
A Unified Approach for the
Synthesis of Self-Testable Finite State Machines

Bernhard Eschermann, Hans-Joachim Wunderlich
Institut fiir Rechnerentwwf und Fehlertoleranz, Universitat Karlsruhe, Germany

Abstract - Conventionally self-test hardware is added after
synthesis is completed. For highly sequential circuits like
controllers this design method either leads to high hardware
overheads or compromises fault coverage. In this paper we
outline a unified approach for considering self-test hardware
like pattern generators and signature registers during synthe-
sis. Three novel target structures are presented, and a method
for designing parallel self-testable circuits is discussed in
more detail. For a collection of benchmark circuits we show
that hardware overheads for self-testable circuits can be
significantly reduced this way without sacrificing testability.

1 Introduction

Two categories of sequential circuits can be distinguished,
namely data paths and control paths. Circuits of the first type
consist of regular modules with a simple interconnection
structure and relatively few feedbacks, whereas the inter-
connection structure of circuits of the second type is complex
and irregular with many feedback lines, leading to a high se-
quential depth in spite of the relatively small number of sto-
rage elements. Testing and particularly implementing a built-
in self-test (BIST) is more difficult and requires more effort
for such highly sequential circuits. In spite of this, incorpora-
ting BIST circuitry into highly sequential portions of the chip
is necessary, if a chip is to be made completely self-testable,
e. g. to allow testing it with a "RUNBIST" instruction via its
boundary scan interface [IEEE 901 after placing it on a board.

The behavior of a highly sequential circuit is commonly
described by a finite state machine (FSM) model and its
structure by an interconnection of combinational logic and
storage elements (Fig. 1). FSM synthesis, the automatic
generation of structural from behavioral descriptions, has
been thoroughly investigated, For implementations with
PLAS or random combinational logic, state assignment and
logic minimization are known to have a strong impact on the
quality of the resulting designs. Recent research mes to con-
sider testability during synthesis. State assignment and logic
minimization can avoid redundancies [DMNS 901, controlla-
bility and observability can be increased by adding special
state transitions tu the FSM description [AgCh 901. These
techniques support external testing; in this paper we deal with
the problem of synthesizing self-testable circuits.

Self-test hardware, i. e. pattern generators and signature
registers for response analysis are conventionally added after
the synthesis is finished. We show that for self-testable
circuits a proper choice of the self-test strategy has a major
impact on the quality of the resulting design if the self-test

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

hardware is accounted for while synthesizing the circuit. We
develop circuit structures and optimization procedures tar-
geted towards self-testable circuits which decrease the area or
speed penalties of such circuits. They can also increase the
testability of dynamic faults and reduce the number of test
control signals. Criteria are given to decide about the best
self-test structure based on the major design goals - area,
speed, design effort, test length and fault coverage.

state register *
Fig. I : Basic st~cture of sequential circuits.

The paper is organized as follows: Section 2 presents two
conventional and three novel BIST structures for highly
sequential circuits and discusses their relative merits. In
Section 3 a general framework for the required synthesis for
testability procedures is established. Optimization procedures
are discussed in more detail for a new parallel self-testable
circuit structure, which offers significant advantages in terms
of area and testability. The results are validated with a
collection of FSM synthesis benchmarks in Section 4.

2 BIST Structures for Finite State Machines

2.1 Conventional BIST Structures

If the state register in Fig. 1 is replaced by a single multi-
functional self-test register, e. g. a BILBO [K6MZ 791, the
direct feedback lines imply that the signatures of the test
responses would have to be used as test patterns for the state
variables. In [WaMc 871 the direct feedback path from
storage elements to storage elements via the combinational
logic is broken by doubling the number of flipflops and
adding an additional self-test register solely responsible for
compacting the test responses. The state register itself is
reconfigured as a pure pattern generator in self-test mode (see
Fig. 2a)l. Another possibility would be to incorporate the
MISR (multiple input signature register) functionality into the
state register and to provide a separate pattern generator (see
Fig. 2b). These solutions are feasible, but they may result in
significant hardware overheads. In the sequel we designate
these structures as DFF, since in system mode the state
registers are only used as D-flipflops.

Pattern generation and response analysis for primary inputs and out-
puts are not shown, since they are identical for all self-test structures.

