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Institut für Theoretische und Angewandte Physik
der Universität Stuttgart

2015





Meinen Eltern.





Contents

Summary in English xiii

Zusammenfassung in deutscher Sprache xix

1 Introduction 1

2 Atomistic Computer Simulations 3
2.1 Ab-initio Methods . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Classical Molecular Dynamics . . . . . . . . . . . . . . . . . 5
2.3 Molecular Dynamics with Long-Range Interactions . . . . . 8

2.3.1 Ewald Summation Technique . . . . . . . . . . . . . 8
2.3.2 The Model of Streitz and Mintmire . . . . . . . . . . 16
2.3.3 Beyond Streitz and Mintmire . . . . . . . . . . . . . 21
2.3.4 The Model of Tangney and Scandolo . . . . . . . . . 29

3 Methodological Progresses 31
3.1 Iterative Solvers . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.1 Minimization of a Quadratic Form . . . . . . . . . . 32
3.1.2 Implementation . . . . . . . . . . . . . . . . . . . . . 41

3.2 Wolf Summation Method . . . . . . . . . . . . . . . . . . . 41
3.2.1 Charge Optimization with Wolf . . . . . . . . . . . . 49
3.2.2 Wolf Summation for Dipoles . . . . . . . . . . . . . 51

3.3 Potentials for Oxides . . . . . . . . . . . . . . . . . . . . . . 54
3.3.1 Simulations with ReaxFF . . . . . . . . . . . . . . . 59
3.3.2 CuSiO2 with COMB . . . . . . . . . . . . . . . . . . 60
3.3.3 Variable Charges for Dipoles . . . . . . . . . . . . . 61

4 Flexoelectricity 67
4.1 MD Simulations . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1.1 Displacement Modes . . . . . . . . . . . . . . . . . . 70
4.1.2 Primary Polarization . . . . . . . . . . . . . . . . . . 72

v



vi Contents

4.1.3 Induced Polarization . . . . . . . . . . . . . . . . . . 75
4.2 The Flexoelectric Constant µ11 . . . . . . . . . . . . . . . . 77
4.3 The Resulting Flexoelectric Constants . . . . . . . . . . . . 79

5 Conclusion and Outlook 85

A The Software Package IMD 87

B Interactions Integrals 89

C Transformation of the Flexoelectric Tensor 91

Literaturverzeichnis 93

Bibliography 93



List of Symbols

Ees Electrostatic energy, page 16

rc real space cut-off, page 8

COMB Charge Optimized Many-Body, page 25

CTIP Charge Transfer Ionic Potential, page 21

DCT-BOP Dynamic Charge Transfer Bond Order Potential, page 24

EAM Embedded Atom Method, page 8

EIM Embedded Ion Method, page 23

HV Hong and Vanderbilt, page 68

IMD ITAP Molecular Dynamics, page 5

LCP Local Chemical Potential, page 24

MD Molecular Dynamics, page 3

MPI Message Passing Interface, page 85

ReaxFF Reactive Force Field, page 28

SM Streitz and Mintmire, page 16

TS Tangney and Scandolo, page 29

TTM Two-Temperature Model, page 85

vii



viii List of Symbols



List of Figures

2.1 Motion of a single particle during a MD step. . . . . . . . . 7
2.2 The main idea of the Ewald summation method. . . . . . . 11

3.1 Path to the minimum via the method of steepest descent. . 34
3.2 Error terms for A-orthogonal search directions. . . . . . . . 36
3.3 Using conjugate search directions for reaching the minimum. 38
3.4 Spherical truncation and charge neutralization. . . . . . . . 43
3.5 The Madelung energy in case of charge neutralization. . . 45
3.6 Energy oscillations are additionally damped. . . . . . . . . . 48
3.7 Charge optimization with the modified model of SM. . . . . 50
3.8 Charge distribution of an Al2O3/Al-interface structure. . . 51
3.9 The dipole structure scalar of liquid silica. . . . . . . . . . . 53
3.10 Equation of state for liquid silica at 3100 K. . . . . . . . . . 54
3.11 Tensile test of bulk AlO along the 〈1210〉-direction. . . . . . 55
3.12 Tensile test of bulk AlO along the 〈1010〉-direction. . . . . . 56
3.13 Tensile test of bulk AlO along the 〈0001〉-direction. . . . . . 57
3.14 Al/Al2O3 relaxed by ab-initio and MD simulation. . . . . . 58
3.15 Charge difference across the Cu/α-quartz interafce . . . . . 61
3.16 Crack propagation with variable charges. . . . . . . . . . . . 63
3.17 Visualizing the crack propagation with MegaMol . . . . . . . 64

4.1 Visualization of the crack tip with MegaMol . . . . . . . . . 68
4.2 Different displacements modes for periclase. . . . . . . . . . 71
4.3 Convergence behavior of the polarization. . . . . . . . . . . 74
4.4 Orientation of the TS dipoles. . . . . . . . . . . . . . . . . . 76
4.5 The direction of the electric field. . . . . . . . . . . . . . . . 76
4.6 Convergence behavior of the polarization for mode (a′) . . . 78
4.7 Both parts of polarization as a function of strain gradient. . 80

ix



x List of Figures



List of Tables

3.1 Adhesion energies of the Al/Al2O3-interface system. . . . . 60

4.1 Values of flexoelectric constants . . . . . . . . . . . . . . . . 83

xi



xii List of Tables



Numerical Simulations of Metal-Oxides

Summary in English

Oxides like silicates (SiO2), alumina (Al2O3) or periclase (MgO), are ma-
terials with significant properties and are therefore investigated extensively
in experiment and in theory. The aim of this PhD thesis was to propose
and further to develop methods, which make molecular dynamic simula-
tions of oxides with large particle numbers and for long simulation times
possible.
The work consists of three parts. In the first one the already existing

methods for simulating oxides will be discussed, while in the second one
their methodological progress will be presented. The third chapter is solely
reserved for the phenomenon of flexoelectricity, which has been discovered
during the visualization of the crack propagation in alumina (Al2O3).

Introduction

Oxides are ionic materials with charged and polarizable atoms. Thus,
the interaction between the atoms is of long-range nature. The molecular
dynamics (MD) of such systems is quite problematic, since the forces do
not fall quickly to zero within the usual cut-off radii. This can be only
ensured by applying special methods.

Methods

One of them is the summation method by Ewald. Originally, it proposes
a solution of the conditionally convergent sum of the electrostatic energy
for N point charges, the so-called problem of Madelung in solid state
physics. The main idea is to smear the charges by an additional charge

xiii
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density of opposite sign, making the resulting sum converging rapidly. The
most common choice for the smearing function is a Gaussian shape. At
the same time this Gaussian part is substracted again, so that physics
remains unaltered. By solving the Poisson equation with this modified
charge density the electrostatic energy splits into three contributions: one
in direct space, one self-energy part and one in reciprocal space. The last
part follows from the Gaussian charge distribution, since in that space
the corresponding sum converges much faster. How fast the convergence is
taking place, depends on the Ewald parameter κ and the two cut-off radii
rc (direct space) and kc (reciprocal space). They have to be chosen in such
a way as to keep the error minimal. In that case the summation method
of Ewald scales with O(N3/2).
The pure metal is covered in nature by oxide layers. Thus, metal-oxide

systems have to be simulated. The valences of the metal atoms increase
from zero to a finite value as one approaches the interface from the pure
metal side. There are different methods describing the charge distribution
of such combined systems in the simulation correctly. One of them is the
method of Streitz and Mintmire (SM). In their model the electrostatic en-
ergy is expressed as a quadratic function of the charges. By minimizing this
function with the constraint of net-charge neutrality the desired valences of
the system are obtained. For this purpose a linear system of equations has
to be solved by inversion of the corresponding matrix. The non-diagonal
elements of the matrix contain the long-range term 1/rij , with rij being
the distance between the atoms i and j. SM treated it by the method of
Ewald. For the non-electrostatic interaction an EAM potential is used.
This method has been firstly applied for the Al/Al2O3-system.
An alternative model for simulating oxides has been proposed by Tangney

and Scandolo (TS). The oxygen atoms have an additional property, namely
the polarizability and, thus, they have a dipole moment. In addition to
the original Coulomb-interaction between charges, also charge-dipole and
dipole-dipole forces occur. For these long-range interactions the summa-
tion technique of Ewald is used. A Morse-stretch potential is assumed
for the short-range pair interactions of the ions. The dipole of each oxygen
atom splits into a short-range and induced part. The last one is the prod-
uct of polarizability and local electric field, which depends on the locally
arranged charges and dipole moments. The solution has to be therefore
self-consistently. TS developed their model for silica.
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Developments and Improvements

SM introduced their model in 1994 for the system of alumina. Since then,
it has been transferred to other oxides and optimized at different points.
In this work these alternative models are shown and are tested, whether
are suitable for large-particle simulations. In summary, all these methods
eliminate some problems of the origin SM model, but are less efficient.
For the purpose of this work, namely the simulation of metal-oxides with

large number of atoms and for long simulations times, the computation of
the long-range forces has been executed in a more efficient way. Instead
of using the Ewald-sum as mentioned above, a reduced version has been
applied. This summation method named by Wolf is a direct one, which
incorporates the physical observation that charges can screen each other
in ionic systems. Such a net-charge neutrality within a cut-off radius rc
is equivalent to a continuous truncation of the Coulomb potential at rc.
The Wolf-method has no reciprocal space part and, thus, needs no periodic
boundary conditions in the simulation. It scales linear with the number of
particles, which makes it to an efficient method for big systems.
For determining the valences by the SM model a linear system of equa-

tions has to be solved, which is done in this work by the conjugate gradient
method. In contrast to the method of steepest descent it does not use search
directions, which are orthogonal to each other, but as the name suggests,
conjugated ones. Another optimization of the SM model is to apply the
Wolf-summation method also to the non-diagonal entries of the interaction
matrix, since they contain the long-range term 1/rij . In such a way the
charge computation during the MD is accelerated by the factor 60. Charge
values, which have been determined by the Ewald- and the Wolf summa-
tion method differ about 1.1%.
After the successful implementation of the SM model in IMD (ITAP

Molecular Dynamics), simulations have been executed both on pure alu-
mina and on the Al/Al2O3-interface system. Unfortunately, the EAM po-
tential proposed by SM was not appropriate for the stabilization of the
interface. Also other attempts to stabilize the combined system failed.
Since the model of TS has been transferred to other oxide systems like

periclase (MgO) and alumina (Al2O3) it was obvious to connect it with
the model of SM. Dipoles with variable charges are the result. It has been
applied on the crack propagation in Al2O3. The computed charge val-
ues, which follow from the SM model correspond to the valences of the
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system. However, at TS the charge qi is an optimization parameter, as
the other quantities of the model. A further improvement of the original
approach was to execute a new optimization routine in potfit with the
range of qi limited to +3 and -2. Unfortunately, the TS potential param-
eters were only succesful optimized with adjusted charge values +2 and
-1.4. This compromise one has to make if both models are merged. Never-
theless, the combined model is about two orders faster than methods like
the Charge Optimized Many Body (COMB) potential or the Reactive Force
Field (ReaxFF). By use of it charge fluctuations have been observed during
the crack propagation, which have been visualized by the visualization tool
MegaMol.

Flexoelectricity

Flexoelectricity is the phenomenon, where a polarization arises by applying
non-uniform stress on a material. In contrast to piecoelectricity it appears
also in systems, which are inversion symmetric. By visualizing the crack
propagation in Al2O3 with MegaMol, domains with an anti-ferroelectric
dipole arrangement have been observed. For a better understanding of the
phenomenon the simple cubic system of periclase MgO was regarded. MgO
has sodium chloride structure and three flexoelectric constants. As a first
step three different deformation modes (bending, inhomogeneous elonga-
tion, shearing) with different strengths of the strain gradient have been
executed on a system of about 120,000 atoms. Two of the coefficients have
been determined by a relaxation of 60,000 MD steps, after the deformation
has been kept by fixing the first atomic layers of the sample. The result
was a homogeneous polarization, which consisted of two parts: the primary
one, which resulted from the asymmetric displacement of the ionic charges
due to the strain gradient after relaxation, and an induced one due to the
deformation of the electronic orbits of the oxygen atoms, since here the
potential model of TS for MgO has been applied. As expected, polariza-
tion and strain gradient showed a linear dependence. From the slope of the
lines two of the flexoelectric constants have been determined. For the third
one (longitudinal mode) no surface stabilization was possible. The atoms
would have relaxed to their initial undeformed positions. For this purpose
the sample was firstly rotated by 45◦ and then bent. The flexoelectric con-
stant from this modified geometry was expressed by the other three. Since
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two of them were already known, the third could be determined.

Résumé

The model of SM has been implemented in a modified form in IMD. The
improvements were the use of an iterative method for solving the appearing
linear system of equations and the computation of the long-range interac-
tions by the summation method of Wolf. Concerning the computation of
the charge values a significant acceleration by the factor 60 was achieved.
For the non-electrostatic potential, which describes the short-ranged inter-
action of the atoms SM proposed an EAM potential. For the crack prop-
agation in Al2O3 and for the stabilization of the Al/Al2O3-interface this
potential was inappropriate. Attempts with other potentials also failed.
The TS-potential, which has been successfully transferred to other oxide
systems like Al2O3 and is available in IMD was combined with the SM
model. In such a way the crack propagation in Al2O3 was simulated with
variable charges.
In a visualization of the crack tip in alumina the phenomenon of flexo-

electricity was observed. It was reproduced in the simple cubic system of
periclase by applying three different deformation modes. By increasing the
strength of the strain gradient linearly, fixing the surfaces and executing
a relaxation a homogeneous polarization was achieved and, thus, it was
possible to determine all three flexoelectric constants of MgO for the first
time by MD simulations.
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Numerische Simulationen von

Metalloxiden

Zusammenfassung in deutscher Sprache

Oxide, wie z.B. Silikate (SiO2), Korund (Al2O3) oder Periklas (MgO), sind
bedeutende Funktionswerkstoffe und werden daher experimentell wie theo-
retisch intensiv untersucht. Ziel dieser Dissertation war es, Verfahren vorzu-
stellen und derart zu optimieren, dass sie Molekulardynamiksimulationen
von Oxiden mit großen Teilchenzahlen und über lange Zeiten ermöglichen.
Die Arbeit gliedert sich dabei in drei Bereiche. Im ersten Teil wird auf

die einzelnen bereits vorhandenen Methoden zur Simulation von Oxiden
eingegangen, im zweiten Kapitel deren Verbesserung vorgestellt. Der dritte
Bereich widmet sich ausschließlich dem Phänomen der Flexoelektrizität,
welche durch die geschickte Visualisierung der Rissausbreitung in Korund
(Al2O3) entdeckt wurde.

Einleitung

Oxide sind ionische Substanzen mit geladenen und polarisierbaren Ato-
men. Die dabei auftretenden interatomaren Wechselwirkungen sind somit
von weitreichender Natur. Die Molekulardynamik (MD) solcher Systeme
ist problematisch, da diese Kräfte innerhalb der gängigen und effizienten
Abschneideradien nicht schnell genug gegen Null abfallen. Es müssen daher
Verfahren herangezogen werden, die dies gerade sicherstellen.

xix
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Methoden

Eines davon ist die Summationsmethode nach Ewald. Ursprünglich wurde
sie für die bedingt konvergente Summe der elektrostatischen Energie ei-
ner Ansammlung von N Punktladungen entwickelt. Sie lieferte somit eine
Lösung für das sogenannte Madelung-Problem im Festkörper. Die Vorge-
hensweise ist die, dass die Ladungen mit einer Gaussschen Ladungsvertei-
lung entgegengesetzten Vorzeichens ausgeschmiert werden, damit die resul-
tierende Summe schneller konvergiert. Gleichzeitig wird dieser Gausssche
Anteil wieder abgezogen, um die Physik unverändert zu lassen. Mit die-
ser neuen Ladungsverteilung löst man dann die Poisson-Gleichung und
erhält die elektrostatische Energie in drei Beiträge aufgeteilt. Einen im
direkten Raum, einen Selbstenergie-Term und einen Anteil im reziproken
Raum. Letzterer rührt von der Gaussschen Ladungsverteilung her, konver-
giert doch die entsprechende Summe dort um einiges schneller. Wie schnell
die einzelnen Beiträge tatsächlich konvergieren, wird durch den Ewald-
Parameter κ und zwei Abschneideradien rc (direkter Raum) und kc (rezi-
proker Raum) festgelegt. Die Wertewahl erfolgt dabei so, dass der Fehler
möglichst minimal wird. In diesem Fall skaliert die Ewald-Summe mit
O(N3/2).
Das reine Metall ist in der Natur in der Regel mit Oxidschichten be-

deckt. In der Molekulardynamiksimulation hat man es somit mit Metall-
Oxid-Systemen zu tun. Dabei bauen sich die Valenzladungen im Oxid zur
Grenzschicht zum Metall hin ab. Es gibt dazu verschiedene Verfahren, wel-
che diese Ladungsverteilung an der Grenzschicht während der Simulation
korrekt wiedergeben. Eines davon ist das von Streitz und Mintmire (SM).
In diesem Modell wird die elektrostatische Energie als quadratische Funk-
tion in den Ladungen aufgestellt. Minimiert man diese unter der Neben-
bedingung der Ladungsneutralität, erhält man die gewünschten Valenzen
des Systems. Dabei muss ein lineares Gleichungssystem durch Inversion
der entsprechenden Matrix gelöst werden. Die Nicht-Diagonalelemente der
Matrix enthalten den weitreichenden 1/rij-Term, wobei rij der Abstand
zwischen den Atomen i und j ist. Dieser wird bei SM mit der Ewald-
Methode behandelt. Für die nicht-elektrostatische Wechselwirkung wird
ein EAM-Potenzial herangezogen. Diese Methode wurde erstmals für das
System Al/Al2O3 entwickelt.
Ein alternatives Modell, um Oxide in der Simulation korrekt zu be-

schreiben, ist das von Tangney und Scandolo (TS). Die Sauerstoffato-
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me bekommen als zusätzliche Teilcheneingeschaft eine Polarisierbarkeit
zugeschrieben und können demnach ein Dipolmoment ausbilden. Neben
der Coulomb-Wechselwirkung treten somit Ladungs-Dipol- und Dipol-
Dipol-Wechselwirkungen auf. Diese weitreichende Kräfte werden mit dem
Ewaldschen Summationsverfahren behandelt. Für die kurzreichende Paar-
Wechselwirkung wird ein Morse-stretch Potenzial angesetzt. Die Dipol-
momente selber werden in einen kurzreichenden und induzierten Beitrag
aufgeteilt. Letzterer ergibt sich als Produkt aus Polarisierbarkeit und loka-
lem elektrischen Feld, welches wiederum von allen umliegenden Ladungen
und Dipolmomenten abhängt. Eine selbstkonsistente Bestimmung der Di-
polmomente ist somit nötig. TS entwickelten und präsentierten ihr Modell
für Siliziumdioxid.

