
Towards a unified view of design data and knowledge
representation

0. Abstract

Bemhard Mitschang
University of Kaiserslautem
Erwin-Schrodinger Straf3e

D-67 50 Kaiserslautem
West-Gennany

Adequate information modeling in non-standard application areas (e.g.
engineering applications such as CAD/CAM, VLSI design or knowledge
based applications) requires the abstraction concepts of classification,
aggregation, generalization, and association. The Molecule-Atom Data
model (MAD) designed for the effective support of such an information
model is justified and described with its essential properties and features.
MAD offers dynamic object definition and object handling, based on
direct and symmetric management of network structures and
recursiveness. These generic mechanisms can be used to map the above
mentioned abstraction concepts in a straight-forward manner. Thus, the
mapping of a wide variety of semantic and object-oriented modeling
constructs, including complex objects with shared subobjects, becomes
feasible. All these concepts are illustrated by means of some vivid
examples taken from the areas of CAD/CAM and knowledge-based
applications. ·

1. lntroduction

Recently, the development of a new generation of database systems
capable of supporting non-standard application areas such as engineering
applications for CAD/CAM and VLSI, scientific and statistical
applications, knowledge-based applications, image and office applications
has ~merged as an impo~ant direction in database system research. These
advanced applications differ from conventional (business) applications in
a number of critical aspects, including dat~ modeling and processing,
concurrency control and recovery mechanisms, as well as access methods
and storage structures. Of course, the chosen data model and its specific
properties play the dominant role in all these design and implementation
approaches; most of them can be classified in the following manner:
• They focus on the flat relational model with only few · selected

enhancements [CD86,LMP86, SR86]. · ·
• They concentrate on integrating and superimposing hierarchical

structures on relations [Da86,DKM86,LK84, PSSWD87 ,RKB85].
Apparently, the provi~ion of genuine and symmetric support of network
structures or even recursive structures has drawn much less attraction,
although it is urgently needed in many application areas for natural and
accurate modeling and efficient processing of their objects.

133

134 EXPERT DATABASE SYSTEMS

To identify the specific needs, we have thoroughly investigated four
different application areas (their structures and algorithms) by
implementing and evaluating sizable prototype systems: VLSI circuit
design, construction of solids in 3D-modeling, DB-based expert system,
and map handling in geographic information systems
[Ha86,HHLM87 ,HMP86].

Based on this empirical data we present some key observations and the
consequences thereof concerning information modeling and management
of the application objects, as well as its mapping to the data model
interface. In particular, we come up with
• essential application-object characteristics triggering
• new proposals for a data model which allow for straight-forward

mapping of a wide variety of semantic and object-oriented constructs,
including complex objects with shared sub-objects.

The remainder of the paper describes and illustrates the Molecule-Atom
Data model and is organized as follows. Chapter 2 presents two major
application areas, that is, engineering disciplines and knowledge-based
. systems. The main characteristics of the existing application objects reveal
the essential data mcxiel requirements for accurate and efficient mapping to
data objects, guiding our data-model design. Chapter 3 describes the
general concepts underlying the MAD model, its data and load defmition,
as well as its query and manipulation facilities. Finally, chapter 4
compares the model with other data models and chapter 5 summarizes the
paper and concludes with an outlook covering current and future
investigations.

2. Information Modeling in Non-Standard Application Areas

One of the most demanding requirements in non-standard applications is
accurate modeling and efficient management of application objects.
Starting with an analysis and characterization of the application objects,
we point out the essential requirements to facilitate application modeling.
Here we use the Entity-Relationship model [Ch76] for explanatory
purposes. By modeling application objects, it becomes evident that the ER
model has to be extended by some kind of object-orientation, thus
yielding an appropriate information model. Firstly, the whole application
has to be modeled by means of this ER model and then mapped to the
data-model interface of the underlying database.

2.1 Modeling and Managing Application Objects

For our purpose, the best reference is [BB84] where a thoroughgoing
analysis and characterization of the application objects, specifically in

MITSCHANG 135

engineering disciplines revealed the general concept of molecular
objects - in [LK84] synonymously called complex objects. These
objects are seen and manipulated on different levels of abstraction. At
higher levels, they are treated as atomic units of data, e.g. moved or
copied as a whole. Furthermore, each entire entity is described by several
attributes. At lower levels, they reveal their internal structure. Their
components may again be complex objects, or just primitive objects
without internal structure. Complex objects are of the same type, if all
their attributes and components have the same type.

Modeling a complex object by means of the ER model leads to an entity
type containing the attributes of the complex object, an entity type for each
component, and a relationship type between them meaning 'consists of.
Hence, the complex object is represented by all entities related in this way.
They are said to form a 'molecule' with the entities resembling 'atoms',
respectively.

Different complex objects may share components, for instance, 3D solids
share the face where they are 'glued' together. In this case, according to
[BB84] they are called non-disjoint, and their molecules overlap; hence,
the Consists-of relationship must be of type many-to-many (n:m).
Otherwise, they are called disjoint, building non-overlapping molecules
and a one-to-many (l:n) relationship. Additionally, complex objects are
called recursive, if they are composed of objects of the same type;
otherwise, they are called non-recursive. For example, solids in 3D
modeling are 'constructed' using previously defined solids, thus forming
a recursive Consists-of relationship. These four cases are summarized and
visualized in fig. 2.1 using ER diagrams. In fig. 2.1 the molecular objects
are represented by the entity types named MOL_OBJ, whereas the
primitive parts are modeled using the Px_OBJ entity types. All
represented relationship types hold the property 'consists-of.

A more quantitative examination of our prototype application systems
reveals some further important object characteristics (cf. fig. 2.2): Firstly,
in most cases we have to deal with network structures, i.e. non
disjointness. Secondly, there are no static molecular objects, i.e., we have
to cope with dynamically changing molecular objects, depending on the
actual view of the application, that is, the level of abstraction and the way
of processing. Thus, it seems much more appropriate to define the
molecules dynamically instead of predefining molecules statically.
Refering to 3D modeling, these dynamics are apparent: One important
representation of solids, especially for graphical output, is the boundary
representation (BREP) depicted in fig. 2.2a (geometric model). It consists
of faces which are in turn composed of their borderlines (edges) limited
by endpoints. Some applications need face objects with their edges and
points, while in another processing state it may be necessary to handle just

136 EXPERT DATABASE SYSTEMS

the inverse object nesting, that is, a point object with its neigh boring faces
forming the point-edge-face hierarchy. Table 2.1 expresses these
dynamics showing some kinds of molecular objects which are subject to
manipulation during application processing. The first and the last column
(name and characteristics) of table 2.1 depict the higher level view of
molecular objects, i.e. the objects as atomic units. This abstraction
concept is often called aggregation since the higher level object is
aggregated from its component objects. The remaining two columns
reveal the lower level view, that is, the components. Refering to other
engineering application areas it looks quite similar. For example,
geographic applications (fig. 2.2.b) have to deal primarily with maps,
while VLSI-design systems (fig. 2.2.c) use the generic concept of cells
for the description of functional, structural, and physical domains of the
circuits to be designed. In fact, these application objects also represent
non-disjoint and recursive molecules.

