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Singularities of Rotationally Symmetric Solutions of Boundary Value Problems
for the Lamé Equations

Wir wenden die Theorie elliptischer Randwertprobleme in nichiglatten Gebieten mit konischen Punkten auf rotationssymmetrische
Lésungen von Randwertproblemen fiir Lamé-Gleichungen an. Die resultierende Entwicklung zieht singuldre Vektor-Funktionen
nach sich, die dann wieder von einem Parameter o. abhiingen. Wir stellen hier Gleichungen vor, die die Werte von o entweder
fiir unbelastete oder fiir Dirichletsche Rand-Bedingungen bestimmen. Wir geben einen numerischen Algorithmus an, mit dem
o berechnet werden kann und bringen einige Grafiken fiir die erhaltenen Werte. Die singuldren Vekior-Funktionen werden
explizit gegeben, und wir stellen Gleichungen zur Berechnung der Entwicklungskoeffizienten vor.

We apply the theory of elliptic boundary value problems in non-smooth domains with conical points to rotationally symmetric
solutions of boundary value problems for the Lamé equations. The resulting expansion involves singular vector-functions which,
in turn, depend on a parameter, o. We here present equations which determine the values of « for either stress-free or Dirichlet
boundary conditions. We give a numerical algorithm whereby w can be computed and present some plots of the values obtained.
The singular vector-functions are given explicitly and we present equations for the computation of the coefficients of the expansion.
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FHAUEHUA OM o UAW 048 HEHANPAKNCEHNbIX Lau oan kpaeewix yeaosutl Jupuxae. [laem uucaennviil aizopumm, 2de MONCHO
BHIYUCAUMD o U NPEOCMasiaem Heckoabko epagiukos noaywennvix 3navenuii. Cuneyaapusie sexmopusie @ynkyuu daromes 6
AGHOM (fopme U npedcmasifomes ypasHeHuA 048 BbINUCACHUA KOIPHHUYUEHMO8 PAIAOHCEHUA.

MSC (1980): 35J55

1. Introduction

It is now well known that singularities are present in the solution of the Lamé equations in conical domains. The general
theory, with two-dimensional applications is available in reference [1] and the Lamé equations are considered in reference
[2]. From this theory it is known that the radial (r) dependence of singular vector-functions is of the form »*In % where
¢ is an integer.

Here we are concerned with rotationally symmetric solutions of the Lamé equations with prescribed displacements
or stresses near a circular conical boundary point. This application of the theory of elliptic boundary value problems in
non-smooth domains with conical points is, to our knowledge, completely original, though some values of « for ¢ = 0 in
the context of stress-free or zero displacement boundary conditions have been computed, see reference [3].

In this paper we formulate the regularity problem in weighted Sobolev spaces, thus motivating the calculation of
«. We consider bounds on the values of ¢ and give a complete description of the singular vector-functions that appear in
the asymptotic expansion near the conical point. This involves the solution of transcendental equations involving Legendre
functions. We describe an efficient method for the computation of these functions and solving the equations, and include
some plots of the resulting solutions. Finally, we present the singular vector-function expansion and give equations whereby
the coefficients appearing in the expansion can be calculated.

2. Formulation of the problem

Let © be a three-dimensional bounded domain with a circular conical point # on its boundary (see Fig. 1). Assume that
the displacement field u(x) of this isotropic elastic body satisfies the linear equation system

Lu= LD )ux)=pAux)+ (A+ uw)V(V-ux)=—f(x) for xeQ, (2.1)

Liu=L{(D,)ulx) = u(x) =g (x) for xeo@, (2.2)
or

L.u= L,(D,) u(x) = S(u(x)) M(x) = g,(x) for xe0dQ, (2.3)

where 4 and p are the Lamé constants, f(x) is the vector of the volume forces, g, (x) is a prescribed displacement (Dirichlet
conditions), g,(x) is a traction (Neumann conditions). S(u(x)) denotes the stress tensor, with Cartesian components
e P § PP, S5 (24
ax Bx:l ! ( )

