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Singularities of Rotationally Symmetric Solutions of Boundary Value Problems 
for the Lame Equations 

Wir wenden die Theorie elliptischer Ralldwertprobleme in nichtglot ten Gebieten mit konischen Punk ten auf rololiollssymmelrische 
lJ)sungen vall ROllm..·ertproblemen/iir Lame-Gleichungen an. Die resultierende Entwick/ung ziehl singuliire Veklor-Funktionen 
/loch sich, die donn wieder von einem Parameter ex abhiingen. Wir stellen hier Gleichungen vor, die die WertI' von ex elllweder 
for unbelastete oder fur Dirichletsche Rand-Bedingunge/l bestimmen. Wir geben einen numerischen A/gorithmw an, mit dem 
IX bereclmet werden kann und bringen einige Grafiken for die erlia/unen WertI'. Die singuliiren Veklor-Funklionen werden 
exp/izit gegeben, wnd wir stellen Gleichungen zur Bereehnung der Elllwicklrmgskoejflzlelllen vor. 

We apply the theory of elliptic boundary vulue probfemr ill nOll-smooth domains with eOllical poi/liS /0 rotatiollally symmetric 
solutiolls of boundary value problemrfor the Lame equations. The resulting expansion involves singular veclOr-junctions which, 
in turn, depend on a parameter, a. We here pre.relll equations which determine tht> !;afues of afar either $Iress-jree or Dirichlet 
boundary conditiollS. We give a nwnerical algorithm whereby IX call be computed and preselll some plots of the values obtained. 
The singular vector-junct iOlls are given explicitly and we presem eqr/Otiolls for the computation of the coefficients of the expansion. 
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6eKnTOpHI>le rfjYHKIjIlU. KOmOpl1J.e, no Oliepeou, Ja8UCHm am napuMempo 11. Joec" IIpeocm0811HeM ypa8HeHuH onpeoeIlH!QI/JueCR 
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}/8HOM rjJopMe U npeOCma811J1!QmC}/ ypa6HeHUII OIlR 6bl'lUClleIiUJI K03rjJrfjuljueHm08 paJIIOJICeIlUJI. 
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1. Introduction 

It is now well known that singu larities are present in the solution of the Lame equations in conical domains. The general 
theory, with two-dimensional applications is available in reference [I] and the Lame equations are considered in reference 
[2J. From this theory it is known that the radial (r) dependence of singular vector-functions is of the form r~ In ~r where 
q is an integer. 

Here we are concerned with rotationally symmetric solutions of the Lame equations with prescribed displacements 
or stresses near a circular conical boundary point. This application of the theory of elliptic boundary value problems in 
noo-smooth domains with conical points is, to our knowledge, completely original, though some values of IX for q = 0 in 
the contex t of stress-free or zero displacement boundary conditions have been computed, see reference [3J. 

In this paper we formulate the regularity problem in weighted Sobolev spa<;es, thus motivating the calculation of 
::r: . We consider bo unds on the values of q and give a complete description of the singular vector-functions that appear in 
the asymptotic expansion near the conical point. This involves the solution or transcendental equations involving Legendre 
fu nctions. We describe an efficient method for the computation of these functions and solving the eq uations, and include 
some plots of the resulting solutions. Finally, we present the singular vector-function expansion and give equations whereby 
[he coefficients appearing in [he expansion can be calculated, 

2. Formulation of tbe problem 

Let Q be a three-dimensional bounded domain with a circular conical point 0 on its boundary (see Fig. I). Assume that 
the displacement field u(x) of this isotropic elastic body satisfi es the linear equation system 

Lu ~ L (D.)u(x) ~ ~~u (x) + (i. + ~)V(V' u(x)) ~ - f(x) for x ell, (2.1) 

(2.2) 
or 

(2.3) 

where J. and J.l are the Lame constants, f(x) is the vector of the volume forces, gl (x ) is a prescribed displacement (Dirichlet 
conditions), g 2(X) is a traction (Neumann conditions). S(u(x)) denotes the stress tensor, with Cartesian components 

