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A"""" 
In order to ensure a high product quality some au thors propose 
pseudo~xhauSlive or verification lesting. This is applicable if each 
primary Output of the combinational circuit only depends on a small 
set of primary inputS, where all possible palterns can be enumeTated 
completely. But in CMOS-circuits even a single stuck-open fault 
may fail to be detected this way, and the already proposed 
additional test of each input transition is nOl sufficient eilher. 

In this paper a method based on linear feedback shirl registers over 
fmile fields is presenled 10 generate for a natural number n a pauem 
sequence with minimal length de tecting each m-multiple sluck-open 
fault for m S n. A hardware architecture is discussed generat ing 
this sequence. and for n '" I a built-in self-test approach is presen­
ted derecling all combinations of muhiple combinational and single 
stuck-open faults. 

Keywords: Pseudo-exhaustive lest, built-in tCSI. stuck-open faults, 
LFSR. finitc fields. 

I) lntrodudion 

In rccenl years much anenlion has been paid to lhe so called pseu­
do-exhaustive or verification test. This lest strategy is applicable, if 
each primary output of the combinatiOllal circuits under test only 
depends on a lim ited number of primary inputs. In this case for 
each primary OUtput all possible pal1ems at the relevant inputs can 
be enumerated completely, and thus il~ function is tested exhausti­
vely (fig. 1): 
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Pscudo~xhaustivcly testable circuit with its cones 
Not all circuits are testable this way, and they have \0 be 
segmented. This is done either by palh sensitizing. or directly by 
hardware. Doing path sensitizing some inputs are set to fixed 
values. such that only suitable segments are activated. But this 
approach has thc disadvantages of high computing time, since the 
segmemation problem is np-complete [ArchSS]. !pataS3]. and of an 
inclomplete fault coverage. since multiple faults and shons between 
the segments may not be detected ]ArMc84J. 
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On the other hand the hardware segmentatioo costs some chip area, 
if for instance multiplexer panitioning is used [McCI85],[BoMc81]. 
Funhermore some faults within the panitioning circuirry may be 
undetectable. The later problem is solved using Ihe panitioning 
technique applied ill [Sehr871. The pseudo_exhaustive test of cir­
cuits segmented by hardware is often caned verification testing 
lMcCI84L This technique has several advantages: 
1) All combinational faullS can be detected this way with the ex­

ception of some shons between different segments. 

2) There are some techniques known implementing this test 
strategy as a built-in self"test [WaMc86). IAker85) by costs 
comparable to self-test by pseudo-random pal1ernS (for exam­
ple the BILBO [KOEN791 or the GURT [WuS7]). 

BUI some nMOS·pass-lransis!or and SIalic CMOS networks are 
causing funher problems, since faults may cause a sequential beha­
vior [Wads78). For this reason a modified linear feedback shift re­
gister (LFSR) approoch has already been proposed. generating pat­
tern sequences of length 2 supponing the dctenninistic self-test 
(Star841. In order to {est these circuits exhaustively an arch itecture 
was presented generating all possible single transitions 3t the pri_ 
mary inputs [CrKi851. Sut here the authors already pointed out that 
complete fault coverage may only be obtained for trre<\undant two 
level networks designed for a robust test. 

In section 2 we will discuss the fault coverage and the hardware 
ovemead of both approaches. Funhermore we will establish the re ­
quirements for a complete test SC<juence for MOS circuits, and we 
will give a lower bound ofthc length of such a sequence. In section 
3 we will show that this lower bound is obtained using a technique 
based on finite fields. In section 4 we present a hardware architec­
ture generating complete test SC<juences, which can alS{) be used as 
a built-in self-test method. Final ly section 5 gives an example. 

2) Self-test oICM05 circuits 

The problems of fault modeling for CMOS gales have widely been 
discussed ([Wads78). [GALl80]' [ChanS3!). In presence of a 
sfllck-open fault CMOS gates may show sequential behavior. 
Without such a fault the circuit of fig. 2 behaves as a NOR-gate. 

In presence of the marked fault the OtJlput of the gate is prevented 
from being decharged when the inputs are A", I and B~. Because 
of the capacitive load effect Ihe output retains the previous value, 
and the gate behaves like a sequential circuit (table I). 