MOL_OBJ MOL_OBJ

a) disjoint, non-recursive b) non-disjoint, non-recursive

c) disjoint, recursive d) non-disjoint, recursive

Figure 2.1: Four types of molecular objects

str"U~;;tural model

geometric model
:············i·····,
I

: r-1-:1--1 : ~ -_..
I
I
I
I
I
I
I
I
I
I
I
I
j
j

• I
I
I
I
I
I
I
I

4:o

MITSCHANG 137

b) Maps in geographic dalabases

c) Circuits in VLSI·desigo data~

Figure 2.2: Examples of molecular objects in engineering disciplines

Modeling knowledge-based applications reveals some further important
abstraction concepts. Knowledge representation techniques incorporate
the concepts of generalization and association hierarchies, in addition to
aggregation and classification. The main characteristics of these
abstraction concepts may be summarized as follows:

• The concept of classification collects objects (entities) with common
properties (attributes) to form object types (entity types). Between an
object and an object type there exists an 'instance-of relationship.

• Aggregation refers to an abstraction in which all component objects
are aggregated to build a higher level object. Between the component
objects and their aggregate object there exists a 'consists-of'
relationship (cf. fig. 2.1).

• The generalization concept refers to a set of similar object types
which is regarded as a generic object type. This concept ignores some
individual differences of the specialized types. There is an 'is-a'
relationship between the specialized and the generalized object types.
Repeated use of the generalization concept yields a generalization
hierarchy.

• Finally, the association concept is a kind of abstraction in which a
relationship between elements is considered as a higher level object

138 EXPERT DATABASE SYSTEMS

known as set object. Between the elements and its set object there exists
a 'member-of relationship with repeated use of this concept creating an
association hierarchy.

name sub types object structure characteristics

point_obj point point non-disjoint and non-recursive

point_nbhd point, edge, face point - edge - face non-disjoint and non-recursive

edge_obj edge, point edge- point non-disjoint and non-recursive

edge-nbhd edge, point, face edge- (point,face) non-disjoint and non-recursive

face_obj face, edge obj or face- edge obj or non-disjoint and non-recursive
face, edge, 'Point face - edge -point

brep_obj brep, face obj or brep. face_obj or disjoint and non-recursive
brep, face, edge, point brep- face- edge- point

piece _list solid solid(recursive:solid) non-disjoint and recursive

Table 2.1: Dynamics in molecular objects

As a reference example, we have chosen the Frame model [Mi75,FK85,
BS83], which is one of the essential knowledge representation techniques
used in artificial intelligence, especially in expert-system applications. Fig.
2.3 contrasts the structure of a generic frame (here called unit) with its
corresponding ER mcxleling.

The primitive elements, i.e. the objects of our Frame model, are called
units. Each unit has a name for identification purposes and consists of a
number of attributes, called slots, which, in turn, consist of a list of
aspects. Slots are used for describing the unit they belong to. Aspects, in
turn, are needed for proper specification of the slot and its value. Our ER
diagram depicts only one aspect occurrence for each slot, because all
specifications for one slot are grouped within one aspect occurrence. So,
it is possible to share this information, preventing redundancy. In terms of
the above introduced abstraction concepts, we could say that units are
formed by an aggregation of slots and aspects (this is explicitly depicted in
our ER diagram of fig. 2.3 using semantically enriched relationship
types). There are two types of units distinguishable: a unit is called a
class-object if it represents either an object type or a set object, and its
instance objects or element objects are called· member-objects.
Additionally, there are two quite different relationships between member
and class-objects: the member_relation relates member-objects to class
objects and therefore corresponds to the concept of association and
classification; whereas, the class_relation associates only class-objects
with each other, thus forming a generalization hierarchy. The first four
slots in fig. 2.3 are used for modeling these two relations: is_subclasss_of

MITSCHANG 139

and has_subclasses form the class_relation whilst is_member_of and
has_members express the member_relation.

unit_name

is_subclass_of:
has_ subclasses:
is member of:
hii_membeis:

slot 1:

slotn:

list of uniu
list of units
list of units
list of units

type 1 kind 1
aspect 11
aspect 12

aspect 1m

typen kindn
aspect nl
aspectn2

aspect run

value 1

cws relation
(is_a) •

aspect_ value 11
aspect_ value 12

aspect_ value lm

valuen
aspect_ value n 1
aspect_ value n2

~pect_ value mn

structure of a unit

Figure 2.3: Modeling the Frame model

Units
.... member relation

(mem~_of,
instance_ o!)

......... unit_aggregation (consists_o!)

name

kind

value

n type

..•...... slot_aggregation (consists_oQ

comment

Aspects
default

ER diagram

Inherent to all frame models is the concept of inheritance, that is,
information about the units is being transported along the generalization
hierarchy. Therefore, we have to distinguish class-slots describing
properties of the corresponding unit from member-slots which are used as
attributes of all associated member-objects. Thus, it follows that member
slots have to be inherited along the subclass hierarchy as member-slots
and along the member_relation as class-slots, whereas class-slots are
never inherited. This enforces the attachment of a type attribute (declaring
the slot a member- or class-slot) and of a kind attribute (stating whether it
is an owned or an inherited slot).

In managing application objects, we have to cope with two different kinds
of access. The most challenging is called vertical access. It is
characterized by accessing the object as a whole, i.e., fetching all
con~tituting (more primitive) components. For example, fetching the
boundary representation of a complex 3D object, fetching all maps within
a clipping section, or fetching the generalization hierarchy of a specified
frame object. In addition, vertical access may select only some
components of an object that fulfill given qualification criteria. This kind

140 EXPERT DATABASE SYSTEMS

of access is expected to be much more frequent than compared to
horizontal access. The latter derives all objects of a common type, i.e.,
all stored maps, circuits, solids or units, perhaps satisfying some special
qualification criteria.

Summarizing all above mentioned object characteristics, we can argue that
the essential modeling requirements of an adequate information model that
offers a unified view to design data and knowledge representation should
comprise object abstractions and object dynamics, as well as operational
support for vertical and horizontal access, which together define some
kind of object orientation. Here, we neither want to concentrate on the
definition of an appropriate ER model nor on the definition of the notion
'object orientation'. Instead, we focus on data models capable of accurate
and efficient modeling of this sketched information model.

2.2 Mapping Complex Objects to Data Objects

Existing data models do not match the above mentioned requirements
properly. When mode ling in an hierarchical manner, one has to cope with
redundancy. This holds for the classical data models like IMS [Mc77] as
well as for novel ones such as non-first-normal-form models [SS86,
RKB85] and the so-called complex-object model [LK84]. Fig. 2.4
illustrates such a consequence using our BREP schema. A first
observation is that the hierarchical schema is semantically not equivalent to
the network schema, because the hierarchical one is not symmetric; there
is a loss of information concerning the bottom-to-top access. Secondly, a
substantial portion of redundancy is introduced. There are several
independent representations for every edge and every point. Since the
DBMS is not aware of this redundancy, it must be handled by the
application (or at least above the data model interface). This may lead to
problems concerning integrity (no gap between faces, preservation of
topology, update, etc.).