[0', "'J] {S(u(xllIJ "" Jl - + - + tJij XV . u(x) , 
ox} ox; 

(2.4) 

where Ui is the i- th component of u(x) and Olj is the Kronecker symbol. M(x) is the unit vector of the outwa rd normal to 
oD at the point x. 
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'" 
, Fig. I. A body with a rotationally symmetric conical vertex , 

We are interested in the behaviour of the solution" of problem (2.1), (2.2) and (2.1), (2.3) near the apex O. This is 
a local problem. Therefore we introduce spherical coordinates (T, 0, rp) and multiply u(x) by a cut-off function 
'I = ,,(Ixl) = I/(T) € CCO (O, co), where 0 ~ ,,(r) ~ ! and 

{
I for O:5r:5b 

lI(r) := - -
o for r~2b . 

The number J is so small that the ball 826(0) intersected with Q coincides with the cone 

K& =: {(r,8,rp):O < T < b,O;;;; 0 < 00,0;;; cP < 2n } . 

Let IV = "u. The field HI satisfies tbe following boundary value problem in the infinite cone K =: Kco, 

Lw "" F(x, u(x)) for x € K , 

Liw = G/(x, u(x)) for x € oK , i =! or2 , 

wbere the right band sides F, Gj can be computed from [ , C/, '1 and the unknown field u and its first derivatives. 

(2.5\ 

(2.6) 

(2.7) 

The analysis of the solvability and regularity of problem (2.6), (2.7) is well developed in the framework of standard 
Sobolev spaces [4J, (5) or in the framework of weighted Sobolev spaces [t o 2. 6, 71. 

We consider the theory in weighted Sobolev spaces and define: 

V··'(K. P) 
to be the closu re of the set 

CM(K) == {v E C"" (K), supp v bounded, supp v n M = 0 for M = {O}} 

with respect to the norm 

Ilv; Vt.P(K, mil = ( ~ J I D7v(xWTpt~- k+ITIl dxll'I', 
171 i t K. 

where we use standard multi-index notation. We also let 

V~ -I/"'(oK, fi) 

be the space of traces, defined as the factor space 

Vk·'(K , fJ)Jyt·I'(K, fl. oK) , 

(2.8) 

(2.9) 

where Y~· '(K. p, oK ) is the closure of C~(K) with respect to the norm (2.9). The weighted space V~·'(Q, m is defined 
analogously 10 Vk·'(K , fJ). 

We now consider the operators correspond ing to the problem (2.6), (2.7) 

A,(D.) = (L (D.). L,(D.)} , [V'''''(K, Pll' 
i=10r2 , 

where IX]} = XxXxX. 
Introducing in (2.6), (2.7) polar coordinates (r, 0, cp) and using the Mellin transform with respect to T, 

• 
"( •. o.~)~~ f '-· - 'w(" O. ~)d" 

we get for I = 0, p = 2 a parameter dependent boundary value problem with tbe operators 

Akt, D .. ) = {L (o:, D",), Li(ac. D .. )} : [W2.2(SW _ [L2(S)f x [W21 /1-1.2(3S)]}, 

where w = (0, cp), S is the solid angle of the cone K and Wk.,(S) are the classical Sobolev spaces. 

(2.10) 

(2.11) 
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The distribution of the eigenvalues of the operators A,(a, D..J determines the regularity and solvability of the original 
p,obl,m (2.1), (2.2) and (2.1), (2.3). 

Definition 1: The complex number a = IX .. is an eigenvalue of Ala, D",), i = lor 2, if there exist I~ (;;:; 1) nOnlrivial 
linearly independent solutions e2(a", (I)) in [W 1

•
2 (S)p, (J = 1, .. . , 1", of the system Ai(!:\:, D",) eta, (I) = 0 for a = a~. e2(a8, (I)) 

is an eigellIJecror-funclion of A/(a, D",) with respect to a~. The vector functions e!(a",w), ... ,e!- I(a", w) are associate 
veclor-fulIctions to a" and e~ (a", (I) if 

f. ~ alA1(an, D",) e: - i(a (I)) = 0 
; - 0 j! arxl " "' 

(2.12) 

for s = 0, ... , k - 1. The vector-functions e~, ... , e:. -1 generate a Jordan chain of length k. 
The following solvability and regularity theorems are formulated in references [I], [6], [7] and [8]. 

