

Available online at www.sciencedirect.com

Mendeleev Communications

Reactions of Iminophosphanes with Chlorotris(triphenylphosphine)rhodium(I): Generation and NMR Identification of the First Iminophosphanerhodium(I) and Iminophosphanerhodium(III) Complexes

Vadim D. Romanenko," Alexander V. Ruban," Alexander B. Roshenko," Mark I. Povolotskii," Tatjana V. Sarina," Dietrich Gudat^b and Edgar Niecke*^b

Institute of Organic Chemistry, Academy of Sciences of the Ukraine, 253660 Kiev 94, Ukraine.

^b Anorganisch-Chemisches Institut der Universität, Gerhard-Domagk-Str. 1, D-5300 Bonn-1, Germany. Fax: +49 228 735 327

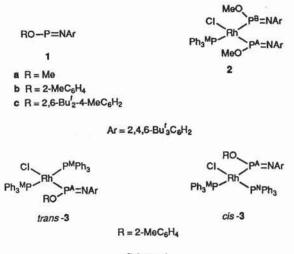
Iminophosphanes [RO-P=NAr] (R = Me, 2-MeC₆H₄; Ar = 2,4,6-Bu'₃C₆H₂) **1a,b** react with RhClL₃ (L = Ph₃P) *via* ligand exchange to give κ P-iminophosphane complexes of rhodium(i) [RhCl(MeOP=NAr)₂L] **2** and [PhCl(2-MeC₆H₄OP=NAr)L₂] **3**. Under analogous conditions, P-halogenoiminophosphanes [X-P=NAr] (X = Cl, Br, I) **3a–c** undergo a facile oxidative addition of the P—X bond, forming five-coordinate iminophosphanerhodium(ii) complexes of composition [L₂Cl(X)Rh(σ -P=BAr)] **5**.

Transition metal iminophosphane complexes have attracted considerable interest because of their novel bonding features. Since 1977 a large number of such species have been synthesized and structurally characterized.' In these studies, attention has focused on the P-aminoiminophosphanes [R2N-P=NR].2 Compared with the latter, very little is known about the ligating properties of other types of P-functionalized iminophosphanes, especially those containing a reactive X-P single bond.3 We report herein our initial observations which include (a) the generation and NMR characterization of novel P-alkoxy- (or aryloxy-) (2,4,6-tri-tert-butylimino)phosphane-kP rhodium(1) complexes, and (b) the discovery of a facile oxidative addition halogeno(2,4,6-tri-tert-butylimino)phosphanes to of the rhodium(1) resulting in the formation of five-coordinate iminophosphane-kP rhodium(III) complexes.

Whereas reaction of [RhClL₃] with an equimolar amount of $1a^4$ in toluene–dichloromethane solution (1:2) at room temperature produced only broad signals in the ³¹P{¹H} NMR spectrum, treatment with an excess of 1a (3 equiv.) produced an NMR spectrum showing an ABMX pattern (X = Rh) attributable to 2 (Table 1). The AB resonances, which are assigned to two iminophosphane ligands, display rather small coordination shifts with respect to free 1b which is generally associated with a κP -coordination mode (cf.⁵). The symmetry of the spectrum and the *trans*-coupling between P^A and P^M (454 Hz) prove the *cis*-arrangement of the coordinated iminophosphanes.

The reaction of [RhClL₃] with an excess of $1b^5$ at room temperature in a toluene-dichloromethane mixture (2 h reaction time) gave the monosubstituted iminophosphanerhodium(1) complex 3 as a *ca.* 4:1 mixture of *trans* and *cis* isomers. The observed AM₂X and AMNX (X = Rh) spectra show chemical shifts and ${}^{1}J_{RhP}$ coupling constants for each type of ligand which are similar to 2, also suggesting κP -coordination of the iminophosphane. The ${}^{1}J_{RhP}$ values of 2 and 3 are typical for complexes of four-coordinate Rh(1). As compared with Ph₃P, the iminophosphane ligands show a greater magnitude of ${}^{1}J_{RhP}$ due to the formal sp²-hybridisation at phosphorus. This coupling is further increased if the iminophosphane is in a *trans*-position to the chloride, indicating a higher degree of π -backbonding from the ligand in this case.

Solutions of 2 and 3 were stable for many days at room temperature with excess free iminophosphane ligand present.

