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1 . INTRODUCTION 

'l'he lipid bilayer vesicle is the simplest possible model 

of biological membranes. Nevertheless, it exhibits already a 

number of typical properties of cell membranes. The most fas­

cinating examples are the shape transitions and shape insta­

bilities. It ha s been recognized long ago that shape transi ­

tions may be induced by changing the osmotic conditions or the 

temperature l . Apart from sphe~ical and e llipsoidal shapes more 

exotic shapes such as e.g. discocytes, stomatocytes l , 

echinocytes2 or a necklace of small vesicles) has recently been 

observed. Up to now, our understanding of these shape trans­

formations has been rather limited . Indeed, all previous ex­

periments have been performed with relatively complex systems 

containing, e.g. charged and unsaturated lipids, mixtures of 

different lipids or additional solutes such as sugar in the 

aqueous phase . It was generally believed that these different 

ingredients play an essential role in determining the vesicle 

shape. Therefore, no attempt has been reported so far to re­

late these experimentally observed shapes 1n a systematic way 

to theoretical calculations . 
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In our contribution we report a systematic experimental 

and theoretical study on these shape transformations. In order 

to avoid the above mentioned complications we have investigat_ 

ed vesicles which consist of electrically neutral lipids (that 

is phosphatidylcholine) in Millipore water. We find, that even 

for such a simple system a change in temperature can lead to 

three different types of shape transformations. Theoretically, 

we discuss shape transformations within two well established 

curvature models, (i) the bilayer coupling model of Svetina 

and Zeks 4 and (ii) the spontaneous curvature model of 

He lfrichs. 6 • A comparison leads to the conclusion that the ob­

served shape transformations can well be explained within the 

bilayer coupling model provided a small asymmetry in the ther­

mal expansivities of both monolayers is assumed. In some cas­

es, such an asymmetry is not required. 

2. EXPERIMENTAL SETUP 

Our experiments were performed with vesicles of dipalmi­

toylphosphatidylcholine (DMPC) of diameters larger than 20 ~. 

These were prepared in a separate test-tube. 

purity >99% was dissolved in a solvent 

The 

of 

mM solution. Then, 

lipid with a 

2: 1 chloro-

60 1'1 of this form/methanol 

solution were 

to produce a I 

distributed as a thin film on the inner surface 

of the test-tube. The solvent was evaporated by placing the 

test-tube in a vacuum chamber for a minimum of one day. Then 

the vesicles were swollen by filling the test-tube with 5 ml 

distiled water prepared with a Milli-O-System and heating the 

solution up to 40oC. 

After swelling for a minimum of 12 hours, the vesicles 

were transferred into a special chamber which allows, for the 

first time , the observation of free vesicles without being 

driven off by thermal convection. A schematic view of this 

measuring chamber is shown in Fig.l. The hollow outer copper 

frame is used to cool and heat the chamber with a water ther­

mostat. The inner frame is made of teflon and a temperature 

sensor (Pt 100) is integrated in this frame. The top and bot­

tom of the chamber are closed with cover slides. These were 

fixed with vacuum grease. An inner compartment is placed onto 

the bottom cover slide. It is formed by a thin teflon spacer 

(open at one side) covered by a small cover slide. The inner 
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connection to the theraostate 

temperature-3en30r 

cover slide 

cover slide 
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formed by a tetlon­
.pacer (0.25 •• ", thick) 
and a cover slide 

copper fralle 
(76_ x 26_) 

teflon trame 
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Fig.l. Measuring chamber with an inner (dead water) confine-

ment to prevent swimming away of freely suspended vesi­

cles by thermal convecti on. 
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compartment is essentially free of thermal convection and for 

this reason it is used for the observation of the vesicles. 

The outer compartment is required for a good thermal cOupling 

to the thermostated frame. The vesicles were observed in phase 

contrast with an inverted Zeiss Axiovert 10 microscope. For 

the present work, a bright field air objective of magnifica­

tion 40x (Zeiss) was used. During the slow increase of the 

temperature ... 0.2 Kl min, the volume and the area of the ob­

served vesicle were measured with a digital image processing 

system (Maxvideo, Datacube Boston, USA). The details of mea­

suring the volume and the area will be described elsewhere 1 . 