Theorem 1 (Solvability): The operators (2.10) are isomorphisms iff no eigenvalue of Ai(a, D,J lies on the line 
Re(a) = -fJ - 3/ p + 2 + I. 

and 

Theorem 2 (Regularity): Assume that the rig/ll-hami-sides of (2.6) and (2.7), F and G/ satisfy 

FE [V'.P(K , /1)J3 n [V"'P' (K, P'W 

G1 € [Vi " 3-/-111'.P(uK, (JW n [V" +3- j-W.P'(uK, (J')]) . 

If no eigenvalues oj A ,(o:, D{1j) lie on the lines 

3 
Re(a) = -(J - - + 1 + 2 ;::0 - h 

P 

3 
and Re(lX) = -h' E -{J' - - + /' + 2 

p' 

and if the eigenvalues a l ,a2' ... ,a,.. are situated in the strip -h < Re(a) < - h', then the solution of (2.6), (2.7), 
w € [V/-t 2. P(K, (J)]3 allows the following expansion, 

,.. 1" J~~ - l 

w(r, (I) = L L L C"b(l):.~(r, (I) + v(r, (I) , (2.13) 
~ _ l .. .. 1 k " O 

where vCr. (0) E [V"+l,p·(K, (J')j3, 

I. = dim ker (A/(a, D .. ) = dim span {e~(a", (I) , ••• , e?Ja~, (I))} 

is the number of linearly independem eigenvecfor-!unctions to a •. J <on is the lenglh oj fhe Jordan chains, C~b are cons tams 
and 

• 
wtn(r, w) = r"" L (In r)' e:-'(IX", (I) (2.14) .-0 

are the so-called singular vector-fullclion.~. 

We now go back to our problems (2.1), (2.2) and (2.1), (2.3), assuming that 

and 

i = 1, 2. 

Then the right hand sides of (2.6) and (2.7) satisfy the suppositions of theorem 2 and we have 

Theorem 3: Lei" be a solulion oj problem (2.1), (2.2) or (2.1 ), (2.3)for which the above suppositions are satisfied. 
Then the expansion 

N / . J~" - l 

u(r, (I)) = L L L 1/C"hwL(r, w) + uo(r, (0) (2.15) 
.-1 ,, - I ~ - o 

holds, where " 0 € (V" + 2· p ·(a, (J')]J and -h < Re (a.) < - h', 11 = I, ... , N. 

Proof: Using expansion (2.13) we get for 

u(r, w) = I/ 2u(r, (I) + (\ - 1/ 2) u(r, w) = I/w(r, w) + (1 - 1/2) u(r, (0) 
N / . J~" - l 

= L L L C"hl/W: .• (r, w) + I/v(r, (0) + (l - 1/ 2
) u(r, w) . 

,, _1 ,, _ I ~_O 

Setting Uo = I/!!(r, (I) + (I - ,,2) u(r. w) we get (2.15). 
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Re ma r k: The assumption", = qU E VI+1" (K, .B)J3 is always satisfied for an appropriate p. lfwe start from a weak 
solution u € ["!i.2(Q)]3 to (2.1 ), (2.2) fo r the Dirichlet problem with homogeneous Dirichlet conditions (i.e. g j(x) == 0) then 
u is contained in 

where £ > 0 is a small real number, lIo is the eigenvalue with smallest (positive) real part and f is sufficiently smooth. 
If we consider the weak solution u € [W i .1(Q)]3 of the Neumann problem (i.e. gJ(x) == 0) we get that u is also from 

WZ.2 (Q, - Re (ao) + 1 + e)p for an appropriate f. Therefore we have to consider the eigenvalues IX with Re (Il) > - t 
starting from UE [V2 .2(Q, tW. We will sec later that the strip - 1 ~ Re (IX) < 0 is free of eigenvalues. 

