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Abstract. The process of phase-induced self-diffusion has been investigated for the three­
dimensional Ammann-Kramer-Penrose tiling. This happens along the lines of Kalugin and Katz 
for the octagonal planar tiling. lt is found that for any permutntion within two subsets of the ten 
vertices in a triacontahedral cage there is a corresponding loop in phase space. There are other 
loops by which vertices are exchanged between interlocked triacontahedral cages. Along chains 
of such triacontahedral cages, percolative diffusion is possible. This self-diffusion, however, 
occurs along two separated sublattices. Thus it is a two-component diffusion. 

1. Introduction 

Quasicrystals carry the additional degree of freedom of the 'phase·, as do incommensurably 
modulated crystals. In the latter the phase describes the relative position of the periodic basic 
structure and the incommensurate modulation wave. A change of phase in a quasiperiodic 
tiling causes a rearrangement of the tiles due to flips of selected vertices. If a tiling is 
constructed by the projection method or by the method of atomic surfaces, the phase denotes 
the position of the strip or the intersection point of parallel space E in orthogonal space E 1

, 

respectively. In a seminal paper Frenkel et al [1] have shown for the octagonal Ammann­
Beenker tiling [2] that, if certain closed loops are traversed by the phase in E', the tiling 
returns to its original form, but with permutated atomic positions. These permutations 
have been viewed by Katz and Kalugin [3} as elementary steps in an atomic transport 
process, which at high temperatures drastically enhance the self-diffusivity. Hints for this 
phenomenon are coming from deformation experiments on quasicrystals: at about 80% of 
the absolute melting temperature the mechanical behaviour of quasicrystals changes from 
brittleness to ductility [ 4-6}. EvidentJy, at high temperatures plastic deformation occurs 
in quasicrystals through dislocation motion [7}. However, as dislocations are partials in 
quasicrystals, they drag along a stacking fault, i.e. a wall where the local phase is jumping. 
Hence the dislocations are greatly impeded in their mobility, unless the stacking fault is 
able to dissolve through seJf-diffusion. 

In this paper we study a possible mechanism for the self-diffusion process in the 
icosahedral Ammann-Kramer-Penrose tiling, which is a model for icosahedral quasicrystals 
[8]. We first repeat the geometry of the elementary atomic transport in the octagonal tiling 
and generalize it to the three-dimensional case. For good visualization the projection method 
and the method of atomic surfaces are employed. 
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2. Self-diffusion in the octagonal tiling 

In the standard planar octagonal Ammann-Beenker tiling {2}, the acceptance domain is a 
regular octagon. The atomic surfaces consist of the same octagons, attached to the lattice 
points of a four-dimensional cubic lattice. They are oriented parallel toE, and are connected 
by 'steps' parallel to E'. 

A frequent subpattern in E is an octagonal cage, containing three vertices, such that 
the octagon is divided into two squares and four 45°-rhombi (figure I). The three vertices 
belong to a small octagon inside the cage. In the canonical mapping <p from E to E'' 

zd 
n: / ~tr' 

/ I -1~ 
E cp = n: o rr E' 

2 1 
(b) 

3 

Figure 1. Decompo~ition of tht! oc:lagon in E (a) and its dual in E' (b) . 

with d = 4, the two concentric octagons in E ace also mapped into two concentric octagons 
in E', but with the internal points becoming external ones and vice versa. In figure I the 
set M of the vertices of the decomposed octagon in E and the dual set M' = rp(M) in E' 
are depicted (concerning the basis vectors, cf [9)). For the sake of clarity the bonds of the 
vertices in E are also drawn in E'. The acceptance domain in E' is marked by thin lines. 
The images of three internal vertices in E are lying arbitrarily closet to the boundary of the 
acceptance domain in E 1

• They are occupying adjacent positions, so that M' can be moved 
into two linearly independ3nt directions without leaving the acceptance domain. This is a 
necessary and sufficient condition for the occurrence of the corresponding subpattern M in 
a perfect tiling. By an infinitesimal change of the phase one of these marginal points can 
leave the acceptance domain, and another one, separated by three edges. enters. Hence in 
E a flip does occur for one of the internal vertices, whereas the vertices of the exterior 
cage remain untouched (figure 2). As can be seen in E and in E', two of the three internal 
vertices (I and 3) are able to flip. 

