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Ab\10ct: An tffit:ic.nt Monte Carlo Algorilhm is pruc:ntcd estima· 
ting the. dc.leCtion probability of each stuck·at fault of a PLA. Fur
lOOmorc for each prinwy input ofthc PtA the optimal probability is 
computed 10 set 1his input to logical "'I'". Using those unequiprobable 
input ~ilities the necessary test set can be reduced by orden of 
magnuude. Thus. sdI teSt by optimized random pat1eCnS is possible 
even if the cirwit contains large PLAs prevenung a conventional 
nndomleSl. 
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Many design techniques have been proposed in order \0 enhance the 
~bility ofPI..As. ln (FuKi81] and in (OaMu81I an additiona1 row 
and column arc proposed in order to usc universal teSt sets, and 
some textbooks are d.isc:ussing testablc PlAs as a subject of its own 
(FujiSS}. ~ an: also ~ artcmplS 10 build o.pen syslCms selec
ting an apprqmtc ~ SU"alegy [Br2h851. 

A cornmoo test strategy for semicustom circuits is sdItesting based 
on random patterns. Here we can dispense with the time consuming 
automatic test pattern ,eneradon. and the application of those 
pauemsneeds noexpenstve test cquiprTldlt. since: it can be done by 
linear feedback shift registers (LFSR) during self test This is 
possible in high speed. and thueIore RW1y Ic.chnology dependent 
dynamic faults are detected in addition. ([Tsa 183J. (WuR086D. 

Since a randomly genented tc:st set is larger than a detc.rministic one. 
the: delection rate of logical faults not in the bull model. multiple 
faults for instance, will be higher. 

But often semkustom circuits contain PLAs, wltich resist a random 
test due 10 low fault detection probabilities. Especially PlAs with 
large produa terms will need an exorbitant size of a random test set 
In (UGH86] a design method based on simulated annealing is 
proposed minimiz.ing the: site of the produtt terms and enhancing the 
testability of the PlA. But due to the inlended function of the PLA 
lhis approach will not always yield satisfyina results. 1berefore 
melhods are required 10 estimate fault detect.ion probabilities and to 
rninimiu: random test lengths as wcll. In this paper solutions of both 
problems are proposed. 

CumnUy signillcln( work is done to estimate faull detection 
probabilities in circuits with random logic. In PREDICT {SETH86] 
and PROTEST (WuBSJ an analytical way is used. whereas STAFAN 
(AgJa841 estimates detection probabilities by value counting. But 
set:ing that the underlying fault deteCtion problem is NP-hard 
(IbSa7S} both methods surrer from a large trade-off between 
elr1Ciency and accuracy. 

Katpand Luby found a fully polynomial Monte Carlo algorilhmesti. 
matmg the number of mintenM fulmling a boolean function in 
disjunctive form IKaLu83J. Lieberlterr IUeb841 conjeclured that 
bast:d 00 this algorilhm computing detection probabilities forcin::uits 
in random logic can be solved pojynomially. However due to the 
already memirncd NP -completeness this is not It\Ie. 

But the simple structure of a PLA can be used to represent (ault 
detection probabilities as the difference of the probabilities of the 
uulh of two boolean functions in disjunctive fonn. Those functions 
can be Slated in linear effort, and the probabilities can be computed in 
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polynomial time by the Karp· tub)' algorithm. This procedure is 
presenled in the next seclion. and U1 section 3 some details of an 
elT"lCiCtll implcmentalioo are discussed. 

It is known that fault detection probabilities can increase and the 
neoc.ssazy numberoftesl pancrnscan decrease. ifeach primary input 
is sel 10 IO,l[ical '"I R with its specific optimal input prob4bilily 
«(LBGG86J. (Wu86J). in (Wu871 I procedure is presented 10 
compute those probabilities. In section 4 it is shown that the MoniC
Carlo algorithm can be modifred in order to compute such optimal 
input probabilities without signif!e&llt overflead. In section S some 
applications and results arc discussed. 

2. Estirnpling Fault dCIf(ljop probAbjJjljrs by D Monir. 
CArlo aJgorjlbrn 

The Karp.Luby algorithm estimates the number of input 
combinations for which a boolean function. presented in disjunctive 
normal form. assumes the value trut. It is fully polynomiaIJy, i. e. 
for cvcry input triple (c.6.w). whcre w is the description of the 
function and f(w) is the required number. and where c > 0 and 
0< 6 < I. the algorithm produces as output a number 

fd(w) 

such that 

IJ ( .... ). rr .... ' 
Prl fA 'tl < 6 l( .... ) 

and the execution time of the algorithm is bounded by a polynOmial 
in lIt. l/li and the length of w. 

