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Adequate information modeling in non-standard application areas (e.g. 
engineering applications such as CAD/CAM, VLSI design or knowledge­
based applications) requires the abstraction concepts of classification, 
aggregation, generalization, and association. The Molecule-Atom Data 
model (MAD) designed for the effective support of such an information 
model is justified and described with its essential properties and features. 
MAD offers dynamic object definition and object handling, based on 
direct and symmetric management of network structures and 
recursiveness. These generic mechanisms can be used to map the above 
mentioned abstraction concepts in a straight-forward manner. Thus, the 
mapping of a wide variety of semantic and object-oriented modeling 
constructs, including complex objects with shared subobjects, becomes 
feasible. All these concepts are illustrated by means of some vivid 
examples taken from the areas of CAD/CAM and knowledge-based 
applications. · 

1. lntroduction 

Recently, the development of a new generation of database systems 
capable of supporting non-standard application areas such as engineering 
applications for CAD/CAM and VLSI, scientific and statistical 
applications, knowledge-based applications, image and office applications 
has ~merged as an impo~ant direction in database system research. These 
advanced applications differ from conventional (business) applications in 
a number of critical aspects, including dat~ modeling and processing, 
concurrency control and recovery mechanisms, as well as access methods 
and storage structures. Of course, the chosen data model and its specific 
properties play the dominant role in all these design and implementation 
approaches; most of them can be classified in the following manner: 
• They focus on the flat relational model with only few · selected 

enhancements [CD86,LMP86, SR86]. · · 
• They concentrate on integrating and superimposing hierarchical 

structures on relations [Da86,DKM86,LK84, PSSWD87 ,RKB85]. 
Apparently, the provi~ion of genuine and symmetric support of network 
structures or even recursive structures has drawn much less attraction, 
although it is urgently needed in many application areas for natural and 
accurate modeling and efficient processing of their objects. 
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To identify the specific needs, we have thoroughly investigated four 
different application areas (their structures and algorithms) by 
implementing and evaluating sizable prototype systems: VLSI circuit 
design, construction of solids in 3D-modeling, DB-based expert system, 
and map handling in geographic information systems 
[Ha86,HHLM87 ,HMP86]. 

Based on this empirical data we present some key observations and the 
consequences thereof concerning information modeling and management 
of the application objects, as well as its mapping to the data model 
interface. In particular, we come up with 
• essential application-object characteristics triggering 
• new proposals for a data model which allow for straight-forward 

mapping of a wide variety of semantic and object-oriented constructs, 
including complex objects with shared sub-objects. 

The remainder of the paper describes and illustrates the Molecule-Atom 
Data model and is organized as follows. Chapter 2 presents two major 
application areas, that is, engineering disciplines and knowledge-based 
. systems. The main characteristics of the existing application objects reveal 
the essential data mcxiel requirements for accurate and efficient mapping to 
data objects, guiding our data-model design. Chapter 3 describes the 
general concepts underlying the MAD model, its data and load defmition, 
as well as its query and manipulation facilities. Finally, chapter 4 
compares the model with other data models and chapter 5 summarizes the 
paper and concludes with an outlook covering current and future 
investigations. 

2. Information Modeling in Non-Standard Application Areas 

One of the most demanding requirements in non-standard applications is 
accurate modeling and efficient management of application objects. 
Starting with an analysis and characterization of the application objects, 
we point out the essential requirements to facilitate application modeling. 
Here we use the Entity-Relationship model [Ch76] for explanatory 
purposes. By modeling application objects, it becomes evident that the ER 
model has to be extended by some kind of object-orientation, thus 
yielding an appropriate information model. Firstly, the whole application 
has to be modeled by means of this ER model and then mapped to the 
data-model interface of the underlying database. 

2.1 Modeling and Managing Application Objects 

For our purpose, the best reference is [BB84] where a thoroughgoing 
analysis and characterization of the application objects, specifically in 
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engineering disciplines revealed the general concept of molecular 
objects - in [LK84] synonymously called complex objects. These 
objects are seen and manipulated on different levels of abstraction. At 
higher levels, they are treated as atomic units of data, e.g. moved or 
copied as a whole. Furthermore, each entire entity is described by several 
attributes. At lower levels, they reveal their internal structure. Their 
components may again be complex objects, or just primitive objects 
without internal structure. Complex objects are of the same type, if all 
their attributes and components have the same type. 

Modeling a complex object by means of the ER model leads to an entity 
type containing the attributes of the complex object, an entity type for each 
component, and a relationship type between them meaning 'consists of. 
Hence, the complex object is represented by all entities related in this way. 
They are said to form a 'molecule' with the entities resembling 'atoms', 
respectively. 

Different complex objects may share components, for instance, 3D solids 
share the face where they are 'glued' together. In this case, according to 
[BB84] they are called non-disjoint, and their molecules overlap; hence, 
the Consists-of relationship must be of type many-to-many (n:m). 
Otherwise, they are called disjoint, building non-overlapping molecules 
and a one-to-many (l:n) relationship. Additionally, complex objects are 
called recursive, if they are composed of objects of the same type; 
otherwise, they are called non-recursive. For example, solids in 3D 
modeling are 'constructed' using previously defined solids, thus forming 
a recursive Consists-of relationship. These four cases are summarized and 
visualized in fig. 2.1 using ER diagrams. In fig. 2.1 the molecular objects 
are represented by the entity types named MOL_OBJ, whereas the 
primitive parts are modeled using the Px_OBJ entity types. All 
represented relationship types hold the property 'consists-of. 

