
IEEE TRANSACT IONS ON SOFTWA RE ENGINl::l:: ltlNG, VOL. SI::'9, NO. 4. J ULY 1983 427

ESPRESO-A System for Process Control
Software Specification

JOCHEN LUDEWI G

AbSlmct- This paper o ullincs a specification system fo r p rocess con­
t!Of 5Ortware, Ilamed ESPRESO, which was developed at the Nuclear
Research eenler, Karuruhe, West Q:rmany. ESPRESO is based on
some new ideas. which are combined with elements laken from other
systems. ESPRESO consisls o f a set o f concepts. a specificatio n lan­
guage, a 1001 fo r the management, evaluatio n and validation o f sped.
fiellions, and the method how to use the system. Language, tool ,
and method are carefully adapled to the concepts. The primary aim
was 10 demonstrate some features o f a specificalion system which are
currently not ava ilable, ra ther than to provide a new 1001 for the soft­
ware market.

The concepts o f ESFR ESO were abstracted from the most common
tasks in real time programming, focusing on precisely defined o perat ions
fo r pfOCell communication. The concept o f modules allo ws for the
defin ition o f static uni ts which hide their internaJ structure from the
outside. AA aUribute grammar was used, which describes not only
the context lfjftSi tive syntax o f the language, but also the effecl of the
1001. fo r storing specinca tio ns. The tool·sct was coded in Pascal, and
installed o n IBM·OS and VAX-VM S.

While ESPRESO is aJready bei ng used for the specificatio n o f a
nuclear reac to r sarely system, more toob are being implemented in
order to provide better means ror validation and documentation.

Manuscript received December 12, 1981: revised August 17, 1982.
An earlier version of this paper was presented at the Seventh Confer­
ence on Operating Systems, Visegrad, Hungary, January 1982.

The author is with Ihe Brown Boveri Research Center, CH-S40S
Baden, Switzerland.

Index Tenns-Allribute gram mar, language definilio n, process com­
municatio n, process control sofl ware, soft ware specificatio n.

I. EXPERIENCES WITH PSL/PSA ANO THE

GENERAl..IZED ANAl..YZER

I N 1976, a group at the Nuclear Research Center , Karlsruhe ,
West Germany, bega n to investigate the current state of

systems fo r the specification and design of software. PSL/PSA
(I] by ISDOS was soon ident ified as the best candidate for the
institute, and installation was started early in 1977.

When the system was operat ional, we t ried to apply it to
some test cases which were taken from the current work of
our coUeagues and also from textbooks. The results did not
support any simple answer as to whether PS L/pSA would im·
prove our software develo pment. We found that the basic
ideas (e.g., the concept o f a central database and the approach
to modeling systems by objects and their relations) are cer·
tainly useful, and the implementation was, under the given
constraints, successfully achieved, but, on the other hand, we
were not completely happy with the PSL/PSA due to some
significant difficulties. These were

• the large size o f the system, which makes it hard to
manage,

0098-5589/83/0700-0427$0 1.00 © 1983 IEEE

". IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. SE-9, NO. 4, JULY 1983

• the lack of good training material , without which meant
we did not know how to use it,

• the vague explanations of syntax and semantics, which
were obviously caused by a very pragmatic style ,

• and, for our particular environment (process control
software), the absence of constructs for describing the
dynamics of the target sySlem.

By 1978, ISOOS had extended their tools, so that languages
other than PSL could be defined, and processed by the 50-
called Generalized Analyzer (CA) which enabled us to develop
a language named PCSL (process Control software Specifica­
tion Language) (2) . Thanks 10 an improved basic modei,PCSL
is better suited to our applications than PSL was. Still, PCSL
suffered from some of the disadvantages of the CA. We were
not able to define a recursive syntax (for nested structures),
and we could not compel the CA to refuse specifications which
are inconsistent with our structuring rules. Finally, the GA
was even larger than the PSA·system, and offered (at least at
that time) very little support for the evaluation and docu·
mentation of specifications.

11 . AIMS AND CONCEPTS OF ESPRESO

ESPRESO is a German acronym standing for "development
of the specification of process control software" ("System zur
Erstellung der ~pezifikation von frozess.u;chner·Software").
It was designed to provide an aid in the process of formaliza·
tion. Its components are a formal language (ESPRESO-S)
and a tool (ESPRESO·W) to check, store, accumulate , modify,
and evaluate specifications.

The goals listed below are valid for any software specifica·
tion system.

• All information, whether formal or not, should be docu·
mented as early as possible. The user should be supported in
formalizing the specification. The user should be hindered
from stating details too early. There should be one central
specification which can be easily, accessed and updated by
everybody.

• The language should be based on concepts which are
simple, well known, easy to use, and translatable into well
structured programs. Syntactically, languages for specifica·
tion should resemble other good languages, e.g., Pascal. To
satisfy the needs of nonprofessional readers, various represen·
tations of the language may be defmed (including graphics).

• A set of tools should be provided to support all activities
related to the specification, in particular, creation and mainten·
ance, for error detection, communication , and documentation.
The clerical work to be done by the user should be minimized.
The tools should be easy to implement and modify . Installa·
tion on other computers, including mini-computers, should
require only minimal changes.

In the case of ESPRESO, the special properties of process
control software must be taken into account. These properties,
which are discussed in [3 J, can be summarized as follows.

Process control systems are part of larger systems which also
consist of asynchronous technical processes and human oper·
ators. The processes, whose optimization is the overall goal,
dictate the interface to the control system. This implies that

a system for process control software specification must be
capable of representing:

• the environment, and its interface with the process control
system,

• parallelism and communication,
• timing constraints.
Since the goals are partially contradictory , ESPRESO had

to be a compromise.

