
1)5

Specification Techniques
for Real-Time Systems
J. LUDEWIG and H. MATHEIS
ETH-Zemrum, Ins/iml fii r I,,/ormalik, CH-8091 Z urich,
Swit:erlund

This paper is a cou rse on Specification. Since it is based on
experiences in the field or Software Engineering. it applies
primarily to Software Specifications. Many observations ::and
reports indicate, however, thaI, from specification aspects,
there is nOI much diffe rence between information processing
systems in general and software in particular. Therdore, most
of this course applies also 10 System Speci fi ca tion. There arc
methods, languages. and tools for writing specifications. In this
paper, we concentra te on methods and languages.

We slart with the definitions of a few fundamental terms
and of the quali ties o f specifications. In the main part of the
paper. we present four specification methods together with
their underlying languages. namely Structured Analysis. SADT.
PSL, and RSL A few sample specifications written in these
languages are given in order to convey an optical impression o f
each language. The paper ends with some general conclusions
and a list of rderences.

Keywords: Soft ware Engineering, specification methods.
speci rication languages.

North-Holland

J . Ludewig was educated at TU (Tech
nica1 University) Hannover (Elcctrical
Engincering) and TU MUnchcn (Com
puter Science). whcrc he also rcccivcd
his PhD. He worked six years at
Nuclear Research Center, Karlsruhc,
FRG, and five years al Brown BO\'cri
Research Ccnter, Baden, Switzerland.
Since January 1986, he is an associ
ated Professor o f Compu ter Science at
the Swiss Federal Institute of Technol
ogy (ETH) ZUrich. His research inter
est is in Software Engineering.

Computer Standards & lnterraces 6 (1987) 11 5- 133

I. Introduction

This is a course on Specification. Since it is
based on experiences in the field of Software
Engineering, it applies primarily to Software
Specifications. Many observa tions and reports in·
dicate, however. that. from specification aspects,
there is not much difference between information
processing systems in general and software in par·
ticular. Therefore, most of this course applies also
to System Specification.

In the fi eld or System Spt!l:ifil:ulion in general
and Software Specification in particula r, one dis·
tinguishes lhree components, namely methods.
languages, and tools. In this paper we concentrate
on methods and languages. The primary goal is to
show some typ ical features of methods and Ian·
guages for Specifica tion rather than to describe
them in detail.

The first section starts with a few fundamental
terms of in terest in order to motivate the use of
specificat ion. Based on the qualities of specifica·
lions, the propert ies useful for specifica tion and
the requ irements for speci ficat ion systems are
summarized in section 2. In section 3 four selected
specifica tion languages are outlined together with
their underlying methods. A few examples are
given in order to convey an op tical impression of
each language. Section 4 addresses ma nagement
aspects. The paper ends with some general conclu
sio ns and a list of references.

H. Matheis rcceived the diploma (MS)
in Computer Science from University
of Kaiserslautem, FRO, in 1984. For
two years. he worked at Brown Boveri
Research Center. Baden. Switzerland.
Currently, he is working with J.
lude ig. aimi ng at a doctorate.

0920-5489/87/S3.50 '" 1987, Elsevier Science Publishers B.V. (North-Holland)

116 J. LuJt'Wig. II. Matheis / Specification Techmques

2. Fundamentals

2.1. Life Cycle Model

Only very small systems can be built in the
same way as primitive peoples build houses. As
soon as the system is slightly complex, a sys
tematic approach is necessary. The sequence of
steps to be taken from the first idea to operation
and further on until the system is discarded, is
called the System Life Cycle. Though there are
many different life cycle models, they are all based
on the distinction between certain activities or
phases, namely
- analysis and specification
- design
- implementation

integration
- operation and maintenance.

Note that the life cycle may be used as a phase
model, or a model of activities, or a list of roles. In
the sequel, the second meaning is assumed.

However, it came out that all the established
life cycle models lack end-user involven;lent.
Therefore, new ideas arose (e.g. prototyping) to
overcome those defencies. They led to a new view
of the life cycle [3,6]. Newer life cycle models also
envisage to support activities in the areas of pro
ject management, quality assurance, and config
uration management, which cover the whole life
cycle.

Eflort

100%
('j

;

/

2.2. Cost Distribution

About two thirds of the total cost of software
are caused by activities which take place when the
software is already operational (i.e. during mainte
nance) [9]. Therefore, every attempt to reduce the
high cost of software has to focus on maintenance.
Note that software maintenance and technical
maintenance have different meanings. While
software maintenance means correction and mod
ification of software (e.g. based on user require
ments), technical maintenance (e.g. maintenance
of cars) means the process of replacing attrited
parts. That is, it attempts to repair the old state of
the product.

Now, what are the subgoals to attain the reduc
tion of maintenance?

The need for correction and modification must
be reduced as well as the total volume of software
(by integration of standard components or old
software).

A good specification contributes to every of
these subgoals. Therefore, the overall goal is not
to reduce the effort for specification, but rather to
invest more for specification in order to save
much more during maintenance (and also during
implementation)

Unfortunately, there are no precise figures indi
cating that more investment for specification im
plies less effort for maintenance. Nevertheless,
based on our experience we estimate the effort per
phase of the life cycle as shown in fig. 1.

without specification

'-"~ systems

,
/.

/ i

/ with specification

~---- systems

Idea AnalysIs Design Coding Installa·
tion

Fig. 1. The Effort per Phase with Specification Systems and Without Them.

Maintenance

J. LuJ~ig. H. Matheis / Specification Techniques tI7

If a specification system is used, the .critical
point (marked with (.) in Figure 1) arises. At this
time nobody in the project is satisfied with the
specification system and sceptics will say: " Speci
fication systems are useless and only delay the
project. They contribute nothing to a systematic
development process."

This psychological aspect has to be considered
very carefully. If a specification system is to be
introduced, the project management must be well
prepared.

2.3. Terminology

2.3.1. Specification
To date, we have not achieved a stable and well

recognized terminology in Software Engineering.
In the following, we use a simple, pragmatic defi
nition of "specification" [14]:
"A description of an object stating its properties
of interest. It usually implies that the description
should try to be precise, testable, and formal
It is recommended that "specification" be used
with some attribute, e.g. requirement specification.
Specification is frequently used to mean func
tional specification which contains both require
ments and design aspects. This form of use is
imprecise."

Many more relevant terms are defmed by the
IEEE [B) and by Hesse et aI. [12).

The reason why people could not agree with a
general definition of specification might be a
specification-immanent problem expressed by
"properties of interest" in the definition above.
What are the properties of interest? This question
can not be answered objectively. It primarily de
pends on the specifier's and the user's subjective
point of view.