The network approach avoids redundancy, but at the cost of introducing a
number of 'relation records' that represent n:m relationships. The
mentioned data models only support non-recursive, disjoint objects
referring to a static object type in a non-symmetric manner, e.g., looking
from points to all corresponding edges and faces is not possible in the
hierarchical example of fig. 2.4. On the right-hand side of fig. 2.4, we
have shown the desired modeling approach, referred to as direct and
symmetric modeling, thus avoiding the above mentioned problems, which
are even more valid in the case of recursive objects (frame nets, map
hierarchies, etc.).

MITSCHANG 141

oetWOrk approach hiemchiaJ approetb mrect IJid lfl!llllCII'iC appro1ch

DOO -redundllll
modding

Figure 2.4: Modeling approaches to boundary representation

brep

Summarizing the arguments and considerations, we can argue for the
following essential data model requirements:
• direct and symmetric management of network structures and

recursiveness
• mapping and operational support for all abstraction concepts
• dynamic object definition
• adequate object handling supporting both vertical as well as horizontal

access.

Due to these requirements, an adequate data model has to provide
• suppo~t. for complex objects, i.e. some kind of object-orientation

compnsmg
- modeling techniques for the structure of an object as well as the
object as an integral entity

- operational semantic including object management
- appropriate granularization of data and operations due to the
composition and decomposition concept inherent to dynamic object
defmition and management (dynamic object handling)

-support for more structural integrity (consistency in case of non
disjointness)

• in particular
- support for vertical access with efficient derivation and assembling of
the corresponding heterogeneous data (record) sets

142 EXPERT DATABASE SYSTEMS

-efficient record-type crossing operations (operative foreign/primary
key connections) in both directions (symmetry)

- a descriptive language allowing for the processing of sets of
heterogeneous records _

-a set-oriented embedding into the application program.

To satisfy these requirements, we have developed the MAD model
(Molecule-Atom Data model), that will be described in the next chapter.

3. The Molecule-Atom Data Model

In the following, we present an introduction to modeling, as well as
operational aspects of the MAD model. For this purpose, we use the
examples of fig. 2.1 and fig. 2.3 and the syntactical simplicity o(an SQL
like language as an explanatory vehicle. Some special syntactical
expressions used in the Molecule Query Language (MQL) are taken
from [PA86, RKB85, X3H286]. A formal description o(MAD resp.
MQL yielding to the so-called Molecule Algebra is unter completion. The
focus of this chapter is primarily on discussing and illustrating the major
capabilities of the MAD model and its language MQL. All implementation
concepts are summarized in another published paper [HMMS87]
describing the prototype implementation of MAD, called PRIMA. A
detailed view to the query evaluation concepts within PRIMA is under
completion and will be submitted for publication.

3.1 Underlying General Concepts

The most primitive elements of the MAD model are called atoms. They
are comparable to tuples known from the relational model. According to
the relational model, each atom is composed of attributes of various types,
is uniquely identifiable, and belongs to its corresponding atom type. The
atom type is put together by the constituent attribute types to be chosen
from a richer selection than in conventional data models. Comp~ed to the
relational model, we have the following enhancements:
• IDENTIFIER type and REFERENCE type,
• RECORD type and ARRAY type as well as
• the repeating-group types SET and LIST.

The type concept has been extended by RECORD, ARRAY, and the
repeating-group types to yield a powerful structuring capability at the
attribute level. For identification and connection of atoms, we have
introduced two special types. The IDENTIFIER type serves as a surrogate
[ML83] which allows for the identification of each atom. Based on this
type it is easy to definethe REFERENCE type allowing for typed
references (that is, a logical pointer) to other atoms of the same or of

MITSCHANG 143

different type (similar to foreign/primary-key connections). This basic
mechanism for connection of atoms is called the link concept. Organized
as repeating groups, these links may be used to efficiently map n:m
relationships and recursions. A link is also symmetric in that the
referenced record must contain a 'back reference' that can be used in
exactly the same way.

Combining the attribute type REFERENCE with the repeating-group type
SET is sufficient to express all kinds of relationship types between two
atom types. This has been sketched in figure 3.1. For example, the
declaration of an 1 :n relationship type is expressed by two REFERENCE
based attributes (dotted arrows), one in each atom type. Thus, it is
obvious that reference attribute and corresponding 'back .reference'
attribute define the relationship types (i.e., link type) in a direct and
symmetric manner, as required.

relationship types link types MAD-specific data defmitioo

18
·1~· .. ·;'"" A1j

A TI (IDi : IDF.NI'IFIER A 1j (IDj : IDFNI1FIER
... . ..

ATi·>ATj: REf_TO (ATj) ATj->ATI : REf_TO (ATi)

EJ DEJ lr
,,~ Alj

I

ATI (IDi : IDFNI'lFlEi A 1j (IDj : IDENTIFIER

- -
AH>ATj: SEJ'_OF (REF_TO (A'I])) ATj->ATI : REf_TO (ATi)

~.~.h~ r::;, ~ ... 11Gl
~ ~·11 ~

0

ATI (IDi : IDENJ1FlEil A 1J (IDj : IDFNI1FIER
...

ATi->ATj: SEI'_OF (REF_TO(A'I])) ATj->ATi : SEI'_OF (REF_TO(ATI))

Figure 3.1: Expressing relationship types in terms of link types

Based on the link concept, it is feasable to dynamically construct
molecules using atoms as elementary building blocks. Each molecule
belongs to its corresponding · molecule type. The molecule type is
defined (in the query language, not in the schema) by naming the atom
types and link types. Each molecule type determines both the molecule
structure and the corresponding molecule set, grouping all the
molecules with the . same structure. The molecule structure 'is
superimposed dynamically on sets of atoms 'linked' by references, thus
introducing the concept of dynamic molecules, i.e., the required object
orientation of the MAD model. Its operational power lies in adequate
means for molecule proce~sing provided by MQL. The overall design goal

144 EXPERT DATABASE SYSTEMS

was the consistent extension of processing homogeneous to processing
heterogeneous record sets, dynamically defined by molecules.

3.2 Modeling Concepts and Data Definition

Transformation of an Entity-Relationship schema to an equivalent MAD
schema is straightforward. To exemplify this task, we have modeled the
four cases of molecular objects of fig. 2.1 in terms of the MAD model
shown in fig. 3.2. Details of such a transformation and two examples of
the data definition language (DDL) are illustrated by fig. 3.3 and fig. 3.4.
The transformation replaces all entity types by corresponding atom types
and all relationship types by link types (which are built between the resp.
atom types). If there is a relationship type having some attributes, we
additionally have to introduce one atom type representing this relationship
and its attributes as well as two link types to model the relations. The
usefulness of the extended type concept and the cardinality restrictions
associated with the SET type (i.e. exact mapping of relationship types
allowing for refined system-enforced structural integrity) are also
illustrated in fig. 3.3 and fig. 3.4.

a) disjoint, non-recursive
•• 11

: :··••••J :
! ! 1 : !
i L..... MOL OBJ •II····J i
i 411• - •••••••••••• !

n ,, jll n r:;' n ·-.,•.,, ,....... ,
•' •'1 '• 'I 1 ,111',,•' 'hi·· ..

