
Knowledge Base Management Systems -
the Bases of Advanced CAD

S. DeBloch. T. HArder, N. Mattoa, B. Mlt.cbanJ
University Kaiseralautem, Department of Computer Science,

P .O. Box 3049, 0-£750 Kaiserslautem, Weat Germany

Abstract

Semantlc expressive representation of design objects, active sys

tem behavlor combined wilh reasoning tacllities, <snd elficient
implementation concepts are necessary requirements for the con

struction of better CAD systems. Here, we desetibe our

approach to a knowledge base management system and exempli
fy Its usage for advanced CAD systems.

1. Motivation

Currently, there Is a lot of research Investigation almsd at better

computer-aided design (CAD). 'These so-<:alled advancBa CAD
systems comprise the overall design process, taklng at least sev

eral or all design steps Into account and exhibiting an active sys
tem behavior. Thus, they are capable of providing a more Intelli
gent interface to the user, offering tor example solutions or

hints to current design problems and guaranteeing design-spech
Jc integrity constraints.

The approach mostly taken to yield a better suited designed envi

ronment is to couple an (existing) CAD system with a database
system (DBS) or with an expen system tool (XPS tool):

The reason to add a DBS lies in Its ability to manage persls·

tent data in an integrated and efficient way. Since different
tools within the broad area of CAD (e.g. tools for concept fin

ding, ~lid modeling, computation, simulation, and testing)
refer to the same design objects, all aspects of these objects
are represented In a unique and non-redundant manner, aiiO'f'··

lng for consistent and uniform object handling. This Integrat
ed view of different object aspects is also necessary for the

integration of other CA' areas (e.g. CAM, CAP) to achieve
computer-Integrated manufacturing, I.e. CIM.

• On the other hand, the Idea behind the usage of en XPS tool
lies in an improved and more intelligent system behavior (1 ,2J.
An active CAD system is able to provide the design engineer
with appropriate design hints, relevant problem solutions,

refined simulation results, and adequate diagnostic Information
in all stages of the design process. Thus, it could take care of,
for example, whether the object under consideration Is still

manufacturable (considering manufacturing restrictions and

company guidelines) or whether some time dependencies con
cerning the manufacturing process have to be taken into

account. Concerning the recent upcoming terminology, these
systems are also called intelligent CAD systems.

This probably Incomplete list of arguments for the use of DBS

and XPS components In an advanced CAD system, obviously
reveals that a pl"actical approach should Incorporate the advan

tages of both DBS and XPS tools. However, I! should by no
means be based on an extension or coupling of existing sys

tems. Th& lack of component Integration In existing architectures

Is responsible In most cases tor cumbersome handling and tor
oftenly quite Ineffective performance. For this reason, the

approach that Is desetlbed here Is totaUy different to the above

mentioned ones since 11 Is cantered around a so-callud knowlttdgfl
base management system (KBMS) that Integrates artlficlcll Jntelll·
gence (AI} and database (DB) techniques In an effective way.

The paper Is organized as follows: llrst!y, we define our concep·

lion of aovanced CAD by means of Its Inherent characteristics.
Secondly, we show that the optimal solution could be achieved
only by an efficient Integration of both DB technology and AI

techniques within a KBMS. Using the KBMS KAISYS [3J that
has been developed at our university and some evident examples

from architectural design we demonstrate the applicability of our
approach.

2. Characteristics of Intelligent CAD
In advanced CAD systems, the 'user' Is not the only active unit

witNn the overall design process - as it Is In conventional C'.D
systems. In such en.tironments, the CAD system Itself exhibits
an active beh:~vior being therefore capable of providing a more

Intelligent U$9r Interface. lr. some sensa there Is a klnd of
· 'partnership' between designer and system where 11 Is possible

·to swflch between automated design guided by the system (e.g.