Ill. THE SPECIFICATION LANGUAG E ESPRESO·S

According to the previous goals, and to our experience with
PSL and PCSL, the basic concepts for describing the process
control system were chosen as follows.

• If there is a choice among different structuring principles,
tree structures should take preference as they allow simple
description and easy understanding. The language must sup·
port nested representation of tree structures.

• The language must allow for mixing formal and informal
parts ("texts") in the specification. The management of the
texts must be supported by the language.

• There must be a construct for describing units which
consist of data and the operations up on it ("abstract data
structures").

• Constructs must be provided for the simple description of
data flow and the implicit definition of the coordination of
concurrent processes. Passing messages is a particularly im·
portant way of communication, so the model should provide
special constructs to support this. Messages can also be used
instead of simple events which are lost once they have occurred.
According to our experience, specifications with such events
tend to be ambiguous and incomplete.

• Arithmetic is banned from the model in order to keep it
simple, and also to support high level specification.

• ESPRESO should not enforce a particular sequence of
specification.

• The grammar of the language must be simple, not only
in order to limit the size of the tool but also to make it easy
to learn.

• The language must be well defined, in every respect.
Different from the approach reported elsewhere {4] , the ob·

ject.relationship·model (5] was not questioned when ES·
PRESO·S was designed.

As a result, ESPRESO·S offers to the user 14 kinds of ob·
jects (entities) and 45 relations. The entities are as follows.

• Text-objecls for any kind of informal texts. Several texts
may be distinguished by selectors. Texts can also be attached
to any other object.

• Modules for describing abstract data structures, whose
content is accessed only in a strictly controlled way.

• Procedures and blocks , which are the active components
of the systems. Procedures may be called at several points,
while blocks are used only at one point, forming a tree·struc·
ture under the relations for refmement (see below).

• Parameters , which are split up into input., transient·,
and output.parameters. They are used to communicate with
procedures.

• Van"ables (in the usual meaning).

LUDEW IG, I'ROCESS CONTROL SOFTWARE SI'EC I ~' ICATlON

• Buffers for messages.
• Triggers for trivial messages (tokens).
• Resources for concrete or abstract , nonconsumable

objecls.
Triggers are used 10 represent evenlS, including those defined

by time. Variables, buffers , triggers , and resources are called
media . They can only be accessed by "acHons" (see below).

• Types for describing variables, buffers and more complex
types.

• Durations for defining real time requirements and per­
formance.

• Constants for predefined values.
The most important relations in ESPRESO·S can be sum­

marized as follows.
• A module comprises other objects, including modules.
• A procedure or a block may call a procedure, or be

refined by several blocks. The execution of subordinate
blocks is defined to be either sequential, parallel, or alterna·
tive. If specified, execution of a procedure or a block is
repeated as long as a condition holds.

• A parameter of a procedure is assigned to a conslant,
variable o r buffer by a calling procedure.

• A procedure or block accesses a medium (e .g. , reads a
variable , produces an item for a buffer or occupies a resource).
Every such access is called an action. Actions imply the neces­
sary coordination of parallel processes (reader/writer, pro­
ducer/consumer , mutual exclusion). Media and actions form
a central concept of ESPRESQ. They provide the means to
describe t he communication of asynchronous processes with­
out diving into Ihe details of synchronization.

• Procedures may be accessible (available) from certain
modules only. Similar restrictions exist for all media.

• Dynamic relations (prion'ty , delay , cycle) are used ror the
description of procedures, blocks, and triggers.

• Media may b~ described by several relations (e.g., has­
type , capacity).

• For classifying objects, the names of texl.abjects may be
used as keywords . TeXIS, which are in general informal , may
reference any object by preceding its name by an exclamation
mark.

The basic syntactical structu re of ESPRESO-S is the section.
A section is used to explicitely introduce an object , to put
some informal text on it, or to state its links to other objects.
Examples are

procedure get-value

,nd

buffer raw-value

$ unfiltered signals $;

capacity 12

end raw·value

(. section-header only *)

(. section header .)

(. beginning of s.-body .)

(. text *)

(. statement

(* section.tail

.)
').

Since many statements may contain sections, .the sections are
nested. A specification is defined to be a sequence of sections.

To give some idea of the language , an incomplete spetifica­
lion for a mixer-system is shown below. This problem was

."
used as a standard example by the Technical Committee on
Application Oriented Specification of EWICS, the European
Purdue Workshop.

The indentation shown below is the one generated on out­
put. ESPRESO-S is a free format language, but the user can
control the format within texts in order to preserve structures
like tables, etc. NOle the difference between comments and
texts. Texts are enclosed by dollar-symbols, and stored when
the specification is processed, while comments are simply dis­
carded.

This example was checked by the tool ESPRESO-W.

in/onnal problem:
S The technical process to be controlled produces some
material, which is made from three components, two
liquids and some solid bricks. While the liquids are por­
tioned one after the other on a scale, two bricks are
supp.lied from a conveyor belt. After a certain time of
mixing, the mixer is tipped , and the cycle starts again. $
end problem;

procedure conlrol-all:
while process-running ;

sequential
block control·supply:

(. means cyclic execution of
control-all unlil process·running

is no [anger true *)

(* In the sequel, the redundant word block is omitted,
where possible *)

parallel (* control-supply is refined by

liquid-supply:
sequentitJl

weigh-A

then
weigh·B

then
empty-scale

end liquid-supply
parallel

brick·supply
end control-supply

then

control·m ixer
erul control-all;

parallel blocks .)

(. Jiquid-supply is refined by
sequential blocks .)

(* weigh-A is not defined at this
!Xlint *)

(. in parallel with liquid-supply *)

(. Le., after te rmination of con­
trol·supply .)