3. THREE DIFFERENT TYPES OF SHAPE TRANSFORMATIONS 

In our experiments we normally started with spherical or 

ellipsoidal vesicles of a size between 20 ~ and 50 ~, which 

are most suitable to determine the initial values of the vol­

ume and the surface area. We found the following different 

types of shape transformations caused by increasing the tem­

perature: Firstly, the budding transition exhibiting the fol­

lowing evolution: The sphere changes into a prolate ellipsoid 

and then into a pear-shaped state, which finally forms a vesi­

cle with one bleb on the outside (see Fig.2). The second type 

is a reentrant shape transformation. One first obtains a pro­

late ellipsoid, which changes into a dumbbell shape, then into 

a pear-shaped state and again into a dumbbell-shaped state 

(see Fig.3). The third type is the discozyte-stomatozyte tran­

sition. The first step is the change from a sphere to a oblate 

ellipsoid. The ellipsoid changes into a discozyte and finally 

into a stomatozyte (see Fig.4) . The last transition is com­

pletely analogous to the discocyte-stomatocyte transition of 

red blood cells and provides convincing evidence for our in­

troductory remark that most simple bilayer vesicle may mimic 

typical behaviors of the complex biological membranes. This 

suggests that shape changes of biological membranes are gov­

erned by simple principles. 

In Fig. 2-4, we compare the three types of experimentally 

observed shape transformations with shape changes, calculated 

with the theoretical model des c ribed below. The three 
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theoretical sequences differ mainly in the value of a 

dimensionless parameter, y, which measures the asymmetry in the 

thermal expansivities of the two mOnolayers. If the thermal 

expansivity of the outer monolayer is larger than the inner 

one and exhibits a relative difference y ~ 10-2 , a small vesicle 

buds off the large vesicle. For a $ ys: 10- 3 the reentrant 

transitions from a dumbbell to a pear-shaped state OCcurs, 

while a larger expansivity of the inner monolayer leads t.o t.he 

discozyte-stomatozyte transitions and finally to the formation 

of a small vesicle budding towards the inside. 

I 

Fig . 2 . Demonstration of a budding transition : The shapes were 

measured at T = 31 . 4 , 35 . 5 , 35 . 6 and 35.eOc . The disc­

like object is due to 

t.he outer compartment 

an air bubble which migrates in 

of the measuring chamber . The 

calculated shapes correspond to a trajectory of Eqs . (4) 
with initial values of the reduced volume Uo = 0 . 9446 

and reduced area difference ~ao : 1 . 0305 , y = 0 . 057 and 

b = 1500. 
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10 um 

Fig . 3 . Symmetric-asymmetric reentrant transition : The shapes 

were measured at T - 30 . 7 , 32 . 6 , 40.0 and 14. 30C . The 

calculated shapes correspond to a trajectory of Eqs . (4) 

with Uo = 0 . 78 , ~a O - 1.1475 , Y ~ 0.00166 and b = 640 . 

4 (J\),oum em 
Fig . 4 . Discocyte - stomatocyte t.ransition: The shapes were mea­

sured at T ~ 43 . 8 , 43 . 9 , 44.0 and 44 . 10C . The calculat ­

ed shapes correspond t o a trajectory of Eqs . (4) '.,I ith 

Uo - 0 . 65 , d ao = 1,0355 , Y - -0 . 29 and b - 1000 . 
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4. THEORETICAL MODELS AND THEIR AGREEMENT WITH THE EXPERIMENT 

For a comparison o f the experimental results with theoret­

ical ideas, we calculated shapes and shape transitions within 

two variants of curvature models: (1) the bilayer coupling 

model of svetina and Zeks4, (ii) the spontaneous curvature mod­

el of Helfrich5. 6. We first discuss the bilayer coupling model. 

Within this model, the two monolayers are taken to be infinite 

thin shells with a constant separation 0, where 0 is about t he 

half bilayer thickness. The shape of the vesicle is determined 
by the minimum of the bending energy, Gb, 

which is expressed as an integral over the inner monolayer 

only since both monolayers are coupled. It is convenient to 

express all equations in terms of the surface areas Ain and AU 

rather than in terms of the neutral surface. Here, X denotes 

the effective bending rigidity of the bilayer with K" 1.15 x 

10-19 J for DMPC8. The variables Cl - 1/R1 and C2 - 1/R2 are the 

two principal curvatures expressed by the two radii of curva­

ture Rl and R2. The area difference M i: Aex_Ain of both mono­

layers is related to the total mean curvature of the inner 

monolayer via M = Dr (Cl +C2) dAin for small values of d. The 

minimization of Gb is now performed for fixed area Ain, fixed 

enclosed volume V, and fixed area difference AA. Thus, we as­

sume that the exchange of lipid molecules between both mono­

layers can be ignored on experimentally relevant periods. This 

minimi~ation leads to the shape equation 

(2) 

where 5 denotes the variation with respect to the vesicle shape 

and ~I, P and Co denote Lagrange multipliers which can be 

identified with the lateral tension, the pressure difference 

and the spontaneous curvature, respectively. 