A B r, 
I I 0 0 
I 0 0 f t. t 

0 I 0 0 
0 0 I I 

m!o.l; Fault free and faulty fUilction of the circuit in fig. 2 
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.Eii.....l;. CMOS·NOR with stuck-open faul! 

Obviously the fault is nOl detected if we apply the patterns in the 
shown order. Such faults are only gullrBmeed to be tested. if cerUtin 
panem sequences are applied, ill this case the sequence of 
(A,B) " (0,0),(1,0). Sequential behavior may also be caused by 
faults in nMOS-pass-transislor networ1!;s, bul using dynamic MOS­
techniques this can be avoided ([OkK0841, (WuRo861). For Sialic 
MOS.techniques Starke proposed a selr-Iest architecture gener.lling 
pain of lest par.lems. For an n.input circuil he uses a feedback shifl 
register of length 2n (fig. 3). 
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Qnenuor circuil by IStar84J 

Only every second flip-flop is connected [0 an input of the combi­
national circuil . Withlll two clock phases Ihe c~ments of the f1ip­
flops 2i, i:::::I. .... n. fonn the first paltern. and the flip-flops 2i·1 
form the second one. The feedback funClion is computed by me· 
thods described in [DaMu81). Besides the high computing effonlo 
detennine the test patterns and the feedback (unction. this approach 
also suffers from rather a high hardware overhead, since Ihe flip · 
flops are doubled, and the fudback function may become complex. 

The fauh coverAge depends on the quality of the detenniniSlic test 
set. Funhennore due to delays and hazards the nodes under test 
may be charged or decharged at times preventing faul t dctection 
(lCban83), IREDD831, IREDD841). The fault coverage is enhan­
ced if the feedback function represents a primitive polynomial gene­
rating 22n...1 patterns, resulting in a complele transition test. But in 
th is case we have to deal with a long test length besides the hard­
ware overhead by the doubled flip-flops. 

In order to enhance the fault coverage and to reduce the tcstlength 
pseudo-exhaustive IIdjacency testing was proposed by Craig and 
KinlC (lCrKi851, see fig. 4). 
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An adjacency lest is a pair of panerns differing at a single bit 
position. It is implemented by a modified LFSR (NFSR) generating 
aJI2n panems. and forevery pattern seqU(ntially each register bit is 
flipped. This is control1ed by an additional flip control registe r. 
This way within (n+I)2" clocks all single transition tests are gene­
rated. 

BUI this approach has a large trade-ofr bet ween Ihe hardware over­
head and the test length. If for instance the circuit of fig. 1 is tested 
this way. we cannot take advantage of its pseudo-exhaustive tesla­
bility property. and we have to apply (n+I )2n patterns. If we tried 
to teSlthe cones Ct, C2, and C) separnlely. we would have to im· 
plement multiple hardware for some inputs. since !he cones are not 
disjoint in general. Furthermore the authors already pointed out that 
their approach is nO! pseudo-exhaustive in ils real sense. because 
!here are stuck-open faults which may not be detected by a single 
transition . 

For the general case more patterns have to be applied: 

Observation I: Let F:IO.I)n , [0.1) be a boolean function. 

n 2: 2. For each pair of patterns [I "" [2 E {O.II" the function F 
can be implemenled by a CMOS circuit F wilh the following pro­
perty: there is a fault possible in F. which is detectable if and only 
if the pattern sequence t, . t2 is applied. 

Proo/: (Skelch) Stan whh an arbitrary implementation of F. and 
add some obvious hardware fulfilling the property that the in iliali­
zing function of a fault is true exactly at t I' and the lest function al 
[2' Control the output of F by this hardware. 

ObservatUm 2: An exhaustive lest including all single stuck-open 
faults must include all pattern sequences 
<1\'[2> e {O.llnx{O.II"'{<I,I> I te {O. I I"I. 

NOfO.tions: Let C be a combinational circuit with primary outputs 
0:: {o] . .... om). primary inputs 1:= {i] ..... i"). and cones 
K:: {k " .... kml . For each j := I ..... m Ict I) be the set of primary 
inputS of [he cone kj • 

Now we can sequentially apply observatioll 2 to each OUlpul 
o E O. But there is a more general approach possible. 