A more quantitative examination of our prototype application systems 
reveals some further important object characteristics (cf. fig. 2.2): Firstly, 
in most cases we have to deal with network structures, i.e. non­
disjointness. Secondly, there are no static molecular objects, i.e., we have 
to cope with dynamically changing molecular objects, depending on the 
actual view of the application, that is, the level of abstraction and the way 
of processing. Thus, it seems much more appropriate to define the 
molecules dynamically instead of predefining molecules statically. 
Refering to 3D modeling, these dynamics are apparent: One important 
representation of solids, especially for graphical output, is the boundary 
representation (BREP) depicted in fig. 2.2a (geometric model). It consists 
of faces which are in turn composed of their borderlines (edges) limited 
by endpoints. Some applications need face objects with their edges and 
points, while in another processing state it may be necessary to handle just 
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the inverse object nesting, that is, a point object with its neigh boring faces 
forming the point-edge-face hierarchy. Table 2.1 expresses these 
dynamics showing some kinds of molecular objects which are subject to 
manipulation during application processing. The first and the last column 
(name and characteristics) of table 2.1 depict the higher level view of 
molecular objects, i.e. the objects as atomic units. This abstraction 
concept is often called aggregation since the higher level object is 
aggregated from its component objects. The remaining two columns 
reveal the lower level view, that is, the components. Refering to other 
engineering application areas it looks quite similar. For example, 
geographic applications (fig. 2.2.b) have to deal primarily with maps, 
while VLSI-design systems (fig. 2.2.c) use the generic concept of cells 
for the description of functional, structural, and physical domains of the 
circuits to be designed. In fact, these application objects also represent 
non-disjoint and recursive molecules. 

MOL_OBJ MOL_OBJ 

a) disjoint, non-recursive b) non-disjoint, non-recursive 

c) disjoint, recursive d) non-disjoint, recursive 

Figure 2.1: Four types of molecular objects 
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b) Maps in geographic dalabases 

c) Circuits in VLSI·desigo data~ 

Figure 2.2: Examples of molecular objects in engineering disciplines 

Modeling knowledge-based applications reveals some further important 
abstraction concepts. Knowledge representation techniques incorporate 
the concepts of generalization and association hierarchies, in addition to 
aggregation and classification. The main characteristics of these 
abstraction concepts may be summarized as follows: 

• The concept of classification collects objects (entities) with common 
properties (attributes) to form object types (entity types). Between an 
object and an object type there exists an 'instance-of relationship. 

• Aggregation refers to an abstraction in which all component objects 
are aggregated to build a higher level object. Between the component 
objects and their aggregate object there exists a 'consists-of' 
relationship (cf. fig. 2.1). 

• The generalization concept refers to a set of similar object types 
which is regarded as a generic object type. This concept ignores some 
individual differences of the specialized types. There is an 'is-a' 
relationship between the specialized and the generalized object types. 
Repeated use of the generalization concept yields a generalization 
hierarchy. 

• Finally, the association concept is a kind of abstraction in which a 
relationship between elements is considered as a higher level object 
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known as set object. Between the elements and its set object there exists 
a 'member-of relationship with repeated use of this concept creating an 
association hierarchy. 

name sub types object structure characteristics 

point_obj point point non-disjoint and non-recursive 

point_nbhd point, edge, face point - edge - face non-disjoint and non-recursive 

edge_obj edge, point edge- point non-disjoint and non-recursive 

edge-nbhd edge, point, face edge- (point,face) non-disjoint and non-recursive 

face_obj face, edge obj or face- edge obj or non-disjoint and non-recursive 
face, edge, 'Point face - edge -point 

brep_obj brep, face obj or brep. face_obj or disjoint and non-recursive 
brep, face, edge, point brep- face- edge- point 

piece _list solid solid(recursive:solid) non-disjoint and recursive 

Table 2.1: Dynamics in molecular objects 

As a reference example, we have chosen the Frame model [Mi75,FK85, 
BS83], which is one of the essential knowledge representation techniques 
used in artificial intelligence, especially in expert-system applications. Fig. 
2.3 contrasts the structure of a generic frame (here called unit) with its 
corresponding ER mcxleling. 

The primitive elements, i.e. the objects of our Frame model, are called 
units. Each unit has a name for identification purposes and consists of a 
number of attributes, called slots, which, in turn, consist of a list of 
aspects. Slots are used for describing the unit they belong to. Aspects, in 
turn, are needed for proper specification of the slot and its value. Our ER 
diagram depicts only one aspect occurrence for each slot, because all 
specifications for one slot are grouped within one aspect occurrence. So, 
it is possible to share this information, preventing redundancy. In terms of 
the above introduced abstraction concepts, we could say that units are 
formed by an aggregation of slots and aspects (this is explicitly depicted in 
our ER diagram of fig. 2.3 using semantically enriched relationship 
types). There are two types of units distinguishable: a unit is called a 
class-object if it represents either an object type or a set object, and its 
instance objects or element objects are called· member-objects. 
Additionally, there are two quite different relationships between member­
and class-objects: the member_relation relates member-objects to class­
objects and therefore corresponds to the concept of association and 
classification; whereas, the class_relation associates only class-objects 
with each other, thus forming a generalization hierarchy. The first four 
slots in fig. 2.3 are used for modeling these two relations: is_subclasss_of 
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and has_subclasses form the class_relation whilst is_member_of and 
has_members express the member_relation. 

unit_name 

is_subclass_of: 
has_ subclasses: 
is member of: 
hii_membeis: 

slot 1: 

slotn: 

list of uniu 
list of units 
list of units 
list of units 

type 1 kind 1 
aspect 11 
aspect 12 

aspect 1m 

typen kindn 
aspect nl 
aspectn2 

aspect run 

value 1 

cws relation 
(is_a) • 

aspect_ value 11 
aspect_ value 12 

aspect_ value lm 

valuen 
aspect_ value n 1 
aspect_ value n2 

~pect_ value mn 

structure of a unit 

Figure 2.3: Modeling the Frame model 

Units 
.... member relation 

(mem~_of, 
instance_ o!) 

......... unit_aggregation (consists_o!) 

name 

kind 

value 

n type 

..•...... slot_aggregation (consists_oQ 

comment 

Aspects 
default 

ER diagram 

Inherent to all frame models is the concept of inheritance, that is, 
information about the units is being transported along the generalization 
hierarchy. Therefore, we have to distinguish class-slots describing 
properties of the corresponding unit from member-slots which are used as 
attributes of all associated member-objects. Thus, it follows that member­
slots have to be inherited along the subclass hierarchy as member-slots 
and along the member_relation as class-slots, whereas class-slots are 
never inherited. This enforces the attachment of a type attribute (declaring 
the slot a member- or class-slot) and of a kind attribute (stating whether it 
is an owned or an inherited slot). 