Weiterentwicklungen und Verbesserungen

SM stellten ihr Modell 1994 für Aluminiumoxid vor. Seitdem wurde es
auf weitere Oxide übertragen und an der einen oder anderen Stelle weiter-
entwickelt bzw. optimiert. In dieser Arbeit werden die meisten alternati-
ven Modelle aufgezeigt und bzgl. ihres Einsatzes auf große Teilchenzahlen
gesprüft. Als Resümee lässt sich sagen, dass viele dieser Verfahren zwar
Schwachstellen des ursprünglichen SM Modells beseitigen, aber hinsicht-
lich ihrer Effizienz einen Schritt nach hinten bedeuten.
Für das Vorhaben dieser Dissertation, Metalloxide mit großen Teilchen-

zahlen und über längere Zeiten zu simulieren, wurde zunächst die Be-
rechnung der weitreichenden Wechselwirkungen wirkungsvoller gestaltet.
Anstatt wie oben beschrieben die Ewald-Summe heranzuziehen, wurde
eine verkürzte Version davon verwendet. Dieses nach Wolf benannte Sum-
mationsverfahren ist ein direktes, welches die physikalische Beobachtung
berücksichtigt, dass sich Ladungen in ionischen System gegenseitig ab-
schirmen können. Diese Ladungsneutralität innerhalb eines gegebenen Ab-
schneideradius rc ist äquivalent zu einem stetigen Abscheiden desCoulomb-
Potentials. Die Wolf-Methode kommt dabei ohne reziproken Anteil aus und
benötigt somit keine periodische Randbedingungen mehr in der Simulati-
on. Die Skalierung ist dadurch linear in der Anzahl der Teilchen, was sie
zu einem effizienten Verfahren gerade für große Systeme macht.
Für die Bestimmung der Valenzen bei SM wird ein lineares Gleichungs-

system aufgestellt, welches in dieser Arbeit durch das iterative Conjugate-



xxii Zusammenfassung

Gradient (CG) Verfahren gelöst wird. Als Nachfolger der Methode des
steilsten Abstiegs verwendet dieses nicht zueinander orthogonale Suchrich-
tungen, sondern, wie der Name schon verrät, konjugierte. Eine weitere Op-
timierung des SM Modells, die hier durchgeführt wurde, ist, die weitrei-
chenden Terme, die innerhalb der oben erwähnten Nicht-Diagonalelemente
der Wechselwirkungsmatrix vorkommen, auch mit der Wolf-Summe zu be-
handeln. Dadurch erfolgt die Ladungsberechnung innerhalb der MD um
den Faktor 60 schneller. Vergleicht man die Ladungswerte einmal mit dem
Ewald- und andermal mit dem Wolf-Verfahren berechnet, so unterschei-
den sich diese lediglich um 1.1%.
Nach erfolgreicher Implementierung des SM Verfahrens im hauseige-

nen Code IMD (ITAP-Molekulardynamik) wurden damit Simulationen so-
wohl an reinem Aluminiumoxid, als auch am Al/Al2O3-Grenzflächensystem
durchgeführt. Leider stellte sich heraus, dass das von SM vorgeschlagene
EAM-Potenzial nicht geeignet ist, die Grenzfläche korrekt darzustellen. Es
wurden andere Versuche vorgenommen das zusammengesetzte System zu
stabilisieren, jedoch ohne Erfolg.
Da das Modell von TS bereits erfolgreich auf andere Oxide wie Ma-

gnesia (MgO) und Alumina (Al2O3) übertragen worden war, war es na-
heliegend, dieses herzunehmen, und mit dem von SM zu verknüpfen. Das
Ergebnis sind Dipole mit variablen Ladungen. Angewandt wurde es auf
die Rissausbreitung in Al2O3. Während beim SM-Modell die berechneten
Ladungswerte den experimentell bestimmten Valenzen des System entspre-
chen, hier +3 und -2 für die Al- bzw. O-Atome, stellt die Ladung qi bei
TS, neben den anderen Größen des Modells einen reinen Optimierungspa-
rameter dar. Als weitere Verbesserung des Verfahrens wurde nun potfit

herangezogen und eine erneute Optimierung aller TS-Potenzialparameter
durchgeführt, wobei sich qi nun im Wertebereich von +3 bis -2 bewegen
durfte. Eine erfolgreiche Optimierung stellte sich hingegen nur bei ange-
passten Ladungswerten von +2 und -1.4 ein. Diesen Kompromiss musste
man bei der Verbindung beider Modelle eingehen. Das Verfahren ist aber
um zwei Größenordnungen schneller als Methoden wie Charge Optimized
Many Body (COMB)-Potenzial oder das Reactive Force Field (ReaxFF). Es
konnten damit Ladungsfluktuationen beobachtet werden, während sich der
Riss ausbreitet. Diese wurden mit Hilfe des Visualisierungstools MegaMol
sichtbar gemacht.
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Flexoelektrizität

Als Flexoelektrizität bezeichnet man das Phänomen, dass sich bei einer in-
homogenen Deformation eines Materials eine Polarisation einstellt. Anders
als bei der Piezoelektrizität, tritt diese auch bei Systemen mit Inversi-
onssymmetrie auf. Bei der Visualisierung der Rissausbreitung von Al2O3

mit MegaMol konnte man Domänen antiferroelektrischer Dipolanordnun-
gen erkennen. Um die Erscheinung genauer zu verstehen, wurde zunächst
das einfache kubische System von Magnesia (MgO) betrachtet. Es besitzt
Natriumchlorid-Struktur und drei flexoelektrische Konstanten. Zunächst
wurden drei verschiedene inhomogene Deformationen (Biegung, inhomoge-
ne Dehnung und Scherung) mit jeweils unterschiedlich starken Gradienten
der Verzerrung auf ein System von rund 120.000 Atomen ausgeführt. Zwei
der Konstanten konnten bestimmt werden, indem man die Deformation
durch Fixieren der Oberflächenatome aufrecht erhielt und eine Relaxation
von 60.000 MD-Schritten durchführte. Es stellte sich eine homogene Po-
larisation ein. Die Polarisation selber wies dabei zwei Anteile auf. Einmal
den primären Beitrag, der sich durch die Verschiebung der Atomkerne ergab
und den induzierten Beitrag. Letzterer folgt aus der gleichmäßigen Ausrich-
tung der Dipolmomente der Sauerstoffatome. Verwendet wurde hierbei das
Potenzialmodell von TS für MgO. Polarisation und Gradient der Deforma-
tion folgten, wie zu erwarten, einem linearen Verlauf. Aus der Steigung der
Kurven konnten die Konstanten ermittelt werden. Die longitudinale Mo-
de erwies sich als problematisch, da hier keine Oberflächenstabilisierung
möglich war. Die Atome fallen bei der Relaxation sofort wieder auf ih-
re Gleichgewichtspositionen zurück. Daher wurde die Probe in ein 45◦-
gedrehtes Koordinatensystem betrachtet und dann anschließend gebogen.
Die sich dabei ergebende flexoelektrische Konstante konnte durch alle ande-
ren drei ausgedrückt werden. Da zwei davon bereits bekannt waren, konnte
somit die dritte und fehlende Konstante bestimmt werden.

Resümee

Das Modell von SM wurde in verbesserter Form in IMD implementiert.
Die Verbesserungen waren die Verwendung eines iterativen Gleichungssys-
temslösers sowie die Berechnung der weitreichenden Wechselwirkung mit
dem Wolf’schen Summationsverfahren. Damit konnte, was die Ladungsbe-
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rechnung betrifft, eine deutliche Beschleunigung hinsichtlich der Simulati-
onsdauer erzielt werden. Neben der elektrostatischen Energie gibt es noch
ein nicht-elektrostatisches Potenzial, welches die kurzreichende Wechsel-
wirkung der Atome wiedergibt. SM schlugen dazu ein EAM-Potenzial vor,
welches sich aber für die Rissausbreitung in Al2O3 und für die stabile Si-
mulation der Al/Al2O3-Grenzfläche, als ungeeignet erwies. Es wurden an-
dere Potenziale herangezogen, die leider auch nicht zum Erfolg führten.
Das TS-Potenzial, welches in IMD mit Wolf-Behandlung der weitreichenden
Wechselwirkungen vorliegt, wurde erfolgreich auf andere Oxide übertragen,
u.a. Al2O3. Durch die Verknüpfung mit dem SM-Modell, konnte man die
Rissausbreitung in Al2O3 mit variablen Ladungen simulieren.
Bei der Visualisierung des Risses in Alumina ergab sich das Phänomen

der Flexoelektrizität. Anhand von Magnesia konnte dieses gezielter repro-
duziert werden. Dabei wurden drei unterschiedliche Verschiebungsfelder
auf dieses kubische System angewendet und eine homogene Polarisation
erzielt. Indem man die Stärke der Verzerrung variierte, die Oberflächen
festhielt und das System lange relaxierte, ließen sich die flexoelektrischen
Konstanten für MgO bestimmen.



Chapter 1

Introduction

Metal-oxide systems play a decisive role in electronic industry. There is a
wide application of such combined systems with different and special prop-
erties. Perovskite oxides are one example for next-generation electronic
materials. This is because of their high Tc superconductivity, their gi-
ant magnetoresistance, their multiferroic and catalytic behavior and their
colossal thermoelectric and magnetocaloric effects [29, 74, 82, 87]. Also
quantum states of matter can be generated and manipulated by creating
quantum wells from nanostructured transition metal-oxides [76]. Further-
more, thin films of oxides and interface structures exhibit a new kind of
magnetism in solid matter. The magnetic order at their interfacial region
can be affected, if their electronic structure is changed as a consequence of
broken symmetry, strain, and atomic or electronic reconstruction to ensure
local charge neutrality [14]. Therefore, it is essential to describe such sys-
tems in molecular dynamics simulations correctly.
Oxides or metal-oxide interfaces contain electric charges and dipole mo-

ments and, hence, the atoms interact by long-range forces. For this purpose
suitable interaction potentials must be established and implemented in the
molecular dynamics code IMD (ITAP-Molekulardynamik) [75], used in this
work. With this tool the behavior of the materials under mechanical and
thermal loads can be studied.
The thesis is organized in three parts. In the first one a detailed intro-

duction of atomistic computer simulations is given. The main focus is there
on molecular dynamics with long-range interactions. One method how they
can be treated is the summation technique by Ewald [25]. An extensive
derivation of the Ewald sum is presented. For the correct treatment of the
charge distribution on a metal-oxide interface the variable charge model of
Streitz and Mintmire (SM) [78] is considered and alternative approaches
are shown and discussed. Tangney and Scandolo suggested a method based
on the polarizability of the oxygen atoms, which therefore exhibit dipole

1
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moments [81]. This dipole model is also explained here. In the second part
of the work methodological improvements of the SM method are worked
out. Using a conjugate gradient solver and the summation method of Wolf
[88] for the long-range interactions are the major ones. The differences be-
tween Wolf and Ewald are also presented explicitly. These developments
are applied to pure alumina (Al2O3) and to the Al/Al2O3-interface struc-
ture. For studying the crack propagation in Al2O3 with variable charges
both models of SM and TS have been combined.
In the last part the phenomenon of flexoelectricity [41] is illustrated, since

it has been observed at the crack analysis of alumina [34]. The flexoelectric
effect of generating a polarization by a strain grained was reproduced in the
simple cubic oxide periclase (MgO) by use of three well defined displace-
ment modes. In such a way all three flexoelectric constants of MgO could
been determined by molecular dynamics for the first time. A summary of
the thesis is given at the end.



Chapter 2

Atomistic Computer Simulations

Computer simulations have become a powerful tool in all natural sciences
and in engineering. In addition to experiment and theory they nowadays
represent a separate discipline, which provides insights and answers to
many problems from a different angle of view.
Especially in physics, simulations are applied on a broad basis. From

solid state physics to astrophysics they cover a wide range of different
branches and length scales.
For simulations on an atomistic level two approaches exist. The system

can be either described quantum mechanically or classically. In the first
case the computation of the system properties are done from first principles
or ab-initio, while in the second one the interaction between the particles
is governed by effective potentials, which have been fitted to empirical or
ab-initio data [24]. The classical description is called molecular dynamics
(MD) and is used for the atomistic simulation of metal-oxide systems in
this thesis. It is presented here in detail, while for the ab-initio calculations
only a brief introduction is given.

Metal-oxide systems need a special treatment in the molecular dynam-
ics simulation, since their atoms are charged and exhibit dipole moments.
Thus, the interatomic forces are of long-range nature and have to be han-
dled by methods like the Ewald summation technique [25].
Also variable charge methods have to be introduced, since the values

of the charges usually change during the simulation. This has a dramatic
effect on the electrostatic interaction, which controls the main properties
of the oxide. Such a charge transfer model was proposed by Streitz and
Mintmire [78]. The main idea of it and its improvements in the last years
will be discussed in detail in this chapter in combination with the summa-
tion method of Ewald mentioned above.
An alternative model for describing oxides in the MD correctly was sug-

gested by Tangney and Scandolo [81]. They introduce the polarizability as

3
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an additional particle property for the oxygen atoms. Therefore, dipole mo-
ments can arise, which govern the behavior of the oxide in the simulation.
This model is illustrated at the end of the present chapter.

2.1 Ab-initio Methods

The state of a quantum mechanical system consisting of N atoms is de-
scribed by the many-atom wave function Ψ(ri,Rj , t), with ri being the
coordinates of the electrons and Rj indicating the positions of the nuclei.
For the dynamics of Ψ the time-dependent Schrödinger equation is con-
sidered:

ĤΨ = i~
∂

∂t
Ψ, (2.1)

depending only on natural constants and the space coordinates of nuclei and
electrons. Applying ab-initio calculations in atomistic simulations means
to solve the above equation for a many-body system without the use of
external parameters and empirical data. That is the reason, why they are
called first principles calculations. A solution for Eq. (2.1) can be only ob-
tained for a few 100 or 1000 atoms. This solution, which is an approximate
one, follows from different assumptions, like the one suggested by Born

and Oppenheimer. Since nucleus and electron largely differ in mass, their
motion can be regarded separately. The electronic problem, which is the
main task of the ab-initio method, is then solved [67]. Also other ap-
proaches for the same issue exist, e.g. the Hartree–Fock method or the
density functional theory (DFT).
In the work presented here ab-initio methods have been only used for

the fitting procedure of effective potentials. These are potentials, which
introduce an empirical interaction between the atoms, based on ab-initio
data and are able to simulate systems with a larger number of particles [24].
They are trained to different modifications and conditions of the atomic
structure one is interested for, like under high stress or in the molten state.
For these reference structures the forces are calculated with an ab-initio
code, e.g. VASP [43–46]. A set of paramaters {pi}, which characterizes the
potential has to reproduce these forces, including in this optimization also
experimental data such as cohesive energies, elastic constants and lattice
parameters. The best set minimizes the mean square error. The idea of
this force matching method is simple, but the execution is rather compli-
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cated and time-consuming. A software tool named potfit, which is freely
available, has been developed for this purpose and has been applied to the
creation of different oxide potentials [9].

2.2 Classical Molecular Dynamics

Since the interatomic interaction is replaced by effective potentials, the
atoms are not considered any more as a quantum mechanical system of nu-
cleus and electron, but they are reduced to classical point particles. Com-
puting the trajectory of these particles in the simulation is the main task
of molecular dynamics. Hence, Newtons equation of motion,

F j = mj
d2rj

dt2
= −∇jUeff (r1, . . . , rN ) , (2.2)

has to be solved for N interacting atoms numerically. The force F j , which
acts on atom j, is written as gradient of the effective potential, because in
that description Ueff is equal to the total potential energy of the system.
Above equation is integrated in a recursive way by discretizing the time into
small steps δt. By knowledge of the particles positions and velocities at a
particular time t0, a specific algorithm is used to calculate them at the later
time t0+δt. The most prominent numerical approaches for this purpose are
the methods of Gauss, Runge–Kutta and Verlet. In the MD software
package IMD the latter one is implemented [75]. How the implementation
can be realized is illustrated for instance in Numerical Recipes [61]. One of
the different versions of this algorithm of Verlet is the so-called velocity
Verlet method. In addition to the position also the velocity of the atom j
at the time t0+ δt is explicitly computed via a simple Taylor expansion:

rj(t0 + δt) = rj(t0) + vj(t0) δt+
F j(t0)

2mj
δt2 (2.3)

vj(t0 + δt) = vj(t0) +
F j(t0) + F j(t0 + δt)

2mj
δt. (2.4)

In general the choice of the time step δt is essential for the correct simula-
tion of the system one is interested for. It has to be in the same range as
the typical time scales, which appear in the system. Since atomic motions
are in the order of some femtoseconds, δt takes for atomistic simulations
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values between 0.1 and 2 fs. How the position of a single atom during a MD
step changes and how its trajectory can be calculated in the simulation is
shown in Fig. 2.1.
MD calculations are performed either in the microcanonical or canonical

ensemble, since the number of particles N is fixed. The corresponding sim-
ulations are called NVE or NVT simulations, with V being the volume, E
the energy and T the temperature, respectively [58, 59]. The last quantity
is controlled by an external heat bath, which is coupled to the system. It
is realized by a thermostat. Also a barostat can be added controlling the
pressure P for the case that the volume varies. This would be then a NPT
ensemble. The solution of the equation of motion given by the Eqs. (2.3)
and (2.4) is only applicable for the simulation of a NVE ensemble, since
NVT and NPT simulations modify the original form of Eq. (2.2). An
additional friction term is necessary for the thermostat, while the pressure
control, which requires a rescaling of the box size, also affects Newtons
equation of motion.
The main idea of the effective potential has been already pointed out in

the previous section. It characterizes the simultaneous interaction of each
atom with all other ones and thus depends on the positions of all parti-
cles. This many-body interaction can be split into the single contributions
of one, two, three or more directly interacting atoms, so that Ueff can be
written as a sum of one-, two-, three-body etc. potentials:

Ueff ({rl}) =
∑

i

φi(ri) +
1

2

∑

i,j

i6=j

φij(ri, rj) +
1

6

∑

i,j,k

i6=j 6=k

i6=k

φijk(ri, rj , rk) + . . .

(2.5)
The first term corresponds to an external potential and can be omitted,
since it causes only a shift. The second one specifies the pairwise interaction
between the particles, while the three-body interaction is given by the third
term and so on. In general, the higher order terms can be ignored, because
they do not affect the effective potential as much as the leading ones.
Anyway, from a certain distance of interaction the value of Ueff is set by
definition equal to zero, as it will be discussed in the next section.
For the description of most systems it is sufficient to consider only the

interaction between atom pairs. Such a pair potential is normally isotropic



2.2 Classical Molecular Dynamics 7

t0
F j(t0)

mj

t0 + δt

rj(t0)

rj(t0 + δt)

Figure 2.1: Schematic illustration of a MD step. At t0 the net-force
on atom j is computed (left side). After a time step δt
this particle moved a certain distance along the action line
of F j(t0). The positions of all other atoms also changed
accordingly (right side). This procedure is done simultane-
ously for all particles at each δt, determing in such a way
for longer times their trajectories.

and homogeneous and thus a function of the pair distance rij = |ri − rj |:

Ueff(rij) =
1

2

∑

i,j

i6=j

φtitj (rij), i, j = 1, . . . , N. (2.6)

φ is solely determined by the different combinations of the types ti and tj
of the two atoms i and j. Pair potentials are well applied on liquids or
solids of noble gases [2], to name only two examples. However, there are
systems for which a pair potential would be a bad choice. Especially for
metals or metallic alloys another sort of potential is preferred [19, 27].

Embedded Atom Method Potentials

Effective potentials for metals are usually proposed to be the sum of a pair
term φ, which describes the direct core-core interaction of the ions and
an additional cohesive contribution F . The latter part follows from the
energy, which is released by embedding an ion core into the sea of electrons.
The local electron density n determines the value of this embedding energy,
which in turn depends on the contributions of the surrounding atoms. This
kind of potential, originally developed by Daw and Baskes [18], is called
embedded atom method (EAM) potential. It is related to the Finnis-Sinclair
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model [26], so that for the potential energy the following form can be
assumed:

Ueff(rij) =
1

2

∑

i,j

i6=j

φij(rij) +
∑

i

Fi(ni), (2.7)

with ni =
∑

j 6=i

ρj(rij), i, j = 1, . . . , N, (2.8)

where the transfer function ρj specifies the single contribution of each
other atom j to the electron density n of atom i. A review of theory and
applications of the EAM potential is given in Ref. [20].

