the foreign/primary key connections of the
relational model, all relevant relationships between the
entities are expressed by so-called links that are defined

Minas Gerais (MG)
Bahia~BA)
Goias GO)
Mato rosso do Sui (MS)
Espirito Santo (ES)
Rio de Janeiro (RJ)
Sao Paulo (SP)
Parana (PR)
Santa Catanna (SC)
Rio Grande do Sui (RS)

real world

MAD diagram
(database schema)

atom networks (database occurrence)

-- link type
CJ atomtype

Figure 1: Sample geographic application

•

- 298-

atoms
bidirectional link pair

as link types between the corresponding atom types. Link
types are used to accurately map all types of relationships
(1 :1, 1 :n, and n:m). (Note, the link concept is a logical con
cept and shall not be confounded with physical storage
structures). The direct representation and the considera
tion of bidirectional, i.e. symmetric links establish the
basis of the model's flexibility. Hence, in the database all
atoms connected by links form meshed structures, called
atom networks. The corresponding database schema
exhibits a set of atom types, whereof some are connected
via link types establishing nondirectional graphs. The low
er part of fig.1 shows these concepts applied to our carto
graphic application.
A closer look at the ER diagram and the corresponding
MAD diagram in fig.1 reveals that there is a one-to-one
mapping from the ER model to the MAD model associating
each entity type with an atom type and each relationship
type with a link type. Compared to the relational model,
here we don't have to use any auxiliary structures.
Based on the atom networks the model's complex objects
are dynamically definable as higher level objects seen as
a structured (i.e. coherent) set of possibly heterogeneous
atoms. In analogy to chemistry, we call these complex
objects molecules to express more vividly that several
atoms could 'combine' in different ways to build up the
desired molecules. The 'formula' or the procedure to deter
mine what kinds of molecules one is interested in is speci
fied by means of the molecule structure. This description
is a subgraph of the database schema, which establishes
a coherent, directed and acyclic type graph, whose nodes
are the atom types and whose edges are the link types.
Each graph has a unique starting point called the root atom
type. To each molecule structure, there exists a corre
sponding molecule set, which groups all molecules adher
ing to the specified structure. At least from the concept
level point of view the derivation of molecules proceeds
in a straight-forward way using the molecule structure as
a kind of template, which is laid over the atom networks.
Thus, for each atom of the root atom type one molecule is
derived following all links determined by the link types of
the molecule structure to the children, grandchildren
atoms etc. till the leaves are reached. Derivation of the
children atoms means performing the hierarchical join
[LK84) along the specified branches. Both, the molecule
structure together with its derived molecule set are denot
ed molecule type.
The flexibility of the MAD model stems from the fact that
the same database (i.e. atom networks) can be used to
derive totally different molecule types, just by specifying
and deriving different molecule structures. This is shown
in fig.2. The reason that it works well, firstly lies in the
direct and bidirectional link concept allowing for a symmet
ric use of the database: e.g. looking at the 'point neighbor
hood', i.e. going from point to edge, and from edge to both
area and state as well as to net and river, as exemplified in
fig.2. Secondly, the database schema is primitive in the
sense that it is not superposed by some static structures

used, for complex object definition, as it is the case for
example in [LK84,Da86). Our complex object definition is
defined on demand in the queries and not fixed in the
schema. Therefore, we term our approach dynamic
object definition. Since it is possible to combine molecules
having non-disjoint atom sets, (which show a general
graph structure, and not only a strict hierarchical one) the
model allows in a natural way for the sharing of subob
jects. This fact is especially depicted in fig.2. Of course,
disjoint objects showing only hierarchical (graph) struc
tures are just special cases thereof.

