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S L A N T E D  S Y M P L E C T I C  Q U A D R A N G L E S  

AaSTRACT. By 'slanting' symplectic quadrangles W(F) over fields F, we obtain very simple 
examples of non-classical generalized quadrangles. We determine the collineation groups of 
these slanted quadrangles and their groups of projectivities. No slanted quadrangle is a 
topological quadrangle. 

A simple modification of symplectic quadrangles yields examples of non- 
classical generalized quadrangles. The finite quadrangles of this type are well 
known and due to Ahrens-Szekeres and M. Hall, see Payne [15], [16], Payne 
and Thas [18, 3.1.3, 3.1.4, 3.1.5, 3.2.6]; cf. also [1], [2], [4], [5], [19]. 

We prove that the collineation groups of these 'slanted' quadrangles are 
inherited from the corresponding symplectic quadrangles (2.4), with the 
exception of the two smallest thick cases. Furthermore, we compute the 
groups of projectivities of slanted quadrangles (3.3, 3.4); it turns out that all 
even finitary permutations are projectivities. As a consequence, the slanted 
quadrangles cannot be turned into topological quadrangles (3.12). 

We would like to thank Hendrik Van Maldeghem for requiring a 
correction in (2.2). 

1. C O N S T R U C T I O N  

Let F be a field, and denote by P and Aa the point set and the line set, 
respectively, of the projective 3-space PG3 F. For peP, we denote by 
Aap = {L ~ Aa I P ~ L} the line pencil through p. Let 7r be the (essentially unique) 
symplectic polarity of PG3 F, and let 

= {LEVI L~ = L} 

be the set of all absolute lines. Then W(F)=  (P, Aa, ~) is the symplectic 
quadrangle over F (here we consider lines as sets of points). 

The point set p~ is the star of p, i.e. the set of all points joined to p in W(F). 

(1.1) DEFINITION.  Choose s~P, and define the slanted symplectic quad- 
rangle W(F) (s) = (p<s>, ~<s>, ~) by 

p<s> = p\s ~ and .LP (s} = (.~¢~\LP~) w ( ~ \ ~ ) .  

Thus the new point set p<s> is just an affine 3-space AG3 F, and the line set 
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~e <s> consists of the absolute lines not contained in the hyperplane s ~ and of 
one parallel class ~ \ L a ,  of AG3 F; we refer to the lines in this parallel class as 
special lines. 

Since the projective symplectic group PSp4F is transitive on P, the 
isomorphism type of the incidence structure W(F) <s> does not depend on s, 
and occasionally we write just W(F) O, pO and .LEO. For finite fields F, the 
following result, or rather an equivalent statement for a different model of 
W(F) <~7, was proved by Ahrens-Szekeres, M. Hall and others, see Payne and 
Thas [18, 3.1.5], Payne [15, §5]. 

In fact, using the concept ofreoular points, one could also 'slant' some other 
(finite) quadrangles apart from those of the symplectic type (cf. Payne and 
Thas [18, 1.3]). But this will not be pursued here. 

(1.2) LEMMA. For every field F, the incidence structure W(F) Cs) is a 

#eneralized quadrangle. I t  is thick if  and only if IFI > 2. 
Proof. Clearly, any two distinct points are joined by at most one line. Since 

W(F) contains no triangle, any triangle in W(F) <s> has at least one special line 
S e ~ca\L~,. As distinct special lines are disjoint in W(F) <s>, we infer that the 
triangle has two intersecting absolute lines A, B. The point a = A n s  ~ is 
distinct from A n B. The plane generated by A, B contains s. Thus the line as 
meets B; hence the absolute lines A, B, as are the sides of a triangle in W(F). 
This contradiction shows that W(F) <s> contains no triangle. 

Let x e P  <s>, L~La<s> with x C L .  We want to show that x is joined in 
W(F) <s> to some point on L. By the absence of triangles, L ~ x~; hence 
y = L n x ~ has dimension 1, and the assertion is clear if y E p<s>. Now assume 
that y ¢ P<~>; hence y ~ s ~. Then y # s, since x ¢ s ~. 

If L ~ ~ces\Aa ~, then L = sy is absolute and belongs to LP~, a contradiction. 
Thus L ~ . ~ \ ~ ,  and L = L ~, x, s are contained in the projective plane y~. 
Hence x is joined to the intersection point xs n L; note that xs ~ LP <~>, in view 
of x ¢ s ~, and that xs n L ~ p<s), otherwise xs n L = s ~ L, a contradiction. 