2.3 Molecular Dynamics with Long-Range
Interactions

Calculating the interaction of each atom with all other ones, becomes in
the simulation inefficient above a certain number of particles, since the
computational effort scales with N2. A space cut-off rc has to be intro-
duced, which limits the distance of the interaction. For each atom only
the force contributions of the those atoms are added, which are not further
than rc. Such a spherical truncation is not applicable for every kind of
potential. The interaction has to be short-ranged. This is not the case for
charge-charge or charge-dipole interactions. The corresponding potentials
decay with r−1 and r−2, so that non-negligible force and energy contribu-
tions further than rc arise. To handle these long-range interactions, special
methods have been developed. The most used is the method of Ewald
[25], which is implemented in many MD-codes as a default option.

2.3.1 Ewald Summation Technique

For the electrostatic energy E of N interacting point charges, the direct,
pairwise summation of the Coulomb potential has to be carried out. The
resulting sum:

E =
1

2

N∑

i=1

N∑

j 6=i=1

qiqj
rij

, (2.9)
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with rij = |ri − rj | beeing the distance between the charges qi and qj ,
is conditionally convergent and has to be treated in a different way. An
efficient method was suggested by Ewald. It ensures the rapid convergence
of E, also referred to as Madelung energy, by firstly forcing periodicity
on the usually non-periodic system. Therefore, the vector n = (nx, ny, nz)

t

is introduced. Its components nx, ny and nz are integers and build up the
periodic image cells of the cubic simulation box with edge length L. Eq.
(2.9) becomes to

E =
1

2

N∑

i=1

N∑

j=1

∞∑

n=0

′ qiqj
|rij + nL| , (2.10)

where the case i = j for n = 0 is not considered, which is indicated by the
prime after the sum over n. N specifies the number of charges within one
single box. The next step of the Ewald summation technique would be to
split the sum in Eq. (2.10) into two short-range parts. For understanding
the main idea of this splitting and how it is realized physically, one has to
look at the derivation of the electrostatic energy from Eq. (2.10). It results
by solving the Poisson equation

∆Φ(r) = −4πρ(r), (2.11)

subject to the constraint of net-charge neutrality:

N∑

i=1

qi = 0, (2.12)

for the charge density:

ρ(r) =
N∑

i=1

∞∑

n=0

qiδ(r − ri + nL) . (2.13)

As expected for point charges, the solution takes the form of the Coulomb

potential:

Φ(rj) =

N∑

i=1

∞∑

n=0

′ qi
|rij + nL| , (2.14)
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where Φ is regarded at the position of atom j. From the potential the
electrostatic energy for the charges of one box follows as

E =
1

2

N∑

j=1

qjΦ(rj). (2.15)

The convergence behavior of this sum can be influenced by a different
form of the charge density ρ(r). This is the physical concept of the Ewald
method [40]. An additional charge density is added, which smears the point
charges in Eq. (2.13) and therefore makes the resulting sum converging
rapidly. At the same time this contribution of opposite sign is subtracted
from ρ(r), affecting in no case the solution from Eq. (2.14). Concretely,
ρ(r) is modified to

ρ(r) =
N∑

i=1

∞∑

n=0

[
qiδ(r − ri + nL)− qiσi(r − ri + nL)

+ qiσi(r − ri + nL)
]
,

(2.16)

with the smearing function σi. For σi any arbitrary function can be chosen,
which falls quickly to zero for large distances |r − ri|. The most common
choice is to take a Gaussian shape:

σi(r) =

(
κ√
π

)3

e−κ2|r|2 . (2.17)

Above charge density is splitted now into the parts:

ρdir(r) =
N∑

i=1

∞∑

n=0

[
qiδ(r − ri + nL)− qiσi(r − ri + nL)

]
, (2.18)

and

ρrec(r) =
N∑

i=1

∞∑

n=0

qiσi(r − ri + nL) , (2.19)

with ρ(r) = ρdir(r) + ρrec(r). The first one describes the overlapping of
the point charges by σi, which effects a screening between distant charges,
while ρrec(r) is a simple correction term. For both charge densities the
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ρ
(r
)

r

original

charge

smearing

correction

Figure 2.2: The original point charges screen each other, since they are
overlapped by Gaussian charge densities of opposite sign.
This additional contribution is subtracted, so that physics
remains unaltered.

Poisson equation has to be solved separately again. This is done for
ρdir(r) in direct space, however for the smearing functions it is carried out
in Fourier space. The reason for this is that in k-space the convergence of
the associated sum is achieved much easier, since long-range contributions
of the physical space there become short-ranged ones. The sums of the
corresponding energies Edir and Erec, which are then obtained are both of
short-range nature compared to E from Eq. (2.10). The realization of this
aim of the Ewald summation is also illustrated in Fig. 2.2.

Reciprocal Space Part

The Poisson equation is reconsidered for theGaussian charge distribution
given by Eq. (2.19):

∆Φrec(r) = −4πρrec(r), (2.20)
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Since the potential Φrec(r) is searched as a function of the reciprocal space
vector k, Φrec(r) and ρrec(r) are expanded in a Fourier series:

Φrec(r) =
∑

k

ϕk e
ik·r, (2.21)

ρrec(r) =
∑

k

ck e
ik·r. (2.22)

The Fourier coefficients are connected via Eq. (2.20):

ϕk =
4π

k2
ck, (2.23)

where ck is obtained from the integral:

ck =
1

V

∫

V

ρrec(r)e
−ik·rd3r. (2.24)

V denotes the volume of the box, which is equal to L3. The evaluation of
the above integral is carried out as follows:

ck =
1

V

N∑

i=1

∞∑

n=0

∫

V

qi

(
κ√
π

)3

e−κ2|r−ri+nL|2e−ik·rd3r

=
1

V

N∑

i=1

∫
qi

(
κ√
π

)3

e−κ2|r−ri|2e−ik·rd3r

=
1

V

N∑

i=1

qi e
−ik·ri exp

(
− k2

4κ2

)
, (2.25)

where at the second step the replacement

∞∑

n=0

∫

V

→
∫
, (2.26)
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has been executed. From this and Eq. (2.23) the electrostatic potential of
the Gaussian smearing functions results as

Φrec(r) =
∑

k 6=0

ϕk e
ik·r,

=
1

V

∑

k 6=0

N∑

i=1

4π

k2
qi e

ik·(r−ri) exp

(
− k2

4κ2

)
. (2.27)

The corresponding energy takes the form:

Erec =
1

2

N∑

j=1

qjΦk(rj),

=
2π

L3

∑

k 6=0

S(k)

exp

(
− k2

4κ2

)

k2
, (2.28)

with the charge structure factor S(k) defined as:

S(k) =

∣∣∣∣∣∣

N∑

j=1

qje
ik·rj

∣∣∣∣∣∣

2

, (2.29)

and k = |k|. As expected, the result in Eq. (2.28) shows, that the reciprocal
space part of the energy converges quickly.
In some cases the charge structure factor S(k) becomes small for k-

vectors near zero, so that the contribution of Ek to the total energy is
negligible. Wolf took regard of this and proposed an alternative summation
method, which will be discussed in detail in Sec. 3.2.
The energy for k = 0 is excluded from the expression of Erec in Eq.

(2.28) and is given in [88] by the following expression:

E(k=0)
rec =

2π

3V

(
N∑

i=1

qiri

)2

. (2.30)

It is related to the total dipole moment of the system. In general, systems

of infinite size do not have a net dipole moment, so that E
(k=0)
rec = 0. As an
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example an ionic melt, which is of infinite size will not show a net dipole
moment. This changes, if the system is finite and periodicity is artificially
forced, as it is done here for easily applying the Fourier transformation.

As a consequence, E
(k=0)
rec is unequal zero and the dynamics of the system

is modified by these finite-size effects. Thus, for the correct simulation of

the infinite system, E
(k=0)
rec is usually omitted [88].

Another part of the energy Erec, which can not be neglected is the self-
energy of the Gaussian charge distributions, which arises from the case
ri = rj . To extract this contribution from Eq. (2.28), a separate exami-
nation of the corresponding potential is necessary.

Self-Energy Part

For one single Gaussian charge distribution

σ(r) =

(
κ√
π

)3

e−κ2r2 , (2.31)

only the radial part of the Poisson equation has to be solved:

1

r

∂2

∂r2
(rΦσ(r)) = −4πqσ(r). (2.32)

Integrating twice, Φσ(r) results:

Φσ(r) =
q erf(κr)

r
+

c1
r

+ c2, (2.33)

with the error function being the antiderivative of the Gaussian:

erf(κr) =
2κ√
π

r∫

o

dτ e−κ2τ2

, (2.34)

and the two constants c1 and c2. Arbitrarily Φσ(∞) = 0 can be set, so that
c2 = 0 follows. Because of the factor r in Eq. (2.32) the above solution
contains the term c1/r, which corresponds to a point charge at r = 0. Since
there is no charge, c1 is equal zero. At the limit r → 0, which is identical
to ri = rj , the potential of σ(r) simplifies to

Φσ(0) =
2κ√
π
qi, (2.35)
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and the energy Ek has to be corrected by the term:

Eσ =
1

2

N∑

i=1

qiΦσ(0),

=
κ√
π

N∑

i=1

q2i . (2.36)

Real Space Part

The second part of the energy is gained by solving the Poisson equation
for ρdir(r) from Eq. (2.18) in real space:

∆Φdir(r) = −4πρdir(r). (2.37)

For this charge density of the smeared point charges no integration has
to be carried out, since the potential Φdir(r) can be specified immediately
from the previous results given by the Eqs. (2.14) and (2.33):

Φdir(rj) =
N∑

i=1

∞∑

n=0

′ qi
|rij + nL| [1− erf(κ|rij + nL|)] ,

=

N∑

i=1

∞∑

n=0

′ qi erfc(κ|rij + nL|)
|rij + nL| . (2.38)

The complementary error function has been used, which is identical to:

erfc(κr) = 1− erf(κr). (2.39)

Finally, the energy Edir takes the form:

Edir =
1

2

N∑

j=1

qjΦr(rj),

=
1

2

N∑

i=1

N∑

j=1

∞∑

n=0

′ qiqj erfc(κ|rij + nL|)
|rij + nL| . (2.40)
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Total Energy

Hence, the total energy E from Eq. (2.10) has been split by this procedure
of Ewald into three contributions:

E = Edir + Erec − Eσ. (2.41)

How fast the sums of Edir and Erec converge, depends on the value of the
Ewald parameter κ and on the two cut-off radii rc and kc, which are added
in the simulation. How to choose these parameters correctly is discussed
in [42]. In general, for a large rc-value it makes sense to take a small κ and
vice versa. The error, which follows from the truncation has to be kept in
an acceptable range. In that case the Ewald summation method scales
for a N particle system with O(N3/2).

2.3.2 The Model of Streitz and Mintmire

Metals are as a rule found in nature as oxides. The pure metal is covered
by oxide layers, which determine the adhesive properties of the real metal
surfaces. For describing them in the MD simulation accurately, they have
to be considered as metal-oxide systems. Essential for such combined sys-
tems is the correct treatment of the charge distribution on the metal-oxide
interface. The valences of the metal atoms increase from zero to a finite
value as one approaches the interface from the pure metal side. To model
this change different methods have been developed, among them the one
of Streitz and Mintmire (SM) [78]. Firstly introduced for the aluminium-
alumina system it allows a dynamic charge transfer between the atoms,
since their charge values are supposed to be variable.

Electrostatic Energy

A description of the total electrostatic energy of an array of atoms as a
function of atomic charges (valences) and position is needed. At first, the
energy of a neutral atom i is expanded to second order as a Taylor series
in the partial charge qi:

Ei(qi) = Ei(0) + χ0
i qi +

1

2
J0
i q

2
i , (2.42)

where χ0
i = ∂Ei/∂qi denotes the electronegativity. It specifies how the

energy varies, if the value of the charge changes. The second order term
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J0
i is named as atomic hardness or self-Coulomb repulsion. For a set of

N interacting atoms with total atomic charges qi the electrostatic energy
can be written as the sum of the single energies Ei:

Ees =
N∑

i=1

Ei(qi) +
1

2

N∑

i=1

N∑

j 6=i=1

Vij(rij ; qi, qj) , (2.43)

with the electrostatic or Coulomb pair interaction:

Vij(rij ; qi, qj) =

∫
d3r1

∫
d3r2

ρi(r1; qi)ρj(r2; qj)

r12
. (2.44)

According to the suggestion of Rappé and Goddard [63], SM take for the
atomic charge density ρi the distribution of a nuclear point charge plus an
additonal radial distribution, given by the function fi(r − ri):

ρi (r; qi) = Ziδ(r − ri) + (qi −Zi) fi(r − ri) . (2.45)

Only the valences are considered, so that Zi is equal to an effective core
charge with 0 < Zi < Zi, where Zi indicates the total nuclear charge of
atom i. fi takes the form of an exponential, since it is assumed to describe
the atomic charge distribution of a spherically symmetric 1s orbital:

fi (|r − ri|) =
ζ3i
π
e−2ζi|r−ri|. (2.46)

Inserting the expression of ρi into Eq. (2.44) and carrying out the integra-
tion leads to the final form of the electrostatic energy:

Ees = E0 +

N∑

i=1

χiqi +
1

2

N∑

i=1

N∑

j=1

Ṽijqiqj , (2.47)

with the electronegativity:

χi = χ0
i +

∑

j 6=i

Zj

{
[j|fi]− [fi|fj]

}
, (2.48)

and the interaction matrix Ṽij :

Ṽij =

{
J0
i , i = j

[fi|fj ] , i 6= j.
(2.49)
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[j|fi] and [fi|fj] are short cuts for the solutions of the nuclear attraction
integral :

[j|fi] =
∫
d3r1

fi (r1 − ri)

|r1 − rj |
, (2.50)

and the Coulomb repulsive integral :

[fi|fj ] =
∫
d3r1

∫
d3r2

fi (r1 − ri) fj (r2 − rj)

r12
. (2.51)

The corresponding expressions of this potentials as a function of rij are
listed in App. B. Both contain the 1/rij long-range term. In Eq. (2.48)
it is to be omitted, because of the difference of the two potentials, while
for the non-diagonal parts of Ṽij it has been treated by the summation
method of Ewald [25]. χ0

i is now the initial electronegativity. The energy
E0 depends only on the nuclear coordinates of the atoms, not on their
charges qi.

Minimization of the Electrostatic Energy

The physically correct charge values qi are those, which minimize the elec-
trostatic energy Ees from Eq. (2.47). This is mathematically equivalent to
solving the following system of linear equations:

N∑

j=1

Ṽijqj = µ− χi. (2.52)

A Lagrange multiplier µ has been introduced to ensure the constraint of
net-charge neutrality:

N∑

i=1

qi = 0. (2.53)

At the same time this condition implies a global equalization of the µ, which
is identical to the electrostatic chemical potential of the charged system.
It will be then equal for all atoms at the minimum of Ees:

µ = µi =
∂Ees

∂qi
. (2.54)
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A corresponding charge transfer will occur between the atoms. In the work
of SM the charge values qi are obtained by inversion of the matrix Ṽij :

qi =

N∑

j=1

Ṽ −1
ij (µ− χi) . (2.55)

By applying the summation from Eq. (2.53) on this expression, µ results
as:

µ =
∑

i,j

Ṽ −1
ij χj

/∑

i,j

Ṽ −1
ij . (2.56)

Executing MD simulations with this model of SM for alumina or pure alu-
minium firstly requires the implementation of the above charge optimiza-
tion procedure. The charges will be adjusted every n MD steps. Choosing
n right primarly depends on how strongly the interatomic distances and
thus χi(rij) and Ṽij(rij) change between each charge update. Typical val-
ues of n are in the range from 5 to 10. In addition to the electrostatic
energy, a force field has to be introduced, which is able to describe the
atomic interactions in this oxide system correctly. This is especially the
case for pure aluminium, where no contributions from electrostatics occur.

Non-Electrostatic Energy

For the non-electrostatic interactions in α-alumina and pure aluminium SM
proposed an EAM potential, as it is given by Eqs. (2.7) and (2.8). A simple
pair potential is in general not able to warrant the physical properties of a
metal-oxide system. The pair part is suggested to take the form:

φij(rij) = 2Bij e
−βij/2 (rij−r∗ij) − Cij

[
1 + αij

(
rij − r∗ij

)]
eαij(rij−r∗ij),

(2.57)
while for the embedding energy a function of the Finnis-Sinclair type is
chosen:

Fi(ni) = −Ai

√
ni

ξi
. (2.58)

The electron transfer ρj(rij) between atom i and j is well described by
an exponential. By adding the contributions of all atoms j 6= i the local
electron density ni of atom i follows:

ni =
∑

j 6=i

ρj(rij) =
∑

j 6=i

ξj e
−βj(rij−r∗j ). (2.59)
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The parameters Bij , βij , r
∗
ij , Cij , αij , Ai and ξi depend oly on the species

of the atoms i and j and are listed in the article of SM [78].

Force Computation

The effective potential in Eq. (2.2) is identical to the total potential energy
of the corresponding system. In this model of SM the total potential energy
named as Etot is the sum of electrostatic and non-electrostatic part:

Etot = Ees(q(r), r) + EEAM(r), (2.60)

with EEAM being the EAM potential energy. The force on atom i follows
from the spatial derivative of Etot:

−Fix =
dEtot

dxi
=

N∑

j=1

∂Ees

∂qj

∂qj
∂xi

+
∂Ees

∂xi
+

∂EEAM

∂xi
,

(2.54)
= µ

∂

∂xi

N∑

j=1

qj +
∂Ees

∂xi
+

∂EEAM

∂xi
,

(2.53)
=

∂Ees

∂xi
+

∂EEAM

∂xi
, (2.61)

illustrated here for the x component. Because of the charge neutrality
condition the spatial derivative of the charges, which is usually difficult to
determine, has no effect on the force computation.
The force contributions, which arise from the electrostatic energy Ees

can be separated into two parts, concerning the gradients of the potentials
of nuclear attraction and Coulomb repulsion:

F es = F na + F cr. (2.62)

They are explicitly given by the expressions:

F na
ix = −

∑

j 6=i

{
Zjqi

∂

∂xi
[j|fi] + Ziqj

∂

∂xi
[i|fj]

}
, (2.63)

and

F cr
ix = −

∑

j 6=i

{
−Zjqi −Ziqj + qiqj

} ∂

∂xi
[fi|fj] . (2.64)
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As it has been already mentioned for the electronegativity from Eq. (2.48),
the long-range term 1/rij appears also in F es only once and is handled as
well by the Ewald method presented in detail in the previous section.
Note, that since in this work the original notation of SM (Gaussian

units) is used, for SI-units the factor e2/4πε0 = 14.4 eVÅ is missing at
the potentials [i|fj ] and [fi|fj]. For getting the correct SI-units of Ees and
thus the correct charge values in the simulation, it has to be added, when
implementing this model.

2.3.3 Beyond Streitz and Mintmire

The model of SM was one of the first variable charge models making MD
simulations of oxides possible. Since 1994 this approach has been used in
many cases and for different applications, mainly for studying the oxida-
tion of aluminium. Starting from alumina, it has been later applied also to
other oxide systems, like zirconia or titania, requiring the creation of the
corresponding interaction potentials. At the same time this model showed
some drawbacks, so that extensions of the original SM approach were nec-
essary. The major improvements of the last years are discussed here.
At first, the problems are mentioned, which can occur in the simulation

with charge optimization. Since there is no restriction concerning the va-
lences, non-physical values can arise. As a consequence, the interaction
between the atoms can become stronger, the interatomic distances shorter
and finally the simulated system unstable.
Second, the model of SM is only applicable to oxides with one single

metal, not to an oxygen-more metal system. Thus, for a pure metal alloy
the charges are not predicted correctly. Their values will differ from zero.
The third problem is the minimization process itself. Since it is a global

minimization, for the calculation of the charges each atom is taken into ac-
count, also each metallic one. Especially for systems with a large number
of particles, this global charge optimization causes a significant computa-
tional effort.
Additionally, the potential energy is always reduced at each minimiza-

tion step. Hence, the total energy of the system decays over time. This is
a general problem of all kinds of minimization processes [91]. The missing
energy part is balanced by the thermostat or barostat if running a NVT or
NPT simulation. However, in case of a NVE simulation the energy is not
conserved and the system normally shows an instability.
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For all the problems listed above different solutions have been proposed.
Zhou et al. suggested a different form of the electrostatic energy for avoid-
ing the charge instability [92]. Since Ees is also called as charge transfer
ionic potential (CTIP), his model was named as modified CTIP.