For the model just described, we have determined the 

hphase diagram.,9, i.e. , we have determined the axi-symmetric 
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Fig.5. Phase diagram and temperature trajectories for the bi­

layer coupling model. This phase diagram shows the 
state of lowest energy for given ~a and \) . Cpear and 
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c~to denote lines of continuous transitions at which 

the up/down symmetry of the vesicle shape is broken. 

LPear, L~to and Ldumb denote limit shapes. Note that the 

dumbbell region contains for large u - values prolate 

ellipsoids and that the discocyte region contains for 
large u-va lues oblate ellipsoids. The pointed lines 

(1), (2) and (3) represent the temperature trajecto­

ries for F ig.2, Fig.3 and Fig.4. The dashed line rep­

resents the temperature trajectory for the asymmetry 
parameter y - 0 with Uo - 0.9 and ~ao - 1.05. 



shapes of lowest bending energy for experimentally accessible 
values of the reduced volume U with 

(3) 

which is a measure for the excess area and the induced area 
difference &a with 

(4 ) 

For a sphere, one has U - &a - 1. This phase diagram is dis­

played in Fig.5. Some part of it has been previously described 

by Svetina and Zeks4 . As two important novel features, we find 

(i) an instability of the dumbbell shapes with respect to the 

up/down symmetry which leads to the pear-shaped states , and 

(ii) new limiting shapes which look like two prolate ellip­

soids sitting on top of each other . 

In order to compare theoretical and experimental shapes, 
we determine the path &a - &a(u) which corresponds to a change 

in temperature T. We now assume that the interior and exterior 

monolayer have different temperature independent relative ex­
pansivities , a in and a ex, as given by 

i. 

tt " 
1 ciA in ex 

and a = 
1 

.. 
dA 
dT 

ex in 
, with a = (1 + y)a (5) ,. 

A 
dT .. 

A 

For simplicity, we neglect the small thermal expansivity of 

the enclosed water. We assume that the thermal expansivity of 
D is given by (-1/2)ain 10. Differentiating Eqs. (3) with re-

spect to the temperature T and inserting Eqs. (5) leads after 

integration to the temperature dependence of the reduced vol­

ume as given by 

U(T) - Uo exp( (-3/2) a in (T - TO» ( 6) 

where Uo _ U(TO) defines the initial value. A similar equation 

can be derived for Aa (T). If (T - TO) is eliminated in both 

equations one finds the temperature trajectory 

(7) 
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where Uo ii U (TO) and Aao • .6.a (To) parametrized the initial 

shape at temperature T = To and 

( 8) 

For 1 - 0, i.e., if the asymmetry were not present, the second 

term in Eqs. (7) vanishes and a temperature trajectory in the 
phase diagram would be given by .6.a(U) - (~o/~)2/3.6.ao· This path 

is shown as a dashed line in Fig.4: Starting, e.g. with a sym­

metric prolate ellipsoid, it immediately crosses the phase 

boundary Cpear and enters the pear-shaped region; it then 

crosses again the line of continuous transitions cPear and fi­

nally meets the new type of limiting shapes at Ldumb. Note that 

such a path never enters the stomatocyte region. Any 111 in the 

order of 10- 3, however, has already a significant influence 

since the parameter b as given by Eqs. (8) can be estimated to 

be of orders 103 for the typical values Ain (TO) - Aex (To) .. 

1000 ~2 and D .. 5 nm. 

The asymmetry 1 and the initial area difference .6.ao cannot 

be measured or controlled directly in our experiment. A crude 

estimate, however, can be obtained by comparing the experimen­

tal with theoretical shapes. The calculated shapes shown in 

Fig. 2-4 lie on a trajectory described by Eqs . (4) within the 

experimentally observed temperature intervals. For Fig.3 and 

Fig.4, the parameters b, ~O, .6.ao and 1 were obtained as fol­

lows: The measured area A and volume V of the first shape at 
temperature To determines Uo and b, where we used Ain _ A8X - A 

and D = 5 nm. The area difference .6.ao is chosen to fit the ex­

perimental s hape. The measured temperature interval Tf - To be­

tween the final and the initial shape determines u(Td via 

Eqs. (6) wit h a in = 6;.::10-3 12 Once again, .1a (Tc) is fitted t o 

the exper i mental shape , whic h finally determines the value of 
the asymmetry parameter y. For Fig.2, we first determined ueTc) 

from the last shape a nd then U(To) from the measured tempera­

ture differe nce to the second s hape. 

