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Matching rules for quasicrystals: 
the composition-decomposition method 

Franz Gahler 
Theoretical Physics, University of Geneva, 24, quai Ernest Ansennet, CH-1211 Geneva 4, Switzerland 

A general method is presented which proves that an appropriately chosen set of matching rules for a QuaSiperiodic tiling 
enforces Quasiperiodicity. This method, which is based on self-similarity, is formulated in general terms to make it applicable 
to many different situations. The method is then illustrated with two examples, one of which is a new set of matching rules 
for a dodecagonal tiling. 

1. Introduction 

With the discovery of more and more thenno­
dynamically stable, perfect quasicrystal systems it 
has become unlikely that the fonnation of qua­
sicrystals is due to a purely en tropic effect, as had 
been assumed in random tilings models [1]. At 
least for some of the recently discovered F-type 
icosahedral quasicrystals it seems necessary to 
include, besides entropic effects, also an ener­
getic mechanism favouring quasiperiodic arrange­
ments of atoms in order to understand the high 
perfection of these quasicrystals. The simplest 
models with interactions favouring quasiperiodic­
ity are tiling models, in which the atoms are 
assumed to fonn stable clusters, represented by 
tiles, and the residual interactions between the 
clusters are such that they favour a quasiperiodic 
arrangement of the clusters. In order that these 
inter-cluster interactions be effective, they must 
be sufficiently strong, which is in contrast to 
random tiling models, where one assumes that 
they are very weak so that they can be neglected 
at high temperature. 

In the following, we shall deal only with tilings 

Cp"espondence to: Or F. Gahler, Theoretical Physics, Univer­
siI}' of Geneva, 24, Quai Ernest Ansermet, CH-1211 Geneva 4, 
Switzerland. E-mail: gaehler@sc2a.unige.ch_ 

and interactions between tiles ('matching rules')_ 
We shall present a general method to prove that 
a given set of local interactions or mlltching rules 
enforces a quasi periodic ground state- Whether 
or not such a quasiperiodic ground state remains 
stable at positive temperature is still under de­
bate and will not be further discussed- Our proof 
is based on the self-similarity present in all tilings 
applied to the description of quasicrystals so far_ 
The various arguments of our proof are not new; 
they have been used in different combinations by 
other authors as well, e.g_ by De Bruijn [2] for the 
Penrose tiling. Rather, the aim of this paper is to 
put together all the necessary ingredients of the 
proof and to state them in general terms, in order 
to provide a method that works in many cases_ 
Due to lack of space, many of our arguments can 
only be sketched, and we must refer to a future 
publication for further details_ 

The remainder of the paper is organised as 
iollows_ In section 2, the strategy of the proof is 
described in general tenns, providing all the nec­
essary ingredients. The proof is then illustrated 
with two examples, in section 3 with Ammann's 
well known matching rules for the octagonal 
square-rhombus-tiling, and in section 4 with a 
new set of matching rules for a dodecagonal 
tiling. In section 5 we conclude with some final 
remarks. 
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2. The general procedure 

In this section we describe the general strategy 
of the proof. Suppose that a set of prototiles is 
given, together with appropriate local rules for 
joining these prototiles. Typically, these rules are 
expressed in tenns of markings of the prototiles 
that must match. Since we are going to use the 
self-similarity present in the tilings admitted by 
the matching rules, this self-similarity must be 
defined in tenns of the prototiles. We assume 
that a decomposition rule is given, according to 
which each prototile is disected in a unique way 
into similar tiles smaller by a factor A. These 
smaller tiles carry again the markings defining the 
matching rules. The decomposition must respect 
the matching rules: tiles that match must have 
decompositions that match. The decomposition 
rule allows us to construct tilings covering larger 
and larger areas, eventually even the whole plane, 
by repeatedly applying the decomposition step 
and enlarging the resulting tiling each time by a 
factor A, to get back to the original tile size. 