We conclude that W(F) <s> is a generalized quadrangle. Every point is on 
IFI+2 lines, and every line carries IFI points, thus W(F) <S> is thick if and 

only if IFI > 2. [] 

(1.3) REMARK. The generalized quadrangle W(U:2)O is the dual of the square 
grid of size 4 x 4, and W(~:3) O is isomorphic to the orthogonal quadrangle 

Q5(~2). 
These well-known facts are proved in Payne and Thas [18, 1.1, 5.3.2] by 

combinatorial methods; see Section 4 for a group-theoretic proof of 
W(~3) O-~-' Q5(~2), and for further references. The generalized quadrangles 
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W(F) <) with ]FI > 3 behave differently, they are not Moufang quadrangles, see 
(2.5); cf. also Payne 1-17] and Payne and Thas [18, (6.2.4)] for the quadrangle 
W(I:4) O of order (3, 5). 

By construction, the group F = (PSp4 F)~ is a collineation group of both 
W(F) and W(F) (~>. In fact, following [20], one can use F in order to give 
another (group-theoretic) description of W(F)(S>: 

(1.4) THEOREM. The slanted symplectic quadrangle W(F) (s> is represented by 
F in the sense of [20]: the #roup F is transitive on points, and the stabilizer Fp of 
a point p fixes the special line ps and acts transitively on the other (absolute) 
lines through p. 

Proof. Clearly ps is fixed by F r The transitivity assertions for F and Fp 
follow from Witt's lemma. Furthermore, F preserves the special lines ~ \ ~ v  
and the absolute lines LP~\LP~; hence the two orbits of Fp on the lines through 
p are not fused under the action of F. Thus W(F) <~> is represented by F. [] 

(1.5) We give an explicit description of a representing triplet (F, Fp, {Fp~, FL} ) 
in the sense of [20]. Let the symplectic polarity 7r be given by the alternating 
form ( 1/ 

1 
f (x ,  y) = x f f  

--I 

- - 1  l 

on F 4, and let s = F(1, 0, 0, 0). Then F is induced by the group of all matrices 

A 

v 1/x 

with A ~ SL 2 F, x ~ F*, y s F, v ~ F 2, w = A 1 v tr. The stabilizer Fp of 

p = F(0, 0, 0, 1) is given by the conditions v = w = 0, y = 0, and v = w = 0 defines 
the stabilizer Fps of the line ps. The stabilizer F L of the absolute line 
L = {0} x {0} x F 2 is induced by the matrices 

(x I t a b 

1/a 

t 1/x 
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with a, x ~ F*, b, t ~ F. 

(1.6) C O R O L L A R Y .  Each monomorphism F--, F' of fields yields a F-equiva- 
riant monomorphism W(F) O --, W(F') O of generalized quadrangles. 

This can be proved directly or by using [21, 3.5]. 

2. COLLINEATIONS 

The following result is well known,  cf. Dieudonn6 [6, pp. 83/84]; we indicate a 
p roof  for the sake of completeness. Let  G S p 4 F  denote the group of all 
symplectic similarities of  F 4. 

(2.1) T H E O R E M .  Let F, F' be fields. Every isomorphism ~: W(F)-~ W(F') is 
induced by a unique collineation fl: PG3 F ~ P G a  F' satisfying rcfl=flzr'. In 
particular, W ( F ) ~ W ( F ' )  if and only if F~-F ' ,  and Aut(W(F)) 
-- PGSp4  F>~ Aut(F). 

Proof. The non-absolute  lines of PGa F are the point  sets p~n  q~ with 
p , q ~ P ,  p¢q~. Thus g is (induced by) a unique collineation 

f l : P G a F ~ P G a F ' .  Fur thermore ,  fl m a p s  {(x ,x~) lx~P} onto  
{(x, x ~') I x ~ P'}, hence nfl = fin'. If F = F'  and n = n', then fl is a semi-linear 
similarity. [ ]  

(2.2) T H E O R E M .  Let F, F' be fields containing at least five elements. Every 
isomorphism ~t:W(F)(S)-~W(F') ~s') is induced by a unique collineation 
fl: P G  a F ~ P G  3 F' satisfying nfl = fin' and s ~ = s' (hence also s ~ = s'~'). 