In managing application objects, we have to cope with two different kinds 
of access. The most challenging is called vertical access. It is 
characterized by accessing the object as a whole, i.e., fetching all 
con~tituting (more primitive) components. For example, fetching the 
boundary representation of a complex 3D object, fetching all maps within 
a clipping section, or fetching the generalization hierarchy of a specified 
frame object. In addition, vertical access may select only some 
components of an object that fulfill given qualification criteria. This kind 
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of access is expected to be much more frequent than compared to 
horizontal access. The latter derives all objects of a common type, i.e., 
all stored maps, circuits, solids or units, perhaps satisfying some special 
qualification criteria. 

Summarizing all above mentioned object characteristics, we can argue that 
the essential modeling requirements of an adequate information model that 
offers a unified view to design data and knowledge representation should 
comprise object abstractions and object dynamics, as well as operational 
support for vertical and horizontal access, which together define some 
kind of object orientation. Here, we neither want to concentrate on the 
definition of an appropriate ER model nor on the definition of the notion 
'object orientation'. Instead, we focus on data models capable of accurate 
and efficient modeling of this sketched information model. 

2.2 Mapping Complex Objects to Data Objects 

Existing data models do not match the above mentioned requirements 
properly. When mode ling in an hierarchical manner, one has to cope with 
redundancy. This holds for the classical data models like IMS [Mc77] as 
well as for novel ones such as non-first-normal-form models [SS86, 
RKB85] and the so-called complex-object model [LK84]. Fig. 2.4 
illustrates such a consequence using our BREP schema. A first 
observation is that the hierarchical schema is semantically not equivalent to 
the network schema, because the hierarchical one is not symmetric; there 
is a loss of information concerning the bottom-to-top access. Secondly, a 
substantial portion of redundancy is introduced. There are several 
independent representations for every edge and every point. Since the 
DBMS is not aware of this redundancy, it must be handled by the 
application (or at least above the data model interface). This may lead to 
problems concerning integrity (no gap between faces, preservation of 
topology, update, etc.). 

The network approach avoids redundancy, but at the cost of introducing a 
number of 'relation records' that represent n:m relationships. The 
mentioned data models only support non-recursive, disjoint objects 
referring to a static object type in a non-symmetric manner, e.g., looking 
from points to all corresponding edges and faces is not possible in the 
hierarchical example of fig. 2.4. On the right-hand side of fig. 2.4, we 
have shown the desired modeling approach, referred to as direct and 
symmetric modeling, thus avoiding the above mentioned problems, which 
are even more valid in the case of recursive objects (frame nets, map 
hierarchies, etc.). 
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modding 

Figure 2.4: Modeling approaches to boundary representation 

brep 

Summarizing the arguments and considerations, we can argue for the 
following essential data model requirements: 
• direct and symmetric management of network structures and 

recursiveness 
• mapping and operational support for all abstraction concepts 
• dynamic object definition 
• adequate object handling supporting both vertical as well as horizontal 

access. 

Due to these requirements, an adequate data model has to provide 
• suppo~t. for complex objects, i.e. some kind of object-orientation 

compnsmg 
- modeling techniques for the structure of an object as well as the 
object as an integral entity 

- operational semantic including object management 
- appropriate granularization of data and operations due to the 
composition and decomposition concept inherent to dynamic object 
defmition and management (dynamic object handling) 

-support for more structural integrity (consistency in case of non­
disjointness) 

• in particular 
- support for vertical access with efficient derivation and assembling of 
the corresponding heterogeneous data (record) sets 
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-efficient record-type crossing operations (operative foreign/primary­
key connections) in both directions (symmetry) 

- a descriptive language allowing for the processing of sets of 
heterogeneous records _ 

-a set-oriented embedding into the application program. 

To satisfy these requirements, we have developed the MAD model 
(Molecule-Atom Data model), that will be described in the next chapter. 

3. The Molecule-Atom Data Model 

In the following, we present an introduction to modeling, as well as 
operational aspects of the MAD model. For this purpose, we use the 
examples of fig. 2.1 and fig. 2.3 and the syntactical simplicity o( an SQL­
like language as an explanatory vehicle. Some special syntactical 
expressions used in the Molecule Query Language (MQL) are taken 
from [PA86, RKB85, X3H286]. A formal description o( MAD resp. 
MQL yielding to the so-called Molecule Algebra is unter completion. The 
focus of this chapter is primarily on discussing and illustrating the major 
capabilities of the MAD model and its language MQL. All implementation 
concepts are summarized in another published paper [HMMS87] 
describing the prototype implementation of MAD, called PRIMA. A 
detailed view to the query evaluation concepts within PRIMA is under 
completion and will be submitted for publication. 

3.1 Underlying General Concepts 

The most primitive elements of the MAD model are called atoms. They 
are comparable to tuples known from the relational model. According to 
the relational model, each atom is composed of attributes of various types, 
is uniquely identifiable, and belongs to its corresponding atom type. The 
atom type is put together by the constituent attribute types to be chosen 
from a richer selection than in conventional data models. Comp~ed to the 
relational model, we have the following enhancements: 
• IDENTIFIER type and REFERENCE type, 
• RECORD type and ARRAY type as well as 
• the repeating-group types SET and LIST. 

The type concept has been extended by RECORD, ARRAY, and the 
repeating-group types to yield a powerful structuring capability at the 
attribute level. For identification and connection of atoms, we have 
introduced two special types. The IDENTIFIER type serves as a surrogate 
[ML83] which allows for the identification of each atom. Based on this 
type it is easy to definethe REFERENCE type allowing for typed 
references (that is, a logical pointer) to other atoms of the same or of 
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different type (similar to foreign/primary-key connections). This basic 
mechanism for connection of atoms is called the link concept. Organized 
as repeating groups, these links may be used to efficiently map n:m 
relationships and recursions. A link is also symmetric in that the 
referenced record must contain a 'back reference' that can be used in 
exactly the same way. 

Combining the attribute type REFERENCE with the repeating-group type 
SET is sufficient to express all kinds of relationship types between two 
atom types. This has been sketched in figure 3.1. For example, the 
declaration of an 1 :n relationship type is expressed by two REFERENCE­
based attributes (dotted arrows), one in each atom type. Thus, it is 
obvious that reference attribute and corresponding 'back .reference' 
attribute define the relationship types (i.e., link type) in a direct and 
symmetric manner, as required. 

relationship types link types MAD-specific data defmitioo 

18 ............. 
·1~· .. ·;'"" A1j 

A TI ( IDi : IDF.NI'IFIER A 1j ( IDj : IDFNI1FIER 
... . .. 