2.3.2. System Triangle
When we talk about programming systems, or

specification systems, we distinguish three compo
nents, or sets of components, namely methods,
languages, and tools.

Methods indicate how to proceed, like recipes
in a cookbook. Languages restrict the set of possi
ble statements to a particular universe of dis
course, and to certain syntactical representation.
Tools check, store, and transform such statements.

All three are strongly interrelated by the ab
stract concepts of the (specification-) system. Note

Fig. 2. System Triangle.

that the term "methodology" means "science of
methods", though it is often misused for
"method" . Figure 2 shows the system triangle.

2.3.3. Levels of Formality
There are languages of various formality. For

our purposes, we distinguish four levels (see Table
1).

Table 1

Syntax Semantics Examples

informal not (precisely) Do t (precisely) natural
defined deeined languages

f ormatted restricted Do t (ptecisdy) lonns
(by forms) defined

semi·formlJl defined partially defined pseudo-code
formal defined ddined (modem)

programming
languages

3. Principles of Specification

3.1. Qualities of Specijicalions

A specification should be
- correct (i.c. it should reflect the actual require~

ments)
- complete (i.e. it should comprise all the rele-

vant requirements)
- consistent
- unambiguous
- protected against loss of information and unin-

tended changes
- easily writeable and modifiable

118 1. Ludewig, H. Matheis / Specification Techniques

- readable and concise (in order to ease the com
munication between user and analyst)

- implementable (i.e. it should ease design and
implementation)

- verifyable (i.e. there should exist a procedure to
check whether or not the product complies with
its specifications)

- valida table (i.e. there should be a mechanism to
ensure that the specification really reflects the
user's intention)

- traceable (Le. when the specification is changed,
it should be easy to identify all statements in
other documents affected by that change).
Note that these goals are highly inconsistent.

For instance, a forma1 (e.g. algebraic) specification
is implementable, but not readable for anybody
not very familiar with algebraic specifications.
Another example concerns consislency and cor
rectness. Usually, user-defined requirements are
not consistent, but each of them may be correct.

Another remark concerns traceability. If
changes have to be done. theory requires that first
of an the specification is changed. Unfortunately,
this does not work in practice where people only
alter the corresponding program, leaving the speci
fication unchanged.

The first four qualities for specifications can be
considered either from a syntactical point of view,
or from a semantical point of view. Syntactically,
it is possible to check whether a specification is
correct, complete, consistent and unambiguous.
Unfortunately, this is not true for the semantics.
Even if the semantics of the specification language
are completely defined, it is neither pOSSible to
prove the semantical completeness, nor the seman
tical correctness. The reason for this is that there
is no reference (except the users brain) to prove
specifications correct or complete, in contrast to
programs being provable correct with respect to
the underlying specification.

3.2. Useful Properties of Specifications

In order to achieve the qualities listed above,
certain properties are obviously useful:
- The specifications must be recorded on some

permanent medium (e.g. paper, magnetic tape).
- They should be as formal as possible, and as

informal as necessary. Also, they should sup
port the processing of information which is
vague, incomplete, or not yet defined (i.e. pro-

vide a filler that indicates the lack of informa
tion).
They should exist only in one single copy
C'single source concept").
There should be tools for automatic checks and
transformations between different languages.
They must be available in representations ap
propriate for those who have to use them (e.g.
graphical representations which naturally mir
ror human's way of thinking).
They should support the processing of fuzzy
logic, because the sharp distinction between the
values true and false is not always sensible and
possible.

3.3. Specification Systems ReqUirements

First, it is necessary to say what we denote with
the term "specification system". In our terminol
ogy, a specification system comprises languages,
methods, and tools supporting the activities before
programnung.

Considering the properties stated above, we can
derive the requirements of specification systems:
- Database as central inCormation repository

Semi-formal specification language
Several representations, supported by tools.
Since systems are developed by several people,

and usually exist in several versions and variants
at the same time, we must also provide
- multiuser operation of tools
- automatic management oC versions and variants.

3.4. Influence of Semi-Formal Specification Systems
on the Working Technique

Generally speaking, semi-formal specification
systems imply that the problem is formalized not
in one but in two steps, starting when the system
is specified and designed. Without using a specifi
cation system. the Cormalization process is almost
exclusively concentrated on the implementation
phase. See Fig. 3.

Further on, several changes in the working
techniques can be noticed:

Division of problem into smaller steps
- Separation of setting a task and solving a prob

lem
Better communication before implementation
Better documentation and easier modification.

J. Lud~jg, H. Matheis / Sped/iCfltion Techniques 119

Forma·
IIzation with semi-formal speCification systems

100 %

without semi·formal specification systems

Idea Analysis Design Coding Installa
tion

Maintenance

Fig. 3. Degree of Formalization per Phase 'W'ith Semi-formal Specification System and Without One.

3.5_ General Structure of a Specification System

~ .
Compared WIth the development of program-

ming languages, the development of specification
systems is at the very beginning_ People assume
that we are about in 1955 when Fortran appeared.

A rough classification of specification systems
distinguishes two general classes of specification
systems. The first one contains tailored systems
which are not adaptable to user needs and require
ments (e.g. proMod and PRADOS; see list of
rderences). The second one is more like a tool·box
containing more or less independent components
(e.g. mbp-tool-system and S/E/TEC both de
scribed by Balzer! (19)). In the latter system the
individual tools can be adapted to the user's indi
vidual needs. There are several other possibilities
to characterize and classify specification systems_
One of them is the distinction between systems
supporting either one special method per phase
(e.g. proMod supporting Structured Analysis) or
different methods per phase (sometimes also no
method as in the case of EPOS, see list of refer
ences).

In the sequel. we summarize a few features
useful in specification systems:

Methods

• Enter every information immediately
• Check early for correctness, completeness, con

sistency, unambiguity
• Concentrate on information necessary for

specification_

Languages

• Semi·fonnal specification languages
• Several syntactical representations of a specifi

cation (e.g. graphics, tables etc.).

Tools

• Multi-user Database-System
• Tools for checking, retrieval and selection_

Abstract concepts

• Life cycle model
• Stepwise refinement.

4. Specification Languages and Methods: Exam
ples

In this section, we present some examples of
specifications in various languages. Additionally,
we briefly describe their underlying methods. The
purpose is to show some typical styles rather than
to describe languages and methods in detail.

4.1. SADT (Structured Analysis and Design Tech
nique)

SADT was developed by SoITech between 1972
and 1975_ It covers the requirements analysis, the
design and the documentation of specifications,
aiming at improved communication between
analysts, developers, and users.