Proof. First  we describe the lines of  the affine space AG a F in terms of 
W(F) (s). The  star of  a point  x in W(F) ~s) is the set x ~ u xs (more precisely, the 

set of affine points in x ~ or on xs). For  distinct points x, y, z which are 
mutual ly  not  collinear in W(F) (s) we consider the set 

T~,y,z = (x ~ w xs) c~ (y~ u ys) c3 (z ~ u zs). 

Since xs c~ ys = ~ ,  etc., we have T~.y,z = (x ~ n y~ c~ z ~) u S, where S contains at 
most  three points. We claim that  the affine lines missing in W(F) (~>, i.e. the 
non-absolute  affine lines not  passing through s, are just the sets T~.y.~ of 
cardinali ty at least 5. Indeed, [T~,y,~[ >~ 5 implies that  x"c~ y~c~ z" is a line L of 
P G  3 F, hence L ~ = xy = xz = yz. Thus x~c~ y~ = x~c~ z ~ = y~c~ z ~ = L contains 
S, and therefore T~,y.~ = L. Fur thermore ,  given a non-absolute  line L not  
passing through s, we find distinct affine points x, y, z on L ~ ¢ ~q~u .LP~, and 
then T~.y,z = L has cardinali ty [F[ i> 5. 

This implies that  ~t maps  the lines o f A G  a F on to  the lines o f A G  a F, hence 
is induced by a unique coll ineation fl: P G  3 F ~ PG3 F' which maps the plane 
s ~ onto  s '~', cf. Tamaschke [-22, 40.7, p. 229] (alternatively, disjoint lines of 
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AG 3 F are parallel precisely if they generate a proper affine subspace, hence 
preserves parallelity and has therefore an extension fl as asserted, cf. 
Tamaschke [22, 40.3, p. 221]). The points of s~\{s} are the points at infinity of 
the affine lines characterized above, hence s p = s'. Thus fl maps the special 
lines La~\Le~ onto La~',\.~,, and the absolute lines ~ \ A a  s onto Ae~,\LP~',; 
furthermore, fl maps {L e Le I s ~ L _ s ~} = La c~ ~ onto ~ ' ,  c~ ~',.  This shows 
that fl is an isomorphism of W(F) onto W(F'), hence ~fl = flr~' by (2.1). [] 

(2.3) COROLLARY. Let F, F' be fields. Then the slanted symplectic quad- 
rangles W(F) <>, W(F') <> are isomorphic if and only if F and F' are isomorphic. 

As a consequence of (2.2) and (1.4) we obtain 

(2.4) COROLLARY. Let F be a field containing at least five elements. Then 

Aut(W(F) <s>) = (Aut(W(F)))s = (PGSp4 F)s >'a Aut(F); 

this group is transitive on the points of W(F) (s), and it has two orbits on the 
lines, viz. .£e~\ ~ and ~cgs\.~a ~. 

The group Aut(W(f4) O) has been determined by Payne [171. The quad- 
rangle W(F4) ~ is flag-homogeneous, but not a Moufang quadrangle, see 
Payne [17, V.4, V.5]. This shows that (2.2)and (2.4) are false for F=~:4. 
Because Moufang quadrangles are (point- and) line-homogeneous, one 
obtains also 

(2.5) COROLLARY. I f  F is a field containing at least four elements, then 
W(F) O is not a Moufang quadrangle. 

3. THE GROUPS OF PROJECTIVITIES 

Consider two disjoint lines L, M in a generalized quadrangle Q. For each 
x 6 L there is a unique y E M such that x and y are collinear. The mapping 
[L, M ] : L - ,  M defined in this way is called the perspectivity from L to M. 
Given lines L o, L a . . . . .  L k with L~nLi+l = JZ~, for 0 ~< i < k, the product 
[Lo, L1 , . . . ,  L~] = [Lo, L1][Ll, L2]'" .[L k_ 1, Lk] is called a projectivity from 
L o to L k. The projectivities of a fixed line L back to itself form a group H(L), 
the group ofprojectivities of L. It has a normal subgroup II+(L) of index at 
most 2 consisting of those projectivities which can be written as a product of 
an even number of perspectivities. H+(L) is called the group of even 
projectivities. 

In a thick quadrangle, there is a projectivity a from any line L to any other 
line M; the equations rI(L)= ~r-IH(M)cr and rI +(L)= tr-q-I +(M)tr show that 
the groups of projectivities of L and M are isomorphic as permutation 
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groups. Thus these permutation groups are invariants of the generalized 
quadrangle Q. 