Modified CTIP

The values of the valences can be kept in a physical reasonable range by
introducing a lower and an upper bound for them. This is realized in
the charge optimization process by adding two more terms to the original
electrostatic energy ESM

es from Eq. (2.47):

EZhou
es = ESM

es +

N∑

i=1

ω

(
1− qi − qmin,i

|qi − qmin,i|

)
(qi − qmin,i)

2

+

N∑

i=1

ω

(
1− qi − qmax,i

|qi − qmax,i|

)
(qi − qmax,i)

2
.

(2.65)

The bounds are given by qmin,i and qmax,i. Each charge value qi has to
satisfy the constraint qmin,i < qi < qmax,i. This is controlled by the penalty
coefficients ω. They determine how strong the charge is bounded. Physi-
cally it is equal to an energy penalty. Metal atoms do usually not receive
electrons or lose them from the inner-shells, just as oxygen atoms do not
emit electrons or obtain more than two of them.
Two of the main problems of the original SM model, the charge instabil-

ity and all its implications along with non-vanishing charge values in the
heterogeneous metallic regions can be avoided by this at first view slight
modification of the electrostatic energy. Looking at the minimization of
EZhou

es concretely, one will realize, that a non-linear system of equations
results. The additional computational cost is high, essentially for systems
with a large number of atoms. The question thus arises if the above en-
hancement is really necessary, since in the most cases the charges take
physically reasonable values and the other problems of the SM model still
remain unsolved with this modified CTIP. Therefore, it has not been in-
cluded, when implementing the SM model in IMD.
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Embedded Ion Method

Zhou proposed also an alternative model for the energy reduction problem
[91]. The atomic valences qi are not determined directly by a minimization
process, but depend on the local ionic enviroment, which is characterized
by the quantity σ, called ion propensity. This is an approach similar to the
EAM potential from Sec. 2.2. By embedding an atom into an arragement
of ions a certain amount of energy is released. The sum of all of this
embedding energiesEemb,i is equal to the electrostatic energy of the system:

Ees =

N∑

i=1

Eemb,i(σi). (2.66)

Looking at the embedding energies Fi of the EAM potential, it is obvious,
that the quantity σ plays the same role in this model as the electron density
n there. Also adding the non-electrostatic pair interactions to the above
expression, the total energy is written in this embedded ion method (EIM)
as

EEIM =
1

2

∑

i,j

i6=j

φij(rij) +
∑

i

Eemb,i(σi). (2.67)

For the desired charge values, denoted here with pi, Eemb,i has to be min-
imized only once:

∂Eemb,i

∂qi

∣∣∣∣∣
qi=pi

= 0, (2.68)

obtaining the relation:

pi = − σi

J0
i

, (2.69)

with J0
i being the self-Coulomb repulsion from Eq. (2.42).

Also for this model Zhou assumed bounds for the charges. pi is therefore
rescaled to a new equilibrium charge qi,0, which is within the range of qmin,i

and qmax,i. Thus, not only the energy conservation problem is solved by
EIM, but also the drawbacks of the SM model, which have been handled
by the modified CTIP mentioned before. Unfortunately, the EIM potential
was originally developed for the La-Br system and has not been transferred
to other systems like oxides yet. That is the main reason, why it has found
a limited application until now.
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Local Chemical Potential

At the dilute oxygen limit a different approach concerning the problem of
global minimization has been chosen by Elsener et al. [22, 23]. Only the
charges of those atoms are optimized, which are supposed to be ionic. This
means for a oxide system with a dilute concentration of oxygen atoms,
that only those metal atoms are considered, which are at a spatial region
around the single O-atoms. Typically, this sub-region is a sphere of radius
Ro. Since the charge neutrality condition has to be satisfied within Ro, local
Lagrange multipliers are introduced, defining a local chemical potential
(LCP). In summary, this alternative optimization takes the form:

min
∑

i

χiqi +
1

2

∑

i,j

Ṽijqiqj subject to

{∑
i qi = 0 ∀ sub-regions o,

qb = 0 b ∈ {buffer region},
(2.70)

with the Eqs. (2.47) and (2.53) being now valid locally. The buffer region
ends at the radius Rb and is the annulus between both radii Ro and Rb.
The charge values of the metal atoms beyond Rb are set to zero from the
beginning and are excluded from the optimization process, avoiding charge
fluctuations in the pure metallic regions.
Since the above linear system of equations is solved locally, the compu-

tational effort scales with the number of O-atoms. This makes the LCP
approach an efficient method not for usual oxides, but only for dilute sys-
tems. In that case one order of magnitude of computational time can be
saved. An additonal saving can be achieved, if a direct summation instead
of the Ewald method is applied.

Dynamic Charge Transfer Bond Order Potential

Another charge transfer model is the one by Albe et al. called dynamic
charge transfer bond order potential (DCT-BOP) [1]. The main idea is,
that charge is only transferred between nearest neighbours, more precisely,
between two atoms, which are connected by a bond. Depending on the
distance of both atoms and on their electronegativity, each atom reveives
that amount of charge, which was released by the other one. If the atoms
are from the same type no charge is transferred. This symmetric charge
transfer involves charge neutrality and is described by an anti-symmetric
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function ρ(rij) = −ρ(rji):

ρ(rij) = Ae−
rij−rc

λ
−1
(
δmimj

− 1
)mi

. (2.71)

From the adjustable parameters A, rc and λ, the transfer is limited by
rc. Each atom is indexed by the integer m, which is for cations even and
for anions odd. Whether a charge transfer occurs or not, is controlled
by the Kronecker delta δmimj

. For the electronegativity of the local
environment a function Pij is introduced:

Pij =


1 +

∑

k 6=i,j

ρ(rik)

ρ(rij)




− 1

2n

, (2.72)

with n beeing an additional parameter. The charges are weighted by this
function and follow as

qi =
∑

j 6=i

Pij + Pji

2
ρ(rij), (2.73)

depending here on the interatomic distances. Thus, the force calculation
becomes much more difficult and quite time consuming, since the additional
force contributions are handled together with the long-range interactions
via neighbour lists in a complex way. A specific feauture of this model
is that the energy is conserved, because no minimization is done. Fur-
thermore, compared to the previous models the forces are adjusted in this
DCT-BOP in a self-consistent manner. Unfortunately, this model also has
not been developed for an oxide system, but for gallium nitride (GaN),
making it for our simulations less attractive.

Charge Optimized Many-Body Potential

The last enhancement of the original SM model is the charge optimized
many-body (COMB) potential proposed by Yu et al. [90]. Out of all the
previous models shown until now, it is the most suitable one for the ap-
plications of this thesis, since it has been developed for oxide systems and
interface structures [21, 68, 69].
The main difference of this method is that for the charge determination
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no minimization is executed, but a Lagrangian approach is applied, solv-
ing in such a manner the energy conservation problem. The charge values
are assumed to be time-dependent, just as the spatial coordinates ri and
velocities ṙi of the atoms. An additional dynamic quantity also implies an
extra contribution to the kinetic energy T of the system:

T =
1

2

∑

i

miṙ
2
i (t) +

1

2

∑

i

siq̇
2
i (t), (2.74)

where si specifies how inertially the charge of the atom i changes. From the
Lagrangian L = T − ET with ET beeing the total energy of the system
the Euler–Lagrange equations can be derived:

mir̈i = − ∂

∂ri
ET ({ri}, {qi}) , (2.75)

siq̈i =
∂

∂qi
ET ({ri}, {qi}) . (2.76)

For the solution of these generalized equations of motion a standard Ver-

let approach can be used, as it has been already suggested for the Eqs.
(2.3) and (2.4). Without any matrix operation the computational effort of
this model scales with O(N). This is essential especially for the simulation
of systems with large particle numbers N . At each time step δt the charges
will adjust their values according to the constraint of net-charge neutrality:

N∑

i=1

qi = 0, (2.77)

satisfying at the new time t0 + δt the condition of equal chemical potential
µ for all atoms. From the definition of µ given by Eq. (2.54):

µi =
∂ET

∂qi
, (2.78)

the above electronegativity equalization condition can be formulated as

µi = µ̄ =
1

N

∑

i

µi, (2.79)
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where µ̄ is the average chemical potential of the system. Thus, the dynamic
evolution of the charges can be expressed by the equation:

−mq q̈i = µi − µ̄, (2.80)

with the inertia being equal for all atoms: si = mq. The interpretation of
this equation is that the force µi − µ̄ will cause a charge transfer between
the atoms until the equalization of µ̄ is completed. Similar to the usual
equations of motion an obvious modification of the original Lagrangian
approach would be to introduce a damping parameter ηd:

−mq q̈i = µi − µ̄+ ηdq̇i, (2.81)

which helps the charges to converge faster to their right values and makes
the system also more resistant against instabilities. However, as a conse-
quence of ηd the total energy is not conserved any more during the simu-
lation.
In addition to the different charge transfer models, which have been dis-

cussed so far, also the effective potentials for the system one is interested
for have to be created. As already mentioned, the COMB potential is the
only one developed for oxide systems. It is a Tersoff potential [83] involving
charge optimization, as the name charge optimized many-body potential im-
plies. Firstly suggested by Yasukawa [89] the total energy in this potential
model takes the form:

ET =
∑

i

Ei =
∑

i


ES

i +
1

2

∑

j 6=i

Vij(rij ; qi, qj)


 , (2.82)

where ES
i is the self-energy of atom i from Eq. (2.42):

ES
i (qi) = χ0

i qi +
1

2
J0
i q

2
i . (2.83)

The interaction matrix Vij is now split into a repulsive part UR
ij , into a

short-range attractive potential UA
ij , into a ionic bond energy U I

ij and into a

energy contribution UV
ij , which arises from the van der Waals interaction

between the atoms i and j:

Vij(rij ; qi, qj) = UR
ij + UA

ij + U I
ij + UV

ij . (2.84)
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In the article of Yasukawa these energy contributions are given as:

UR
ij (rij) = fsijAije

−λijrij , (2.85)

UA
ij (rij ; qi, qj) = −fsijbijBije

−αijrij , (2.86)

U I
ij(rij ; qi, qj) = fLij

ηiηj
qiqj

4πǫ0rij
, (2.87)

UV
ij (rij) = fLij

(
CVDWi

CVDWj

)1/2

r6ij
, (2.88)

with all parameters also listed and explained in detail there. This kind of
potential includes many-body interactions just as the original one of Ter-
soff. Hence, COMB is suitable for the investigation of chemical problems
by MD, since in addition to the charge optimization it allows the creation
and breaking of bonds while the simulation is running. Besides the reactive
force field (ReaxFF) methods this makes it a powerful tool for reactive MD.
Unfortunately, compared to pair potentials the simulation time increases
in case of many-body interactions by about two orders of magnitude.

The implementation of the COMB potential is a demanding task and
rather complicated. For the simulations with COMB the software package
LAMMPS (large-scale atomic molecular massively parallel simulator) [60] can
been used, since the Yasukawa potential has been implemented successfully
there.

Reactive Force Field

The ReaxFF method [13, 86] should be also presented here. It is a force
field created for describing reactive processes. Bonds can break and formed
during the MD simulation. Its total system energy splits into following
parts:

EReaxFF =Eself + ECoul + EvdW + Eangle + Etorsion + Econjugation

+ EH-bond + Ebond + EIone-pair + Eover + Eunder + Eothers.
(2.89)

For different charge states of an atom the self-energy Eself is introduced,
while the electrostatic attraction and repulsion between ions is given by
ECoul. In case of nonbonded atoms the van der Waals energy EvdW is
relevant. Eangle and Etorsion are energies, which follow from valence and
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torsion angle distortion. The three- and four-body conjugation is captured
by Econjugation. For systems with polar molecules EH-bond describes the
hydrogen bonds, which arise from the weak X-H-X interaction. However,
much more complicate bond-order is incorporated in Ebond. The number
of valence electrons around an atom is also included in ReaxFF by the
three energy terms EIone-pair, Eover and Eunder. Other energy contributions
to describe C2 species, allene-type and triple-bond are contained within
Eothers. If the bond dissociates all above energy terms vanish, except the
Coulomb and van der Waals energy. The ReaxFF is able to describe
with these many-body potentials covalent, partially or completely ionic
systems. For a more detailed explanation see [48, 71].

Conclusion

Most of the enhancements of the original version of the SM model shown
in this section have not been developed for oxides (EIM, DCT-BOP) and
are not efficient enough for large-scale simulations, as the modified CTIP,
since a non-linear system of equation has to be solved. In case of the LCP
only dilute oxygen systems have been regarded. What kind of develop-
ments have been realized, when implementing the SM model in IMD will be
discussed extensively in the next chapter.
Parallel to all of these charge optimization procedures and modifications

of the SM model an alternative method for the simulation of oxide systems,
the model of Tangney and Scandolo (TS), was pursued and implemented
also in IMD [96]. The charges are not optimized during the simulation.
They are treated as point charges, while their values do usually not corre-
spond to the valences of the system. The main focus in this approach is
on the dipoles of the oxygen atoms.

2.3.4 The Model of Tangney and Scandolo

Oxide systems are not only described in the simulation correctly by includ-
ing the electrostatics of charges, but also if the polarizability of the oxygen
atoms is taken into account. Tangney and Scandolo suggested a model,
which allows each oxygen atom to be polarizable and to have a dipole
moment [81]. The charges are kept fixed. In addition to the Coulomb

potential, charge-dipole and dipole-dipole interactions arise. Their long-
range behavior is also handled by the Ewald summation method. For
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the short-range pair interactions of the ions a Morse-stretch potential is
assumed:

Uij = Dij

{
eγij[1−(rij/r0ij)] − 2 eγij/2 [1−(rij/r0ij)]

}
. (2.90)

The dipole moments of the oxygen atoms are computed iteratively in a
self-consistent manner, since the electric field, which induces them, in turn
depends on all charges and dipole moments. For the atom i at the iteration
step n the dipole moment pn

i is splitted into a short-range and induced part:

pn
i = psr

i + pind
i . (2.91)

psr
i is caused by the local charges and takes the form:

psr
i = α

∑

j 6=i

qjrij

r3ij
fij(rij) , (2.92)

with α being the polarizability and the function fij modelling the short-
range repulsive interaction:

fij(rij) = c

4∑

k=0

(b rij)
k

k!
e−b rij . (2.93)

The induced contribution pind
i results from the electric field E of all N

dipole moments and charges at the atomic position ri:

pind
i = αE

(
ri;
{
pn−1
j

}

j=1,N
, {rj}j=1,N

)
. (2.94)

E is calculated by extrapolation of an initial value of the electric field E0

from the previous three time steps. At each MD step so many iterations of
Eq. (2.91) are done, that the value of pn

i converges. Convergence means
that pn

i slightly differs from the dipole moment of the previous iteration
step, being within the allowed tolerance.
The potential model of TS was first developed for silica. By use of the

tool potfit it has been also extended on the systems of magnesia and
alumina [6, 34]. The parameters Dij , γij , r

0
ij , qj , α, b and c had to be

optimized for this purpose on reference structures of these oxides. For the
implementation of TS in potfit and also in IMD the same improvements
have been realized, as for the SM model, namely applying the summation
method of Wolf instead of Ewald. This development is one of the main
topics of the next chapter.
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Methodological Progresses

Some of the approaches from Sec. 2.3.3 (CTIP and LCP) use the conjugate
gradient method for determining the valence charges. When implementing
the SM model in IMD this iterative solver has been also applied for the
system of linear equations given by Eq. (2.52). Its mathematical concept
is illustrated compactly [70].
The second improvement is a different treatment of the long-range in-

teractions as presented in Sec. 2.3.1. For metal oxides the reciprocal space
part of the Ewald sum can be neglected, since in such systems the charges
screen each other. Thus, the summation is carried out only in direct space
and periodic boundary conditions are not necessary any more. The main
advantage of this reduced summation method called Wolf summation is
that it scales linearly with the number of particles N [88]. By handling
the long-range terms in the model of SM with Wolf, not only computing
time for the force calculation can be saved, but also during the charge opti-
mization. For the COMB potential the Wolf summation method has been
applied [21, 68], too, which is an additional reason to present this technique
in this chapter in detail.
In the same way as for the charges, the Wolf summation has been trans-

ferred to dipole interactions [96]. How this development of the original
TS model affects the MD simulations with silica is also discussed in this
chapter.
As it has been specified in Sec. 2.3.2, in the model of SM the total

energy consists of the contributions of the electrostatic energy and a non-
electrostatic potential. For the latter one SM suggested an EAM potential,
which had been firstly fitted on alumina [78]. Since one simulation goal of
this work had been the investigation of how oxides behave under mechan-
ical loads, the potential of SM had been aimed to be able to describe the
material failure caused by cracks correctly. However, by performing simu-
lations with this EAM potential it turned out that the surface relaxation

31
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of bulk alumina provided inadequate results for crack propagation. Also
interface structures of alumina and pure aluminium become instable dur-
ing the simulation. Therefore, as an alternative force field the TS potential
was considered, since it has been made applicable also for the systems of
magnesia and alumina [6, 34]. But this requires the combination of the
two methods of SM and TS, involving some modifications of the original
models which are also topic of this chapter.

3.1 Iterative Solvers

For the minimization of the electrostatic energy Ees given by Eq. (2.47)
a system of linear equations has to be solved iteratively. Iterative meth-
ods provide approximate solutions, approaching the exact solution by an
algorithm step by step. In this kind of solvers the specific form of the ma-
trix, which describes the system, is taken regard of. Especially for dense
matrices this means a significant saving in memory and computing time
[56]. Looking at Ees as a function of the charges qi, the minimization of a
quadratic form has to be realized.

3.1.1 Minimization of a Quadratic Form

A quadratic form

f(x) =
1

2
xtAx− btx+ c, (3.1)

is minimized by the solution to Ax = b, if A is symmetric and positive-
definite. The main idea is to take specific search directions u0,u1, . . . ∈
R

n\{0} for finding the global minimum x. Starting from an arbitrary point
x0 the minimum of f is approached along the line

x1 = x0 + α0u0. (3.2)

α0 specifies how big the step in direction of u0 should be until reaching
the new local minimum x1. The values of f along this line are given by
f(x1) = f(x0 + α0u0). Finding x1 means to minimize this function with
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respect to α0:

df(x1 (x0, α0))

dα0
= (∇f(x1))

t dx1

dα0

(3.2)
= (∇f(x1))

t
u0 (3.3)

= 0.

Thus, the directional derivative has to be equal to zero. Since ∇f(x1) =
Ax1 − b the step size results with Eq. (3.2) as

α0 =
(b−Ax0)

t
u0

ut
0Au0

. (3.4)

This line search procedure is repeated for each iteration step i = 0, 1, 2, . . .
until one comes close enough to the global minimum. Only an initial value
x0 and a set of search directions are needed. The general algorithm takes
the form:

ri = b−Axi, (3.5)

αi =
rtiui

ut
iAui

, (3.6)

xi+1 = xi + αiui, (3.7)

where the vector r is defined as residual. The problem is how to choose
the search directions ui.