In the representation of atomic surfaces, the octagonal surfaces belonging to the eight 
internal positions of E are arranged as in figure 3, sharing a common vertex. The loop 

t In the figures, the points that are marked on the boundary are supposed to lie lnside the acceptance domain 
within ::m E·neighbourhood of its boundary. 
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Figure 2. The octagon in E (a) and its dual inE' (b) after one flip . 

Figure 3. Eight atomic surfaces, befonging to the eight internal 
vertices of the octagonal cage. 

encircling this vertex, denoted by S 1, is responsible for the elementary transport process. 
A single atomic octagon in E ' corresponds to one of the vertices inside the octagonal 

cage. It cuts a sector o( 135° out of the loop st. We denote this sector •influence domain 
of the vertex', because the vertex is occupied in E as long as the phase is contained in 
this domain. The atomic octagons altogether cut out eight sectors of 45°. Each sector is 
being shared by three influence domains, belonging to the three internal vertices in E . If 
the phase crosses the border of a sector, it changes from one domain to another, whereupon 
a flip happens in the octagonal cage. After the loop has been traversed, eight flips have 
occurred, taking the subpattern back to its original form, but permuting three atoms. 

This behaviour is due to the topological structure of the phase space, which can be 
described in terms of covering spaces. (For a treatment of covering spaces, cf [10, 11].) 
Each of the eight atomic octagons shares two edges with two other octagons. If these edges 
are identified, a three-sheeted local covering of E' results, with the central vertex. becoming 
a branch point. The covering is sketched in figure 4, where the connection of the upper and 
rower atomic octagon is omitted for the sake of clarity. It consists of eight patches which, 
projected to the base space, locally yield a decomposition of the latter into eight sectors. 
The eight patches correspond to the eight internaJ positions of an octagon in E, and the eight 
sectors to the eight possible decompositions of an octagon. The fibre p-1 (Xpha~) consists 
of three points, corresponding to the three internal vertices of an octagon in the tiling. 
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P-hp~we) fibre 

lp 
X ph:ls~ base point 

Figure 4. Three-sheeted covering of the neighbourhood of a vertex in E' and its projection to 
the base space. 

Figure S. 1bree-sheeted covering of S 1• 

The restriction of the covering to S1 contains all the local information of the covering 
near a branch point and is depicted schematically in figure 5, where again the open ends 
have to be identified. 

If Xphase travels along a loop encircling the branch point, the result is a permutation 
of the internal vertices of an octagon. as described in [ 1]. We characterize the loops by 
elements of the fundamental group rr1 (S1, x0) = Z of the circle. The integer assigned to 
each loop is the winding number. We can construct a homomorphism f from rr, (S 1, xo) 
to the permutation group of three objects, s3. This homomorphism is given explicitly by 

f : n't (S1
• xo) 1-+ s3 (I) 

Z 3 n 1--+ f(n) = CTn E S3 

with u = ( 123) e S3 • 

(2) 

(3) 

The fact that a loop of winding number 1 does lead to a 3-cycle in S3 can also be seen 
by considering the eight flips in E' (cf figures l(b) and 2(b), where the first flip is shown). 
The representation of the flips according to figures l(b) and 2(b) will be especially helpful 
for the icosahedral case. 

In figure 6 two interlocked octagonal cages in E are displayed, their internal octagons 
being attached and sharing two edges. 

Tbe 14 possible positions in E correspond to 14 atomic octagons in E', which are 
grouped around two vertices, separated by a basis vector. The local neighbourhood of these 
two vertices can be tested by two connected circles S1#S1 ::::: S1' sketched in figure 7. 