molecule type 'point neighborhood'
molecule structure molecule set pn

point

~
edge

/~
area net

~ ~
state river SP MS MG GO Parana

molecule type 'mt state'
molecule structure SP molecule set MG

sre
area

t
edge

t
point

shared subobjects
Figure 2: Some complex objects

3. The Molecule Algebra

In this chapter ~e provide a precise definition of the MAD
model's data structures and of its algebra operations.
These formal specifications will contain the relational mod
el as well as the basic non-first-normal-form model (with
some minor cuts) as degeneration. At a first glance, the
reader might be astonished at the formalism introduced for
more or less common facts. But in case of the MAD model
and its inherent support for network structures and
dynamic object definition, we cannot dispense with formal
definition of basic concepts (e.g. type, structure or
description, and occurrence information), because other
wise we could not define the effect of the algebra opera
tors formally and we could not prove the closure of the
molecule algebra. In the following we presume that the
reader is familiar with the relational model and its formal
ization (e.g. [UI80]} as well as with basic mathematical nota
tions. Furthermore, we assume a given set N the elements
of which will be used for naming purposes and the symbol
V indicating the end of definitions, theorems, and proofs.

- 299-

3.1 Basic Concepts
Here we define the basic building blocks of the MAD mod
el that is
• on the data structure side: atom and atom type, link and

link type as well as atom network and database
• on the operational side: operations for projection,

restriction, cartesian product, union, and difference, all
working on atom types (and showing some effects on link
types).

The data structures and the corresponding operations
introduced here are very close to those known from the
relational model. Therefore, we omit a detailed formal defi
nition of well-known and common facts and concentrate on
the aspects intrinsic to the MAD model.

Definition 1 Atom Type

The triple at=<aname,ad,av> is an atom type iff
anamee N, ad is a valid atom-type description, and av is a
valid atom-type occurrence. A valid atom-type descrip
tion consists of a set of attribute descriptions, and a valid
atom-type occurrence is a subset of the description's
domain, which is the cartesian product of the attribute
domains used. An element of the atom type occurrence is

denoted arom v

Obviously, there is a direct association to the relational
model. Fig. 3 compares the MAD concepts against the well
known relational concepts.

relational concepts MAD conceots
attribute attribute

attribute domain attribute domain
relation schema atom-type description

tuple set atom-type occurrence
tuple atom

relation atom type
database database

- link
- link-type description
- link-type occurence
- link type

referential integrity (?) referential integrity(!)
'relation domain' database domain

Figure 3: Comparison of corresponding concepts

Each atom type is uniquely identified by its atom-type
name. AT* denotes the set of all correctly defined atom
types. To deal with atom types easily, we define for each
ate AT" the following auxiliary functions:
• nam(at) .. aname provides the atom-type name,
• des(at) .. ad provides the atom-type description,
• ext(at) = av provides the atom-type occurrence, and
• atyp(aname) = at is inverse to the function nam with

atyp(nam(at))=at.
If C is a set of atom-type names, the function atyp is
extended in the following way:

atyp(C) ={at I at=atyp(aname) and anamee C}.

Definition 2 Link Type

The triple lt=dname,ld,lv> is a link type iff lnamee N.
ld={aname

1
, aname

2
} with atyp(aname

1
)=at

1
,

atyp(aname2)=at2, and at1, at2e AT* as well as

lv~{lll=<a1 ,a2> with a1e ext(at1), a2e ext(at
2

) and I is an

unsorted pair}.
Here lname is called the link-type name, Id denotes the link
type description, and lv marks the link-type occurrence
consisting of a set of elements called links V

Each link type is uniquely identified by its link-type name.
LT* specifies the set of all correctly defined link types.
The use of nondirectional link types (and links) integrates
the symmetry of the relationships of the MAD model into
our formalization. lt is allowed to define several link types
using the same two atom types as well as using only one
atom type (reflexive link type). For example, when model
ing the bill-of-material application with its super-compo
nent and sub-component view, we just have to define one
reflexive link type called 'composition' on the atom type
'parts'. Exploiting the link type's symmetry it is now easy to
evaluate either the super-component view or only the sub
component view. Analogously to above, we define for
each link type lte LT* the following auxiliary functions:
• nam(lt) = lname provides the link-type name,
• des(lt) = Id provides the link-type description, and
• ext(lt) = lv provides the link-type occurrence.
Using definition 1 and 2, we are now able to define the
notion of a database:

Definition 3 Database

Let AT eAT" be a set of different atom types and let
LT cL T* be a set of corresponding link types. The pair
DB=<AT, LT> specifies a database and DB*=<AT* ,LT*>
denotes the so-called database domain comprislflg all valid
databases V

The definition of DB* is necessary, because all subse
quently defined operations are closed under this database
domain (see theorem 1). Each operation uses one or two
atom types of a specified database and produces a new
atom type with new link types that are all contained in a cor
respondingly enlarged database being part of the
database domain. For the relational model its closure is
defined in the same way: the result of each relational oper
ation is a new relation that is contained in the 'relation
domain' (see fig.3) comprising all valid relations.