The Method of Steepest Descent

Since one looks for the global minimum of f , the most intuitive approach
is to step from each point xi to the direction of steepest descent. In this
case the search directions are identical to the residuals:

ui = −∇f(xi) = − (Axi − b) = ri. (3.8)

The directional derivative in Eq. (3.3) then becomes:

(∇f(xi+1))
t
ri = 0, (3.9)

and determines not only the position of the local minimum xi+1 on the
line, but also the new search direction ri+1 = −∇f(xi+1). It has to be
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x1

x2

x0
x

Figure 3.1: The method of steepest descent for a quadratic form in two
dimensions. The isocontours around the global minimum x

are illustrated. From the initial point x0 a zigzag path to x

results.

orthogonal to the previous one. Modifying the general algorithm for this
special search directions, the method of steepest descent follows:

ri = b−Axi, (3.10)

αi =
rtiri

rt
iAri

, (3.11)

xi+1 = xi + αiri. (3.12)

The iteration is stopped, if ri = 0. Then, the minimum x is reached and
the system is solved. The computational effort of the two matrix-vector
products above can be reduced, if Eq. (3.12) is premultiplied by −A and
the vector b is added. The result takes the form:

ri+1 = ri − αiAri, (3.13)
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where only one matrix-vector multiplication remains. Nevertheless, Eq.
(3.10) still is required for calculating the initial residual r0. A result-
ing path to the minimum via this method of steepest descent is shown in
Fig. 3.1. Also the main drawbase can be seen there. One is moving for
several times to the same direction. Therefore, the search directions have
to be choosen in a more efficient way.

The Method of Conjugate Directions

The idea is to take only one step in each search direction ui. After n
steps the minimum x should be reached, where n is the dimension of the
problem. Such a set of search directions can be found, if the minimization
condition from Eq. (3.3):

rt
i+1ui = 0, (3.14)

is reconsidered. Defining firstly the error as the difference between approx-
imate and correct solution: ei = xi−x, the residual is equal to ri = −Aei.
Above equation takes then the form:

ut
iAei+1 = 0. (3.15)

This is an another interpretation of how to determine the minimum point
along the line. The search direction and the error have to be at that point
not orthogonal, but A-orthogonal or conjugated. Not to step to the same
direction again, means to choose ui+1 in direction of ei+1. Thus, the search
directions have to be A-orthogonal :

ut
iAui+1 = 0. (3.16)

An immediate consequence of this orthogonality condition is, that the
global minimum is hit after n steps. For the corresponding proof, the
initial error e0 has to be expressed as a linear combination of the search
directions:

e0 =

n−1∑

j=0

βjuj . (3.17)

Also the error at step i is built up by e0 and almost all uj :

ei = e0 +

i−1∑

j=0

αjuj . (3.18)
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x1

x2

x0
x

x1

e0

e1α0u0

(a) The error e1 after the first step as
given by Eq. (3.18). The two-dimensional
case is shown. u1 has to be in direction
of e1.

x1

x2

x0
x2 = x

x1

e0

α1u1α0u0

(b) Illustration of Eq. (3.17). By linear
combination of the search directions the
initial error e0 results.

Figure 3.2: The choice and properties of A-orthogonal search directions
follow immediately by looking at the error terms.

For n = 2 these linear combinations are illustrated in Fig. 3.2. By premul-
tiplying Eq. (3.17) by ut

iA only the coefficient βi remains, since the search
directions are A-orthogonal:

ut
iAe0 =

n−1∑

j=0

βju
t
iAuj = βiu

t
iAui. (3.19)

Thus, βi is given by the expression:

βi =
ut
iAei

ut
iAui

(3.6)
= −αi, (3.20)

where e0 has been replaced by ei according to Eq. (3.18). This can be done
because of the A-orthogonality of the uj . Using this result, Eq. (3.18) can
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be written as

ei = e0 +

i−1∑

j=0

αjuj

(3.17)
=

n−1∑

j=0

βjuj −
i−1∑

j=0

βjuj

=
n−1∑

j=i

βjuj . (3.21)

It is obvious, that after each iteration step one component of the error term
ei is eliminated. After n steps en = 0 results and, as it has been predicted,
the solution x is reached (see Fig. 3.2).
Thus, to find the ideal set of search directions, A-orthogonal vectors

have to be created. This can be done in the same way as for generating or-
thogonal vectors from a set of n linear independent vectors v0,v1, . . . ,vn−1

using a Gram-Schmidt process. In this case a conjugate one is applied.
The vector vi is split for all previous search directions into a conjugate and
non-conjugate part, where the non-conjugate components are subtracted
from vi. The remaining vector is the new search direction ui, which is then
A-orthogonal to all previous u vectors. The corresponding equation takes
the form:

ui = vi −
i−1∑

j=0

(
vt
iAûj

)
ûj , (3.22)

for i > j and with the initial value u0 = v0. The non-conjugate parts
of vi follow from the above inner product. They are parallel to the unit
vector ûj = uj/‖uj‖A. The absolute value of uj is given in this A-norm
by ‖uj‖2A = ut

jAuj . From this definition a better understanding of the
A-orthogonality condition in Eq. (3.16) is gained. If two vectors are A-
orthogonal, then they are orthogonal in that space, which is scaled by the
matrix A. An appropriate illustration is given by Fig. 3.3. By defining
Gram-Schmidt coefficients λij as

λij = − vt
iAuj

ut
jAuj

, (3.23)
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x1

x2

x0
x

(a) By using conjugate search directions
only two steeps are needed for reaching
the minimum x in two dimensions.

x̃1

x̃2

x̃0
x̃

(b) A-orthogonal vectors are in that space
orthogonal, which results after scaling by
the matrix A.

Figure 3.3: If the method of conjugate directions is applied, then at the
same time the method of orthogonal directions is performed
in a stretched space.

Eq. (3.22) becomes:

ui = vi +

i−1∑

j=0

λijuj . (3.24)

The main disadvantage of this conjugate Gram-Schmidt process and
also of the method of conjugate directions can be already seen in Eq. (3.22).
All old search directions are needed and have to be stored for creating each
new one. To generate a full set O(n3) operations are required. The only
way to reduce them, is to choose a special set of n linear independent
vectors for the vi.

The Method of Conjugate Gradients

By taking the residuals for the construction of the search directions the
method of conjugate gradients results. It is a reasonable choice, since the
vectors ri have many pleasing properties. First, they are orthogonal to all
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previous search directions according to Eq. (3.14). Thus, every new search
direction, which is generated by conjugation of them, is always a linear
independent one. The second property follows from Eq. (3.22). Because
vi = ri is set, the subspace span{r0, r1, . . . , ri−1} is identical to that one,
which is built up by the search directions. It is called Ui:

Ui = span{u0,u1, . . . ,ui−1}. (3.25)

As a consequence, the ri are not only orthogonal to the previous u vectors,
but also to the previous residuals:

rtirj = 0, (3.26)

for i 6= j. However, the main reason to choose the ri follows from another
property.
Similar to Eq. (3.13), the computation of the vector r can be expressed

as a recursion:

ri = −Aei
(3.18)
= −A(ei−1 + αi−1ui−1) = ri−1 − αi−1Aui−1, (3.27)

depending on the previous residual and Aui−1. The corresponding sub-
spaces are Ui and AUi. By merging them the new subspace Ui+1 results.
As given by Eq. (3.14), the next residual ri+1 is orthogonal to Ui+1. Since
Ui+1 contains the subspace AUi, ri+1 is A-orthogonal to Ui. Thus, a con-
jugate Gram-Schmidt process is no more necessary, because the residuals
are already conjugated gradients. This essential property in combination
with the others mentioned above, makes the residuals so important. By
premultiplying Eq. (3.27) by rt

j the inner product simplifies to

rt
jAui−1 =






1
αi−1

rt
i−1ri−1, j = i − 1

− 1
αi−1

rt
iri, j = i

0, otherwise.

(3.28)

Hence, most of the Gram-Schmidt coefficients from Eq. (3.23) are to be
omitted:

λij =

{
1

αi−1

rtiri

ut
i−1

Aui−1

, i = j + 1

0, i > j + 1.
(3.29)

The main disadvantage of the method of conjugate directions does not exist
anymore. New A-orthogonal search directions can be created, whithout
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having to keep the old ones in memory. At each iteration step a significant
saving in space and time complexity from O(n2) to O(m) is achieved. m
denotes the number of entries of A, which are nonzero. That is why the
method of conjugate gradients is the most prominent iterative solver. Using
Eq. (3.6) the coefficients λij become:

λi =
rt
iri

ut
i−1ri−1

=
rt
iri

rt
i−1ri−1

, (3.30)

depending only on the index i. The last step follows from the identity

ut
i−1ri−1 = rti−1ri−1, (3.31)

which is an implication of the orthogonality properties of the vector r. In
summary, the method of conjugate gradients takes the form:

u0 = r0 = b−Ax0, (3.32)

αi =
rt
iri

ut
iAui

, (3.33)

xi+1 = xi + αiui, (3.34)

ri+1 = ri − αiAui, (3.35)

λi+1 =
rt
i+1ri+1

rt
iri

, (3.36)

ui+1 = ri+1 + λi+1ui. (3.37)

Applying these equations for two dimensions, the same path to the mini-
mum results as shown in Fig. 3.3. The method of conjugate gradients is
the method of conjugate directions, except for the fact, that for the gener-
ation of the search directions the residuals are used.
Considering Eq. (3.27) again, the subspace Ui is built up by applying

the matrix A overall i− 1-times on the initial search direction u0:

Ui = span{u0,Au0,A
2u0 . . . ,A

i−1u0}. (3.38)

Since u0 = r0, the initial residual can be used in the same way. Above
equation is the definition of a Krylov subspace. Therefore, the method
of conjugate gradients is often called as a Krylov subspace method.
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3.1.2 Implementation

The conjugate gradient method can be now applied to the computation of
the charges qi by splitting the linear system of equations from Eq. (2.52)
into two systems [23]:

N∑

j=1

Ṽijsj = −χi and

N∑

j=1

Ṽijtj = −1, (3.39)

where the constraint of net-charge neutrality is included. The chemical
potential is then given by

µ =

N∑

i=1

si

/ N∑

i=1

ti, (3.40)

with the charges qi = si − µti.
An alternative version for implementation, which is numerically more

efficient can be realized by writing Eq. (2.52) via block matrix notation as

(
Ṽ C

Ct 0

)(
q

−µ

)
=

(
−χ

0

)
. (3.41)

The block vectorC has all elements equal to unity. Both versions have been
implemented in IMD, but only the last one has been used in the simulations
presented in this work.

3.2 Wolf Summation Method

At each simulation a cut-off radius has to be specified, which limits the
number of interacting particles. The computational effort of the force cal-
culation is therefore kept within an acceptable range. For systems with
long-range interactions a cut-off radius can be also introduced by applying,
e.g. the Ewald summation technique from Sec. 2.3.1.
An alternative method was suggested by Wolf [88]. It incorporates the

observation, that in many charged systems the charges screen each other.
As a consequence, no long-range charge fluctuations occur. For small wave
vectors k the charge structure factor from Eq. (2.29) then becomes also
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small, since it is identical to the Fourier transform of the charge-charge
autocorrelation function:

S(k) =

∣∣∣∣∣∣

N∑

j=1

qje
ik·rj

∣∣∣∣∣∣

2

= ρ(k)ρ(−k), (3.42)

with

ρ(k) =
N∑

i=1

qie
−ik·ri . (3.43)

The reciprocal space part of the Ewald sum given by Eq. (2.28) includes
the charge structure factor and can thus be neglected. No periodic bound-
ary conditions are required any more and the summation has to be carried
out only in direct space.
Wolf builds up his method in three steps:

1. A spherical truncation with the cut-off radius rc is realized. The total
amount of charge within rc is screened by the same value of opposite
sign at rc.

2. This input from physics makes a modification of the electrostatic
potential necessary.

3. The remaining energy oscillations around the correct value of the
Madelung energy are reduced by an additional damping.

The three steps are now illustrated for a system of N charges.

Spherical Truncation and Charge Neutralization

The net charge ∆q within the sphere of radius rc is equal to the sum of all
charges qj with interatomic distances rij smaller than rc:

∆q =

N∑

j=1

rij<rc

qj , (3.44)

where the charge qi is located at the center of the sphere, see Fig. 3.4. By
setting −∆q at rc, the compensation of all qj is achieved. Looking at the
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qj

qirij

rc

ri

Figure 3.4: In the method of Wolf the physical observation that charges
screen each other is realized by locating −∆q at the surface
of the sphere, where ∆q is the total amount of charge within
rc.

electrostatic potential of these charges:

Φ(ri) =

N∑

j 6=i=1

rij<rc

qj
rij

, (3.45)

the above charge neutralization causes a shift :

Φ̃(ri) =
∑

j 6=i

rij<rc

qj
rij

+
−∆q

rc

=
∑

j 6=i

rij<rc

qj
rij

−
N∑

j=1

rij<rc

qj
rc
. (3.46)
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The corresponding electrostatic energy Ẽ can be written as follows:

Ẽ =
1

2

N∑

i=1

qiΦ̃(ri)

=
1

2

N∑

i=1

∑

j 6=i

rij<rc

qiqj
rij

− 1

2

N∑

i=1

N∑

j=1

rij<rc

qiqj
rc

=
1

2

N∑

i=1

∑

j 6=i

rij<rc

φsh
ij (rij)−

1

2rc

N∑

i=1

q2i , (3.47)

with the shifted pair potential:

φsh
ij (rij) = qiqj

(
1

rij
− 1

rc

)

=
qiqj
rij

− lim
rij→rc

{
qiqj
rij

}
. (3.48)

The above limit is necessary for the force calculation. It has to be carried
out after the spatial derivative. Alternatively, the charge neutralization
is not included and the result therefore physically not correct. The x-
component of the force on particle i is given by the following expression:

Fix = − dẼ

dxi
= −

N∑

i=1

∑

j 6=i

rij<rc

dφsh
ij (rij)

dxi
= −

N∑

i=1

∑

j 6=i

rij<rc

dφsh
ij (rij)

drij

xij

rij
, (3.49)

where dφsh
ij /drij takes the form:

dφsh
ij (rij)

drij
= −qiqj

(
1

r2ij
− 1

r2c

)
, (3.50)

and thus Fix results as

Fix =
∑

j 6=i

rij<rc

qiqj

(
1

r2ij

xij

rij
− 1

r2c

xij

rc

∣∣∣∣
xij=xc

)
. (3.51)
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Figure 3.5: The effect of charge neutralization is illustrated for the
Madelung energy of magnesia [88]. A remarkable reduc-
tion of the oscillations around the correct value is achieved.

It is obvious from the above results that by adding a neutralizing charge
at the surface of the sphere a smooth cut-off of the pair potential at rc
is realized. The discontinuity of the forces at rc is also eliminated. Fur-
thermore, the strong oscillations of the energy around its correct value in
consequence of the truncation are significantly reduced (see Fig. 3.5). An
additional reduction can be achieved by introducing a damping function.

Damping

First, the unshifted electrostatic energy

E =
1

2

N∑

i=1

∑

j 6=i

qiqj
rij

, (3.52)

is considered. For historical reasons the complementary error function is
used for the damping. Also any other function is suitable for this purpose,
which falls rapidly to zero within the cut-off radius rc. Inserting into the
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above equation a decomposition of unity of the form

1 = erfc(κr) + erf(κr) , (3.53)

the energy splits into the following parts:

E =
1

2

N∑

i=1

∑

j 6=i

qiqj
rij

[erfc(κrij) + erf(κrij)]

=
1

2

N∑

i=1

∑

j 6=i

qiqjerf(κrij)

rij
+

1

2

N∑

i=1

∑

j 6=i

qiqjerfc(κrij)

rij

=
1

2

N∑

i=1

N∑

j=1

qiqjerf(κrij)

rij
− κ√

π

N∑

i=1

q2i +
1

2

N∑

i=1

∑

j 6=i

qiqjerfc(κrij)

rij

(3.54)

At the last step the limit

lim
rij→0

{
1

2

N∑

i=1

q2i erf(κrij)

rij

}
=

κ√
π

N∑

i=1

q2i , (3.55)

has been executed. The first term is the inverse Fourier transformed
energy Erec from Eq. (2.28), illustrated here in direct space. Looking at
the Ewald summation method from Sec. 2.3.1, one can also identify the
second expression as the self-energy term Eσ and the third one as the real
space part Edir of the total energy. Both are given there by the Eqs. (2.36)
and (2.40). In that way the Ewald sums can be derived without the use
of the Poisson equation. Note that, since erf(κr)/r is long-range, it has
to be regarded in reciprocal space. Edir and Eσ can be now combined to a
new energy, noted as E1:

E1 =
1

2

N∑

i=1

∑

j 6=i

qiqjerfc(κrij)

rij
− κ√

π

N∑

i=1

q2i , (3.56)

while Ek is redefined as E2:

E2 =
1

2

N∑

i=1

N∑

j=1

qiqjerf(κrij)

rij
, (3.57)



3.2 Wolf Summation Method 47

with E = E1 + E2. At this point the Wolf summation method is identical
to the one of Ewald. However, in the case of charge neutralization E2 is
negligible, so that only the energy E1 remains. In the same way as for the
undamped potential, Wolf firstly introduces a cut-off radius rc. E1 can be
then rewritten as:

E1 =
1

2

N∑

i=1

∑

j 6=i

rij<rc

qiqjerfc(κrij)

rij
− κ√

π

N∑

i=1

q2i . (3.58)

The electrostatic energy at rc involves also the damping function:

Eneutr =
1

2

N∑

i=1

qi∆q erfc(κrc)

rc

=
1

2

N∑

i=1

N∑

j=1

rij<rc

qiqjerfc(κrc)

rc
, (3.59)

with ∆q from Eq. (3.44). By subtracting this energy from E1 the new

energy Ẽ results:

Ẽ = E1 − Eneutr

=
1

2

N∑

i=1

∑

j 6=i

rij<rc

φD
sh(rij)− Eself, (3.60)

where φD
sh is now the shifted and damped pair potential:

φD
sh =

qiqjerfc(κrij)

rij
− lim

rij→rc

{
qiqjerfc(κrij)

rij

}
. (3.61)

The only difference to Eq. (3.48) is the complementary error function.
It seems that above procedure for obtaining φD

sh can be avoided, if the
Coulomb potential 1/r is simple replaced by its damped version erfc(κr)/r.
However, one has to keep the self-energy part Eself in mind, which takes
the following form:

Eself =

(
erfc(κrc)

2rc
+

κ√
π

) N∑

i=1

q2i . (3.62)
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Figure 3.6: In addition to the charge neutralization the energy oscilla-
tions can be also reduced by a damping function [88]. Tra-
ditionally, the complementery error function is chosen.

The effect of damping is shown for the energy of liquid magnesia in Fig.
3.6. From the pair potential the force on particle i can be calculated:

Fix = −
∑

j 6=i

rij<rc

dφD
sh(rij)

drij

xij

rij

=
∑

j 6=i

rij<rc

qiqj

[(
erfc(κrij)

r2ij
+

2κ√
π

e−κ2r2ij

rij

)

× xij

rij
−
(
erfc(κrc)

r2c
+

2κ√
π

e−κ2r2c

rc

)
xij

rc

∣∣∣∣
xij=xc

]
.

(3.63)

In summary, the summation method by Wolf is equal to the one by Ewald,
if the reciprocal space term is omitted and the potential shift, as a con-
sequence of the charge neutralization, is incorporated. For rc → ∞ the
shifted potential by Wolf becomes to the real space part of the Ewald
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sum. In contrast to Ewald and to other methods, which handle long-
range interactions like P3M or tree-based approaches the Wolf summation
scales linearly with the number of particles N . Thus, it becomes a power-
ful tool especially for systems with large N . In addition, simulations with
Wolf do not require periodic boundary conditions any more, since they
have been necessary only for the Fourier transformation of the reciprocal
space part.
The Wolf summation technique is now applied to the model of SM, as a

second improvement of it. There, the charge optimization is affected and
has to be reconsidered.

