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Using the extended de Gennes-Ginzburg-Landau free energy expansion in terms of the 
anisotropic part Q aJ3 ( :z:) of the dielectric tensor field, a connection between the phase biaxiality 
and the stability of various chiralliquid crystalline phases is studied. In particular, the cholesteric 
phase, the cubic blue phases, and the phases characterized by an icosahedral space group symme­
try are analyzed in detail. Also, a general question concerning the applicability of the mean-field 
approximation in describing the chiral phases is addressed. By an extensive study of the model 
over a wide range of the parameters, a class of phenomena, not present in the original de Gennes­
Ginzburg-Landau model, has been found. These include (a) reentrant phase transitions between the 
cholesteric and the cubic blue phases and (b) the existence of distinct phases of the same symmetry 
but of different biaxialities. The phase biaxiality serves here as an extra scalar order parameter. Fur­
thermore, it has been shown that, due to the presence of competing bulk terms in the free energy, the 
stable phases may acquire a large degree of biaxiality, also in liquid crystalline materials composed 
of effectively uniaxial molecules. A study of icosahedral space group symmetries provides a partial 
answer to the question of whether or not an icosahedral quasicrystalline state can be stabilized in 
liquid crystals. Although, in general, the stability of icosahedral structures could be enhanced by 
the extra terms in the free energy, no absolutely stable icosahedral phase has been found. 

PACS number(s): 64.70.Md, 05.70.Ce, 61.30.-v, 61.50.Em 

I. INTRODUCTION 

Chirality is today considered as one of the most impor­
tant and complex research topics in liquid crystal physics. 
It not only leads to phases of a great technological in­
terest, such as polar smectic-C*, but also gives rise to 
unusual structures known as blue phases [1,2]. These, 
which will be of our concern, are thermodynamically sta­
ble in a narrow temperature range ( ~ 0.1- 5 K) between 
the isotropic liquid phase (ISO) and the cholesteric phase 
(Ch). At present there are seven blue phases known of 
which three appear under condition of zero electric field, 
being labeled, in order of increasing temperature, BPI, 
BPII, and BPIII. 

The crucial parameter governing the stability of chi­
ral phases is the pitch (or its inverse, the chirality). In 
systems of large pitch (small chirality), typically greater 
than 5000 A, only a direct ISO-Ch phase transition is de­
tected. As pitch is decreased, an ISO-BPI-Ch sequence 
of phases is first observed, which next is replaced by an 
ISO-BPII-BPI-Ch sequence. As still higher chirality, the 
BPIII phase appears on the phase diagram between ISO 
and BPII phases. For sufficiently small pitch ( ~ 1500 A), 
the BPII phase disappears completely. The transforma-
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tions between the phases are of first order. 
Experiments conducted to date show that BPI and 

BPII may be described as a body-centered-cubic struc­
ture with space group symmetry of 0 8 (141 32) and 
a simple cubic structure with space group symmetry 
0 2 (P4232), respectively. The three-dimensional cubic or­
der is acquired by the mean molecular orientations yield­
ing circularly polarized Bragg reflections of visible and uv 
light. Contrary to ordinary crystals the centers of mass of 
the molecules are assumed to be positionally disordered, 
like in an isotropic liquid. But so far this hypothesis has 
not been proven experimentally. 

The present theoretical models correctly describe the 
order of the phase transitions between ISO, Ch, BP I, and 
BPII. Also the cubic structures emerge from the calcu­
lations with lowest free energies. But other features of 
the phase diagrams, such as, for example, a restricted 
stability domain of BPII, remain unexplained. 

The structure of BPIII, which is formed directly on 
cooling the isotropic liquid, is still a matter of intensive 
studies. It has many features common with the cubic 
BP (thermodynamic stability, lack of birefringence, and 
strong optical activity), but does not exhibit Bragg scat­
tering. Instead, a broad selective reflection band, typical 
of an amorphous system [1,3,4], is observed. These ex­
perimental observations have recently been proposed to 
result from a cubic bond orientational order - the only 
long-range order expected in BPIII [5]. 

But there are two concurrent models for the structure 
of BPIII [1,5-7], the most intriguing among them being 

3841 @ 1994 The American Physical Society 



3842 LECH LONGA, WERNER FINK, AND HANS-RAINER TREBIN 50 

the icosahedral model. It assumes that BPIII possesses 
the quasiperiodic symmetry of an icosahedral quasicrys­
tal. The absence of a quasicrystalline pattern in light 
diffraction is attributed to a destructive character of pha­
son degrees of freedom [6]. In the liquid state they may 
prevent the growth of single quasicrystallites, several mi­
crometers in size, necessary to resolve closely positioned 
icosahedral peaks. 

While experiments still are not fully conclusive, there is 
a serious theoretical difficulty with the icosahedral model: 
The de Gennes- Ginzburg-Landau (deGL) theory of liq­
uid crystals [8] , which has proven successful in describ­
ing structural properties of BPI and BPII [1], shows that 
in the physically relevant chirality range the quasicrys­
talline order is always less stable than the cholesteric and 
the cubic structures involved. A detailed stability anal­
ysis of the quasicrystalline order within the frame of an 
extended model [7] yields similar predictions, at least in 
the vicinity of the isotropic liquid. 

Despite these negative results for the structure of 
BPIII a general idea concerning stabilization of an icosa­
hedral chiralliquid crystal seems very intriguing and cer­
tainly deserves further considerations. If an icosahedral 
structure would appear as a stable liquid state (not nec­
essarily BPIII), its physical properties are expected to 
be quite different from those of metallic quasicrystals [9]. 
For example, it seems that such a liquid crystal is a per­
fect system for studying the physics of phasons. Unlike in 
metallic quasicrystals [9], where phasons form a quenched 
positional disorder, in liquid crystals they would form 
an annealed orientational disorder. This in turn may 
strongly inhibit growth of single quasicrystallites and in­
fluence relaxation and surface phenomena. 

As a number of important problems are still left 
unsolved in the frame of the de Gennes-Ginzburg­
Landau theory [1,5-7], it is our objective here to ana­
lyze some within the frame of the more general extended 
de Gennes-Ginzburg-Landau (EdeGL) theory, which ap­
plies to a wider class of liquid crystalline materials. Re­
sults will be discussed in terms of a new scalar order 
parameter, the phase biaxiality, which characterizes "the 
degree of twisting" of a chiral structure. With the help of 
this parameter the roles played by various terms in the 
EdeGL theory will be clarified. Next, classes of phase 
diagrams are established that could be relevant to the 
presently existing experimental data. Finally, a detailed 
analysis of the stability of icosahedral structures will be 
carried out by comparing their free energies with those of 
Ch, BPI, BPII, and the 0 5 (1432) structures. While our 
previous studies [7] were basically restricted to a neigh­
borhood of the isotropic phase, the calculations presented 
here cover all relevant ranges of chirality and tempera­
ture. 