- 300-

Definition 4 Atom-Type Operations

Let DB=<AT,LT> be a database and let
at=<aname,ad,av>, at1 =<aname1,ad1,av 1>, and

at2=<aname2,ad2,av2> be atom types within DB, and ad,

ad1 and ad2 are in pairs disjoint. Now the following opera

tions are defined:

• atom-type-projection

rt[proj(ad)](at)=<aname1t,ad1t,av ?=at1t

with proj(ad)c;;ad, aname1te N, ad1t=proj(ad), and

av 1t={ a1t I a1t=a(proj(ad)) and ae av}

• atom-type-restriction
o[restr(ad)](at)=<aname

0
,ad

0
,avo>=at

0

with restr(ad)e qual-formulas(ad), aname
0

e N, ad
0

=ad,

and avO'={a I qual(restr(ad),a)) and aeav}; qual is a pred

icate that decides whether the atom at hand fulfills the
qualification condition restr(ad).

• carte si an product

x(at1,at2)=<anamex,adx,avp=atx

with anamexe N, adx=ad1uad2,

avx={ax I ax=a1&a2 and a1e ext(at1), a2e ext(at2)}

and '&' denotes the concatenation of the two given tuples.

• atom-type-union

ro(at1,at2)=<aname(l),ad(l),av ro>=at(l)

with namewe N, adro=ad1=ad2, avro=av1uav2

and 'u' denotes the union of two sets.

• atom-type-difference

o(at1,at2)=<anameo,ado,avo>=ato

with name0eN, ad0=ad1=ad2, av0=av1-av2

and '-'denotes the difference of two sets V

The detailed definition of these atom-type operations
should be clear, so we decided to leave it out. All atom
type operations have indirectly some effects on the link
types: the link types of the operand atom types are
'inherited' to the resulting atom type. Thus, the result atom
type could be reused in subsequent operations. In particu
lar this is necessary for the molecule operations (see next
section), since the dynamic molecule derivation relies on
the existence of link types. In order to save space, we
omit the formal definition of the inheritance of link types.
The interested reader is referred to [Mi88a].
Based on the above introduced constructs, we are now
able to set up and prove the following theorem:

Theorem 1 Atom-Type Algebra

The set of the atom-type operations 1t, cr, x, ro, 5 forms an
algebra on the database domain DB*, i.e. the result of
each atom-type operation is representable in DB* v

Proof:
(1) To prove that each result atom type is valid:

This is already proved by the result atom type's con
struction (cf. def. 4)

(2) To prove that all inherited link types are well-defined:
This follows directly from their careful construction

(cf. [Mi88a]) V

In fig.4 we show the formal specification of our geograph
ic application of fig.1. Both the database schema and the
atom networks (i.e. database occurrence) are defined
within the database definit ion. Only the relevant data are
shown.
Based on this database definition we are now able to raise
some atom-type operations, whilst showing the correspon
ding relational algebra operations:

atom types
/ atom-type definition atom-type occurrence

<state.! Ch~$/hE!ct~r~/);.}j ··~eA,:1 ooo/~;: ;;~.i:MG , .900, / :~;~RJ;;~,>>;M ~RS,\; :> eAT* state=

river =
area=
net=
edge =
point =

link types

state-area = <State-area, {'
"'----'----"

river-net = <river-net,{river.net}.{<Parana >,n1 >.<<Amazonas, ... >.n2>,<<Uruguai, ... >,n3>, ... }>e LT*

area-edge = <area-edge,{area,edge},{<a1,e1>,<a 1,e6>,<a2,e6>,

net-edge = <net -edge, {net, edge}. { <n l,e 11>, ... } >e LT*

edge-point = <edge-point,{edge,point}.(<e1,p1>,<e1,p2>, ... }>e LT*

database
atom types

~ }>e LT*

~ink

link types

GEO_DB = <(sffit~{ ii\l~r/1rg~. hgt, edg~(p8int/ .: }, state-are~; riv~r~n~t/~reacedg~jh~tcedge; ,J }>e DB*