3.2.1 Charge Optimization with Wolf

The interaction matrix Ṽij from Eq. (2.49) contains the long-range term
1/rij in its non-diagonal elements, which are identical to the Coulomb

repulsive potential [fi|fj ]. By using the Wolf method 1/rij is replaced
by its damped version erfc(κrij)/rij plus the self-energy term for the case

i = j. The matrix Ṽij takes then the following form:

Ṽij =

{
J0
i − 2κ√

π
, i = j

[fi|fj] = erfc(κrij)
rij

+ [fi|fj ]′ , i 6= j,
(3.64)

with [fi|fj]′ being the rest of the repulsive potential without the long-range
term (see App. B).
By implementing the SM model with the modifications discussed un-

til now an initial charge optimization is executed before the actual MD
simulation starts. Afterwards, every 1-10 MD steps the charge values are
updated. Firstly, a configuration of pure alumina with about 13000 atoms
is regarded. The result after the initial charge calculation is illustrated in
Fig. 3.7(a). It can been seen there, that the average charge of an alu-
minium atom is given by +2.8e, while for an oxygen atom it takes the
value of −1.9e with e being the elementary charge. These values are close
to the expected valences +3e and −2e of α-alumina also written as Al2O3.
Thus, net-charge neutrality is satisfied with the total charge being equal
to 1.16 · 10−15e.
The model of SM has been implemented in IMD with both summation

techniques, Ewald and Wolf. One can now compare the charge values if
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(a) An α-alumina structure con-
sisting of nearly 13000 atoms.
The resulting charges are close to
the expected valences of +3e and
−2e.

(b) Charge optimization of an interface
structure with about 13000 atoms. The
atoms in the metallic region have no charge.

−1.9e

+2.8e

0

Al2O3 Al

Figure 3.7: SM developed their model for the Al/Al2O3-system. The
charges of the pure oxide and an interface structure have
been computed with the modifications of the original ap-
proach presented in Sec. 2.3.2.

the reciprocal space term is included or not. For the above system only
a difference of about 1.1% results. Looking at the same time at the com-
puting time, a speed up by the factor 60 occurs. Since the Wolf method
neglects the reciprocal space part, no k-vectors have to built up during the
simulation, which leads to a remarkable reduction of the computational
effort.
The main reason for choosing a variable charge model is that the charge

distribution of a combined system is described correctly. Such an inter-
face structure consisting of alumina and pure aluminium is shown in Fig.
3.7(b). In alumina the charges take the same values as already mentioned
above, namely +2.8e and −1.9e. However, in the metallic region the atoms
have no charge. Thus, the atomic valences are reduced as one approaches
the interface from the pure oxide side. The resulting charge distribution is
illustrated in Fig. 3.8.
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Figure 3.8: The atomic charges of the combined system from Fig. 3.7(b)
are shown perpendicular to the interface with different col-
ors for each atom type. The charge values decline if one
approaches the metal from the oxide side.

Up to this point, we have improved the SM model by implementing the
Wolf method in the charge optimization process. As we combined SM with
the model of TS from Sec. 2.3.4, we also have to deal with the long-range
forces due to the induced oxygen dipoles. For these terms the Wolf method
also will be applied, as it has been done in [96].

3.2.2 Wolf Summation for Dipoles

The procedure is the same as for the electrostatic energy of charges. The
total interaction energy of N dipole moments pi at positions ri has to be
considered. It is given by the following expression

Etot =
1

2

N∑

i,j

i6=j

pt
i (∇⊗∇)

(
1

rij

)
pj . (3.65)
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with rij = |ri − rj | being the distance between the atoms i and j. A
splitting of the energy can be now realized, if the same decomposition of
unity is used as in Eq. (3.53):

1 = erfc(κr) + erf(κr) , (3.66)

where κ is again the Ewald parameter. Additionally, imposing structural
periodicity above equation can be rewritten as

Etot =
1

2

N∑

i,j

∞∑

n=0

′
pt
i (∇⊗∇)

×
(
erfc(κ|rij + nL|) + erf(κ|rij + nL|)

|rij + nL|

)
pj ,

(3.67)

or divided into a real- and a reciprocal-space part:

Etot = Etot
dir + Etot

rec . (3.68)

Since for the Wolf summation the reciprocal-space term is neglected, the
contribution of Etot

rec has to be examined. For its k-behavior the Fourier

transform of

Etot
rec =

1

2

N∑

i,j

∞∑

n=0

pt
i (∇⊗∇)

(
erf(κ|rij + nL|)

|rij + nL|

)
pj , (3.69)

has to be taken. The prime has been omitted, since the self term (for n = 0

and i = j) is now finite. Because of the threedimensional periodicity the
above expression can be expanded into a Fourier series:

Ẽtot
rec =

2πNe2

V

∞∑

k 6=0

ktQ(k)k
exp
(
−k2/4κ2

)

k2
, (3.70)

where V is the volume of the simulation cell and Q(k) the dipole structure
factor:

Q(k) =
1

Ne2

N∑

i,j

pi ⊗ pj e
ik·rij , (3.71)

with the normalization factor 1/Ne2 and e being the elementary charge.

As it can be seen from Eq. (3.70), the large k contributions to Ẽtot
rec tend
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Figure 3.9: The dipole structure scalar of liquid silica as a function of
k. Q(k) can be neglected for small k [96].

to zero rapidly, whereas the small k contributions are governed by the
behavior of Q(k), which is expected to vanish as k → 0. For this purpose
the dipole structure scalar

Q(k) = 〈ktQ(k)k〉S , (3.72)

of liquid silica with 4896 atoms has been regarded in [96]. Since Q(k) is a
discrete function of all reciprocal space vectors, an average over a spherical
shell S has to be calculated. This is denoted in the above equation by the
angular brackets. The center of S is located at k = |k|. Fig. 3.9 illustrates
the resulting k-dependence of Q(k), going to zero for small k-values.

By applying the Wolf method on the original TS potential from 2.3.4,
a damped and smoothly cutoff TS potential results. As a comparison
between these two potentials the same thermodynamic properties have been
studied in [96] as in the original work of TS. One example is the equation of
state for liquid silica at 3100 K shown in Fig. 3.10. The new TS potential is
compared with the Ewald-summed one, with experimental and ab-initio
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Figure 3.10: The equation of state of liquid silica for the Wolf-summed
TS potential [96] compared with the original TS potential
[81], experimental [28] and ab-initio data [84] and simula-
tions with BKS [85].

data [28, 84]. It can be seen, that both the full TS potential and its
damped and smoothly cutoff version fit better with experiment than the
ab-initio data. The latter ones show a large scatter, since the complete
equilibration of the system is not possible for low pressures, as consequence
of the system size and time restrictions of this first principles method. The
potential of van Beest, Kramer, and van Santen (BKS) [85], which is a
simple pair potential is also plotted in Fig. 3.10. It does not estimate
the volume correctly. There is a systematically deviation of about 13%.
Thus, a better description of oxide systems in the simulation is achieved,
if dipoles are included.

3.3 Potentials for Oxides

The charge optimization with Wolf in Sec. 3.2.1 has been done statically,
without any movement of the atoms. The next step is to determine the
charges during the MD simulation. SM proposed an EAM potential for
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Figure 3.11: Tensile test of bulk Al2O3 along the 〈1210〉-direction. The
resulting graphs using the EAM and TS potential are
shown and compared with ab-initio data.

the non-electrostatic interactions, which has been already presented in Sec.
2.3.2.

Bulk Al2O3

As a first application of it, tensile tests of bulk Al2O3 along the direc-
tions 〈1210〉, 〈1010〉 and 〈0001〉 have been executed. The results, which
are illustrated in figures 3.11, 3.12 and 3.13 have been compared with cor-
responding ab-initio calculations and the damped and smoothly cutoff TS
potential generated by Hocker et al. for alumina [34].
For all directions 〈1210〉, 〈1010〉 and 〈0001〉 the EAM potential of SM

shows an unphysical behavior: at low strain relatively high values of stress
occur. Along the 〈0001〉-direction the SM potential matches much better
with the ab-initio data than the TS potential. The reason for that is the
remarkable change of the charge values while the configuration is stretched.
At 2% strain the average charges of Al and O are +2.76e and −1.84e re-
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Figure 3.12: Results of the tensile test for the 〈1010〉-direction. As in
the 〈1210〉-direction the EAM potential of SM exhibits high
values of stress at low strain.

spectively. However, at the maximum strain of 15% the charges take the
values +2.3e and −1.53e. Thus, a correct description of such stretched ox-
ide structures is only possible, if a potential with variable charges is used.
Note, that all graphs go through the origin if the simulation reproduces
the lattice constant of the system correctly.

The TS potential showed to be appropriate for studying the crack
propagation in alumina. Corresponding simulations have been successfully
executed [34]. The EAM potential of SM with charge optimization has
been also tested for this purpose. Unfortunately, the surface relaxation
provided inadequate results for crack propagation.

Al/Al2O3-interface system

As mentioned before, one of the main issues of this work is the simulation of
combined systems, like the Al2O3/Al interface in Fig. 3.7(b). Applying the
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Figure 3.13: In this direction the EAM potential of SM including charge
optimization matches much better with the ab-initio data,
since the charge values change significantly.

EAM potential of SM on this structure instabilities after a few MD steps
occur. The alumina Al-atoms (if Al-terminated) move from the interface
into the oxide. As a result the interatomic distances become shorter, the
interaction between the atoms stronger and finally the simulated system
becomes unstable. This process is accelerated, if the charges are updated
frequently.

Another approach has been tried by defining three atom types (Al
(metal), Al (oxide), O) and thus three different potentials for the whole
interface structure: The TS potential for the oxide, an EAM potential for
the metal, while for the interaction of the interface atoms an additional
Morse-stretch potential has been assumed. The last one is a simple pair
potential with its analytic form already presented in Sec. 2.3.4, since TS
also used for the short-range pair interactions such a potential. Its param-
eters have been optimized with potfit not for the whole sample, but only
for a box around the interface. For the interaction of the metal atoms two
different EAM potentials have been tested, the one by SM and another one
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(a) Ab-initio

Al-top O-top Hollow

(b) Potential

Al-top O-top Hollow

Figure 3.14: The relaxed interface structures Al(111)/Al2O3(0001)
which result from ab-initio calculations and MD simula-
tions with the new developed potential. All three configu-
rations differ on how the metal atoms are oriented orthog-
onal to the image plane. At Al-top they are on a vertical
line over the Al(oxide)-atoms, at O-top over the O-atoms,
while at hollow they are over the gap in between. Fol-
lowing color encoding was used: Al(metal)-atoms: grey,
Al(oxide)-atoms: blue, O-atoms: red.

by Mishin et al. [57]. After some extensive trials and many parameter val-
ues, which have been created with potfit the combined system becomes
stable. As a test of the best interface potential the work of separation was
determined. It was in the same range as the values, which follow from
ab-initio calculations. However, the interface potential does not describe
the relaxed interface structures shown in Fig. 3.14 well. The Al-top config-
uration is the most stable one according to ab-initio computations, while
from MD simulations with the obtained interface potential the hollow con-
figuration results. Looking at the ab-initio outputs (left part of Fig. 3.14)
every third metal Al-atom relaxes to the oxide side of the interface struc-
ture. It takes the atomic position under the first oxide layer (Al2). In case
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of the created interface potential the Al(oxide)-atoms at the inferface pass
through the O-layer, thus changing the termination to a O-terminated one.
For the configurations O-top and hollow the developed potential provided
a better accordance with the ab-initio results, since the Al(metal)-layer at
the interface remains planar.
Alternatively, for the interaction of the interface atoms instead of the

Morse-stretch potential an EAM potential has been chosen. The embed-
ding functions for the Al(oxide)- and O-atoms have been also involved into
the potential optimization process. Unfortunately, an improvement of the
existing potential did not occur, concerning the work of separation and the
description of the three different configurations of Fig. 3.14.
For comparison we also have simulated the interface structure with the

many-body potentials COMB and ReaxFF, which were described in Sec.
2.3.3.

3.3.1 Simulations with ReaxFF

In [39] aluminium-water reactions have been studied with ReaxFF and
the MD-code lammps. The potential used there is also applicable to the
Al/Al2O3-interface system. For the three structures Al-top, O-top and
hollow the work of separation (adhesion energy) could be determined, since
ReaxFF stabilizes the interface system without any difficulty. Problems
occur with regard of the convergence behavior of the energy. The resulting
energies depend on:

• Minimization algorithm (cg and also quickmin have been used),

• Initial interfacial distance (very sensitive, a different 5th decimal
place made a difference of 0.3 in adhesion energy),

• Initial charge values,

• Frequency of charge update.

For the distance of 2.28Å the results are listed in Tab. 3.1. It can be seen,
that the values, which follow from the ReaxFF method are comparable
with the ones from ab-initio calculations. However, the order of the most
stable configuration is not correct.
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Method Al-top O-top Hollow

ReaxFF 0.53 J/m2 0.61 J/m2 0.37 J/m2

Ab-initio 0.7 J/m2 0.5 J/m2 0.2 J/m2

Table 3.1: Adhesion energies of the three interface structures Al-top, O-
top and hollow, determined by the ReaxFF method [39, 86]
and ab-initio computations for the initial distance of 2.28 Å.
The obtained values are about of the same order. Unfor-
tunately, the most stable interface structure is Al-top (ab-
initio) and not O-top (ReaxFF).

3.3.2 CuSiO2 with COMB

The second alternative model for simulating interface structures is COMB
from Sec. 2.3.3. It is also a many-body potential with charge optimization,
which has been created until now for various elements (Si, Cu, Hf, Ti, O)
and mixtures (their oxides and alloys), but not for the desired Al/Al2O3-
interface system. For this reason we simulated a Cu/SiO2 interface. For
this purpose, a Cu/α-quartz interface with different terminations (Si, O,
OO) was created. The number of O-atoms indicates how oxygen-rich or
lean the interface structure is.

Charge transfer across the interface

Similar to Shan et al. [69] and as a first test of COMB and our gener-
ated structures the charge transfer ∆Q perpendicular to the interface was
determined. It is defined as

∆Q = QCu/SiO
2
− (QCu +QSiO2

) , (3.73)

where QCu and QSiO2
are the equilibrated charge values of the separated

structures, while QCu/SiO
2
stems from the combined system, respectively.

Physically, ∆Q specifies the charge transfer if the single structures Cu and
SiO2 are merged to Cu/SiO2. In the simulation the atoms of Cu and
SiO2 are kept fix and only the charges are equilibrated. After both single
structures were combined, a full relaxation and charge equlibration was
executed for Cu/SiO2. In Fig. 3.15 ∆Q is illustrated for the four different
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Figure 3.15: The change of charge in case of the Cu/α-quartz interface.
The highest charge transfer occurs for the OO-terminated
structure, since a greater amount of O-atoms automatically
effect a higher Cu oxidation.

terminations. The two types of O-termination depend on which O-atom is
removed from its Wyckoff position. As one can see the charge difference
becomes higher if the number of O-atoms at the interface is increased. More
Cu-atoms are then bonded, which leads to a higher adhesion between both
structures.
We computed also the adhesion energy of Cu/SiO2. Unfortunately, we

could not reproduce the values listed in [69], since the result depend also
here on the initial distance of the interface structures.

3.3.3 Variable Charges for Dipoles

For bulk Al2O3 the Wolf-summed TS potential provided good simulation
results. An obvious possibility for simulating alumina with variable charges
is to take the dipole potential and to combine it with the charge optimiza-
tion routine of the SM model. For this purpose some modifications of the
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original TS method are necessary. First, one has to check how TS incor-
porated the atomic charges in their model. The answer is given by the
short-range part of the dipoles from Eq. (2.92):

psr
i = α

∑

j 6=i

qjrij

r3ij
fij(rij) . (3.74)

The values of the qi are not kept fixed in the simulation any more. They are
determined by the optimization process of the SM method, as described
in Sec. 2.3.2. As a second consequence of combining TS with SM an
additional contribution to the electric field arises. The reason is the charge
density ρi from Eq. (2.45). By modifying the electric field the induced
part of the dipoles is affected, since it depends linearly on E:

pind
i = αE

(
ri;
{
pn−1
j

}

j=1,N
, {rj}j=1,N

)
. (3.75)

The additional part of the electric field takes the following form:

ESM = −
∑

j 6=i

{qj −Zj}∇j [j|fi]′ , (3.76)

with [j|fi]′ being the nuclear attraction potential without the 1/rij-term,
which is indicated by the prime.
As a first application of this new potential the crack propagation in

alumina has been studied, for which the EAM potential of SM was not
appropriate. Unfortunately, one has to make a compromise concerning the
charge values. The potential parameters of the TS model Dij , γij , r

0
ij , α,

b and c are only determined optimally in potfit, if the valences of Al and
O take the adjusted values of +2.0e and −1.4e, respectively. The result is
shown in Fig. 3.16. It can be seen by the color encoding, that the atomic
charges change their values while the crack is propagating to the right. By
using the visualization tool MegaMol [32] the fluctuations of the charges
have been made visible (Fig. 3.17).
The main success of merging both methods is that they are about two or-

ders of magnitude faster than the COMB potential or the ReaxFF method.
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+2.0e −1.4e

Figure 3.16: Adjusted charge values for bulk Al2O3 by combining the
models of TS and SM. The crack propagates to the right
and changes the charge values of the atoms.

Summary

The original version of the SM model has been modified in this work by
using the Wolf summation method for the long-range terms within the in-
teraction matrix Ṽij (see Eq. (2.49)). As a second improvement, the system
of linear equations for determing the valence charges is solved iteratively
by the conjugate gradient method. Both developments result in a speed
up of the charge computation by the factor 60.
For executing MD simulations with the SM model the charge optimiza-

tion is combined with a non-electrostatic potential. SM proposed an EAM
potential presented in Sec. 2.3.2. Simulations with pure alumina (Al2O3),
like determing the stress-strain curves, were successful. However, the in-
terface system Al(111)/Al2O3(0001) became unstable. To get it stable
three different atom types (Al (metal) Al (oxid), O) were defined. Also for
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Figure 3.17: The crack propagation in Al2O3 with variable charges. In
this picture the charge fluctuations of the Al atoms have
been visualized with MegaMol. In the region of stress the
charges are qAl = 2.0 (black color), while smaller values
appear in the crack region (colors purple, blue and yellow).
The colors have been chosen in such a way to make the
fluctuations visible.

the interactions three different potentials were chosen: For metallic Al the
EAM potential of SM [78] and also occasionally the one of Mishin et al.
[57], while for the oxide the force field of Hocker et al. [34] was applied.
These potentials were not optimized with potfit. The third one for the
Al-Al2O3 interaction was a Morse-stretch potential. Its parameters were
optimized in a box around the interface. The combined system became
stable, but unfortunately the description of the three different interface
structures (Al-top, O-top, Hollow) was not correct, compared to ab-initio
calculations.
As an attempt of getting the interface structure stable the model of TS
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and SM were combined. The charges of the atoms become variable and the
oxygen atoms polarizable. In pure alumina a crack propagated successfully
with fluctuating charge values (see Fig. 3.17). However, the combination
of both models is only for adjusted charge values of Al and O possible.
Alternative methods for variable charges, but without dipoles, are the

COMB potential and ReaxFF from Sec. 2.3.3. These potentials use many-
body interactions and are in comparison with our approach above two
orders of magnitude slower.
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Chapter 4

Flexoelectricity

One application of the method of Tangney and Scandolo [81] from Sec. 2.3.4
was the study of crack propagation in α-alumina (Al2O3) done by Hocker
et al. [34]. The effective potentials were created therefor by Beck et al. [6].
For the visualization of the simulation results the software package MegaMol
[32] was used. In the visualization of Grottel et al. [31] the oxygen ions
were presented by arrows, indicating the direction of the induced dipole
moment. Surprisingly, the simulations show regions in front of the crack
tip with ferroelectric and antiferroelectric domains, although α-alumina is
not piezoelectric (see Fig. 4.1). Such a phenomenon where ferroelectricity
is caused not by strain, but by a strain gradient is called flexoelectric effect
[41, 55].
In the following, the effect was observed in a more controlled way in the

simple cubic oxide periclase, crystalline magnesia (MgO) with sodium chlo-
ride structure, where three well defined displacement modes were applied.
Two of the three flexoelectric coefficients could be measured easily. The
third one needed a special treatment.
First, however, a short introduction in the terms of piezo- and flexoelec-

tricity is given.