P1_0BJ J Pn_o"Bi]

c) disjoint, recursive

b) non-disjoint, non-recursive

···-: : :·············"··········· .. ····················~ : !!nl I ;: ~ t...... MOL_OBJ,,IJ··i f
....... (1•· """' ..

1 1 Ill 1, ' f' Ill n ,.•.• n '•• ,, •' ,. .. '• ,. •'' ,...... ,
llt',,•'m ''•11'• m

, f I'·
Pl_OBJ I Pn_oBTJ

d) non-disjoint, recursive

Figure 3.2: Modeling the four cases of molecular objects by means of the
MAD model

The atom-type definition consists of three parts: naming, attribute
definition, and key definition (fig 3.3b and fig. 3.4b). The atom-type
name must be unique within the whole schema definition. Each attribute
definition, in turn, consists of the attribute name (unique only within its
atom-type) and the attribute data type. For identification and connection of
atoms, each atom-type definition nmst contain exactly one attribute of the

MITSCHANG 145

IDENTIFIER type. Key definitions are simply expressed by lists of
attribute names.

Although molecules are generally defined as part of a query, it is allowed
to give a name to often used molecule types (fig. 3.3c and fig. 3.4c). A
molecule-type definition (similar to a view) specifies the molecule-type

a) MAD-schema diagram

i··~ : •.. , :

llo:nG 11 i !....... solid •tJ { !
i. .. : H• • (i·~·:

0:1 i -? .

~ i 1:1

1 ~~ 1
6·n : :'4-n : : 4:n \~

'I! . 111·1 \~
!!G.J~: . \\
ff race \\ •• ll ••

!! \\
ff ln 11 r-;~: \\ if . ,1 ,, . ,, ,, \\
:: ,•~~ ,,,, n
: :1·1 I I 11 11 l·n ':. ':. ;; ' 1111 I I • \\

:: 11 '12 ,, ,, ':.':.

-- ·• 2n I ··~... w'f ,, point
tJI

1:n

c) molecule-type defmitioos

DEFINE MOLECULE_TYPE edge_obj
FROM edge· point

DEFINE MOLECULE_mE face_obj
FROM face- edge_obj

DEFINE MOLECULE_ mE brep_obj
FROM brep -face_obj

DEFINE MOLECULE_ TYPE piece_list
FROM COOlp_hier(solid)

(RECURSIVE: solid.sub-solid)

b) atom-type definitioos

CREATE ATOM_ mE solid
(solid _id : IDENI1F1ER,

solid_no : INTEGER,
description : CHAR_ V AR,
sub : SET _OF (REF _TO (solid.super)) (O,VAR),
super :SET _OF (REF _TO (solid.sub)) (O,VAR),
brep : REF _TO (brep.solid))
KEYS _ARE (solid_no);

CREATE A TOM_TYPE brep
(brep_id : IDENTIFIER,

brep_no :INTEGER,
hull : HULL_DIM(3),
solid : REF _TO (solid.brep),
faces : SET_OF (REF _TO (face.brep)) (4,VAR),
edges : SET_OF (REF _TO (edge.brep)) (6,V AR),
points : SET_OF (REF _TO (pointbrep)) (4,V AR))
KEYS_ARE (brep_no);

CREATE ATOM_ TYPE face
(facejd : IDE!\11FIER,

square_dim : REAL,
border : SET_OF(REF_TO (edge.face)) (3,VAR),
crosspoint : SET_OF (REF_TO (pomtface)) (3,VAR),
brep : REF _TO (brep.faces));

CREATE ATOM_ TYPE edge
(edge_id : IDENTIFIER,

length :REAL,
boundary : SET_OF (REF_TO (pointline)) (2,VAR),
face : SET_OF (REF_TO (face.border)) (2, VAR),
brep : REF_TO (brep.edges));

CREATE A TOM_ TYPE point
(point_id : IDE~11FIER,

pla:ement : RECORD
x_coord : REAL,
y _coord : REAL,
z_coord : REAL

END
line : SET_OF (REF _TO (edge.boundary)) (l,VAR),
foce : SET_OF (REF _TO (face.croospoint)) (l,V AR)
brep : REF_TO (brep.points));

Figure 3.3: Solid representation expressed in terms of the MAD-DDL

146 EXPERT DATABASE SYSTEMS

name, its corresponding structure, and its molecule set. In the FROM
clause, the constituent molecule subtypes connected by the selected link
types are listed (in case of ambiguity the reference attribute has to be
denoted, otherwise it is optional and could be substituted by some simple
syntactical signs (braces or lines)). By means of the RECURSIVE-clause
we are also able to define recursive molecule types. Thus, the molecule
structure becomes cyclic and the derivation of the corresponding recursive
molecules has to be performed stepwise in an iterative manner. The
WHERE-clause additionally allows for the restriction of the molecule set.
In the second statement of fig. 3.4b we have restricted the molecule type
'subclasses_of_id123' to exactly one recursive molecule, that with
IDENTIFIER value '123' of its root atom. FROM-, WHERE- and
RECURSIVE-clause are explained in the next chapter in more detail.

Fig. 3.3 and fig. 3.4 have outlined the direct and symmetric mapping of
the abstraction concepts by means of the link concept of the MAD model.
Here it becomes apparent that the MAD model supports (at least
structurally) the above introduced essential characteristics of the complex
(application) objects to its full extent. To illustrate the operational support
as well, we now focus on the molecule processing, i.e. query and data
manipulation facilities.

3.3 Query Facilities

The query capabilities of the molecule query language MQL comprise
vertical as well as horizontal access (cf. chapter 2). Fig. 3.5 shows some
hand-picked query examples as well as the corresponding molecule
diagrams showing the molecule structure of the whole query and its
finally projected subpart (encircled area). The examples of fig. 3.5 refer to
the solid-representation schema of fig. 3.3. All subsequent explanations
use a simple mental model underlying the query evaluation:
• Firstly, all molecules defined in the FROM-clause are assembled.
• Then the optional FROM-clause restricts this result set evaluating all

qualification terms specified.
• Finally, the projection has to be performed, that fixes the final molecule

stucture cutting away all unused molecule components.

Obviously, all three clauses are used in a quite similar sense compared to
their equivalents in SQL-like languages. In the following, these evaluation
steps are explained in more detail.