Figure 4: Formal specification of the geographic database

- 301 -

• Cartesian product x(area,edge) ... border
with border =<border,{ attributes of both area andedge},

{a1&e1 ,a1&e2, ... }>
All link types having as component area or edge are inher
ited to the result atom type border. Analogously, the links
are inherited to the result atoms.
The relational 'equivalent' looks like: border .. area x edge
with 'x' being the relational cartesian product.
In both cases the result border gets all attributes from its
operands. On the relational side, the foreign keys indicat
ing relationships (i.e. links) are implicitly inherited, too.

• Atom-type restriction cr[restr(hectare> 1 OOO)](border)
corresponds to the relational expression:

cr[hectare> 1 OOO](border).
Here .it becomes obvious that the atom-type algebra
exhibits the power of the relational algebra. Moreover, it
avoids the problem of enforcing referential integrity,
since the relevant relationships (i.e. the foreign/primary
key concept of the relational model) are explicitly repre
sented and maintained by means of the link concept.
(There are no dangling references (i.e. links) and it is
even possible to control cardinality restrictions specified
in an extended link-type definition). In the next section we
show how this explicit representation of the relationships
serves to dynamically specify and derive the desired
molecules.

3.2 Higher Level Structures and Operations
Analogously to the previous section, we introduce first
the data structures and afterwards the operations for the
higher level objects (i.e. complex objects, here called
molecules). The central concept of the molecule algebra is
the notion of the molecule type. According to the atom
type, the definition of molecule type is based on both a
molecule-type description and its corresponding molecule
type occurrence.

Definition 5 Molecule-Type Description

The pair md•<C,G> is a molecule-type description iff
• C- {aname

1
, ••• ,anamen} and atyp(C)cAT•

• G • {dl. l dl.=<lname.,aname.1,aname.
2
> with

I I I I I

<lnamei,{anamei1,anamei2},1v>e LT" and i=1, ... ,n

• md_graph(md) V

Def. 5 formalizes the notion of 'molecule structure' used in
the previous chapter introducing a (type) graph whose
nodes are atom types and whose edges are directed link
types (d. fig.2). Each triple dl has as first component its
name, as second one the start node and as last component
its end node. By means of the predicate md_graph we
guarantee that this graph has the following properties:
directed, acyclic, coherent, and having only one root
node. At the same time each molecule-type description
determines the domain of its corresponding molecule-type
occurrence. This is expressed by the function m_dom:

Definition 6 Function m_dom

m_dom(md) .. {m I m=<C,g> with
c.;{ al3at: ae ext(at) and nam(al)e C} and

g~{ll31t:le ext(lt) with ltyp(dl):zlt and die G}
and mv_graph(m,md)}

The function ltyp is used to determine for each directed
link type its associated nondirectional link type being an
element of LT". The elements of m_dom(md) are denoted
molecules and the predicate mv_graph guarantees the
correctness of the molecules with respect to the given
molecule-type description md:
mv_graph(m,md) <=> md_graph(m) A total(m,md)
The already known predicate md_graph tests the above
mentioned graph properties of the (molecule) graph whose
nodes are atoms and whose edges are links. Of course we
have to demand the same properties for both graphs (i.e.
that of the molecule-type description and that of each
molecule) in order to guarantee the correspondence of
type and occurrences. The predicate total assures the
molecule graph is maximally:

total(m,md) <=> V'aec: contained(a,m,md) and
V' aE c, but ae ext(atyp(a name)) with
anamee C: -,contained(a,m,md)

contained(a,m,md)<=> (ae ext(root(md))) v
(V' <lname,anamei,aname>e G,

3aie c with aie ext(atyp(anamei)):

contained (a.,m,md) A <a.,a>eg)
I I

with ae ext(atyp(aname)) with anamee C,
and <ai'a>e ext(ltyp(lname)).