(* After specification of the overall behavior, some details
are described. The order is irrelevant , and objects al­
ready specified before may be extended. Note the
references to z, a, and b in the text below. *)

procedure generate-weighing-signals:
produces scales-reading (. scales-reading is a buffer .)

where $ messages express that the scales have reached
!z, or la, or lb. $;

end;

." IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 5E-9, NO. 4, JULY 1983

type scale-values: values z, a, bend;
block weigh A :
$ controls the value !V A for liquid A $;
sequentiJJl

weigh.A-start :
writes VA-signal where $ becomes open $;
end

then
weigh.A-wait :

consumes scales-reading
where $ a check should make sure that level !a has

been reached. Otherwise. some error-handling is required. S;
end

then
weigh·A-end:
writes VA-signa] where $ becomes close $;
end

end weigh-A ;

block brick-supply :
sequential

belt-start
then

belt-run:
consumes brick-signals where S two bricks are waited

for $;
end

then
belt-stop (* actions for controlling the belt are not yet

specified *)
end brick-supply;

block control-mixer:
sequentiill

switch-On-mixer

then
wait-mixing-time: C* specifies the interval for mixing *)
takes I of mix-delay
end

then tip-mixer
then return-mixer
then switch-off-mixer
end control-mixer;
procedure control-all :
started-by dcy-pushbutton

end;

trigger dcy-pushbutton :

C* supplements the previous
definition *)

$ contains one token every time the button is pressed $;
capacity I ; (* means that not more that one request is

stored *)
skip-input ; (* means that additional signals from the op­

erator are skipped *)
interface; (* means that this trigger is located inside the

end;

control-system, but may be accessed from
outside as well_ Here, e.g., it is ftlled from
outside_ Therefore, a formal check for
completeness of the accesses is not

possible. *)

trigger brick-Signals:
$ contains one token for every brick falling from the belt $;
external; C* means that this trigger is located outside

end;

the control-system; although it has not to
be implemented, it may be aecessed *)

buffer scales-reading:
of type s<;ale-values
end;

(* Only one module is specified here. If the specification
were further refined , submodules could be defined, for
instance for all components which take care of the
liquids_ *)

module control-system:
comprises procedure control-all
and trigger dcy-pushbutton
and trigger brick-signals
and module liquid-supply-system:

comprises block weigh-A
and block weigh-B
and buffer scales-reading
and type scale-values
(* scales-reading and scale-values are acces­

sible only from within module liquid­
supply-system *)

end liquid-supply-system
end control-system.

The example demonstrates some important features of
ESPRESO-S: the user may exploit the recursive syntax to de­
scribe his system in a mosl natural way; he is allowed to ref­
erence objects which are not yet defined; he can repeat or
extend definitions; he may use informal texts not only to
describe objects but also to add some information to the
actions. The fact that many blocks are not yet refined, or
that procedure generate-weighing-signals is not yet related to
the top level procedure control-all does not matter as long as
the specification is still being prepared.

IV. THE FORMAL DEFINITION OF ESPRESO-S

Nobody can expect the analyst to deliver a complete and
formal specification as the ver)' first step of his work. So , if
he is required to write down all his information as early as
possible, the language must comprise constructs for informal
and imprecise information, which the tool must be able to
handle. Some people conclude from this situation that there
is no need for a precise definition of the specification language.

Experience proves Ihat the opposite is true. The specifica­
tion language must be well defined, even more so because the
specification itself tends 10 be incorrect (with respect to the
intended meaning), incomplete , inconsistent, and vague_
Natural language or an unclear specification language will
blur those deficiencies.

A further reason is that the semantics of a nonoperational
language cannot even be discovered by testing, as is frequently
done in the use of ill-defined programming languages. If a
specification language is not clearly defined, il will be am­
biguous forever.

LUOI::WIG : PROCI::SS CONTROL SOfoOWARI:: SPECIFICATION

The del1nition must cover three aspects of the language.
I) Some specifications wilt be accepted by the tool , while

others will not. The rules wttich distinguish between those two
groups are called syntax. In the past, "syntax" was often used
in the sense of "context free syntax." It should be noticed
that context·sensitive elements like the consistent usage of
names are included here .

Instead of BNF (Backus·Naur form) (6) , which is easy to
write and read. but limited to context free syntax, a so-called
extended attribute grammar (7J was used . EAG's differ from
the general attribute grammars (8) mainly by their particu·
larly concise notation.

An EAG can be directly obtained from a BNF-grammar by
adding so-called attributes. Every attribute of a particular
syntactical variable of the grammar (e.g. , the syntactical vari·
able "statement") carries information :

• either on the environment of this construct (e.g., the
statements before and after this statemenl or the name of Ihe
program);

• or aboul the actual value of the construct (e.g., what
kind of statement , referring to which objects).

These types ofallribules are called inherited and symhesized,
respectively. See the Appendix for examples.

2) When a syntactically correcl specification is processed
by the tool ESPRESO·W, all redundant or meaningless infor·
mation is discarded. For example, if an object is specified
twice (which is not regarded as an error), only one definition
is stored, comprising the union of the two sets of information .
The mapping from the specificBl ion to its stored image is
called se"wntics. Both Ihe implementer and the user of fhe
tool need to know the semantics of ESPRESO·S; therefore, it
was defined as precisely as the syntax . This definition was
almost for free, because one of the attributes required for
the syntax definition can be regarded as the accumulated
content of the specification up the the actual point of analysis.
Thus, when the whole specification has been analyzed, the
attribute contains most of the abst ract specil1calion. Exlen·
sions of the grammar beyond the syntax were necessary only
for infonnadon not needed to detect inconsistencies and other
errors, but must still be stored (e .g., texts).