Vertical access to a network structure is illustrated in the query of fig.
3.5a. Firstly, all atoms constituting the brep molecules defined in the
FROM-clause are assembled. This starts with the brep atoms and uses all
specified links to deduce the dependent face, edge, and point atoms. Then

a) MAD-schema diagram
:··············: ~ ':
: O:n : : O:n :

= ~-· -~ ~ ~ r "1==,=== i==·.·==. ~ ~ I ·_~urn~ J
! i t~ ~ ? i 1 : :
i .. ::::::::::.i i ; !.:::::::::::J

I I

O:n : : O:n
I I
I I
I I
I I
I I

l:n 4: : 1:1
':' f

B
1:1 : r

I I
I I
I I
I I
I I
I I
I I
I I
, f
, f
I I
, f

~ : 1:n

~

b) atom-type definitions

CREATEATOM_TYPE units
(unit_id :IDENTIFIER,

name : CHAR_ V AR,

MITSCHANG 147

is_subclass_of : SET_OF (REF _TO (units.has_subclasses)) (O,VAR),
has_subclasses : SET_OF (REF _TO (units.is_subclass_of)) (O,VAR),
is member of : SET_OF(REF_TO (units.has_members)) (O,VAR),
has_membets : SET_OF (REP _TO (units.is_member_of)) (O,V AR),
unit_aggregation : SET_OF (REF _TO (slots.is_slot_of)) (O,V AR))

KEYS_ARE (name);

CREATEATOM_TYPE slots

(slot_id :IDENTIFIER,
name :CHAR_ V AR,
t~ :(M,C),
~~ : (Q,l),
value :BYTE YAR
is slot of : REF _fa (units.unit_aggregatioo),
slOt_aggregation : REF _TO (aspects.is_aspect_of));

CREATEATOM_TYPE aspects

(aspect_id : IDENTIFIER,
name : CHAR_ VAR,
comment : CHAR_ VAR,
value_set : BYTE_ V AR,
cardinality_min : INTEGER,
cardinality_max : INTEGER,
metric units : CHAR V AR,
default : BYTE.}' AR,
is_aspect_of : SET_OF (REF _TO (slots.slot_aggregation)) (O,V AR))

KEYS_ARE (name);
c) molecule-type definitions

DEHNE MOLECULE_ TYPE unit_obj
FROM units -slots- aspects

DEFINE MOLECULE_ TYPE sub_classes_d_idl23
FROM subordinate classes

(unit_obj) -
(RECURSNE: units.has_subclasses-IIlits)

WHERE subordinate_classes.units(O).id='l23

Figure 3.4: Frame model expressed in terms of the MAD-DDL

the WHERE-clause restricts this result set by evaluating all existing
qualification terms. The result set of this query comprises only those brep
molecules holding a brep atom having the value '1713' for attribute
'brep_no'. In fig. 3.5b retrieval of a recursive structure is specified with
piece_list as a predefined recursive molecule type (cf. fig. 3.3c).
Therefore, we first have to specify all roots of the desired recursive
molecules, using the 'seed-qualification' predicate in the WHERE-clause.
For all qualified root atoms (there is only one because the qualification of
a key attribute is used), we have to evaluate the recursion in a stepwise
manner going from one level to the next subordinate level using the

148 EXPERT DATABASE SYSTEMS

solid.sub references, thereby avoiding multiple evaluation of the same
recursion path (cf. chapter 3.4 especially fig. 3.8).

a) vertical access to network molecules r---------------,

Water ~face-edge-point ~~ brep H face H edge H point I
WHERE brep_no = 1713 (• qualification •) L..:-~_-_ __________ _....

sub
RECURSIVE b) vertical access to recursive molecules

SELECf ALL
FROM piece_list (* pre-defined molecule type *) n

(* seed qualification*) ~ WHERE piece_list (O).solid_no = 4711

c) horizontal access combined with unqualified projection

SELECf solid_no, description (* unquaified projection*)
FROM solid
WHERE sub= &\1PTY

d) miscellaneous query
SELECf edge, (point, (* unqualified projection *)

face := (SELECf face _id, square_dim
FROM face (* qualified projection*)
WHERE square_dim > 1.9E4))

FROM bre~edge (face, point)
WHERE brep_no = 1713 (*qualification*)

AND
EXISTS_AT _LEAST (2) edge: edge.length > l.OE2)

(• quantified restriction *)

Figure 3.5: Some hand-picked query examples

Finally, fig. 3.5c shows some kind of horizontal access already known
from the relational model: Here, we want to retrieve all primitive solids,
i.e. solids not having any subpart-hierarchy. This query shows the use of
a projection expressed in the SELECf-clause: All atoms resp. attributes
listed are being retrieved. In our example the projection consists of the
two attributes 'solid_no' and 'description'. Thus the corresponding result
set comprises solid atoms, each holding two attribute values, one for
attribute 'solid_no' and the other one for attribute 'description'. Some
other important features are illustrated in fig. 3.5d. Arbitrarily structured
molecule types are defmable by means of brace-expressions; branching as
well as combination of the graph underlying the molecule structure is done
using brace-expressions. In our example, the FROM-clause shows the
definition of a tree-like molecule type. The corresponding molecule
structure is shown in the molecule diagram on the right-hand side.
Another important feature illustrated in this example refers to molecule .
restriction. Using quantified qualification terms greatly enhances the
expressiveness of the WHERE-clause. Our example shows an EXISTS
quantifier testing for the existence of at least 2 edges that satisfy the
'length' qualification. The ALL-quantifier could also be used as

MITSCHANG 149

qualification term. The third special feature shown in the example refers to
a finer grained projection capability. For proper specification of the final
result set of the whole query, we use the qualified projection
expressed as just another 'SELECT ... FROM ... WHERE' expression
within the SELECT -clause. This nesting allows for a supplementary
restriction of the components of the result-set molecules (not of the result
set itself) by evaluating all qualification terms (i.e., WHERE-clauses)
stated. Referring to our example, only those face atoms of the projected
'edge(face,point)' molecule are finally retrieved, whose square_dim value
satisfies the qualification. Exploiting these capabilities, we are able to
retrieve only those components of the 'surrounding' result-set molecules
we are interested in.

3.4 Manipulation Facilities

Based on these flexible query facilities, we now sketch the remaining
parts of molecule management: Similar to retrieval capabilities, insert,
delete, and modify operations enable us to deal with an integral molecule
as well as its components. All component operations have to be expressed
by means of the previously introduced qualified resp. unqualified
projection. The delete statement reflects removal of single components as
well as of whole component sets, thereby automatically disconnecting
these parts from the specified surrounding molecules. The same holds
inversely for the insert statement. Modification especially supports, apart
from update, connection and disconnection of molecule components.