The predicate root determines the root node of a given
graph and the predicate contained is recursively defined
on the molecule structure graph. 1t is used to derive all the
atoms and links that are necessary to build up the desired

molecules V

In some sense the above formalization defines the
'synthesis of molecules', that is a procedure explaining
how to derive all molecules of a molecule-type occurrence
according to a given molecule-type description. lt is exact·
ly the same procedure as already informally introduced in
chapter 2: the derivation of the children atoms, i.e. hierar·
chical join along the specified branches is incorporated in
the predicate contained. Based on def. 5 and 6 we are now
able to make concrete our notion of molecule type:

Definition 7 Molecule Type

Given a database DB=<AT,LT>. The triple
mt=<mname,md,mv> is a molecule type (defined over the
database DB) iff the name of the molecule type mnameeN
and md is a molecule-type description with md-<C,G> and
atyp(C)~T and ltyp(G)~LT as well as mv comprises the
molecule-type occurrence with mv .. m_dom(md) v

- 302-

Definition 8 Molecule-Type-Definition

Given a database DB=<AT,LT>, C={aname
1

, ... ,anamen}

with atyp(C)!::AT, and G={dl
1

, .. . ,dim} with ltyp(G)!::L T. Fur

thermore let be mnamee N and md_graph(<C,G>). Then
the operator molecule-type-definition is defined as fol
lows:

a[mname,G](C) .. mta=<mname,md,mv>

with md=<C,G> and mv=m_dom(md) V

Obviously, the molecule type mta is valid according to

def.7.

To prove the closure of the following molecule-type opera
tions we have to introduce the function prop that material
izes or 'propagates' the result of some molecule-type
operations into a given database. Thereby, the database
is enlarged by new atom types and link types in such a way
that the previously propagated result set is now derivable
as a corresponding molecule type over this extended
database.

Definition 9 Propagation of Result Sets

Given a resu~ set rst=<mname,rsd,rsv> with
mnamee N, rsd=<C,G> with atyp(C)!::AT•, ltyp(G)!::LT•,
and md_graph(rsd) as well as rsv={mlmv_graph(m,rsd)}.
The function prop is defined as follows:

prop(rest,DB)=<mt,DB'> with
mt=<mname,md,mv> and DB'=<ATuatyp(C'),LTultyp(G')>
Furthermore, md-<C',G'> and mv=m_dom(md) with C' is
the set of renamed atom types used in rsd that exhibit the
same atom-type description but only a restricted atom
type occurrence: the corresponding atoms are selected
only from the elements within rsv. The same happens to G'
being the set of inherited link types that are used in rsd.
Of course, md is built using only propagated atom types or
inherited link types within C' or G' but it still shows the
same graph structure as rsd V

Even without a formal proof (cf.[Mi88aJ) it is obvious that
mt is a valid molecule type over DB' such that

mt=a[mname,ltyp(G')](atyp(C')). This is easily conceivable
because md satisfies md_graph and all molecules that are
constructible with respect to the molecule-type descrip
tion md also belong to the molecule-type occurrence mv.
Furthermore, mv is restricted in an appropriate way so
that for each element within rsv there is exactly one equiv
alent molecule within mv and vice versa.
Figure 5 shows the approach used to define all molecule
type operations: the effect of each molecule-type opera
tion is expressed in several portions starting with some
operation·specific actions followed by the propagation of
the specified result set or the execution of some atom
type operations. The last part to accomplish the molecule
type operation opmt is to perform the corresponding

molecule-type definition a.

opmt
mt ______ ~----------------~ ··

operation>· ..•.
spe.cific ······
act tons

Figure 5: Diagrammatic view to the definition of
molecule-type operations

Definition 10 Molecule-Type-Restriction

Given a database DB=<AT,LT> and the a molecule type
mt=<mname,md,mv>. Furthermore let restr(md) be a quali
fication formula over md with qual(m,restr(md)) being a
predicate that decides whether a molecule me mv fulfills
the qualification conditions raised in restr(md). Then the
operator molecule-type-restriction is defined as follows:

I.[restr(md)J(mt) = mtE

with <mtE,DB'> = prop(rst,DB)

and rst - <mnameE,rsd,rsV>

with mnamer.e N, rsd=md, and

rsv ={m I memv and qual(m,restr(md))} V

Theorem2

The molecule type mtE is a valid molecule type over DB' V

Proof:
(1)To prove that rst is a valid resu~ set, we only have to
look at rsv, since mnameEe N and rsd ... md. By definition it

is true that rsv!::mV. Thus all elements me rsv fulfil!
mv_graph(m,rsd).
(2) The proof that mtE is a valid molecule type over DB' fol-

lows straight-forwardly from the correctness of the prop
agate function prop (cf. def. 9) V

Due to space limitation we omit the definition of the follow
ing molecule type operations (again, the interested reader
is referred to [Mi88a]):

• molecule-type-projection (Il),

• molecule-type-cartesian-product (X),
• molecule-type-union (Q), and
• molecule-type-difference(~).

They are mostly defined using the molecule-type propaga
tion and the atom-type operations of the previous section.
Of course we can prove that the molecule types resulting
from these 4 operations are valid over their correspon
dingly enlarged databases. Basically, these proofs are
similar to that shown above for the operation molecule
type-restriction. Thus, the following theorem holds:

- 303-

Theorem3 Molecule Algebra

The set of molecule-type operations a, :L. TI. X, n. !:J.
form an algebra on the set of molecule types. Thus, the
result of each molecule-type operation is again describ
able as a molecule type V

The most important outcome of theorem 3 is that the
described data model is closed under its operations, i.e.
the MAD model is closed under its molecule-type opera
tions. Thus, we are able to concatenate several molecule
type operations to build higher level and more complex
operations and objects. For example, we can express the
operation molecule-type-intersection '¥ by using the
operation molecule-type-difference twice:

'¥(mt1,mt2) = !:J.(mt1, !:J.(mt1,mt2))

with mt
1

, mt
2

being molecule types.

4. From an Algebraic Approach to a High Level
Query Language

In this chapter we describe and exemplify a way how to
exploit a model's algebra to define a high level as well as
user-friendly query language for that model. Firstly, we
show some examples of our molecule algebra using the
geographic application described in fig.1, fig.2, and fig.4.
Translating these algebra expressions into statements of
our molecule query language (for short MOL) introduces
the constructs and the semantics of this high level query
language by means of the sound algebra definition provid
ed in the previous chapter. As syntactical basis of MOL
we have chosen an SOL-like formalism because of its
widespread use, its syntactical simplicity, and its user
friendliness.
The first example shows the molecule-type-definition of
the molecule type 'mt_state' (cf. fig.2):
a[mt_state,{<state-area,state,area>,<area-edge,area,edge>,

<edge-point,edge,point>})(state,area,edge,point)=mt_state
with

mt_state= <m/e f{(~\tt~~~~~~~::~~~~~:~J~:~l~JJ:At~~(I mvj>

molecule-type definition molecule-type occurfence
and

mv = (mt= ~~~~~;[~~~~;1J;~~t~f~;ID~~~·J~{; .j·::j > ~molecule
m2=<{<MG, .. >, ~ ,e3, ... } ,(<1Md:t~.a2> .1 <a2,e3:.. .. }. ... }

~ \ l' k component atoms component m s

Some elements of this molecule-type occurrence are
already shown in the lower part of fig.2 in a graphical rep
resentation.
The equivalent MOL statement looks as follows:

SELECT ALL
FROM mt_state(state-area-edge-point);

Obviously, the whole molecule-type definition is
expressed in the FROM clause. (If there is only one link
type defined between two atom types we can simplify the

syntax of the molecule-type definition by using the symbol
'-'instead of the link-type's name.)
The following MOL statement exploits the symmetry within
the model's data structures:

SELECT ALL
FROM point-edge-(area-state,net-river)
WHERE point.name .. 'pn';