(3.1) P R O P O S I T I O N  (Knarr [12, 1.2]). For every thick generalized quad- 
rangle, the group H + of even projectivities is doubly transitive. 

Knarr [12] has determined the groups of projectivities of all finite Moufang 
polygons. His arguments for symplectic quadrangles W(F) and their duals 
W(F) d"al ~ Q4(F) hold also for infinite fields F, hence one has the following 
result. 

(3.2) T H E O R E M  (Knarr). Let F be a feld.  For the symplectic quadrangle 
W(F), we have H = H + =  PGL2 F in its natural action on the projective line 
F w { oo }. For the dual quadrangle W(F) d"al~ Q4(F), we have 
H = H + = PSL 2 F in its natural action on the projective line F w { ~ }. 

In this section we determine the groups of projectivities of the slanted 
symplectic quadrangles W(F) O and their duals. We make the general 
assumption that IFI > 2, so W(F) <> is thick by (1.2). 

For the rest of this section let H and H ÷ denote the group of projectivities 
and the group of even projectivities of W(F) O, respectively. Let H ,  and 1-I. + be 
the group of projectivities and the group of even projectivities of W(F) ~d"a~, 
respectively. 

For a set X, denote by Sym(X) the symmetric group on X, and by 
Symn,(X ) the finitary symmetric group on X, i.e. the group of all per- 
mutations moving only finitely many elements of X. Furthermore, AIt(X) 
denotes the group of all finitary even permutations of X. 

(3.3) THEOREM.  Let F be a field with IFI > 2. For the slanted symplectic 
quadrangle W(F) <5 we have 

H = H ÷ = Sym(F), 

if F is finite. For infinite fields F, the group 

H = H + - -  (Symf in (F  u {(X3}) ~ PGL  2 F)o~ 

is the stabilizer of ~ in the product of the finitary symmetric group and PGL2 F 
in their natural actions on F u {Go }. 

In particular, one has Symf in (F  ) ~< H = 1-I +. 

(3.4) THEOREM.  Let F be afield with IFI > 2. For the dual W(F) Od"~ of the 
slanted symplectic quadrangle, we have 

l-I, + = g l t (Fu{oo,  ~'})) and H ,  = S y m ( F u { ~ ,  oo'}), 
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if F is finite. For infinite fields F, we have 

H + = AIt(F~ {oo, oo'})>~ PSL 2 F 

and 

I I .  = Symfin(F w { 0% ~'})  x PSL 2 F, 

where PSL2F acts naturally on F u {oo} and fixes oo'. 
In particular, one has Alt(Fu {oo, ~'})~< H ,  + < 17.. 

These results show that rather large subgroups of the groups of projectiv- 
ities of the classical symplectic quadrangle survive as subgroups of 17 and 17,; 
this is due to the fact that the automorphism group remains rather large, cf. 
Knarr [12, 1.3]. Furthermore, these results support a conyecture of Knarr 
[12] which says that in every finite non-classical generalized quadrangle, the 
group of even projectivities should contain the alternating group. 

Now we prepare the proofs of 3.3, 3.4. 

(3.5) LEMMA. II = H +. 
Proof. Take distinct special lines Lo, L1, L 2 ~ ~f ' s \ , ,~  in some affine subplane 

of AG3 F. Any line meeting L 0 and L~ also meets L2, hence 
[Lo, L1, L2, Lo] = 1, which implies H = 17 +. []  

(3.6) LEMMA. AGL~ F ~< 17. 
Proof. We introduce coordinates in W(F) <) = W(F) (s> as in (1.5). Thus 

s =F(1,0,0,0)  and s~=F 3 x {0}. Let (a,b,c)=F(a,b,c, 1)~P (s) = P\s  ~ denote 
an affine point. Then the absolute lines through (a, b, c) are given as sets 
(a, b, c) + F(b 7 -  tic, fl, 7), where (fl, 7) ~ rE\{( 0, 0)}. The unique special line 
through (a, b, c) is (a, b, c) + F(1, 0, 0). 

The special lines X-- (0 ,0 ,  1)+F(1,0,0), M=(O,O,m)+F(1,0,O), 
S = F(1,13, 0), B = (0, b, 0) + F(1, 0, 0) with m ~ {0, 1} and b ~ 0 are mutually 
disjoint. Furthermore, the absolute line A = F(0, 1, 0) is disjoint from X and 
M. 