In analogy with the above example, a five-sheeted covering of S1 results, consisting 
of 14 patches, the projection of which yields a decomposition of the base space into 14 
sectors. Therefore there are 14 possibilities of occupying five of the 14 internal positions. 
Encircling both vertices is equivalent to traversing a loop around one vertex first, then 
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Figure 6. Two interlocked octagons with internal Figure 7. 14 atomic surfaces arranged arClund two 
octagons being attached. vertices. 

moving to the secondl encircling it and returning. In this process a separate permutation of 
three atoms occurs in each internal octagon and, as a result, a cyclic permutation of the five 
vertices takes place in the double cage. In [ 12] it is shown how the ring can be extended 
to infinite size up to a percolation limit. We are now going to extend these considerations 
to a three-dimensional quasicrystal. 

3. Remarks on the icosahed.-al Ammann-Kramer-Penrose pattern 

In the icosahedral quasicrystal as defined in [13], the acceptance domain is a triacontahedron, 
a polyhedron with 12 five-fold and 20 three-fold vertices, which displays icosahedral 
symmetry. This triacontahedron is the convex hull of the six icosahedral vectors e; in 
E'. In physical space E, the corresponding vectors et analogously form a triacontahedral 
cage, which occurs frequently in the icosahedral tiling. In the inner part of this cage 
32 possible vertex positions are located, ten of which are occupied in a perfect tiling. 
The triacontahedron is divided into ten prolate and ten oblate Ammann rhombohedra, 
the elementary tiles of the icosahedral quasicrystal. It is worth mentioning that this 
decomposition has already been realized in the thirties [14]. ln order to visualize the 
decomposition, we consider the canonical mapping r:p from E to E', as shown above with 
d = 6. It maps the 32 vertices of the triacontahedron in E into the 32 internal vertices 
of the triacontahedron in E' and vice versa. A subpattern M occurs in the perfect tiling 
if its dual M' = q;(M) can be moved within the acceptance domain into three linearly 
independent directions. 

In figure 8 we are looking at the acceptance domain along a two-, three- and five­
fold axis, respectively. The ten internal vertices in E are mapped onto ten vertices of the 
triacontahedron in E'; they are marked by a circle. The dual pattern can be moved within the 
acceptance domain, and therefore the corresponding decomposition of the triacontahedron 
in E occurs with a finite frequency. The ten vertices form two disjoint sets: three of them 
belong to the 12 five-fold vertices and seven to the 20 three-fold ones of the triacontahedron 
in E'. 

The decomposition does not display any symmetry, so that, in a perfect tiling, there are 
120 possibilities of occupying 10 of the 32 vertices inside a triacontahedral cage. They form 
two orbits under the proper icosahedral point-group Y. which are connected by a single flip. 
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Figure 8. Occupied vertices of the triacontahedron in E'. 

There are 40 additional possibilities of arranging the 20 Ammann rhombohedra inside the 
triacontahedral cage, but these do not occur in a perfect tiling (cf Li.ick in {15]}. 

4. Self~diffusion in the icosahedral Ammann-Kramer-Penrose pattern 

4.1. A single triacontahedral cage 

In the representation of atomic surfaces, 32 atomic triacontahedra belonging to the internal 
positions of the triacontahedral cage in E are attached to a central point (compare with 
figure 3 of the octagonal case). As, for the moment, our interest is directed towards the local 
properties of the extended atomic surface, we surround the central point by a small sphere S2• 

12 triacontahedra, which are attached to the central point by a five-fold vertex, cut spherical 
pentagons out of this sphere; 20 remaining ones, being attached by a three-fold vertex, are 
spherical triangles. Each of these 32 patches is an influence domain of one of the internal 
positions. Altogether they form a ten-sheeted covering of S2 , since 10 of the 32 internal 
vertices of the triacontahedron are occupied for any generic phase X phase E S2. Projected to 
the base space, the 32 patches do overlap and yield a decomposition of S2 into 120 spherical 
triangles. The resulting graph on S2 is equivalent to that of a polytope with 62 vertices, 180 
edges and 120 triangular faces, the dual of a truncated icosidodecahedron. The 62 vertices 
form three orbits under y, 12 of them have five-fold symmetry, 20 have three-fold and the 
remaining 30 have two-fold symmetry. Each of the 120 faces on the sphere S2 represents 
one arrangement of the ten internal vertices of the triacontahedron in E. If we move X phase 

across a boundary (one of the 180 edges), another decomposition of the triacontahedron is 
obtained, which differs from the initial one by a single flip. (For an illustration of a single 
flip in the tiling space, see I 16} .) Since the faces are triangles, three of the ten internal 
vertices of the triacontahedron are able to Hip. starting from a given configuration. 