ATi·>ATj: REf_TO (ATj) ATj->ATI : REf_TO (ATi) 

EJ DEJ ........... lr 
,,~ .......... Alj 

I 

ATI ( IDi : IDFNI'lFlEi A 1j ( IDj : IDENTIFIER 

- -
AH>ATj: SEJ'_OF (REF_TO (A'I])) ATj->ATI : REf_TO (ATi) 

~.~.h~ r::;, ...... ~ ... 11Gl 
~ ~·11 .......... ~ 

0 

ATI ( IDi : IDENJ1FlEil A 1J ( IDj : IDFNI1FIER 
... 

ATi->ATj: SEI'_OF (REF_TO(A'I])) ATj->ATi : SEI'_OF (REF_TO(ATI)) 

Figure 3.1: Expressing relationship types in terms of link types 

Based on the link concept, it is feasable to dynamically construct 
molecules using atoms as elementary building blocks. Each molecule 
belongs to its corresponding · molecule type. The molecule type is 
defined (in the query language, not in the schema) by naming the atom 
types and link types. Each molecule type determines both the molecule 
structure and the corresponding molecule set, grouping all the 
molecules with the . same structure. The molecule structure 'is 
superimposed dynamically on sets of atoms 'linked' by references, thus 
introducing the concept of dynamic molecules, i.e., the required object 
orientation of the MAD model. Its operational power lies in adequate 
means for molecule proce~sing provided by MQL. The overall design goal 
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was the consistent extension of processing homogeneous to processing 
heterogeneous record sets, dynamically defined by molecules. 

3.2 Modeling Concepts and Data Definition 

Transformation of an Entity-Relationship schema to an equivalent MAD 
schema is straightforward. To exemplify this task, we have modeled the 
four cases of molecular objects of fig. 2.1 in terms of the MAD model 
shown in fig. 3.2. Details of such a transformation and two examples of 
the data definition language (DDL) are illustrated by fig. 3.3 and fig. 3.4. 
The transformation replaces all entity types by corresponding atom types 
and all relationship types by link types (which are built between the resp. 
atom types). If there is a relationship type having some attributes, we 
additionally have to introduce one atom type representing this relationship 
and its attributes as well as two link types to model the relations. The 
usefulness of the extended type concept and the cardinality restrictions 
associated with the SET type (i.e. exact mapping of relationship types 
allowing for refined system-enforced structural integrity) are also 
illustrated in fig. 3.3 and fig. 3.4. 

a) disjoint, non-recursive 
•••••••••••••••••••••••••••••••••••••••••••••••••••••• 11 
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! ! 1 : ! 
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i ...... 411• - •••••••••••• ! 

n ,, jll n r:;' n ........ ·-.,•.,, ,....... . ...... , 
•' •'1 '• 'I 1 ,111',,•' 'hi·· .. 

P1_0BJ J Pn_o"Bi] 

c) disjoint, recursive 

b) non-disjoint, non-recursive 

·····················································-: : :·············"··········· .. ····················~ : !!nl I ;: ~ t...... MOL_OBJ,,IJ·· ... .i f 
....... (1•· ....... """' .. 

1 1 Ill 1, ' f' Ill n ,.•.• n '•• ,, •' ,. .. '• ,. •'' .... . ,...... . ..... , 
llt',,•'m ''•11'• m 

, f I'· 
Pl_OBJ I Pn_oBTJ 

d) non-disjoint, recursive 

Figure 3.2: Modeling the four cases of molecular objects by means of the 
MAD model 

The atom-type definition consists of three parts: naming, attribute 
definition, and key definition (fig 3.3b and fig. 3.4b). The atom-type 
name must be unique within the whole schema definition. Each attribute 
definition, in turn, consists of the attribute name (unique only within its 
atom-type) and the attribute data type. For identification and connection of 
atoms, each atom-type definition nmst contain exactly one attribute of the 
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IDENTIFIER type. Key definitions are simply expressed by lists of 
attribute names. 

Although molecules are generally defined as part of a query, it is allowed 
to give a name to often used molecule types (fig. 3.3c and fig. 3.4c). A 
molecule-type definition (similar to a view) specifies the molecule-type 

a) MAD-schema diagram 

i··················································~ : •.......................................... , : 

llo:nG 11 i !....... solid •tJ ...... { ! 
i. .. : .... H• • .. ...... (i·~·: 

0:1 i -? . 

~ i 1:1 

1 ~~ 1 
6·n : :'4-n : : 4:n \~ 

'I! . 111·1 \~ 
!!G.J~: . \\ 
ff race \\ •• ll •• 

!! \\ 
ff ln 11 r-;~: \\ if . ,1 ,, . ,, ,, \\ 
:: ,•~~ ,,,, n 
: :1·1 I I 11 11 l·n ':. ':. ;; ' 1111 I I • \\ 

:: 11 '12 ,, ,, ':.':. 

-- ·• 2n I ··~... w'f ............ ,, point 
tJI .......... . 