For explanatory purposes, we have expressed in fig. 3.6 and 3.7 two
typical Frame operations by means of MAD operations. The 'insertion of
a member-slot' shown in fig. 3.6 is a quite complex operation which has
been expressed using five distinct MAD operations. The first operation
inserts an atom representing the aspect 'wheels'. The second operation
delivers the IDENTIFIER value of the previously inserted aspect atom.
This value is needed in the subsequent operations for properly setting the
reference to the aspect atom, thus guaranteeing shared (aspect) atoms.
These operations are quite similar to those known in relational languages.
The third operation retrieves the whole recursive molecule type
'unit_hierarchy' composed of the root unit named 'automobile', its
subordinate class hierarchy, their associated member units together with
all linked slots. Fig. 3.8 shows two expamples of retrieved unit
hierarchies. Within the application program this hierarchy is being
modified to reflect the addition and inheritance of the member-slot named
'wheel_number', as exemplified in the fourth operation. Now the
database has to be actualized. This is done via the modification operation
(operation five), which changes the specified molecule or molecule set
according to its data contents. That is, all atoms already existing within the

150 EXPERT DATABASE SYSTEMS

database are being modified in accordance to the given data and all atoms
not yet stored were inserted and connected to the right parents. Here, only
the inherited member-slots· and the previously added root member-slot
have to be inserted and connected to their corresponding subclasses.
(N.B.: When using all existing MQL capabilities it is also possible to
express the inheritance of slots directly in one MQL statement).

Example 1: Insertion of the member-slot named 'wheel_number'
to the unit called 'automobile'

1. Insertion of the aspect data
INSERT aspect_name :='wheels',

comment:= 'a solid disk or circullll' frame turning on a central axis',
value_set := 1..25
cardinality _m in:= l,
cardinality_max := 1,
metric_units :='none',
default := 3 : aspects

FROM aspects

2. Retrieval of the IDENTiflER value of the previously inserted aspect atom

SElECT aspect _id
FROM aspects

WHERE· name= 'wheels'

3. Retrieval of the whole subclass hierarchy and all refem~ced member units
SELECr ALL
FROM unit_hierarchy

(units-(.units_aggregation-member_slots(slots),
.has_members-member(units).unit_aggregation-class_slots(slots))

(RECURSIVE: units.has_subclasses-units)
WHERE unit_hierlll'chy.units(.O).name ='automobile'

4. Modification within the application program:
• addition of~ member-slot to the root
unit, that is the unit named 'automobile'

• inheritance of member-slots· to all
. subordinate units (class-units}

• inheritance of class-slots to all
subordinate members

S. Actualization of the database
MODIFY unit_hiel'lll'chy
FROM unit_hierarchy

\,•••••••
~6~ .
, I I I I I I I • I I ...

Figure 3.6: Insertion of a member-slot expressed in terms of the MAD
DML

The 'deletion of a member-slot' shown in fig. 3. 7 is just the inverse
operation of the one discussed. In contrast to the above, this Frame
operation is formulated by one single MQL statement to exhibit the
expressiveness of MQL. In fig. 3.7 we use, for explanatory purposes
only, a kind of macro technique to construct the final MQL statement. The

MITSCHANG 151

first part of fig. 3.7 predefines the molecule type to work with, by means
of the DEFINE MOLECULE_ TYPE statement (cf. section 3.2). A first
subquery is needed to pick up the IDENTIFIER values of all member
slots (the 'owned' slot at the root of the hierarchy is included). All class
slots were retrieved in a similar. subquery. Finally, the fourth part of
fig. 3.7 depicts the resulting MQL statement. All slot molecules (i.e.
slot atoms and linked aspect atoms) named 'wheel_number' whose slot
IDENTIFIER value is contained within the union of the previously
mentioned two subqueries (i.e. only slots contained within the
unit_hierarchy are considered) are deleted from the corresponding atom
types (i.e., removed from the database) and disconnected from their units.
Thus, the member-slot named 'wheel_number' belonging to the unit
called 'automobile' and all its inherited member- and class-slots together
with their aspect atoms were deleted. This fact is depicted in fig. 3.8
showing a typical scenario. For sake of simplicity no aspect atoms are
shown. All unit atoms belonging to the unit_hierarchy of unit ul are
marked with bold rectangles and all slot atoms inherited from slot s4
are drawn in dotted circles. These are the candidates for deletion. All
'has_subclasses' references are marked with's' and all 'has_members'
references are marked with 'm'. The pre~ and post-state diagrams of the
two above mentioned Frame operations are depicted.

Common to all manipulation operations is the system-enforced support for
structural integrity, i.e. modifying a REFERENCE attribute implies the
automatic maintenance of the corresponding 'back-reference'.

Summarizing the above introduced and illustrated concepts, the
operational support of the MAD model (i.e. MQL) for adequate object
orientation comprises:
- dynamic object definition by means of dynamic molecules expressed in

the FROM-clause by narriing the atom types and their links
- powerful molecule restrictions within the WHERE-clause (quantified

qualification terms) .
- molecule-component specification by means of an extended projection

concept (qualified resp. unqualified projections)
- set-orientation, expressiveness and simplicity of the language.

These concepts are prerequisites for
- molecule processing (i.e. insertion, deletion, modification, and retrieval

of integral molecules) and .
- molecule-component management (i.e. component insertion, deletion,

modification, and retrieval using the FROM- and WHERE-clause to
specify the surrounding molecules).

152 EXPERT DATABASE SYSTEMS

Example 2: Deletion of the member-slot 'wheel_number'
from the unit named 'automobile'

1. Defmition of the molecule type to work with
DEFINE MOLECULE_TYPE unit_hierarchy
FROM units_rec

(units - (.units_aggregation-membet_slots(slots),
.has.J]lembets-member(units).unit_aggregation

c;lass_slots(slots)))
{RECURSNE: units.has_subclasses-units)

2. Picking up the IDF..Nflf1ER values of all member-slots
SM ::= SELECf member_slots.(ALL).sloUI

FROM unit_hierarchy
WHERE unit.JUerarchy.units.(O).name ='automobile'

3. Picking up the IDEN11f1ER values of all class_slots
SC ::= SELECf class_slots.(all).dot_id

FROM unit_hierarchy
WHERE unitjUerarchy.units.(O).name ='automobile'

4. Deletion of the member-si~X 'wheel_munba' and
all its inherited member- and class-slots
together with the deletion of the linked aspect atom
DELETE ALL
FROM slots.slot_aggregation-aspect
WHERE slot_name = 'wheel_number' AND

slot_id EIMf (SM UNION SC)

member

"--s-lots _ _.l class_slots

Figure 3.7: Deletion of a member-slot expressed in MAD-DML

INSERTS4

DELEI'ES4

Figure 3.8: Two state diagrams of a unit hierarchy

membe:_slots

MITSCHANG 153

Furthermore, it is apparent that the MAD model and its language MQL
support vertical as well as horizontal access to its full extent. Moreover, it
offers adequate operational capabilities for handling recursion, i.e.
recursive molecules. The MAD model with its language MQL is not only
designed for an interactive environment. Additionally, it is embedded in a
host programming language. This application programming environment
is used only by system engineers and not by novice users. Due to space
limitations we cannot give a more detailed language discussion. An in
depth description of MQL can be found in [Mi86].

3.5 Load Definition for 'Transparent' Performance
Enhancements

The main characteristics of the MAD model are set-orientation, dynamic
object definition, and processing of heterogeneous record sets. These
concepts offer a broad spectrum for query optimization with a number of
novel optimization aspects (e.g. pipelined or parallel derivation of all
molecules within the result set). Effective processing support could be
accomplished by an appropriate set of storage structures. However, the
MAD model itself makes no reference to such 'physical' objects (to
preserve data independence). Therefore, we need a separate mechanism
for the specification of the various storage structures supporting a given
application.