120 J. Ludewig. H. Ma(h~is / Specification Techniques

! Control

ACTIVITY

Input Output

~ Resource

Fig. 4. SADT-Box.

4.1.1. The Method
The method SADT focuses on data flow and

implies a stepwise refinement of s(}ocal1ed SADT
diagrams which are hierarchically ordered. In its
original definition [38], there is a duality between'
so called aCligrams and datagrams modelling the
data flow in two different ways representing dif
ferent views of the system:
- actigrams identify functions as central elements

of the description and data providing e.g. input
or output for the functions
datagrams identify data as central elements of
the description and functions providing e.g. in
put or output for the data.

The redundancy makes it possible to prove con-

unus.TlON AIJTEUR. LG.l.
PFIOJET: S.P.E.C.I.F. ... " 011 04/ B3

REV
NOTES; 12345678910

sistency, i.e. one can,check whether every function
and data in an actigram is a1so comprised in some
datagram.

4.1.2. The Language
SADT is a graphical specification language al

lowing the user to describe the system in terms of
activities and data. As outlined above, on the one
hand there are actigrams consisting of activities
and data. Activities are represented by boxes and
data by arrows. On the other hand there are
datagrams, where boxes stand for data, while
arrows represent activities. Practical experience,
however, indicates that most users tend to use
only actigrams. For the reason of complexity the
language restricts the number of boxes per
SADT-diagram to seven.

The Figure 4 shows a SADT-box with its typi
ca1 components.

The three actigrams of Figs. 5- 7 show an activ
ity (U assist SADT USERS ") at three different
levels of refinement. Note that the last actigram
refines an activity ("CREATE KITS ") of the sec
ond diagram (Source: [36) from IGL, Paris).

TIlAVAll lEOTE'" """ COOTEXTE

x AECa.lMANDE

P\JIlUCAT1ON NEANT

TEAM OBJECTIVES

MUtV1£W!'.OT£S

ASSIST OIItGRAMS- o:::MI.IENTS · REAC1'1CUS
TE~E.RClALoocu.tEHrS

S.A.D.T. PRO..ECT tx:x:r..NENTATlON

EX1'1:.1fi.1.1. OIolGfW,CS. CCNI.IENTS, ~cmoNS I

MANAG£RS& TECl-NCALCClMI.I. DI~ J USERS UEASUlfMENTS & CHECKS

M:lEW: SASfA-o 0411l'11'lE: ASSIST S.A.D.T. USERS I """
Fig. 5. Top-level Actigram of "ASSIST S.A.D.T. USERS"

J. Ludewig. H. Malheis / Specificalion Techniques

unUSATION AVm.Il I.G.L
PAOJET: S.P.E.C.I.F.

12345678910

DATE 011 04/63
REV

! TEAMOBJECTN<S

DIRECTIVES FOR KfTUSAGE

ms

,os

CJIAGRN,IS · OQI,Iuem; .

I
FORM FOClCI.IAENTSIN.ISWER>

+
T~f "'011'''''..0 F

L __ -,,4 NOOELS ~ENTOAVEAIFlCA'TlC:N

""""" IUJ U~EMeITS&OECKS

VERIFY 6

ta.LD: SAS/AO 01 1lTmE: ASSIST SAD.T. USERS

Fig. 6. Detailed Actig,ram of "ASSIST S.A.D.T. USERS"

unUSATION AUT"" I.G.l. I TR".L ~ CCM",",

PR<>l<T S.P.E.C.I.F.
DATE 011 04/83
R£V

NOTES. 1234567~910 "" '"
SUST

~
CREATE
USTS

l NOTES

~" f-o """""'s

OIJT,,"

exre-.

"""''' r ,w" "
,ms

.. m ""
N:)EI,I): SAS/A1 03 '""" CREATE KITS I "'"

Fig. 7. Reflnement of Activity "CREAm KITS"

121

121 1. Ludewig, H. Matheis / Specification Techniques

d3tall_IWO ____ d31j'oW_lhree

~ file "/

Fig. 8. Sample SA-DFD.

4.2. Structured Analysis (SA)

SA was deve10ped by Yourdon and others (see
[40)). Although the name is very similar to SADT,
only the data flow as the central principle is

ICOP\EA~R
"'"

,

.,
COPIE1L.PIXEl ... PIXEl
BI'T.JIAP -..ADDRESS ... INTEGER
PIXEl .. LOGICAL.
TEXT ... ASCILCHAA

"" $CR,,,
00Nrn00.

G£HERATE orr ,

"rr
"'" ,,'"I

"---orr P<W.-"",

J

GRAPHICS ... fPOLYUNE I POlVMARKER I AREA fill I GOPI
SCREEN_COHmOt ... ISCROLL I ERASE J REVERSE I HORILSCROll)
KB.J>atEDLCONmOL. ... SCREEH-CONTROl
BfTJ,IAP ... ImELI
BIT---"'AP.....PtXa. ... PIXEL
TDT-.PIXa. .. PIXEL
GRAPHtCS-PIXa. ... PIXEL
COMWoND.-STRIHG ... UASQLCHAAI + OeUMITERI
D&SI'lAY.J"RlMmVES ... GRAPHICS. TEXT + SCREEN_CONTROL
GIN ... It.J'OSI'T1ON + Y-POSmON
lL....POSmOH. YJ'OSfTION ... INTEGER

.,
Fig. 9. a) DFD ror a Display Controller; b) DO for 9a.

common to both. It is used for analysis and both
coarse and detailed design.

4.2.1. The Method
The method allows the user to model a system

with data-flow diagrams (DFD's) consisting of
data . and processes transforming the data. In
other words, DFD's describe the flow of data
through the system by denoting sources and sinks
for data flows, the data flows itself, and processes.
So called minispecs are used to describe processes
in more detail. In order to refine the structure of
data there exist a dala dictionary (DO). SA propo
ses a stepwise decomposition of data flow diagrams
so that each process in the parent DFD is broken
into several child DFD's. Consequently, several
levels of DFD's emerge.