Dtfinilion J: For each j ;= I ..... m the projeClion 
prj: GF(2)"-+U. GF(2)11:::> U 

is defined by (x\, .... xn)'(yl ..... yn) where y,:= x,. if iE Ij' 
and Yi := 0 otherwise. 

DtJinition 2: A pattern set T. GF(2)n :::> T. is pseudo-exhauslive. 
if for all j :: I •.... m, the restricted projections pr}T ate surjective. 

This definition describes, that a test sct has to enumernte all possib­
le input patterns for each cooe. 

Obsen 'a/ion J: If T is a pseudo-e-xhaustive test set for a multiple· 
output circuit. [hen Ihe SCI of all sequence~ TxT of length 2 del<.'aS 
all stuck-open faUlts. Furthermore this SCI of pairs of pallems gua ­
rantees to detect multiple stock-optn faults under the restriction thaI 
theft is at least ooc cone with only a single faull. 

If there is a cone containing II single stock·open fault at mosl nne­
addi[ionalstale is mtroduced into the OUtput function. The probilbi . 
lily thai cones contain multiple- faults is reduced using design 
lechniques described in [Kocp87[. If ",e wanllO consider multiple 
stuck-optn faults within cones or sequenti:!l circuils. I~ length e of 
the sequenccs mu.~1 nOI be restricted to 2. 

Le[ t :", III [he cardinality of the lest SCOt. We now want [0 gertef:ltc 
a long patlem sequence of length L contlining all seqU(nces of 
length e (fig. 4). 
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'---' ' ___ I Sequences of length 2 

'--' '--' Sequence of lengJh L 

Global sequence cQlltaining 2-sequences 

obsenalion 4: The length L of the global sequence is L ~ tHt_ l. 

Procf: There are rt different sequences which have!O be generated. 

The first t patterns form the first sequence. and tt_l more se­
quences have to be generated. In the be."l case each additional pal ­

lern adds one new sequence. Thus at least t+,t_l patterns are ne­
cessary. 

In the neM section we summari7.e the known procedures to deter­
mine pseudo-e)(haUSlive test setS T . and we present an algorithm to 
compute a global sequence containing all sequences of a given 
length. Funherrnore the global length will be minimal. if t := lTl is 
a power of a prime number. 

3) Computing pSt!udo-exhaus tive tes t sequences fo r C MOS 
rirruilS 

Obviously creating shon test sequences can be dQlle within tWO 
steps. Firstly a minimum sized pseudo-e)(haust ive test set T has 10 
be determined. and setQlldly a global sequence of minimum length 
L muSt be generated. containing all sequences of length e.. Some 
variants of the first problem have already been proven to be np­
complete[HiSi82J, hence we will rely on some well known heuri­
stics. These heuristics are: 

the ~traightforward complete enumermion; 

the sequential enumeration with respect to the input sel of 
each cone; 

the extended shift register approach of [BARZ83); 

the dependency mauix approach of [HiSi821. [McCI84); 

the teChniques based On linear and cyclic codes (e.g. 
[YaMa85)); 

the constant weight vectoTlechnique ITaW083): 

the tC(;hnique of linear sums (Aker85). which is mainly a 
hardware approach; 

condensed shift register approaches based on cyclic codes 
([WaMc84), [WaMc86J, [WaMc87]). which are also 
hardware solutions. 

Each orthese techniques generoiles a pseudooCxhauslive teS! set T of 
differem size. Now we assume that ~"Uch a leSI set T is given. and 
we are looking for a global sequence containing all e..sequences. 

Let p' ;?: I := IT! be the power of a prime. For practical reasons 
explained later IWO cases are imponant: 

I) p '" 2, and r is the minimal natu ral number with 

p' ~ t; 

2) r= I. and p is the minimal prime such thm p ~ 1 . 

If we set q := p' then it is known from elementary algebra that 
there is a finite field H := GF(q), and there is a injecti~e function 

f:T ~1i . 

We will now construct a sequence of elements of H wilh leng1h 
e.+qt_ l containing all e.-sequences. We have already proven that 

this is the minimum length. Funherrnore using f"1 " 'e have a se­
quence of test paaems comaining all t_sequences, and in the case 
of t = q this global sequence is even minimal. 