3) Finally , and most important for the user, every con·
struct of ESPRESO·S has some meaning which, eventually ,
must be reflected by the ultimate implementation of the
specification. Many people tend to take an extreme position
on the meaning, saying that it can only be completely defined
(as in programming languages) or totally undefined (as in
many specification languages) . For ESPRESO-S, an attempt
was made to find a compromise, based on an improved under·
standing of what a partially informal specification really can
express.

The meaning of a specification written in ESPRESO·S is
defined by its mapping onto a well defined language. This
(hypothetical) language, ca lled E-Pascal, differs from Pascal in
two ways : it supports inform3lion hiding, and it comprises
calls to a standard real·time operating system (9) for implc.
menting parallelism and synchro nization. A more powerful
language like Ada , which was not available at that time, could
have been used without extensions, but such a mapping would
not have shown which particular requirements the specifica.

lion language imposes on Ihe implementation language and the
runtime system.

The mapping, which can only be perfo rmed if the stored
specification complies with some rules for formal complete·
ness, results in a skeleton of the program. Some parts of the
code are ready for compilation (e.g., data and control st ruc·
tures), while basic procedures and blocks need 10 be refined
by the programmer. In particular, actions must be trans·
lated into assignmenl stalements and arithmetics. The holes
to be filled by the programmer are well isolated, and the pro·
grammer is hindered from any unspecified access to media
and procedures.

The investigations about the meaning of specificatio ns
yielded results which are interesting and encouraging.

First of all , semiformal speci fi cations are shown to have
some clear meaning, not merely an intuitive one , which can
only be exploited by a human reader. This knowledge should
lead to tools which act~lly implement the transfonnation con·
ceptualized in lhis work , or which can check implementalions
against specifications .

Secondly, many statements in the specifications, though
resembling executable statements in programming languages,
turned out to have a more stalic meaning . For instance, the
"action"

procedUre P rellds variable V

is mapped onto

pt (: implementation of P) is granted access to V'.

Depending on the program design and on the actual data at
runtime, pt may access V· several times, or not at all.

Primarily. the investigations about the mapping 10 a pro·
gramming language was not done with the intention to imple·
ment an automatic tool; it seemed that this would require
100 much manpower. Now, as ESPRESO is being used , there
is a strong demand for an implementation of the mapping,
which is hence considered for future realization.

Examples of the definition of ESPRESO·S are given in the
Appendix.

V. THE SPECIFICATtON TOOL ESPRESO·W

The most important components of ESPRESO·W are those
required for checking . storing. and modifying specifications .
At the current stage , there is no special ESPRESO~ditor;

a user wishing to create a specification does so by providing
a sequent ial text·file, which is then converted into the internal
representation , and stored in the so·called ESPRESO.t'ile , a
simple substitute for a dedicated data base system. The stored
information is called reference speci[icaticn. If it is to be
modified, it is first deconvened , i.e., translated back into the
language ESPRESO·S, edited with a standard text editor, and
converted again. Therefore, Ihe ESPRESO·fi\e·management
and the programs for conversion and deconversion constitute
the kernel of ESPRESO·W (sce Fig. I).

If the tool kept the deconverted parts in the reference speci·
fication (as PSA does), the user would be likely to become
confused when he entered his modified files, because the tool
would report inconsistencies. Our solution to this problem
was to make both the tool for conversion and for deconversion

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE·9, NO. 4, JULY 1983

I

+ I

1 .. 1_

odilo.

I
I

----1',' Co." d-I ~/.,L.J;;;;;;i4 ESPRESO - _ I~

I
u ...

_ ESPRESO

fiI .

I
I
I

I ESPRESO_ W

Fig. I. Sfructure and data now of ESPRESO-W.

"consume" their input, when it is transfonned. This means
that after conversion the source me wilt contain only those
parts of the specification which were rejected , because they
contain errors or are not consistent with the reference spec­
ification. Symmetrically, after deconversion the reference
specification no longer contains the parts which were trans·
lated into ESPRESO-S. Loss of data due to misoperation is
prevented by automatic generation of safety copies. This sym­
metrical "either inside or outside" philosophy is very com­
prehensible.

The information to be deconverted can be selected and
limited by the user in various ways, e.g., he may choose
certain objects or all objects related to certain keywords.

Desirable functions for evaluating the specifications are
listed in [IO, 3.3, pp. 43 IT.] . Their global aims are

• to check automatically if the reference·specification
satisfies some rules which were intentionally not incorporated
into the grammar, for instance that a name must not be
referenced outside its range,

• to extract information for manual checks, e.g., informa­
tion on the data flow,

• to generate documentation and descriptions of subtasks,
which can be passed to programmers etc.

Since the ESPRESO-fiIe was designed and implemented as
an abstract data structure , which is accessed only via a given
set of operations. implementation of the evaluation programs
was easy. All programs were written in Pascal.

Theoretically, the program for conversion could have been
automatically generated from the EAG. Even tnough. we had
access to such a generating system, we did not consider its
use, because ESPRESO-W was required to fit into a mini·
computer, and stilt perform reasonably. Nevertheless. the
EAG was very useful for implementation (11). No questions
ever arose due to ambiguities, and implementation was easily
separated as a task for a master's thesis. The structure of the
grammar was used as a guide for structuring the programs;
while the basic constructs of the language (sections) are han­
dled by special code, the large number of similar statements
is converted (parsed) and deoonverted by table driven routines.
As the syntax is recursive, these programs are recursive as well.

VI. EVALUATION OF ESPRESO

With regard to the goals stated in the opening, ESPRESO is
obviously far from being perfect , but in some aspects it seems
to be superior to other systems.