Now, let us have a closer look at SA. SA
proposes two major steps. The first one is to
develop a so-called context diagram (see Figure
9a) showing the system as connected to its

""EL---~

KO
SCREEN

\
PIXEL

7",ROC '~L-T-EXT-~h"
SCREEN

CONTROL GENERATE PIXEL
-.'CHAAACTER L- TEXT •

..... _- GRAPHICS
~~,

DISPLAY
PRIMITIVES

GRAPHICS
PIXEL

...----
,.,

~,

CHARACTEA-GENERATION_MAPJOCATION _ ASCILCHAA
FOR I -1T01200

CHAR....GEtL.MAP ~NDEX _ I
FORJ .. 1T0900

IF CHARACTER.....GEN......MAP _ CONTENTS (J) _ TRUE
SEND 1 TO 81T MAP

ELSE

END
END

SEND 0 TO BIT MAP;

Fig. 10. a) DFD for Generate Bit Map from Fig. 9a; b)
Minispec for lOa.

J. Ludrwig. H. Motheis / Sp«i/icotion Techniqu~ 123

environment. Hereby, the user defines the inter
face connecting the system and the environment
in terms of sources and sinks of the environment,
processes, data flows, and files. Please note that
the data flow consists of both the data and the
direction of flow.

In tbe second step the user partitions and refines
the system "as long as possible". This means, he
describes each process of a DFD in more and
more detail until he reaches processes which are
atomic. Then, the user writes minispecs demon
strating the algorithmic structure of these atomic
processes. Also, a data dictionary is installed con
taining the structure of the data. SA also gives a
proposal how to name the items (processes, data
flows, fLIes) in order to express meanings most
clearly.

4.2.2. The Language
The sources and sinks belonging to the environ

ment of the system to be described are shown as
boxes on a data-flow diagram. Other symbols are
circles representing processes, arrows representing
data flows, and bars representing files (see Fig. 8).

~
I ACOVISITION ~ END-

lOGIC RETG·
HO

H().TG

"TG-..... ~

MAIN·
TG

STRTOlY

DEC

/

CLK
SOC

DELAY

/COUNT

- <

-$TATOlV

'00

Fig. 12. DFD of Count Delays (from Fig. 11).

Please note that the first time a flIe is referenced
in a DFD two bars are used (see Figure 9a, file
"Bit Map") while further refere,nces to this file (in
other DFD's) are denoted by one bar (see Figure
lOa, file "Bit Map").

The minispecs are written in pseudo-code. the
data described in the data dictionary is written in
a BNF-like notation.

The examples given in Figs. 9-14 were taken

~
~ ST· •

J TRIG

DTG'!... t_:::!<r' - <
EDE'....,~:..t...

WO-T IG

WOAD
TRIGGER
OPTlQN

PROCESSOR
SYSTEM

- <

CONTROL

~CO--UN'T~: ._------~~~~~----~~
OELAYS ~

RT MODE

~ ___ EXT

eLK

Fig. 11. Top Level DFD of a Trigger Gate Array.

PHASE
Ct.0CI<
LOGIC

A nUG

~
~

124 1. Ludewig. 11. Matheis / Specification Techniques

MINISPEC 4.3

CIRCUIT ELEMENTS: 2fF2. 2FF3. 2FF4, 264, 2GS
OVERVIEW: THIS CIRCUlT IS A :HUP·fLOP STATE MACHINE 2FF2

CONTROlS THE START OF COUNTING DELAY, 2FF3 SETS
AT THE END Of EVENTS COUNT. AND 2FF4 SETS AT THE
END OF THE TIME-DELAY COUNT. SPECIAl-CASE COUNTS
OF NO EVENTS AND t EVENT ARE CONmOU.ED BY LEVa.
INPUTS SET BY THE PROCESSOR.. THE INITlAL STATE
OCCURS WHEN THE PROCESSOR STROOES RSTACO. THIS
CLEARS 2FF2. WHOSE 08AR OUTPUT ClEARS 2ff4. 2f'F3
IS CLEARED BY THE A TRIGGER fUP-fLOP Iff1. THE
FIRST OCLl< AFTER A TRIGGER WIll. SET 2fF2 TO ENABlE
THE DELAY COUNTER. IF ONEVNT .. I, 2FF3 WIll. ALSO
SET AT THIS TIME. DCLKS Mll. BE: COUNTED UNTIL DELle
.. 1. CAUSING 2FF3 TO SET. WHEN eOE .. I, 11-IE SEL£CT
DELAY CLOCK LOGIC SWITCHES TO COUNTING DELAY BY
nME. THIS WILL CONTINUE UNTIL THE NEXT OCCUfl.
RENeE OF DEL TC .. " WHEN £00 .. 1 WIll. OCCUR. THE
STATE MACHINE REMAINS IN THIS STATE UNTIL WE NEXT

LOGIC: RSTAca.
ALL FLIP·FLOPS ARE RESET ASYNCHRONOUS/.. Y BY PROCESSOR
ACTION

SET STRTDEL .. 0 WHEN RSTACO .. 1
SET EOD _ 0 WHEN STRTDELB _ 1
SET Eoe _ 0 WHEN ATB _ I

ALL FUP·FLOPS WIll SET ON CONDITION ON THE RISING EDGE Of
DeLl< •

SET STRTDEl _ 1 WHEN AT _ 1 (RESETS ARE NaN AEMOVED
FROM 2fF3, 2FF4J

SET EOE(N+I) _ ONEVNT + DElTC + eoe: + NOEYNTS
SET EOO(N+I) _ (EVON + EOO)"(OElTC + EOO) _ EWN"DElTC
+ EDD

Fig. 13. Minispee of Control Delay (from Fig. 12).

from a paper on the Tektronix-tool {33]. They
show data-flow diagrams, together with minispecs
and information stored in the data dictionary.

4.3. Problem Statement Language (PSL)

PSL was developed at the University of Michi
gan by the ISDOS·project (Information System
Design and Optimization System) in the 1970s.

PSL primarily supports requirements analysis and
documentation.

4.3.1. The Method
PSL is based on the entity-relationship ap

proach first defined by Chen (21J but applied long
before. The entity-relationship model was origi
nally used as a database model splitting the world
to be described into entities and relationships
between these entities. The dominant feature of
this approach is the similar treatment of entities
and relationships.

Table 2

Entity-classes:
REAL WORLD
ENTITY

PROCESS
INPUT
SET

Relations:
GENEJUTES
RECEIYES
UPDATES
CONSISTS

real world objects which
are out of the system

activities
input data
set of data elements

c.g. (process) GENERATES (data)
e.g. (process) RECEIVES (data)
e.g. (process) UPDATES (data)
describes data structures;
e.g. colour CONSISTS yellow,

red, green, blue

SYSTEM
BEHAVIOR

TRADEOFFS

IVETs ,,-
sw

SW PART
PARTS SPECS

SCHEDULE

VERSION
DONE

FUNCTIONAL
SPECS

sw .• __ -=:::::::;~
PARTS'"

Fig. 14. DFD of a Product Development.