Although the expe rimental and theoretical results agree 

very well. 

within the 

it is worthwhile to envisage also an explanation 

spontaneous curvature model. Within this model the 

shape of the vesicle with given area A and enclosed volume V 

is determined by the minimum of the bending energy Fb, with 

(9 ) 
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The microscope details of the two monolayers are described by 

the spontaneous curvature Co. The minimi zation leads to the 

same shape equation as Eqs. (2) and consequently to the same 

extremal shapes. A shape which correspond s to a local minimum 

of Gb, may, however, correspond to a local maximum of Fb' 

Therefore the phase diagram in both models are quite differ­

ent. The phase diag ram for the spontaneous curvature model de­
pends on u given by Eqs. (3) and the reduced spontaneous curva­

ture 

co=Co (A/4lt)"2 (10) 

We display, the phase diagram in Fig . 6. Its derivation will be 

presented elsewhere 9 . Its main characteristics are: 

1) For Co ~ 2.08, a discontinuous transition Dpear separates 

prolate/dumbbell from pear-shaped states. 

2) With decreasing volume, the pear-shaped vesicles become 

symmetric again for Co < 2~2 at Cpear. 

3) For Co > 2~2, however , the pear-shaped vesicles reach a 

limit-shape Lpear with decreasing volume. This limit shape 

consists of two spheres which are connected by an narrow 

neck, which contains no energy since the two curvatures have 

compensating signs. Such an "ideal" neck is only possible if 

the radii Rl and R2 of the two spheres fulfil the relation 

(11 ) 

This equation, together with the conservation of area 47t 

CR12 +R22] = A, determines which spontaneous curvature Co is 

necessary in order to obtain budding of a smaller vesicle 

with radius RI. For small RI, we have Co c RI-l. 

4) A discontinuous transition oSto leads from oblate/discocyte 

shapes to the stomatocytes. For Co < 0, these shapes reach a 

limit shape LSto 9iven by an inverted sphere of radius Rl < 

o embedded in a large sphere of radius R2 > O. Once again 

Eqs. (11) holds for the limit shape. 
In order to compare this phase diagram and the predicted 

transitions with the experimental trajectory, we need the tem­

perature dependence of CO, wh ich is not clear a priori. We 

therefore assume that Co remains temperature independent. For 
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Fig.6. Phase diagram for the spontaneous curvature model. This 

phase diagram shows the state of lowest energy for giv­
en Co and u. Cpear denotes a line of continuous transi-
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tion at which the up/down symmetry of the vesicle shape 

is broken. Opear,D and osto denote lines of discontinu­

ous transitions . Lpear, Lsto and Ldumb denote limit 

shapes. 



the volume, Eqs. (6) remains valid. Let us now discuss which 

theoretical trajectories could fit the experimentally observed 

ones: 

(1) For a reentrant trajectory as in Fig. 3, the spontaneous 

curvature model predicts a discontinuous transition from the 

symmetric to the pear-shaped state. Of course, the distinc­

tion between a continuous and a discontinuous transition for 

a single vesicle is experimentally difficult. For a discon­

tinuous transition, one expects a strong variation of the 

shape within a short time caused by an infinitely small 

change of the area and the occurrence of hysteresis. The ob­

served reentrant trajectory, however, Occurred over a rela­

tive large temperature i nterval of 14 K, which corresponds 

to a time interval of 70 min. ]I.. further objection against 

the spontaneous curvature model for this trajectory is that 

the neck at the Cpear-line is significantly narrower for the 

calculated shapes than for to the experimental ones. 

(2) In order to obtain a budding trajectory leading to a bleb 
of the observed small size a spontaneous curvature Co ~ 5-6 

has to be postulated. which is rather improbable for our 

pure system. Moreover, all budding trajectories in the spon­

taneous curvature model should be precursed by the first or­

der transition from the symmetric to the pear-shaped states. 

(3) Finally, the discocyte-stomatocyte transition in this mod­

el is first order and would require a negative spontaneous 

curvature to occur for the observed U-value. 