The organization of the paper is as follows. In Sec. 
II the extended de Gennes- Ginzburg- Landau theory is 
introduced in a more general thermodynamic context. 
Section Ill is concerned with details of the free energy 
calculations for periodic and quasiperiodic structures. In 
Sec. IV results of the numerical analysis are discussed and 
possible classes of phase diagrams are identified. Section 
V contains a short summary. 

H. EXTENDED 
de GENNES-GINZBURG-LANDAU THEORY 

The transition between liquid crystalline phases can be 
described in different length scales. For the cholesteric 
phase and for the blue phases of chiral liquid crystals the 
characteristic dimension associated with the structure is 
of the order of 4000 A. Consequently, the relevant length 
scale is the mesoscopic one, where the difference in the 
order of the molecules is best quantified in t erms an order 
parameter. It represents the extent to which the average 
configuration of the molecules in the less symmetrical 
phase differs from that in the more symmetrical one. 

In general, many order parameters are needed to char­
acterize translational and orientational properties of a 
liquid crystal. However, a unique order parameter set 
may always be divided into primary order parameters 
and secondary ones. In equilibrium the secondary order 
parameters are functionals of the primary ones. A stan­
dard way of detecting the primary order parameters is 
by referring t o the one-particle distribution function or 
to the macroscopic response functions of the bulk mate­
rial [8]. 

In the absence of long-range correlations between t he 
centers of mass of the molecules the primary order pa­
rameter describing liquid crystals is a symmetric and 
traceless tensor field Q(r) of Cartesian components Qa{3 

(a, {3 = x, y , z ). The S0(3)-symmetric isotropic phase 
corresponds to the case when three eigenvalues of Q(r) 
are equal. Due to the vanishing t race condition this yields 
Q(r) = 0. For the D 00 -symmetric uniaxial phases two 
out of the three eigenvalues of Q( r) are equal. In the 
case of the general, D 2-symmet ric biaxial phase Q( r) 
has three different eigenvalues. The spatial dependence 
of Q takes into account a possibility of nonuniform con­
figurations of the orientational degrees of freedom. 

In statistical field theory Q ( r ) has the status of a ran­
dom field and a general free energy F is defined as a 
Feynman integral of a funct ional F[ Q( r) , 8Q( r )] over all 
fields Q(r) 

J { - F[Q(r) ,8Q(r)]} 
F[Q(r)J = -kBTln V Q(r) exp kBt , 

(2.1) 

where T is the absolute temperature. The only restric­
tion on F is that it must be (a) S0(3) symmetric and 
(b) stable against an unlimited growth of bot h Q(r) and 
8Q(r). 

Two theorems [8], related to the intrinsic symmetry of 
Q(r) , are important when an analytical expression for 
F is constructed. The first one states that any analyt­
ical SO ( 3 )-symmetric function of Q ( r) depends on two 
invariants only: tr(Q2 ) and tr(Q3 ). The second theorem 
is the inequality 

{tr[Q(r) 2W- 6{tr[Q(r) 3W :::0: 0, (2.2) 

where the equality holds for locally isotropic or umax­
ial fields Q(r) [8]. The condition (2.2) becomes a strong 
inequality for locally biaxial (oblate or prolate) configu­
rations. For fixed tr [Q(r) 2] the biaxiality of a configura-
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tion increases with decreasing value of {tr[Q(r]3]}2 and 
approaches its maximal value for tr[Q(r)3 ] = 0. The last 
observation suggests that any equilibrium structure, de­
scribed in terms of Q(r), could be characterized globally 
by an S0(3)-invariant parameter 

where the 1J denotes the thermodynamic average over 
the fields Q(r) with the exponential weight as introduced 
in Eq. {2.1). Configurations of Jd3 z tr [Q(r)2 ]3 = 0 are 
excluded from (2.3). Note that for purely uniaxial phases 
B is minimal and equals zero while for phases of maximal 
biaxiality B approaches its maximal value 1. In this sense 
B is a scalar, normalized, and positive definite measure of 
biaxiality for an arbitrary equilibrium liquid crystalline 
phase or the phase biaxiality for short. 

Though the definition (2.3) follows in a natural way 
from the symmetry of Q, and as such is independent of 
F, the calculations (2.1) require a specific form of F . de 
Gennes [10] was the first to formulate a Landau-Ginzburg 
free-energy functional as expansion in terms of Q( r) and 
its derivatives Qaf3,-y· The original expansion, also known 
as de Gennes-Ginzburg-Landau theory, was taken to the 
second order in the gradient 8!JQ of the order parameter 
and to the fourth order in Q. By introducing suitable 
units of energy, length, and Q [11] and in the absence of 
external fields it reads [8] 

F = FdeGL[Q{r)] 

= v-1 Jd3z { ~ [Ttr{Q2)- 2 Kcijk Qin Q;n,k 

+ (Qij,l)2 + pQ~;.;] 
-J6,Btr(Q3 ) + '"Y[tr{Q2 )]2 }· {2.4) 

Here v is the volume of the system and cijk is the Levi­
Civita tensor. Also the Einstein summation convention 
over repeated indices is to be applied if not stated oth­
erwise. The K term in Eq. {2.4) is denoted chiral. It is 
crucial for the existence of stable chiral liquid crystals. 
Since it violates parity its presence in the expansion is 
responsible for the formation of phases of broken chiral 
symmetry, e.g., cholesteric or the blue phases. 

The functional {2.4) depends only on three parame­
ters: the reduced temperature T, the reduced chirality K, 

which is proportional to the wave vector of the cholesteric 
phase, and the relative elastic constant p. The remaining 
two parameters f3 and 'i' are redundant. The parameter f3 
is a dimensionless measure of the molecular flatness giv­
ing ,B > 0 for rodlike molecules and ,B < 0 for the disklike 
ones [8]. For FdeGL to be positive definite requires that 
p > -3/2 and 'i' > 0. Due to the choice of units and due 
to the prolate-oblate symmetry of FdeGL one may take 
f3 = ')' = 1 [13] . 