(Sl = 1 [ :

where u; is the i-th component of u(x) and ¢;; is the Kronecker symbol. M(x) is the unit vector of the outward normal to
0Q at the point x.

au; au}

0
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Z

Fig. 1. A body with a rotationally symmetric conical vertex

We are interested in the behaviour of the solution # of problem (2.1), (2.2) and (2.1), (2.3) near the apex 0. This is
a local problem. Therefore we introduce spherical coordinates (r,#, @) and multiply u(x) by a cut-off function
n = n(jx]) = n(r)e C*(0, o), where 0 < #(r) £ 1 and

G o van @s
The number d is so small that the ball B,;(0) intersected with Q coincides with the cone
K;={(r6,0):0<r<40=<60<6,0=50¢<2n}.
Let w = nu. The field w satisfies the following boundary value problem in the infinite cone K = K,
Lw = F(x,u(x)) for xekK, (2.6)
Lw = Gix,u(x)) for xedK, £= 1.or2; 2.7

where the right hand sides F, G, can be computed from f, g;, n and the unknown field # and its first derivatives.

The analysis of the solvability and regularity of problem (2.6), (2.7) is well developed in the framework of standard
Sobolev spaces [4], [5] or in the framework of weighted Sobolev spaces [1, 2, 6, 7].

We consider the theory in weighted Sobolev spaces and define:

VEP(K, B) (2.8)
to be the closure of the set

C%(K) = {ve C*(K), supp v bounded, suppv n M = @ for M = {0}}
with respect to the norm

lv; VE2(K, B)|| = (I ;k ,{ Do (x)[Pre B k1D dx)”", (2.9)

where we use standard multi-index notation. We also let
k- UP-P[aK, B]

be the space of traces, defined as the factor space
VEI(K, B)/VEP(K, B, OK),

where V*?(K, f, 0K) is the closure of C3%(K) with respect to the norm (2.9). The weighted space V*?(®, p) is defined
analogously to V*?(K, p).
We now consider the operators corresponding to the problem (2.6), (2.7)

Ai(D,) = {L(D,), L(D,)}:[V'">?(K, B
- [VEP(K, PP x [ViIT3-i-vrr@aK, B}, i=1lor2, (2.10)

where [X]* = X x X x X.
Introducing in (2.6), (2.7) polar coordinates (r, 0, ¢) and using the Mellin transform with respect to r,

x

L j. r_a_lw(r: ﬂ,cp)dr,
/2n
0
we get for [ = 0, p = 2 a parameter dependent boundary value problem with the operators
A, D,) = {L(e, D,,), Li(et, D)} : [W*2(S)P° — [L*(S)]P x [W212~2(@s)]?, (2.11)

where @ = (0, @), S is the solid angle of the cone K and W*?(S) are the classical Sobolev spaces.

w(x, 0, @) =
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The distribution of the eigenvalues of the operators A4;(«, D,,) determines the regularity and solvability of the original
problem (2.1), (2.2) and (2.1), (2.3).

Definition 1: The complex number « = «, is an eigenvalue of A;(x, D), i = 1 or 2, if there exist I, (= 1) nontrivial
linearly independent solutions e («,, ) in [W*2(S)]*, ¢ = 1, ..., I,, of the system A4,(x, D,,) ez, ®) = 0 for o = a,. e°(,, ®)
is an eigenvector-function of A;(«, D,) with respect to «, The vector functions e!(a,, w), ..., e (a,, w) are associate
vector-functions to o, and e° (a,, ®) if

g I 34i(ot Do)

e () =0 2.12
o (@ @) (2.12)

for s = 0, ..., k — 1. The vector-functions e, ..., e~ ! generate a Jordan chain of length k.
The following solvability and regularity theorems are formulated in references [1], [6], [7] and [8].