Informal statements are possible, formalization is supported.
The absence of arithmetics and other elements of program­
ming-in·the-small prevents the analyst from getting lost in
details. The tool makes sure that all information is collected
within one central ESPRESO-fiIe.

The language ESPRESO-S is simple and well defined. It was
shown that (and how) the specifications can be mapped into
programming languages. Graphical representations were con­
sidered, but are not yet fully defined.

The tool-set ESPRESO-W, as far as it is implemented, ful­
fils its purpose, although many more components are desirable.
It is flexible and portable , and can be applied to identify logical
links between specified objects, even those which exist only
in the informal parts, thereby easing software modifications.
Under realistic conditions, however. more support and control
is necessary to force all changes being implemented and docu­
mented at all levels affected. Only an integrated set of tools
which controls all accesses to every kind of documentation,
including the code, will meet this goal.

Describing the environment is not really possible in
ESPRESO, and it seems that no solution for this problem is
within reach. PAISley was reported to achieve this aim (31,
but it seems that the environment is only simulated on a fairly
low level , which is possible in any simulation language. What
is required is a problem oriented language which allows to
describe the environment in a most natural way.

Parallelism and communication is well taken care of in
ESPRESO (see below). Time can be specified, but is not yet
fully logically integrated into the concepts. The reason is
that, according to our experience . timing conditions tend to
be rather complicated. Constructs for specifying them would
tnus be in conflict with the goal of simplicity. As a compro­
mise , informal extensions are allowed within those statements
requiring timing constraints.

Comparing ESPRESO with similar systems, it can be classi-

LU1JEWIG, PROCESS CONTROL SOFTWARE SPECIFICATION

fled as a descendent of the PSL/PSA-SREM-family . All these
were designed to support the process of formalization. The
most important characteristics of ESPRESO can be found in
the approach to communication and synchronization. In PSL,
only very little is present for dynamics, wltile RSL supporls
the distinction of sequential and parallel activities. But com­
munication on the basis of the stimulus/response-concept is
clumsy and tends to obscure the dynamic structure of the sys·
tern. The set of media introduced in ESPRESO is in my opin­
ion both problem oriented and elegant. A second difference is
that ESPRESO has the advantage of precise definition . On
the other hand , the set of tools in ESPRESQ-W is very limited,
compared to its ancestors.

The other mighty family of specification systems com­
prises those which are based on rigorous concepts, such as
algebraic specification. HDM/SPECIAL and HOS represent
this philosophy. .

Between these two groups, there is a stimulating dichotomy:
While the latter is based on fo rmal languages, adapted to the
needs of requirements analysis, the former are genuine specifi­
cation languages, tuned for the largest possible formality.
Regarding the definition of ESPRESO, it seems to be close
to the threshold on one side; on the other side, PAISley (3]
may be its counterpart. Both approaches have complementary
advantages and deficiencies: While the more formal languages
lend themselves naturally to all formal operations , like auto·
matic or controlled program generation, simulation , and veri­
fication , the semiformal ones fit better to the rather chaotic
ideas about systems which are not yet fully conceptualized.
Time will show if one is superior over the other, or if both
should be applied in sequential steps, or if they even can be
combined.

VII. CURRENT STATE AND FUT URE PLANS
(IN AUGUST 1982)

The kernel of ESPRESO-W was operational in 1981. Re­
cently, some tools for evaluation became available (report on
the hierarchy of procedure-calls, identification of not ex·
plicitly defined objects), others are being implemented and
will soon be installed (report on the hiera rchy of modules,
checks for names used outside their legal ranges, data flow
report).

ESPRESO-W was first implemented on a minicomputer
(SIEMENS R-20); it is now installed both at Karlsruhe (under
IBM/OS) and at Brown Boveri Research Center, Baden , Swit­
zerland (under VAX/VMS). The former system is being
used for the specification of a protection system for a nuclear
power plant , while the latter serves as a handy experimental
system.

The current implementati.on was basically completed by one
person, so the only goal was to prove the feasabi li ty of the
concepts , while practical considerations were less important.
Here at BBC, we can test how well our ideas fit to the in­
dustrial reality. Two problems attract our particular atten­
tion, the acceptance of the tool , and its ability to manage
very large specifications.

A system is not acceptable ifit suffers from low availability,

poor response time , an unreliable database, fragmentary
manuals, or a clumsy command language. A primitive substi·
tute for a data base is insufficient for voluminous data. While
the scientist may brush aside these deficiencies, they have a
disastrous meaning in an industrial environment. Therefore,
we must prOvide material for users' training, build a com­
fortable interface with graphics, and incorporate a proper
database system into ESPRESO·W.

As indicated above , the grammar of ESPRESO-S specifies
the conversion program. Since tltis specificatio n lurned out
10 be both precise and efficient , it would be useful to extend it
for deconversion, evaluation , and report generation. Some
preliminary investigations showed that this would not cause
any problems.

VIII. CONCLUSIONS

The work on ESPRESO yielded results on three levels.
• Different from many other specification systems, ES­

PRESO is based on a carefuily chosen set of concepts. Most
of the attempts to modify its concepts in response to some
practical problems failed, because the modifications would
have destroyed the simple elegance of the system. The lesson
from this experience (which is not at all a new one) is that
a consistent set of concepts must be defined in the very be·
ginning; while it cannot be created later, it can easily be
ruined.

• From the author's point of view, the formal definition of
ESPRESO-S is the most important result. It proves that
such a definition is not a sport for theorists , but a compara·
tively small investment which immediately pays. Whoever
proposes a new specification language without providing
a complete formal definition of it, commits an error. How
can he convince anybody to prepare a specification of his sy~ ­

tern, if he himself does not specify his language and its tools?
(". (1 2]).