A qualitative description of uniaxial nematics and 
cholesterics in the vicinity of the isotropic phase is ac­
counted for by the expansion (2.4). But, as summarized 

below, a more complicated functional with higher-order 
terms in Q is actually needed to describe equilibrium 
properties of real systems. 

First we note that the phase transitions involving chi­
ral states are first order. Thus the higher-order terms 
may play an important role. Second, as shown in [8], the 
experimental data for nematics fit very well to a model 
with a sixth-order term in Q being dominant. As the 
presence of chirality is not expected to change the phe­
nomenological parameters significantly this suggests that 
a physically relevant sector exists in the extended pa­
rameter space, which is not accessible within the original 
de Gennes model (2.4). Following this idea we consider 
a more general functional up to sixth order in Qaf3 [8]. 
Again in the units of Grebel et al. [11] it reads [7,8] 

F = FEdeGL 

= FdeGL + ~ J d 3x {- ~<f>[tr(Q2)][tr(Q3)] 

+ .!_c[tr(Q2 ) 3 ] + !c'{[tr(Q2 ) 3]- 6[tr(Q3 ) 2]}}, 
6 6 

(2.5) 

where for 'i' :S 0, the inequality c1 > -c must be fulfilled 
for stability. For 'i' > 0 the expansion (2.5) is stable pro­
vided that c1 ;:::: -c. Two out of five material parameters 
(,B, ')', 4>, c, c1) are redundant [11] and can be set equal to 
0 or ±1. 

Note that the higher-order bulk terms (2.5) have been 
written in such a way that for locally uniaxial struc­
tures the sixth order term, weighted by c1 , vanishes [see 
Eq. {2.2)]. It becomes greater than zero in the presence of 
locally biaxial configurations. Thus for c1 > 0 the model 
characterizes liquid crystalline materials composed of ( ef­
fectively) uniaxial molecules, while for -c < c1 < 0 it 
describes liquid crystals of biaxial molecules [8]. 

A full thermodynamic description of chiral biaxial liq­
uid crystals as represented by Eqs. (2.1) and (2.4) or by 
Eqs. (2.1) and (2.5) proves rather difficult. The major 
complication is due to the presence of the chiral term in 
F. To date only partial mean-field results are known for 
the simpler case as represented by Eqs. (2.1) and (2.4). 
A purpose of this paper is to go one step further and 
carry out the mean-field analysis for the second, more 
complicated, theory. 

We start by introducing the mean-field approximation. 
It is strictly related to the way the Feynman integral {2.1) 
and {2.5) is evaluated and performed in practice by ex­
panding (2.5) around the minimizing field Qg(r). The 
leading zeroth-order term of this expansion is referred 
to as the mean-field approximation (MFA). The next-to­
leading terms of the expansion are called one-loop, two­
loop, etc. approximations. The Qg ( r) configuration is 
also known as a "saddle point" of the Feynman integral 
(2.1). It is found in practice by minimizing the functional 
(2.5) over all trial periodic and quasiperiodic fields Q(r). 
The corresponding mean-field expression for the free en­
ergy (2.1) is obtained by the substitution Q(r) = Qg(r) 
into Eq. (2.5). 

Having determined an approximate form for the saddle 
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point configuration and for the mean-field free energy 
of the system one can proceed with calculations of the 
phase diagrams and of the phase biaxiality. The latter is 
reduced to a simpler expression, namely, 

B = fd3 z ( {tr[(Qg)2]p- 6 {tr[(QQ) 3 Jl2) 
Jd3z {tr[(Qg)2]p 

(2.6) 

Interestingly, for chiralliquid crystals, where "' f. 0, even 
for £ 1 ~ 0 the phase biaxiality usually is greater than 
zero, because it is induced by spatial inhomogeneities of 
equilibrium structures, which may remove the degener­
acy of the eigenvalues of Q( r). At first sight it may seem 
difficult to obtain large biaxialities as result of such de­
formations. Indeed, for small "' and for the model (2.4}, 
the inhomogeneity of, for example, the cholesteric phase 
induces only a slight and generally unimportant degree 
of biaxiality. But this is not always the case. As we 
shall demonstrate in Sec. IV, a large biaxiality may re­
sult from the presence of competing bulk terms in the 
expansion (2.5). 

To understand how biaxiality arises for cubic and icosa­
hedral structures note that due to symmetry-imposed re­
strictions on Q such states are, in general, characterized 
by a nonzero density of uniaxial prolate and oblate lines 
and by trQ(r) =F 0 (except maybe of an isolated set of 
points). Consequently these structures may acquire a 

Here k is taken out of a reciprocal lattice of a space group 
Q, where •k = {k': k' = Sk, {Sit} E Q} is the star of k , 
N•k is the number of prongs of the star •k, Qm(lkl) are 
the variational parameters in the expansion, and finally 

e [2J. = - 1- {3k 0 k - 1} 
O,k .j6 ' 

e~~,k = ±~ { (v ± iw)@ k + k @ (v ± iw)} ' (3.3) 

e ±[Z) k. = ~ {(v ± iw) @ (v ± iw)} 
2, 2 

are the spin L = 2 tensors represented in an orthogonal, 

right-handed local coordinate system { v, w, k} with k as 
____________________________________________j 

large degree of biaxiality due to the presence of lines of 
maximal biaxiality, which are located between the uni­
axial prolate and the uniaxial oblate lines [14]. 

Ill. MEAN-FIELD FREE-ENERGY 
CALCULATIONS 

Our objective now is to explicitly write down the mean­
field free energy (2.1} with :F given by fEdeGL, Eq. (2.5) . 
In practice the problem reduces to finding a functional 
minimum of fEdeGL for arbitrary K and T and for fixed 
values of the material parameters. As already mentioned 
before, the global minimization in the presence of the 
chiral term (K f. 0} is practically impossible. Thus the 
standard procedure is to assume that Q(r) is invariant 
under the action of symmetry operators of a space group 
Q. This yields trial periodic and quasi periodic states for 
the equilibrium structures. Clearly, the best approxima­
tion Qg ( r) to the equilibrium structure is the one with 
the lowest free energy (2.5} 

F([Q ]} = Min .FEdeGL{[Qg(r)]} . (3.1) 
MFA {Q} 

The above program is realized in practice by expanding 
Qg ( r) into plane waves of definite helicity 

(3.2) 

quantizat ion axis. The rea lity condition Q(r ) = [Q(rW 
additionally implies that 

e [2] . = (-l)m (e[2J.)' 
m , - k rn ,k 

(3.4} 

and 

(3.5) 

The selection of the wave vectors k, the phases 1/Jm,k' and 
m is fixed by the symmetry Q of the structure. 