Paper 23.2
372

28th ACM/IEEE Design Automation Conference@

1991 ACM 0-89791-395-7/91/0006/0372 $1.50

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Publikationen der Universität Stuttgart

https://core.ac.uk/display/147553421?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1-k state register 1 TMode
attern enerator

ode

Fig. 2: Conventional BIST structures for FSM's (DFF).

2.2 Motivation for Alternative Target Structures
The state registers of Fig. 2 are not only D-flipflops but

they have the additional functionality of a pattern generator or
a signature register. The following simple example from
EsWu 901 shows how the ability of a linear feedback shift
register (LFSR) to generate patterns can be utilized for the
implementation of the system logic.

Example: The state diagram of the FSM to be implemented
is shown in Fig. 3a. The three states of the FSM are already
encoded. For test pattern generation the LFSR with the
feedback polynomial 1+x+x2 is used. Its autonomous state
transitions are shown in Fig. 3b. It is easily seen that the
LFSR function covers a part of the system function. There is
no need to implement these state transitions in the system
logic if in the synthesized circuit structure it is possible to
switch the state register between D-flipflop and LFSR mode.
To be useful, the savings from not having to implement these
state transitions of course have to be larger than the cost for
the additional mode control signal.

a) FSM state transitions b) LFSR state transitions

/ m/o\ & = A 1- 11
U
1- / 1

Fig. 3: Utilizing pattern generation capabilities of the state register.

In the following sections we present the general target
structures for using the signature analysis or pattern genera-
tion capabilities of state registers during system mode.

2.3 BIST Structure Utilizing Pattern Generator Functions
Pattern generators for self-testable designs in autonomous

mode cycle through a fixed sequence of states to stimulate the
circuit. This property can also be used in system mode, if the
encodings of the present and the next state are consecutive

elements in this cycle. Whenever the next state code in Fig. 2a
is produced by the pattern generation register, which has to
be implemented for testing purposes anyway, it is not necess-
ary to generate it in the next state logic. Replacing the next
state entries with don't cares for all such transitions, increases
the potential for logic optimization of the combinational logic.
Fig. 4 illustrates a possible realization of this idea EsWu 901.
An additional output signal "Mode" determines, whether the
state machine flipflops behave like ordinary D-flipflops or
function in pattern generation mode. In this mode the state
register generates the next state on its own ("smart state
register"), the next state signals asserted by the combinational
logic can be set to arbitrary values. Since in this structure
pattern generation is integrated into system mode, we refer to
it as PAT. The additional MISR may be saved, if observing
the state is possible in another way (cf. e. g. [Ghee 891).

Fig. 4: BIST structure with integrated pattern generator (PAT).

2.4 BIST Structures with Integrated Signature Register
In a "parallel self-test" signature register outputs are used

as test patterns [KiHT 881. Empirical results for structures
without direct feedbacks indicate that for certain examples
this does not cause a significant loss of fault coverage; similar
results were published for the circular self-test path approach
[KrPi 893. However, it cannot guarantee a high enough fault
coverage and requires extensive fault simulation; in structures
with direct feedbacks it might be completely impossible to set
the next state lines to all the values needed to detect certain
faults [ChGu 891. The problem is caused by dividing the
register functionality into a system mode and a self-test
mode. In self-test mode additional XOR-gates are in the data
path, whereas in system mode these gates are disabled by
some form of mode control logic, for which the control
signals are provided externally. Since the excitation function
of the flipflops is changed, the state diagram in self-test mode
is different from the state diagram in system mode. Only in
special cases we have a modified state transition graph in
self-test mode which is strongly connected, such that all
system states stay reachable from all other system states.

Contrary to these solutions, the structure of Fig. 5 does
not contain a control signal for switching between MISR and
D-flipflop mode. Such a structure becomes possible, if the
system functionality is implemented by using the MISR in its
signature analysis mode as state register.

Let M(s) be the next state of a MISR in autonomous
mode, m(s) the feedback function of the MISR, fs(i, s) the
next state function of the system logic and fy(i, s) the
excitation function of the state register. Because of the
linearity of the operations involved, the necessary excitation
variable y to produce a state transition from state s to state s+
can be computed easily and is2

The variables denote bit vectors, 0 denotes a bitwise XOR-operation
on these vectors.