Theorem 1 (Solvability): The operators (2.10) are isomorphisms iff no eigenvalue of A;(, D) lies on the line
Re(@) = =B —3/p+2+1

Theorem 2 (Regularity): Assume that the right-hand-sides of (2.6) and (2.7), F and G; satisfy
Fe[V'*(K, B n [V""?(K, B))
and

Gi e [VH;_I_UP'P{aK, ,8)]3 N [VI’+3+:'— lfp'.p'{aK’ ﬁr)P .

If no eigenvalues of A;(e, D) lie on the lines
3 3
Re(@) = —f——+1+2=—h and Re(@)=—-h'= - ——+1+2
P p

and if the eigenvalues o, o, ...,0y are situated in the strip —h < Re(x) < —h, then the solution of (2.6), (2.7),
we [VIT22(K, P)Pallows the following expansion,

N In Jan—1

W{r, w) Z Z Z Caknwk n{r! w} + v{rs (ﬂ} s (2'13)

n=1es=1 k=0
where v(r, w) e [V 27 (K, B3,
I, = dim ker (4,(«, D,,) = dim span {e%(,, ®), ..., €} («,, )}

is the number of linearly independent eigenvector-functions to a,. J,, is the length of the Jordan chains, C,, are constants
and

k
Wi a(ro) =r ) (Inr) et (o, o) (2.14)
=0

are the so-called singular vector-functions.
We now go back to our problems (2.1), (2.2) and (2.1), (2.3), assuming that
w=nue[VTRUK PP, nfeVEK PP n [VEP(K, B
and
ng € [V' 3" VRPQRK, B N [VIITITURP K, B, i=1,2.
Then the right hand sides of (2.6) and (2.7) satisfy the suppositions of theorem 2 and we have

Theorem 3: Let u be a solution of problem (2.1), (2.2) or (2.1), (2.3) for which the above suppositions are satisfied.
Then the expansion

In Jdan—1

aggay=3 3 £ 1Coua(r,0) + tofr, ) | (@.15)

n=1a=1 k=
holds, where uy e [V"' 22 (Q2, B))® and —h < Re (o) < —H,n=1,...,N.
Proof: Using expansion (2.13) we get for

u(r, ) = nu(r, ) + (1 — p?)u(r, w) = yw(r,») + (1 — 7?) u(r, w)
¥ L Tt

= Y Y Z ContWi a1, ©) + no(r, @) + (1 — n?) u(r, ).

a=1la=1 k=

Setting u, = no(r, w) + (1 — ) u(r, w) we get (2.15).
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Remark: The assumption w = que V'*2?(K, B)]® is always satisfied for an appropriate §. Il we start from a weak
solution u € [W12(Q)]® to (2.1), (2.2) for the Dirichlet problem with homogeneous Dirichlet conditions (i.e. g,(x) = 0) then
u is contained in

V222, 1)) orevenin [V*%(Q, —Re (x,) + 1 + &)]°,

where £ > 0 is a small real number, o, is the eigenvalue with smallest (positive) real part and f is sufficiently smooth.

If we consider the weak solution u e [W'-2(Q)]* of the Neumann problem (i.e. g,(x) = 0) we get that « is also from
[V*2(Q, —Re (2o) + 4 + ¢)]® for an appropriate f. Therefore we have to consider the eigenvalues « with Re () > — }
starting from u e [V22(Q, 1)]°. We will see later that the strip — } < Re () < 0 is free of eigenvalues.

Now we are able to formulate our problem in the context of weighted Sobolov spaces:

Calculate the singular part of expansion (2.15), ie. calculate I,, J,,. C, and wi,(r, o).