Using t he parametrization (3.2) the various terms en­
tering the free energy (3.1} can now be written as 

4~ Jd3z [Ttr(Q2)- 2K £ijk Q;n Qjn,k + (Qij ,z)2 + pQij,j] = ~ L {r- Km 1•k1 
•k ,rn 

+ [1 + ~p(4 - m 2 }] 1•kl 2 }Q;,.(I"kl) 
and 

(3.6} 

v-1 jd3z [tr(Q2)r [tr(Q3 ))q = L . · · L <l>g('k1 · · ·'kzp+3q;m1· · · mzp+3q) 

7ni ,•kt 17l2p+ 3q ,• k2p + 3q 

(3.7) 
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where the space group dependent numerical coefficients !Jg are given by 

(3.8) 

The minimization over fields Q(r) is thus reduced to a minimization over the real amplitudes Qm(lkl). The most 
difficult part of the calculations is finding the !Jg coefficients, Eq. (3.8), of the polynomial (3.7), especially for the 
fifth- and the sixth-order terms of the expansion (2.5). Due to these limitations we restrict the expansion (3.2) to two 
leading stars (*k1 , *k2 ) of the k vectors. For each *k we select m = 2 modes, corresponding to the low-lying branch 
of the excitation spectrum of the quadratic part of the free energy (3.6). The last approximation makes Q,;,i vanish 
and, consequently, the parameter p, weighting ( Q,;,i)2 , is redundant. 

With these simplifications the two-star mean-field free energy (3.1) of chiralliquid crystals reads 

3 

.rGdeGd[Q(r)]} = ~ 2: { T- Kml*kl + [1 + ~p(4- m2 )] l"kl2 } [Qm(l*kl)]2 + {3 i~O c~ Q~ Q~ 
~~ iB-

TABLE I. Two-star bulk contributions to the free energy Eq. (3.9) for various symmetry allowed structures. The contribution 
proportional toE is equal to B. The symbols used for the cubic space groups are consistent with the Schonflies notation while 
the icosahedral space group notation agrees with that introduced by Rokhsar et al. [17] . Note that out of 15 possible icosahedral 
space groups P532, F532, 1532, P5,.32, F5,.32, and 15,.32, where n=1,2,3,4, only six icosahedral structures give distinct free 
energies. 

Structure 
(i, j) c o• o• o• F532 F51 32 F52 32 F53 32 F54 32 P52 32 

Third-order coefficients Ci; 
(3,0) 1.0000 -0.6250 -1.0165 -1.0165 -0.4375 -0.0075 0.4496 -0.7200 0.7154 0.4496 
(2,1) 2.1857 -1.5654 -1.5654 -1.5654 -1.5654 -1.5654 
(1,2) -3.0000 3.0910 1.1161 -0.8898 0.3237 0.3661 -0.9160 -2.8249 

Fourth-order coefficients c:; 
(4,0) 1 .0000 1.1693 1.2995 1.2995 1.2000 1.1504 1.3536 1.5288 1.4339 1.3536 
(3,1) -1.0009 0.4648 -0.1702 -0.1893 0.4766 -0.5818 
(2,2) 2.0000 3.4994 2.5423 3.1656 3.3911 3.9979 3.0339 3.0072 3 .9728 
(1,3) -0.0457 0 .8136 0.0399 -0.8865 0.0788 
(0,4) 1.0000 1.0833 1.0833 1.3240 1.4607 1.2740 1.4573 1.3173 1.2333 

(5,0) 0.1667 -0.1536 -0.2449 
Fifth-order coefficients c:i 

-0.2449 -0.1154 0.0096 0 .1118 -0.2736 0.2141 0 .1119 
(4,1) 0.6243 -0.4676 -0.3790 -0.5772 -0.5652 -0.5740 
(3,2) -0.3333 -0.4852 0.4961 -0.0191 -0.2847 0 .2982 -0.0733 0 .1561 -1.0323 
(2,3) 0 .6236 -0.5099 -0 .7216 -0.7214 -0.6094 -0.5187 
(1 ,4) -0.5000 0 .6158 0.3710 -0.4344 0.0981 0.2349 -0.2919 -0.8002 
(0,5) 0.0073 -0.0223 -0.0040 -0.0152 0.0044 

(6,0) 0.1667 0.2548 0 .3150 
Sixth-order coefficients eT; 

0.3150 0.2712 0.2434 0.3558 0.5310 0.4228 0 .3559 
(5,1) -0.5402 0.2964 -0.1130 -0.0870 0 .5428 -0.4622 
(4,2) 0.5000 1.4837 0 .8757 1.3483 1.3791 2.2092 1.5777 1.5056 2.0790 
(3,3) -0.7069 0.3874 0.4957 -0.0937 -0.3816 -0.4736 
(2,4) 0.5000 1.3573 0.7973 1.4306 1.8906 2.0640 1 .5172 1.3435 1.9682 
(1,5) -0.0287 0.6843 0 .0425 -0.6918 0.0495 
(0,6) 0 .1667 0.2037 0 .2037 0 .3486 0.4681 0.3165 0 .4673 0 .3510 0.2885 

(6,0) 
Sixth-order coefficients c~; 

0.0925 0.0214 0.0214 0.1305 0.1251 0.1991 0.1181 0.1664 0.1991 
(5,1) 0.2582 -0.2003 0.1153 0.3863 -0.3271 0.4302 
(4,2) 1.5000 -0.1292 2.2936 0.4470 0.2945 0.6611 0.4751 0.2514 1.8192 
(3,3) -0.2285 1.0651 -0.9172 0.3521 0.0363 -1.1126 
(2,4) -1.0000 1.0292 -1.2560 0 .8034 0.8545 1.2182 0 .6799 0.9720 -0.8406 
(1,5) -0.0187 0.4291 0 .1515 -0.4286 0.0650 
(0,6) 0.1667 0 .1829 0 .1829 0 .1859 0.2999 0.2179 0.3385 0.2305 0.1985 
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where Ql = Q2(l*k1l) and Q2 = Q2(l*k21). With 
(3.9) the free energies have been calculated explicitly for 
cholesteric liquid crystals BPI and BPII and for all icosa­
hedral space groups. In the latter case the reciprocal 
wave vectors were constructed as linear combinations of 
six integrally independent vertex vectors. The following 
rules were additionally taken into account: for a prim­
itive reciprocal lattice all integral coordinates were al­
lowed while for a face-centered reciprocal lattice the sum 
of the coordinates of a vector was taken even. For a body­
centered reciprocal lattice all coordinates were assumed 
to be of the same parity. 