PROOUCT
CONCEPT

FUNCTIONAL ~
REOUIREMENTS ~

sw
SYSTEM

PRODUCT

PSA Version A5.2R2M

J. Ludewig. II. Matheis I Specification Techniques

Jul 23. 1983 20:05: 19
PSl/PSA - ISOOS - VM/CMS

IPSl Input Source listing

Page

Parameters: DB- VESSEl. OBF INPUT-VESSEl. PSl SOURCE -ll ST I NC NOCROSS-REF£R£NCE
UPDATE OAT ABASE -REFERENCE NDWARN-NEW-OBJECTS NOSTATEMENT-NUMBERS
DBNBUF~200 WIDTH-84 lIN!S;60 INDENT-O HEADING PARAME~ERS PACE-CC-ON
NDEXPLANATION

II NE 5 T M T

I >/*
2 >

This is a set of PSL statements to define user views */

3 >/ *
, >

Here is the global users' view */

5 >OEF ENTITY
6 > TKEY
7 > SUBPARTS
8 >
9 >

10 >
t1 >
12 >
13 >
14 > DESC:

ARE

Userv i ews:
'Global' ;
User-View-I,
User-View-2.
User-View-3.
User-View-4.
User-V i ew-5,
User-View-6.
User-Vi ew-7;

15 >This is a global view of a ship company.;
16 >
17 >
18 >/fl
19 >

ELEMENTs are declared */

20 >OEF ElE
21 >
22>
23 > ,,>
25 >

Vessel ,Cargo-Volume,Detai Is,Port.Date-of-Arrival,
Date-of-Departure,Consignee,Containeri,Size,
Shipping-Agent,Waybilli,
Delivery-Date,Contents,
Hand I i ng- I ns truct ions;

26 >
27 >/*
28 >

Here is the local users' view

29 >D£F ENTITY
30 > TKEY
31 > CSTS OF
32 > ATTR ARE
33 >
34 > RPD IS
35 > DESC;

User-View-I;
'VI' ;
Viewl-Ship;
fREQUENCY-IS
TIKING-REQUIREMENT
'E. Basar':

lOa,
25,

36 >Information is stored about each Ship, including
37 >the volume of its cargo storage capacity.;
38 >
39 >
40 >DEF ENTITY
41 > TKEY
42 > CSTS OF
'3 >
44 '>

'5 >
46 >
47 >
'8 >

ATIR ARE

RPD IS
DESC;

User-View-2;
'V2' ;
View2-Ship,
View2-Ship-Port.
View2-Port;
fREQUENCY-IS
TIHING-REQUIREHENT
'E. Basar';

Fig. IS . PSL-Inpul Source: Listing Page (No.1).

100.
50;

12'

126 J. l.l.Idewig. H. Matheis / Specification Techniques

PSA Version A5.2R2M Jul 23. 1983 20:05: 19
rSl/PSA - ISOOS - VM/CMS

IPSl Input Source Listing

II HE S T M T

~9 >A ship stops at many ports and it is necessary to
50 >print out its itinerary.;
51 >
52 >
53 >OEF ENTITY
54 > TK[Y
55:> CSTS OF
56 >
57 >
58 >
59 >
60 >

ATTR ARE

61:> RPD IS
62" DESt;

User-View-3:
'V3' :
View3-Consignee.
View3-Port.
Vi ew3-Sh i p.
View3-Container;
FREQUENCY-IS
TIMING-REQUIREMENT
'E. Basar';

25.
7;

63 >Persons who ship goods are referred to as consignees.
64 >Their goods must be crated or stored in shipping containers.
65 >These are given a conta-iner identification number. A list
66 >can be obtained. when requested. of what containers have
67 >been sent by a consignee.;
68 >
69 >
70 >OEF ENTITY
71" TKEY
72 > CSTS OF
7»
74 >
75 >
76 >

ATIR ARE

77 > RPO IS
78,. OESt;

User-View-4;
'v4' ;
View4-Agent.
View4-Port.
View4-Container;
FREQUENCY-IS
TIMING-REQUIREMENT
'Chiang Wan';

110,
75;

79 >The shipments are all handled by shipping agents. A
80 >shipping-agent report must be generated. listing all
81 >the containers that a given agent is handling and giving
82 >their waybi 1 I numoers.;
83 >
B4 >
85 >OEF ENTITY
8(, > TKEY
87 > CSTS OF
BB >

89 >
90 >
91 >
92 >

ATTR ARE

93 > OESC;

User-View-5;
'V5' ;
View5-Waybi II,
ViewS-Port,
ViewS-Ship,
View5-Container;
fREQUENCY-IS
TIMING-REQUIREMENT

lOa,
50.

94 >A w~ybill related to a shipment of goods between two
95 >ports on a specified vessel. The shipment may consist
96 >of one or more containers.;
97 >
98 >
99 >OEF ENTITY

100 > TKEY
lOt> CSTS OF

User-View-6;
'v6' ;
View6-Ship.

Fig. 16. PSL-Input Source Listing Page (No.2).

Page 2

PSA Version A5.2R2M

J. Ludewig. H. Matheis / Specification Techniques

Jul 23. 1983 20:05: 19
PSL/PSA - ISOOS - VM/CMS

Contents Report

Page

Parameters: OB- VESSEl.DBF FllE-PSANAMES.PSATEMP NOC:OMPLETENESS-CHECK
NOINDEX NOPUNCHEO-NAMES lEVElSaAlL LINE-NUMBERS LEVEL-NUMBERS
OBJEN-TYPES PR INT NONEW-PAGE 08N8UF-200 WIOTH",84 lINES .. 60 I ND£NT-O
HEADING PARAMETERS PAGE-CC-ON NOEXPLANATION

1 i; (ENTITY) I User-View-l
1 (CROUP) 2 Viewl-Ship
2 (E LEMENT) 3 Vessel
3 (ELEMENT) 3 Cargo-Yo I ume
4 (E LEMENT) 3 Details

21; (ENT I TV) User-View-2
1 (CROUP) 2 View2-Ship
2 (ELEMENT) 3 Vessel
3 (CROUP) 2 View2-Ship-Port
4 (ELEMENT) 3 Port
S (E LEMENT) 3 Vessel
6.....(ELEMENT) 3 Date-ot-Arrival
7 (ELEMENT) 3 Date-of-Departure
8 (CROUP) 3 View2-Ship (M-I)
9 (ELEMENT) 4 Vessel