Paper 23.2
373

y = s+ 8 M(s) = f& s) 8 M(s) = fy(i, s)
compared with y = fs(i, s) for D-flipflops. This is similar to
T-flipflops where we have y = fs(i, s) 8 s = fy(i, s). By imple-
menting a pertinent next state function fy(i, s), arbitrary
FSM’s can be realized with MISR’s as state registers, which
makes it unnecessary to provide a special system mode.

1 combinational logic 1

test pattern
= signatures

signature register (MISR)

S

F i g . 5: Parallel BIST structure with MISR state register (PST).

The circuit structure for a parallel self-test without disjoint
system and test modes (called PST in the sequel) in many
cases has advantages with respect to area and testability. No
flipflop duplication is required, the area of the self-test regis-
ter is reduced by eliminating the D-flipflop mode. Besides
signature analysis the only other mode needed is a scan mode
to initialize the flipflops and to shift out the resulting signa-
ture; hence the number of control signals is decreased. The
cause of the controllability problem mentioned earlier is also
removed, as a self-test mode with modified state transitions is
avoided. Since the functionality in self-test mode is identical
to the system functionality, all states reachable in system
mode stay reachable during self-test. As there is no recon-
figuration of the flipflops in self-test mode, a test at the full
clock frequency can be performed in order to detect dynamic
faults relevant to system operation, e. g. delay faults, if only
the test patterns for the primary inputs are supplied fast
enough, for example with a random pattern generator (cf. the
analysis in EsWu 911). By targeting the state assignment
algorithm towards MISR state registers, which secure the ob-
servability of the memory elements, the combinational logic
needed to implement the system function can be optimized in
the same way a controller with D-flipflops can be optimized.

I combinational logic [

S I signature register (MISR) I

Fig. 6: BIST structure with integrated signature analysis (SIC).

Some of these advantages can also be obtained without
using a parallel self-test by integrating the signature register
into the structure of Fig. 2b as shown in Fig. 5. The resulting
circuit structure is illustrated in Fig. 6 and will be called SIG.

2.5 Comparison
In Table 1 the main characteristics of the BIST structures

are compared.
In conventional self-test structures (DFF) the area needed

for storage elements is high, since a signature register has to
be added only for testing purposes. The speed of the circuit is
decreased by the additional control logic and XOR-gates in
the data path. Two control signals are needed to operate the
state register (scan path/initialization mode, pattern generation
mode, system mode). It may not be possible to detect all the
dynamic faults relevant to the system mode in the next state
logic, since the next state variables are monitored in a
separate register not used in system mode. The structure with
integrated pattern generator (PAT) decreases the necessary
amount of combinational logic, but apart from that is identical
with the conventional structure.

By using the structure SIG and avoiding disjoint signature
analysis and system modes, the control logic for the state
register can be simplified; one control signal is enough now.
The combinational logic can become simpler or more
complicated depending on the FSM under consideration.
Since the next state signals are captured in the same register,
where they are needed in system mode, dynamic faults can be
more easily detected.

Structure DFF PAT SIG PST
inea

combin. logic
storage elements

speed
test length
test control effort
dyn. fault detection

0 ++ +I- +I-
- - 0 +
0 - 0 ++
+ + 4- 01-

- - 0 +
- - 0 +

Table 1 : Comparison of different BIST structures.

By integrating the signature register in such a way, it is
also possible to use the signatures as test patterns without
running into problems with unreachable states. Thus the
separate pattern generator may be saved, a parallel self-test
becomes possible (structure PST). Now there is no more
difference between system and test mode with respect to the
production and capture of the next state signals. Therefore all
dynamic faults occuring in system mode can be detected
during self-test. The test length and the effort to produce per-
tinent test patterns for the primary inputs may, however, in-
crease.

A detailed examination of the testability aspects (input sti-
mulation, fault model, fault masking probability, fault cove-
rage) of the structure PST may be found in EsWu 911. For
typical examples an increase of 30 % in the number of
weighted random test patterns was computed to obtain the
same test confidence (probability of detecting all faults of a
given fault set, in this case we wanted to achieve a single
stuck-at test confidence of 99.9 %) as for a conventional self-
test. For some sequential circuits several different weight dis-
tributions might be needed to obtain reasonable test lengths.

In summary there is no single self-test structure that is
preferable in all cases, as the importance of the criteria listed
in Table 1 depends on the application. If automatic synthesis
procedures are available for a11 the self-test structures, it is
possible to try alternative designs and then decide about the
actual implementation of the circuit.