1:n 

c) molecule-type defmitioos 

DEFINE MOLECULE_TYPE edge_obj 
FROM edge· point 

DEFINE MOLECULE_mE face_obj 
FROM face- edge_obj 

DEFINE MOLECULE_ mE brep_obj 
FROM brep -face_obj 

DEFINE MOLECULE_ TYPE piece_list 
FROM COOlp_hier(solid) 

(RECURSIVE: solid.sub-solid) 

b) atom-type definitioos 

CREATE ATOM_ mE solid 
( solid _id : IDENI1F1ER, 

solid_no : INTEGER, 
description : CHAR_ V AR, 
sub : SET _OF (REF _TO (solid.super)) (O,VAR), 
super :SET _OF (REF _TO (solid.sub)) (O,VAR), 
brep : REF _TO (brep.solid)) 
KEYS _ARE (solid_no); 

CREATE A TOM_TYPE brep 
( brep_id : IDENTIFIER, 

brep_no :INTEGER, 
hull : HULL_DIM(3), 
solid : REF _TO (solid.brep), 
faces : SET_OF (REF _TO (face.brep)) (4,VAR), 
edges : SET_OF (REF _TO (edge.brep)) (6,V AR), 
points : SET_OF (REF _TO (pointbrep)) (4,V AR)) 
KEYS_ARE (brep_no); 

CREATE ATOM_ TYPE face 
( facejd : IDE!\11FIER, 

square_dim : REAL, 
border : SET_OF(REF_TO (edge.face)) (3,VAR), 
crosspoint : SET_OF (REF_TO (pomtface)) (3,VAR), 
brep : REF _TO (brep.faces)); 

CREATE ATOM_ TYPE edge 
( edge_id : IDENTIFIER, 

length :REAL, 
boundary : SET_OF (REF_TO (pointline)) (2,VAR), 
face : SET_OF (REF_TO (face.border)) (2, VAR), 
brep : REF_TO (brep.edges)); 

CREATE A TOM_ TYPE point 
( point_id : IDE~11FIER, 

pla:ement : RECORD 
x_coord : REAL, 
y _coord : REAL, 
z_coord : REAL 

END 
line : SET_OF (REF _TO (edge.boundary)) (l,VAR), 
foce : SET_OF (REF _TO (face.croospoint)) (l,V AR) 
brep : REF_TO (brep.points)); 

Figure 3.3: Solid representation expressed in terms of the MAD-DDL 
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name, its corresponding structure, and its molecule set. In the FROM­
clause, the constituent molecule subtypes connected by the selected link 
types are listed (in case of ambiguity the reference attribute has to be 
denoted, otherwise it is optional and could be substituted by some simple 
syntactical signs (braces or lines)). By means of the RECURSIVE-clause 
we are also able to define recursive molecule types. Thus, the molecule 
structure becomes cyclic and the derivation of the corresponding recursive 
molecules has to be performed stepwise in an iterative manner. The 
WHERE-clause additionally allows for the restriction of the molecule set. 
In the second statement of fig. 3.4b we have restricted the molecule type 
'subclasses_of_id123' to exactly one recursive molecule, that with 
IDENTIFIER value '123' of its root atom. FROM-, WHERE- and 
RECURSIVE-clause are explained in the next chapter in more detail. 

Fig. 3.3 and fig. 3.4 have outlined the direct and symmetric mapping of 
the abstraction concepts by means of the link concept of the MAD model. 
Here it becomes apparent that the MAD model supports (at least 
structurally) the above introduced essential characteristics of the complex 
(application) objects to its full extent. To illustrate the operational support 
as well, we now focus on the molecule processing, i.e. query and data 
manipulation facilities. 

3.3 Query Facilities 

The query capabilities of the molecule query language MQL comprise 
vertical as well as horizontal access (cf. chapter 2). Fig. 3.5 shows some 
hand-picked query examples as well as the corresponding molecule 
diagrams showing the molecule structure of the whole query and its 
finally projected subpart (encircled area). The examples of fig. 3.5 refer to 
the solid-representation schema of fig. 3.3. All subsequent explanations 
use a simple mental model underlying the query evaluation: 
• Firstly, all molecules defined in the FROM-clause are assembled. 
• Then the optional FROM-clause restricts this result set evaluating all 

qualification terms specified. 
• Finally, the projection has to be performed, that fixes the final molecule 

stucture cutting away all unused molecule components. 

Obviously, all three clauses are used in a quite similar sense compared to 
their equivalents in SQL-like languages. In the following, these evaluation 
steps are explained in more detail. 

Vertical access to a network structure is illustrated in the query of fig. 
3.5a. Firstly, all atoms constituting the brep molecules defined in the 
FROM-clause are assembled. This starts with the brep atoms and uses all 
specified links to deduce the dependent face, edge, and point atoms. Then 
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b) atom-type definitions 

CREATEATOM_TYPE units 
( unit_id :IDENTIFIER, 

name : CHAR_ V AR, 
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is_subclass_of : SET_OF (REF _TO (units.has_subclasses)) (O,VAR), 
has_subclasses : SET_OF (REF _TO (units.is_subclass_of)) (O,VAR), 
is member of : SET_OF(REF_TO (units.has_members)) (O,VAR), 
has_membets : SET_OF (REP _TO (units.is_member_of)) (O,V AR), 
unit_aggregation : SET_OF (REF _TO (slots.is_slot_of)) (O,V AR)) 

KEYS_ARE (name); 

CREATEATOM_TYPE slots 

( slot_id :IDENTIFIER, 
name :CHAR_ V AR, 
t~ :(M,C), 
~~ : (Q,l), 
value :BYTE YAR 
is slot of : REF _fa (units.unit_aggregatioo), 
slOt_aggregation : REF _TO (aspects.is_aspect_of)); 

CREATEATOM_TYPE aspects 

( aspect_id : IDENTIFIER, 
name : CHAR_ VAR, 
comment : CHAR_ VAR, 
value_set : BYTE_ V AR, 
cardinality_min : INTEGER, 
cardinality_max : INTEGER, 
metric units : CHAR V AR, 
default : BYTE.}' AR, 
is_aspect_of : SET_OF (REF _TO (slots.slot_aggregation)) (O,V AR)) 

KEYS_ARE (name); 
c) molecule-type definitions 

DEHNE MOLECULE_ TYPE unit_obj 
FROM units -slots- aspects 

DEFINE MOLECULE_ TYPE sub_classes_d_idl23 
FROM subordinate classes 

(unit_obj) -
(RECURSNE: units.has_subclasses-IIlits) 

WHERE subordinate_classes.units(O).id='l23 

Figure 3.4: Frame model expressed in terms of the MAD-DDL 

the WHERE-clause restricts this result set by evaluating all existing 
qualification terms. The result set of this query comprises only those brep 
molecules holding a brep atom having the value '1713' for attribute 
'brep_no'. In fig. 3.5b retrieval of a recursive structure is specified with 
piece_list as a predefined recursive molecule type (cf. fig. 3.3c). 
Therefore, we first have to specify all roots of the desired recursive 
molecules, using the 'seed-qualification' predicate in the WHERE-clause. 
For all qualified root atoms (there is only one because the qualification of 
a key attribute is used), we have to evaluate the recursion in a stepwise 
manner going from one level to the next subordinate level using the 
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solid.sub references, thereby avoiding multiple evaluation of the same 
recursion path (cf. chapter 3.4 especially fig. 3.8). 