The Term of Piezoelectricity

In 1880 Pierre and Jacques Curie discovered that a voltage emerges from
the deformation of a material [16, 17]. In a microscopic view, oriented
electrostatic dipole moments build up in dielectric materials due to external
strain. In general, the linear piezoelectric coupling between polarization P

and strain ε can be expressed by a three-stage tensor d:

Pi = dijkεjk. (4.1)

67
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Figure 4.1: Crack propagation in Al2O3. The dipole moments of the
oxygen atoms are visualized with MegaMol. In front of the
crack the dipoles are anti-parallel orientated, while below
and above is no orientation.

The corresponding free energy density (with the electric field E) can be
written as

fpiezo =
1

2
E · P =

1

2
Eidijkεjk. (4.2)

As upon inverting spatial coordinates the electric field E changes sign, but
not the strain tensor ε, the free energy (Eq. (4.2)) is not inversion-invariant,
and piezoelectricity is forbidden in crystalline systems with inversion sym-
metry.

Flexoelectric Behavior

However, even in inversion-symmetric systems and thus in principle in all
crystalline dielectrics a polarization can develop due to response to a strain
gradient εjk,l [72], or, as used in many publications and also in this thesis, as
response to the second derivative of the displacement field uj,kl [10, 54] (for
the relation between the two conventions see [37, 38]). The effect is denoted
flexoelectricity. First predicted by Mashkevich and Tolpygo [55] and phe-
nomenologically described by Kogan [41], flexoelectricity establishes a new
material class for industrial products that are based on generating voltage
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by deformation. In the bulk the flexoelectric effect is small, but it becomes
important in nanocrystals or epitaxial thin films where the strain gradient
can take large values [47]. With suitable geometries the flexoelectric effect
can be used to produce piezoelectric metamaterials even with centrosym-
metric compounds [80]. Recently, in a nanoscale volume of a ferroelectric
film, polarization could be switched mechanically due to the stress gradient
generated by the tip of an atomic force microscope [49]. Other phenom-
ena, where flexoelectricity influences properties, are the modification of the
dielectric constant in nanodevices [11, 12] and generally piezoelectric-like
responses in devices made out of non-piezoelectric materials [51, 93].
In linear response flexoelectricity is described by a fourth-rank tensor µ:

Pi = µijkluj,kl. (4.3)

In a crystal of cubic symmetry, the coupling tensor

µijkl = (µ11 − µ12 − 2µ44)δijkl + µ12δijδkl + µ44(δikδjl + δilδjk), (4.4)

(δijkl is 1 for all indices equal and zero otherwise) has only three indepen-
dent components [38, 54]. There is no piezoelectric coupling.
The flexoelectric coefficients are difficult to measure. In experiments

[5, 10, 15, 30, 50, 94], as a rule only one or two can be determined. Nu-
merical simulations are a useful supporting tool. Although the analytical
description [53, 62, 64, 79] and ab-initio [35–37] studies have advanced,
no molecular dynamics (MD) simulations have been performed yet. There
exists one single atomistic approach [52], where an ab-initio based polariz-
able force field for barium titanate was adopted to model dipole orientation
phenomena, with a focus on the dependence of polarization on the sample
size.

4.1 MD Simulations

In this thesis MD simulations of the oxygen periclase are presented, per-
formed with IMD [75]. For the ions of magnesia, the highly accurate, effec-
tive interaction force field by Beck et al. [6] has been applied. It is based
on the TS model [81], which appreciably increases accuracy for collective
phenomena in metal oxide systems [7, 33].
In ionic solids one has to discern two kinds of polarization: the primary
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one, which results from the asymmetric displacement of the ionic charges
due to the strain gradient after relaxation (“rigid ion contribution”), and
an induced one due to the deformation of the electronic orbits (“shell con-
tribution”). Oxygens are particularly appealing, because the O-atom is
strongly polarizable and the relation between the two contributions is of
interest.
In the literature different terms are used. In their first-principle studies

of flexoelectricity Hong and Vanderbilt (HV) [37] differentiate between a
pure electronic (or “frozen ion”) part, which depends on higher moments
(octupole term) of the charge-density caused by atomic displacements [36]
and a lattice (or “relaxed-ion”) part as a result of internal sublattice shifts
after relaxation. Both terms of primary and lattice polarization are de-
scribing the same physical mechanism, only the realization done in this
work with MD differs from the one of HV.

It should be mentioned that the long-range and the short-range part
of the induced dipole moments in the TS model (Eqs. (2.92) and (2.94))
have correspondences in the shell model as employed e.g. by Askar et al.
[4]. Both methods mimik a polarization caused by a macroscopic electric
field and one by approaching ion cores. In the shell model calculations
the polarization due to relative sublattice shifts and hence the primary
polarization is not considered [54].

4.1.1 Displacement Modes

The three flexoelectric constants µ11, µ12 and µ44 of periclase can be de-
termined by applying three different inhomogeneous deformation modes
to the ionic system of MgO along the cubic fourfold axes [10]. The dis-
placement fields are chosen in such a way, that always one coefficient of
µijkl given by Eq. (4.4) remains. The corresponding analytical form of the
displacements is:

(a) uz = k
x2

2
; Pz = P3 = µ3311u3,11 = kµ12 (4.5)

(b) uz = k
z2

2
; Pz = P3 = µ3333u3,33 = kµ11 (4.6)

(c) ux = kxz; Pz = P3 = µ3113u1,13 + µ3131u1,31 = 2kµ44, (4.7)
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(a) (b) (c)

µ12 µ11 µ44

z z z

x x x

Figure 4.2: The undeformed samples (dashed lines) are blocks of 210.5×
42.1×126.3 Å containing 120,000 Atoms. They are deformed
by the displacement modes given by Eqs. (4.5), (4.6) and
(4.7) (red lines). The coordinate system points along the
cubic fourfold axes of the system. When applied to a peri-
clase sample, they allow to determine the three superscribed
flexoelectric constants. Sample (a) is continued periodically
along the y- and z-, sample (b) along x- and y-directions
and sample (c) along y-direction only. The open surfaces
are neutral.

with the polarization calculated by Eq. (4.3). The constant k rules the
strength of the displacement and its gradient. The corresponding geome-
tries are illustrated in Fig. 4.2.
For the MD simulations a periclase sample of about 120,000 atoms is cre-

ated. It is deformed by shifting all atoms by the above quadratic functions
of their unperturbed positions. In case of the bending and shearing mode
(a) and (c) the first surface layers are fixed. Upon relaxing the system
the forced strain causes additional atomic shifts within the unit cell, which
break the inversion symmetry and generate a global primary polarization
(see Sec. 4.1.2). This method corresponds most closely to the experimen-
tal setup. However, in deformation mode (b) a surface stabilization of the
artificially introduced bulk strain is not possible, since the atoms will relax
to their equilibrium positions once a MD simulation is started.
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4.1.2 Primary Polarization

The primary polarization is calculated as the sum of all dipole moments
pi = qiri within the volume V divided by V :

P p =
1

V

N∑

i=1

pi =
1

V

N∑

i=1

qiri, (4.8)

with qi being all ion charges and their positions ri after the deformation
and V cubic volumes of different sizes inside the samples, avoiding surface
charges.
Looking at the above expression analytically, P p can be expressed as

P p =
1

V

N∑

i=1

qiri =
1

V

N∑

i=1

qi (r0i + ui) =
1

V

N∑

i=1

uiqi, (4.9)

where r0i are the atomic positions of the undeformed sample and the ui

functions of the unperturbed atomic coordinates given by the Eqs. (4.5),
(4.6) and (4.7). The first sum vanishes, since in case of no shift the charges
are arranged inversion symmetric. For deformation mode (a) ui in the
remaining sum can be written as

ui = k
x2
0i

2
êz =

k

2

(a0
2

)2
n2
xiêz. (4.10)

a0 is the lattice constant of MgO, so that the x-position of atom i is identical
to x0i = nxi(a0/2) with nxi ∈ N. Executing now the last part of the initial
sum no primary polarization results:

P p =
1

V

N∑

i=1

uiqi =
k

2V

(a0
2

)2
êz

N∑

i=1

qin
2
xi = 0 (4.11)

Since the square of the undeformed x-positions n2
xi is always positive and

the charge values qi alternate in sign, the above sum over the undeformed
lattice is also equal zero. For the modes (b) and (c) the same result follows:
With the deformation fields from Eq. (4.5) to (4.7) the local inversion sym-
metry is not broken and thus no primary polarization occurs. Numerically,
a single initial MD step has been executed to confirm the analytic evalua-
tion. This apparent contradiction is resolved if one looks at the real cause
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of the primary polarization.
As already mentioned in the previous definition of the terms primary

and induced polarization, the first contribution is a result of internal sub-
lattice shifts within the unit cell, which follow after relaxation, while the
initial uniform strain is preserved [37, 54]. There is no unique approach in
the literature of how to maintain the applied strain gradient and how to
execute the relaxation for getting the desired sublattice shifts. HV [37] in-
troduced for the lattice (or “relaxed-ion”) polarization, which corresponds
to the primary one here, artifical forces for the atoms of the unit cell after
the induced displacements occurred. Such “force patterns” can be choosen
differently. A mass-weighted choice seems to be most reasonable one. The
dependence of the flexoelectric constants of the choosen “force pattern” is
discussed in this article.
In this thesis three steps have been executed to gain a non-vanishing

primary polarization for the modes (a) and (c) by the use of MD:

1. In contrast to the ab-initio work of HV, where the unit cell as a whole
is shifted and all atoms within obtain the same displacement, here
all atoms of the sample are displaced differently by the quadratic
functions of their former lattice position given by the Eqs. (4.5) and
(4.7).

2. The inhomogeneous strain is kept by locking the surface atoms, sim-
ulating in such a way the same conditions as in the experiment. For
mode (b) such a surface stabilization is not possible.

3. A relaxation with fixed surface layers is performed, which leads to
the formation of a global and homogeneous polarization field within
the bulk.

For the relaxation a microconvergence integrator (mik) is used, since the
deformed sample respresents a non-equilibrium state and needs some time
for relaxation. If the velocity of an atom passes the minimum in the poten-
tial landscape, it is reset to zero after each step [75]. A finite homogeneous
polarization comes up, however, only close to 0 K. After finally 60,000 MD
steps the primary polarization converges to a fixed value (see Fig. 4.3). The
same procedure has been executed for different k-values of the displacement
fields. As expected a linear dependence of polarization and strain from Eq.
(4.3) follows, which is shown in Fig. 4.7(a). From the slope of
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Figure 4.3: The primary polarization converges after 60,000 MD steps
by using the microconvergence integrator (mik) in IMD. How-
ever, the induced polarization reaches its fixed value from
the beginning. Both modes (a) and (c) are illustrated for
k = 1.35 · 106/m.
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the lines the primary part of the flexoelectric constants µp
12 and µp

44 can be
extracted:

µp
12 = −2.2

pC

m
(4.12)

µp
44 = −10.1

pC

m
. (4.13)

µp
44 is about four times bigger than µp

12. One reason for this difference is
the larger change of the atomic layer distances if the sample is sheared,
instead of being bent. The missing value of the flexoelectric constant µ11

is determined in Sec. 4.2 by a slightly modified approach.

4.1.3 Induced Polarization

The induced polarization, denoted as PTS is calculated by the Eqs. (2.94)
and (2.92). As in the case of the primary polarization, it points after
applying the deformation modes (a), (b) and (c) also along the three-axis.
Since the short range induced dipole moments psr

i of Eq. (2.92) turn
out to be one magnitude less than the long-range ones, the sign of the
total induced moments depends essentially on the sign of the electric field
at the oxygen positions. This sign is made plausible by the displacement
of already nearest neighbor Mg2+ charges in Fig. 4.5. In case (a) it is
negative, in case (b) positive. The notation Mg2+ is used although the
effective valence charge determined in [6] is about 1.23e.
The induced polarization is extracted from the same relaxation process as

for the primary one. The resulting linear dependence is illustrated in part
(b) of Fig. 4.7. The corresponding induced contributions to the flexoelectric
coefficients µTS

12 and µTS
44 take the values:

µTS
12 = −9

pC

m
(4.14)

µTS
44 = −6.6

pC

m
. (4.15)

Both are of same order and sign.
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(a) (b)

Figure 4.4: The induced dipoles of the oxygen atoms are oriented in
case of displacement (a) along the negative z-direction, while
for displacement (b) they point along the positive z-axis.
This is in accordance with the direction of electric field, as
illustrated in Fig. 4.5. The color coding done by MegaMol

visualizes the orientation of the arrows.

(a) (b) (a′)

E

E

E

Figure 4.5: The direction of the dipoles in the TS model is essentially
given by the electric field E as the long-range induced po-
larization (see Eqs. (2.94) and (2.92)) dominates the short-
range one. Why the dipoles in Fig. 4.4 are oriented op-
positely, can be understood by considering the electric field
of two Mg2+-atoms (red) at the position of the polarizable
O2−-atom (blue) in between. On the left side the bending
case (a) of Fig. 4.2 is shown in one plane. The E-field points
downwards. However, for the stretching displacement (b)
from Eq. (4.5) (right) it points upwards. In case of mode
(a′) (see Sec. 4.2 and Eq. (4.18)) the E-field points also
upwards.
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4.2 The Flexoelectric Constant µ11

The three steps mentioned above for determing the primary polarization
are unfortunately not applicable to deformation mode (b), because of the
second point: The strain gradient cannot be kept by fixing the surface
during relaxation, since the atoms fall down immediately to their unshifted
positions. Another approach was tried by restricting the movement of one
atom type (Mg or O). In such a way the initial inhomogeneous strain was
preserved and a primary polarization could have occurred by relaxation of
the other atom type. But, also this trying failed and returned no reasonable
results.
An alternative method to obtain the missing constant µ11 is to set up a

new experiment. The aim is to express analytically the new flexoelectric
constant, which follows from this different approach by all other ones: µ12,
µ11 and µ44. Since the values µ12 and µ44 are already known, the missing
one µ11 can be then easily extracted. As a first step of the alternative
experiment the sample is regarded in a new coordinate system, which is
rotated to the older one by π/4. The corresponding rotation matrix takes
the form:

R =




1/
√
2 0 1/

√
2

0 1 0

−1/
√
2 0 1/

√
2


 . (4.16)

The crystal surface still remains neutral as in the former, unrotated case.
In a second step the deformation mode (a) is executed:

u′
z′ = k

x′2

2
, (4.17)

where the prime indicates the new coordinate system and mode (a) is thus
renamed to mode (a′). As by Eq. (4.5) the resulting polarization points
along the z′-direction:

P ′
3′ = µ′

3′3′1′1′k, (4.18)

with µ′
3′3′1′1′ being the flexoelectric constant in the rotated system. The

notation µ′
12 can be also used, since it is the same deformation mode. By

use of Eq. (4.16) it is possible to write µ′
3′3′1′1′ as a function of the non-

primed components:

µ′
3′3′1′1′ = µijklRi3′Rj3′Rk1′Rl1′ . (4.19)
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Figure 4.6: The primary and induced polarization in case of mode (a′).
It also converges after 60,000 MD steps using mik. Both
contributions reach nearby the same value and differ slightly.
The strength of the strain gradient is here also given by the
same value: k = 1.35 · 106/m.

For µijkl Eq. (4.4) is still valid. The detailed calculation is listed in App. C,
here only the final result is presented:

µ′
3′3′1′1′ =

1

2

{
µ11 + µ12 − 2µ44

}
. (4.20)

In the simulation the three steps of Sec. 4.1.2 are performed: Displacement
of all atoms by Eq. (4.17), fixing the surface layers and relaxation. Primary
and induced polarization have been determined once again for different
strengths of the strain gradient given by k. All plots are summarized
in Fig. 4.7, while in Fig. 4.6 the convergence behavior of both types of
polarization for mode (a′) is shown. µ′

3′3′1′1′ takes finally the following
value:

µ′
3′3′1′1′ = µ′

12 = (7.8 + 7.6)
pC

m
= 15.4

pC

m
,

where the first entry results from the primary polarization, while the second
one from the induced contribution. Compared to µ12, its prime version is
of the same order. However, primary and induced part are nearby identical



4.3 The Resulting Flexoelectric Constants 79

and of positive sign. The change of sign can be understood by looking again
at the induced polarization and the immediate connection of the induced
dipole moment and electric field at the oxygen position given by Eq. (2.94).
In Fig. 4.5 the left picture is rotated by π/4, shown separately on the right.
The displacement (a′) causes an electric field vector, which points along the
positive z′-direction. Thus, the induced polarization points in the same
direction.

4.3 The Resulting Flexoelectric Constants

In summary, in Fig. 4.7 the magnitude P = |P | of the polarization (bound-
ary atoms omitted) scales linearly with the strain gradient. Such a linear
dependence has been observed in recent experiments by Cross [15] for dif-
ferent ionic bulk materials and Baskaran and He for polyvinylidene flouride
films [5]. All flexoelectric constants of periclase with both parts have been
determined succesfully from Fig. 4.7:

µ12 = − (2.2 + 9.0)
pC

m
= −11.2

pC

m
(4.21)

µ11 = − (2.4− 11)
pC

m
= 8.6

pC

m
(4.22)

µ44 = − (10.1 + 6.6)
pC

m
= −16.7

pC

m
, (4.23)

where the first entry in the bracket results from the primary, the second
from the induced polarization. µ11 was calculated from µ′

3′3′1′1′ via µ12

and µ44. The induced part is at µ12 and µ11 bigger than the primary one.
Except µ11 all coefficients are in total of the same order, differing also in
sign compared to the other two. This results by the larger positive induced
contribution of µ11. Why µTS

11 is positive is explained by Fig. 4.5.
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Figure 4.7: In Fig. (a) the primary polarization P p

3 is plotted against the
strength k of the applied strain gradient, while in Fig. (b)
the induced polarization PTS

3 obtained by the TS model is
illustrated. Each point follows after a relaxation of 60,000
MD steps using the microconvergence integrator (mik) in
IMD. As expected, in all deformation modes (a), (c) and
(a′) the polarization is a linear function of the strength of
the strain gradient. For µ11 the π/4-rotated sample was
also deformed by mode (a). From the slope of the lines the
flexoelectric constants µ12, µ44 and µ′

3′3′1′1′ are derived.
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For periclase flexoelectric constants were determined in [36, 37]. How-
ever, only in the latter publication of HV [37] both parts of the polarization
and, thus, of the flexoelectric constants are regarded. In cubic materials
the components of the flexoelectric tensor decompose in a longitudinal and
transverse part. In [37] only the longitudinal components have been calcu-
lated by first-principles. They take the following values:

µHV
L1 = − (5.7 + 111.7)

pC

m
= 117.4

pC

m
(4.24)

µHV
L2 = (50.5− 164.8)

pC

m
= −114.3

pC

m
, (4.25)

with µHV
L1 = µ11 and µHV

L2 = µ12 + 2µ44 expressed by the constants used
here. The first entry above is the lattice part of the polarization, while the
second entry the electronic part. The lattice or relaxed-ion contribution,
which corresponds to the term of primary polarization, is in that descrip-
tion the minor part. µL1 and µL2 are re-computed with the values of µ12,
µ11 and µ44 determined in this chapter:

µL1 = µ11 = − (2.4− 11)
pC

m
= 8.6

pC

m
(4.26)

µL2 = − (22.4 + 22.2)
pC

m
= −44.6

pC

m
. (4.27)

In total µHV
L1 and µHV

L2 are 1-2 order bigger than the above results of µL1 and
µL2. Generally, it is difficult to compare values of flexoelectric constants,
which have been computed by different methods: Here, for the first time
fromMD simulations and HV by executing ab-initio calculations. The main
reason for the above discrepancy results from the dependence of the lattice
part and thus of the total flexoelectric coefficients by the choice of the
force pattern for maintaining the stress gradient within the unit cell [37].
In their previous publication [36] HV determined only the electronic part
of µ11 by summing up the third moments of the charge-density distortions
and it takes a different value and also sign as in [37]:

µHV, el
L1 = µHV, el

11 = −95.6
pC

m
. (4.28)

As mentioned above the transverse part of the flexoelectric tensor µT was
not determined by HV in [37]. µT is written with the constants used here
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as µT = µ12 − µ44.
For the chlorides NaCl and KCl, isostructural to MgO, flexoelectric con-

stants have been calculated also with the shell model [54]. They are same in
magnitude with the ones here for induced polarization (see Tab. 4.1). The
constants for the piezoelectric cubic semiconductors GaAs, GaP and ZnS
are larger by about a factor 5 [54]. All these systems are weak flexoelectrics
compared with the high dielectric perovskites BaTiO3 and SrTiO3 in their
cubic phase, where ab-initio calculations [54] and experiments [50, 94] re-
port values between 15 and 106 · 10−13 C/cm. The above flexoelectric
constants for periclase and also some values of other cubic systems men-
tioned in the above paragraph are summarized in Tab. 4.1.
In general, theoretical and experimental values of flexoelectric constants

are usually not comparable, since all experiments are done at room temper-
ature, while first-principle calculations and also the MD simulations here
are executed at 0 K. In Experiment also surface effects are included, which
is here and in the ab-initio studies of HV is not the case.