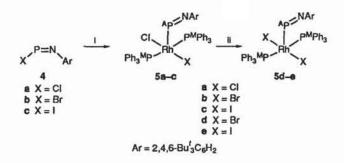

Table 1 31	P{'H} and	15N NMR data	for complexes 2	,3 and 5a-e
------------	-----------	--------------	-----------------	-------------

Complex	δ ³¹ P ^a	${}^{1}J_{\mathrm{RhP}}{}^{b}$	${}^{2}J_{\mathrm{PP}}{}^{b}$	$\delta^{15}N^{a,c}$	$J_{\rm NP}$	JNRh
2	137.9 P ^A	304	67 (AB)	2, 4172		
	120.7 P ^B	195	34 (AM)			
	24.6 P ^M	125	454 (BM)			
trans-3	123.4 P ^A	334	55 (AM)			
	31.4 P ^M	124				
cis-3	117.6 PA	223	465 (AM)			
	51.8 P ^M	190	55 (AN)			
	30.8 P ^N	121	36 (NM)			
5a	323.9 P ^A	74	4 (AM)	-91	87.1	$J_{\rm PN}$
	24.8 P ^M	106			3.6	$^{2}J_{\rm RhN}$
					3.1	${}^{3}J_{\rm PN}$
5b	309.2 PA	80	7 (AM)			
	26.1 P ^M	101				
5c	272.4 PA	102	19 (AM)			
	25.5 PM	98				
5d	288.3 PA	89	9 (AM)	-114	89.1	J_{PN}
	24.3 PM	101			2.7	$^{2}J_{\rm RhN}$
					2.0	${}^{3}J_{\rm PN}$
5e	237.2 P ^A	115	22 (AM)	-147 ^d	95.2	JPN
	22.3 PM	99				

⁴⁷ In ppm (121.5 MHz, C₆D₅CD₃-CH₂Cl₂, ext. H₃PO₄). ^h In Hz. ^e 30.4 MHz, C₆D₅CD₃-CH₂Cl₂, ext. CH₃NO₂. ^d Broad signals.

Attempts to remove the solvent and excess PPh₃ and **1a,b**, however, resulted in decomposition and formation of [RhL₂Cl]₂. In contrast to **1a,b** the sterically crowded **1c** is unreactive towards [RhClL₃] (five-fold excess iminophosphane, 2 weeks at 20°C); obviously in this case the bulky aryloxygroup on phosphorus prevents κP -coordination.

A different type of interaction was observed during the reactions of [RhClL₃] with the halogenoiminophosphanes 4.⁶ When 4a (0.5 mmol) in toluene (1.5 ml) was allowed to react with an equimolar quantity of the rhodium complex in dichloromethane (2 ml) at -30° C, a very rapid reaction occurred with liberation of one PPh₃ ligand. The resulting new complex was isolated in 69% yield as a brick-red, air- and moisture-sensitive microcrystalline solid after evaporation of the solvent and crystallization from a cyclohexane-CH₂Cl₂ (1:1) solution at -10° C. Elucidation of the constitution of the product as metal-substituted iminophosphane 5a was possible on the basis



of its ³¹P{¹H} NMR spectrum showing an A₂MX spin system (A, $M = {}^{31}P$; $X = {}^{103}Rh$). The P^A resonance exhibits a downfield shift of more than 200 ppm relative to uncoordinated 1b as well as significantly reduced values of both ${}^{1}J_{RhP}$ and ${}^{2}J_{PP}$ which are diagnostic for a transition metal-substituted phosphorus pmsystem.⁷[†] Further, the ¹J_{RhP^A} coupling constant of the Ph₃P ligands is much smaller than in 2,3, but is quite comparable with those in the five-coordinate acylrhodium(III) complexes $[trans-(Ph_3P)_2Cl_2Rh(\sigma-COR)]^{11}$ which form in the reactions of $[RhClL_3]$ with acyl chlorides. The structural formulation of 5a is also supported by the similarity of the ³¹P NMR parameters with those of $(R_3P_2)XM[\sigma-P=C(SiMe_3)_2]$ (M = Ni, Pt; X = Br, I), which were obtained in an analogous reaction by oxidative addition of complexes of Niº and Ptº with halogenophosphaalkenes.10 It is essential that like the latter, 5a is quite inert towards [RhCl(CO)L₂] which is much less reactive in oxidation addition reactions than (RhClL₃].14 In a similar way as 4a, the bromo- and iodo-iminophosphanes 4b,c easily reacted with RhClL₃ to give complexes 5b,c together with the halogen exchange products 5a and 5d,e, respectively. After addition of excess Me₃SiBr or Me₃SiI to the reaction mixtures,¹⁵ followed by concentration of the solutions and re-crystallization of the residue from cyclohexane-dichloromethane (1:1), the complexes 5d,e were isolated in pure form.§

In conclusion, the synthesis of the iminophosphanerhodium(III) complexes is the first example of direct oxidative addition of P-halogenoiminophosphanes to transition metal derivatives. In a broader context, the results presented here suggest that reactions of P-functionalized iminophosphanes with low-valent group 6 and 8-10 metal complexes possess a

§ The compounds 5a,d,e gave 'H NMR spectra and elemental analyses consistent with the assigned structures.

Scheme 2 Reagents and conditions: i, RhCl(PPh3)3 (1 equiv.), toluene-CH₂Cl₂ (1:2), - 30°C, 0.5 h; ii, Me₃SiBr or Me₃SiI (excess), benzene, room temp., 3 h

considerable potential in view of the synthesis of new types of metalloiminophosphanes.