a) vertical access to network molecules r---------------, 

Water ~face-edge-point ~~ brep H face H edge H point I 
WHERE brep_no = 1713 (• qualification •) L..:-~_-_ .... __________ _.... 

sub 
RECURSIVE b) vertical access to recursive molecules 

SELECf ALL 
FROM piece_list (* pre-defined molecule type *) n 

(* seed qualification*) ~ WHERE piece_list (O).solid_no = 4711 

c) horizontal access combined with unqualified projection 

SELECf solid_no, description (* unquaified projection*) 
FROM solid 
WHERE sub= &\1PTY 

d) miscellaneous query 
SELECf edge, (point, (* unqualified projection *) 

face := (SELECf face _id, square_dim 
FROM face (* qualified projection*) 
WHERE square_dim > 1.9E4)) 

FROM bre~edge (face, point) 
WHERE brep_no = 1713 (*qualification*) 

AND 
EXISTS_AT _LEAST (2) edge: edge.length > l.OE2) 

( • quantified restriction *) 

Figure 3.5: Some hand-picked query examples 

Finally, fig. 3.5c shows some kind of horizontal access already known 
from the relational model: Here, we want to retrieve all primitive solids, 
i.e. solids not having any subpart-hierarchy. This query shows the use of 
a projection expressed in the SELECf-clause: All atoms resp. attributes 
listed are being retrieved. In our example the projection consists of the 
two attributes 'solid_no' and 'description'. Thus the corresponding result 
set comprises solid atoms, each holding two attribute values, one for 
attribute 'solid_no' and the other one for attribute 'description'. Some 
other important features are illustrated in fig. 3.5d. Arbitrarily structured 
molecule types are defmable by means of brace-expressions; branching as 
well as combination of the graph underlying the molecule structure is done 
using brace-expressions. In our example, the FROM-clause shows the 
definition of a tree-like molecule type. The corresponding molecule 
structure is shown in the molecule diagram on the right-hand side. 
Another important feature illustrated in this example refers to molecule . 
restriction. Using quantified qualification terms greatly enhances the 
expressiveness of the WHERE-clause. Our example shows an EXISTS­
quantifier testing for the existence of at least 2 edges that satisfy the 
'length' qualification. The ALL-quantifier could also be used as 
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qualification term. The third special feature shown in the example refers to 
a finer grained projection capability. For proper specification of the final 
result set of the whole query, we use the qualified projection 
expressed as just another 'SELECT ... FROM ... WHERE' expression 
within the SELECT -clause. This nesting allows for a supplementary 
restriction of the components of the result-set molecules (not of the result 
set itself) by evaluating all qualification terms (i.e., WHERE-clauses) 
stated. Referring to our example, only those face atoms of the projected 
'edge(face,point)' molecule are finally retrieved, whose square_dim value 
satisfies the qualification. Exploiting these capabilities, we are able to 
retrieve only those components of the 'surrounding' result-set molecules 
we are interested in. 

3.4 Manipulation Facilities 

Based on these flexible query facilities, we now sketch the remaining 
parts of molecule management: Similar to retrieval capabilities, insert, 
delete, and modify operations enable us to deal with an integral molecule 
as well as its components. All component operations have to be expressed 
by means of the previously introduced qualified resp. unqualified 
projection. The delete statement reflects removal of single components as 
well as of whole component sets, thereby automatically disconnecting 
these parts from the specified surrounding molecules. The same holds 
inversely for the insert statement. Modification especially supports, apart 
from update, connection and disconnection of molecule components. 

For explanatory purposes, we have expressed in fig. 3.6 and 3.7 two 
typical Frame operations by means of MAD operations. The 'insertion of 
a member-slot' shown in fig. 3.6 is a quite complex operation which has 
been expressed using five distinct MAD operations. The first operation 
inserts an atom representing the aspect 'wheels'. The second operation 
delivers the IDENTIFIER value of the previously inserted aspect atom. 
This value is needed in the subsequent operations for properly setting the 
reference to the aspect atom, thus guaranteeing shared (aspect) atoms. 
These operations are quite similar to those known in relational languages. 
The third operation retrieves the whole recursive molecule type 
'unit_hierarchy' composed of the root unit named 'automobile', its 
subordinate class hierarchy, their associated member units together with 
all linked slots. Fig. 3.8 shows two expamples of retrieved unit 
hierarchies. Within the application program this hierarchy is being 
modified to reflect the addition and inheritance of the member-slot named 
'wheel_number', as exemplified in the fourth operation. Now the 
database has to be actualized. This is done via the modification operation 
(operation five), which changes the specified molecule or molecule set 
according to its data contents. That is, all atoms already existing within the 
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database are being modified in accordance to the given data and all atoms 
not yet stored were inserted and connected to the right parents. Here, only 
the inherited member-slots· and the previously added root member-slot 
have to be inserted and connected to their corresponding subclasses. 
(N.B.: When using all existing MQL capabilities it is also possible to 
express the inheritance of slots directly in one MQL statement). 

Example 1: Insertion of the member-slot named 'wheel_number' 
to the unit called 'automobile' 

1. Insertion of the aspect data 
INSERT aspect_name :='wheels', 

comment:= 'a solid disk or circullll' frame turning on a central axis', 
value_set := 1..25 
cardinality _m in:= l, 
cardinality_max := 1, 
metric_units :='none', 
default := 3 : aspects 

FROM aspects 

2. Retrieval of the IDENTiflER value of the previously inserted aspect atom 

SElECT aspect _id 
FROM aspects 

WHERE· name= 'wheels' 

3. Retrieval of the whole subclass hierarchy and all refem~ced member units 
SELECr ALL 
FROM unit_hierarchy 

(units-(.units_aggregation-member_slots(slots), 
.has_members-member(units).unit_aggregation-class_slots(slots)) 

(RECURSIVE: units.has_subclasses-units) 
WHERE unit_hierlll'chy.units(.O).name ='automobile' 

4. Modification within the application program: 
• addition of~ member-slot to the root 
unit, that is the unit named 'automobile' 

• inheritance of member-slots· to all 
. subordinate units (class-units} 

• inheritance of class-slots to all 
subordinate members 

S. Actualization of the database 
MODIFY unit_hiel'lll'chy 
FROM unit_hierarchy 

\,••••••• ..... . . 
~6~ . 
, I I I I I I I • I I ... 