Now we are able to formulate our problem in the context of weighted Soholov spaces: 
Calculate the singular part of expansion (2.15), i.e. calculate In, J"", C"h and w:ft(r, (1). 

3. Rotationally symmetric solutions of the Lam~ equations 

When studying problems over bodies with circular conical points (such as that sbown in Fig. I) it is natural to use spherical
polar coordi nates (r, e, cp) with origin at the apex O. In these coordinates the local orthononnal basis vectors are 

e, == (sin 0 cos CPo sin 0 sin cp, cos 0) T , 

e", == (-sin cp,cos cp,O)T , 

eo == (cos 0 cos cp, cos 0 sin cp, - sin O)T, 

so that any vector ucan be written as u == u,er + uue, + u .. e ... Any rotationally symmetric vector field will have the form 

(3. 1)

The displacement field in a rotationally symmetric body will have this form if all the forces acting on it are themselves 
rotationally symmetric. We seek singular vector-functions (see (2.14» of the form 

(3.2) 

Substituting this into the homogeneous Lame equations «2.1) with f == 0) gives 

_ (G,) 
L(a, De) Go 

_ (G; + cot eG; + (\i(a - 1) - a. - 1) G9 + \i(a. - 1) (a + 2) G, + (\i(a. - 1) - a. - 1) COl 8Ge) = 0, (3 .3) 

JIG;; + (\i(o: + 2) - a.) G; + v cot OGo + (o:(a + I) - \i/sin 2 0) Go 

where v = 2 + ).fp. and the prime (') denotes differentiation w.r.t. the argument. We have fo r (2.11) that L(a, Dwl 
= (e,ee) l ea, De). It is well known that a system of m ordinary differential equations of order n has m · n linearly
independent solutions, so fo r (3.3) there are four such solutions to be fo und. 

We use the Papkovicb-Neuber potentials 19] to construct the sol utions. Thus 

u "" 4(1 - v) B - Vex . B + 8 4 ), (3.4)

where v is Poisson's ratio (v = ).f2(J. + J1» , B = (8 L, B2, 8 J )T and Hi' j = 1, 2,3, 4, are harmonic functions. In spherical
polar coordinates (3.4) becomes 

",] [B '" U == U9 = (3 - 4v) B · e8 -

u'll B · e", 

If we now take 

oB OB4 
re.· -+­ar ar 

aB 1 OB4 
, '- + --roe r50 

oB 1 OB4 
-- , - +--­
sin 0 'ocp r sin 0 acp 

(3.5)

(3.6)

where. fo r the Bi to be harmonic, F~(O) = P~(cos 0) or F~(O) = Q~(cos 0), (the Legendre fu nctions of the first or second
kind) then we have, via (3.5), the necessary four linearly independent solutions of (3.3). Of these solutions those arising
from F~(O) "" Q~(cos 0) involve unbounded displacements, so we exclude them. Substi tuting (3.6) with F~(O) = Picas 0) == P~
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into (3.5) we obtain the general form of the rotationally symmetric solutions of the Lame equations, 

., J( (3 - 4, - .)P,co,0 ) (-(.+l)P, .. ) 
"'o=c L, +C2r 

P'~ cos 8 sin 8 - (3 - 41') p~ sin 8 sin 0 p~ + 1 

where we have used the notation of (3.1), so that 

e~ = (e,ee) (CIA + c20) , 
and 

427 

(3.7) 

(3.8) 

_ (A,,(.,O)) ( (3 - 4, - a) P, co, 0 ) 
A(",O) = = , 

A 21 (a,0) (P'~cosO - (3 - 41')PJsinO 
iI(a,O) = (B,,(a,O)) = (-(a + I)P, .. ). 

8 21 (0:,8) sin OP~+] 

4. Homogeneous boundary conditions 

We here consider the equations tbat result from applying tbe boundary operators L;, i = 1 or 2 of (2.2) o r (2.3) to our 
solution (3.7). From these we find the values of the an' their multiplicities, In, tbe eigenvector-functions and associate 
vector-functions and information about the lengths ofthe1ordan chains, J"n' We define Li(a, D .. ) e~19 _ 9o '" (e,ee) Mi(a., 80) c, 
;=lor2. 