Let x ~ F. We compute (x, 0, 1) tx'al = (0, x, 0), (0, x, 0) ta'ul =(rex, 0, m), and 
(mx, 0, m) tu'xj = (rex, 0, 1). On the other hand, (x, 0, 1) tx'Bl = (x + b, b, 0), 
(x + b, b, 0) tB'N1 = (x + b, 0, 0), and (x + b, 0, 0) tN'xl = (x + b, 0, 1). 

These transformations generate AGL~ F. []  

(3.7) LEMMA. Symnn(F ) ~< H. 
Proof. We use the same coordinatization as in the previous lemma. 
The absolute lines L = F(0,0, 1) and M=(1 ,0 ,0 )+F(0 ,  1, 1) are disjoint, 

and (O,O,x)eL is joined to (1, - x  -1, - x - 1 ) e M  by an absolute line for 
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x # 0, whereas (0, 0, 0) and (1, 0, 0) are joined by a special line. This means that 
(0, O, x) tz'~q =(1, x', x') with x' = - x -  1 for x # 0, and 0' = 0. Similarly, with the 
special line N = (0, - 1, 0) + F(1, 0, 0) we have (1, x, x) tM'N'L] = 
(x + 1, - 1, 0) tN'L] = (0, 0, x + 1) for all x ~ F. Hence tr = IL, M, N, L] satisfies 
(0, 0, x)" = (0, 0, 1 + x') for all x e F. The permutation x ~ 1 + x': F --, F 
exchanges 0 and 1, and has cycles of length 3 on F\{0, 1}. Thus tr 3 is a 
transposition, and the assertion follows with (3.1). []  

(3.8) LEMMA. H ~< (Symnn(F u { ~} )  >,a PGL2 F)~o. 
Proof. It is sufficient to show that any perspectivity I-L, M] agrees with 

some projective collineation of the surrounding projective space PGa F on all 
but finitely many points. 

Let L be an absolute line, i.e. L ~ .o6f~\~s. Let M be another line, absolute or 
special, which is disjoint from L. Then IL n M~I ~< 1. If x ~ L \ M  ~ is an affine 
point, then M ~ x ~, hence x ' =  x~c~M is a point in x ~. Furthermore, 
x x ' ~ . ~ \ ~ s ,  in view of sq~x ~, hence xtr"Ml=x'=x~c~M. The mapping 

x ~ x ~ c~ M is induced by a projective collineation of PGa F. 
It remains to consider two special lines L, M e ~ \ . ~ .  They span a 

projective plane p~ in PG3 F. Let x e L  and x ' =  x [L'ul. Then xx'=(xx ')  ~ 
contains (p~)~ = p, hence x t ' 'm = x' = xp n M. Thus IL, M] is a perspectivity of 
the projective plane p~ ~ PG 2 F. []  

P R O O F  O F  T H E O R E M  (3.3). The assertion follows from (3.5) and (3.7) in 
the finite case. Now let F be infinite. The group H contains 

AGL1 F = ( P G L 2 F L o  and Symri,(F)=Symn,(Fu{oo})® by (3.6) and (3.7), 

respectively. 
Take tr ~ I1 as in the proof of (3.7) and assume that o-E Symfln F ~ AGLt F. 

Then there exists m ~ F\{0} such that x ~ -  y ' =  ( x - y )m ,  i.e. mxy = 1, for all but 
finitely many x, y e F, a contradiction. 

In view of (3.8), the assertion follows from the following lemma. []  

(3.9) LEMMA. Let X be infinite and let S = Syrnnn(X ). I f  P is a primitive 
subgroup of  Sym(X) with P c~S = 1, then SxPx is a maximal subgroup of (SP)x 

for every x ~ X.  
Proof. Let Y = 2 x / ~  be the quotient of the power set 2 x, where A ,-~ B 

means that the symmetric difference A + B = (A w B)\(A n B) is finite (in other 
words, Y is the quotient of the group (2 x, + )  modulo the subgroup consisting 
of all finite subsets of X). Then S is the kernel of the natural action q~ of 
Sym(X) on Y. Let x ~ X. We claim that ¢p(P) = q~((SP)x); indeed, ~o(p) = (p(sp) for 
p s P, s e S, and we can choose s such that x sp = x. 