Figure 3.6: Insertion of a member-slot expressed in terms of the MAD­
DML 

The 'deletion of a member-slot' shown in fig. 3. 7 is just the inverse 
operation of the one discussed. In contrast to the above, this Frame 
operation is formulated by one single MQL statement to exhibit the 
expressiveness of MQL. In fig. 3.7 we use, for explanatory purposes 
only, a kind of macro technique to construct the final MQL statement. The 
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first part of fig. 3.7 predefines the molecule type to work with, by means 
of the DEFINE MOLECULE_ TYPE statement (cf. section 3.2). A first 
subquery is needed to pick up the IDENTIFIER values of all member­
slots (the 'owned' slot at the root of the hierarchy is included). All class­
slots were retrieved in a similar. subquery. Finally, the fourth part of 
fig. 3.7 depicts the resulting MQL statement. All slot molecules (i.e. 
slot atoms and linked aspect atoms) named 'wheel_number' whose slot 
IDENTIFIER value is contained within the union of the previously 
mentioned two subqueries (i.e. only slots contained within the 
unit_hierarchy are considered) are deleted from the corresponding atom 
types (i.e., removed from the database) and disconnected from their units. 
Thus, the member-slot named 'wheel_number' belonging to the unit 
called 'automobile' and all its inherited member- and class-slots together 
with their aspect atoms were deleted. This fact is depicted in fig. 3.8 
showing a typical scenario. For sake of simplicity no aspect atoms are 
shown. All unit atoms belonging to the unit_hierarchy of unit ul are 
marked with bold rectangles and all slot atoms inherited from slot s4 
are drawn in dotted circles. These are the candidates for deletion. All 
'has_subclasses' references are marked with's' and all 'has_members' 
references are marked with 'm'. The pre~ and post-state diagrams of the 
two above mentioned Frame operations are depicted. 

Common to all manipulation operations is the system-enforced support for 
structural integrity, i.e. modifying a REFERENCE attribute implies the 
automatic maintenance of the corresponding 'back-reference'. 

Summarizing the above introduced and illustrated concepts, the 
operational support of the MAD model (i.e. MQL) for adequate object 
orientation comprises: 
- dynamic object definition by means of dynamic molecules expressed in 

the FROM-clause by narriing the atom types and their links 
- powerful molecule restrictions within the WHERE-clause (quantified 

qualification terms) . 
- molecule-component specification by means of an extended projection 

concept (qualified resp. unqualified projections) 
- set-orientation, expressiveness and simplicity of the language. 

These concepts are prerequisites for 
- molecule processing (i.e. insertion, deletion, modification, and retrieval 

of integral molecules) and . 
- molecule-component management (i.e. component insertion, deletion, 

modification, and retrieval using the FROM- and WHERE-clause to 
specify the surrounding molecules). 
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Example 2: Deletion of the member-slot 'wheel_number' 
from the unit named 'automobile' 

1. Defmition of the molecule type to work with 
DEFINE MOLECULE_TYPE unit_hierarchy 
FROM units_rec 

(units - (.units_aggregation-membet_slots(slots), 
.has.J]lembets-member(units).unit_aggregation­

c;lass_slots(slots))) 
{RECURSNE: units.has_subclasses-units) 

2. Picking up the IDF..Nflf1ER values of all member-slots 
SM ::= SELECf member_slots.(ALL).sloUI 

FROM unit_hierarchy 
WHERE unit.JUerarchy.units.(O).name ='automobile' 

3. Picking up the IDEN11f1ER values of all class_slots 
SC ::= SELECf class_slots.(all).dot_id 

FROM unit_hierarchy 
WHERE unitjUerarchy.units.(O).name ='automobile' 

4. Deletion of the member-si~X 'wheel_munba' and 
all its inherited member- and class-slots 
together with the deletion of the linked aspect atom 
DELETE ALL 
FROM slots.slot_aggregation-aspect 
WHERE slot_name = 'wheel_number' AND 

slot_id EIMf (SM UNION SC) 

member 

"--s-lots _ _.l class_slots 

Figure 3.7: Deletion of a member-slot expressed in MAD-DML 

INSERTS4 

DELEI'ES4 

Figure 3.8: Two state diagrams of a unit hierarchy 

membe:_slots 
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Furthermore, it is apparent that the MAD model and its language MQL 
support vertical as well as horizontal access to its full extent. Moreover, it 
offers adequate operational capabilities for handling recursion, i.e. 
recursive molecules. The MAD model with its language MQL is not only 
designed for an interactive environment. Additionally, it is embedded in a 
host programming language. This application programming environment 
is used only by system engineers and not by novice users. Due to space 
limitations we cannot give a more detailed language discussion. An in­
depth description of MQL can be found in [Mi86]. 

3.5 Load Definition for 'Transparent' Performance 
Enhancements 

The main characteristics of the MAD model are set-orientation, dynamic 
object definition, and processing of heterogeneous record sets. These 
concepts offer a broad spectrum for query optimization with a number of 
novel optimization aspects (e.g. pipelined or parallel derivation of all 
molecules within the result set). Effective processing support could be 
accomplished by an appropriate set of storage structures. However, the 
MAD model itself makes no reference to such 'physical' objects (to 
preserve data independence). Therefore, we need a separate mechanism 
for the specification of the various storage structures supporting a given 
application. 