4
.3

T
h
e
R
esu

ltin
g
F
lexo

electric
C
o
n
sta

n
ts

8
3

MD Ab-initio Shell-model Experiment

prim.+induced el. ld.+el.

pC/m Thesis here HV [36] HV [37] Hong [35] Maranganti [54] Ma [50] Zubko[94]
MgO SrTiO3 NaCl BaTiO3 SrTiO3

µL1 -2.4+11 -95.6 -5.7-111.7
µL2 -22.4-22.2 50.5-164.8

µ12 -2.2-9.0 -1.22 100 -9000
µ11 -2.4+11 -95.6 -5.7-111.7 1380 4.12 4000
µ44 -10.1-6.6 -2.3 3000

Table 4.1: The flexoelectric constants µ12, µ11 and µ44 for different cubic materials determined by MD
(in this thesis), ab-initio calculations and experiment.
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Conclusion

The flexoelectric response of an inhomogeneously strained periclase sample
by molecular dynamics has been shown. For the three flexoelectric coupling
coefficients µ12, µ11 and µ44 three different deformation modes (a), (b) and
(c) have been applied. Both direction of collective dipole orientation and
linearity of the material’s response, namely primary and induced polariza-
tion, have been calculated for the bending and shearing mode and are in
agreement with theory. The constant µ44 needed a special treatment: After
regarding the sample in a rotated coordinate system and executing once
again mode (a) it was possible to compute µ11 from the new flexoelectric
constant µ′

3′3′1′1′ by knowledge of the other two constants µ12 and µ44. In
conclusion, with this simple model, it has been able to determine all three
flexoelectric constants µ12, µ11 and µ44 from MD simulations.



Chapter 5

Conclusion and Outlook

In the present thesis molecular simulations (MD) of oxides were performed.
For this purpose existing methods have been developed further and imple-
mented in the simulations package IMD. The long-range interactions, which
occur in oxides were handled by the summation technique of Wolf. Unlike
the method of Ewald it scales linearly with the number of particles and
no periodic boundary conditions are needed any more, since the reciprocal
space term is omitted. Especially for systems with a large number of atoms
a significant speed up in computing time is achieved.
The charge transfer model of Streitz and Mintmire (SM) introduces vari-

able valencies for the atoms, which are determined during MD by minimiz-
ing the electrostatic energy. Contrary to the original approach, for solving
the corresponding linear system of equations the iterative conjugate gra-
dient (CG) method was executed, while for the long-range terms the Wolf
summation instead of Ewald was applied. Also for the computation of
the charge values the computing time is by the factor 60 less, by differing
only about 1.2%.
The charge optimization is connected to MD by a non-electrostatic force

field. For the aluminium-alumina (Al-Al2O3) system SM proposed an EAM
potential. By performing tensile tests on pure alumina with this poten-
tial, including charge computation the resulting stress-strain behavior is in
good agreement with ab-initio data, especially for high stresses. However,
the surface relaxation of bulk Al2O3 provided inadequate results for crack
propagation. Also the simulation of the Al-Al2O3-interface structure failed
with this potential. A different approach was used to get the Al(111)-
Al2O3(0001) system stable by introducing three different potentials for the
interactions of the three atom types (metal Al, oxide Al, O). The resulting
potential stabilizes the combined system, but it does not describe the re-
laxed interface structures (Al-top, O-top, hollow) correctly.
A different description of oxides in the simulation has been introduced

85
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by TS and presented also in this work. In this model the oxygen atoms
are polarizable and therefore exhibit a dipole moment. Studying the crack
propagation in AlO was possible and successful.
By combining both models of Tangney and Scandolo (TS) and SM the

same cracks in AlO could be simulated with variable charges. In contrast
to methods like COMB or ReaxFF it is of two orders of magnitude faster.
As a result of visualizing the cracks in alumina an orientated alignment of

the dipole moments could be observed. Such a flexoelectric behavior was
reproduced for the simple cubic system of periclase (MgO) by applying
three different kinds of deformations. The applied deformation was kept
by fixing the surface. After a long relaxation time a global primary and
induced polarization occur. In that way all three flexoelectric constants of
the system were determined. However, the third one has been extracted
from the other two after the sample has firstly been regarded in a new
coordinate system, which is π/4-rotated compared to the older one.



Appendix A

The Software Package IMD

IMD stands for ITAP Molecular Dynamics with ITAP being the shortcut
of the Institute of Theoretical and Applied Physics at the University of
Stuttgart [75]. It is a powerfull tool for the simulation of different interac-
tions between the atoms, like a simple pairwise one or in the case of metals
of an EAM potential (see Sec. 2.2). Also many-body potentials are imple-
mented, e.g. the one of Tersoff [83] for covalent materials or the force field
proposed by Stillinger-Weber [77]. IMD provides a wide range of simulation
options. Beginning from the usual integrators for the thermodynamic en-
sembles, different relaxators and shear options exists. The latter ones can
be used for deforming the sample during the simulation. Additionally, the
laser ablation of metals can be simulated. Therefore, a hybrid model has
been implemented in IMD, the so-called Two-Temperature Model (TTM)
[3]. Laser ablation simulations of about 60 million atoms have been carried
out with it [73]. Large numbers of particles can be handled by IMD without
any problems, since it is parallelized applying the Message Passing Inter-
face (MPI). In this context IMD won a price and holds a world record [66].

Recently, the models of TS and SM have been succesfully implemented
in IMD. In the first one, the oxygen atoms have an additional property,
namely the polarizability, while in the charge transfer model of SM the
atomic charge is not a fix value anymore, but is determined by minimizing
the electrostatic energy (see Sec. 2.3.2) [78, 81]. Two different implementa-
tions of the minimization process have been realized as already mentioned
in Sec. 3.1.2. In one of them the electronegativity χi and the interaction
matrix Ṽij are built up by neighbor lists. For the long-range term 1/rij
within the SM model both the Ewald and the Wolf summation technique
have been used.
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Appendix B

Interactions Integrals

In the model of SM in Sec. 2.3.2 the electronegativity of an atom is de-
termined by the terms of nuclear attraction and Coulomb repulsion. The
interaction matrix in Eq. (2.49) is also described completely by the re-
pulsive potential [fi|fj ]. A detail and rich examination of all kind of such
interaction integrals and their solutions is given in the article of Roothaan
[65]. For the Slater 1s-orbitals used in this work the correspond potentials
take the form:

[j|fi] =
1

rij

[
1− (1 + ζirij) e

−2ζirij
]
, (B.1)

and

[fi|fj ] =





1

rij

{
1− (1− τ)2

1

4
[2 + τ + ζirij ] e

−2ζirij

− (1 + τ)2
1

4
[2− τ + ζirij ] e

−2ζirij

}, ζi 6= ζj

1

rij

{
1−

[
1 +

11

8
(ζirij) +

3

4
(ζirij)

2 +
1

6
(ζirij)

3

]

× e−2ζirij

} , ζi = ζj ,

(B.2)
where τ is defined as

τ =
ζ2i + ζ2j
ζ2i − ζ2j

. (B.3)

Since [fi|fj ] = [fj |fi] the Coulomb repulsive potential is symmetric. In
contrast, [j|fi] depends only on the type of atom i, so that [j|fi] 6= [i|fj ]
for ζi 6= ζj .
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Appendix C

Transformation of the Flexoelectric

Tensor

The relation between two orthonormal basis is given by following expres-
sion:

e′i′ = eiRii′ , (C.1)

with Rii′ being the transformation matrix, while the prime indicates the
transformed coordinate. Analogous, the components of the position vector
xi and of any vector can be written as

x′
i′ = xiRii′ and xi = Rii′x

′
i′ , (C.2)

in case of the reseverse transformation. Using the last equation the deriva-
tives transform in a similar way:

∂

∂x′
i′
=

∂xi

∂x′
i′

∂

∂xi
=

∂

∂xi
Rii′ . (C.3)

The primed version of the polarization from Eq. (4.3):

P ′
i′ = µ′

i′j′k′l′
∂

∂x′
k′

∂

∂x′
l′
u′
j′ , (C.4)

can be expressed with Eqs. (C.2) and (C.3) as

PiRii′ = µ′
i′j′k′l′Rkk′

∂

∂xk
Rll′

∂

∂xl
ujRjj′ | ×Rmi′ (C.5)

PiRii′Rmi′ = Rmi′Rjj′Rkk′Rll′µ
′
i′j′k′l′uj,kl.

By shifting the index m → i above equation takes the form:

Pi = µijkluj,kl, (C.6)
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with
µijkl = Rii′Rjj′Rkk′Rll′µ

′
i′j′k′l′ , (C.7)

or back transformed:

µ′
i′j′k′l′ = µijklRii′Rjj′Rkk′Rll′ . (C.8)

For the deformation in the rotated coordinate system:

u′
z′ = k

x′2

2
, (C.9)

the resulting polarization as already mentioned in Sec. 4.2 points along
the z′-direction:

P ′
3′ = µ′

3′3′1′1′k. (C.10)

µ′
3′3′1′1′ can be expressed with Eq. (C.8) as a sum of the non-primed

components of the flexoelectric tensor:

µ′
3′3′1′1′ = µijklRi3′Rj3′Rk1′Rl1′

= µ1111R13′R13′R11′R11′ + µ3333R33′R33′R31′R31′

+ µ1133R13′R13′R31′R31′ + µ3311R33′R33′R11′R11′

+ µ1313R13′R33′R11′R31′ + µ3131R33′R13′R31′R11′

+ µ1331R13′R33′R31′R31′ + µ3113R33′R13′R11′R11′ ,

(C.11)

where Eq. (4.4) has been applied:

µijkl = (µ11 − µ12 − 2µ44)δijkl + µ12δijδkl + µ44(δikδjl + δilδjk). (C.12)

Finally, with the rotation matrix from Eq. (4.16):

R =




1/
√
2 0 1/

√
2

0 1 0

−1/
√
2 0 1/

√
2


 , (C.13)

µ′
3′3′1′1′ reduces to Eq. (4.20):

µ′
3′3′1′1′ =

1

2

{
µ11 + µ12 − 2µ44

}
. (C.14)
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[59] Nosé, S.: A molecular dynamics method for simulations in the canon-
ical ensemble. Molecular Physics, 100 (1), 191–198, 2002.

[60] Plimpton, S.: Fast parallel algorithms for short-range molecular dy-
namics. Journal of Computational Physics, 117 (1), 1 – 19, 1995.

[61] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P.:
Numerical Recipes in C: The Art of Scientific Computing (Academic
Press, Cambridge, 2007), 3. edition.

[62] Quang, H. L. and He, Q.-C.: The number and types of all possible
rotational symmetries for flexoelectric tensors. Proc. R. Soc. London,
Ser. A, 467, 2369, 2011.

[63] Rappe, A. K. and Goddard, W. A.: Charge equilibration for molecular
dynamics simulations. The Journal of Physical Chemistry, 95 (8),
3358–3363, 1991.

[64] Resta, R.: Towards a bulk theory of flexoelectricity. Phys. Rev. Lett.,
105, 127601, 2010.



Bibliography 99

[65] Roothaan, C. C. J.: A study of two-center integrals useful in calcu-
lations on molecular structure. i. The Journal of Chemical Physics,
19 (12), 1445–1458, 1951.

[66] Roth, J., Gähler, F., and Trebin, H.-R.: A molecular dynamics run
with 5.180.116.000 particles. Int. J. Mod. Phys. C., 11, 317, 2000.

[67] Sakurai, J. J.: Modern Quantum Mechanics (Addison Wesley Long-
man, 1994).

[68] Shan, T.-R., Devine, B. D., Hawkins, J. M., Asthagiri, A., Phillpot,
S. R., and Sinnott, S. B.: Second-generation charge-optimized many-
body potential for Si/SiO2 and amorphous silica. Physical Review B,
82 (23), 235302, 2010.

[69] Shan, T.-R., Devine, B. D., Phillpot, S. R., and Sinnott, S. B.: Molec-
ular dynamics study of the adhesion of Cu/SiO2 interfaces using a
variable-charge interatomic potential. Physical Review B, 83 (11),
115327, 2011.

[70] Shewchuk, J. R.: An introduction to the conjugate gradient method
without the agonizing pain, 1994.

[71] Shin, Y. K., Shan, T.-R., Liang, T., Noordhoek, M. J., Sinnott, S. B.,
van Duin, A. C., and Phillpot, S. R.: Variable charge many-body
interatomic potentials. MRS Bulletin, 37, 504–512, 2012.

[72] Shu, L., Wei, X., Yao, X., and Wang, C.: Symmetry of flexoeletric
coefficients in crystalline medium. J. Appl. Phys., 110, 104106, 2011.

[73] Sonntag, S., Trichet, C., Roth, J., and Trebin, H.-R.: Molecular Dy-
namics Simulations of Cluster Distribution from Femtosecond Laser
Ablation in Aluminum. submitted, 2010.

[74] Spaldin, N. A. and Ramesh, R.: Electric-field control of magnetism in
complex oxide thin films. MRS Bulletin, 33, 1047–1050, 2008.

[75] Stadler, J., Mikulla, R., and Trebin, H.-R.: IMD: a software package
for molecular dynamics studies on parallel computers. Int. J. Mod.
Phys. C., 8 (5), 1131–1140, 1997.



100 Bibliography

[76] Stemmer, S. and Millis, A. J.: Quantum confinement in oxide quantum
wells. MRS Bulletin, 38, 1032–1039, 2013.

[77] Stillinger, F. H. and Weber, T. A.: Computer simulation of local order
in condensed phases of silicon. Physical Review B, 31 (8), 5262–5271,
1985.

[78] Streitz, F. H. and Mintmire, J. W.: Electrostatic potentials for metal-
oxide surfaces and interfaces. Phys. Rev. B, 50 (16), 11996–12003,
1994.

[79] Tagantsev, A. K.: Piezoelectricity and flexoelectricity in cristalline
dielectrics. Phys. Rev. B, 34 (8), 5883, 1986.

[80] Tagantsev, A. K. and Yurkov, A. S.: Flexoelectric effect in finite sam-
ples. J. Appl. Phys., 112 (4), 044103, 2012.

[81] Tangney, P. and Scandolo, S.: An ab initio parametrized interatomic
force field for silica. J. Chem. Phys., 117 (19), 8898–8904, 2002.

[82] Tebano, A., Fabbri, E., Pergolesi, D., Balestrino, G., and Traversa, E.:
Room-temperature giant persistent photoconductivity in srtio3/laalo3
heterostructures. ACS Nano, 6 (2), 1278–1283, 2012.

[83] Tersoff, J.: Modeling solid-state chemistry: Interatomic potentials for
multicomponent systems. Physical Review B, 39 (8), 5566–5568, 1989.

[84] Trave, A., Tangney, P., Scandolo, S., Pasquarello, A., and Car, R.:
Pressure-induced structural changes in liquid SiO2 from ab initio sim-
ulations. Phys. Rev. Lett., 89, 245504, 2002.

[85] van Beest, B. W. H., Kramer, G. J., and van Santen, R. A.: Force
fields for silicas and aluminophosphates based on ab initio calculations.
Phys. Rev. Lett., 64 (16), 1955–1958, 1990.

[86] van Duin, A. C. T., Dasgupta, S., Lorant, F., and Goddard, W. A.:
Reaxff: A reactive force field for hydrocarbons. The Journal of Phys-
ical Chemistry A, 105 (41), 9396–9409, 2001.

[87] Wang, J., Neaton, J. B., Zheng, H., Nagarajan, V., Ogale, S. B., Liu,
B., Viehland, D., Vaithyanathan, V., Schlom, D. G., Waghmare, U. V.,
Spaldin, N. A., Rabe, K. M., Wuttig, M., and Ramesh, R.: Epitaxial



Bibliography 101

bifeo3 multiferroic thin film heterostructures. Science, 299 (5613),
1719–1722, 2003.

[88] Wolf, D., Keblinski, P., Phillpot, S. R., and Eggebrecht, J.: Exact
method for the simulation of Coulombic systems by spherically trun-
cated, pairwise 1/r summation. J. Chem. Phys., 110 (17), 8254–8282,
1999.

[89] Yasukawa, A.: Using an extended tersoff interatomic potential to ana-
lyze the static-fatigue strength of SiO2 under athmospheric influence.
JSME Int. J. A, 39, 313–320, 1996.

[90] Yu, J., Sinnott, S. B., and Phillpot, S. R.: Charge optimized many-
body potential for the si/sio2 system. Phys. Rev. B, 75, 085311, 2007.

[91] Zhou, X. W. and Doty, F. P.: Embedded-ion method: An analytical
energy-conserving charge-transfer interatomic potential and its appli-
cation to the La-Br system. Phys. Rev. B, 78, 224307, 2008.

[92] Zhou, X. W., Wadley, H. N. G., Filhol, J.-S., and Neurock,
M. N.: Modified charge transfer-embedded atom method potential
for metal/metal oxide systems. Phys. Rev. B, 69, 035402, 2004.

[93] Zhu, W., Fu, J. Y., Li, N., and Cross, L.: Piezoelectric composite
based on the enhanced flexoelectric effects. Applied Physics Letters,
89 (19), 192904, 2006.

[94] Zubko, P., Catalan, G., Buckley, A., Welche, P. R. L., and Scott, J. F.:
Strain-gradient-induced polarization in SrTiO3 single crystals. Phys.
Rev. Lett., 99, 167601, 2007.



102 Bibliography



List of Publications

[95] Chatzopoulos, A., and Trebin, H.-R.: Hydrodynamic structure factor
of quasicrystals. Phys. Rev. B, 81, 064205, 2010.

[96] Brommer, P., Beck, P., Chatzopoulos, A., Gähler, F., Roth, J., and
Trebin, H.-R.: Direct wolf summation of a polarizable force field for
silica. J. Chem. Phys., 132, 194109, 2010.

[97] Chatzopoulos, A., Ishii, Y., and Trebin, H.-R.: Hydrodynamic struc-
ture factor for two-dimensional decagonal quasicrystals. Phys. Status
Solidi B, 250, 291-304, 2013.

[98] Roth, J., Beck, P., Brommer, P., Chatzopoulos, A., Gähler, F.,
Hocker, S., Schmauder, S., and Trebin, H.-R.: Molecular dynamics
simulations with long-range interactions. High Performance Com-
puting in Science and Engineering ’13, eds. Nagel, W. E., Kröner,
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Schicht arbeitet, stellt einer der größten Leistungen überhaupt dar. Für
ihre aufopfernde und bedingungslose Unterstützung all die Jahre gebührt
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