A key criterion in selecting the supplementary star of 
the k2 vectors was to require a maximal number of trian­
gles with the leading star and to keep the ratio l*k2l / l*k1l 
small. Observing correctly the selection rules we arrived 
at six different icosahedral structures compatible with 
the (532) point symmetry. Five of these structures are 
associated with the face-centered space group symme­
tries F(B)5n32 (n = 0, ... ,4) of ratio l*k2l/l*k1l ~ 1.17. 
The last one corresponds to a primitive P52 32 symme­
try with l*k2l/l*k1l ~ 1.06. More specifically, for the 
P52 32 symmetry *k1 are the vertex vectors and *k2 are 
the edge vectors of an icosahedron. For the F5n32 sym­
metry the representative of the *k1 vectors has coordi­
nates (2, 0, 0, -1, 0, -1) and that of the *k2 vectors cor­
responds to the (0, 0, 1, 0, 0, 1) vector of the reciprocal 
lattice. The notation for icosahedral space groups used 
above is consistent with that of Rokshar et al. [17]. More 
details are given in the Appendix. 

For all space groups involved the numerical coefficients 
CJj, Eq. (3.9), were found by combining group theoretical 
methods, computer algebra, and numerical techniques. 
All the nonzero coefficients are listed in Table I. 

IV. RESULTS 

The minimization of FEdeGL, Eq. (3.9), was carried out 
numerically for each trial structure separately at fixed 
values of chirality and temperature and of the remaining 
model parameters by using a combination of simplex­
and gradient search methods. To ensure that the global 
minimum was found the procedures were initialized at 
different points of the { Q 1 , Q2 } space. The equilibrium 
free energy and consequently the equilibrium structure 
was next identified by comparing the free energies of the 
trial structures at the same values of the thermodynamic 
and material parameters. 

To start the analysis we discuss a simpler case of fjJ = 
c = c' = 0, which corresponds to the original de Gennes­
Ginzburg- Landau theory. In this case the (~~:, T) plane 
phase diagram is universal as the term proportional to p 
vanishes for tensor fields composed exclusively of m = 2 
Fourier components. As shown in Fig. 1, the structures 
that minimize the free energy (2.4) are predominantly 
the cholesteric, the 0 2 and the 0 5 phase, in agreement 
with a similar analysis carried out before by Grebe! et 
al. [12] . Additionally, in a very limited range of the (~~: , t) 
parameters, the 0 8 structure is found to be absolut ely 
stable. However, no stable icosahedral structure exists, 

5 
ISO 

h 0 ,,8 ~------ --- --- --

4 . 5 Ch 
-5 

'. 2 1.9 

1 2 

K 

FIG. 1. Phase diagram (chirality, temperature) [:= ( ~~;,T)] 

calculated for {3 = 'Y = 1 and £P = c = c 1 = 0. Symbols used 
for the cubic space groups are consistent with the Schonfl.ies 
notation. Additionally, ISO denotes the isotropic phase and 
Ch denotes the cholesteric phase. 

although they all could be made more stable than the 
isotropic liquid. This is again in agreement with earlier, 
less general, calculations (6,7]. 

These results can be correlated with the phase biax­
ialities of the structures; see Figs. 2-5. The plots refer 
to that part of the (K, T) plane where a given phase 
appears more stable than the isotropic liquid. As the 
biaxiality of the 0 5 structure is model independent and 
equals 0.068, the corresponding diagram is omitted. In 
the case of icosahedral structures only the biaxiality of 
the most stable structure is shown. This is the reason 
for discontinuities in Fig. 5, which indicate that different 
icosahedral structures become relevant in the admitted 

0.8 

BCh 
0.4 

K 

FIG. 2. Chirality and temperature variation of the phase 
biaxiality B := B Ch, [Eq. (2.3)] for the cholesteric phase. 
The set of parameters used is the same as in Fig. 1. To 
visualize a connection between the phase diagram and the 
phase biaxiality the former has additionally been inserted into 
the (~~;, T ) plane. 
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3 

0.8 

FIG. 3. Chirality and temperature variation of the phase 
biaxiality B = B os [Eq. (2.3)] for the BPI structure modeled 
by the cubic space group os. The set of parameters used is 
the same as in Fig. 1. To visualize a connection between 
the phase diagram and the phase biaxiality the former has 
additionally been inserted into the (K, T) plane. 

range of the thermodynamic parameters. Additionally 
the phase diagram has been inserted in the ( K, T) plane 
of Figs. 2-5. 

By inspecting Figs. 2-5 one finds that apart from 
the F53 32 structure, all other icosahedral structures are 
strongly biaxial. The least biaxial are the 0 5 and the 
0 2 structure. These results, when compared with the lo-

1C 
1.5 3 

FIG. 4. Chirality and temperature variation of the phase 
biaxiality B = B 0 2 [Eq. (2.3)] for the BPII structure mod­
elled by the cubic space group 0 2. The set of parameters used 
is the same as in Fig. 1. To visualize a connection between 
the phase diagram and the phase biaxiality the former has 
additionally been inserted into the (K, T) plane. 

3 

0.8 

BY 
0.4 

FIG. 5. Chirality and temperature variation of the phase 
biaxiality B =BY [Eq. (2.3)] for icosahedral structures. The 
set of parameters used is the same as in Fig. 1. For given 
( ,., T) only the phase biaxiality of the most stable icosahe­
dral structure (i.e., having the smallest free energy) is shown. 
Discontinuities (broken lines) of the BY surface separate the 
most stable, different icosahedral phases. These are, in order 
of decreasing BY, F532, P5232, and F5332. To visualize a 
connection between the phase diagram and the phase biaxial­
ity the former has additionally been inserted into the (K, T) 
plane. 

cation of the stable phase on the phase diagram, clearly 
support the empirical rule that phases of lower biaxiality 
generally become more stable. 