For this purpose, we have defined a load definition language (LDL) 
used by the database administrator. The main concepts for performance 
control are 
• several access methods for one or more attributes permitting 

multidimensional access 
• (vertical) partitioning of records to improve clustering of frequently 

accessed attributes 
• sort orders to speed up sequential processing according to given sort 

criteria 
• 'physical clusters' to provide physical contiguity for atoms belonging to 

frequently requested molecules, i.e. materialization of molecules. 
In the following, we show some examples sketching the expressive 
power of the LDL. All examples refer to the solid-representation schema 
of fig. 3.3 (in this context, these examples are not necessarily 
meaningful): 
- Definition of physical clusters 

DEFINE ST A TIC_MOLECULE_ TYPE brep_cluster 
FROM brep - face - edge - point 

The language constructs we have chosen for the LDL are similar to those 
of MAD-DML. Here, we define a physical cluster comprising the 
previously defined 'logical' molecule type brep_obj (cf. fig. 3.3c). That 
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is, all brep, face, edge and point atoms/records belonging to the same 
molecule of type brep_obj were clustered in one occurrence of type 
brep_cluster. This clustering technique is novel, in that it allows us to 
cluster heterogeneous record sets. 
- Definition of access methods 

DEFINE ACCESS solid_acc ON solid 
FOR (solid_no) 
USING B_TREE 

An access path named solid_acc is defined on the 'solid_no' attribute of 
atom type solid and uses the implementation technique of a b-tree. 
Multidimensional access is defined in the same way by specifying some 
additional attributes within the FOR-clause. 
- Definition of sort orders 

DEFINE SEQUENCE edge_seq ON edge 
USING (length ASC) 

This statement defines an ascending sort order named edge_seq on the 
atom type edge, using its attribute 'length'. 

4. Other Data Models 

For the MAD model, we have advocated a symmetric and neutral 
approach allowing for more powerful and complex constructs than the flat 
relational model, but avoiding the bias on static data structuring and top 
down traversal of hierarchical models like IMS [Mc77], as well as novel 
ones as non-frrst-normal-form models [SS86,RKB85] and the so-called 
complex-object model [LK84]. As already pointed out (cf. section 2.2), 
one also has to cope with redundancy when modeling in an hierarchical 
manner. One special utilization of the powerful link concept of MAD is the 
construction of hierarchical structures and its support for non-first­
normal-form relations. Consequently, the MAD model seems to contain a 
superset of the capabilities of these proposals. Because of the system­
enforced integrity control of reference and 'back- reference' (i.e. link 
concept} a subset of the MAD model is equivalent to the relational model, 
including its referential integrity requirement, when all foreign/primary­
key relations are modeled by links. 

The ability of the MAD model in direct and symmetric management of 
network and recursive structures is a prerequisite for efficient mapping of 
all abstraction concepts comprising aggregation, generalization, 
association, and their hierarchies, as well as classification. Considering its 
dynamic object definition and management capabilities it seems that the 
MAD model is even more flexible than semantic and functional data 
models [Sh8l,SS77,HM8l,Da85], whilst offering a comparable 
powerful modeling ability. 
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Moreover, the MAD model is appropriate for the support of other 
knowledge representation models [BF81,ML85] such as the Frame model 
(introduced in section 2.1), that is, semantic nets [BS85] or rule-based 
representation techniques are conceivable. 

Object-oriented models [DD86] are mostly characterized by their facilities 
comprising modeling and managing of meshed (or recursive) structures 
that are frequently viewed from different points, depending on the actual 
processing state. The link concept and the concept of dynamic molecules 
combined with the expressiveness of MQL seem approximately equal to 
these characteristics defming object orientation. 

Comparing the MAD model to POSTGRES [RS87] is quite difficult. The 
POSTGRES data model is also a derivation of the relational model which 
has been enhanced by the ideas of abstract data types, data of type 
procedure, and inheritance. POSTGRES has been designed as a data 
model for a next generation extensible DBMS [SR86], whilst the MAD 
model does not claim to be extensible in that sense. Both models allow for 
object sharing, recursiveness, and dynamic object definition; both 
languages offered are SQL-like and very expressive. The concept of data 
type procedure looks quite powerful and resembles the link concept of 
MAD when the procedure expressing references to other objects has been 
evaluated, i.e. all procedure values have been precomputed. Though, 
differences between or inclusion of these two models concerning object 
modeling and management is subject to further, more detailed 
investigations. Moreover, the overall applicability of both models and 
their languages could only be determined by means of prototype systems, 
testing the expressiveness, adequateness, and performance of each 
approach. 

Due to space limitation we cannot give a more detailed comparison. An in­
depth discussion of the various models and their corresponding languages 
remains to be subject for a subsequent paper. 

5. Conclusions and Future Plans 

Adequate information modeling in non-standard areas comprises the 
abstraction concepts of classification, aggregation, generalization, and 
association. The MAD model presented in this pap~r offers generic 
mechanisms concerning accurate and efficient mapping of such an 
information model. Its main philosophy is the ability to dypamically 
construct molecules using atoms as elementary building blocks which may 
be conceived as a dynamic view mechanism for complex objects. 
Symmetric representation of all relationships (including n:m) and 
derivation of complex (probably recursive) objects at run time are 
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considered prime prerequisites for accurate and effective modeling in non­
standard applications where the 'view' of the object frequently changes. 
This symmetric and neutral approach to complex objects allows for the 
mapping of a wide variety of semantic and object-oriented modeling 
constructs including objects with shared subobjects. 

The focus of the paper has primarily been on justifying the design 
decisions of MAD and on discussing and illustrating its major features, 
whilst its implementation concepts were summarized in another paper 
[HMMS 87] describing the database kernel PRIMA (PRototype 
Implementation of the MAD model). A number of concepts used in the 
PRIMA implementation pay attention to DBMS performance 
requirements. Most important are the facilities of the load definition 
language which are transparent at the MAD interface. They provide a 
variety of access paths, redundant sort orders, partitioning of records, and 
physical clustering to support efficient molecule construction. The 
exploitation of these novel storage structures in combination with the set­
orientation of MAD and its processing of heterogeneous record sets offers 
new areas for query optimization. 

Currently, the single-user version of PRIMA is under completion. For our 
purpose, PRIMA is considered a research vehicle for a variety of DBMS 
applications in possibly distributed engineering environments. Therefore, 
it is intended to run as a 'generic' kernel in different kinds of either 
centralized or multi-processor environments leading, from a 'kernel-only' 
DBMS to a base system for workstation-host coupling [HHMM87], and a 
tool for building multi-processor DBMS [HHM86]. 
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