In figure 9(a) an elementary flip is depicted in E'. The decagon is the silhouette of 
the acceptance domain along a five-fold axis. On an infinitesimal change of the phase in 
a suitable direction, vertex 1 is moving out of the acceptance domain. The new vertex is 
like the old one, a five-fold vertex:. Examination of the other three possible Hips shows 
that three-fold vertices always remain three-fold ones when being flipped, and so do the 
five-fold ones. As for each generic Xphase E S2, three five-fold vertices and seven three-fold 
vertices are occupied, and since flipping does not change the character of a vertex (five- or 
three-fold), the ten-sheeted covering of S2 contains two disconnected parts: a seven-sheeted 
covering, consisting of 20 triangular patches, and a three-sheeted one, consisting of 12 
pentagonal patches. 
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Figure 9. (a) First and (b) last flip occurring on a loop of Xphase around a branch point. 

One would think that all of the 62 vertices on S2 are branch points. 50 of them, however, 
are merely intersections of edges of patches in the projection to the base space. Only the 
points, where more than two patches touch each other, i.e. the vertices of the patches, are 
branch points of the two coverings. Hence the branch points are just the 12 icosahedral 
vertices on S2, the set of which will be denoted B. Moving the phase through one of these 
branch points will be avoided for the sake of unambiguity. 

If Xpbase is tra\'ersing a loop y in S2\B, a step-by-step substitution of one \'ertex by 
another takes place. A given vertex does not disappear unless Xphase leaves the influence 
domain of the vertex, i.e. a spherical pentagon for a five-fold vertex, and a spherical triangle 
for a three-fold vertex. When Xphase returns to its initial position, the tiling obtains its original 
form, but with pennutated atomic positions. 

Loops y in S2\B with base point x0 can be lifted to the tv.·o coverings and lead to 
automorphisms of the two fibres p31 (xo) and p71 (xo): 

f : rr, (52\B, Xo) t-+ S3 X S7 

y I-+ (/3(y), /?(y)). 

(4) 
(5) 

Figure 9 shows the first and the last flip induced by a loop of Xphase around a branch 
point; vertices marked by a square are the next ones to flip. 

The initial and final positions of the occupied vertices are identical; atoms 1 and 3, 
however, have exchanged their places and so have atoms 2 and 4. Hence a loopy encircling 
a branch point maps to the direct product Of tWO transpositions in S3 X Sr: 

13 ( r) e ( 21 11 
) c s3 

!7Cr) E (2115) c s1. 
(6) 

(7) 

((k~1 , k;2
, ••• , k~;) denote the cycle decomposition of an element in the permutation group 

Sn, ·k1 + ... +.>!, ·k, . A conjugate class is formed by elements of the same cycle structure.) 
Encircling two branch points corresponds to the class,product in S3 X S7. It depends 

on the relative position of the two branch points. which actually describes the permutation 
of the resulting class. This holds equally well for loops surrounding more than two branch 
points: some loops and their corresponding cycles in S3 and S7 are shown in figure 10. 

We now want to prove that all elements in s3 X s7 can be obtained by loops y E 

J'rl (S2 \B' Xo). This amounts to showing that the homomorphism f : 7rl (S2\B. xo) H- s3 X s7 

is surjective. The map f can be divided into two homomorphisms h and h according to 
(5). In a first step we wiJl show that these homomorphisms are surjective, and in a second 
step, that this holds equally for the composed homomorphism f. 



7988 A Riidinger and H·R Trebin 

0 
i 1

1 

21 ls 

1 
3 

1 2 
5 1 

• 

(· ·) 
• 

31 13 2 J 1 1 

2213 31 14 2115 

Figure 10. Loops in S2\B and the corresponding cycles in S3 x S7. 