A similar rule holds approximately for the FEdeGL 

model provided that all material parameters are greater 
than zero. In this sector of the parameters the phase 
diagrams are characterized by a high degree of universal­
ity. Most of them are similar to the one shown in Fig. 1, 
although cases without the 0 5 or the 0 8 structure also 
have been found. 

The third and the fifth degree invariants of the FEdeGL 

are related to the average molecular shape [8]. The corre­
sponding parameters /3 and </> are thus expected to have 
the same sign in the majority of single-component liquid 
crystalline materials and the opposite signs in mixtures 
composed of oblate and prolate molecules. From a the­
oretical point of view the latter case is quite interesting 
as it introduces a competition between the oblate and 
the prolate symmetries. The effect of this competition 
should lead to a peak (or discontinuity) in the temper­
ature variation of the biaxiality parameter. Indeed, ex­
plicit calculations involving many cases with positive /3 
and negative </> fully support these expectations. Fur­
thermore, another phenomenon, related to this competi­
tion, is found. It involves reentrant phase transitions be­
tween the cholesteric phase and the cubic blue phases [see 
Figs. 6- 12] and phase transitions between phases of the 
same symmetry. The biaxiality parameter serves here as 
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-5 
Ch 

1 

K 

FIG. 6. Phase diagram (chirality, temperature) [::= (K, T )] 
calculated for {3 = 'Y = 1, ifJ = -10, e = 10, and e' = 0. For 
definitions of the symbols used see the caption to Fig. 1. 

an extra order parameter and allows one to detect first­
order phase transitions between structures of the same 
symmetry. They are seen as discontinuities of B. 

The phase transitions between phases of the same sym­
metry are easily realized in practice. Take, for example, 
a set of the material parameters which, for K = 0, give a 
first-order phase transition between the uniaxial and the 
biaxial nematic phases. For small nonzero values of K, the 
nematic phases are replaced by the cholesteric ones, both 
of the same symmetry but of different biaxialities, with 
a first-order phase transition separating them. With in­
creasing chirality a critical point is eventually approached 
and the whole (B, K, T) diagram resembles that of a con­
ventional gas-liquid transition. In this case a typical be­
havior of B follows the one shown in Fig. 9. 

The appearance of the reentrant phase transitions is 
less obvious. They are found when both the competi­
tion between the {3 and the </> terms are present and the 
already discussed "rule of smaller biaxiality" is approx­
imately fulfilled. Then at low temperatures, when the 
order parameters are large, the stable (quasi-)periodic 
structure is likely to be that which minimizes the fifth­
order term. However, the situation is reversed at higher 

Ch 

K 

FIG. 7. Phase diagram (chirality, t emperature) [::= ("-, T)] 
calculated for {3 = 'Y = 0.1, ifJ = -1 , c = 1, and c' = 0. For 
definitions of the symbols used see the caption to Fig. 1. 

K 

BCh 

FIG. 8. Chirality and temperature variation of the phase 
biaxiality B = B Ch [Eq. (2.3)] for the cholesteric phase. 
The set of parameters used is the same as in Fig. 6. Phase 
biaxialities for the case shown in Fig. 7 are similar. To visu­
alize a connection between the phase diagram and the phase 
biaxiality the former Fig. (6) has additionally been inserted 
into the ("-, T ) plane. 

temperatures, especially in the vicinity of the isotropic 
phase, where the cubic term is the one that should be 
minimized. If the low and the high temperature phases 
are of the same symmetry, then, because of these com­
peting tendencies of the fifth-order and the cubic terms, 
there is an intermediate temperature where the phase hi-

FIG. 9. Chirality and temperature variation of the phase 
biaxiality B = B 0 8 [Eq. (2.3)] for the BPI structure modeled 
by the cubic space group 0 8 . The set of the parameters used 
is the same as in Fig. 6. Phase biaxialities for the case shown 
in Fig. 7 are similar. To visualize a connection between the 
phase diagram and the phase biaxiality the former (Fig. 6) 
has additionally been inserted into the ("-, T) plane. 
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FIG. 10. Chirality and temperature variation of the phase 
biaxiality B = B 0 2 [Eq. (2.3)] for the BPII structure mod­
eled by the cubic space group 0 2 • The set of parameters used 
is the same as in Fig. 6. Phase biaxialities for the case shown 
in Fig. 7 are similar. To visualize a connection between the 
phase diagram and the phase biaxiality the former (Fig. 6) 
has additionally been inserted into the (,.;,T) plane. 

FIG. 11. Chirality and temperature variation of the phase 
biaxiality B =: BY [Eq. (2.3)] for icosahedral structures. The 
set of parameters used is the same as in Fig. 6. Phase biaxi­
alities for the case shown in Fig. 7 are similar. Again only the 
phase biaxiality (BY) of the most stable icosahedral structure 
is shown. As in Fig. 5, discontinuities of BY indicate that 
different icosahedral phases take over. These are, in order of 
decreasing BY, F532, F5132, F532, F5432, P5232, and F5332. 
Again, for definitions of the symbols used see the caption to 
Fig. 1. To visualize a connection between the phase diagram 
and the phase biaxiality the former (Fig. 6) has additionally 
been inserted into the {,.;,T) plane. 

ISO 
5 

0 

Ch 

1C 

FIG. 12. Phase diagram for {3 = 1, "Y = -1, rjJ = -10, 
e = 10, and e' = 0. For definitions of the symbols used see 
the caption to Fig. 1. 

axiality is maximal. In these cases, as shown in Figs. 8 
and 10, the phase biaxiality may even approach its maxi­
mal value equal1, also in effectively uniaxialliquid crys­
talline systems. This in turn may stabilize a new, less 
biaxial phase around the maximal value of B. At higher 
temperatures (chiralities), where B of the "old" phase is 
again small, the "old" phase may reenter. This is illus­
trated in Figs. 6, 8, and 12. Be aware, however, of the 
fact that the rule of smaller biaxiality is only fulfilled ap­
proximately. For example, it does not hold for most of 
the systems characterized bye' < 0. 

The reentrant phenomenon was detected in a wide 
range of parameters around those of Figs. 6, 7, and 12 
indicating a possibility of finding similar behavior in real 
liquid crystalline systems. For e' < 0 the reentrant be­
havior was usually eliminated. 

Finally, we turn to the problem of stability of an icosa­
hedral structure. The detailed mean-field analysis shows 
that icosahedral phases may become more stable than 
some of the cubic structures or t he cholesteric phase, but 
they are never absolutely stable in the admitted ( K-, T) 
range. The results are consistent with those reported 
earlier (7], which were restricted to an immediate neigh­
borhood of the isotropic phase. 