The result of this query is shown in the upper part of fig.2.
To express this in our molecule algebra, we firstly have to
build the molecule-type 'point-neighborhood' using the
operation molecule-type-definition:

point-neighborhood •
a[point-neighborhood,

{<point -edge ,point,edge>, <adg a-area, edge, area>,
<area-state,area,state>,<adge-net,edge,neb,
<net-river,net,river>}]
(point,edge,area,state,net,river)

In the second step we have to concatenate this molecule
type-definition with a molecule-type-restriction:

:L[restr(point.name='pn'))(point-neighborhood)
This example stresses the flexible and symmetric use of a
link type to build up quite different molecule types.
Molecule restriction in MOL is expressed within the
WHERE clause, and molecule projection is accomplished
within the SELECT clause.

5. Comparison and Outlook

After having sketched the MAD model and its molecule
algebra as well as the high level language MOL, it is worth
while to draw a comparison to other models and their alga·
bras. A rough but expressive comparison can be done just
by comparing the different complex object concepts sup
ported: lt is obvious that the MAD model with its provision
for network structures and shared subobjects comprises
all models that are based on flat or only hierarchically
structured objects. Thus, the relational model, the extend
ed relational model [LK84), and even the non-first-normal·
form models [AB84,Da86) are just special cases thereof.
A more detailed comparison is possible using thG models'
formalizations: comparing the molecule algebra with the

NF
2

relational algebra [SS86) or other non-first-normal
form approaches [OY85,RKS85,BK86) results in the same
outcome. Meanwhile, there . are attempts to extend the

basic NF2 idea with sharing of subobjects, recursive
ness, and dynamics in object definition (cf. [Oz88]).
As already mentioned above, the MAD model allows for
reflexive link types and for other cycles in the database
schema; e.g. for modeling a bill-of-material application.
These cycles are normally queried in a recursive manner,
for example asking for the parts explosion (i.e. sub-compo
nent view) of a given part. Therefore, we have started to
extend the algebra as well as MOL to provide for recur
sive query facilities [Sch689) introducing recursive
molecules types as data model objects.
Moreover, it is worth-while to recall the MAD model's
capability for dynamic object definition: the complex

- 304-

objects, i.e. the molecule types, to work with are defined in
algebra expressions or high level language expressions
and are no1 statically fixed in the database schema as it is
the case in most of the above mentioned approaches. Our
molecule algebra incorporates these facilities and, hence,
offers a great flexibility in complex object management.
The comparison between the MAD model and the well
known (binary) ER model (without relationship attributes) is
quite obvious. On one hand, the modeling power of the
MAD model comprises the modeling capabilities of this
type of ER model as already pointed out in chapter 2. On
the other hand, it could also serve as a descriptive high
level 'ER language' with the molecule algebra serving as a
sound 'ER algebra' (cf. [PS85,HG88,PRYS89]).
Meanwhile a first prototype implementation of MAD/MOL
called PRIMA [HMMS87] has been finished. Its internal
architecture shows two main components influenced by
the construction of the molecule algebra: the basic compo
nent provides an atom-oriented interface (similar to the
functionality of atom-type algebra) for the second compo
nent that performs molecule processing and implements an
MOL interface (similar to the functionality of molecule
algebra) to the application programs. Thus, this implemen
tation endeavor exploits quite directly the theoretical expe
riences gained from our algebra definitions. Furthermore,
we are confident that we can conveniently exploit the alge
bra to considerably simplify and enhance query transfor
mation and query optimization as well as using it as a focal
point for detailed investigations in query parallelism.

6. Acknowledgment
I'm deeply indebted to K. Meyer-Wegener who has consid
erably contributed to clarify and improve the presentation
of important issues. T. Harder and H. Schoning have read
and improved an earlier version, and M. GaB, I. Littler,
and H. Neu have helped in preparing the manuscript.