Figure 11. The 11 generators g; of 7!'! (S2\8, xu). 

The fundamental group 1r1 (S2 \B, xo) is the free group of 11 generators 8i (i = I ... 11), 
which are chosen as indicated in figure 11 (the loop encircling the 12th branch point is the 
sum of the 11 generators). 

Each generator maps to a transposition both in S3 and in S7, which is illustrated in 
figure 12. 

Since a generative base of the symmetric group Sn is formed by n - I consecutive 
transpositions (12), (23), ... , (n -1, n), the sets b(gi) and h(gi) are generative in S3 and 
S7, respectively. Therefore the homomorphisms {3 and h are surjective. 

In order to show that the composed homomorphism f is surjective as well, we first 
remark that two loops in the kernel of h can be found, so that their image under /3 
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Figure 12. Transpositions in S3 and S7, induced by the generators g;. 

provides a generative base in S3 : 

gsgugs E Ker h 

g4g10g1 E Ker h 
h(gsgugs) = (13) 

13(8481087) = (12). 

10 

9 

8 

This result shows that the homomorphism f is surjective, as can be seen as follows. 

7989 

(8) 

(9) 

Take an arbitrary permutation (0'3, 0'7) E s3 X s7. Since h is surjective, Y7 E h-l (0'7) 

can be chosen, which yields f(y7) = (!3(1'7), h(Y7)) = (/3(y,), a7). Because Kerh is 
generative in S3, a loop 'Y3 with /3(y3) = [/3(Y7)]-1cr3 can be composed by elements of 
Kerf7. Then Y7Y3 is a loop which yields the desired permutation (a3, a,): 

f(Y7Y3) = (/3(Y7J13), /3(Y7Y3)) 

= (f3(y-,)f7(y3), /?(Y7)/?(Y3)) 

= (/3(Y7)[/3(y7)r1o-3, a1 Id) 

/(Y7Y3) = (a3, 0"7). 

Thus all permutations in s3 X s7 can be obtained by loops in S2 \B. 

4.2. Two interlocked triacontahedral cages 

(10) 

( 11) 

(12) 

(13) 

Loops of the phase Xphase in the neighbourhood of a vertex in E' have been shown to yield 
all possible permutations within the two sets of internal vertices of a triacontahedral cage. 
In the following, larger loops than the ones treated above will be considered. These lead to 
an exchange of atoms between interlocked triacontahedra. 

The 32 internal positions of a triacontahedral cage form two orbits under Y, namely the 
vertices of an icosahedron and those of a dodecahedron. respectively. Both polyhedra are 
concentric and their edges have the same lengths. 

In the case of two interlocked triacontahedra. the dodecahedron inside one 
triacontahedral cage has five vertices in common with the icosahedron inside the other 
cage; more precisely, a face of the dodecahedron coincides with the 'base-face of the cap' 
of the icosahedron, as depicted in figure 13. (This is the icosahedral analogue to the two 
small octagons in figure 6.) 

Therefore there are 2 x (20 + 12- 5) = 54 internal positions within two interlocked 
triacontahedral cages. In the dual space E', the internal positions of each triacontahedral 
cage are mapped onto a triacontahedron (figure 8). Since ten positions belong to the interior 
of both of the two triacontahedral cages in E, the triacontahedra in E' do intersect along 
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Figure 13. Dodecahedron and attached icosahedron. Figure 14. Internal points inside two interlocked 
triacontahedra. 

Figure 15. S2#S2 with loops on it. 

a decagonal silhouette. Four of these 10 common positions are occupied by vertices (cf 
figure 8). Therefore there remain 2 x 10-4 = 16 internal vertices within the two interlocked 
triacontahedral cages. The positions of these 16 vertices are sketched schematical1y in 
figure 14. the two small circles representing icosahedra, the large ones dodecahedra. 

In the representation of atomic surfaces, it can be calculated how many possibilities of 
occupying the 54 internal positions with 16 vertices occur in a perfect tiling. 

The 54 possible positions in E correspond to 54 atomic triacontahedra. which are 
grouped around two vertices, separated by a basis vector. The local neighbourhood of these 
two vertices can be tested by two connected spheres S2#S2 :::::: S2, which are sketched in 
figure 15. 