" 

D~finition3: 

GF(q)(x) := (! gr"; I u € N. gj E GF(q)J ...., 
is the polynomial ring over GF(q) in a single variable, 

Definition 4: A polynomial s(x}eGF(q)I~1 of degree e. is called pri ­

mitive, if it is irreducible. and the zeros of s in GF(q t) are primitive 

(qt_I)_th roots of unitiy. 

DefinitWn 5: A fetdback shift register 4> over GF(q~ is a mapping 

4>: GF(q)i--+ GF(q)t 

(yt-l, ··.Yo) -+ (R(yt-l '···SO)S,-!.··· .yl) 
R is cal led feedback function. 

A special case is a linear feedback function 

R(yt -r···.yo):= t,y, 
;.0 

Here we say thal the polynomial ,-, , ~- -
~(x):= x -~/ 

'"' represents the linear feedback shift register (LFSR). 

Definition 6: The period of a feedback shift register 4> derIDed on U 

is the smaUest number n <! 1 such that 4>ltjU = id lU. 

Theorem J: A feedback shift register over GF(q)t with a primitive 

polynomial s(x) E G F(q)[x) of degree e. representing the feedback 

function has maximum period 71 = qt _l. 

Proof' See [LiNi86J. [Lllne79) e.g. 

Based on the following theorem we can compute global sequen.:es 
of minimum length. and can implement them by hardware: 

Theorem 2: Let p be a prime number. re N\[O). and q:= pT. 

For each e. € N\[O) there is a primilive polynomial s(x) E 

GF(q)[x) of degree t. 
Proof: A proof is found in [LiNi86J. 

Remark : The 1Hh cyclowmic polynomial Q,; over GF(q ) 

(7I=qt _l) is the produ!;:\ of all primit ive polynomials of degree e. 

over GF(q). Thus primitive polynljrnials of degree e. can be deter­
mined by applying one of the WIll known factorization-algorithms 

to Qx (confer [LiNi86[). 

Up 10 now theorem 1 and theorem 2 provide a method to compute a 
sequence of length qt_ l, containing qt _l different e.-sequences. 
Now we set: 
aO .... ,at-2:= 0 e GF(q); 

az.\ e GF(q). -AI; 

az .. i:= R(at .. j.l.··· .3j). i :=0, .. ,qt_2. 

Obviously in <a;> all t-sequences are generated. funhennore it is a 

minimal sequence having this propeny. since it has length t+qt_ l. 

This se<juence should be decoded by f·1 into lest pal1ems. and if 
one wants 10 generate 2-sequences for stuck-open ,eslS, for each 
pair of ific"i;':~ p:llems one has to be omitted. 



Summarizing the complete teSI sequences are computed by lhe fol­
lowing procedure: 

I) Determine a pseudo-exhaustive test set T. 

2) Choose a fin ite field H := GF(q) with q ~ t :'" m. 
3) Encode the test patterns by elements of H. Le. find an 

elememaT}', injective mapping f:T -io H. 

4) 

' ) 

6) 

Construct a primitive polynomial Sex) E GF(q)[x) of 
degree t, 
ConstruCt the modified Shift register sequence <aj> 
using the polynomial s(ll). 

Decode the sequence <aj> into a sequence of lesl 
pallems. 

4) Generating complete 11'51 ~uena:::s by hardware 

It is a well known built-in self-test technique to generate pallem se­
quences by a LFSR over GF(2) (fig. 5). 

" " " ,., ~ ., 

Standard LFSR over GF(2) 

TIie feedback function is determined by me polynomial 
g(x) :== gext+u-I xe-I+ ... +glx+So E GF(2l[x), 

and since there are only IWO types of constants, 0 and I. the multi· 
plication in GF(2) is expressed by the presence or absence of feed­
back lines. In an arbitrary finite field GF(q) an LFSR is more com­
plicru.ed since we have 10 multip ly by some constants (fig. 6). 

· ·· - .... oE'l-r -E:t-' 
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An LFSR over GF(q) 

The LFSR of fig. 6 represents the feedback polynomial 
g(x) := gtxe ... ge.lxe.I+ ... +gl x+go e GF(q)(x). 

For the sake of simplicity we will only discu~ the most important 
case t '" 2. Firstly we normaJi7.t the polynomial g(x). that is 
U := I. by dividing. Then the LFSR of fig. 6 turns into an archi­
tecture as shown in fig. 7. 