By primitivity, P~ is maximal in P, and ~o(P~) = ~o(P) implies P ~ SP~ and 
P = SP~c~P = (SnP)P~ = P~, a contradiction. Hence tp(Px) is maximal in 
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go(P) = go((SP)x). Since Sx is the kernel of go restricted to (SP)x, we infer that 
SxP~ is maximal in (SP)x. [] 

Now we examine the dual groups H ,  and H+. The points and lines of the 
dual quadrangle will be viewed as lines and points, respectively, of the slanted 
symplectic quadrangle. 

(3.10) LEMMA. Symfin(Fu {o% oo'}) ~< l 'I, .  
Proof. Let p, q, r ~ p<s> be distinct points which lie on a non-absolute line 

L~ LP\~-~e s. Then the projectivity [p, q, r, p] of W(F) dual is the identity (dualize 
the proof of (3.5)). 

We claim that the projectivity a = [p, q, r, p] of W(F) (s>dual is a trans- 
position; then the assertion follows with (3.1). Indeed, using the point 
t = L ~ c~ (L, s), we compute 

(ps) ° = (qt) [~'''pl = (rs) tr'pl --- pt, 

because the lines ps, qt intersect in a point of (L, s ) \ s  ~, as well as the lines qt, 

rs and rs, pt. If X v~ ps, pt is a line through p, then X" = X as in the classical 
quadrangle W(F) d~1. Hence tr is the transposition which exchanges ps and pt. 

[] 

(3.11) COROLLARY. Alt(Fu {~ ,  ~'}) ~< H+. 

PROOF OF THEOREM (3.4). Take two points p, q e P  <~> which are not 
joined. Then p, q, s span a projective plane in PGa F, and t = (p, q, s) n p~ n q~ 
is a point. The perspectivity [p, q] of W(F) (s>du~l agrees on all lines X ~ ps, pt 

through p with the corresponding perspectivity ct of the classical quadrangle 
W(F) du~l, and px [p'~l = qs and ps tp'q~ = qx. Thus [p, q] differs by a transposition 
from ~, if we extend ~ by defining (ps)~=ps. As a consequence, 
H + ~< Alt(Fw {~,  oo'})PSL 2 F and I I ,  ~< Syrnnu(Fu {o% ~'})PSL 2 F. Since 
PSL2 F is contained in the alternating group for finite fields F with IF[ > 2, 
the assertions for the finite case follow. 

Let F be infinite. The symplectic group PSpaF is generated by 
the symplectic transvections with centers in P \ s  ~. On pencils of absolute 
lines, this group PSp4F, and (PSp4F), as well, induce the group PSL 2 F 
of even projectivities of W(F) d~l, see (3.2) and Knarr [12, 1.3, 2.1]. 
Consider tr e(PSp4 F)s with center c e P \ s  ~. Let p e P \ s  ~. We find 
x ~ P \ ( s~up~uc~upsucs ) ,  as F is infinite. The proof in Knarr [12, 1.3] shows 
that the restriction of a to the pencil of absolute lines through p coincides 
with the even projectivity [p, x, c, x ", p']  of W(F) dual. This even projectivity 
differs from the even projectivity [p, x, c, x ", p']  of W(F) <) d ~  by an element of 
Alt(Fw{ov, ~'}). From (3.11) we conclude that PSL 2 F ~ H ,  +. [] 

In order to formulate an (anti)topological application, we recall that a 
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topological quadrangle is a generalized quadrangle Q =(P,  La, e) with non- 
discrete Hausdorff topologies on P and on ~ such that the geometric 
operations in Q are continuous. This definition implies that all perspectivities 
and all projectivities are homeomorphisms, cf. [10, 2.2]. 

(3.12) T H E O R E M .  There are no (non-discrete Hausdorff) topologies on P<> 
and ~<) which render W(F) <> a topological quadrangle. 

Proof. Assume the  contrary. Then each line L~Ae <~ is a non-discrete 
Hausdorff space, cf. [10, 2.8], hence every cofinite subset of L is dense in L. By 
(3.7) there are non-trivial homeomorphisms of L onto itself which fix all but 
finitely many points of L, a contradiction. []  

According to Szambien [23, Prop. 1], there exist projective planes (i.e. 
generalized triangles) which cannot be made into (non-discrete Hausdorff) 
topological projective planes; the construction of these planes is more difficult 
and less direct. 