3. Rotationally symmetric solutions of the Lamé equations

When studying problems over bodies with circular conical points (such as that shown in Fig. 1) it is natural to use spherical
polar coordinates (r, , ¢) with origin at the apex 0. In these coordinates the local orthonormal basis vectors are

e, = (sin 0 cos @, sin # sin ¢, cos 6)", ¢, = (cos O cos @, cos O sin ¢, —sin 0) ,
e, = (—sin ¢, cos ¢, 0)7,
so that any vector wcan be writtenasu = u.e, + uye, + u,e,. Anyrotationally symmetric vector field will have the form
u(x) = u,(r, 0) e, + uy(r, 0) e, = (e,e5) a(r, 0). (3.1)

The displacement field in a rotationally symmetric body will have this form if all the forces acting on it are themselves
rotationally symmetric. We seek singular vector-functions (see (2.14)) of the form

wi(r, @) = r*(G,(0) e, + G,(6) &) = r'eg = (e,. €) W5 . (3.2

Substituting this into the homogeneous Lamé equations ((2.1) with f = 0) gives

L(x, Dy) (g')

_(Gf+c0t8(};+ (e — 1) —a — 1) Gy + bz — 1) (& + 2) G, + (¥ — 1) — o — 1) cot 8G,

= 33
VGy + (F(o + 2) — o) G, + Vcot 6G, + (a(x + 1) — 9/sin? 0) G, ) G-)

where # = 2 + A/u and the prime (') denotes differentiation w.r.t. the argument. We have for (2.11) that L(x, D,)
= (e,e;) L(x, D). Tt is well known that a system of m ordinary differential equations of order n has m ' n linearly
independent solutions, so for (3.3) there are four such solutions to be found.

We use the Papkovich-Neuber potentials [9] to construct the solutions. Thus

u=4(1—-vB—-V(x-B+ B,), (3.4)

where v is Poisson’s ratio (v = 4/2(4 + p)), B = (By, By, B3)" and B,, i = 1,2, 3, 4, are harmonic functions. In spherical
polar coordinates (3.4) becomes

0B 0B,
re,-a + ¥
u= :r={3—4u) ﬁj — e-a—8+ia& (3:3)
= et "2  r 06 ' '
* " 1 0B 1 OB,
kme' %ersinB a
If we now take
By =B, =0, By=cyF,(0), By=cy""'Fuy,(0), (3-6)

where, for the B; to be harmonic, F,(8) = P,(cos ) or F,(0) = Q,(cos 8), (the Legendre functions of the first or second
kind) then we have, via (3.5), the necessary four linearly independent solutions of (3.3). Of these solutions those arising
from F,(0) = Q,(cos 8)involve unbounded displacements, so we exclude them. Substituting (3.6) with F,(6) = P,(cos 0) = P,
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into (3.5) we obtain the general form of the rotationally symmetric solutions of the Lamé equations,

s clr“( [3f4v—-u)P,c056l )_{_czrx(—(cfcﬂrl}}’,ﬂ)
P,cosfsinfl — (3 — 4v) P, sin @ sin( P,

A(2,0) By (2, 0) - &
3 {C‘ (An(cx, 9}) e (Bn(a. 9))} =¥+l

where we have used the notation of (3.1), so that

e} = (e,e9) (c,A + ¢,B), 3.8)

j(ag)z(Au(&,B))=( (3 — 4v — %) P, cos 6 ) E(a6}=(B”(m,8))=(_[a+1);:’“)
T ~ \(P,cos8 — (3 — 4v) P)sing)’ T \By @0/ \ sin0P,, /)

(3.7)

and

4. Homogeneous boundary conditions

We here consider the equations that result from applying the boundary operators L, i = 1 or 2 of (2.2) or (2.3) to our
solution (3.7). From these we find the values of the «,, their multiplicities, I,, the eigenvector-functions and associate
vector-functions and information about the lengths of the Jordan chains, J,,,. We define Ly(e, D,,) e2],-q, = (e,e;) M;(, 6,) ¢,
i=1lor2