For this purpose, we have defined a load definition language (LDL)
used by the database administrator. The main concepts for performance
control are
• several access methods for one or more attributes permitting

multidimensional access
• (vertical) partitioning of records to improve clustering of frequently

accessed attributes
• sort orders to speed up sequential processing according to given sort

criteria
• 'physical clusters' to provide physical contiguity for atoms belonging to

frequently requested molecules, i.e. materialization of molecules.
In the following, we show some examples sketching the expressive
power of the LDL. All examples refer to the solid-representation schema
of fig. 3.3 (in this context, these examples are not necessarily
meaningful):
- Definition of physical clusters

DEFINE ST A TIC_MOLECULE_ TYPE brep_cluster
FROM brep - face - edge - point

The language constructs we have chosen for the LDL are similar to those
of MAD-DML. Here, we define a physical cluster comprising the
previously defined 'logical' molecule type brep_obj (cf. fig. 3.3c). That

154 EXPERT DATABASE SYSTEMS

is, all brep, face, edge and point atoms/records belonging to the same
molecule of type brep_obj were clustered in one occurrence of type
brep_cluster. This clustering technique is novel, in that it allows us to
cluster heterogeneous record sets.
- Definition of access methods

DEFINE ACCESS solid_acc ON solid
FOR (solid_no)
USING B_TREE

An access path named solid_acc is defined on the 'solid_no' attribute of
atom type solid and uses the implementation technique of a b-tree.
Multidimensional access is defined in the same way by specifying some
additional attributes within the FOR-clause.
- Definition of sort orders

DEFINE SEQUENCE edge_seq ON edge
USING (length ASC)

This statement defines an ascending sort order named edge_seq on the
atom type edge, using its attribute 'length'.

4. Other Data Models

For the MAD model, we have advocated a symmetric and neutral
approach allowing for more powerful and complex constructs than the flat
relational model, but avoiding the bias on static data structuring and top
down traversal of hierarchical models like IMS [Mc77], as well as novel
ones as non-frrst-normal-form models [SS86,RKB85] and the so-called
complex-object model [LK84]. As already pointed out (cf. section 2.2),
one also has to cope with redundancy when modeling in an hierarchical
manner. One special utilization of the powerful link concept of MAD is the
construction of hierarchical structures and its support for non-first
normal-form relations. Consequently, the MAD model seems to contain a
superset of the capabilities of these proposals. Because of the system
enforced integrity control of reference and 'back- reference' (i.e. link
concept} a subset of the MAD model is equivalent to the relational model,
including its referential integrity requirement, when all foreign/primary
key relations are modeled by links.

The ability of the MAD model in direct and symmetric management of
network and recursive structures is a prerequisite for efficient mapping of
all abstraction concepts comprising aggregation, generalization,
association, and their hierarchies, as well as classification. Considering its
dynamic object definition and management capabilities it seems that the
MAD model is even more flexible than semantic and functional data
models [Sh8l,SS77,HM8l,Da85], whilst offering a comparable
powerful modeling ability.

MITSCHANG 155

Moreover, the MAD model is appropriate for the support of other
knowledge representation models [BF81,ML85] such as the Frame model
(introduced in section 2.1), that is, semantic nets [BS85] or rule-based
representation techniques are conceivable.

Object-oriented models [DD86] are mostly characterized by their facilities
comprising modeling and managing of meshed (or recursive) structures
that are frequently viewed from different points, depending on the actual
processing state. The link concept and the concept of dynamic molecules
combined with the expressiveness of MQL seem approximately equal to
these characteristics defming object orientation.

Comparing the MAD model to POSTGRES [RS87] is quite difficult. The
POSTGRES data model is also a derivation of the relational model which
has been enhanced by the ideas of abstract data types, data of type
procedure, and inheritance. POSTGRES has been designed as a data
model for a next generation extensible DBMS [SR86], whilst the MAD
model does not claim to be extensible in that sense. Both models allow for
object sharing, recursiveness, and dynamic object definition; both
languages offered are SQL-like and very expressive. The concept of data
type procedure looks quite powerful and resembles the link concept of
MAD when the procedure expressing references to other objects has been
evaluated, i.e. all procedure values have been precomputed. Though,
differences between or inclusion of these two models concerning object
modeling and management is subject to further, more detailed
investigations. Moreover, the overall applicability of both models and
their languages could only be determined by means of prototype systems,
testing the expressiveness, adequateness, and performance of each
approach.

Due to space limitation we cannot give a more detailed comparison. An in
depth discussion of the various models and their corresponding languages
remains to be subject for a subsequent paper.

5. Conclusions and Future Plans

Adequate information modeling in non-standard areas comprises the
abstraction concepts of classification, aggregation, generalization, and
association. The MAD model presented in this pap~r offers generic
mechanisms concerning accurate and efficient mapping of such an
information model. Its main philosophy is the ability to dypamically
construct molecules using atoms as elementary building blocks which may
be conceived as a dynamic view mechanism for complex objects.
Symmetric representation of all relationships (including n:m) and
derivation of complex (probably recursive) objects at run time are

156 EXPERT DATABASE SYSTEMS

considered prime prerequisites for accurate and effective modeling in non
standard applications where the 'view' of the object frequently changes.
This symmetric and neutral approach to complex objects allows for the
mapping of a wide variety of semantic and object-oriented modeling
constructs including objects with shared subobjects.

The focus of the paper has primarily been on justifying the design
decisions of MAD and on discussing and illustrating its major features,
whilst its implementation concepts were summarized in another paper
[HMMS 87] describing the database kernel PRIMA (PRototype
Implementation of the MAD model). A number of concepts used in the
PRIMA implementation pay attention to DBMS performance
requirements. Most important are the facilities of the load definition
language which are transparent at the MAD interface. They provide a
variety of access paths, redundant sort orders, partitioning of records, and
physical clustering to support efficient molecule construction. The
exploitation of these novel storage structures in combination with the set
orientation of MAD and its processing of heterogeneous record sets offers
new areas for query optimization.

Currently, the single-user version of PRIMA is under completion. For our
purpose, PRIMA is considered a research vehicle for a variety of DBMS
applications in possibly distributed engineering environments. Therefore,
it is intended to run as a 'generic' kernel in different kinds of either
centralized or multi-processor environments leading, from a 'kernel-only'
DBMS to a base system for workstation-host coupling [HHMM87], and a
tool for building multi-processor DBMS [HHM86].

Acknowledgement
T. Harder, K. Meyer-Wegener, and Nelson Mattos have read an earlier
version of this paper and have contributed to clarify and improve the
presentation of important issues. Also acknowledged is the help of H.
Neu and I. Littler for preparing the manuscript and of H. Molin for
preparing the final version. The work of the referees and the program
committee is also gratefully acknowledged.