Now wc fllSt describe how the funclion of .. PLA usually is 
represented in logic design and minimiution by the: cubical calculus 
{Roth80J. then we use this notation in order to eJiplain the Karp
Luby algorithm. and at the end of Ibis section fault detection 
probabilities are discussed. 

2.1 Tbe rrpresenlptiOQ or PLA, by Ihe cubical calcuhl$ 

For the sake of simplicity we restrict our attention to single output 
PLAs. for multiple outputs the gencralizations are straightforward. 

Let F be I boolean function with n input variables c, .... cn. For tach 
product 1t.nn PI (i=l •..• m) of F a cube Ct := (Cl •..• en) is deflOed. 
the components ~ ate IS fonows: 

0, if ei is negated in PI 
Cj:= t. if ei is positive in PI 

2. if lei is not part of Pi 

The SCI of cubes C := Ie; I i::::t l •..• m} is called the covet of F. and. it 
describes the function uniqcly. A minterm is a cube, where all 
components have either the value "OR or the value "I'". The cube C 
contains the cube D. C:j D. if Cj ~ 2 ~ Cj'" dj . holds for all 
j:::l •. . • n • . 

Using this relation we define ICI as Ihe number of mintcrms 
contained in C, and VC is the set of aU minterrns of F. 



2,2 The Monlc.Carlo algorithm 

With the already mentioned parameters E and l) we now use the 
K;up-Luby algorithm to estimatc thc probability P(C) that a boolcan 
function with cover C is truc: 

draws :. 0: trial$ :. 0: 

rep .. t until dllWi t: 1Ill1(~ ~ 
bagln . 5 ~o5 
chose k: t 1, .. ,111) wilh prol»bilil)' 

cho6e a random minterm Solei: 
k :.O, 
trials :. tria!s.+ 1 : 

,.ptl8t until a J Is chasen wch thai S Is 

~'1 

bagln 
draws ;. draws..-1; 
k:.k+l : 
chose j aI random In 11 , ..• m} 
ond 

YIrIaII :. k: 

ond 

With this algorithm X is an cstimation for P(C). In [KaLu83) it is 

shown that this is a fully polynomial algorithm in e. l) and m"n. for 

fixed e.l) running in O(m"n)~. 

2.3 Iht ddtctjon probability of sluck.al (allUS 

For each primary input Cj (j=1 ... ,n) the following covers are 
defmed: 

, 
C

J 
:= IC eel c.F2) 

We deflnc the cube COJ := (CI .... Cj.\,O.Cj+I .... Cn> and the cubes 

CIJ and c2J in an analogous way. Finally lei be 

0.1 J,J 0 
C

J 
:=1(.: ICe C.) and 

~2 '1,J I 
C J : .. IC ICEC.). 

First we are discussing stuck-at faults at the primary inputs of the 
PLA. 

~ st·O at thej·th input 
a) If the j·th input is nowhere: negated lhen Cf is empty and this 

is a diminishing fault. The detection probability Pf is computed 

by 

P, ~ P(C} - P(C~ 
b) If the j·th input only occurs negated at the product lenns. then 

Cjl is empty and this is an enlarging fault. Pf is computed by 
0.2 1 

Pr:P(C
J 

I....CJ).P(C) 
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c) If lhe j-th input occurs both positive and negative then there 
may be some wrong minlerms added. and some others may be 
taken away. lbe probability that sorre ntintenns are added is 

p.d '" P(C:UC:UC~) - P(C) 
A little bit more complicated is the probability that some 
mintenns are missing, since those minterms can be added by 
CJ O.2: 

120.1... 10.1 
Pr.~ =P(CJvCjvCj ,-P(CJLCj ) 

And now wc havc Pr = Pfad + Pfsu. 
In an analogous way one can compute the next case: 

Case II; 51-1 at thc j·th input. 
a) Cl is empty: enlarging faWt. .. , , 

P, '" P(CJ uCJ} - P(C) 

b) Cjl is cmpty: diminishing fault., , 
P f = P(C) - P(C

j
) 

c) miscellaneous: 
I 2 t.2 

Pra.s=P(CjLCjL.C'j )- P(C) 

C• , '., -' '., p ... '" P( JuCjuCJ , - P(c:JuCj } 

Pr = Pfad + Prsu.. 
Finally wc havc to deal with the faults at the product terms. i c. the 
cubes: 

Case UI: stuck·at faults of variable Cj at C;,: 
a) Cj :c 0 and st-O or Cj = 1 and Sl·t 

P, '" P(C\(CiI U (C~J}) - P(C) 

b) cj",Oandst-lorej=landst-O 

P, = P(C) - P(C\.{C1I) 

Up to this point we can now compute the fault detection probabilities 
by the Monte-Carlo a1goritlun for covcrs C. But since for different 
faults the needed covers use the same cubes to a large extent 
something more can be done 10 enhance efficiency. 

let Ft be the set or all stuck-at faults under interest For each fault 

f e Ft onc has to deaJ with 2 covers (case I a. b: case II a. b; case 
III) or with 4 covcrs (case I c. case II c). For diffcrent faults those 
covers are not necessarily different too. e. g . the vaJue of P(C) is 
needed very often. Of cowse one cover is only treated once. 