Paper 23.2
374

3 Synthesis and Optimization Procedures

The BIST structures presented indicate that self-testable
circuits can be optimized by considering the self-test hard-
ware (pattern generators and signature registers) during syn-
thesis. To make the best use of this minimization potential in
practice, it is however necessary to find optimization proce-
dures targeted towards the BIST structures presented. Con-
ventional synthesis procedures cannot take the functionality
of self-test registers into account. Therefore they can only be
used for the self-test structures in Fig. 2, where the system
mode is completely independent of the self-test hardware.

3.1 Synthesis Framework
The main steps necessary for synthesizing a self-testable cir-

cuit from an FSM description are illustrated in Fig. 7. After
choosing a BIST structure, the symbolic states of the FSM des-
cription have to be assigned binary code words. Afterwards
the excitation functions for forcing the memory elements into
the correct next states have to be derived. At that point a truth
table for a multi-output boolean function is obtained, which can
then be minimized using standard programs.

c
I choice of BIST structure I

behavioral circuit description, design goals)
4

I logic minimization 1
4

(structural circuit description 1
Fig. 7: Synthesis process for BIST FSMS.

In section 3.2 we fust show how the excitation functions
for the state flipflops are derived for the different BIST
structures. Since the excitation functions strongly depend on
the BIST structure chosen, the cost function representing the
complexity of the resulting combinational logic should reflect
this influence. Procedures to encode the states in such a way
that this cost function is minimized are treated in section 3.3.

3.2 Excitation Functions
The symbolic output and next state functions of an FSM are

where i E (0 , l)P is the vector of input variables, o E (0 , l)S
is the vector of output variables and S, S+ E 8 are symbolic
states. The state assignment w: 8 += (O,l)r, \y S) = s = (SI,
... Sr) is an injective mapping from th state s t h into the set
of state codes (O,l)r, where r 2 ro =flog~lSl?. The resulting
binary output and next state functions are

o = fo(i, s) and s+ = fs(i, s),
with s = w(S) and s+ = w(S+). Let ~ (s , s+) be a function with
which the excitation variables

o = Fo(i, S) and S+ = Fs(i, S),

y = ~ (s , s+) = f,(i, s)
for a certain type of state register can be obtained. The
complexity C(z, w) of the necessary combinational logic &o
implement the FSM depends on the output functions fo and
the excitation functions fy, which in turn depend on the type
of state register 2 chosen and the state assignment yc
(DFF) For a state register with D-flipflops, we simply have

(PST / SIG) The situation is a bit more complicated for a
T(S, s+) s+, y = (yl ... yr) = (SI+ ... Sr+).

MISR state register (cf. Fig. 5), where
~ (s , s+) = s+ 6 M(s),

y = (y1 ... yr) = (SI+ @ m(s), ~ 2 + 6 SI ... sr+0 Sr-1).

(PAT) For the case of "smart" state registers (cf. Fig. 4) the
excitation vector contains an additional element "Mode",
which controls, whether the register loads the excitation
variables (y1 ... yr) or just goes to the next state M(s) in
autonomous mode

don't care for Mode = 0
'('* ={ s+ for Mode = 1 9

Once the BIST structure is chosen, z is fixed and the
complexity of the combinational logic for a given FSM G(w)
mainly depends on the state assignment w.
3.3 State Assignment

The task of the state assignment procedure is to find an
injective mapping w with minimal cost C&). Since the cost
to increase the width of a self-test register is quite high, it is
generally preferable to use the minimal number of state
variables ro. One possibility to obtain an optimal assignment
would be to enumerate all possible functions yr, to minimize
the resulting output and excitation functions and to keep track
of the assignment with minimal C&). Unfortunately this is
only feasible for small FSM's [McUn 59, WeSm 671. State
assignment is actually an NP-hard problem [WoKA 881,
therefore heuristics have to be used. In the sequel we will
only consider the state assignment problem PST / SIG. The
DFF structures can be synthesized using state assignment
algorithms for D-flipflops (e.g. [DMNS 88, Visa 901), a
state assignment algorithm for the problem PAT has been
described in [EsWu 903.