Let us now explore the set of all tilings admit­
ted by the matching rules. We do this by a three 
step procedure. The first step has been described 
in detail in ref. [3] and serves to prove that the 
matching rules enforce non-periodicity. We note 
that every global tiling admitted by the matching 
rules has a Unique decomposition which is again 
admitted by the matching rules. The idea is to 
prove that there exists a unique inverse opera­
tion, called composition. That is, we must prove 
that for each tiling there exists a unique tiling 
larger by a factor A of which the current tiling is 
the decomposition. For that, two things must be 
shown, namely: (i) given any tiling admitted by 
the matching rules, each of its tiles can be com­
posed, together with part of its neighbourhood, to 
a unique 'supertile'. This supertile may depend 
on the neighbourhood. but the uniqueness makes 
sure that no contradiction arises when the super­
tiles for different tiles are constructed. (ij) The 
markings which the supertiles inherit from the 
small tiles must enforce matching rules that are 
equivalent to those of the corresponding tile of 
the original size. If these two points are satisfied 
we can show that the matching rules enforce 

non-periodicity. To see this enforcement, suppose 
that we have a tiling left invariant by some trans­
lation. We can now apply the composition proce­
dure to this tiling. Due to the Uniqueness of 
composition, no information is lost in this pro­
cess. With each composition step, the perioo 
length, expressed in the scale of the current tile 
size, shrinks by a factor A, until it is so small that 
peridodicity can be ruled out by inspection of all 
possible local neighbourhoods. 

The procedure described above is a standard 
method [3] to prove that a set of matching rules 
enforces non-periodicity. So far, however, we have 
not learned anything on the possible quasiperiod­
icity of the tilings admitted by the matching rules. 
Therefore, in a second step, we shall describe 
how to construct such tiJings, including the mark­
ings, by a method that guarantees their quasiperi· 
odicity, namely the projection method (4). In the 
projection method, the vertices of the tiling are 
projections of certain nodes of a higher dimen­
sional lattice onto a subspace, called physical 
space. All those lattice nodes are projected which 
fall into an appropriate window region in the 
orthogonal complement of physical space. Rules 
are set for joining vertices to form tiles, and how 
tiles, bonds or vertices have to be marked. In 
order to maintain quasi periodicity, these rules 
may depend only on where in the window the 
corresponding objects fall. There are uncountably 
many different tilings obtained in this way, de­
pending on the position of the window relative to 
the lattice. If we can find such a projection 
method which produces tHings with the correct 
and correctly decorated tiles, such that the deco­
rations of neighbouring tiles match, we have an 
infinity of quasiperiodic tilings admitted by the 
matching rules. 

In a third step, we have to show that there are 
no other tilings admitted by the matching rules. 
We shall again use the self-similarity, which we 
therefore must define also for the projection 
tilings. This can be done in a global way [5). Each 
tiling has a unique deflation and inflation, as 
decomposition and composition are called in this 
context. Both the deflation and the inflation of a 
tiling get their markings from the projection 
method. All we have to do is to check that 
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decomposition and deflation on the one hand and 
composition and inflation on the other hand ex­
actly agree. Given any tiling admitted by the 
matching rules, we can now construct a sequence 
of quasiperiodic projection tilings which agree 
with it on larger and larger areas. To show that 
there exists a projection tiling which agrees with 
the given tiling in a ball of radius R, we repeat­
edly apply the composition procedure to it (n 
times), until the original ball of radius R is con­
tained in some vertex neighbourhood of the com­
posed tiling. Then we take a projection tiling 
containing the same vertex neighbourhood, and 
apply to both tHings n times the decomposition 
and deflation procedure, respectively, which re­
produces the original tiling, plus a projection 
tiling which agrees with it on a ball of radius R. 
In this way, any tiling admitted by the matching 
rules can be obtained as a limit of projection 
tHings. It can be shown that these limits are 
projection tHings themselves, so that we can prove 
that actually all tHings admitted by the matching 
rules are quasiperiodic projection tilings. 

3. Ammannts octagonal tiling 

As a first example we consider Ammann's 
matching rules for the octagonal tiling [3,6]. In 
fig. 1, a piece of such a tiling is shown, and one 
can see the constituant tiles with their markings. 
Underlaid in gray are the markings of its compo­
sition. The matching rules demand that the half­
circles on the edges match, and that the markings 
at the vertices form arrows. Socolar [6] has al­
ready proved that these rules enforce quasiperi· 
odicity, using the concept of Ammann bars. We 
present here an independent proof, which seems 
somewhat more transparent. 