For the Dirichlet boundary conditions (i = 1) we obtain 

MI(Il,Bo)c;::; (A JL (a., 00) BIl (Il,VO)) (C,). (4.1) 
All (0:,80) B2\(a,Oo) cl 

For the stress-free boundary condition (i = 2) we have for this problem that M(x) = ee so that 
S(u(x))· M(x) = (O'til0'660'4>9)T with 0'4'f = 0 due to the rotational symmetry. We obtain 

where 

M
2

(a., 8
0
)c;::;(A ll (a.,90 ) Bll (Il,Ool) (',), (4.2) 

An(o:,Oo) B22 (1l,80 } C2 

Adcr:, 8) "" (P~ cos 0(1% + 21' - 2) + P,,(21' - 1) a) sin 82}1, 

A22(cr:,O) ;::; (a(a. + 21') PG cos (} - (1 + sin2 (}(2v - 3) P~) 2}1 , 

822 (cr:,0) ;::; (PG+ I (IX + 1)2 - P'a+ I cos 0) 2}1. 

For II to be an eigenvalue of our operator Al(a, D.,,) (see 2. 11 ) with eigenvector-function e~ it is necessary that 
Li(a., D",) e~19 _ eo "" 0 has a non-trivial solution. From the definition we thus require that 

detM i ;::; D,(Oo,a.) = 0 , i = 1 or2. (4.3) 

These equations provide, on simplification, the following transcendental equations from which the eigenvalues, 0:8 , are to 
be evaluated for 80 E (0, 11'): 

- (. + I) 
DJ(Oo.a) =. (p;cos80(a. + 4v ~ 3) + P~P~+J(3 - 4v - cos2 0o(21l + Il) 

Sm 00 

2(a. + 1)2 2 
D1(90' a.) = . 3 [P,. cos 00 (2(1 - 1') cos2 00 - a.(a + 1) sin2 00 ) 

sm 00 

- PIIP~ + J(a.(2a. + I) sin4 80 + 4(1 - 1')0052 Bo - a.(a. + 1) sin l 00 

+ P;+ I cos 90 (2(1 - 1') - a.(a + I) sin 2 
( 0)1 

= 2a.(0: + I) (DI (0, a) - 4(1 - 1') sin 8oP,"P~) + 2(1 - 1') sin 28oP:2 = o. (4.4) 

At each point (00' lIn) where 0/(00, ( 8 ) = 0, i = 1 or 2, there is a non-trivial solution c/, i = 1 or 2, to be found, for 
which it is necessary to check via (3.8) whether e~(r, w) is an eigenvector-function of the operators Ai(a, D.J; e.g. a. = - 1 
yields no eigenvector-function for the Dirichlet problem. From (4.1) or (4.2) we obtain that c = (Bu(O:n, 8o) - Au(aM OO»)T, 
j = 1 or 2, yields such a solution. Thus, in (3.7), we have that 

WO.8 == "'"(l(a~, 0) Bu(a.., 00) - il(a., 9) AII(a.., 0o»). (4.5) 

We have thus computed the eigenvector-functions eO(o:., w) of (3.8). 
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We note that the dimension, I., of the eigenspace is unity for Rc (IX) > 0: For there to be an eigenvector-function 
that is linearly independent of that above it is necessary in (4.1) Of (4.2) that Ai} = BI) = 0, j = 1, 2, i = 1 or 2. This does 
not happen for e E (O, x). We define w~ .• ::E Wi ,. and ~ =: fl. 

When a: = 0, (4.4) is satisfied for all 80_ Substituting IX = 0 in (3.7) we obtain that ii = (cos fJ - sin 8)T so thai, in 
(3.1), u = (00 l)T, For the stress-free boundary conditions this eigenvector-function is the rotationally symmetric rigid 
body motion along the z-axis. Clearly it is not a singular vector-function. For the Dirichlet boundary conditions there is 
no non-trivial solution. 