3.3.1 Necessity of a special state assignment procedure. If
a conventional state assignment procedure is used, the combi-
national logic is optimized such that y = s+ is easily minimiz-
able. It is easy to validate that the same assignment proce-
dures are not effective for minimizing the function y = s+ 0
M(s). With a state assignment targeted to make y = s+ 0 M(s)
easily minimizable, the combinational logic of the PST/SIG
solutions can be implemented much more efficiently.

The sequence of code bits influences the combinational
logic for MISR state registers because of the direct
dependence of excitation variables on the contents of other
flipflops in the MISR. For r state variables and n states the
number of non-equivalent state assignments is therefore

*ri

SA(r, n) = A
(2r - n)!

and exceeds the number relevant to D-Flipflops by a factor of
r!. Conventional state assignment algorithms cannot cope
with the complex dependences in MISR state registers.
Algorithms for T- and JK-flipflops [WeDo 69, TuBr 741

Paper 23.2
375

have been published, but do not help since in these cases the
value of the i-th excitation variable yi only depends on the
contents Si of the i-th flipflop. Consequently it is necessary to
develop a new state assignment algorithm for this application.

3.3.2 A PST I SIG state assignment procedure. The goal
is to devise a state assignment strategy, which follows the
structural dependences in a MISR (cf. Fig. 5) . This can be
achieved by encoding the states state variable by state
variable. In the resulting divide-and-conquer algorithm the set
of states is recursively partitioned into two sets, one encoded
with a code bit 0, the other with a 1. When only one state is
left in a partition, its encoding is different from the encoding
of all other states. The partitioning and assignment is done
such that a cost function reflecting the complexity of realizing
the next state and output logic is minimized. To obtain such a
cost function, however, is more difficult than in the D-
flipflop case, because the values of the excitation variables
depend on other state variables. The idea used is that once an
encoding for one state variable Si-1 is fixed, the excitation
variable yi can be derived from Si-] and the code of the next
state variable Si+,

(cf. section 3.2). Alternatively, Si+ can be chosen such that yi
becomes as simple to implement as possible, so that at any
point in the state assignment process the cost of the next
assignment can be estimated. The process of assigning code
bits state variable by state variable and computing the
excitation variables from the already known state variable
values is illustrated in Fig. 8.

yi = Si+ 0 Si-1 i = 2, ... r

1 - ... Yr 0 t
Fig. 8: FSM transition/excitation table with dependences.

The cost function is computed as follows: First the output
function o = fo(i, S) is symbolically minimized [DeMi 861.
The resulting number of symbolic implicants is a lower
bound for the number of product terms needed in a PLA
implementation. By fixing a coding column, the number of
implicants required to represent fo and the partial excitation
function fq up to the current column i may increase because
of two effects:

Groups of symbolic present states can no longer be
encoded in a subspace of (O , l) r not containing other
symbolic states [DeMi 861 and have to be split (input
incompatibility).
The resulting excitation variable in the current column,
which could not be considered during symbolic mini-
mization, is different for state transitions summarized in
the same symbolic implicant (output incompatibility).

The cost function reflects the increase in the number of ne-
cessary implicants. Several partitions of the state set into 0-
and 1-encoded states with small cost values are generated for
each coding column and are explored using a branch-and-
bound algorithm. The tradeoff between runtime and the qua-
lity of the resulting solution can be controlled by restricting
the number of partitions considered for each column.

Only the determination of the f i t state variable si remains
problematic, as the implementation effort for y l cannot be es-
timated before all the other coding columns are known. How-
ever, it is possible to estimate its effect on the complexity of
the output function fo(i,s) and to use this information to choose
si. After state assignment, the MER feedback function m(s)
can be chosen in such a way that y1= si+ 0 m(s) is easily
realizable. Even if for testability reasons a primitive feedback
polynomial is required, a large number of choices for m(s)
remains. The synthesis process for PST / SIG structures is
summarized in Fig. 9. When k is the number of assignment
partitions explored for each state variable, the worst case size
of the search space is O(k3, but typically only a small
percentage of all branches have to be enumerated explicitly.

procedure M ISR-state-assignment
read FSM description;
for a set of feasible encodings of variable SI :

choose the encoding slopt with least cost;
for all state variables si, i = 2, ... r:

estimate the cost for implementing fo(i, s);

for a set of feasible encodings of variable Si:

choose the encoding Si*' with least cost;
for all primitive MISR feedback functions m(s):

compute y1 = m(s) @ st+;
estimate the cost for implementing fo(i, s) and fy(i, s);

choose the function moPt(s) with least cost;
minimize fo(i, s) and f (i, s) with logic synthesis program;
return the optimized ESM implementation:

compute yi = si-1 Q Si+;
estimate the cost for implementing fo(i, s) and y2, ... yi;

I end;

Fig. 9: Synthesis process for controllers with MISR state registers.