• Using Pascal for implementation demonstrated the superi­
ority of this language compared to Fortran and Algol 60, but
it also exhibited some difficulties due to the absence of
modules. Modules are necessary for implementing large so ft ­
ware systems according to the principle of information hiding,
which contributes significantly to software quality. The
ideas of Pascal do not conflict with this principle , and most
Pascal-compilers actually support some kind of modules, but
their differences decrease the partability of programs. It
would be more desirable to have a standard fo r modules and
separate compilation in Pascal (11] . Modula-2 [14] seems to
meet this requirement.

Results of investigations on the process of specification
and on its relation to the design process, which were a basis of
the development of ESPRESO, were published elsewhere
(13).

ApPENDIX
EXAMPLES OF THE FORM AL DEFIN ITION OF ESPRESO-S

This Appendix contains simplified examples from the defini­
tion of ESPRESO-S, and also a sample from the original
definition.

IEEE TRANSACTIONS ON SOFTWARE ENGIN EERING, VOL. SE-9, NO_ 4, JULY 1983

A. The CrQmmQro/ ESPR£SO-S

J) Definition 0/ the Syntax: A section is a fundamental
construct of ESPRESO·S for defining objects. For the sake
o f readability, the name of the object has to be repeated at the
end of the sections . The conlex!-free grammar in 8NF is :

<section> ::'" <object·sort> <object·name> colon
<section-body>.

<sectio n-body> :: "" <statement > <section-body >
I end-symbol <object-name>.

In this excerpt , the production rules for <object·sort>,
<object·name>, and <statement > are missing, but obviously
the rules cannot enforce that the two occurrences o f the
object-name are to be consistent. This can be achieved, how·
ever, by the use of attributes.

<section t NAME> :: '"
<object·sort > <object·name t NAME>
colon <section-body * NAME>.

<section·body * NAMEI > ::=
<statement> < section·body ~ NAMEI >
I end-symbol <object.name t NAME2>

<test NAMEI '" NAME2>.

<test TR UE> :: "' .

If NAME , NAMEI , and NAME2 are substituted consistently,
the naming of the sections is necessarily consistent, because
the grammar does not provide a production rule for <test
FALSE>. In a si milar (however, often more complex) man­
ner all context-sensitive properties of ESPRESO-S are defined.

Note that the distinction between inherited (down) and
synthesized attributes (up) is made only for the reader's con·
venience.

Here , only one attribute was introduced ; real productions
will contain several, typically from two up to four or fi ve.
In EAC's, seve ral attributes of one meta-variable are distin·
guished simply by their posit io n, rather than by a name , just
like pa rameters of procedures in most programming languages

"'.
2) Definition 0/ the SemQntics: For a typical syntactical

variable , there is an inherited attribute whose value is a set,
which contains most of the relevant information about the
actual context at the very point of analysis. In the definition
of a programming language , e.g. , that attribute would at any
particular point o f the program hold all valid (declared) names
and their related types . If the subtree of that syntactical
variable may contribute to the context of other variables.
a second set is defined for a synthesized attribute. The general
construction is :

< variable-name + INHER-CONTEXT + ... t···
t (I NHER.CONTEXT r/J NEW.tNFO».

The last parameter is the new context, which co nsists of the
inherited context plus the information derived from the appli­
cation of production rules o n '·variable-name. " (/; is an opera·

tor, especially defined for this grammar. The meaning of 1> is
similar to the union-operator for sets. But if all the informa·
tion in the speCification would just be en tered into the context­
attribute, it might become inconsistent. Therefore, SET.A
(/; sET-B is the union of the sets, if they are consistent; other·
wise. the result is undefined (e.g. , "X is a procedure" (/; "X is
a data"). An undefined result means an error-message during
conversion. Otherwise, the informatio n is superimposed, and
onl y the consistent , nonredundant subset of the result is kept.
Thus, the context attribute can never become redundant or
contradictory.

In the gra mmar o f ESPRESO-S, (/; is formally defined by
set-operations,

3J A Typical Production Rule: Below, the application of
one typical production rule, which was not simplified, is
demonstrated. Th.is rule was taken from {IO , p. 120] :

<following blocks + Cl ~ BLOCKI + PROCK
t C2>

:: '" empty <whe re C2 '" C l (/; (sequent ,B LOCKJ)4
(PRoc K,undel» / r2/

I <following block + Cl ~ BLOCK I ~ PROCK
t BLOCK t C>

< following blocks ~ C r/J (sequent ,BLOC KI)-+
(PROCK,BLOCK)
+ BLOCK ~ PROCK

tC2>. 1<2/
This rule is required to produce lines 3 and 4 in the following
excerpt from a specification:

I) block ABC :

2) sequential block ALPHA : ... end ALPHA
3) then block BETA : ... end BETA
4) then block GAMMA: .. . end GAMMA;

5) end ABC.
The ellipses indicate statements which are not relevant here .

The production rule can be explained as follows:
" following blocks" is either empty, or one "following

block," which in turn is followed by mo re "following blocks."
This is the context-free syntax. In the example above, the
second alternative is applied once to produce lines 3 and 4
together, and then once again for line 4 o nly; finally. the first
alternative is used, since the statement ends in line 4 .

The attributes in this production are:

• I'ROCk the upper level procedure or block (in this
example : ABC),

• BLOCK I the previously defined block (first ALPHA,
t hen BETA),

• BLOCK the first block following BLOCKI (first
BETA, then GAMMA).

• CI , Cu nd C2 various versions of the context.

Cl , PROCK , and BLOCKJ represent inherited attributes, since
they are defined by the (left-) context. BLOCK is the name of
an object produced from " following block," thus being a
synthesized attribute there , whereas it is used by the "follow·
ing blocks" as an inherited attribute.

l.UDl::w!C, J>ROCI::SS CONTRO L SO FTWARE SPECIFICATION

"where C2 = " ," defines the value ofC2 and does not pro­
duce any lerminal symbols.