We are thus left with equation (4.4) to be solved for a > 0 given the value of 00. Solving 0 )(00 , aJ = a produced 
the curves of Fig. 2 for v = 0.3 and solving O 2(80, Il) = 0 produced those of Fig. 3 also for v = 0.3. The real values of a 
are joined by solid lines, whilst the complex values are joined by dashed lines. Our method for obtaining these curves is 
described in the next section, where we also comment on the values obtained. 

We recall fonnula (2.13) and now investigate the existence of associate vector-fullctions. The following lemma of 
NA.lMARK [10] gives a connection between the length of the Jordan chains, 1. == 1 In. and the multiplicity, m{a,,), of the 
zeros "" of 0 1(0°' a,,), i = 1 or 2. 

Lemma : 

m(IX") ~ I n . 

Ifm(a") = 1 then ~ D(80)1 4= 0 and there are no associate vector-functions. However at branch points of graphs 
aa ~ -h 

of (8", ct") (see Fig. 2 and Fig. 3) the zeros are not simple, 

~ D,(O" a)1 ~ 0 , (4.6) 
00:: ~ _ ~" 

and there are associate vector·functions to be found. 
We note that L(Il, DOl) eO (a:, w) = 0 for all Il so that 

o 0 
- [L(Ct:, D ... J] eO(a, w) + L(Ct:, D",) - eO(Ct:, w) = o. oa OCt: 

(4.7) 

Comparing with (2. 12) we see that 

(4.8) 

;f 

L;(~ "("W)I )~O, 
OCt: ~ _ ~" 

i=10r2. (4.9) 

Performing the differentiation we see that (4.9) holds if (4.6) holds, so an associate vector· function, el(Ct:
n

, w), is given by 
(4.8), i.e. from (4.5) and (3.8), 

(4.10) 
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5. Algorithmic details 

To find the roots of equations (4.4) we developed the technique described in lJ I]. The Mehler-Dirichlet formula (see e.g. 
[12]) gives that 

• 
P,(cos 8) = v'2 f cos (. + j) , d, . (5.1) 

)"[oVcosr - cosO 

The integrand's denominator can be written as 

[ ( , + 8) (' - 0) ( 2) J'" - sin - 2- sin - 2- l _ 8 (r - 9) (5.2) 

The last factor in (5.2) is passed as a weight to a Gauss-Jacobi integration procedure and the product of the middle two 
factors is, for t - () < 0.001 approximated using the first two terms in a Taylor series. The NAG [7] integration routine 
used works adaptively to a specified accuracy and thus P~(cos 8) is calculated. 

Our strategy for finding II satisfying 

F(90• a) = 0 (5.3) 

with F given by (4A) is to initially seck a local minimum of 1F(60• a)1 near a guess 1X0 of 0: to an accuracy of 10- 3• This 
is passed, as a first approximation to IX. to a root linding routine which works on the system formed by the real and 
imaginary parts of F as functions of the real and imaginary parts of IX. Use of this strategy was found to ensure convergence 
to a root. The accuracy to which the P«(cos 80 ) were calculated was, to save computational time, restricted by the estimated 
proximity to the root. 

The curves of Fig. 2 and Fig. 3 were obtained by starting from the known, integer, limits as ()o -> 71. Each subsequent 
point was found at a smaller value of 00 using as initial guesses the previous root plus and minus 0.15. In this way the 
branches were located. 

We compare these curves with those obtained in [II] for the dominant (smallest) IX, tlp for the Poisson problem in 
the same domain with Dirichlet boundary conditions. In the context of the Lame equations we denote the dominant a"s 

for the Dirichlet and stress-free boundary conditions by, respectively. 0: 0 and IXs. We observe that 

1
0 <00<nI2) 

if Bo = nl2 then 
n/ 2 < 00 < 71 

(5.4) 

These inequalities were verified for a range of values of II, in fact there was seen to be only a small dependence on II for 
I' in the interval (0,1 , OA) (cf. [3]). 

The smallest value of as, IXM occurs at an angle Bo = BM depending on v. The variation of eM (solid linc) and O:M 

(dashed line) on II is shown in Fig. 4. It is seen that the minimum value of O:M is larger than 0.6681. Using this information 
and (5A) we obtain bounds on O:s for any Bo and II. 