Now let A := IC j I i"'I .... tj be the set of all covers the 
probabilities of which have to be computed. Those I different covers 
again contain the same cubes to a large c.xtenL Therefore we set 

H := vA = {C 13he {LI} CeCh} = {Hi I i=l._.,u), 
which is the collection of all involved cubes. Now the Karp-Luby 
algoritlun can be paral1clizcd widely: 

draws(1 .. I) :. 0; Irials(l .. I) :. 0: 
repeat until A • 0 

begin 
H :' uA; 
chose I e II .. u) With probability 

cho66 a random min1erm S in Hj: 

Se! A' :. (e e A I HieC I: 

For all·Ct e A' do lrials(k) :. trials(k) +1 ; 



repelt until A' .. 0 
be"ln 

end, 

d : .. 0; 
H ':=uA ' ; 
repelt until a H ~ H ' is chosen such 

thii! Sin'! H 
blgln 
d : .. (1+1; 
chose H E H' al random .. " 

For In k with H E Ct do 
begin 
cr :- (I'jClI VIII 1 

YlrIaIs('ll)fk):. d': 
dtaws{k) :.. draws(k) + r! 
A':. A'\{Ct } 
IIdr~(k)~ 

ITW:(SOO'ICt )l5, S'ICt Vt~) 

then begin 

.n" • n" 

Llel "~('I 
P(C) , ~.e' I 

• . " IC.I IIll111s(k) 

A :;; A\(Ct } 

.n" 

4, Optimal input prpbabjlitjM 

Up to this point we have constructed an dficient procedu~ to 
estimate faull detection probabilities for a set of raults. The algorithm 
is presented under the assumption that each primary input Cj 

(i=l ~ . .n) is set to logical ~ ' " with probability 0.5. Now we want to 
stimulate the inputs with unequiprobable paUerns according to 

<x l .... ~n>' ~i e (0,11 in order to enhance testability. In this case 
only slight modifications of the presented algorithms arc necessary. 
the details an: Idt to the reader, 

In this section we summari.u: the solution of the ~g problem 
in (WuS71. which results in a drastical redUCtion of the size of 
random test sets, and di.sl;uss its application to PLAs, Let S be the 
confidence of a random test of length N. that is the probability 10 

dctect all faults f e Ft by applying N random1y generated patterns. 
If we assume thai the deltaion of some faults by I pattern set of silt 
N fOI"Tm completely independent evenl1.lhen we have 

5 _ n(1-(I _p,)N) 
,,,p, 

where Pr is the detection probability of the fault f. 

For large N the assumption of independence is asymptotically 
fulrilled. but in general computinS the rcccssary test length N by this 
fonnula, will only provide an upper bound.. 

For each rault f e Ft lhe detection probability p~ depends OIl the 

lupel of input probabilitics X; .. <XII i E I>, Therefore the 
fonnula above rums into 

~X) - il(I -( 1 'PI-X»"), 
'oR 

This formula exp~ the probability that all faults are detected by 
N patterns with lhe distn'butions ofK.. 

Using some well known approximations this is tt2IlSformed into 
1n(5,.(X» _ _ LCl _p,(X»N _ _ ~ -p,o<' 

t..... r .. ", 

This describes the objective function, and we call a tupel X of inpUl 
probabilities optimal with rtsput to N, if 

". 
is minimum at X E (0,1)1, 

In the {O.I) -space tJ.pc:ctalion value and probability coincide:, and 
the sux:twtiea1 optinuzing problem reduces 10 :a de:tenninistical one. 
But this is only a modest simplification, since one immediately 
notices that the objective function is not a member of ~ well known 
linear or quadn.tical optimizing problems. In general the objective 
function will nOI be convex or even unimodal. Our optimizing 
problem is a member or the general class of smooth mulucCxtremal 
proble:ms. which have :an exponential average case complexilY with 
~pect to the number of variables, and 10 the tequirtd precision 
(NeYuS3) , The mown global optimiz.ing procedures like the 
Newton or the gradient method will fail to handle l~e ciralitS with 
hundreds or thousands of input variables resulllng from scan 
designs. 
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Therefore we: don 'I try 10 find a global optimum. bUI we: use some 
approximations to search II relative one, In (WuS7J il is shown thai 
the objective function is strictly coovex with respect to one single 
vOlriable. Hence for each rlXed 1.1 . ... 1.1· 1' xi+I .... xn lIlen: e:xists 

exactly one Xi e (0.11 with minimum IN<xl '.,,Xi •..• lI:.J . 
NgIgliQo: 