As a difference to other CMOS BIST-Iechniques discussed in sec­
tion 2, there are no doubled flip-flops for test reasons. We only 
have 10 enSure thaI CUTI and ClJf2 are lested by the same set T. 
The circuit of fig. 7 is a general architecture for GF(q). but now we 
will explain further details only for the tWO cases q = p ~ t and 

J9 

q = 2' ~ I . Furthermore these are the cases which are feasable by 
the known algorithms of computer algebra. 

,------, 
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+ 
LFSR of length 2 over GF(q) 

Now we will discuss the implementation of multiplicat ion by con­
stants and ofthi! addition in GF(q). 

a) q::: 2' 

We assume that the test patterns enumerate at r bit positions the 
complete field GF(q). otherwise we have to code and encode. 
GF(q) is a linear space over GF(2). and the addilOn in GF(q) can 
be done by addition of components. This is implemented by XOR­
gates, and hence we need r XOR-gates for Our 2_stage·register of 
fig. 7. 

In order to explain the multip lication. a little more theoretical back· 
ground is needed. In a fmite field multiplication establishes a cyclic 
group, in our case of Cardinality 2'_1. Let ¢>:GF(2)' -io GF(2)' be 
a shift registe r according to definition 5. with a linear feedback 
function ,., 

R(x,_I'''·'xo):: I cjx j 
'-<l 

By theorems 2 and 3 there are linear feedback functions R. such 
that ¢> has the period 2'_1. 

Let c be a primitive elemem of the cyclic group of multiplication in 
H := GF(2'). If 2q is a prime number. all elementS except 0 and I 
will do. For x. y e H defme the operation ' c on ~f\(O ) by 

x"cy=z := ~ =c" and z=¢>k(y) for a kS2'-1. 

Th eorem 3: (H.+." J is a finite fie ld. 

Pr()(Jf: Left to the reader . 

Now multiplication by a constant. mat is a primitive element. can be 

expressed as a single shift by ¢>. U 2'· 1 is prime. all elements of 
GF(2t)\{O.I) are primitive too. Hence &0 is primitive. and we set 

go ' y := ell(y). We have gt == gok for some k and g I.y = ¢>k(y). 
It is an open problem. whether i1 is possible that neither go nor gt 
can be primitive. But in this caSt there is a primitive c with 
Ckl == gz. and ckO = gO' and we have gl·Y = <l)kl(y) and 

go. y = ¢>kO(y). 

EZQmple: Ut be r := 6. let go be primitive. and gl := &02. x6...x+1 
is a primitive polynomial over GF(2), and we have 

ell(xS ..... xo) = (XO+Xl.X~ .... Xt). This is implemented by 
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hnplemenlation of Ihe mulLiplication '1 '" &1)*)( 

I'unhermore we have gl·(xS,''''xo)'' (x\+x2,xO+x\,x.s" .,x2)' 
The overall feedback funCtion is as shown in fig . 9 using 
gO· (XS,··· ,xO}+-g l ·(ltl\'· ··,)(6) = &o*«(XS.· · · .lI'.O)+I!I:t(x II, . ·,)(6» 

, 
" 

II. 10 x 9 , . " 
, , 
I 

, " 

, , 
, 

6) 

b) for q '" p implemem addition and multiplication 
modulo p. 

Implement the decocting funct ion (·t. 

.... ., .... 
~." ~." 

lJ'SR TOI' .,...... .... ~ . 
... Iy>:i. 

.EiJL...1!1; Pseudo-uhaustive lest by an external chip 

5) Example 

leI S be a combinational circuit with 16 inputs )l.1 .... ,x I6 and 8 
x outputs 01 .... ,011. where 

01" f l(x2,···,xg) 

x S 02'" f2(x].)(3""'XS) 

Hardware lmplemenmnoo of 
gO·(xS,··· ')(O)+g 1"'(11.11'" ")(6) 

Summarizing we have r XOR-gares for !he addition, and also some 
XOR gates for Ihe mult ipl icarion, in the whole this is comparable 10 
the usual linear feedback functions of pseudo-random patterns. 

b) q = p. p pr ime 

In this case the field is isomorphic to Z/q. and both addition and 
multiplication have 10 be done modulo p. A straightforward imple­
mentation of the function can be simplified by means of boolean 
minimization. described for instance in IBrayS4J. But the use of a 
prime q seems to be more suitable for an external test. Using a 
CMOS specific scan design, an external chip can generate the psell­
do-exllallStive pauem sequences (fig. 10). This approach is already 
well known for pselldo-rnndom pauems [EiLiS3]. In order to use 
the external chip in a mOSt general way, the cardinality of the field 
should be programmable. 