In standard cases) and human design controlled by the user's

decisions (e.g. In special cases). The main goal of advanced CAD
Is to Improve the whole design process by Incorporating not

only geometr~l but also technical and functional aspects as well
as construction and manufacturing dependencies along each
design step. This leads to a penetration of the design phas.es

and. to a manufacture-<>rlented design methodology. For exam·

pie, the technical term feature modeling has come up recently to
express the shift from simple geometric modellng (where lt Is
only dealt with geometry) to a modeling concept that additional

ly considers technical, tunctional, and manufactural aspects of

the design object at hand (4J. In the following, we concentrate
on the most imponant facts Inherent to ad'lanced CAD:

First of all, an Integrated product model that can be efficlentiy

managed is a mandatory prerequisite. This product model con-

-3 26-

talns several submodels de&Crlblng geometrical, topological and
technical aspects, structural and &izlng aspects as well as func
tional and dynamic aspects of the objects under design. Addition

ally, prodUction lnformatlon and manufacturing Information hu
to be Included. For example, h seems to be highly desirable to

model __ the machines and their operations to be able to check for

manulacturablllty of the actual design object (e.g. considering

manulacturi!lll restrictions and company guidelines). Obviously, 11
Is qulte hard to keep these different representations belonging
to the same design object consistent within each one and among
all its representations. Thus, lt la necessary to use a modellng sys

tem that enables accurat.e semantic expresslvene66 to ensure a
high degree of semantic Integrity already at the modeUng level
and to relieve lhe application program from lhla part of Integrity

checking. In englneeri~ applicatlons, there are several Integrity

constraints concerning geometry, topology, technical and func
tlonal behavlor ot the current object. Ot COU(S8, there are higher

levels of conslst.ency basad on the above mentioned ones, e.g.
stress analysis, manufacturablllty or quality assurance.

Another Important aspect are the different kJnds of . dynamism
typically found In a design process. Each CAD system has to

keep track of all design decisions and their re&Uts. This leads to
version graphs, design alt.ernatlves, and conllgurallons each of
them having Its own semantics with respect to a specllic applica·
tlon area. The system Is able to maintain these dependency struc

tures only 11 there are adequate measures to express the seman
tics and the reactions due to changes. Furthermore there must
be an ability to cope with changing envlronmants. For example,

new technclogles or new manufacturing guidelines have been

Introduced or new machlnes with new operations have been
bought. These changes have a signlftcant Impact on the optimall
ty of the design and must be noticed tor this reason. Additional
ly, a good system allows Its user Interface to be adapated to· the
user's conception. Thus 1t should be possible for a user to build

up his own name space, his own design methodologies or to

select standard designs from libraries or catalogues etc. Allto
gether, easy adaptablfity Is an important system property.

Along with the process of design there are a lot of changes that

have to be recorded and a lot of subsequent actions tlat have

to be triggered due to dependency or derivation relationships. If
the system offers enough knowledge and reasoning facilities 11 Is
capable to maintain these relationships automatically thereby sim

plifying the application programs or even the user's work (5). Fur
thermore, lt Is able to propose soma design alternatives or simi

lar design plans perhaps using libraries that contain standard

design plans or parameterlzed skeleton plans. Additionally, the
automatic generation of production or manufacturing plans con

necting the phases of design and manufacturing becomes con
ceivable. With this, lt la also possible to generate tor example NC

code, assembly data, and quafity assurance data.

Summing up, our c:Onception of advanced CAD comprises the

following properties:

semantic object representation, I.e. sufficient structural and
behavloral modeling facilities to enable a semantic expressive
representation of each design object

• active system behavlor combined with reasoning concepts to
guarantee a consistent design and to provide appropriate

design hints, relevant problem solutions, refined simulation
results, and adequate· diagnosis Information In all stages of the
design process. .

Despite the elflclenl provlslion of these concepts a practical sys
t.em haa 19 guarantee durabiUiy, consistency. and isolation of
each design phase with respect to the whole design process by

means of an appropriate design-transection concept.