10 (GROUP) 3 Vi ew2-Port (M-I)
11 (ElUtENT) 4 Po,.t
12 (CROUP) 2 View2-Port
13 (ELEKENT) 3 Port
3* (ENT I TY) 1 User-View-3

1 (CROUP) 2 Vi ew3-Cons i gnee
2 (ELEMENT) 3 Cons ignee
3 (GROUP) 3 View3-Container (M)
4 (ELUtENT) 4 Container#
5 (ELEMENT) 4 Date-of -Arr iva I
& (ELEMENT) 4 Shipping-Agent
7 (CROUP) 4 View3-Port (I)
8 (ELEMENT) 5 Port
9 (CROUP) 4 View3-Ship (M-I)

10 (ELEMENT) 5 Vessel
11 (CROUP) 2 View3-Port
12 (ELEMENT) 3 Port
13 (CROUP) 2 View3-Ship
14 (ELEMENT) 3 Vessel
15 (CROUP) 2 View3-Container I. (ELEMENT) 3 Container#
17 (ELEMENT) 3 Date-of-Arr ivai
18 (ELEMENT) 3 Sh i pp i ng-Agent
19 (CROUP) 3 View3-Port (I)
20 (ELEMENT) 4 Port
21 (CROUP) 3 View3-Ship (M-I)
22 (ELEMENT) 4 Vessel
4* (ENT I TY) 1 User-View-4

1 (CROUP) 2 Vi ew4-Agent
2 (ELEMENT) 3 Shipping-Agent
3 (CROUP) 3 Vi ew4-Container (M)
4 (ELEMENT) 4 Container#
5 (ELEMEi<T) 4 Waybill#
• (ELEMENT) 4 Consignee
7 (ElEMENT) 4 Vessel

Fig. 17. Report Showing a Tree-Structure by Indentation.

127

19

128 J. Lud~ig. H. Matheis / Spedjicolion Techniques

4.3.2. The Language
Differenl form SADT and SA, PSL is a linear

(textual) language. PSL provides some 30 entity
classes and 7S relations to the user. The most
important ones are given in Table 2.

4.4. Soltware ReqUirements Engineering Method
ology (SREM)

Figs. 15 and 16 show two pages of PSL-input
source listing; the specification describes cargo
vessels and their organizational environment.

SREM was developed by TRW since 1975. It
supports the earlier phases (analysis. definition,
verification, and validation of requirements) of the
software development process and primarily ad
dresses real-time applications.

4.4.1. The Method
Two reports follow in Figs. 17 and 18. The fIrst

one shows a tree-.structure (the hierarchical con
tent-relation) by indentation. The second one
shows part of the same information in a table.
(Source: Material distributed by ISDOS, now
META-Systems, Ann Arbor, Michigan).

SREM possesses two important features not
present in other methods or languages for specifi
cation. First, it allows the stepwise development of
specifications beginning with informal descrip
tions, and proceeding towards a specification

ver~ i on AS.2R2~

Basic Contents ~atrix

PL/PA
Jul 23. ·1983 20 : 0$: 19

15005 - Vt'I/Ct'lS

Contents Comparison Report

An ~ in {i . j} means that column j i s conta i ned
directly or indirectly i n row i. The columns
do not consist of anything further. Intermediate
GROUPS are ignored.

Page

)4 Size ----------------- - ----- - - /
13 Handling-Instructions -------- /

12 Contents -------------------- - /
11 Delivery:Oate ---------------- /

10 Waybill# --------------------- /
9 Shipping-Agent --------------- /

B Container# ------------------- I
7 Consignee -------------------- /

6 Date-of-Departure ------------ /

5 Date-ol-Arrival -------------- /
~ Port ------------------------- I

3 Details ----------~----------- I
2 Cargo-Volume ----- ------------ /
Vess el ~---------------------- I I

---------------------------------+----------+----------+--------+
) User-View-) ------------------ * * *
2 User - View-2 ------------------ 1: * * t:

3 User-View-3 -.---------------- ~ * 1: 1: * t':

4 User-View-4 ------------------ '!:. ;": 1: :"< to ! : 1:

5 User-View-5 ----------------.. - 1: {: {: if t: t: n t: * i: :~

6 User-Vi ew-6
7 User-View-7 I * • •

•
•

---------------------------------+----------+----------+--------+
Fig. 18. Report Showing Pan of the Same Information (of Fig. 17) in a Table.

29

J. Lw1~ig. H. Malhei$ / Specification Teclmiques 129

... - 0
AND <!)

ENTRY HOOf CH R..NET ffj
ENTRY NOOE ON SUBNET 'V
EVENT @)

""'EACH 0
f./PlIT_INTERFACE,OUTPUT_INTEWACE 0
F,," ffi
CONSIDER"" ~
SELa>r G
",,"ET c::>
AETUR< /').

lEft.IIW.TE ~
VAUOATlO"CPOINT <D
Fig. 19. Symbols of R-Nets.

which is more and more formal. Second, data on
performance o(a system can be (onnally included
in the specification.

The method dictates the following eight steps:
(1) identifying the interface between the system

and the environment and describing the data

flows and the data-processing units inside the
system;

(2) outlining the very first description of the sys
tem using either the graphical R-Net (or
malism (R-Net means requirements-net and is
a stimulus-response network) or the linear lan
guage RSL (requirements statement language);

(3) completion and improvement of the RSL
specification developed so far; implementa
tion of Pascal-procedures (or so called AL
PHAs (active components) in order to be able
to simulate the ALPHAs (see step 5);

(4) addition of management infonnalions, e.g.
deadlines, milestones, needed tools, etc.;

(5) proof of syntactical correctness and simulation
o(dynamic behaviour; activation and evalua
tion of so called validation-points (serve as
control points for perfonnance analysis, e.g.
response time) included in the system before;

(6) check if every requirement is fulfilled by the
design;

(7) completion of validation conditions and re
finement o(functional validations developed
in step 5;

(8) analytical feasibility study in order to prove
that the current design is useful as a basis for
a technical realization.

4.4.2. The Language
SREM offers the user two means of descrip

tion: a graphical Janguage (R-Nets) and a textual
language (RSL).

R-Nets are stimulus-response networks describ-

NPUT HTEAFACE

VAUOAnoNPOINT

PROCESSING STEP (AlJ'HA)

SI

OTHEAWISE c
•

Fig. 20. Sample R-Net.