Sllmmarizing the design of a BIST-hardware can be done by pro­
ceeding as follows: 

I) Choose a pseudo-exhaUStive test set T. 

2) Select an r with q :: 2' 2: ITI, or a prime number p 
wilh q:= p 2: IT!. 

3) Find an encoding function f: T -t GF(q). 

4) Find a primitive polynomial over GF(q) of degree 2, i. 
e. twO conSlanllllto and gt. 

5) a) For q = 2' determine addition and muhiplicalion 
by theorem 3; 

0) = f3(xt,X2,x4, . .. ,xg) 

04 = f4(X t .· .. ,x3'xS"·"Xg) 

aS = f5(x!O .... 'X t6) 

06 = f6(X9.X\ t,·· ",I( (6) 

07'" f7(xg,x!O,x12,.·"xg) 

Og = fg(xg" .• Jlll.xI3 .... Xg) 

Deh cone depends on 7 primary inPUIll. The first 4 cones are tested 
by a set enumerating all patternS from (XI .... 'X7) and setting 
x8 := xl+x2+x3+x4 (method of linear sums by IAker85l) . For the 
last 4 cones we have to enumerate (Xg, .... x tS) and set 
x)6:= x9+x!O+~II+xI2' Since bmh subcircuits are tested by the 
same sets of patterns, we only consider the first 4 cones. and call 
this subcircuits C I. lIS test set is 

T := {(Xl'" "xg) I (Xl",,,x7)E GF(2)7 & x8:=x t+x2+x3H4)' The 

encoding function is f:T ~ GF(2)7. (Xt ..... ,I(g)~(XI' .... x7). 

A primitive polynomial can be derived by means given in [LiNi86J, 

were s(x):= x2+gtx+So. Since 121 is prime, both g1 and So are 
primitive in the cyclic group of multiplication. The mOSt suitable 

coefficients we find are 81 := So2. In order to implement multipli­
cation by gO, we have!O loo~ for a primitive polynomial of degree 
7 in GF(2), for in~1ance x7+x+1. Thus multiplication by 80 is 

gO<X7 ..... ~t) = (XI+x2.X7" .. ,x2)· 

The decoding (unction is f!(x7 ..... x l)=(xl' . .. ,X7.XI+x2+x3+x4). 
and me overall feedback function looks like fig. I I. Since the last 
four cones, CZ. are tested in the same way, the whole circuit with 
16 inputs is tested exhaustively for all stuck·open faults within 2 14 
clocks. 



Another often ciled example is the pari ty generator TJ 
SN54n4LS630 with 23 inputs. Here each tone only depends on 
10 inputs, and Ihere is a pseudo-exhauslive leSI set of 2 10 patterns 
{McCl84]. In the same way as presented above. a BIST structure 
can be designed, testing two c ircuits with 46 primary input 
e~hausl ively for Sluck-optn faults within 1M docks. The reader 
may prove his understanding of the presented concepts, by doing 
!his as an exerdse. 
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E&....l.l; Feedback funcuOil for the example 

~'""""-Mainly two points need further investigations. Firstly we are 
looking for an optimal design of an eltlemal chip as discussed in 
seclion 5 b). An optimal design should include the pOSSibil ity to 
generate patterns based on many different prime numbers p. 

The second problem is !he evalui!lion of the circuil responses. The 
presented leSI circuitry can be considered as a signature re~ister 
over GF(q). and ooe has 10 investigate the fault covera$c achieved 
by such a register. Here lIle work should be generalized, which 
was done for signatu re registers over GF(2) by (WILL87J or 
rAglv87). 

7) Conclusions 

A technique ha:> been pre!il:nled generating complete test sequences 
for CMOS drcuils. The sequences are of minimum length. and can 
be produced either by software, by an external chip, or by a BIST­
suucrure. Doing the lauer lIle hardware overhead would be of the 
same magnitude as a conventional pseudo--random archilecrure. 
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