V. SUMMARY AND FINAL DISCUSSION 

We have studied the extended de Gennes- Ginzburg­
Landau model to answer some of the basic questions con­
cerning chiralliquid crystals. Our intentions were (a) to 
study the influence of higher-order terms in de Gennes­
Ginzburg-Landau theory on stability of chiral phases, 
(b) to show the importance of the phase biaxiality pa­
rameter in the description of equilibrium properties of 
chiral phases, (c) to identify possible classes of the phase 
diagrams in the extended de Gennes-Ginzburg-Landau 
theory, and (d) to analyze in detail the stability of icosa­
hedral structures. 

The first question that arises, however, is whether one 
really should take time and analyze the extended model 
by including fifth- and sixth-order terms in the order pa-
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rameter. After all there exist a few other possible direc­
tions in which the standard model [1] could be general­
ized. 

Certainly one reason for studying this extension is to 
verify whether the standard fourth-order termination is 
correct. The second reason seems less trivial and it 
comes, as argued in Ref. [7(b)] [see also Ref. [8(a)]], 
from the analysis of uniaxial nematics in the vicinity of 
the nematic-isotropic (NI) phase transition. Namely, it 
has been demonstrated that the experimental data for 
nematic liquid crystals fit very well to the model with 
a sixth-order term being dominant. As the presence of 
chirality should not change the phenomenological param­
eters significantly, one may expect for chiral systems the 
existence of a new physically relevant sector in the ex­
tended parameter space, which is not accessible within 
the standard model. Also biaxial fluctuations are im­
portant close to the NI transition, as follows from the 
statistical field theory forK= 0 [8] , Eqs. (2.1) and (2.4). 

Thus the theory as represented by Eqs. (2.1) and (2.4) 
could be regarded as a fundamental description of chiral 
liquid crystals, and the analysis of its ground states is a 
first step towards more advanced studies. Consequently, 
our attention was focused to the mean-field calculat ions. 
We restricted the expansion of the order parameter to two 
leading stars of the k vectors. But being aware of the two­
star limitations, especially for the BPI structure, we have 
taken the trouble to work out the phase diagrams and the 
biaxiality parameter in detail, in the whole parameter 
space. Such analysis, when treated with caution, seems 
to yield results that may hold true irrespectively of the 
number of stars taken. 

Detailed studies show that, contrary to the previous 
two-star calculations [1 J, all the relevant phases, includ­
ing bee, could be found on a single diagram. However, 
the extended model does not improve the agreement with 
experiments compared to the four-star calculations of the 
standard model. Again in all cases studied the a2 , the 
cholesteric, and the as appear to be the most stable 
structures, with the as found in the part of the diagram 
where normally BPIII is present. We did not find a pa­
rameter window in which the as is favored over the a 2 

as seen in experiments. A high stability of the a 2 and of 
the as, which exists for a wide range of chiralities and of 
the parameters, is suggesting that this situation cannot 
really be improved even if more stars are present in the 
expansion of the tensor field. 

Thus it seems unlikely that the mean-field analysis 
could solve the problem of the relative regions of the 
phase diagram occupied by the simple cubic and bee 
phases and consequently produce a generic phase dia­
gram which is consistent with experiment. This, together 
with the earlier papers on blue phases, clearly shows that 
the chiral liquids cannot be fully understood wit hout 
more advanced, statistical field theory calculations, using 
Eqs. (2.1) and (2.4). A systematic analysis of the effect 
of fluctuations has already been undertaken [5]. Further 
results will be presented in a forthcoming publication. 

A fluctuation scenario for chiral phases is even more 
strongly supported by the presented systematic analysis 
of all possible icosahedral structures, which, besides the 

a 5 , seem to be the only mean-field alternatives for the 
BPIII. First of all we noted that the fifth-order invariant, 
in addition to the cubic one, strongly favors icosahedral 
structures (see Table 1). Taking into account the fact that 
all relevant cubic structures are recovered within the 
two-star analysis, one may expect that an icosahedral 
structure should also show up somewhere on the phase 
diagram. Here again the lack of the temperature-chirality 
window in which the icosahedral structure is more sta­
ble than the cholesteric and the cubic structures not only 
strongly limits the mean field possibilities for the BPIII 
but also the mean field itself. Perhaps we should add 
that the complete four-star calculations of icosahedral 
structures within the frame of the extended model are, 
practically speaking, impossible. Already two-star anal­
ysis appears quite nontrivial. 

For completeness, we should also point out that for 
some limiting values of the parameters, especially when 
the cubic term plays no role, some other space groups 
may become relevant. Unfortunately, the global analy­
sis of the mean-field structures for the extended model 
is again practically impossible. We therefore restricted 
ourselves to those phases that seem most relevant to our 
present understanding of chiral liquid crystals. 

Interestingly, through a competition between the cu­
bic, the fifth-order, and the sixth-order terms we found 
a class of phenomena: (a) large biaxialities in potentially 
uniaxial systems, (b) the reentrant phase transitions, and 
(c) the phase transitions between phases of the same sym­
metry but of different biaxialities. 

The validity of these results seems to go beyond the 
two-star limitations. For example, the reentrance feature 
appears as a result of an anomalous behavior of t he bi­
axiality parameter of the cholesteric phase. More specifi­
cally, when the cubic and the fifth-order couplings are of 
opposite sign one may detect in the chirality-temperature 
plane an "island" around which the biaxiality of the 
cholesteric phase has its maximum (see Fig. 8) . This 
effect is quite common for cholesterics and, of course, 
independent of the number of stars included in the ex­
pansion for the cubic structures. For some values of t he 
couplings a dramatic increase of biaxiality to its maxi­
mal value equal to 1 strongly reduces the cubic invariant 
for the cholesteric phase. This in turn gives a chance 
for a cubic st ructure to become more stable within the 
island than the cholesteric phase (compare Figs. 6 and 
8). Inclusion of more stars would certainly lower the free 
energy of this induced cubic structure with respect to the 
(unchanged) reference cholesteric free energy. In the first 
place one would then expect that the area of stability 
of the induced phase is enhanced. As the temperature 
distance between the as and the a 2 strongly depends 
on the parameters of the model (compare Figs. 6 and 
7), it seems unlikely that this would eliminate reentrant 
phenomenon in all cases. 