3. The KRISYS Approach

3.1 Overview of the System Architecture

As &hewn In figure 1, KRISYS Is archltacturaily divided Into
three hierarchically ordered layers. They are responsible for a

stepwlse abstractlon prOC866 and for the realization ot the corre
sponding taska wlthln each laytlf". The application layer realizes an

ext.emal lnt.erface where the knowledge Is viewed In a more
abstract and functional manner. This object-abstractlon Interface

Is defined by the powerful query and manipulation language

KOALA (KRISYS Qbject Abstraction ~uage} that keeps the
end-user or applicatlon programs Independent from the repre
sentation of the underlying knowledge model. The terms of the

knowledge model ot KRISYS, called KOBRA QSAISYS Qeject
centared fiepresentAtlon Model), are defined by a mixed knowl
edge representation frameworX. Thus, the engineering layer

Implementing KOBRA realizes at Its Interface an object-cantered

view of knoy.lladge representation and manipulation to the
knowledge engineer. The task of the lowest layer Is to eftlclenlly

cope with storage ot knolwedge. At this level, most of the

Issues are related to traditlonal DB technology applied to large
KB, possibly shared by multiple users: storage structures, access
techniques, efficiency, integrity features, transaction support.

etc. Therefore, this layer Is realized by a non-standard database
system (NOBS) which seams to be quite advantagous In a
KBMS archilecture for a nuMber of reasons (6). NOBS are much
more powerlul than traditional DBS and are, lor thla reason,
able to sallsly knowledge maintenance requirements. Our lmpla
mentaHon layer consJsts of two distinct modules. The DBS ker

nel Is responsible for the storage and management of the KB.
The Working-Memory Syst.em embodies a 'Marby application
lccality' concept, thereby slt>stantialty reducing DBS calls as

well as the path length when accessing the objects of the KB.

This component manages a special main memory structure, caned

workJng-memory, which acts as an application buffer, in which
requested KB objects are temporar~y stored.

goal

adeqlJBie
quety language

adequate knowledg;J
model

elticlently coping with
knowledge storage

KOALA

KO BRA

PRIMA-jWorkJng-Memory I
NOBS Sy:;lem

loss~]

Figure 1: Overall system architecture ol KRISYS

layers

Engineering

Implementation

3.2 Short Not.ea on the Knowledge Model ot KRISYS

KOBRA supports an object-centereC: representation ot the appli

cation world. That Is, every entity ol this world Is represented as

-327-

a schema, which has attributes to describe Its characteristics and

Is clearly Identified by Its name. A schema corresponds to a
frame or unit In other systems and must not be confused with a

DB-schema. Attributes are either slots, representing propertles

and relations to other objects, or methods describing the behav
lor of the entity. In order to characterize an object In more detall,
attributes can be further described by aspects (pos_slble values

and cardinality specifications, default values, etc.).

For structuring the KB, the knowledge model supports the

abstraction concepts of classlllcallon, generalization, assocla~on,

and aggregation [7]. These concepts are seen as special, prede

fined relationships between objects, defining the overall organi

zation of a KB as a kind of complex network of objects. KAISYS
supports an Integrated view of KB objects: there are no different

representations for classes, sets, Instances, complex objects,
etc. They are all Integrated within a schema, which may describe

an object related to many others via several abstraction relation

ships. Therefore, the same schema can, for example, represent a
class with respect to one object, and a set or even an Instance

with respect to another. As a consequence, the difference

between data and meta-data, which Is usually apparent In exist

ing data models, Is eliminated In KRISYS, so that mala-informa

tion is integrated Into the KB. The semantics of the abslrac;ion

concepts are guaranteed by built-in reasoning facilities provided

by the system (7J. Finally, to represent procedural characteristics

of the application world, KOBRA offers methods, demons, and

rules, with which behavior of design objects, reactions to real

world events, and the problem solving know-how may be respec

tively represented.

3.3 Using KRISYS to Model Advanced CAD·Syatema

As an example of an advanced CAD-system supported by
KRISYS, we use an architectural design application currently

being Implemented. The task of this system Is to design one-sto

ry houses for families based on requirements and needs specified

by the user. During a first design-phase, it questions the user as

to his requirements, which may be incomplete In the sense that

they might not be sufficient to directly achieve a final design

stag~. The system utilizes Its knowledge (e.g. standard require

~ents, laws, etc.) to supplement the user-sketched blu&print, cre

ating additional rooms and properties of rooms and constnJCting

a functional description of the house. In a second phase, our
appjication uses this description to generate an architectural

sketch. The user may accept this sketch or reject it, causing the

system to generate alternative ones. New requirements can also

be added, or existing ones can be removed, leading to a (partial)
repetition of the first design phase.