6. References

BB84

BF81

Batory, D.S., Buchmann, A.P.: Molecular Objects, Abstract
Data Types and Data Models: A Framework, in: Proc. lOth
VLDB Conf., Singapore, 1984, pp. 172-184.
Barr, A., Feigenbaum, E.A.: The Handbook of Artificial
Intelligence, Vol. 1, William Kaufmann, Inc., Los Altos, CA,
1981, pp. 142-222.

MITSCHANG 157

BS83 Bobrow, D., Stefik, M.: The LOOPS Manual, Palo Alto,
California, Xerox, 1983.

BS85 Brachman, R.J., Schmolze, J.G.: An Overview of the KL
ONE Knowledge Represen- tation System, Cognitive
Science, Vol. 9, 1985.

CD86 Carey, M.J., DeWitt, D.J., et al.: The Architecture of the
EXODUS Extensible DBMS, in: [DD86], pp. 52-65.

Ch76 Chen, P.P.: The Entity-Relationship-Model - Toward a
Unified View of Data, in: ACM TODS, Vol. 1, No. 1, 1976,
pp. 9-36.

Da85 Dayal, U., et al.: A Knowledge-Oriented Database
Management System, in: Proc. Islamorada Conf. on Large
Scale Knowledge Base and Reasoning Systems, Feb. 1985.

Da86 Dadam, P., et al.: A DBMS Prototype to Support Extended
NF2-Relations: An Integrated View on Flat Tables and
Hierarchies, in: Proc. ACM SIGMOD Conf., Washington,
D.C., 1986, pp. 356-367 ..

DD86 Dittrich, K.R., Dayal, U. (eds.): Proc. Int. Workshop on
Object-Oriented Database Systems, Pacific Grove, 1986.

DKM86 Dittrich, K., Kotz, A., Mtille, J.: Database Support for VLSI
Design: The DAMASCUS System, in: CAD interfaces and
data transfer formats in electronics, Springer Verlag, 1986.

FK85 Fikes, R., Kehler, T.: The Role of Frame-based
Representation in Reasoning, in: Communications of the
ACM, Vol. 28, No. 9, Sept. 1985, pp. 904-920.

Ha86 Harder, T.: New Approaches to Object Processing in
Engineering Databases, in: [DD86], p. 217.

HHLM87 Harder, T., Htibel, C., Langenfeld, S., Mitschang, B.:
KUNICAD - A. Database System Supported Geometrical
Modeling Tool for CAD Applications (in German), in:
Informatik Forschung und Entwicklung, Vol. 2, No. 1, 1987,
pp. 1-18.

HHM86 Harder, T., Htibel, C., Mitschang, B.: Use of Inherent
Parallelism in Database Operations, in: Proc. Conf. on
Algorithms and Hardware for Parallel Processing CONP AR
86, Springer Lecture Notes in Comp. Sciences, Aachen,
1986, pp. 385-392.

HHMM87 Harder, T., Hiibel, C., Meyer-Wegener, K., Mitschang, B.:
Coupling Engineering Workstations to a Database Server, in
Proc. Conf. on Data and Knowledge Systems for
Manufacturing and Engineering, Hartford, Connecticut, 1987.

HM81 Hammer, M., McLeod, D.: Database Description wi~h SDM,
in: ACM Trans. on Database Systems, Vol. 6, No. 3, 1981,
pp. 351-386.

HMMS87 Harder, T., Meyer-Wegener, K., Mitschang, B., Sikeler, A.:
PRIMA - A DBMS Prototype Supporting Engineering

158 EXPERT DATABASE SYSTEMS

Applications, in: Proc. 13th VLDB Conf., Brighton, UK,
1987' pp. 433-442.

HMP86 Harder, T., Mattos, N., Puppe, F.: On Coupling of Database
and Expert Systems (in German), in: State of the Art, Vol. 1,
No.3, 1986, pp. 23-34.

LK84 Lorie, R., Kim, W., et al.: Supporting Complex Objects in a
Relational System for Engineering Databases, mM Research
Laboratory, San Jose, CA, 1984.

LMP86 Lindsay, B., McPherson, J., Pirahesh, H.: A Data
Management Extension Architecture, IBM Almaden Research
Center, San Jose, CA, 1986.

Mc77 McGee, W.C.: The Information Management Sysem IMSNS,
in: IBM Systems Journal, Vol. 16, No. 2, 1977, pp. 84-168.

Mi75 Minsky, M.: A Framework for Representing Knowledge, in:
The Psychology of Computer Vision (editor: Winston, P.),
McGraw-Hill Book Company, 1975.

Mi86 Mitschang, B.: MAD- A Data Model Managing Complex
Objects (in German), SFB 124 Research Report No. 20/85,
Univ. Kaiserslautem (revised Summer 1986).

:tv1L83 Meier, A., Lorie, R.: A Surrogate Concept for Engineering
Databases, in: Proc. 9th VLDB Conf., Florenz, 198~, pp. 30-
32. . '

:rviL85 Mylopoulos, J., Levesque, H.J.:. An Overview of Knowledge
Representation, in: On C<?nceptual Modelling {eds. Brodie,
M.L., Mylopoulos, J., Schmidt, J.W.), Topics in
Information Systems, Springer-Verlag, 1985, pp. 3-17.

PA86 Pistor, P., Anderson, F.: Designing a Generalized NF2 Data
Model with a SQL-Type Language Interface, Proc. 12th
VLDB Conf., Kyoto, '1986. 1~· ";..: .

PSSWD87 Paul, H.-B., Schek, H.-J., Scholl, M.H., Weikum, G.,
Deppisch, U.: Architecture and Implementation of the
Darmstadt Database Kernel System,. in: ACM SIGMOD
Conf., San Francisco, 1987, pp. 196-207.

RKB85 Roth, ·M. A., Korth, H.F., Batory, D.S.: SQL/NF: A Query
Language for --, lNF Relational Databases, Deptm. Comp.
Sciences, Univ. of Texas at Austin, TR-85-19, 1985.

RS87 Rowe, L.A., Stonebraker, M.R.: The POSTGRES Data
Model, in: Proc. 13th VLDB Conf., Brighton, 1987, pp. 83-
96.

Sh81 Shipman, D.: The Functional Model and the Data Language
Daplex, in: ACM Trans. on Database Systems, Vol. 6, No. 1,
1981, pp. 140-173.

SR86 Stonebraker, M., Rowe, L.A.: The Design of POSTGRES,
in: Proc. ACM SIGMOD Conf., Washington, D.C., 1986,
pp. 340-355.

MITSCHANG 159

SS77 Smith, J., Smith, D.: Database Abstractions: Aggregation and
Generalization, in: ACM Trans. on Database Systems, Vol. 2,
No. 2, 1977, pp. 105-133.

SS86 Schek, H.-J., Scholl, M.H.: The Relational Model with
Relation-Valued Attributes, in: Information Systems, Vol. 2,
No. 2, 1986, pp. 137-147.

X3H286 SQL Addendum-2, Doe. ISO!fC97/SC21/WG3 N143, ANSI
X3 H2-86-61, 1986.