The case of phase transitions between phases of the 
same symmetry is less obvious and might depend upon 
the number of stars, in analogy to the case of the bee 
blue phase when the number of stars considered was 
raised from two to three. However, we still expect that 
at least a direct phase transition between the two hi-
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axial cholesteric phases should be observed. Indeed if 
we take the zero chirality limit we can easily induce a 
uniaxial nematic-biaxial nematic phase transition, where 
the phase biaxiality is associated here with an intrinsic 
(molecular) biaxiality. As the corresponding phase tran­
sition is of first order, this sequence is replaced for small 
chiralities by the first-order phase transition between the 
two cholesteric phases of the same symmetry. Biaxiality 
of the high temperature cholesteric phase is small and 
induced by deformations. On the other hand, the low 
temperature cholesteric phase is induced by the intrinsic 
biaxiality (due to the sixth-order term). In other words, 
the effect results from an interplay between the induced 
and the intrinsic biaxialities. 
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APPENDIX: MEAN-FIELD FREE ENERGIES OF 
ICOSAHEDRALSTRUCTURES 

In this appendix we show how to calculate in a sys­
tematic way the mean-field free energy (2.5) for an icosa­
hedral liquid crystal. We use a method of the theory of 
metallic quasicrystals, where the scalar mass density is 
viewed as an irrational cut through a six-dimensional hy­
percubic mass density. This six-dimensional hyperspace 
is a direct sum space of the physical space lE 11 and of the 
orthogonal space lEJ_ [15,16). 

The wave vectors k = k I are lifted through the six­
dimensional space 

(A1) 

to span a hypercubic reciprocal lattice. Note that the ex­
tension of the reciprocal vectors is given by an irrational 
cut and therefore is unique. Similarly, the position vector 
r = rll is extended in a natural way to a six-dimensional 
position vector 

e = rll +rj_. 

Using the properties of the six-dimensional hypercubic 
reciprocal lattice, the Fourier expansion of a real, peri­
odic quadrupole tensor field in six dimensions can now 
be written down as 

The physical, quasiperiodic tensor field Q(r) can be re­
covered from the formula (A2) by making an irrational 
cut through q<6>(e) 

Q(r) = Q<6>(e)lr_j_=o 
2 

= "'""_1_ "'"" Qm(k) e[2]_ ei~<·rll. (A3) 
~ v'JIT.i. ~ m,le 

le m=-2 

The unknowns in the last formula are the complex am­
plitudes Qm(k) and the tensors e[2]"_ or, equivalently, 

m, 
the orthogonal right-handed local coordinate systems 

{ .v,, .w,, k }· This freedom is severely reduced by the 

fact that Q(6 ) is a real field, invariant under the action 
of an icosahedral space group. A systematic procedure is 
outlined below. 

First we note that the reality condition for the tensor 
field (A3) implies, in addition to (3.4), that 

(A4) 

where, for the icosahedral symmetries, the reciprocal vec­
tors -k and k belong to the same star *k. The restric­
tions due to the symmetry of Q(6 ) become evident after 
applying an arbitrary icosahedral space group element 
{glt9 } to the six-dimensional tensor field 

and assuming that the tensor is left unchanged 

This invariance condition generates a relation between 

Qm(k) and e~1,k 

Qm(gk) e[2] - = Qm(k) ge[2]- e-ig~<·t. , (A5) 
rn,glc rn,lc 

which implies that for each star *k only a single (in gen­
eral complex) amplitude is independent, say, Q171 (k). It 
may be chosen by fixing an arbitrary k vector from the 
star (k E *k). Additionally, by incorporating the complex 

phase factor of Qm(k) in the tensor e[2]_, the amplitude 
m,le 

Q171 (k) can be taken to be real, which considerably sim­
plifies the numerical analysis. 

The last step of the procedure is to determine the phase 
factors gn · t 9 or, equivalently, the nonprimitive transla­
tions t 9 of the six-dimensional hypercubic lattice. For 
that we must supplement the twofold (g2 ) and the five­
fold (g5 ) icosahedral point group generators by the cor­
responding space group translations t 92 and t 9 •• 

The latter can be written as a superposition of the six 
basis vectors Ki of the hypercubic reciprocal lattice 

6 

tg. = L Si Ki, 

i=l 

6 

t 92 = L r, Ki, 

i=l 

(A6) 

(A7) 

where the coordinates Si and ri are, in general, rational 
numbers. The Ki vectors are connected through the con­
dition (Al) with six (out of the twelve) vertex vectors k11 

of an icosahedron. 
By applying the icosahedral space group relations be­

tween the generators [17] 



3852 LECH LONGA, WERNER PINK, AND HANS-RAINER TREBIN 50 

to the vectors (A6) we arrive at the set of conditions for 
the unknown coordinates s; and r;. They read 

c c c c 
s1 = - - ± 1 - ± 2 · · · = - mod L 

5' 5 '5 ' 5 . 
s2 = 83 = 84 = ss = s5 = 0 mod 1 

(AB) 
c 

r3 = -r6 = r 4 - rs = - mod 1 
5 

r1 = r2 = 0 mod 1, 

where c = 0, 1, . . . , 4. 
Now the calculations proceed in a straightforward way. 

As an example consider the m = 2 modes, which are 
relevant to the calculations presented in this paper. In 
this case the reality condition of Q2 ( k) implies that 

Thus one must seek for an icosahedral space group ele­
ment satisfying the relations 

gk = -k, 
e[2] _ = ge[2]_ ei ,. •• -t. = e [2l_* . 

2, -k 2,k 2,k 
(A9) 

If such a space group element does not exist, the ampli­
tudes associated with the star are not allowed by sym­
metry and must be set equal to 0 (extinction rules). If, 
however, the g element is found, one is now able to de­
termine the corresponding orthonormal tripod 

{v,w,k = K} (A10) 

and the numbers s;, r; satisfying the relations (A5), (A8), 

and ( A9). All the remaining tensors e [2] • and the phase 
m,k 

factors can be found from (A10} and from the group mul­
tiplication table. 
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FIG. 1. Phase diagram (chirality, temperature) [= ( ~~:,T)] 

calculated for (3 = 'Y = 1 and <f> = € = € 1 = 0. Symbols used 
for the cubic space groups are consistent with the Schi:inflies 
notation. Additionally, ISO denotes the isotropic phase and 
Ch denotes the cholesteric phase. 