Summarizing, the detailed analysiS of the phase diagram 

for both models allows to test critically whether these models 

apply to the observed shape transformations. We find that the 

bilayer coupling model augmented with an asymmetry in the 

monolayer expansivity fits well while the spontaneous curva ­

ture models makes qualitatively different predictions. Espe­

cially, we consider the transition from a prolate ellipsoid to 

a pear - shaped state in Fig. 2 and the discocyte-stomatocyte 

transition in Fig.4 as continuous. This is in accordance with 

the bilayer coupling model , but in disagreement with the spon­

taneous curvature model. 
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5. POSSIBLE REASONS FOR THE ASYMMETRY IN THE THERMAL EXPAN­

SIVITIES 

What could be the origin of the different thermal expan­

sivities of the two monolayers? One possibility could be impu­

rities such as lyso-lipids asymmetrically distributed between 

the both monolayers. A second more likely explanation is that 

the asymmetry is induced during the swelling process or the 

cooling of the vesicles from 40°C to room temperature during 

the transfer to the measuring chamber. Experimentally we found 

that after a long swelling time (about 24 hours) there is a 

preference for y-values close to zero indicating a relaxation 

process. Further more the route of shape change depends on the 

lipid structure. For palmitoyloleylphosphatidylcholine (POPC), 
for instance, the values of 111 are remarkable higher . If an 

nearly spherical vesicle is cooled, so that a lateral stress 
is exerted within the bilayer, a high 'Y value arises. Thus 

heating, the vesicle again leads to a budding transition owing 

to a high value of 'Y. This example is shown in Fig . 2. 

6. SUMMARY 

The shape changes of giant bilayer vesicles consisting of 

phosphatidylcholine (DMPC) in pure water were studied. They 

were induced by temperature variations resulting in a change 

of the excess surface area since the volume remains essential­

ly constant. Three different types of shape transformations 

were observed: firstly, a budding of small vesicles towards 

the outside of large vesicles which leads to a stepwise forma­

tion of a chain of vesicles at further increasing the tempera­

ture; secondly, a reentrant transition form a dumbbell to a 

pear-shaped state and thirdly, an oblate ellipsoid-discocyte­

stomatocyte transition. 

The shape transitions and the degree of continuity (order) 

can be best explained in terms of the bilayer coupling 

approach of Zeks and Svetina4; by assuming that the thermal 

expansivities of the two monolayers are different . The type of 

shape change depends on the asymmetry in the thermal 

expansivities of both monolayers. We provide evidence that the 

asymmetry in the case of symmetric bilayer vesicles (equal 

composition of outer and inner aqueous phases) is introduced 
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during preparation and that the route of transition depends 

also on the pretreatment of the vesicles. Our observations can 

be less well explained by the spontaneous curvature approach 

of Helfrich5, 6 . 

ACKNOWLEDGMENTS 

This work was supported by the Deutsche Forschungsgemein­

schaft through the Sonderforschungsbereich No . 266 . 

REFERENCES 

1. E. Sackmann, H. P. Duwe and H. Engelhardt, Membrane 

bending elasticity and its role for shape fluctuations and 

shape transformations of cells and vesicles, Faraday 

Discuss. Chern. Soc . 81:468 (1986). 

2. H. Gaub, R. Ruschl, H. Ringsdorf and E. Sackmann, Phase 

transitions, lateral phase seperation and microstructure 

of model membranes composed of a polymerizable two-chain 

lipid and dimyristoylcholine, Chem.Phys.Lipids 37:19 

(1985) 

3. E. Evans and W. Rawicz, Entropy-driven tension and bending 

elasticity in condensed-fluid membranes, Phys.Rev.Lett. 

64,2094 (1990). 

4. S. Svetina and B. Zeks, Membrane bending energy and shape 

determination of phospholipid vesicles and red blood 

cells, Eur.Biophys.J. 11,101 (1989). 

5. W. Helfrich, Elastic propertjes of lipid bilayers, 

Z.Naturforsch. 28c,693 (1913). 

6. H. J . Deuling and W. Helfrich, The curvature elasticity of 

fluid membranes: A catalogue of vesicle shapes, J.Physique 

31,1335 (1916) . 

7 . J . Kas and E. Sackmann, to be published. 

8. H. P. Duwe, J. Ras and E. Sackmann , Bending elasticity 

moduli of lipid bilayers: modulation by solutes, 

J.Physique 51,945 (1990). 

9. U.Seifert, K.Berndl and R . Lipowsky, to be published. 

109 



10. G. Cevc and D. t-1arsh, Bilayer thermomechanics and thermal 

expansion , in: Phospholipid bilayers, G. Cevc and D. 

Marsh, ed. , John Wiley & Sons , New York, Chichester, 

Brisbane, To r onto , Singapore (1987). 

11. E. Evans and D. Needham, Surface-Density Transitions, 

Surface Elasticity and Rigidity , and Rupture Strength of 

Lipid Bilayer Membrane s , i n: Physics of Amphiphilic 

Layers , Springer Proceedings in Physics 21 , J. Meunier , 

ed., Springe r , New York, Heidelberg, Berlin (1987). 

110 