For the Dirichlet boundary conditions (i = 1) we obtain

Ay (o, 8p) Byylo ﬂu)) ("31)
Mz, 8,) e = ! (4.1)
Lk (An(“s B8y) By(o8p)/ \c2

For the stress-free boundary condition (i =2) we have for this problem that M(x) = e, so that
S(u(x)) - M(x) = (0,40400,0)" With g, = 0 due to the rotational symmetry. We obtain

e= Aya(e, 0) Byale, 80]) (Cl) 4.2
Haln Sl o= (An(“v 90) B, (2, 85)/ \c, : e

where
Ao, 0) = (PLcos O(x + 2v — 2) + P,(2v — 1) &) sin 62,

Ass(, 0) = (a(x + 2v) P,cos 0 — (1 + sin? 8(2v — 3)) P}) 2,
B ) = asin P, 2u,  Bay(a,0) = (Pyy( + 1)> — PLyqycos 6)2u.

For a to be an eigenvalue of our operator A4,(x, D,) (see 2.11) with eigenvector-function ef it is necessary that
L2, D,) €%ly—p, = 0 has a non-trivial solution. From the definition we thus require that

det M; = D;(f4, @) = 0, i=1lor2, (4.3)

These equations provide, on simplification, the following transcendental equations from which the eigenvalues, a,, are to
be evaluated for 8, € (0, n):

- 1
D8y, o) = —9—;—) (P2 cos Ogfa + 4v — 3) + PP, (3 — 4v — cos? Oy(2x + 1))
sin
+ P2, cosfy(e + 1)) =0,
2
D,(6,, &) = 2-(3—":-9& [P2 cos B,(2(1 — v) cos? 8, — afx + 1)sin? ;)
sin® 6,
— PP . (a(2x + 1)sin* By + 4(1 — v)cos? B, — a(ax + 1)sin? 6,
+ P2, cos 0(2(1 — v) — a(z + 1)sin? G,)]
= 2a(x + 1) (D, (6, %) — 4(1 — v) sin B,P,P,) + 2(1 — v)sin 26,P> = 0. (4.4)
At each point (8, ,) where D;(6,, o,) = 0, i = 1 or 2, there is a non-trivial solution ¢;, i = 1 or 2, to be found, for
which it is necessary to check via (3.8) whether e2(r, ) is an eigenvector-function of the operators 4;(x, D,); e.g. ¢ = —1

yields no eigenvector-function for the Dirichlet problem. From (4.1) or (4.2) we obtain that ¢ = (B, (o, fg) — A;i(2, )7,
i = 1 or 2, yields such a solution, Thus, in (3.7), we have that

"-'E.n =5 ran(’;[an! 9) B“(Gf.", 60] - g(«m B) Aii(am BOD - . M‘SJ

We have thus computed the eigenvector-functions €°(x,, w) of (3.8).
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Fig. 2. Values of w«, dependence on 0y for Dirichlet Fig. 3. Values of @, dependence on 0, for stress-free
(i = 1) boundary condition, v = 0.3 (i = 2) boundary condition, v = 0.3

We note that the dimension, I,, of the eigenspace is unity for Re (x) > 0: For there to be an eigenvector-function
that is linearly independent of that above it is necessary in (4.1) or (4.2) that A;; = B;; = 0,j = 1,2,i = 1 or 2. This does
not happen for 6 € (0, n). We define wi , = w, , and ¢! = &

When o = 0, (4.4) is satisfied for all f,. Substituting ¢ = 0 in (3.7) we obtain that @ = (cos # — sin 6)" so that, in
(3.1, u = (00 1)". For the stress-free boundary conditions this eigenvector-function is the rotationally symmetric rigid
body motion along the z-axis. Clearly it is not a singular vector-function. For the Dirichlet boundary conditions there is
no non-trivial solution.

We are thus left with equation (4.4) to be solved for « > 0 given the value of 0,. Solving D,(f,, 2) = 0 produced
the curves of Fig. 2 for v = 0.3 and solving D,(f,, «) = 0 produced those of Fig. 3 also for v = 0.3. The real values of
are joined by solid lines, whilst the complex values are joined by dashed lines. Our method for obtaining these curves is
described in the next section, where we also comment on the values obtained.