By the </I-operation , the context-att ribute is extended , be­
fo re it is passed on 10 "following blocks." If (sequent , BETA)
is already lin ked to objects other than GAMM A or the pseudo­
o bject undef, the specification is incorrect.

"/r21" is o nly a reference to a list of relations. Other refer·
ences help to find definitions which are not located in t he
same paragraph.

The reader should note Ihat the word "attr ibute" is used
here in a sligh tly imprecise way. BLOCK , C l , etc. are in
fact not att ributes but the names of meta-variables, which
must be replaced by actual attributes, when the grammar is
used to produce any specifica tion. The relation between the
name o f a meta-variable and its value (Le ., the attribute) is
the same as t he relation between name ("~") and value
("2.17") of a variable used in a program .

The fo llowing example (in German) is taken from [10) ,
page 122 r. The complete defi nition o f ESPRESO-S covers
18 pages, not including the definit ions and explanations of
notations and symbols.
(- 4 .4 I_ l.op .' (,IaIo.) Puff .. • """ TrI"u·"" •• ~a)

(...... 4 . ' . 1 I_l.op .) (Aalo .) Puffu·"" •• ~)

« Puffer· ""
::' « Puffu·T,I .. u · ""

1 « Puffertyp
I « .totl • • M, S!><'Ick._ .. r
I < dY"_loct.c. S""lch.,."~,r(
I « Puffero,.ulutloa

'" • PUITn. III >

'" • I'UffDt t n >

'" , PUfTtJI tU>

'" , PUffDt tU>

'" , I'UffDt t JZ >

'" , PUffU tU>.

« Puffertyp , J\ • nrrnll • 11 >
" , « T)'pz d ~I , PUFF£II • TY, I KZ >.

/4.4·31

I~. 11

« OlHilcbu S""lcbetM ... r
". otot·_""·'''<I~·S)'l1bol

(Z.bluUI·""

• kl • PUrFEJI • k2. (••• • PIIt·rU)· ~ZAIIL >
/r421

• 11 , AIiZIJIL • n >. 14.91

« d1",.h.M, Spelc~c<""d .. t , XI
" . _>'}'·pu·He.·$)'I1bol

• PUITU • 11. (api.I'IIFf'ER)4A1iZAHL >

« Zoblu,ft •• be ,U • AIiZAIIL • 12 >.

« PuUe.oc,nllnlom , kl , PUITn • n >

/r431
14.91

::. fUo-SyaI>ol
< vobd n • kl • (io'bulouf· vetb.l' ... ,PUFFtJt)'fifo I.~I

I bY'pdod~J-S)'Olbol
« vobcl 11 . 1I • (~'bc.h~f·v",ultu,PUrf'ER)""l'do, >. I.~I

(...... 4 . 4 .2 10 l.p.1 (AtIh .) 1'.'11"'· 1"0)

« Tdllu· ""'.,be
::' « Puffet · TrI -""

I < V" .. o."
I < rerlod"

< V" .. o ' kl • liNe

I II,nIGGU.U>
<0 11 , nlGGElt • Il >
III,nIGGU.U>
<0 n , nlGGU • n >.

/4.4.11

• U • (ye .. 'o ••• .o.tIE)~(llIISl .AIIZAIU..) > Id"
::_ delo.,·S,...,1 < ZeitlOllM , 11 • 1lI1Sl I A1iZAHL t 12 >. ,4.',

(I ~.o.tIE Ii InlGCP,PROZIDlIII1 I)

« Period" , 1I , nlGGU
• U, (pe r lode,nfGGU)·(fltIST,AIIZAIU..) > /r2/1

". cyde '$)'I1obo1 « lei M • II • F:iIST • AJlZIJIL t k2 >. 14.11

(_ 4. ' .11 .. "p . 1 (....... .) ""1.Mm 1U ""loSeo A.tea)

« Pufh.·T" .. u-....... " , kl , P\JGGIlt • 12 >
,'. < Ie kt\oo • RISntIl:T I1I , I'UGGDI t 12 > 15.2/

(tut USTJ.IICT 11 (1I..r ... ·.,hol· l· kler·d >
I (l,pult.'OUI'" , 11 • i'IlGCUI In>
1 (Puff .. vetb.t.u , kl , i'IlGCDI t n >.

« hpul" t ""I.be '11
: : ' •• p.c Ity·Sy.bo L

< Z.hhn."."bc • 11

, HIoI!E tu. (klpnllat.PUGGER)~AIiZAllL > /.41/

• A1ilAHL • n >.

< Puffetve.blhu , Xl • P\lGG[J\ • II >
: ,. oUp,\opul'$)'I1bol

« bel n • II • (,ibetllulvethol.u.P\lGGER) ... kip ,.4,
I blo.k-lnpu.·S 1

« vobel U ' ~I • (' .. berl.urve.~.ltu,P\IGGU)4blo.k >. '.4'

B. Definition of the Meaning

Most uni ts o f Ihe specification like variables , buffers, etc.
can be t ransformed into complete declarations. which the
programmer need no longer access. BUI, obviously , a spec·
ification written in a language that does not allow for a corn·
plete software·deseri plio n canno t be mapped o nto a program
ready for compilation . Therefore, those procedures and
blocks whieh are specified to perform actions (e.g., reading)
mUSI be finished by the programmer. For every such unit ,
a "hole," Le., an empty frame, is generated , permitt ing only
those procedures and operations to be accessed which are
specifi ed. Inside the holes, the programmer may declare and
define whatever he wants, but lhc interface is fixed .