Object structure

Everything e~istlng In the application domain Is expressed as an

object of the KOBRA model, the so-called schema, In which

descriptive, operational, and organizational aspects of the real

world are Integrated. In figure 2, we give an example of a

schema representing a certain room of a house. Its properties

are described by the attributes and attribute values: the size of

the room Is 16 square-meters, lt Is Intended to be used for sleep

Ing and Is adjaCE>nt to two other rooms, namely 'room 2' and

'room 3'. The orientation and position of the room are not yet

specified or determined. Via the aspect 'unit' for the 'slze'

attribute, 'square-meters' Is fixed as unit for the room size.

room 1

18
square-met&rt

roomZ.room-4
. lleeplng .

Agure 2: Sample schema description

KB organlullon

KRISYS supports an integrated vlsw of the KB by means of dif

ferent abstraction concepts. A partial view of our example KB Is

presented In figure 3. The schema 'bed 1' has, for example,

three different 'roles' at the same time: it Is an Instance of

'beds', an element of 'usera-furnlminga', and a component of
'room 1'.

/:Z~
ar88.5 room1 "............-:: fumlsl\l,,..
: --r""'- ,:: /.c \ "' l bathrooms bedrooms USBI$· bedl wardrobes l)ltlC)OI8d. : . /tc" t.lm)shlng8 : \ \m\lsNngl
: i ·. ' ' ~
: I t I t a
, . : chlklren- patent· \ i ... :
: ': bedroomt bedrooms\ : . ·., . "
: : : •,e : ' ~· 1 •

prtvate-- / room2 : i \ ; \ 1
area p ~1--~1 \ i

p Wllldtobe 1

Figure 3: An Integrated view of the KB

.As already mentioned, the semantic& of the abstraction con

cepts Is guaranteed by KRISYS via built-In reasoning facilities

(7]. E.g. Inheritance, which Is carried out according to the gener

alizationlclasslfication-relationshlps, Is the reasoning as tl the

slructure of an object. 'Room 1' Inherits all properties of

'parents-bedrooms', 'bedrooms', 'rooms', and 'des~n-obiects'.

The aggregation-relationships are the basis for reasonlng with

so-called Implied predicates. For example, the fact that 'room 1'

has a size of 16 square-meters Implies that the area In which ills

contalnE'd must be at least 16 square-meters In size. The concept
of association allows the definition of set propertles. For the

final costs Involved with the new house, the prices of all furnish

ings proposed by the system have to be considered. The set

property 'total-price' of 'proposad-fumlshings' Is defined as the

sum of all the prices of Its elements. Upon changes, like the

Insertion of a new piece of furniture Into the set, the new total

price is automatically recalculated by KRISYS.

Supporting an Integrated product model

An object-<:entered representation can be directly utilized for the

definition of an Integrated product model. it allows a natural
description of the design object, Integrating an aspects of the

product Into one KB-objecl The abstraction concepts can be

used as the basic mechanisms for describing the organizational

semantics of the application domain. Distinct aspects of the

design object may be modeled using different abstraction con

cepts or distinct hierarchies of the same concept (e.g. one class

hierarchy for representing geometrfcal, another for functional,

and 11 last one tor manufacturing infonmatlon about the object),

-3 28 -

which has the advantage that they are easily distinguishable In
the model. An integration of all aspects into one object Is easily
achieved by overlaying the corresponding hierarchies.