We recall formula (2.13) and now investigate the existence of associate vector-functions. The following lemma of
NAIMARK [10] gives a connection between the length of the Jordan chains, J, = J,,, and the multiplicity, m(a,), of the
zeros o, of Dy(0,, 2,),i = 1 or 2.

Lemma:

miey) 2 J, .

)
Ifm(e,) = 1 then = Dy(8,) + 0 and there are no associate vector-functions, However at branch points of graphs
o

T =dn

of (6,, o,) (see Fig. 2 and Fig. 3) the zeros are not simple,

d

D) =0, (456)
Oot

A=dn

and there are associate vector-functions to be found.
We note that L(e, D) e°(¢, w) = 0 for all « so that

0
— [L(2, D,,)] €°(et, w) + L(o, D) E e, ) = 0. 4.7
O Ca

Comparing with (2.12) we see that

(4.8)

e'(o, w) = 2 (o, )
da

X=dn

Li (a%.’ 0(0:’ 0))

):0, o Fard: (49)

Performing the differentiation we see that (4.9) holds if (4.6) holds, so an associate vector-function, e'(a,, @), is given by
(4.8), i.e. from (4.5) and (3.8),

5] a = @ G o=
e' (2, ) = (e,ep) (2‘ v By; + By, o A—B—A;— Ay — B) (4.10)

Oot Oot

& =qn
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5. Algorithmic details

To find the roots of equations (4.4) we developed the technique described in [11]. The Mehler-Dirichlet formula (see e.g.
[12]) gives that

P.cos @) = l[j cos{a+§)t dr. (5.1)

cost — cos 0

The integrand’s denominator can be written as

. ft+6\ , ft=28 2 ki
[—sm( > )sm( 5 )(I_g)(t—ﬁ)] : (5.2)

The last factor in (5.2) is passed as a weight to a Gauss-Jacobi integration procedure and the product of the middle two
factors is, for ¢ — 6 < 0.001 approximated using the first two terms in a Taylor series. The NAG [7] integration routine
used works adaptively to a specified accuracy and thus P,(cos 0) is calculated.

Our strategy for finding « satisfying

F(0p,0) =0 (5.3)

with F given by (4.4) is to initially seek a local minimum of [F(8,, )| near a guess o, of  to an accuracy of 10~3, This
is passed, as a first approximation to «, to a root finding routine which works on the system formed by the real and
imaginary parts of F as functions of the real and imaginary parts of o. Use of this strategy was found to ensure convergence
to a root. The accuracy to which the P,(cos 8,) were calculated was, to save computational time, restricted by the estimated
proximity to the root.

The curves of Fig. 2 and Fig. 3 were obtained by starting from the known, integer, limits as 6, — n. Each subsequent
point was found at a smaller value of 6, using as initial guesses the previous root plus and minus 0.15. In this way the
branches were located.

We compare these curves with those obtained in [11] for the dominant (smallest) «, p for the Poisson problem in
the same domain with Dirichlet boundary conditions. In the context of the Lamé equations we denote the dominant «’s
for the Dirichlet and stress-[ree boundary conditions by, respectively, o, and «g. We observe that

0< 8, <mf2 tp < Op < O
if 90 = J'L'/Z then Up = dp = as =1 v (5.4)
2 <ly<m op > op and og > ap

These inequalities were verified for a range of values of v, in fact there was seen to be only a small dependence on v for
v in the interval (0,1, 0.4) (cf. [3]).

The smallest value of ag, oy occurs at an angle 0, = 8 depending on v. The variation of 6y, (solid line) and ),
(dashed line) on v is shown in Fig. 4. It is seen that the minimum value of oy is larger than 0.6681. Using this information
and (5.4) we obtain bounds on o5 for any f; and v.