Considerations analogous to those of testing one vertex by a sphere S2 yield a graph on 
S2#S2 equivalent to that of a polytope with 122 vertices, 350 edges and 230 faces. There­
fore there are 230 possibilities of occupying 16 of the 54 internal positions in a perf~t 
tiling. On each sphere S2 there are 12 branch points, one of which is eliminated from each 
sphere by constructing the connected sum S2#S2 • Hence there remain 2 x ( 12 - 1) = 22 
branch points on S2#S2, the set of which will be denoted B. Loops in S2#S2 \ B induce 
permutations in S8 x S8• Starting the phase XptJuse on a point of the belt and traversing the 
'belt-loop' Yo (figure 15) yields two transpositions within the four common points, which 
are depicted in figure 16. 

If, in a first step, the phase Xph~ is moved along a loop encircling branch points on only 
one sphere (e.g. Yl in figure 15), the vertices within one triacontahedral cage are permutated; 
vertices which only belonged to one triacontahedral cage may become common vertices of 
both cages. In a second step these vertices can be transferred out of the domain common 
to both cages into the second triacontahedral cage by moving Xpha!.e along a loop around 
branch points on the second sphere (e.g. y2). Thus any vertex of one triacontahedral cage 
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Figure 16. Transposition induced by transversing the 
'belt-loop'. 

can diffuse by elementary flips to the adjacent one. 

4.3. Global view and percolation limit 

Permutations of atomic positions within limited regions have been discussed by restricting 
the covering of the three-dimensional perpendicular space E' with triacontahedra to a 
covering of a two-dimensional testing surface. For a global view, the three-dimensional 
covering has to be considered. The branch lines of this covering are the edges of (he atomic 

triacontahedra. The set of all branch lines forms a connected infinite graph of icosahedral 
basis vectors. The subset of icosahedral vectors encircled by a loop of the phase is generally 
not connected. Each connection component corresponds to one region in the tiling within 
which atomic permutations occur. In a small loop, permutations only occur within separated 
triacontahedra1 cages. Enlarging the size of the loop leads to an increase of the number 
density of these triacontahedral cages. At a certain thresl">;:~1d an exchange of atoms between 
interlocked triacontahedraJ cages becomes possible. Furtber increases of the loop size yield 
larger and larger clusters of interlocked triacontahedral cages. between which exchange 
of atoms is possible. If an infinite chain of icosahedral vectors is encircled by the loop, 
the percolation limit is obtained, and infinite clusters appear, thus permitting long-distance 
self-diffusion. 

In contrast to the octagonal case, the self-diffusion in the icosahedral Amrnann-Kramer­
Penrose tiling is a two-component diffusion: the lattice Z 6 is the union of two icosahedrally 
invariant subJattkes, Z~ve.n (which is the root lattice D6) and zgdd• with 

z:,,, odd> = l x E z•J t. x, even( odd))· (14) 

Hence there are two disjoint sets of atomic positions in the tiling: :rr(Zgven) and :rr(Z~dd). 
Whereas the set rr(Z6) djsplays a r 3 inflation behaviour, :rr(Z~ven) is invariant through the 
dilatation of ratio r [17}. It can be shown that flips do not lead to transitions between 
rr(Z~ven) and n(Z~d). This means that the covering of E' with atomic triacontahedra 
consists of two disconnected pieces and that phase-induced atomic permutations take place 
separately in two subquasilattices. 

5. Summary and outlook 

Up to now, global uniform phason shifts have been discussed. These are unlikely to be the 
physical mechanism for diffusion in quasicrystals. If we replace the global phase shift by a 
local one, all considerations concerning the permutation of atoms remain valid, but matching 
rule violations appear during the shift of the phase. By attributing an activation energy to 
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these matching rule violations and to the barrier for the elementary flips, a temperature­
dependent probability for the corresponding self-diffusion process can be established, similar 
to the case of an octagonal lattice [18], though the phase structure of a three-dimensional 
model might be more complicated. 
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