4 Results

The algorithm was programmed in C and evaluated with the
examples from the MCNC benchmark set WCNC 881. The
resulting numbers of product terms for the largest bench-
marks are summarized in Table 2. The branch-and-bound
algorithm was parameterized such that the run time for state
assignment was in the range of minutes on a SUN 4/60. As
no state assignment algorithm for signature registers was
published until now and it is not feasible to compute an
optimal solution for these circuits, the results are compared
with the best of 50 randomly selected encodings. It can be
seen that the heuristic algorithm is preferable to the costly
trial-and-error method in all cases.

example average of ... best of ... heuristic ... 50 random encodings solution
dk16 91.7 87 76
dk512 25.5 23 19
dontile 73.5 65 42
ex1 73.8 69 64
ex4 20.6 18 18
kirkman 122.1 94 67
mark1 26.0 25 23
modulo12 17.4 15 13

sand 116.3 111 107
scf 168.0 1 56 138
styr 143.5 132 128
tbk 261.9 224 159

planet 103.9 102 94

Table 2: Number of product terms for PSTISIG state assignment.

Paper 23.2
376

Table 3 compares synthesis results3 after two-level and
multi-level logic minimization for the three approaches pre-
sented in this paper. The PST / SIG structures have advanta-
ges with respect to testing speed, fault coverage and test con-
trol compared with conventional DFF solutions [EsWu 911;
the table shows that these advantages are obtained without
having to pay for them with a significant increase of hard-
ware over the DFF solution. Some examples even lead to a
lower combinational logic complexity when implemented
with a MISR state register, while others require more area for
the next state logic than the DFF solution. It should be noted
that Table 3 is biased in favor of the conventional DFF solu-
tion, because the self-test registers required for pattern gene-
ration and to secure the observability of state variables are not
taken into account. The PAT suucture can decrease the amount
of combinational logic by 10-20 % compared with the DFF
solution; these results resemble those given in [AmEB 883 for
FSM’s with loadable counters used as state registers.

example number of product terms number of literals
PST/SIG DFF PAT PST/SIG DFF PAT

dk16
dks12
donfile
ex1
ex4
kirkman
mark1
modulo12
planet
sand
scf
styr
tbk

76 59 57
19 18 17
42 29 28
64 48 44
18 19 16
67 64 54
23 20 17
13 13 9
94 91 83

107 97 97
138 146 136
128 94 93
159 149 59

289 270 241
67 70 48

121 160 74
288 280 253
65 77 70

153 176 146
119 108 94
39 35 29

545 578 569
566 570 547
714 822 773
629 594 512
421 547 496

Table 3: Comparison of PST/SIG. DFF and PAT results.

5 Conclusions

Conventional self-test approaches for highly sequential cir-
cuits either require large hardware overheads or have to com-
promise testability. We presented a unified framework to syn-
thesize BIST structures overcoming that problem. Several syn-
thesis procedures targeted towards self-testable FSM’s were
implemented. Depending on the major design goal, area,
speed, test length, test control effort or the detectability of dy-
namic faults can be optimized compared to conventional solu-
tions. The approach is well-suited to sequential circuits typi-
cally described by an FSM model (e. g. controllers); in its cur-
rent form it is, however, not applicable to the synthesis of se-
quential circuits with a large number of states like data paths.

Acknowledgements
The authors would like to thank Mr. A. Rothacker for his

help in implementing the algorithms. We would also like to
acknowledge Dr. R. Kumar for reading the manuscript.

References

AgCh 90 V. D. Agrawal, K.-T. Cheng: An Architecture for
Synthesis of Finite State Machines; Proc. 1st European Design
Automation Conference, pp. 612-616.1990.

The DFF solutions wen? obtained using the programs nova (-ihybrid)
WiSa 901 for 2-level logic and musrmg (best results of fanin and
fanout algorithm) DMNS 881 for multi-level logic.