In our architectural design system, we have described aspects

concerning the usage, adjacency, and geometry of objects within
three distinct classaa (see figLKe <4). The class 'usage-objects'

describes all aspects related to the usage of a deslgn~bject (e.g.

a room) or the activities associated 'Nilh ll Information about

the adjacency of objects (e.g. when two rooms are connect via a

common door) is captured by the cla&ll 'adjacency~bject&', while
all geometrical aspects, such as the &ize or the position of a
room within the house, are covered by 'geometrical objects'. The
class 'design-objects' Inherits an attributes of Its superclasses

and therefore Integrates the different aspects related to the

design object. Since the design objects, Uke areas, rooms and fur

nishings are also embedded In an aggregation and an association

hierarchy, their role as complex objects, object components, or

elements are also considered . .

usag4Hlbjecls

Figure 4: Different aspects of the design objects

Integrating betlavior Into the appll!:atlon model

Operations and actions In which objects are Involved are Includ
ed Into a schema de6Crfption as procedural attributes (methods).

Our application utilizes methods for several tasks. For example,

the algorithms performing the actual geometric design, I.e. parti

tlonlrg the house Into geometric areas corresponding to the

rooms (once their usage, functionality, and other requirements

are fixed) can be modeled as operations of 'geometry~bjects'.

Tht> end-user of the system Is of course not directly concerned
with operations upon geometrical representations. His lnterac·

lion wilh the application Is usually saltfed at a higher semantic

level. E.g. the method 'add·nelghbors', defined In 'adjacency·
objects', Is performed when the user adds new requirements

about the connections between rooms currently under design.

Since these new requirements can Invalidate previously stated

geometric design decisions, the method 'add-neighbors' may, In

turn, eaU methods defined In 'geometry-object' to causa a

redesign of certain areas or of the whole house.

Maintaining the semantic Integrity

/J. significant part of the application world semantics Is embodied

In restrictions of and dependencies between certain aspects of

the world. KRISYS provides several mechanisms for explicitly

describing Integrity constraints and Integrating them Into the

application model. Flgure 5 gives an example using the class

'design-objects'. Every design-object Is described by exactly one

size, which Is expressed through the value 11 11' of the cardlnaH

ty aspect. Using the 'possible-values' aspect, we can state, ltlat

the minimum size of a room Is 2 square metens. This aspect can

also be used to ensure a constraint similar to lhe relerential

Integrity In databa&e systems: In order to assure that the values

of the usage-slot, which repre.&ents the relatlon&hlp be'-n a
design-object and Its usages, always reference an actual lnsteoce

ol the class 'activities', \lie assert '(INSTANCE-OF activities)' as

the value of the &ppropl'iate po&&lble-values aspecl

Agure 5: Specllylog constraints by using Pfede!lned aspects

More complex Integrity constraints can be expressacl using so
caAed demons and/or rules. For example, OLK application has to

check whether an activity specified Jor a specific room Is compat

Ible with previously asserted usage. There are &tatutss ltlat strict·
ty determine Incompatible usage. The architect has, tor example,

to consider that laciUties for both cooking and bathing mu&l not

be provided In tha same room. For this reason, - define a 61ot
caKed 'contradictory-activities', which contains all Incompatible

activities for every activity In tha KB. A demon Is then attached

to the usage &lot ol every room (see flgLKe 6), which Is activated

When a usage Is added In order to check If one of the old usages

Is a 'contradictory activity' of the new one. Upon detecting an
Inconsistency, an error Is reported, automaticaUy eliminating the
previous change of1he KB.

deslgn-objea& ·· ...
kllcheoa ·.

rooms l:i8Jhlno

r- ~adldoiy-~hles ~~
,·· : · ..

. :' bagn ·
'check contradic:tory-activities-&!Qfof

new usage· ,.
If •an old usage e coniracf~etory-activttres•
then reject ·
end

Aguna 6: Using demons for checklng Integrity constraints

Supporting an active ayatem behavlor

Demons and rules are also used to achieve an active system

behavlor. An Intelligent CAD system should support and guide
the user throughout all design phases, suggesting alternative

pi'Oduct designs or possible solutions to his design require

ments. A significant part of the kno'Niedge of our archi118ctural

design system Is represented as rules, which are responsible for

the activities of the system. For example, the user may specity
activities or usage tor the house, but need not retate them to

any rooms. This task Is then automatically performed by the sys

tem. E.g, when the user specifies the activity 'woridng', the sys

tem activates rules associated with the 'won<lng' object In the
KB that either establish a relationship between the activity and
an already eldsting room (e.g, the living-room), considering, lor