Let us assu me that the specification contains the fo llowing
definition:

procedure check.input :
consumes measured·value where Sbetween 0.0 and 30.0 $;
rlXJds upper-limit. lower-limit;
produces checked-value
end check-input.

This procedure is mapped onto E-Pascal as follows:
procedure check·input;
inter/ace

consumes measured-value (. assertion: be lween 0.0 and
30.0·);

Tf!Qds upper-li mit, lower-limit;
produces checked-value

inter/end ;
begin

(. the hole to be filled .)
end (. check·inpu t .) .

The interface·decla ratio n provides all access·paths to the en·
vi ronment which are available fo r the code to be added in the
hole.

ACKNOW LEDGM ENT

The basic work on ESPRESO was carried out at the Nuclear
Research Center, Karlsruhe. West Germany, where the imple·
menlation o f ESPRESO·W is being continued. K. Eckert 's
master's thesis layed the foundations of this implementalion.
The theoretical work was supported by Prof. R. Baumann and
Prof. F. L. Bauer of the Technical University o f Mun ich.

Many ideas were taken from ot her systems, in part icular
from PSL/ psA (I] ,SREM (14] , and MASCOT (IS J.

My colleagues of the Compu ter Science Group at Brown
Boveri Research Center continuously contribute to the work
by their discussions and comments. T he referees' comments
definitely helped to improve this paper.

[1[

[21

[3[

[4 1

R EFERENCES

D. Teichroew and E. A. Hershey tIl , "PSL/PSA: A computer
aided technique fOf slruetured documentalion and analysis of
informalion proce~lng systems," IEEE Trans. SOft are Eng.,
vol. SE·3. pp. 41-48,1977.
I . Ludewig. " Process control software specification in PCSL."
in IFACt/FtP Workshop on Real·Time Programming, V. Ha~~,
Ed. G raz, Apr. 1980. Pcrgamon. 1980. pp. 103-108.
P. Zavc. "A n operal iona(approach 10 requirements specification
for embeddcd systems." IEEE Tra nl. Soft_re Eng .. vo!. SE·8,
pp. 250-269, 1982.

E. Knulh and P. Rado. " Principles of computc t aided system

'36 IEEE TRANSACTIONS ON SOFTWARE ENG INEERING, VOL. SE·9, NO. 4, JULY 1983

description," Hungarian Aead. 5eL, Budapest, Hungary, Rep.
117/198 1, 1980.

(5] P. P.-S. Chen, "The entity relationship model- Towards a unified
view of dala," ACM TrarlS. Data Base Syst., vol. I. pp. 9-36,
1976.

[61 P. Naur. Ed., "Revised report on the algorithmic language
ALGOL 60," Numerische Marhematlk, vol. 4, pp. 420-453,
1963.

(7J D. A. Wait, "An extended attribute grammar for PASCAL."
SIGPLAN Notices, vol. 14, no. 2, pp. 60-74,1979.

[81 D. E. Knuth, "Semantics of context-free languages," Math. Syst.
Theory , vol. 2. no. 2, 127-145, 1968; also vol. 5. no, I. pp. 95-
96,1971.

[9] Th. Lalive d'Epinay. Ed .. ''TC 8 up to date report," presented
at the European Workshop on Industrial Compul. Syst. (EWICS),
Tech. Committee on Real-Time Oper. Syst., paper 1-1-8, 1979,

[101 J. Ludewig, "Zur Erstellung der Spezifikation von Prozessrechner­
Software," Doctoral dissertation, Tech. Univ. Munich; reprinted
as KfK-Rep. 3060. Kemforschungszentrom Karlsruhe, 1981.

[111 K. Eckert and J . Ludewig, "ESPRESO-W, ein Werkzeug fliT die
Spezifikation von Prozessrechner-Software," in Werkreuge der
Programmiertechnik, G. Goos, Ed. Springer-Verlag, 1981. pp.
101-112.

(12]

1131

1. Ludewig, ''Specification of a specification language," in IFAC/
IFIP Workshop 011 Real-Time Programming, T. Hastgawa, Kyoto,
Japan,1981. Pergamon,1982, pp.63~8.
K. Eckert and J. Ludewig, "Computer aided specification of pro­
cess control software, "IEEE Computer, pp, 12-20, May 1982.

}l41
(15J

!I6]

N. Wirth,Programm{ng in Moduia-2, Springer-Yeriag, 1982.
M. Alford. "A requirements engineering methodology for real
time processing requirements," IEEE TrailS. Software Eng., vol.
5£-3 , pp. 6()"{)9, 1977.
K. Jackson and H. F. Harte, ' 'The achievement of well structured
software in real-time applications," in !FAC/IFJP Workshop on
Rool-Time Programming, Rocquencourt, June 1976. Pergamon,
1976, pp. 229-238.

Jochen Ludewig received the M.S. degree in
electrical engineering from the Technical
University Hannover, and the Postgraduate
Certificate and Ph.D. degrees in computer
science from the Technical University Munich.

From 1975 until 1980. he was at the Insti·
tute for Industrial Data Processing, which is
part of the Nuclear Research Center, Karls­
ruhe, West Germany. There, his main activity
was on software documentation and specifica·
tion. including the installation and extension

of PSL/PSA. Since 1981, he has been a member of the Computer
Science Group at the Brown Boveri Research Center, Baden, Switzerland.

Dr. Ludewig is a member of Gescllschaft ror Inrormatik (German
Society fo r Informatics) and EWlCS (European Workshop on Industrial
Computer Systems), Technical Committee on Application Oriented
Specification. He takes pal t in the Study Group on Ada for Specifica­
tions. which is sponsored by the Euro!'Can Community.

0098-5589/83/0700-0436$0 1.00 © 1983 IEEE