We thank the Alexander von Humboldt-Stiftung for the grant of a post doctoral fellowship (to A.V.R.) and the Ukrainian Academy of Sciences for financial support.

References

- 1 E. Niecke and D. Gudat, Iminophosphines in Multiple Bond and Low Coordination in Phosphorus Chemistry, eds. M. Regitz and O. J. Scherer, Thieme Verlag Stuttgart, 1990, p. 293.
- 2 O. J. Scherer, Angew. Chem., Int. Ed. Engl., 1985, 24, 924; L. N. Markovskii, V. D. Romanenko and A. V. Ruban, Chemistry of Acyclic Compounds of Two-coordinated Phoshorus, Naukova Dumka, Kiev, 1988, p. 123.
- 3 J. Hein, E. Niecke, M. F. Meidine, B. F. Trigo Passos and J. F.
- Nixon, J. Chem. Soc., Chem. Commun., 1991, 41.
 4 V. D. Romanenko, M. Sanchez, G. V. Reitel, A. N. Chernega, O. V. Kirichenko, A. V. Ruban, R. Wolf and M. R. Mazieres, Heterotaom Chem., accepted for publication.
- 5 P. B. Hitchcock, M. F. Meidine, J. F. Nixon, H. Wang, D. Gudat and E. Niecke, J. Organomet. Chem., 1989, 368, C29.
- 6 E. Niecke, M. Nieger and F. Reichert, Angew. Chem., Int. Ed. Engl., 1988, 27, 1715; V. D. Romanenko, A. V. Ruban, G. V. Reitel, M. I. Povolotskii, A. N. Chernega and L. N. Markovskii, Zh. Obshch. Khim., 1989, 59 2780 [J. Gen. Chem. USSR (Engl. Trans.), 1989, 59, 24831
- 7 D. Gudat, E. Niecke, B. Krebs and M. Dartmann, Chimia, 1985, 39, 277; P. Jutzi and U. Meyer, Chem. Ber., 1988, 122, 559; A. H. Cowley, N. C. Norman and S. Quashie, J. Am. Chem. Soc., 1984, 106, 5007; D. Gudat and E. Niecke, J. Chem. Soc., Chem. Commun., 1987, 11; E. Niecke, J. Hein and M. Nieger, Organometallics, 1989, 8. 2290.
- 8 L. N. Markovskii, V. D. Romanenko, A. V. Ruban, A. B. Drapailo, G. V. Reitel and T. V. Sarina, Phosphorus, Sulfur and Silicon, 1990, 49/50, 329.
- W. W. Schoeller, T. Busch and E. Niecke, Chem. Ber., 1990, 123, 1653.
- 10 D. Gudat, M. F. Meidine, J. F. Nixon and E. Niecke, J. Chem. Soc., Chem. Commun., 1989, 11.
- 11 D. L. Egglestone, M. C. Baird, C. J. L. Lock and G. Turner, J. Chem. Soc. Dalton Trans., 1977, 1576. 12 YJ. Y. Shie, Y. C. Lin and Y. Wang, J. Organomet. Chem., 1989,
- 371, 383.
- 13 P. S. Pregosin and W. R. Kunz, ³¹P and ¹³C NMR of Transition Metal Phosphine Complexes, in NMR - Basic Principles and Progress, vol. 16, Springer Verlag Berlin, 1979, p. 38, and references cited therein.
- 14 J. P. Collman, L. S. Hegudus, J. R. Norton and R. G. Finke, Principles and Applications of Organotransition Metal Chemistry, Univ. Science Books, 1987, p. 279.
- 15 H. Yamashita, T.-A. Kabayashi, T. Hayashi and M. Tanaka, Chem. Lett., 1989, 471.

Received: Cambridge, 4th August 1992

Moscow, 17th September 1992; Com. 2/046051

[†] Formally, the observed strong deshielding of P^A and the small J_{RhP^A}, J_{PAPM} values may be explained by KN-ligation of 4.8 However, taking into account the pattern of reactivity of halogenoiminophosphanes6. and the very small magnitude of the $J_{Rh^{15}N}$ coupling (<4 Hz), this assumption should be dropped.

[‡] It seems highly likely that the complexes 5 are of square pyramidal structure similar to the above acylrhodium(III) compounds where the σ -bonded carbon donor is in an apical position.¹² However, there may be considerable distortion from square pyramidal geometry, and a five-coordinate complex having a trigonal bipyramidal structure cannot be excluded. The assumption of a trans-diequatorial configuration of Ph₁P is based on data^{11,13} according to which ${}^{1}J_{BhP}$ for a phosphorus trans to a halogen is larger than ¹J_{RhP} for two phosphorus atoms trans to each other. A phosphorus trans to a chloride also resonates at lower field than do mutually trans phosphines, e.g. $[(Ph_3P)_2Cl_2Rh(COMe)]$: δ_P 29.8, ${}^1J_{RhP}$ 145 Hz (cis): δ_P 23.6, J_{RhP} 108 Hz (trans). Our attempts to grow crystals suitable for X-ray diffraction failed.