175t
1.50F
125’-

100+
o I i T
0.50r

0251

i : . i i Fig. 4. Variation of A, and o, with v
o1 02 03 04 os
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6. The calculation of the coefficients

The constants, C,,,, in expansion (2.15) for g;(x) = 0,i = 1 or 2, can be computed by applying the results of Maz’ja and
PLAMENEVSKI) [8]. We consider the cases m(o,) = | and m(a,) = 2 separately.

(1) m(a,) = 1:
Cion = Coy = J L(D,) (nu) vy, dx, (6.1)
n
where vy, = Ko,e%ak, o) r*™*, of = —d, — 1,€° given via (4.5) and K,, is a constant which is determined by the

orthonormality condition,

KD" JaLa[un) 90{01“; w} * mdw = (L’wo‘ uﬂ) == 1 )
o

s

(1) mla,) = 2:
Ciox = Con = ‘{ L(D,) (nu) ¥,dx, Cyy,=Cy, = ’{ L(D,) (nu) vq, dx , (6.2),(6.3)

where v,, = K,, (In re®(a*, @) + e'(a*, @) r*=. It is shown in reference [8] that K, and K, can be chosen to satisfy the
following biorthogonality conditions (notation as above),

(L'wgy ) = 0, (L'wo, vy) + § (L"wp,0p) = 1, (L'wy, vg) + 3 (L"wg,v5) = 1,
(L'wy,v) + 3 (L"wy, v5) + 4 (L"wo, v;) + 5 (L"'wo, v5)= 0.

If this is done, the coefficients Cg, and C,, are given by (6.2) and (6.3), respectively.

7. Conclusion-theorem

We have established that rotationally symmetric solutions of boundary value problems for the Lamé equations possess
the following expansion near rotationally symmetric vertices.
N da=1

u(r, ) = Zl kza NCiaWy,n(r, ®) + uy(r, ) : (7.1)
The conditions are given for expansion (2.15) of Theorem 3. Here the functions w,_,(r, ®) (= w; ,(r, @) of (2.14)) involve
the values of 2, indeed the value of N in (7.1) is similarly determined. The «, are calculated from (4.4) — for v = 0.3 their
values can be read from Fig. 2 or Fig. 3 depending on the relevant boundary conditions. The vector-function wg, is given
by (4.5) using (3.7) or (4.2) (Dirichlet or stress-free boundary conditions). The constant C,,, is given by (6.1) unless J,, * 1.
If J, = 2 (such as at branch points of Fig. 2 or 3) then the adjoint vector-function e' of (4.10) is required for w,_,(r, @)
and the constants C,, and C,, are given by (6.2) and (6.3).

Thus we have proved the following

Theorem 4: Let u be a solution from [V2T'2(Q, B of problem (2.1), (2.2) or (2.1), (2.3) for fe[V''* (@, )P,
g e[V 1P P @Q, B, org, e (VI PP @RQ BV Z L =B +3/p =21 < B+3/p—2— 1= h Assume
that no eigenvalues of the operators A;(x, D,,), i = 1 or 2, are situated on the lines Re(e) = —h and Re(x) = —h'. Then the
Jollowing expansion (see (2.15)) holds near the conical point 0 with angle 0, € (0, n):

u(r, m) = y Cour™e® (2, )

"
—h<Rel(ap)<—h
mian) =1

+ b Con™"€” (0, @) + €, (In re®(a,, @) + €' (2, @) + up(r, ),

n
—h<Relan)< -’
mign)=2

where uy(r, @) e (V2" (Q, B, é,, is given by (6.1) (where cq, = éo,), Con by (6.2) and ¢, by (6.3); €°(a,, @) is computed
by (3.8) via (4.5) and e* (,, ®) is given by (4.10); m(w,) is the multiplicity of the zeros of Di(o, o,)),i = 1ori = 2 (see (4.3)).
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