Let Z:=<ZI ... "Z.n>' and yE (0,1), We write f(Z,Yti) := 
f(z I,· . , .Zi, I'y ,Zj+I" " ,z,J . 

One easily vcrif)C$ that 

pJ<X) '" pc<X. OtJ + xi(pr<X.I,J-Pf<X.OtJ ), 

He"", 

The ,,>M holds since: we assume irredundancy, and at some primary 
input we have p,(X,Ii/-pc<X.Oij) = O. And now we have: 

For eachx E (0, 1)1 there existS exacUy one: ye [0,1) with 
dIN<X,Yl;)/dy '" 0 and IN<X,Yli) has there its minimum. 

Since: all derivations ofthc: objective function are explicitly available 
this minimum point can be computed by simple iterations like: the 
Newton algorithm or the regula falsi 

And now it turns OUI that we: need only to compute the values 
prO',tU) and pPC,~;> for all faults additionally. This is done by lIle 
same Monte-Carlo algorithm as bcfo~ restrict.ed to the twO smaller 
coven 

instead of the cover C, Thus lIle effort to compute the optimal 
probability for a primary input is in general only a little higher than 
the: crfon needed to estimate fault detection probabilities 
ppc)=p,(X,o.Y+Xi(PP::.l lj), Pc<X,Olj)) 

The complete optimizing procedure succeSSively tries to optimize 
each primary ~'put of the PLA. and swtS ~gain if one e:ye:le has 
provided a significanl enhancement of lestabillty, 

S. App(jraljpns Bud rUII!!S 

The estimation algorithm is implemc:nted in IKara871, and the 
optimization procedure is part of the tool PROTEST (Probabilistic 
testability analysis). The optimization yields in a reduction of test 
selS by several orden of magnitude (see (Wu871 e.g,). As an 
cxampie seethe PLA of Fig, 1: 



I .... 1 

I' 

• < 

~: I ,-
CI . (1 .1.1.1.0 .1.1.1.2.2.2.2.2.2.1.0 .0) 
C2.(2.2 .2 .2.2.2 .2 .1. 1.1 . 1. 1.1 .2 .0 . 1 .0) 
C3 . (2 .2.2 .2.2.2 .2 .2 .2 .2 .2 .2 .0 .0 .0.0 . ') 

LI ______ ~'====::· 
EiI:......l:. PLA 

For a convemional random Test with confidence 5 '" 0.9& the 
presented algorithm would require 14 664 equiprobable random 
patterns. Using the optimizing algorithm based on Newton iteration 
after 6 cycles only 7SO optimized random patterns are necessary. The 
computed input probabilities are: 

el : 0.823 
e2 : 0.825 
e3 : 0.827 
e4 : 0.829 
e5 : 0.170 
e6 : 0.832 
e1 : 0.833 

e8 : 0.825 
e9: 0.797 

elO : 0.799 
ell : 0.800 
e12 : 0.802 
e13 : 0.680 
e14 : 0.445 

a : 0.480 
b : 0.422 
c : 0.218 

Table J; Optimiz.ed input probabilities 

These predictions were validated by fault simulation. By a SCI of750 
optimized random patterns a complete fault coverage (I 00 %) was 
achieved, whereas conventional sets of 150 patterns only lead to 70 
% Ihru 75 %. 

Self test by random patterns is the main goal of the optimizing 
approach. A self test modul for unequiprobable random patterns 
similar to the well known BILBO is presented in (Wu86) and 
(Wu87a). 

Besides this direct test application the estimation procedure is also 
used to support logic rninimiz.ation {RoWu87J. Based on the Monte
Carlo algorithm partitioning variables are selected in order 10 reduce 
the PL\ to parts wtti.c.h can be handled by a logic minimizer. Here it 
turns out that test and minimization requirements arc not 
contradiClmy. 

6. Con!.':ll!5jons 

A Monic Carlo algorithm was presented estimating the random 
pattern testability of a PLA driciently. Moreover based on this 
algorithm for each primary input a ~c optimal probability can be 
computed to set it logical "1". Usmg those input probabilities the 
necessary size of a random test set can decrease significantly. 
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