The first step in our procedure has already 
been done in ref. [3], so that we will not repeat it 
here. We directly pass to step two and present 
how the markings are obtained in the projection 
method. The window region is an octagon, as 
shown in fig. 2, and the markings are chosen as 
follows: the octagon is divided by four lines 
through its center which are perpendicular to the 
possible bonds. The orientation of a bond, indi-

Fig. 1. A piece of Ammann's octagonal tiling with markings 
defining the matching rules. Its composition is underlaid in 

gray. 

cated by the half-circle, is chosen according to 
whether the mid-point of the bond is left or right 
of the corresponding line. Furthermore, the oc­
tagon is divided into eight sectors, such as the 
shaded one. To each sector there corresponds an 
orientation of the arrow on a vertex. It is easy to 
verify that with such an assignment all the tiles 
are correctly decorated, and by construction the 
decorations of neighbouring tiles most match. It 
is also straightforward to check that deflation and 
inflation for the projection tiling agree with corn-

Fig. 2. Subdivision of the window region for Ammann's octag· 
onal tiling. 
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Fig. 3. A piece of a dodecagonal tiling with markings defining 
a new set of matching rules. Its composition is underlaid in 

gray. 

position and decomposition as given by Ammann 
[3], so that we can apply the reasoning of step 
three. The only subtle point is that there are so 
called singular (projection) tilings, for which there 
are vertices or bond mid-points falling on the 
boundaries between the different subregions of 
the window, so that the decoration is not unique. 
This ambiguity can be resolved by an infinitesimal 
translation of all vertices, although not in a unique 
way, so that in such a case we obtain several 
different tilings, all with a valid decoration. These 
singular tilings can, however, be obtained as lim­
its of regular tilings. 

4. A new dodecagonalliling 

As a second example we present a new set of 
matching rules for a dodecagonal tiling, a piece 
of which is shown in fig. 3. The tiling consists of 
squares, triangles and threefold symmetric 
hexagons. The markings defining the matching 
rules and the decomposition rules are indicated 
in fig. 3. The triangle may have two different 
markings, and each tile comes in a left handed 
and in a right-handed version. The matching rules 
demand that arrows on edges match, and that the 

markings at the vertices form a 'cross'. Note that 
there are left crosses and right crosses. With 
arguments similar to those in rer. [3], it is not very 
difficult to show that a unique composition exists, 
but we do not have the space to go into details. 
The essential point is that a change of scale by 

A = V2 +.f3 is chosen [51. and not A = 2 + If, 
which simplifies the task considerably. The pro­
jection method to construct this tiling has been 
given in ref. [7]. Its window region is a do­
decagon, shown in fig. 4 with the subdivisions 
corresponding to the different markings. As with 
Ammann's tiling, the lines decide on the orienta­
tion of the bonds, and the shaded sector corre­
sponds to one orientation of the cross. The line 
which divides the shaded sector separates regions 
corresponding to left crosses and right crosses of 
a given orientation. It is straigthforward to check 
that these assignments lead to the markings and 
decomposition rules shown in fig. 3, so that we 
can apply the standard reasoning of section 2. 
Singular tilings are dealt with as in section 3. The 
tiling presented here is closely related to another 
dodecagonal tiling, given by Socolar [6]. The un­
decorated versions of these tilings can be locally 
derived from each other [8]. The same happens to 
be true for the decorated tilings, although our 
matching rules have been found independently. 
By superimposing Socolar's Ammann bars on our 
tiling it is not difficult to see that they impose 

Fig. 4. Subdivision of the window region for the dodecagonal 
tiling. 
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matching rules equivalent to ours, which provides 
a alternate proof for Socolar's matching rules [6]. 

5. Concluding remarks 

We have presented a general method to prove 
that a set of matching rules enforces quasiperiod­
icity. This method can work, of course, only if the 
matching rules are correctly chosen from the very 
beginning. Unfortunately, we do not have a 
method to find the correct matching rules for a 
given tiling. 
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