4. APPENDIX 

In this appendix we prove by a group-theoretic argument that W(Fa)O is 
isomorphic to the orthogonal quadrangle Qs(D:2), cf. Payne and Thas [18, 
5.3.2]. This configuration of 27 points and 45 lines has a venerable history: it 
is dual to the 27 lines (and their intersection points) on a general cubic 
surface, and its collineation group is isomorphic to the Weyl group E 6, see 
Hartshorne [11, pp. 401-4051 Mumford [14, §8D], Coxeter [3], Miller et al. 
E13, Ch. XIX]; cf. also Payne and Thas [18, 6.1], Freudenthal E8] and Frame 
[7]. 

The standard hermitian form ~ia= 1 xixi on (B:,) a can be considered as a non- 
degenerate quadratic form o n  (~2) 6 of Witt index 2 (it is also a cubic form over 
n:,); a non-zero vector (xl, x2, xa)~ (~:4) a is singular if and only if precisely one 
coordinate xi is O. The quadrangle Qs(U:2) consists of the totally isotropic 
subspaces of this quadratic form on (R:2) 6. 

The group A = SUaR:4 of order 23. 33 acts faithfully as a collineation group 
of Qs([]:2); the Sylow 2-subgroups of A are quaternion groups.  

(4.1) LEMMA. The quadrangle Qs(F2) is represented by A in the sense of [20]: 
the group A is transitive on the points of Qs([F2), and it has two orbits on the 
lines. The stabilizer Ap of a point p is a Sylow 2-subgroup of A, and Ap fixes a 
unique line L through p and is transitive on the other lines through p. 
Furthermore AL = Ap x Z is the direct product of A n and the center Z of A, and 
if M is one of the other lines through p, then AM is isomorphic to the symmetric 
group $3 of degree 3, and Au n A n is the center of An. 
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Proof. By Witt's lemma, and by adjusting the determinant, A is transitive 
on the 27 points and on the pairs (x, y) of 0:,-independent vectors x, y such 
that x, y, x + y are isotropic. Thus the stabilizers of points are precisely the 
Sylow 2-subgroups of A. The stabilizer of a point p =  0:2x fixes the line 
L = 0:4x, and A L = AxZ = ApZ, as Z =  0:* is transitive on L\{0}. We have 
M={x , y , x+y ,O}  with x,y as above, hence AM induces $3 on M, and 
Ax,y = 1, as x, y are 0:4-independent. Finally A M n Ap has order 2, hence it 
coincides with the center of A r [] 

Now we consider groups over 0: 3. Let X be the (normal) Sylow 2-subgroup 
of SL20: 3. We claim that the group 

F o =  w A A t E ,  v,w~0: 2,z~0: 3 , w = A  - 1  1 vt r 

z v 1 

is isomorphic to A. Indeed, both F o and A have normal Sylow 3-subgroups E 
which are isomorphic (they are extra-special groups of order 27 and exponent 
3, cf. Gorenstein I9, 5.5.1, p. 203]). Furthermore the Sylow 2-subgroups are 
quaternion groups X of order 8 which act faithfully on the center factor 
groups E/Z(E). We infer that all semidirect products E w E  with these 
properties are isomorphic, because Aut(E/Z(E)) ~ GL20:3 contains only one 
copy of X (note that all six elements of order 4 in GL20:3 are contained in X). 
Thus F o ~ A. 

It is easy to verify that Fo represents W(0:3) •, and that aU assertions in (4.1) 
hold for (Fo, W(0:3) O) instead of (A, Q5(0:2)). For each Sylow 2-subgroup X of 
Fo ---- A, the copies of $3 containing the center of Y. are conjugate under Y.. 
Therefore every isomorphism A ~ F  o maps the representing triplet 
(A, Ap, {AL, AM}) for Q5(0:2) to a representing triplet for W(0:3) O, and from 
1'20], (2), we obtain an isomorphism ~p: Q5(0:2)---~ W(0:3) <3. 

Note that F o acts faithfully on W(0:3) <>, inducing a subgroup of index 6 in 
the group F defined in Section 1 (with F =  0:3). We remark that the group 
FU30:,,= U3F,><Aut(0:,) contains A = SU30: , as a subgroup of index 6 and 
satisfies the transitivity assumptions in (4.1), hence F=~o-I(FU3 0:,)9 is 
isomorphic to FU3 0:4. However, it seemed easier to work with the smaller 
groups A and F o. 
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