"AND" NOOE

S3 saECTOR
VARIABlE

.., .. NOO€

OUTPUT
NTERFACES

130 J . Ludewig. H. MatheIS I SpedficDlion Techniqun

R NET: P=S AAD1\R RE1Ul1N.
Sffi1JCrulE :

INIVr INI>Wl\CE AAD1\R l1E1WN EOffER
E:><TIW:T~

CO (=s - wu.ID_RE1Ul1N)
00 UPDAlE STAtE AID RAI.M!\N FILTER END
DE:ID<MlNE EWJATICN
DE:ID<MlNE IF RIDNlIINr
1D'MINAm

ornm-rrSE:
DE'l1:PMINE IF CX1IPl1I' NEEJED - - -
CO DE:ID<MlNE IF REIlUNllI\NT

DE:ID<MlNE EWJATICN
1D'MINAm

AND DE:ID<MlNE IF GlOST
1D'MINAm

Fig. 21a. RSL-Representation of Sample R-Net.

, 7

IWW\.
1£1UtI

""""".
'""""""'"

01"EI" (STATUS .VMJl ~

I
llElDU.I~E_F _ •
0Ull'UT J££l'EO

1-.
~ KAU,WVLTER

tEruIoI~~F .'i'
.JlEll.NlNff

.,.,.,.. CETERIDIE_

IF_GHOST
EVAlUATION

I
"""""". [EERM"E..F
EV""'''''' .""""'"

l~ LJ. l

Fig. 2Ib. Aow Graph RepresentalJon of Sample R·Net

lJPOATE_ STATE

J. LwJt'Wig. H. MQlh~is I Sp«i/iCtJtiOll Techniques 131

ing reactions in a system evoked by events. An
R-Net comprises nodes (ALPHAs and SUB
NETs) and arcs connecting the nodes. While AL
PHAs are functional specifications of processes,
SUBNETs are specifications of processes at a
lower level of hierarchy. A few operators (e.g.
AND, OR, FOR EACH) allow the description of
process control flow. Additionally, validation
points can be defined in order to obtain perfor
mance data.

In contrast, RSL is a textual specification lan
guage providing (our primitive concepts:
(1) Elements: Elements are standard types defi

ning features of each object of such a stan
dard type. For example, MESSAGE, DATA,
and FILE are standard types used to describe
data; ALPHAs stand for processes. Elements
represent nouns in the langu(lge.

(2) Relationships: Relationships express logical
links between Elements, e.g. (data) INPUT
TO (alpha). They represent verbs in the lan
guage.

(3) Attributes: Attributes are used to complete the
description of Elements, e.g. (data) INITIAL
VALUE (value). They represent adjectives in
the language.

(4) Structures: Structures are used to define the
sequences of processing steps and represent
R-Nets, SUBNETs, and VALIDATION·
PATHs in tenns of RSL-statements.

Figs. 19 and 20 show the symbols of R-Nets
together with a sample R-Net. Fig. 21 demon
strates both the RSL-representation and the flow
graph representation of a sample R-net. (Source:
[31])

S. Management Aspects

There are (at least) two important management
aspects.

First. the decision to use a specification system,
and the choice of a particular product requires a
commitment of the management. Introduction of
a specification system is very expensive. The cost
of the system itself and, possibly. of new hardware
is often high, but it is usually negligible compared
to the cost of training (or the failures due to
insufficient training). The step to using a specifi~
cation system is oC similar importance like the step
to using a computer; if you are not prepared to do
it right, don't do it at all! Problems are inevitable,

and there will be a situation when an important
project seems to be late, because it is done with a
specification system. If the management is not
prepared to show a bold front against the breakers,
they will not succeed.

Second, the specification system may illJprove
quality assurance and project control. Most
vendors advertise some management tools as part
of their products. To date, these arc not very
powerful. The real improvement stems from the
discipline and standardization implied by the ap
plication of a specification system. This side effect
is in fact the main advantage of a specification
system!

6. ConclusIons

It is obviously possible 10 produce software
(and systems) without any specification system.

Specification is not suited for every problem
area. There are problems like developing user in
terfaces which call for other approaches, e.g. pro
totyping.

A specification system causes large expenses,
mainly for training, but can improve quality and
productivity significantly. ThereCore, it should be
regarded as a (medium- or long-range) investment.

A specification system improves standardiza
tion in the way that every member of a project
uses the same method, the same language, and the
same tool. Moreover, the documents itself have
standardized features.

Maintenance of specifications is not yet sup
ported. This means when altering the specification
the user has to find the implied modifications. In
practice, there is still another problem with main
tenance of specifications. The program is the only
reference for modifications and not the specifica~
tion. Therefore, the specification becomes ob~

solete.

Appendix: Bibliography on Specification and
Specification Systems

Textbooks on Software Engineering

(1) R. Fairley, (1985): Software Enginuring Concepts, Mc
Graw-Hill Book Company, New York..

121 Sommerville (1985): Software Enginuring, Addison-Wes·
ley Pub!. Company, London, 2nd ed.

\32 J. Ludewig. H. Matheis / Specification Techniques

Life Cycle

(3] G.R. Gladden (1982): "SlOp The Life-Cycle, I Want To
Get Off," ACM SIGSOFf Software Engineering Noles, 7,
2, 35-39.

(4] M.M Lehman (1980): "Programs, liCe cycles, and laws of
software evolution," Proceedings of the IEEE, 68, 9,
1060-1076.

(5) I . Ludewig (1982): "Computer aided specification of pro
cess control software IEEE Computer, May 1982, 12-20.

(6J D.O. McCracken, and MA Jackson (1982) : "Life Cycle
Concept Considered Harmful," ACM SIGSOFf Software
Engineering Noles, 7, 2, 29-32.

171 W. Swartout and R. Daher (1982): "On the inevitable
intertwining of specification and implementation," Com
munications of the ACM, 25. 7. 438- 440.

Fundamentals and Principles of Specification

(8) R. Balzer and N . Goldman (1979): "Principles of good
so(tw~ specification and their implications for specifica
tion languages," In: Proceedings of Specification of Relia
ble Software (SRS), IEEE Cat. No. 79 CH 1402-9C, pp.
58- 67.

(9] B.W. Boehm (1976): "Sortware Eng.i.neering," IEEE
Transactions on Computers, C-25, pp. 1226- 1241.

[10] B.W. Boehm (1980) : Software Engineering Economics.
Prentice Hall, Englewood Cliffs, N.J.

(11) W.D. Brooks (1981): "Sortware Technology Payoff: Some
slalistica1 evidence," Journal of Systems and Software, 2,
3-9.

(12) W. Hesse, H. Keutgen, A.L. Luft and H .D. Rombacb
(1984): "Ein Begriffssystem mr die Softwarctechnik," In
fonnatik-Spektrum, 7, 4, S. 200-213.