AmEB 88 R. Amann. B. Eschermann. U. G. Baitinger: PLA-Based
Finite State Machines Using Counters as State Memories; Proc.
Int. Cod. on Computer Design, pp. 267-270.1988.

C. Chuang. A. Gupta: The Analysis of Parallel BIST by
the Combined Markov Chain (CMC) Model; h c . Int. Test

ChGu 89

Conference, pp. 337-343,1989.
DeMi 86 G. DeMicheli: Symbolic Design of Combinational and

Sequential Logic Circuits Implemented by Two-Level Logic
Macros; EEE Trans. on Computer-Aided Design, vol. 0 - 5 .

S . Devadas. H.-K. Ma, A. R. Newton, A. Sangiovanni-
pp. 597-616, 1986.

DMNS 88
V.: MUSTANG: State Assignment of Finite State Machines
Targeting Multilevel Logic Implementations; IEEE Trans. on
Computer-Aided Design, vol. CAD-7, pp. 1290-1300.1988.

S. Devadas, H.-K. T. Ma, A. R. Newton, A.
Sangiovanni-Vincentelli: Imdundant Sequential Machines Via
Optimal Logic Synthesis; IEEE Trans. on Computer-Aided
Design, vol. CAD-9. pp. 8-18.1990.

B. Eschermann, H.4. Wunderlich Optimized Synthesis of
Self-Testable Finite State Machines; Proc. 20th Int. Symp. Fault-
Tolerant Computing, pp. 390-397, 1990.

B. Eschermann, H.-J. Wunderlich: Parallel Self-Test and
the Synthesis of Control Units; Roc. 2nd European Test Conf.,
Munich, April 1991.

Solution; Proc. 26th Design Automation Conference. pp. 706-
709,1989.

Boundary-Scan Architechm. 1990.

as Pseudorandom Pattem Generators in Built-in Self Testing;
IEEE Trans. on CAD, vol. 8. pp. 919-928.1988.

B. Khemann, I. Mucha, 0. Zwiehoffi Built-In Logic
Block Observation Techniques; h c . Int. Test Conference, pp.

A. Krasniewski, S. Pilarski: Circular Self-Test Path: A
Low-Cost BIST Technique for VLSI Circuits; IEEE Trans. on
CAD, vol. 8. no. 1, pp. 46-55, 1989.

R. Lisanke: Logic Synthesis and Optimization
Benchmarks, Version 2.0; Microelectronics Center of North
Carolina, 1988.

E. McCluskey. S . Unger: A note on the Number of
Internal Variable Assignments for Sequential Switching Circuits;
IRE Trans. on Electronic Computers, vol. EC-8, pp. 439-440,
1959.

G. Tumbush, J. Brandebeny: A State Assignment
Technique for Sequential Machines Using J-K Flip-Flops; IEEE
Trans. on Comp.. vol. 23, pp. 85-86, 1974.

T. Villa, A. Sangiovanni-V.: NOVA: State Assignment
of Finite State Machines for Optimal Two-Level Logic
Implementation; IEEE Trans. on Computer-Aided Design, vol.

DMNS 90

EsWu 90

EsWu 91

Ghee 89 T. Gheewala: Crosscheck: A Cell Based VLSI Testability

IEEE 90

KiHT 88

IEEE Std. P1149.1: Standard Test Access Port and

K. Kim, D. Ha, J. Tront: On Using Signature Registers

Kf2vlZ 79

37-41.1979
KrPi 89

MCNC 88

McUn 59

TuBr 74

Visa 90

CAD-9, pp. 905-924.1990.
WaMc 87

WeDo 69

L. Wang. E. McCluskey: Built-in Self-Test for Sequential

P. Weiner, T. Dolotta: Mixed Memory Realizations of
Machines; Proc. Int. Test Conference, pp. 334-341.1987.

Sequential Machines; IEEE Trans. on Comp., vol. 18, pp. 272-
277, 1969.

Assignments for Synchronous Sequential Machines; IEEE Trans.
on Electronic Computers, vol. EC-16. pp. 220-221.1967.

Assignment Algorithm for Multi-Level Logic; Proc. 25th Design
Automation Conference, pp. 433-438,1988.

WeSm 67 P. Weiner, E. Smith: On the Number of Distinct State

WoKA 88 W. Wolf, K. Keutzer. J. Akella: A Kernel-Finding State

Paper 23.2
377