-------------------~ 

0.75 ---- ---- ------""M 
os 

025 

OJ 02 03 
Fig. 4. Variation of 910t and Il'", with II 

D.' as 
v 
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6. The caleularion of the coeffi cienrs 

The constants, C .. b , in expansion (2.15) for CI(X) =:; 0, i = l or 2, can be computed by applying the results of MAZ'JA and 
PLAMENEVSKlJ [8]. We consider the cases m(a:~) = I and m(a:~) = 2 separately. 

(i) m( •• )~ I, 

CIOn =: COn = J L(D",) ('I u) 1l0~ dx, (6.1) 

" 
where llo~ E KOneo(o:: , w)r"~,a:: = - lin - I,eo given via (4.5) and K On is a constant which is determined by the 
orlhonormality condition, 

- faL( •• ) 0 Ko. -- e (a:~, w) . eO(o:~ , w) dw == (L'wo , 110 ) = I . a. , 
(ii) m(o:.J = 2: 

CIOn::::;: C Oft = J L(D,,) ('I u) 1'1" dx, 

" 
Clh=C h "", J L (D,,)('Iu)1'o~dx , 

" 
(6.2), (6.3) 

where DI~ ::::;: K I~ (In reO(o::, (0) + el(o:~ , w» r~. It is show n in rderence 18] that K On and K I • can be chosen to satisfy the 
following biorthogonality conditions (notation as above), 

(L'wO' 1'0) = 0, 

If this is done, the coefficients COn and C ln are given by (6.2) and (6.3), respectively. 

7. Conclusion-theorem 

We have established that rotationally symmetric solutions of boundary value problems fo r the Lame eq uations possess 
the following expansion near rotationally symmetric vertices. 

Ii In - I 
u(r, w) = L L 'ICh"'l .• (r, w) + "oCr, w): (7.1) .-1 ~ - o 

The conditions a re given for expansion (2. 15) of T heorem 3. Here the functions K' • . ..(r, (0) (== wr,,(r, w) of (2.14» involve 
the values of 0:", indeed the value of N in (7.1) is similarly detennined. Thc o:~ are calculated from (4.4) - for v = 0.3 their 
values can be read from Fig. 2 or Fig. 3 depending on the relevant boundary cond itions. The vector-function "'On is given 
by (4.5) using (3.7) or (4.2) (D irichlet or stress-free boundary conditions). T he constant Co" is given by (6.1) unless 1n "" I. 
If 1. = 2 (such as at branch points of Fig. 2 or 3) then the adjoint vector-function e l of (4.10) is required for "'I,,.(r, w) 
and the constants Co. and C In are given by (6.2) and (6.3). 

Thus we have proved the following 

Theorem 4: Let II be a solution from [V2+I·p(O, .0)]3 of problem (2.1), (2.2) or (2.1), (2.3) for IE [V".p'(Q, P'W, 
CI E{V2H-I /p'·p'(aa, trW, or g z E{Vi1"I' - 1/p·,p·(aO, .B')]\1' ~ !, h' = fJ' + 3/ p' - 2 ~ l' < (J + 3/ p - 2 - I = h.Assmne 
that no eigenvalues of [IJe operators A;(o:, D",), i = 1 or 2, are situated on the lines Re(o:) = - hand Re(cx) = -h'. Then file 
following expansion (see (2. 15» holds near the conical point 0 with angle 80 E (0,7r): 

u(r, w) =: 

• 
-h < lh(~.J < -~. 

"'(2~) · 1 

+ 
• 

- ~<RC{4")< - h ' 
"'(4~1 - 2 

where " o(r, w) € [V2H·p'(O, {I')]l, COn is given by (6. 1) (where co" : CO~), co,. by (6.2) and e l" by (6.3); CO(o:", (tI) is compllfed 
by (3.8) via (4.5) and e1 (0:., (tI) is given by (4.10); m(o:,.) is the multiplicity of the zeros of 0 ,(80' a,,), j "'" 1 or j = 2 (see (4.3». 
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