(13) IEEE (1983): "Standard glossary of software engineering
terminology," IEEE Std 729-1983.

(14J J. Kramer (ed.) (1982): "Glossary of terms," EWICS TC
on Application Oriented Specification. Jeffrey Kramer,
Imperial College, Dept. of Computing, 1980 Queen's Gale,
GB-London SW7 2BZ.

(IS] D.L Pamas (1977): "The use of precise specifications in
tbe development of software," In: Gilchrist, B. (ed.):
Inlonnation Processing 77. North-Holland Publishing
Company, Amsterdam, New York, Oxford, pp. 861 - 867.

(16) W.F. Rackc and H.D. Rombach (1983): Methoden,
Spracben und Wcrheuge zur Softwarc-Spezirllcation. Urn
vers.it1t Kaiserslautern, Fachbereich Infonnatik, Interner
Bericbt Nr. 66/83.

(17) P. Schnupp (1981): "Spezinkation rur cin Spezi
fikationswerkzeug," In: Werk:z.euge der Progranunier
technik, Springer-Verlag 1981, S.75-100.

[18) M. Turun (1982): Grundlagen von Anforderungs- und
Entwurfsspezirllcationen Un Proz.ess der Software-En
twicklung. GMD-Studien, Nr. 66, 82 S.

Surveys (Articles and Books)

(19) H. Balzert (1982): Die Entwicklung von Software-Syste
men. Reibe Iofonnatik/34, Bibliographiscbes Institut,
Mannheim.

[20] G. Hommel (Hrsg.) (1980): Vergleicb verscbiedener
Spez.iflkationsverfahren, am Beispiel einer Paketverteilan+
lage. KlK-PDV 186, Teile 1 uod 2, Kemforschungs
zentrum Karlsruhe, BRO.

[21) P.P. Chen (1976) ; "The Entity-Relationship Model -
Toward a Unified View of Data", ACM Transactions on
Database Systems, Vol. 1, No.1, March 1976, 9-36.

122) L.L. Cbeng (1978): Program design languages - an intro
duction. Report No. ESD-TR-17-324, Electronic Systems
Division, Hanscom Air Force Base, MA 01731.

[23) Computer (1982): Special issue on application oriented
specification, IEEE Computer, May 1982, to-'59.

[24) lEEE-SE (1971): Special collection on requirements anal
ysis, IEEE Transactions on Software Engineering, SE-3,
2-84.

(25] J. Ludewig and W. Streng (1978): "Methods and tools for
software specification and design - a survey," EWICS TC
on SaIety and Security, Paper No. 149,23 &ilen.

(26) J. Ludewig (Hrsg.) (1983): Spezi.fikation von Rea1z.eit-Sys
temen-Konzepte, Losungen, Erfahrungen. 54. Tagung der
Schweiz.erischen Gesellscbaft fUr Automatik (SGA-AS
SPA), Baden/Aargau, 1983- 3-21.

(27] Y. Ohno (cd.) (1982): Requirements Engineering Environ
ments, Proceedings of the International Symposium on
current issues of Requirements Engineering Environ
ments; Kyoto. Japan, September 20-21, 1982. NHPC,
Amsterdam.

128] D. Prentice (1981): "An analysis of software development
environments," ACM SIGSOFT Sortware Engineering
Notes, 6, No.5, 19-27.

[29] C.V. Ramamoorthy and H.H. So (1971): "Survey of
principles and techniques of software requirements and
specifications," In: Software Engineering Techniques, Vol.
2, Infotech Intern. Ltd., Nicholson House. Maidenhead,
Berkshire. England, pp. 265-318.

Particular Specification Methods and Systems

[3~} M. Allord (1971): "A requirements engineering methodol
ogy for real time processing requirements," IEEE Trans
actions on Software Engineering, SE-3, 60-69. (on SREM).

(31) M Alford (1980): " Software Requirements Engineering
Methcxlology (SREM) at the Age of four," COMPSAC
Conferenc.e 1980. (on SREM).

(32) lL Balzert (1985): Modeme Sohware-Entwicklungssys
Ierne und Werkz.cuge, Reihc Infonnatik/ 44, Biblio
grapbisches Institut, Mannhcim. (contains material on
proMod, PRADOS and other systems; in German).

[33J R. Bell (1985): "Structured analysis aids in micro-com
puler system design," EDN, March 21, 1985, 251-257.
(on Structured Analysis)

(34J J. Biewald, p, (}ijhner, R. Lauber and H. Scbelling (1979):
EPOS - a specification and design technique for computer
controlled real-time automation systems. 4th Interriational
Conrerence on Software Engineering (ICSE) Munich, 1979,
IEEE Cat. No. 79 CH 1479 - 9C, pp. 245-150.

135) M. Hamilton and S. Zeldin (1976): "Higher Order Soft
ware - a methodology for deCiDing software", IEEE
Transactions on Software Engineering, SE-2, 9-32. (on
(HOS)

[36) M. Lissandre, P. Lagier, A. Skalii, H. Massie (1984):

J. Ludl!Wig, H. Matheis / Specification Techniques I33

SPECIF - A specification assistance system. Institut de
Genie logiciel (lOt). Paris, France.

137} 1. Ludewig, M. Glinz, H.J. Hu,s,er, G. Matheis, H. Matheis
and M.F. Schmidt (1985): "SPADES - A Specification
and Design System and its Graphica1 Interface", 8th
ICSE, IEEE CH2I39-4/85/ 0000/0083. 83-89.

138) D.T. Ross (1977): " Structured analysis (SA): A language
for communicating ideas", IEEE Transactions on SoCt·
ware Engineering, SE·3, 16-34. (on SADl)

139) D. Teichroew and B.A. Hershey III (1971): "PSL/PSA: a
computer aided technique for structured documentation
and analysis or information processing systems," IEEE
Transactions on Software Engineering, SE·3, 41-48.

1401 E. Yourdon and L.L. Constantinc (1979): Structured De·
sign : Fundamenta.1s of a disciplin of computer programs
and systems design, Prentice Hall Inc., Englewood Qircs,
NJ.

Use of Programming Languages for Specifications,
Prololyping

[41J 5.1. Goldsack (cd.) (1985): Ada for specification : Possibil·
ities and limitations, Cambridge University Press (Cor tbe
Commi.s.sion of tbe Eq.

(42J B.W. Boehm, T.E. Gray and Th. Seewald (1984) : "Proto
typing versus Specifying: A multi·project experiment. 7tb
ICSE, Orlando, FL., March 1984,473-484; also in IEEE
Transactions on Software Engineering, SE-1O (1984), 29().
303.