-3 29-

example, extra placea tor a WO/t(desk, or generate a new room

(e.g. the oftlce room) tor the activity. The location of a room
within a certain araa (e.g. bathroom, bedroom are parts of the

private-area) and lhe connections between rooms (e.g. a kitchen

Is connected to the dining-room) can also be !()!erred as -11 aa

the size of a room, which ~ngly depends on the ac11vltles and
the number of people u&Jng the room. Standard alzea of doors

and windows as well as pr\Ges ot mater\al and equipment are con

sidered In order to keep lhe financial restrictions given by the
user at the beginning of his se661on.

Ali the Information specified during the session or derived by the
application la then used to construct an archltechnl sketch of

the house. The US8f' may accept this sketch or refuse 11, which
cau68a the de&Jgn system lo preseric~ alternative sketches. Upon

additional requlraments posed by ~ user, it has to repeat previ

ous design phases and probably revise decisions made earlier. An
explanation facility Is also proyided for making design decisions

plau&ible to the US8f.

Extending U\8 ln\egrated product model

A last Important Issue Is related to the notions of extensibility.

Since KAISYS does not make any difference between Informa

tion and meta-lnformation de&crlblng the application model, all

Information la contained In the KB and may be modified. lt Is
therefore easy to keep track of changes In the application envi
ronment because the application model may eaSily be extended

or changed. An lntel~gent CAD system may therefore easily pro
vide user operations for defining new object types and exten

ding or brow&Jng lhrough catalogues sJnoe these operations are
already supported by KRISYS. As a consequence, OIX architec
tural design application may be extended to include the design of

many-story houses or .other kinds of buildings (e.g. bungalows,
vlaas) In a natural way. Also operations could be provided, that

allow the end-user to define a new class of rooms with special

properties (sound Insulation), that he might require for hls house.

3.4 The fmplement.don Layer

KRISYS makes usa of the PRIMA-NOBS (8), also developed at

our university, to realize the Implementation layer. lt offers neu

tral, yet powerful mechanisms for managing the KB. PRIMA Is
the f.Bototype lmplementalion of the .MAD model, whereas the
MAD model la an acronym that stands for .Molecule Atom Q.ata
model (9). This non-standard data model Is an extension to the

relational model In "that relations are named atom types and

tuples are now termed atoms. Furtherf!~ore, all relevant relation
ships between entitles, I.e. the foreign-key/primary-key connec

tions be~n tuples, are explicitly specified In the meta data and

represented In the databasa In a direct and symmetrical way.
Therefore, complex objects, called molecules, are definable as

higher level objects (being a part of the net of interconnected

aloms) and are seen as a struclured and coherent sal of possibly

heterogeneous atoms. From a more general point of view, the
MAD model lr. a direct Implementation of the well-known enllty

relatlons._.lp model. The tlexibiUty of the MAD model stem& from

Its dynamic definition and handling of complex objects based on

direct and symmetric management of ;'l81work structures and

recurslveness. These conc:epts enable the appropriate mapping

of knowledge atrucbJres to deta m~del structures In an eHectlve

and stralghtfotWard way as de6Clibed below.

Mapping the knOWledge model to the deta model

In the prevloln chapter, we have seen that KOBRA presenta a1
ltr. concepts tor. building a KB wel Integrated In Ita central con

struct: the IChema. From a structural point of view, one may
observe that the schema (cf. figure 2) Is composed of attributes

which, In bJrn, consist of aspects, &Uggestlng . a MAD sche'1la
that contains ttvee atom types (corresponding respectively to
'schema', 'attribute', and 'aspects') connected via the refer

ences, I.e. relationships, has_attrlbutes and has_aspecta: The
MAD schema cbgram In figure 7 shows a graphical view of alom
types (rectangles) and their Interconnections (double arrows).