7. References

[AB84)

(8884)

[8K86)

[CDV88)

[Da86)

Abiteboul, S., Bidoit, N.: Non First Normal
Form Relations to Represent Hierarchically
Organized Data, in: Proc. PODS Confer
ence, 1984, pp. 191-200.
Batory, D.S., Buchmann, A.P.: Molecular
Objects, Abstract Data Types and Data Mod
els: A Framework, in: Proc. 10th VLDB Conf.,
Singapore, 1984, pp. 172-184.
Bancilhon, F., Koshafian, S.: A Calculus for
Complex Objects, in: Proc. PODS Confer
ence, 1986, pp. 53-59.
Carey, M., DeWitt, D.J., Vandenberg, S.: A
Data Model and Query Language for EXO
DUS, in: Proc. ACM SIGMOD Cont., Chica
go, 1988, pp. 413-423.
Dadam, P. et al.: A DBMS Prototype to Sup-
port Extended NF2-Relations: An Integrated
View on Flat Tables and Hierarchies, in:
Proc. ACM SIGMOD Cont., Washington,
D.C. 1986, pp. 356-367.

[HG88) Hohenstein, U., Gogolla, M.: A Calculus for
an Extended Entity Relationship Model Incor
porating Arbitrary Data Operations and
Aggregate Functions, in: Proc. 7th lnt. Conf.
on Entity-Relationship Approach, Rome, 1988,
pp, 1-20.

[HMMS87] Harder, T., Meyer-Wegener, K., Mitschang,
B., Sikeler, A.: PRIMA - A DBMS Prototype
Supporting Engineering Applications, in:
Proc. 13th VLDB Conf., Brighton, UK, 1987,
pp, 433-442.

[LK84) Lorie, R., Kim, W., et al.: Supporting Complex
Objects in a Relational System for Engineer
ing Databases, IBM Res. lab., San Jose,
CA, 1984.

[Mi88a) Mitschang, B.: A molecule-atom data model
for non-standard applications - requirements
engineering, data-model design, and imple
mentation concepts (in German), PhD Thesis,
University Kaiserslautern, 1988, published by
Springer Publ. Co. in the series IFB 185.

[Mi88b) Mitschang, B.: Towards a unified view to
design data and knowledge representation,
in: Proc. 2nd lnt. Conf. on Expert Database
Systems, Tysons Corner VA, 1988, pp. 33-49
(further publication by Benjamin/Cummings
PLbl. Co.).

[OY85) Ozsoyoglu, Z.M., Yuan, L.-Y.: A Normal
Form for Nested Relations, in: Proc. PODS
Conference, 1985, pp. 251-260.

[Oz88) Ozsoyoglu, Z.M. (ed.): Special Issue On
Nested Relations, in: Data Engineering,
IEEE, Vol. 11, No. 3, Sept. 1988.

[PRYS89] Parent, C., Rolin, H., Yetongnon, K., Spac
capietra, S.: An ER calculus for the entity
relationship complete model, Research Report
890401, Dep. d'lnformatique, Ecole Polytech
nique Federal de Lausanne, 1989.

[PS85) Parent, C., Spaccapietra, S.: An Algebra for
a General Entity Relationship Model, in: IEEE
Transactions on SE, Vol. 11, No. 7, July 1985,
pp. 634-643.

[PSSWD87) Paul, H.-B., Schek, H.-J., Scholl, M.H.,
Weikum, G., Deppisch, U.: Architecture and
Implementation of the Darmstadt Database
Kernel System, in: ACM SIGMOD Cont.,
San Francisco, 1987, pp. 196-207.

[RKS85) Roth, M.A., Korth, H.F., Silberschatz, A.:
Extended Algebra and Calculus for -,1NF
Relational Databases, Technical Report TR-
84-36 of Univ. of Texas at Austin, 1985.

[RS87) Rowe, LA., Stonebraker, M.R.: The POST
GRES Data Model, in: Proc. 13th VLDB
Cont., Brighton, 1987, pp. 83-96.

[Scho89] Schoning, H.: Recursion in the MAD Model -
Recursive Molecules as Objects of the Data
Model (in German), in: IFS 204, Springer
Publ. Co, 1989, pp 389-407.

[SS86] Schek, H.J., Scholl. M.H.: The Relational
Model with Relation-Valued Attributes, in:
Information Systems, Vol. 2, No. 2, 1986, pp.
137-147.

(UI80] Uliman, J.D.: Principles of Database Sys
tems, Pitman Publishing Limited, 1980.

- 305-