Here, aspect specifications are shared be~n several

attrlbutea preventing redundancy (especially In casa of Inherited
attributes). We explicitly exploit the capabiUty of the MAD model

to handle networtt structures In a direct and non-redundant man

ner. The organlzalional axes of KOBRA, Le. attributes with
abstraction semantic&, are not represented as ordinary

'attributes' but as I'&CU'slve MAD raferences between the atom

type 'schema'. Slnca for each MAD reference, there always

exists a bacll. reference, each organizational axis la represented

by a psi" of MAD attributes of type reference (shown as

hatched double arrows In figure 7).

Figure 7: Generic KOBRA schema expressed In terms of the
MAD schema diagram

Tranafonnetlon of operation•

On one hand, KOBRA operations can be viewed as general tunc
lions to work on the schema objects as a whole. On the other

hand, there are also operations to direclly manipulate a schema

objects' attributes or their aspects. To exemplify our transforma

tion approach, we just present one complex KOBRA operation

together with the corresponding MAD statements. Other opera

tion transformations and a more detailed discussion can be

found In (9}. The data manipulation language defined tor lhe

MAD model Is syntactically related to the well-known and easy

to understand SOL language developed for relational databasa

systems. Thereiore, it Is easy to capture the semantics ot MAD

statements: projection (SELECT) and qualification (WHERE)

clausa are quite slmllar 1o SOL, whereas the. FROM-dause of

MAD provides the Important capability to dynamically expreM

molecules just by writing the corresponding molecule structure,

thereby Introducing the dynamic complex object facility.

The operation In figure 8, expresses the lniiertlon of a new
Instance-attribute, to our KB. Since the Insertion of an Instance

slot (In the example, number_of_windows) provokes Its Inheri

tance, lt Is necessary 1o obtain 1he whole generalization hierar

chy before lnset11ng the attribute. This Is accomplished by the
first MAD statement, which ratrleves the whole generalization

hierarchy beneath the schema object 'rooms'. Such a hierarchy

Is specified as a recuf.Slve complex object starting with lhe root
atom 1ype 'schema' moving on firstly lo all subclasses (using the

- 330 -

reference type 'has_subclasses' In a recursive matV\er) and then

to their Instances (exploiting the reference type

'has_lm>tances'). Additionally, 1or an schema objects, their
attributes are also retrieved (taking the reference type

has_attrlbutes). The molecule diagram of this generalization hier

archy Is also daplcted visualizing the evaluation process of the
corresponding molecules as Introduced before.

~: Insertion of the Instance-slot 'number_of_wlndows' to
the schema named 'rooms'

1. Retrieval of the whole subclass hierarchy
with corresponding Instance schema&

SElECT ALL
FROM generalization-hierarchy

{sctlema-{ .has anrtxnes-anrbllea,
.has]nslancea-schema.has_anrb.ites-anrtxnes)

{RECURSIVE: schema.has subclasses-&ehema))
WHERE generallzatlon-hlerar~lly.scfiema(roor).name-·rooma·

2. Modification within the KOBRA layer:
addilion ol!he lnslance-slolln the rOOI schema, I.e. the
schema named 'rooms'

- Inheritance as lnstanc&-slol!o all
subordlnale classes
Inheritance as own-Blot to all sibotdlnate Instance
schemas

3 . Update of the database:

MODIFY generelizatlon_hierarchy
FROM generallzation_hlerarchy

has slbclasses
RECURSIVE

Figure 8: Insertion of an Instance-slot expressed In terms of the
MAD lal)!;uage

Alter having modified the hierarch~· In the KOBRA layer the com

plete schema hierarchy Is then updated in the DB via a modify

statement. This operation changes the specified molecule In

accordance to the given hierarchy by Inserting atoms not yet
stc.red and moolfylng the corresponding connections. In this
example, it should have become clear that the recursiveness and

the dynamic complex-object concept of the MAD model and Its
ianguage could be extensively exploited to yield a direct and natu

ral transformation of the KOBRA operations.

3.5 Summing up

In KRISYS, the Integration of both technologies has been

achieved in a natural way, reflected in the stepwise abstraction

process realized at each layer. The Implementation layer of
KRISYS treats knowledge structures simply as a kind of network

of complex objects wt>lch are consistently, reliably, and efficient

ly managed. At the engineering layer, these structures obtain
semantics, known only by the KOBRA model, remaining, for this

reason, outside of the NOBS component. So, the NOBS Is not

overloaded by application specific aspects, belnJ, therefore, able

to concentrate on per1ormance and on other relevant DB

aspects. On the other hand, tha KOBRA model Is not bounded

by the semantics providad by the MAD model, be!ng, as a conse

quence, able to come nearer to tha application semantics by

ollerlng a rich and powertul spectrum of concepts for modsllng.

4. Conclusions
In summary, KRISYS supports powerful and ftexlble constructs
for an accurate representation of real world Information:

• Structural object orientation (I.e. 1he representation of com
plex objects) Is provided, supporting the abstraction concept
o1 aggregation.

• Behavloral object orientation Is yielded by ttie lntegrlltlon of
procedurallnformatlon (melhods) Into the object description.

• Data orientation la provided by demons, allowing flexible reac
tions on certain events.

• lntensional Information may be represented by rul8a In order
to dynamically derive new data.

• For the organizational structuing of Information, abstraction
concepts are supported ln an Integrated fashion, where the
same object can act In different roles. The semantics of these
concepts are Incorporated Into the system via built-In reason
Ing facilities, which guaran\ee the structural and application
Independent semantic Integrity of the stored information.

• Applicatlon-<lependent semantic Integrity is maintained explic-
itly via aspects, demons, and rules.

Furthermore, the archttecua and design decisions made (e.g.

worklntJ·memory system, NOBS usage) are a prerequisite tor

persistent, reliable, and efficient management of the KB on sec
ondary storage. Therefore, we can conclude that this Integration
of DB and At techniques fortlfles each other, aiming at a base
system - eg. KRISYS - that etfecbvely SIJpports advanced CAD.

Though our approach looks like having removed some maln

obstacles on the way to better CAD, a lot of problems have not

been taken Into our consideration (eg. version or design-transac
tion issues). Of course, it remains very Important to gain practi

cal experience with KRISYS In some In-the-field applications.
Therefore, we currenlly work on applications In the areas of diag

noses, planning, and design that will offer more Insight into

modaling and efficiency requirements of advanced CAD syslsms.

Relerencea

(1) Pham, D.T.: Expert Systems In Engineering. Sprlnger-Ver
lag, 1988.

(2) Srlram, D., Rychener, M.: Expert Systems tor Engineering
Applications, special Issue of IEEE Software, Vol. 3, No. 2,
March 1986.

[3) Mattos, N.: KRISYS - A Multi-layered Prototype KBMS
Supportlng Knowledge Independence, In: Proc. lnt. Com
puter Sclenca Cont. - Artificial Intelligence: Theorle and
Applications, Hong Kong, Dec. 1988, pp. 31-38.

(4] Shah, J.J., Rogers, M.T.: Expert form feature modeiUng
shall, In: Computer-Aided Design, Vol. 20, No. 9, Novem
ber 1988, pp. 515-524.

[5} Hartzband, D., Maryanskl, F.: "Enhancl:.g Knowledge Rep
resentation In Engineering Databases, In: Computer, Vol.
18, No. 9, Sepl 1985, pp.39-48.

(6} HArder, T. (ed.): The PRIMA Project Design and Implemen
tation of a Non-Standard Database System, SFB 124
Research Report No. 26188, University of Kalserslautem,
Kalsersiautern, 1988.

[7] Mattos, N.: Abstraction Concepts: the Basis for Data and
Knowledge Modeling, In: Proc. 7th 1nl Cont. on Entity
Relationship Approach, Rom, Italy, Nov. 1988, pp. 331-
350.

[8] Hl!irder, T., Meyer-Wegener, K., Mltschang,·B., Sikeler, A.:
PRIMA - A DBMS Prototype Supporting Engineering Appli
cations, in: Proc. 13th Coni. Brighton, UK, 1987, pp. 433-
442.

(9] Mitschang, B.: A Molecule-Atom Data Modal tor Non-Stan
dard Applications - Requirements, Data Model Design, and
lmplemlentatlon Concepts (In German), IFB 185,0 Springer
Verlag, Berlin, 1988.

-331-

